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ABSTRACT

Roughly speaking, classical statistical physics is the branch of theoretical physics that aims to

account for the thermal behaviour of macroscopic bodies in terms of a classical mechanical model

of their microscopic constituents, with the help of probabilistic assumptions. In the last century

and a half, a fair number of approaches have been developed to meet this aim. This study of their

foundations assesses their coherence and analyzes the motivations for their basic assumptions, and

the interpretations of their central concepts. The most outstanding foundational problems are the

explanation of time-asymmetry in thermal behaviour, the relative autonomy of thermal phenomena

from their microscopic underpinning, and the meaning of probability.

A more or less historic survey is given of the work of Maxwell, Boltzmann and Gibbs in statis-

tical physics, and the problems and objections to which their work gave rise. Next, we review some

modern approaches to (i) equilibrium statistical mechanics, such as ergodic theory and the theory of

the thermodynamic limit; and to (ii) non-equilibrium statistical mechanics as provided by Lanford’s

work on the Boltzmann equation, the so-called Bogolyubov-Born-Green-Kirkwood-Yvon approach,

and stochastic approaches such as ‘coarse-graining’ and the ‘open systems’ approach. In all cases,

we focus on the subtle interplay between probabilistic assumptions, dynamical assumptions, initial

conditions and other ingredients used in these approaches.
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1 Introduction

It has been said that an advantage of having a mature, formalized version of a theory is that one may

forget its preceding history. This saying is certainly true for the purpose of studying the conceptual

structure of a physical theory. In a discussion of the foundations of classical mechanics, for example,

one need not consider the work of the Parisian scholastics. In the foundations of quantum mechanics,

one may start from the von Neumann axioms, and disregard the preceding “old” quantum theory.

Statistical physics, however, has not yet developed a set of generally accepted formal axioms, and

consequently we have no choice but to dwell on its history.

This is not because attempts to chart the foundations of statistical physics have been absent,

or scarce (e.g. Ehrenfest & Ehrenfest-Afanassjewa 1912, ter Haar 1955, Penrose 1979, Sklar 1993,

Emch & Liu 2001). Rather, the picture that emerges from such studies is that statistical physics has

developed into a number of different schools, each with its own programme and technical apparatus.

Unlike quantum theory or relativity, this field lacks a common set of assumptions that is accepted

by most of the participants; although there is, of course, overlap. But one common denominator

seems to be that nearly all schools claim the founding fathers, Maxwell, Boltzmann and Gibbs as

their champions.

Broadly understood, statistical physics may be characterized as a branch of physics intended to

describe the thermal behaviour and properties of matter in bulk, i.e. of macroscopic dimensions in

relation to its microscopic corpuscular constituents and their dynamics.1 In this review, we shall only

deal with approaches that assume a finite number of microscopic constituents, governed by classical

dynamics. (See Emch (2006) for a discussion of quantum statistical physics that also addresses

infinite systems.)

The above description is deliberately vague; it does not yet specify what thermal behaviour is,

and being a characterization in terms of intentions, leaves open by what methods the goals may be

achieved. Let us expand a bit. There are two basic ingredients in statistical physics. The first is a

mechanical model of a macroscopic material system. For example, a gas may be modeled as a system

of point particles, or as hard spheres, or as composite objects, etc. Similarly, one may employ lattice

models for solids, and so forth. In general, the particulars of the mechanical model, and its dynamics,

will depend on the system of interest.

The second ingredient of the theory on which all approaches agree is the introduction of prob-

ability and statistical considerations. Sometimes, textbooks explain the need for this ingredient by

pointing to the fact that an exact solution of the equations of motion for mechanical models with a

large number of degrees of freedom is unfeasible. But this motivation from deficiency surely under-

1The terms “in bulk” and the distinction “micro/macroscopic” should be understood in a relative sense. Thus, statistical
physics may apply to a galaxy or nebula, in which the constituent stars are considered as ’microscopic constituents’.
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estimates the constructive and explanatory role that probability plays in statistical physics. A slightly

better motivation, also found in many textbooks, is that even if the dynamical equations could be

solved in detail, most of these details would turn out to be irrelevant for the purpose of characterizing

the thermal behaviour. There is some truth in this observation, yet it can hardly be satisfactory as it

stands. Certainly, not all details about the microdynamics are irrelevant, e.g. in phase transitions, and

one naturally wishes for more concrete information about exactly which details are irrelevant and

which are not.

One of the foremost foundational problems in statistical physics is thus to specify and to clar-

ify the status of probabilistic assumptions in the theory. As we shall see, this task already leads to a

rough distinction between approaches in which probability arises as a notion explicitly defined in me-

chanical terms (kinetic theory), and approaches in which it is a conceptually independent ingredient

(statistical mechanics).

Next, there are ingredients on which much less consensus can be found. Here is a (partial) list:

- Assumptions about the overwhelmingly large number of microscopic constituents (typically of

the order of 1023 or more).

- An assumption about the erratic nature of the dynamics (e.g. ergodicity).

- The choice of special initial conditions.

- The role of external influences on the system, i.e., assumptions about whether the system is

open to the exchange of energy/momentum with its environment, in combination with an as-

sumed sensitivity of the dynamics under such external disturbances.

- Symmetry of macroscopic quantities under permutation of the microscopic constituents.

- Limits in the resolution or experimental accuracy of macroscopic observers.

- Appeal to a time-asymmetric principle of causality.

The role of each of these ingredients in the recipe of statistical physics is controversial. What many

“chefs” regard as absolutely essential and indispensable, is argued to be insufficient or superfluous by

many others. A major goal in the foundations of statistical physics should therefore lie in an attempt

to sort out which subset of the above ideas can be formulated in a precise and coherent manner to

obtain a unified and sufficiently general framework for a theory of statistical physics.

Another issue in which the preceding discussion has been vague is what is meant by the thermal

behaviour and properties of macroscopic matter. There are two sources on which one may draw

in order to delineate this topic. The first is by comparison to other (older) traditions in theoretical

physics that have the same goal as statistical physics but do not rely on the two main ingredients above

viz. a mechanical model and probabilistic arguments. There are two main examples: thermodynamics
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and hydrodynamics. The other source, of course, is observation. This provides a rich supply of

phenomena, some of which have thus far withstood full theoretical explanation (e.g. turbulence).

Obviously, a measure of success for statistical physics can be found in the question to what extent

this approach succeeds in reproducing the results of earlier, non-statistical theories, where they are

empirically adequate, and in improving upon them where they are not. Thus, the foundations of

statistical physics also provides a testing ground for philosophical ideas about inter-theory relations,

like reduction (cf. Brush 1977, Sklar 1993, Batterman 2002). However I will not go into this issue.

The remainder of this introduction will be devoted to a rough sketch of the four theories mentioned,

i.e. thermodynamics, hydrodynamics, kinetic theory and statistical physics.

1.1 Thermodynamics.

Orthodox thermodynamics is an approach associated with the names of Clausius, Kelvin, and Planck.

Here, one aims to describe the thermal properties of macroscopic bodies while deliberately avoiding

commitment to any hypothesis about the microscopic entities that might constitute the bodies in

question. Instead, the approach aims to derive certain general laws, valid for all such bodies, from a

restricted set of empirical principles.

In this approach the macroscopic body (or thermodynamic system) is conceived of as a sort of

black box, which may interact with its environment by means of work and heat exchange. The most

basic empirical principle is that macroscopic bodies when left to themselves, i.e. when isolated from

an environment, eventually settle down in an equilibrium state in which no further observable changes

occur. Moreover, for simple, homogeneous bodies, this equilibrium state is fully characterized by the

values of a small number of macroscopic variables.

Other empirical principles state which types of processes are regarded as impossible. By in-

genious arguments one can then derive from these principles the existence of certain quantities (in

particular: absolute temperature, energy and entropy) as ‘state functions’, i.e. functions defined on a

space of thermodynamical equilibrium states for all such systems.

While the theory focuses on processes, the description it can afford of such processes is extremely

limited. In general, a process will take a system through a sequence of non-equilibrium states, for

which the thermodynamic state functions are not defined, and thus cannot be characterized in detail

with the tools afforded by the theory. Therefore one limits oneself to the consideration of special

types of processes, namely those that begin and end in an equilibrium state. Even more special are

those processes that proceed so delicately and slowly that up to an arbitrarily small error one may

assume that the system remains in equilibrium throughout the entire process. The latter processes are

called quasistatic, or sometimes reversible.2

2The reader may be warned, however, that there are many different meanings to the term ‘reversible’ in thermodynamics.
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Of course, since equilibrium states are by definition assumed to remain in equilibrium if un-

perturbed, all such processes are triggered by an external intervention such as pushing a piston or

removing a partition. For the first type of process, orthodox thermodynamics can only relate the

initial and final state. The second type of process can be (approximately) represented as a curve in

the equilibrium state space.

The advantage of the approach is its generality. Though developed originally for the study of

gases and liquids, by the late nineteenth century, it could be extended to the behaviour of magnets and

other systems. Indeed, the independence of hypotheses about its micro-constituents means that the

methods of orthodox thermodynamics can also be –and have been– applied to essentially quantum-

mechanical systems (like photon gases) or to more exotic objects like black holes (see (Rovelli 2006).

With regard to the foundations of statistical physics, two aspects of thermodynamics are of out-

standing importance. First, the challenge is to provide a counterpart for the very concept of equi-

librium states and to provide a counterpart for the thermodynamic law that all isolated systems not

in equilibrium evolve towards an equilibrium state. Secondly, statistical physics should give an ac-

count of the Second Law of thermodynamics, i.e. the statement that entropy cannot decrease in an

adiabatically isolated system. Obviously, such counterparts will be statistical; i.e. they will hold on

average or with high probability, but will not coincide with the unexceptionally general statements

of thermodynamics.

1.2 Hydrodynamics

It would be a mistake to believe that the goals of statistical physics are exhausted by reproducing

the laws of thermodynamics. There are many other traditions in theoretical physics that provide a

much more detailed, yet less general, characterization of thermal behaviour. A concrete example is

hydrodynamics or fluid dynamics. In contrast to thermodynamics, hydrodynamics does rely on an

assumption about microscopic constitution. It models a fluid as a continuous medium or plenum. It is,

in modern parlance, a field theory. Moreover it aims to describe the evolution of certain macroscopic

quantities in the course of time, i.e. during non-equilibrium processes. As such it is an example of

a theory which is much more informative and detailed than thermodynamics, at the price, of course,

that its empirical scope is restricted to fluids.

Without going in detail (for a more comprehensive account, see e.g. Landau & Lifshitz 1987, de

Groot & Mazur 1961), hydrodynamics assumes there are three fundamental fields: the mass density

ρ(~x, t), a velocity field ~v(~x, t) and a temperature field T (~x, t). There are also three fundamental field

equations, which express, in a differential form, the conservation of mass, momentum and energy.

See Uffink (2001) for a discussion.
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Unfortunately, these equations introduce further quantities: the pressure P (~x, t), the stress tensor

π(~x, t), the energy density u(~x, t), the shear and bulk viscosities η and ζ and thermal conductivity κ,

each of which has to be related to the fundamental fields by means of various constitutive relations

and equations of state (dependent on the fluid concerned), in order to close the field equations, i.e. to

make them susceptible to solution.

The resulting equations are explicitly asymmetric under time reversal. Yet another remarkable

feature of hydrodynamics is the fact that the equations can be closed at all. That is: the specification

of only a handful of macroscopic quantities is needed to predict the evolution of those quantities.

Their behaviour is in other words autonomous. This same autonomy also holds for other theories

or equations used to describe processes in systems out of equilibrium: for example the theories of

diffusion, electrical conduction in metals, the Fourier heat equation etc. In spite of a huge number

of microscopic degrees of freedom, the evolution of a few macroscopic quantities generally seems to

depend only on the instantaneous values of these macroscopic quantities. Apart from accounting for

the asymmetry under time reversal displayed by such theories, statistical physics should also ideally

explain this remarkable autonomy of their evolution equations.

1.3 Kinetic theory

I turn to the second group of theories we need to consider: those that do rely on hypotheses or

modeling assumptions about the internal microscopic constitution or dynamics of the systems con-

sidered. As mentioned, they can be divided into two rough subgroups: kinetic theory and statistical

mechanics.

Kinetic theory, also called the kinetic theory of gases, the dynamical theory of gases, the molecular-

kinetic theory of heat etc., takes as its main starting point the assumption that systems (gases in par-

ticular) consist of molecules. The thermal properties and behaviour are then related in particular to

the motion of these molecules.

The earliest modern version of a kinetic theory is Daniel Bernoulli’s (1731). Bernoulli’s work

was not followed by further developments along the same line for almost a century. But it regained

new interest in the mid-nineteenth century. The theory developed into a more general and elaborate

framework in the hands of Clausius, Maxwell and Boltzmann. Clausius extended Bernoulli’s model

by taking into account the collisions between the particles, in order to show that the formidable

molecular speeds (in the order of 103 m/s) were compatible with relatively slow rates of diffusion.

However, he did not develop a systematic treatment of collisions and their effects. It was Maxwell

who was the first to realize that collisions would tend to produce particles moving at a variety of

speeds, rather than a single common speed, and proceeded to ask how probable the various values of

the velocity would be in a state of equilibrium. Maxwell thus introduced the concept of probability
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and statistical considerations into kinetic theory.

From 1868 onwards, Boltzmann took Maxwell’s investigations further. In his famous memoir of

1872 he obtained an equation for the evolution of the distribution function, the Boltzmann equation,

and claimed that every non-stationary distribution function for an isolated gas would evolve towards

the Maxwellian form, i.e. towards the equilibrium state. However, along the way, Boltzmann had

made various assumptions and idealizations, e.g. neglecting the effect of multi-particle collisions,

which restrict his derivations’ validity to dilute gases, as well as the Stoßzahlansatz, developed by

Maxwell in 1867, (or ‘hypothesis of molecular disorder’ as he later called it).

The Boltzmann equation, or variations of this equation, is the physicists’ work-horse in gas the-

ory. The hydrodynamical equations can be derived from it, as well as other transport equations.

However, it is well known that it is only an approximation, and commonly regarded as a first step in

a hierarchy of more detailed equations. But the foremost conceptual problem is its time-asymmetric

nature, which highlights the fact that the Boltzmann equation itself could not be derived from me-

chanics alone. During Boltzmann’s lifetime, this led to two famous objections, the reversibility

objection (Umkehreinwand) by Loschmidt and the recurrence objection (Wiederkehreinwand) by

Zermelo. A third important challenge, only put forward much more recently by Lanford (1975),

concerns the consistency of the Boltzmann equation with the assumption that the gas system is a

mechanical system governed by Hamiltonian dynamics.

1.4 Statistical mechanics

There is only a vague borderline between kinetic theory and statistical mechanics. The main distinc-

tive criterion, as drawn by the Ehrenfests (1912) is this. Kinetic theory is what the Ehrenfests call

“the older formulation of statistico-mechanical investigations” or “kineto-statistics of the molecule”.

Here, molecular states, in particular their velocities, are regarded as stochastic variables, and prob-

abilities are attached to such molecular states of motion. These probabilities themselves are deter-

mined by the state of the total gas system. They are conceived of either as the relative number of

molecules with a particular state, or the relative time during which a molecule has that state. (Max-

well employed the first option, Boltzmann wavered between the two.) It is important to stress that

in both options the “probabilities” in question are determined by the mechanical properties of the

gas. Hence there is really no clear separation between mechanical and statistical concepts in this

approach.

Gradually, a transition was made to what the Ehrenfests called a “modern formulation of statistico-

mechanical investigations” or “kineto-statistics of the gas model”, or what is nowadays known as sta-

tistical mechanics. In this latter approach, probabilities are not attached to the state of a molecule but

to the state of the entire gas system. Thus, the state of the gas, instead of determining the probability
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distribution, now itself becomes a stochastic variable.

A merit of this latter approach is that interactions between molecules can be taken into account.

Indeed, the approach is not necessarily restricted to gases, but might in principle also be applied to

liquids or solids. (This is why the name ‘gas theory’ is abandoned.) The price to be paid however, is

that the probabilities themselves become more abstract. Since probabilities are attributed to the me-

chanical states of the total system, they are no longer determined by such mechanical states. Instead,

in statistical mechanics, the probabilities are usually conceived of as being determined by means of

an ‘ensemble’, i.e. a fictitious collection of replicas of the system in question. But whatever role

one may wish to assign to this construction, the main point is that probability is now an independent

concept, no longer reducible to mechanical properties of the system.

It is not easy to pinpoint this transition in the course of the history, except to say that Maxwell’s

work in the 1860s definitely belong to the first category, and Gibbs’ book of 1902 to the second.

Boltzmann’s own works fall somewhere in the middle ground. His earlier contributions clearly be-

long to the kinetic theory of gases (although his 1868 paper already applies probability to an entire

gas system); while his work after 1877 is usually seen as elements in the theory of statistical me-

chanics. However, Boltzmann himself never indicated a clear distinction between these two different

theories, and any attempt to draw a demarcation at an exact location in his work seems somewhat

arbitrary.

From a conceptual point of view, the transition from kinetic gas theory to statistical mechanics

poses two main foundational questions. First: on what grounds do we choose a particular ensemble,

or the probability distribution characterizing the ensemble? Gibbs did not enter into a systematic

discussion of this problem, but only discussed special cases of equilibrium ensembles (i.e. canonical,

micro-canonical etc.) for which the probability distribution was stipulated by some special simple

form. A second problem is to relate the ensemble-based probabilities to the probabilities obtained in

the earlier kinetic approach for a single gas model.

The Ehrenfests (1912) paper was the first to recognize these questions, and to provide a partial

answer. Namely: Assuming a certain hypothesis of Boltzmann’s, which they dubbed the ergodic

hypothesis, they pointed out that for an isolated system the micro-canonical distribution is the unique

stationary probability distribution. Hence, if one demands that an ensemble of isolated systems

describing thermal equilibrium must be represented by a stationary distribution, the only choice for

this purpose is the micro-canonical one. Similarly, they pointed out that under the ergodic hypothesis,

infinite time averages and ensemble averages were identical. This, then, would provide a desired link

between the probabilities of the older kinetic gas theory and those of statistical mechanics, at least in

equilibrium and in the infinite time limit. Yet the Ehrenfests simultaneously expressed strong doubts

about the validity of the ergodic hypothesis. These doubts were soon substantiated when in 1913
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Rosenthal and Plancherel proved that the hypothesis was untenable for realistic gas models.

The Ehrenfests’ reconstruction of Boltzmann’s work thus gave a prominent role to the ergodic

hypothesis, suggesting that it played a fundamental and lasting role in his thinking. Although this

view indeed produces a more coherent view of his multi-faceted work, it is certainly not historically

correct. Boltzmann himself also had grave doubts about this hypothesis, and expressly avoided it

whenever he could, in particular in his two great papers of 1872 and 1877b. Since the Ehrenfests,

many authors have presented accounts of Boltzmann’s work. Particularly important are Klein (1973)

and Brush (1976).

Nevertheless, the analysis of the Ehrenfests did thus lead to a somewhat clearly delineated pro-

gramme for or view about the foundations of statistical physics, in which ergodicity was a crucial

feature. The demise of the original ergodic hypothesis did not halt the programme; the hypothe-

sis was replaced by an alternative (weaker) hypothesis, i.e. that the system is ‘metrically transitive’

(nowadays, the name ‘ergodic’ is often used as synonym). What is more, certain mathematical re-

sults of Birkhoff and von Neumann (the ergodic theorem) showed that for ergodic systems in this

new sense, the desired results could indeed be proven, modulo a few mathematical provisos that at

first did not attract much attention.

Thus there arose the ergodic or “standard” view on the foundations of statistical mechanics; (see,

e.g. Khinchin 1949, p. 44). On that view, the formalism of statistical mechanics emerges as follows:

A concrete system, say a container with gas, is represented as a mechanical system with a very large

number of degrees of freedom. All physical quantities are functions of the dynamical variables of the

system, or, what amounts to the same thing, are functions on its phase space. However, experiments

or observation of such physical quantities do not record the instantaneous values of these physical

quantities. Instead, every observation must last a duration which may be extremely short by human

standards, but will be extremely long on the microscopic level, i.e. one in which the microstate has

experienced many changes, e.g. because of the incessant molecular collisions. Hence, all we can

register are time averages of the physical quantities over a very long periods of time. These averages

are thus empirically meaningful. Unfortunately they are theoretically and analytically obstreperous.

Time averages depend on the trajectory and can only be computed by integration of the equations of

motion. The expectation value of the phase function over a given ensemble, the phase average has

the opposite qualities, i.e. it is easy to compute, but not immediately empirically relevant. However,

ergodicity ensures that the two averages are equal (almost everywhere). Thus, one can combine the

best of both worlds, and identify the theoretically convenient with the empirically meaningful.

While statistical mechanics is clearly a more powerful theory than kinetic theory, it is, like ther-

modynamics, particularly successful in explaining and modeling gases and other systems in equilib-

rium. Non-equilibrium statistical mechanics remains a field where extra problems appear.
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1.5 Prospectus

The structure of this chapter is as follows. In Section 2, I will provide a brief exposition of or-

thodox thermodynamics, and in subsection 2.2 an even briefer review of some less-than-orthodox

approaches to thermodynamics. Section 3 looks at the kinetic theory of gases, focusing in particular

on Maxwell’s ground-breaking papers of 1860 and 1867, and investigates the meaning and status of

Maxwell’s probabilistic arguments.

Section 3.3 is devoted to (a selection of) Boltzmann’s works, which, as mentioned above, may be

characterized as in between kinetic theory and statistical mechanics. The focus will be on his 1868

paper and his most celebrated papers of 1872 and 1877. Also, the objections from Loschmidt (1877)

and Zermelo (1897) are discussed, together with Boltzmann’s responses. Our discussion emphasizes

the variety of assumptions and methods used by Boltzmann over the years, and the open-endedness

of his results: the ergodic hypothesis, the Stoßzahlansatz, the combinatorial argument of 1877, and a

statistical reading of the H-theorem that he advocated in the 1890s.

Next, Section 5 presents an account of Gibbs’ (1902) version of statistical mechanics and em-

phasizes the essential differences between his and Boltzmann’s approach. Sections 6 and 7 give

an overview of some more recent developments in statistical mechanics, In particular, we review

some results in modern ergodic theory, as well as approaches that aim to develop a more systematic

account of non-equilibrium theory, such as the BBGKY approach (named after Bogolyubov, Born,

Green, Kirkwood and Yvon) and the approach of Lanford. Section 7 extends this discussion for

a combination of approaches, here united under the name stochastic dynamics that includes those

known as ‘coarse-graining’ and ‘interventionism’ or ‘open systems’. In all cases we shall look at the

question whether or how such approaches succeed in a satisfactory treatment of non-equilibrium.

As this prospectus makes clear, the choice of topics is highly selective. There are many important

topics and developments in the foundations of statistical physics that I will not touch. I list the most

conspicuous of those here together with some references for readers that wish to learn more about

them.

- Maxwell’s demon and Landauer’s principle: (Klein 1970, Earman & Norton 1998, 1999,

Leff& Rex 2003, Bennett 2003, Norton 1005, Maroney 2005, Ladyman et al. 2006).

- Boltzmann’s work in the 1880s (e.g. on monocyclic systems) (Klein 1972, 1974, Bierhalter

1992, Gallavotti 1999, Uffink 2005).

- Gibbs’ paradox (van Kampen 1984, Jaynes 1992, Huggett 1999, Saunders 2006).

- Branch systems (Schrödinger 1950, Reichenbach 1956, Kroes 1985, Winsberg 2004).

- Subjective interpretation of probability in statistical mechanics (Tolman 1938, Jaynes 1983,

von Plato 1991, van Lith 2001a, Balian 2005).
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- Prigogine and the Brussels-Austin school (Obcemea & Brändas 1983, Batterman 1991, Karakostas

1996, Edens 2001, Bishop 2004).

2 Orthodox thermodynamics

2.1 The Clausius-Kelvin-Planck approach

Thermodynamics is a theory that aims to characterize macroscopic physical bodies in terms of macro-

scopically observable quantities (typically: temperature, pressure, volume, etc.,) and to describe their

changes under certain types of interactions (typically exchange of heat or work with an environment).

The classical version of the theory, which evolved around 1850, adopted as a methodological

starting point that the fundamental laws of the theory should be independent of any particular hy-

pothesis about the microscopic constitution of the bodies concerned. Rather, they should be based

on empirical principles, i.e. boldly generalized statements of experimental facts, not on hypothetical

and hence untestable assumptions such as the atomic hypothesis.

The reasons for this methodology were twofold. First, the dominant view on the goal of science

was the positivist-empirical philosophy which greatly valued directly testable empirical statements

above speculative hypotheses. But the sway of the positivist view was never so complete that physi-

cists avoided speculation altogether. In fact many of the main founders of thermodynamics eagerly

indulged in embracing particular hypotheses of their own about the microphysical constitution of

matter.

The second reason is more pragmatic. The multitude of microphysical hypotheses and conjec-

tures was already so great in the mid-nineteenth century, and the prospect of deciding between them

so dim, that it was a clear advantage to obtain and present results that did not depend on such as-

sumptions. Thus, when Clausius stated in 1857 that he firmly believed in the molecular-kinetic view

on the nature of gases, he also mentioned that he had not previously revealed this opinion in order

not to mix this conviction with his work on thermodynamics proper (Clausius 1857, p. 353).3

Proceeding somewhat ahistorically,4 one might say that the first central concept in thermodynam-

ics is that of equilibrium. It is taken as a fact of experience that macroscopic bodies in a finite volume,

when left to themselves, i.e. isolated from an environment eventually settle down in a stationary state

in which no further observable changes occur (the ‘Minus First Law’, cf. page 20). This stationary

state is called a (thermal) equilibrium state. Moreover, for simple, homogeneous bodies, this state is

3The wisdom of this choice becomes clear if we compare his fame to that of Rankine. Rankine actually predated Clausius
in finding the entropy function (which he called ‘thermodynamic potential’). However, this result was largely ignored due to
the fact that it was imbedded in Rankine’s rather complicated theory of atomic vortices.

4I refer to Uffink (2001) for more details.
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fully characterized by the values of a small number of macroscopic variables. In particular, for fluids

(i.e. gases or liquids), two independent variables suffice to determine the equilibrium state.

For fluids, the three variables pressure p, temperature θ and volume V , are thus related by a so-

called equation of state, where, following Euler, it has become customary to express pressure as a

function of the two remaining variables:

p = p(θ, V ) (1)

The form of this function differs for different fluids; for n moles of an ideal gas it is given by:

p(θ, V ) = nRθ/V (2)

where R is the gas constant and θ is measured on the gas thermometer scale.

The content of thermodynamics developed out of three ingredients. The first is the science of

calorimetry, which was already developed to theoretical perfection in the eighteenth century, in par-

ticular by Joseph Black (Fox 1971, Truesdell 1980, Chang 2003,2004). It involved the study of the

thermal changes in a body under the addition of or withdrawal of heat to the system. Of course, the

(silent) presupposition here is that this process of heat exchange proceeds so delicately and slowly

that the system may always be regarded as remaining in equilibrium. In modern terms, it proceeds

‘quasi-statically’. Thus, the equation of state remains valid during the process.

The tools of calorimetry are those of differential calculus. For an infinitesimal increment dQ of

heat added to a fluid, one puts

dQ = cV dθ + ΛθdV, (3)

where cV is called the heat capacity at constant volume and Λθ the latent heat at constant temperature.

Both cV and Λθ are assumed to be functions of θ and V . The notation d is used to indicate that the

heat increment dQ is not necessarily an exact differential, i.e. Q is not assumed to be a function of

state.

The total heat Q added to a fluid during a process can thus be expressed as a line integral along a

path P in the (θ, V ) plane

Q(P) =
∫

P
dQ =

∫

P
(cV dθ + ΛθdV ) (4)

A treatment similar to the above can be given for the quasistatic heat exchange of more general

thermal bodies than fluids. Indeed, calorimetry was sufficiently general to describe phase transitions,

say from water to ice, by assuming a discontinuity in Λθ.

All this is independent of the question whether heat itself is a substance or not. Indeed, Black
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himself wished to remain neutral on this issue. Even so, much of the terminology of calorimetry

somehow invites the supposition that heat is a substance, usually called caloric, and many eighteenth

and early nineteenth century authors adopted this view (Fox 1971). In such a view it makes sense

to speak of the amount of heat contained in a body, and this would entail that dQ must be an exact

differential (or in other words: Q(P) must be the same for all paths P with the same initial and final

points). But this turned out to be empirically false, when the effects of the performance of work were

taken into account.

Investigations in the 1840s (by Joule and Mayer among others) led to the conviction that heat and

work are “equivalent”; or somewhat more precisely, that in every cyclic process C, the amount of

heat Q(C) absorbed by the system is proportional to the amount of work performed by the system.

Or, taking W (C) as positive when performed on the system :

JQ(C) + W (C) = 0 (5)

where J ≈ 4.2Nm/Cal is Joule’s constant, which modern convention takes equal to 1. This is the

so-called First Law of thermodynamics.

For quasistatic processes this can again be expressed as a line integral in a state space Ωeq of

thermodynamic equilibrium states ∮

C
(dQ + dW ) = 0 (6)

where

dW = −pdV. (7)

Assuming the validity of (6) for all cyclic paths in the equilibrium state space implies the existence

of a function U on Ωeq such that

dU = dQ + dW. (8)

The third ingredient of thermodynamics evolved from the study of the relations between heat and

work, in particular the efficiency of heat engines. In 1824, Carnot obtained the following theorem.

CARNOT’S THEOREM: Consider any system that performs a cyclic process C during

which (a) an amount of heat Q+(C) is absorbed from a heat reservoir at temperature

θ+, (b) an amount of heat Q−(C) is given off to a reservoir at a temperature θ−, with

θ− < θ+, (c) there is no heat exchange at other stages of the cycles, and (d) some work

W (C) is done on a third body. Let η(C) := W (C)
Q+(C) be the efficiency of the cycle. Then:

(1) All quasistatic cycles have the same efficiency. This efficiency is a univer-
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sal function of the two temperatures, i.e.,

η(C) = η(θ+, θ−). (9)

(2) All other cycles have a efficiency which is less or equal to that of the quasi-

static cycle.

Carnot arrived at this result by assuming that heat was a conserved substance (and thus: Q+(C) =

Q−(C) for all C), as well as a principle that excluded the construction of a perpetuum mobile (of the

first kind).

In actual fact, Carnot did not use the quasistatic/non-quasistatic dichotomy to characterize the

two parts of his theorem. 5

In fact, he used two different characterizations of the cycles that would produce maximum effi-

ciency. (a): In his proof that Carnot cycles belong to class (1), the crucial assumption is that they

“might have been performed in an inverse direction and order”(Carnot 1824, p. 11). But a little later

(p. 13), he proposed a necessary and sufficient condition for a cycle to produce maximum efficiency,

namely (b): In all stages which involve heat exchange, only bodies of equal temperature are put in

thermal contact, or rather: their temperatures differ by a vanishingly small amount.

Carnot’s theorem is remarkable since it did not need any assumption about the nature of the

thermal system on which the cycle was carried out. Thus, when his work first became known to the

physics community (Thomson, later known as Lord Kelvin, 1848) it was recognized as an important

clue towards a general theory dealing with both heat and work exchange, for which Kelvin coined

the name ‘thermodynamics’. Indeed, Kelvin already showed in his first paper (1848) on the subject

that Carnot’s universal function η could be used to devise an absolute scale for temperature, i.e. one

that did not depend on properties of a particular substance.

Unfortunately, around the very same period it became clear that Carnot’s assumption of the con-

servation of heat violated the First Law. In a series of papers Clausius and Kelvin re-established

Carnot’s theorem on a different footing (i.e. on the first law (5) or, in this case Q+(C) = Q−(C) +

W (C), and a principle that excluded perpetual motion of the second kind) and transformed his results

into general propositions that characterize general thermodynamical systems and their changes under

the influence of heat and work. For the most part, these investigations were concerned with the first

part of Carnot’s theorem only. They led to what is nowadays called the first part of the Second Law;

as follows.

First, Kelvin reformulated his 1848 absolute temperature scale into a new one, T (θ), in which

5Indeed, Truesdell (1980) argues that this characterization of his theorem is incorrect. See Uffink (2001) for further
discussions.
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the universal efficiency could be expressed explicitly as:

η(T+, T−) = 1− T−
T+

, (10)

where Ti = T (θi). Since the efficiency η is also expressed by W/Q+ = 1 − (Q−/Q+), this is

equivalent to
Q−
T−

=
Q+

T+
. (11)

Next, changing the sign convention to one in which Q is positive if absorbed and negative if given

off by the system, and generalizing for cycles in which an arbitrary number of heat reservoirs are

involved, one gets: ∑

i

Qi

Ti
= 0. (12)

In the case where the system is taken through a quasistatic cycle in which the heat reservoirs have a

continuously varying temperature during this cycle, this generalizes to

∮

C

dQ

T
= 0. (13)

Here, T still refers to the temperature of the heat reservoirs with which the system interacts, not

to its own temperature. Yet Carnot’s necessary and sufficient criterion of reversibility itself requires

that during all stages of the process that involve heat exchange, the temperatures of the heat reservoir

and system should be equal. Hence, in this case one may equate T with the temperature of the system

itself.

The virtue of this result is that the integral (13) can now be entirely expressed in terms of quanti-

ties of the system. By a well-known theorem, applied by Clausius in 1865, it follows that there exists

a function, called entropy S, defined on the equilibrium states of the system such that

S(s1)− S(s2) =
∫ s2

s1

dQ

T
(14)

or, as it more usually known:
dQ

T
= dS. (15)

This result is frequently expressed as follows: dQ has an integrating divisor (namely T ): division by

T turns the inexact (incomplete, non-integrable) differential dQ into an exact (complete, integrable)

differential. For one mole of ideal gas (i.e. a fluid for which cV is constant, Λθ vanishes and the ideal

gas law (2) applies), one finds, for example:

S(T, V ) = cV ln T + R ln V + const. (16)
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The existence of this entropy function also allows for a convenient reformulation of the First Law

for quasistatic processes (8) as

dU = TdS − pdV, (17)

now too expressed in terms of properties of the system of interest.

However important this first part of the Second Law is by itself, it never led to much dispute

or controversy. By contrast, the extension of the above results to cover the second part of Carnot’s

theorem gave rise to considerably more thought, and depends also intimately on what is understood

by ‘(ir)reversible processes’.

The second part of Carnot’s theorem was at first treated in a much more step-motherly fashion.

Clausius’ (1854) only devoted a single paragraph to it, obtaining the result that for “irreversible”

cycles ∮
dQ

T
≤ 0. (18)

But this result is much less easy to apply, since the temperature T here refers to that of the heat

reservoir with which the system is in contact, not (necessarily) that of the system itself.

Clausius put the irreversible processes in a more prominent role in his 1865 paper. If an irre-

versible cyclic process consists of a general, i.e. possibly non-quasistatic stage, from si to sf , and a

quasistatic stage, from sf back to si, one may write (18) as

∫ sf

si non−qs

dQ

T
+

∫ si

sf qs

dQ

T
≤ 0. (19)

Applying (14) to the second term in the left hand side, one obtains

∫ sf

si non−qs

dQ

T
≤ S(sf )− S(si) (20)

If we assume moreover that the generally non-quasistatic process is adiabatic, i.e. dQ = 0, the result

is

S(si) ≤ S(sf ). (21)

In other words, in any adiabatic process the entropy of the final state cannot be less than that of the

initial state.

Remarks: 1. The notation
∮

for cyclic integrals, and d for inexact differentials is modern. Clau-

sius, and Boltzmann after him, would simply write
∫

dQ
T for the left-hand side of (13) and (18).

2. An important point to note is that Clausius’ formulation of the Second Law, strictly speaking,

does not require a general monotonic increase of entropy for any adiabatically isolated system in the
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course of time. Indeed, in orthodox thermodynamics, entropy is defined only for equilibrium states.

Therefore it is meaningless within this theory to ask how the entropy of a system changes during a

non-quasistatic process. All one can say in general is that when a system starts out in an equilibrium

state, and ends, after an adiabatic process, again in an equilibrium state, the entropy of the latter state

is not less than that of the former.

Still, the Second Law has often been understood as demanding continuous monotonic increase

of entropy in the course of time, and often expressed, for adiabatically isolated systems, in a more

stringent form
dS

dt
≥ 0. (22)

There is, however, no basis for this demand in orthodox thermodynamics.

3. Another common misunderstanding of the Second Law is that it would only require the non-

decrease of entropy for processes in isolated systems. It should be noted that this is only part of the

result Clausius derived: the Second Law holds more generally for adiabatic processes, i.e., processes

during which the system remains adiabatically insulated. In other words, the system may be subject

to arbitrary interactions with the environment, except those that involve heat exchange. (For example:

stirring a liquid in a thermos flask, as in Joule’s ‘paddle wheel’ experiment.)

4. Another point to be noted is that Clausius’ result that the entropy in an adiabatically isolated

system can never decrease is derived from the assumption that one can find a quasistatic process

that connects the final to the initial state, in order to complete a cycle. Indeed, if such a process

did not exist, the entropy difference of these two states would not be defined. The existence of

such quasistatic processes is not problematic in many intended applications (e.g. if sf and si are

equilibrium states of a fluid); but it may be far from obvious in more general settings (for instance

if one considers processes far from equilibrium in a complex system, such as a living cell). This

warning that the increase of entropy is thus conditional on the existence of quasistatic transitions has

been pointed out already by Kirchhoff (1894, p. 69).

5. Apart from the well-known First and Second Laws of thermodynamics, later authors have

identified some more basic assumptions or empirical principles in the theory that are often assumed

silently in traditional presentations—or sometimes explicitly but unnamed—which may claim a sim-

ilar fundamental status.

The most familiar of these is the so-called Zeroth Law, a term coined by Fowler & Guggenheim

(1939). To introduce this, consider the relation of thermal equilibrium. This is the relationship

holding between the equilibrium states of two systems, whenever it is the case that the composite

system, consisting of these two systems, would be found in an equilibrium state if the two systems

are placed in direct thermal contact—i.e., an interaction by which they are only allowed to exchange

heat. The zeroth law is now that the assumption that this is a transitive relationship, i.e. if it holds
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for the states of two bodies A and B, and also for the states of bodies B and C, it likewise holds for

bodies A and C.6 The idea of elevating this to a fundamental ‘Law’, is that this assumption, which

underlies the concept of temperature, can only be motivated on empirical grounds.

Another such assumption, again often stated but rarely named, is that any system contained in a

finite volume, if left to itself, tends to evolve towards an equilibrium state. This has also sometimes

been called a ‘zeroth law’ (cf. Uhlenbeck & Ford 1963, p.5; Lebowitz 1994, p. 135) in unfortunate

competition with Fowler & Guggenheim’s nomenclature. The name Minus First Law has therefore

been proposed by Brown & Uffink (2001). Note that this assumption already introduces an explicitly

time-asymmetric element, which is deeper than—and does not follow from—the Second Law. How-

ever, most nineteenth (and many twentieth) century authors did not appreciate this distinction, and as

we shall see below, this Minus First Law is often subsumed under the Second Law.

2.2 Less orthodox versions of thermodynamics

Even within the framework of orthodox thermodynamics, there are approaches that differ from the

Clausius-Kelvin-Planck approach. The foremost of those is undoubtedly the approach developed

by Gibbs in 1873–1878 (Gibbs 1906). Gibbs’ approach differs much in spirit from his European

colleagues. No effort is devoted to relate the existence or uniqueness of the thermodynamic state

variables U T or S to empirical principles. There existence is simply assumed. Also, Gibbs focused

on the description of equilibrium states, rather than processes.

Previous authors usually regarded the choice of variables in order to represent a thermodynamic

quantity as a matter of convention, like the choice of a coordinate system on the thermodynamic

(equilibrium) state space. For a fluid, one could equally well choose the variables (p, V ), (V, T ),

etc., as long as they are independent and characterize a unique thermodynamic equilibrium state.7

Hence one could equally well express the quantities U , S, etc. in terms of any such set of variables.

However, Gibbs had the deep insight that some choices are ‘better’ than others, in the sense that if,

e.g., the entropy is presented as a function of energy and volume, S(U, V ), (or energy as a function

of entropy and volume, U(S, V )) all other thermodynamic quantities could be determined from it,

while this is generally not true for other choices. For example, if one knows only that for one mole of

gas S(T, V ) is given by (2), one cannot deduce the equations of state p = RT/V and U = cV T . In

contrast, if the function S(U, V ) = cV ln U + R ln V + const.’ is given, one obtains these equations

from its partial derivatives: p
T = ( ∂S

∂V )U and 1
T = ( ∂S

∂U )V .

6Actually, transitivity alone is not enough. The assumption actually needed is that thermal equilibrium is an equivalence
relation, i.e., it is transitive, reflective and symmetric (cf. Boyling 1972, p. 45)

7The latter condition may well fail: A fluid like water can exist at different equilibrium states with the same p, V , but
different T (Thomsen& Hartka 1962)
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For this reason, Gibbs called

dU = TdS − pdV or dS =
1
T

dU +
p

T
dV (23)

the fundamental equation.8 Of course this does not mean that other choices of variables are inferior.

Instead, one can find equivalent fundamental equations for such pairs of variables too, in terms of the

Legendre transforms of U . (Namely: the Helmholtz free energy F = U − TS for the pair (T, V );

the enthalpy U + pV for (p, S), and the Gibbs free energy U + pV − TS for (p, T ).) Further,

Gibbs extended these considerations from homogeneous fluids to heterogeneous bodies, consisting

of several chemical components and physical phases.

Another major novelty is that Gibbs proposed a variational principle to distinguish stable from

neutral and unstable equilibria. (Roughly, this principle entails that for stable equilibrium the function

S(U, V ) should be concave.) This criterium serves to be of great value in characterizing phase

transitions in thermodynamic systems, e.g. the Van der Waals gas (Maxwell used it to obtain his

famous “Maxwell construction” or equal area rule (Klein 1978)). Gibbs work also proved important

in the development of chemical thermodynamics, and physical chemistry.

Another group of approaches in orthodox thermodynamics is concerned particularly with creat-

ing a more rigorous formal framework for the theory. This is often called axiomatic thermodynamics.

Of course, choosing to pursue a physical theory in an axiomatic framework does not by itself imply

any preference for a choice in its physical assumptions or philosophical outlook. Yet the Clausius-

Kelvin-Planck approach relies on empirical principles and intuitive concepts that may seem clear

enough in their relation to experience—but are often surprisingly hard to define. Hence, axiomatic

approaches tend to replace these empirical principles by statements that are conceptually more pre-

cise, but also more abstract, and thus arguably further removed from experience. The first example of

this work is Carathéodory (1909). Later axiomatic approaches were pursued, among others, by Giles

(1964), Boyling (1972), Jauch (1972, 1975), and by Lieb & Yngvason (1999). All these approaches

differ in their choice of primitive concepts, in the formulation of their axioms, and hence also in the

results obtained and goals achieved. However, in a rough sense, one might say they all focus partic-

ularly on demonstrating under what conditions one might guarantee the mathematical existence and

uniqueness of entropy and other state functions within an appropriate structure.

Since the 1940s a great deal of work has been done on what is known as “non-equilibrium thermo-

dynamics” or “thermodynamics of irreversible processes” (see e.g. de Groot 1951, Prigogine 1955, de

8Note how Gibbs’ outlook differs here from the Clausius-Kelvin-Planck view: These authors would look upon (23) as
a statement of the first law of thermodynamics, interpreting the differentials as infinitesimal increments during a quasistatic
process, cf. (17). For Gibbs, on the other hand, (23) does not represent a process but a differential equation on the thermody-
namic state space whose solution U(S, V ) or S(V, U) contains all information about the equilibrium properties of the system,
including the equations of state, the specific and latent heat, the compressibility, etc.— much more than just First Law.
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Groot & Mazur 1961, Yourgrau et al. 1966, Truesdell 1969, Müller 2003). This type of work aims

to extend orthodox thermodynamics into the direction of a description of systems in non-equilibrium

states. Typically, one postulates that thermodynamic quantities are represented as continuously

variable fields in space and time, with equilibrium conditions holding approximately within each

infinitesimal region within the thermodynamic system. Again, it may be noted that workers in

the field seem to be divided into different schools (using names such as “extended thermodynam-

ics”,“generalized thermodynamics”, “rational thermodynamics”, etc.) that do not at all agree with

each other (see Hutter & Wang 2003).

This type of work has produced many successful applications. But it seems fair to say that until

now almost all attention has gone to towards practical application. For example, questions of the type

that axiomatic thermodynamics attempts to answer, (e.g.: Under what conditions can we show the

existence and uniqueness of the non-equilibrium quantities used in the formalism?) are largely unan-

swered, and indeed have given rise to some scepticism (cf. Meixner 1969, Meixner 1970). Another

inherent restriction of this theory is that by relying on the assumption that non-equilibrium states can,

at least in an infinitesimal local region, be well approximated by an equilibrium state, the approach is

incapable of encompassing systems that are very far from equilibrium, such as in turbulence or living

cells.)

The final type of approach that ought to be mentioned is that of statistical thermodynamics.

The basic idea here is that while still refraining from introducing hypotheses about the microscopic

constituents of thermodynamic systems, one rejects a key assumption of orthodox thermodynamics,

namely, that a state of equilibrium is one in which all quantities attain constant values, in order

to accommodate fluctuation phenomena such as Brownian motion or thermal noise. Thus the idea

becomes to represent at least some of the thermodynamic quantities as random quantities, that in the

course of time attain various values with various probabilities. Work in this direction has been done

by Szilard (1925), Mandelbrot (1956, 1962, 1964), and Tisza & Quay (1963).

Of course the crucial question is then how to choose the appropriate probability distributions.

One approach, elaborated in particular by Tisza (1966), taking its inspiration from Einstein (1910),

relies on a inversion of Boltzmann’s principle: whereas Boltzmann argued (within statistical mechan-

ics) that the thermodynamic notion of entropy could be identified with the logarithm of a probability;

Einstein argued that in thermodynamics, where the concept of entropy is already given, one may

define the relative probability of two equilibrium states by the exponent of their entropy difference.

Other approaches have borrowed more sophisticated results from mathematical statistics. For exam-

ple, Mandelbrot used the Pitman-Koopman-Darmois theorem, which states that sufficient estimators

exist only for the “exponential family” of probability distributions to derive the canonical probability

distribution from the postulate that energy be a sufficient estimator of the system’s temperature (see
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also Uffink & van Lith 1999).

3 Kinetic theory from Bernoulli to Maxwell

3.1 Probability in the mid-nineteenth century

Probability theory has a history dating back at least two centuries before the appearance of statistical

physics. Usually, one places the birth of this theory in the correspondence of Pascal and Fermat

around 1650. It was refined into a mature mathematical discipline in the work of Jacob Bernoulli

(1713), Abraham de Moivre (1738) and Pierre-Simon de Laplace (1813) (cf. Hacking 1975).

In this tradition, often called ‘classical probability’, the notion of probability is conceived of as a

measure of the degree of certainty of our beliefs. Two points are important to note here. First, in this

particular view, probability resides in the mind. There is nothing like uncertainty or chance in Nature.

In fact, all authors in the classical tradition emphasize their adherence to strict determinism, either by

appeal to divine omniscience (Bernoulli, de Moivre) or by appeal to the laws of mechanics and the

initial conditions (Laplace). A probability hence represents a judgment about some state of affairs,

and not an intrinsic property of this state of affairs. Hence, the classical authors never conceived that

probability has any role to play in a description of nature or physical processes as such.9 Secondly,

although Bernoulli himself used the term “subjective” to emphasize the fact that probability refers to

us, and the knowledge we possess, the classical interpretation does not go so far as modern adherents

to a subjective interpretation of probability who conceive of probability as the degrees of belief of

an arbitrary (although coherent) person, who may base his beliefs on personal whims, prejudice and

private opinion.

This classical conception of probability would, of course, remain a view without any bite, if it

were not accompanied by some rule for assigning values to probabilities in specific cases. The only

such available rule is the so-called ‘principle of insufficient reason’: whenever we have no reason to

believe that one case rather than another is realized, we should assign them equal probabilities (cf.

Uffink 1995). A closely related version is the rule that two or more variables should be independent

whenever we have no reason to believe that they influence each other.

While the classical view was the dominant, indeed the only existent, view on probability for

the whole period from 1650 to 1813, it began to erode around 1830. There are several reasons for

this, but perhaps the most important is, paradoxically, the huge success with which the theory was

being applied to the most varied subjects. In the wake of Laplace’s influential Essai philosophique

9Daniel Bernoulli might serve as an example. He was well acquainted with the work on probability of his uncle Jacob
and, indeed, himself one of the foremost probabilists of the eighteenth century. Yet, in his work on kinetic gas theory (to be
discussed in section 3.2), he did not find any occasion to draw a connection between these two fields of his own expertise.
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sûr les Probabilités, scientists found applications of probability theory in jurisdiction, demography,

social science, hereditary research, etc. In fact, one may say: almost everywhere except physics (cf.

Hacking 1990). The striking regularity found in the frequencies of mass phenomena, and observa-

tions that (say) the number of raindrops per second on a tile follows the same pattern as the number

of soldiers in the Prussian army killed each year by a kick from their horse, led to the alternative

view that probability was not so much a representation of subjective (un)certainty, but rather the

expression of a particular regularity in nature (Poisson, Quetelet). From these days onward we find

mention of the idea of laws of probability, i.e. the idea that theorems of probability theory reflect

lawlike behaviour to which Nature adheres. In this alternative, frequentist view of probability, there

is no obvious place for the principle of insufficient reason. Instead, the obvious way to determine

the values of probabilities is to collect empirical data on the frequencies on occurrences of events.

However, a well-articulated alternative to the classical concept of probability did not emerge before

the end of the century, and (arguably) not before 1919— and then within in a few years there were

no less than three alternatives: a logical interpretation by Keynes, a frequentist interpretation by von

Mises and a subjective interpretation by Ramsey and De Finetti. See Fine (1973), Galavotti (2004)

or Emch (2005) for a more detailed exposition.

Summing up roughly, one may say that around 1850 the field of probability was in a state of

flux and confusion. Two competing viewpoints, the classical and the frequency interpretation, were

available, and often mixed together in a confusing hodgepodge. The result was well-characterized

in a famous remark of Poincaré (1896) that all mathematicians seem to believe that the laws of

probability refer to statements learned from experience, while all natural scientists seem to think

they are theorems derived by pure mathematics.

The work of Maxwell and Boltzmann in the 1860s emerged just in the middle of this confusing

era. It is only natural that their work should reflect the ambiguity that the probability concept had

acquired in the first half of the nineteenth century. Nevertheless, it seems that they mainly thought

of probability in terms of frequencies, as an objective quantity, which characterizes a many-particle

system, and that could be explicitly defined in terms of its mechanical state. This, however, is less

clear for Maxwell than for Boltzmann.

Gradually, probability was emancipated from this mechanical background. Some isolated papers

of Boltzmann (1871b) and Maxwell (1879) already pursued the idea that probabilities characterize

an ensemble of many many-particle systems rather than a single system. Gibbs’s 1902 book adopted

this as a uniform coherent viewpoint. However, this ensemble interpretation is still sufficiently vague

to be susceptible to different readings. A subjective view of ensembles, closely related to the classical

interpretation of Bernoulli and Laplace, has emerged in the 1950s in the work of Jaynes. This paper,

will omit a further discussion of this approach. I refer to (Jaynes 1983, Uffink 1995,1996, Balian
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2005) for more details.

3.2 From Bernoulli to Maxwell (1860)

The kinetic theory of gases (sometimes called: dynamical theory of gases) is commonly traced back

to a passage in Daniel Bernoulli’s Hydrodynamica of 1738. Previous authors were, of course, quite

familiar with the view that gases are composed of a large but finite number of microscopic particles.

Yet they usually explained the phenomenon of gas pressure by a static model, assuming repulsive

forces between these particles.

Bernoulli’s discussion is the first to explain pressure as being due to their motion. He considered

a gas as consisting of a great number of particles, moving hither and thither through empty space,

and exerting pressure by their incessant collisions on the walls. With this model, Bernoulli was able

to obtain the ideal gas law pV = const. at constant temperature, predicted corrections to this law

at high densities, and argued that the temperature could be taken as proportional to the square of

the velocity of the particles. Despite this initial success, no further results were obtained in kinetic

gas theory during the next century. By contrast, the view that modeled a gas as a continuum proved

much more fertile, since it allowed the use of powerful tools of calculus. Indeed, the few works in the

kinetic theory in the early nineteenth century e.g. by Waterston and Herapath were almost entirely

ignored by their contemporaries (cf. Brush 1976).

Nevertheless, the kinetic view was revived in the 1850s, in works by Kronig and Clausius. The

main stimulus for this revival was the Joule-Mayer principle of the equivalence of heat and work,

which led to the First Law of thermodynamics, and made it seem more plausible that heat itself was

just a form of motion of gas particles. (A point well-captured in the title of Clausius’ 1857 paper:

“The kind of motion we call heat”, subsequently adopted by Stephen Brush (1976) for his work on

the history of this period.)

Clausius also recognized the importance of mutual collisions between the particles of the gas,

in order to explain the relative slowness of diffusion when compared with the enormous speed of

the particles (estimated at values of 400 m/s or more at ordinary room temperature). Indeed, he

argued that in spite of their great speed, the mean free path, i.e. the distance a particle typically

travels between two collision, could be quite small (of the order of micrometers) so that the mean

displacement per second of particles is accordingly much smaller.

However, Clausius did not pay much attention to the consideration that such collisions would

also change the magnitude of the velocities. Indeed, although his work sometimes mentions phrases

like “mean speed” or “laws of probability” he does not specify a precise averaging procedure or

probability assumption, and his calculations often proceed by crude simplifications (e.g. assuming

that all but one of the particles are at rest).
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3.2.1 Maxwell (1860)

It was Maxwell’s paper of 1860 that really marks the re-birth of kinetic theory. Maxwell realized

that if a gas consists of a great number N of moving particles, their velocities will suffer incessant

change due to mutual collisions, and that a gas in a stationary state should therefore consist of a

mixture of slower and faster particles. More importantly, for Maxwell this was not just an annoying

complication to be replaced by simplifying assumptions, but the very feature that deserved further

study.

He thus posed the question

Prop. IV. To find the average number of particles whose velocities lie between given lim-

its, after a great number of collisions among a great number of equal particles. (Maxwell

1860, p. 380).

Denoting this desired average number as Nf(~v)d3~v, he found a solution to this problem by imposing

two assumptions: the distribution function f(~v) should (i) factorize into functions of the orthogonal

components of velocity, i.e. there exists some function g such that:

f(~v) = g(vx)g(vy)g(vz), (24)

and (ii) be spherically symmetric, i.e.,

f(~v) depends only on v = ‖~v‖. (25)

He observed that these functional equations can only be satisfied if

f(~v) = Ae−v2/B , (26)

where the constant A is determined by normalization: A = (Bπ)−3/2; and constant B is determined

by relating the mean squared velocity to the absolute temperature—i.e., adopting modern notation:
3
2kT = m

2 〈v2〉—to obtain:

f(~v) =
( m

2πkT

)3/2

e−mv2/2kT . (27)

Maxwell’s result led to some novel and unexpected predictions, the most striking being that

the viscosity of a gas should be independent of its density, which was, nevertheless, subsequently

experimentally verified. Another famous prediction of Maxwell was that in this model the ratio of

the specific heats γ = cV

cp
must take the value of 4

3 . This did not agree with the experimentally

obtained value of γ = 1.408.10

10More generally, cV /cp = (f + 2)/f where f is the number of degrees of freedom of a molecule. This so-called cV /cp
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Maxwell’s paper is the first to characterize the state of a gas by a distribution function f . It is

also the first to call f(~v)d3~v a probability. Clearly, Maxwell adopted a frequency interpretation of

probability. The probability for the velocity to lie within a certain range d3~v is nothing but the relative

number of particles in the gas with a velocity in that range. It refers to an objective, mechanical

property of the gas system, and not to our opinions.

Now an obvious problem with this view is that if the gas contains a finite number of particles, the

distribution of velocities must necessarily be discrete, i.e., in Dirac delta notation:

f(~v) =
1
N

N∑

i=1

δ(~v − ~vi), (28)

and if the energy of the gas is finite and fixed, the distribution should have a bounded support. The

function (26) has neither of these properties.

It is not clear how Maxwell would have responded to such problems. It seems plausible that

he would have seen the function (26) as representing only a good enough approximation,11 in some

sense, to the actual state of the gas but not to be taken too literally, just like actual frequencies

in a chance experiment never match completely with their expected values. This is suggested by

Maxwell’s own illustration of the continuous distribution function as a discrete cloud of points, each

of which representing the endpoint of a velocity vector (cf. Fig. 1 from (Maxwell 1875)). This

suggests he thought of an actual distribution more along the lines of (28) than (26). But this leaves

the question open in what sense the Maxwell distribution approximates the actual distribution of

velocities.

One option here would be to put more emphasis on the phrase “average” in the above quote from

Maxwell. That is, maybe f is not intended to represent an actual distribution of velocities but an

averaged one. But then, what kind of average? Since an average over the particles has already been

performed, the only reasonable options could be an average over time or averaging over an ensemble

of similar gas systems. But I can find no evidence that Maxwell conceived of such procedures in

this paper. Perhaps one might argue that the distribution (26) is intended as an expectation, i.e. that

it represents a reasonable mind’s guess about the number of particles with a certain velocity. But in

that case, Maxwell’s interpretation of probability ultimately becomes classical.

However this may be, it is remarkable that the kinetic theory was thus able to make progress

beyond Bernoulli’s work by importing mathematical methods (functional equations) involving the

anomaly haunted gas theory for another half century. The experimental value around 1.4 is partly due to the circumstance that
most ordinary gases have diatomic molecules for which, classically, f = 6. Quantum theory is needed to explain that one of
these degrees is “frozen” at room temperature. Experimental agreement with Maxwell’s prediction was first obtained by Kundt
and Warburg in 1875 for mercury vapour (For more details, see Brush 1976, p. 353–356).

11This view was also expressed by Boltzmann (1896b). He wrote, for example: “For a finite number of molecules the
Maxwell distribution can never be realized exactly, but only as a good approximation” (Abh., III, p. 569).
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Figure 1: An illustration of the Maxwell distribution from (Maxwell 1875). Every dot represents the end-point of
a velocity vector.

representation of a state by continuous functions; though at the price of making this state concept

more abstractly connected to physical reality.

A more pressing problem is that the assumptions (24, 25) Maxwell used to derive the form of

his distribution do not sit well with its intended frequency interpretation. They seem to reflect a

priori desiderata of symmetry, and are perhaps motivated by an appeal to some form of the principle

of insufficient reason, in the sense that if there is, in our knowledge, no reason to expect a depen-

dence between the various orthogonal components of velocity, we are entitled to assume they are

independent.

This reading of Maxwell’s motivations is suggested by the fact that in 1867 he described his 1860

assumption (24) as “the assumption that the probability of a molecule having a velocity resolved

parallel to x lying between given limits is not in any way affected by the knowledge that the molecule

has a given velocity resolved parallel to y” (Maxwell 1867, emphasis added).

It has been pointed out (see e.g. Brush 1976, Vol. II, pp. 183–188) that Maxwell’s 1860 argument

seems to have been heavily inspired by Herschel’s (1850) review of Quetelet’s work on probability.

This review essay contained a strikingly similar argument, applied to a marksman shooting at a target,

in order to determine the probability that a bullet will land at some distance from the target. What is

more, Herschel’s essay is firmly committed to the classical interpretation of probability and gives the

principle of insufficient reason a central role. Indeed, he explains the (analogue of) condition (25)
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as “nothing more than the expression of our state of complete ignorance of the causes of the errors

[i.e. the deviation from the target] and their mode of action” (Herschel 1850, p. 398, emphasis in the

original). If Maxwell indeed borrowed so much from Herschel, it seems likely that he would also

have approved of, or at least be inspired by, this motivation of condition (25).12

Whatever may have been Maxwell’s original motivation for these assumptions, their dubious

nature is also clear from the fact that, in spite of his formulation of the problem (i.e. to determine

the form of the function f “after a great number of collisions”), they do not refer to collisions at all.

Indeed, it would seem that any motivation for their validity would just as well apply to a gas model

consisting of non-colliding (e.g. perfectly transparent) particles as well. As Maxwell himself later

remarked about certain derivations in the works of others, one might say that the condition “after a

great number of collisions” is intended “rather for the sake of enabling the reader to form a mental

image of the material system than as a condition for the demonstration” (Maxwell (1879) Garber,

Brush & Everitt 1995, p. 359).

3.3 Maxwell (1867)

Whatever the merits and problems of his first paper, Maxwell’s next paper on gas theory of 1867

rejected his previous attempt to derive the distribution function from the assumptions (24, 25) as

“precarious” and proposed a completely different argument. This time, he considered a model of

point particles with equal masses interacting by means of a repulsive central force, proportional to

the fifth power of their mutual distance. What is more important, this time the collisions are used in

the argument.

Maxwell considers an elastic collision between a pair of particles such that the initial velocities

are ~v1, ~v2 and final velocities ~v1
′, ~v2

′).13 These quantities are related by the conservation laws of

momentum and energy, yielding four equations, and two parameters depending on the geometrical

factors of the collision process.

It is convenient to consider a coordinate frame such that particle 1 is at rest in the origin, and the

relative velocity ~v2 − ~v1 is directed along the negative z axis, and to use cylindrical coordinates. If

(b, φ, z) denote the coordinates of the trajectory of the centre of particle 2, we then have b = const.,

φ = const, z(t) = z0 − ‖~v2 − ~v1‖t before the collision. In the case where the particles are elastic

hard spheres, a collision will take place only if the impact parameter b is less than the diameter d of

12It is interesting to note that Herschel’s review prompted an early and biting criticism of the principle of insufficient reason
as applied to frequencies of events by Leslie Ellis, containing the famous observation: “Mere ignorance is no ground for any
inference whatsoever. Ex nihilo nihil. It cannot be that because we are ignorant of the matter, we know something about it”
(Ellis 1850). It is not certain, however, whether Maxwell knew of this critique.

13In view of the infinite range of the interaction, ‘initial’ and ‘final’ are to be understood in an asymptotic sense, i.e. in the
limits t −→ ±∞. An alternative followed in the text is to replace Maxwell’s (1867) model with the hard spheres he had
considered in 1860.
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the spheres. The velocities after the collision are then determined by ‖~v1−~v2‖, b and φ. Transformed

back to the laboratory frame, the final velocities ~v1
′, ~v2

′ can then be expressed as functions of ~v1, ~v2,

b and φ.

Maxwell now assumes what the Ehrenfests later called the Stoßzahlansatz: the number of colli-

sions during a time dt, say N(~v1, ~v2), in which the initial velocities ~v1, ~v2 within an element d3~v1d
3~v2

are changed into final velocities ~v1
′, ~v2

′ in an element d3~v1
′d3~v2

′ within a spatial volume element

dV = bdbdφdz = ‖~v1 − ~v2‖ bdbdφdt is proportional to the product of the number of particles with

velocity ~v1 within d3~v1 (i.e. Nf(~v1)d~v1), and those with velocity ~v2 within d3~v2 (i.e. Nf(~v2)d3~v2),

and that spatial volume element. Thus:

N(~v1, ~v2) = N2f(~v1)f(~v2)‖~v2 − ~v1‖d3~v1d
3~v2bdbdφdt. (29)

Due to the time reversal invariance of the collision laws, a similar consideration applies to the so-

called inverse collisions, in which initial velocities ~v1
′, ~v2

′ and final velocities ~v1 and ~v2 are inter-

changed. Their number is proportional to

N(~v1
′, ~v2

′) = N2f(~v1
′)f(~v1

′)‖~v2
′ − ~v1

′‖d3~v1
′d~v2

′bdbdφdt (30)

Maxwell argues that the distribution of velocities will remain stationary, i.e. unaltered in the

course of time, if the number of collisions of these two kinds are equal, i.e. if

N(~v1
′, ~v2

′) = N(~v1, ~v2). (31)

Moreover, the collision laws entail that ‖~v2
′−~v1

′‖ = ‖~v2−~v1‖ and d3~v1
′d3~v2

′ = d3~v1d
3~v2. Hence,

the condition (31) may be simplified to

f(~v1)f(~v2) = f(~v1
′)f(~v2

′), for all ~v1, ~v2. (32)

This is the case for the Maxwellian distribution (26). Therefore, Maxwell says, the distribution (26)

is a “possible” form.

He goes on to claim that it is also the only possible form for a stationary distribution.This claim,

i.e. that stationarity of the distribution f can only arise under (32) is nowadays also called the princi-

ple of detailed balancing (cf. Tolman 1938, p. 165).14 Although his argument is rather brief, the idea

seems to be that for a distribution violating (32), there must (because of the Stoßzahlansatz) be two

14The reader might be warned, however, that the name ‘detailed balancing’ is also used to cover somewhat different ideas
than expressed here (Tolman 1938, p. 521).
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velocity pairs15 ~v1, ~v2 and ~u1, ~u2, satisfying ~v1 +~v2 = ~u1 +~u2 and v2
1 + v2

2 = u2
1 +u2

2, such that the

collisions would predominantly transform (~v1, ~v2) −→ (~u1, ~u2) rather than (~u1, ~u2) −→ (~v1, ~v2).

But then, since the distribution is stationary, there must be a third pair of velocities, (~w1, ~w2), sat-

isfying similar relations, for which the collisions predominantly produce transitions (~u1, ~u2) −→
(~w1, ~w2), etc. Now, the distribution can only remain stationary if any such sequence closes into a

cycle. Hence there would be cycles of velocity pairs (~v1, ~v2) −→ (~u1, ~u2) −→ . . . −→ (~v1, ~v2)

which the colliding particles go through, eventually returning to their original velocities.

Maxwell then argues: “Now it is impossible to assign a reason why the successive velocities

of a molecule should be arranged in this cycle rather than in the reverse order” (Maxwell 1867,

p.45). Therefore, he argues, these two cycles should be equally probable, and, hence, a collision

cycle of the type (~v1, ~v2) −→ (~v1
′, ~v2

′) is already equally probable as a collision cycle of the type

(~v1
′, ~v2

′) −→ (~v1, ~v2), i.e. condition (32) holds.

Comments. First, a clear advantage of Maxwell’s 1867 derivation of the distribution function (26)

is that the collisions play a crucial role. The argument would not apply if there were no collisions

between molecules. A second point to note is that the distribution (26) is singled out because of

its stationarity, instead of its spherical symmetry and factorization properties. This is also a major

improvement upon his previous paper, since stationarity is essential to thermal equilibrium.

A crucial element in the argument is still an assumption about independence. But now, in the

Stoßzahlansatz, the initial velocities of colliding particles are assumed independent, instead of the

orthogonal velocity components of a single particle. Maxwell does not expand on why we should

assume this ansatz; he clearly regarded it as obvious. Yet it seems plausible to argue that he must

have had in the back of his mind some version of the principle of insufficient reason, i.e., that we

are entitled to treat the initial velocities of two colliding particles as independent because we have

no reason to assume otherwise. Although still an argument from insufficient reason, this is at least a

much more plausible application than in the 1860 paper.

A main defect of the paper is his sketchy claim that the Maxwell distribution (26) would be

the unique stationary distribution. This claim may be broken in two parts: (a) the cycle argument

just discussed, leading Maxwell to argue for detailed balancing; and (b) the claim that the Maxwell

distribution is uniquely compatible with this condition.

A demonstration for part (b) was not provided by Maxwell at all; but this gap was soon bridged

by Boltzmann (1868)—and Maxwell gave Boltzmann due credit for this proof. But part (a) is more

interesting. We have seen that Maxwell here explicitly relied on reasoning from insufficient reason.

15Actually, Maxwell, discusses only velocities of a single molecule. For clarity, I have transposed his argument to a discussion
of pairs.
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He was criticized on this point by Boltzmann (1872) and also by Guthrie (1874).

Boltzmann argued that Maxwell was guilty of begging the question. If we suppose that the two

cycles did not occur equally often, then this supposition by itself would provide a reason for assigning

unequal probabilities to the two types of collisions.16 This argument by Boltzmann indicates, at

least in my opinion that he was much less prepared than Maxwell to argue in terms of insufficient

reason. Indeed, as we shall see in Section 3.3, his view on probability seems much more thoroughly

frequentist than Maxwell.

In fact Boltzmann later repeatedly mentioned the counterexample of a gas in which all particles

are lined up so that they only collide centrally, and move perpendicularly between parallel walls

(Boltzmann 1872, Abh. I p. 358, Boltzmann 1878 Abh. II p. 285). In this case, the velocity distribu-

tion
1
2

(δ(v − v0) + δ(v + v0)) (33)

is stationary too.

Some final remarks on Maxwell’s work: As we have seen, it is not easy to pinpoint Maxwell’s

interpretation of probability. In his (1860), he identifies the probability of a particular molecular state

with the relative number of particles that possess this state.17 Yet, we have also seen that he relates

probability to a state of knowledge. Thus, his position may be characterized as somewhere between

the classical and the frequentist view.

Note that Maxwell never made any attempt to reproduce the second law. Rather he seems to have

been content with the statistical description of thermal equilibrium in gases.18 All his writings after

1867 indicate that he was convinced that a derivation of the Second Law from mechanical principles

was impossible. Indeed, his remarks on the Second Law generally point to the view that the Second

Law “has only statistical certainty” (letter to Tait, undated; Garber, Brush & Everitt 1995, p. 180),

and that statistical considerations were foreign to the principles of mechanics. Indeed, Maxwell was

quite amused to see Boltzmann and Clausius engage in a dispute about who had been the first to

reduce the Second Law of thermodynamics to mechanics:

16More precisely, Boltzmann argued as follows: “In order to prove the impossibility [of the hypothesis] that the velocity of
[a pair of] molecule[s] changes more often from [(~v1, ~v2) to (~v1

′, ~v2
′)] than the converse, Maxwell says that there should then

exist a closed series of velocities that would be traversed rather in one order than the other. This, however, could not be, he
claims, because one could not indicate a reason, why molecules would rather traverse the cycle in one order than the other. But
it appears to me that this last claim already presupposes as proven what is to be proved. Indeed, if we assume as already proven
that the velocities change as often from (~v1, ~v2) to (~v1

′, ~v2
′) as conversely, then of course there is no reason why the cycle

should rather be run through in one order than the other. But if we assume that the statement to be proven is not yet proved,
then the very fact that the velocities of the molecules prefer to change rather from (~v1, ~v2) to (~u1, ~u2) than conversely, rather
from (~u1, ~u2) to (~w1, ~w2) than conversely, etc. would provide the reason why the cycle is traversed rather one way than the
other” (Abh. I, p. 319).

17Curiously, this terminology is completely absent in his 1867 paper.
18Apart from a rather lame argument in (Maxwell 1860) analyzed by (Brush 1976, p.344).
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It is rare sport to see those learned Germans contending the priority of the discovery that

the 2nd law of θ∆cs is the ‘Hamiltonsche Prinzip’, [. . . ] The Hamiltonsche Prinzip, the

while, soars along in a region unvexed by statistical considerations, while the German

Icari flap their waxen wings in nephelococcygia19 amid those cloudy forms which the

ignorance and finitude of human science have invested with the incommunable attributes

of the invisible Queen of Heaven (letter to Tait, 1873; Garber, Brush & Everitt 1995,

p. 225)

Clearly, Maxwell saw a derivation of the Second Law from pure mechanics, “unvexed by statistical

considerations”, as an illusion. This point appears even more vividly in his thought experiment of

the “Maxwell demon”, by which he showed how the laws of mechanics could be exploited to produce

a violation of the Second Law. For an entry in the extensive literature on Maxwell’s demon, I refer

to (Earman & Norton 1998,1999, Leff & Rex 2003, Bennett 2003, Norton 2005).

But neither did Maxwell make any effort to reproduce the Second Law on a unified statisti-

cal/mechanical basis. Indeed, the scanty comments he made on the topic (e.g. in Maxwell 1873,

Maxwell 1878b) rather seem to point in another direction. He distinguishes between what he calls

the ‘statistical method’ and the ‘historical’ or ‘dynamical’ (or sometimes ‘kinetic’) method. These

are two modes of description for the same system. But rather than unifying them, Maxwell suggests

they are competing, or even incompatible—one is tempted to say “complementary”– methods, and

that it depends on our own knowledge, abilities, and interests which of the two is appropriate. For

example:

In dealing with masses of matter, while we do not perceive the individual molecules, we

are compelled to adopt what I have described as the statistical method, and to abandon

the strict dynamical method, in which we follow every motion by the calculus (Maxwell

1872, p. 309, emphasis added).

In this respect, his position stands in sharp contrast to that of Boltzmann, who made the project of

finding this unified basis his lifework.

4 Boltzmann20

4.1 Early work: Stoßzahlansatz and ergodic hypothesis

Boltzmann had already been considering the problem of finding a mechanical derivation of the Sec-

ond Law in a paper of 1866. At that time, he did not know of Maxwell’s work. But in 1868, he had

19‘Cloudcuckooland”, an illusionary place in Aristophanes’ The Birds.
20Parts of this section were also published in (Uffink 2004).
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read both Maxwell’s papers of 1860 and 1867. Like Maxwell, he focuses on the study of gases in

thermal equilibrium, instead of the Second Law. He also adopts Maxwell’s idea of characterizing

thermal equilibrium by a probability distribution, and the Stoßzahlansatz as the central dynamical

assumption. But along the way in this extensive paper, Boltzmann comes to introduce an entirely

different alternative approach, relying on what we now call the ergodic hypothesis.

As we saw in section 3.3, Maxwell had derived his equilibrium distribution for two special gas

models (i.e. a hard sphere gas in 1860 and a model of point particles with a central r5 repulsive

force acting between them in 1867). He had noticed that the distribution, once attained, will remain

stationary in time (when the gas remains isolated), and also argued (but not very convincingly) that

it was the only such stationary distribution.

In the first section of his (1868a), Boltzmann aims to reproduce and improve these results for

a system of an infinite number of hard discs moving in a plane. He regards it as obvious that the

equilibrium distribution should be independent of the position of the discs, and that every direction

of their velocities is equally probable. It is therefore sufficient to consider the probability distribution

over the various values of the velocity v = ‖~v‖. However, Boltzmann started out with a somewhat

different interpretation of probability in mind than Maxwell. He introduced the probability distribu-

tion as follows:

Let φ(v)dv be the sum of all the instants of time during which the velocity of a disc in

the course of a very long time lies between v and v + dv, and let N be the number of

discs which on average are located in a unit surface area, then

Nφ(v)dv (34)

is the number of discs per unit surface whose velocities lie between v and v + dv (Abh.

I, p. 50).21

Thus, φ(v)dv is introduced as the relative time during which a (given) disc has a particular velocity.

But, in the same breath, this is identified with the relative number of discs with this velocity.

This remarkable quote shows how he identified two different meanings for the same function. We

shall see that this equivocation returned in different guises again and again in Boltzmann’s writings.22

Indeed, it is, I believe, the very heart of the ergodic problem, put forward so prominently by the

Ehrenfests (cf. paragraph 6.1). Either way, of course, whether we average over time or particles,

21Here and below, “Abh.” refers to the three volumes of Boltzmann’s collected scientific papers (Boltzmann 1909).
22This is not to say that he always conflated these two interpretations of probability. Some papers employ a clear and

consistent choice for one interpretation only. But then that choice differs between papers, or even in different sections of a
single paper. In fact, in (Boltzmann 1871c) he even multiplied probabilities with different interpretations into one equation
to obtain a joint probability. But then in (1872) he conflates them again. Even in his last paper (Boltzmann & Nabl 1904),
Boltzmann identifies two meanings of probability with a simple-minded argument.
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probabilities are defined here in strictly mechanical terms, and are therefore objective properties of

the gas.

Next he goes into a detailed mechanical description of a two-disc collision process. If the vari-

ables which specify the initial velocities of two discs before the collision lie within a given infinitesi-

mal range, Boltzmann determines how the collision will transform the initial values of these variables

(~vi, ~vj) into the final values (~v′i, ~v
′
j) in another range. At this point a two-dimensional analogy of the

Stoßzahlansatz is introduced to obtain the number of collisions per unit of time. As in Maxwell’s

treatment, this amounts to assuming that the number of such collisions is proportional to the product

φ(v1)φ(v2). In fact:

N(~v1, ~v2) ∝ N2 φ(v1)
v1

φ(v2)
v2

‖~v2 − ~v1‖dv1dv2dt (35)

where the proportionality constant depends on the geometry of the collision.

He observes that if, for all velocities vi, vj and all pairs of discs i, j, the collisions that transform

the values of the velocities (vi, vj) from a first range dvidvj into values v′i, v
′
j within the range

dv′idv′j occur equally often as conversely (i.e., equally often as those collisions that transform initial

velocities v′i, v
′
j within dv′idv′j into final values vi, vj within dvidvj), the distribution φ will remain

stationary. He states “This distribution is therefore the desired one” (Abh. I p. 55). Actually, this is

the first occasion in the paper at which the desideratum of stationarity of the probability distribution

is mentioned.

Using the two-dimensional version of the Stoßzahlansatz this desideratum leads to

φ(vi)
vi

φ(vj)
vj

=
φ(v′i)

v′i

φ(v′j)
v′j

(36)

He shows (Abh. I, p. 57) that the only function obeying condition (36) for all choices of v1, v2, v
′
1v
′
2,

compatible with the energy equation v2
1 + v2

2 = v′21 + v′22 , is of the form

φ(v) = 2hve−hv2
, (37)

for some constant h. Putting f(v) := vφ(v) we thus obtain the two-dimensional version of the

Maxwell distribution (26). Boltzmann does not address the issue of whether the condition (36) is

necessary for the stationarity of φ.

In the next subsections of (1868a), Boltzmann repeats the derivation, each time in slightly differ-

ent settings. First, he goes over to the three-dimensional version of the problem, assuming a system

of hard spheres, and supposes that one special sphere is accelerated by an external potential V (~x).

He shows that if the velocities of all other spheres are distributed according to the Maxwellian dis-

tribution (26), the probability distribution of finding the special sphere at place ~x and velocity ~v is
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f(~v, ~x) ∝ e−h( 1
2 mv2+V (~x)) (Abh. I, p.63). In a subsequent subsection, he replaces the spheres by

material points with a short-range interaction potential and reaches a similar result.

At this point, (the end of Section I of the (1868a) paper), the argument suddenly switches course.

Instead of continuing in this fashion, Boltzmann announces (Abh. I p. 80) that all the cases treated,

and others yet untreated, follow from a much more general theorem. This theorem, which, as we

shall see relies on the ergodic hypothesis, is the subject of the second and third Section of the paper.

I will limit the discussion to the third section and rely partly on Maxwell’s (1879) exposition, which

is somewhat simpler and clearer than Boltzmann’s own.

4.1.1 The ergodic hypothesis

Consider a general mechanical system of N material points, each with mass m, subject to an arbitrary

time-independent potential.23 In modern notation, let x = (~q1, ~p1; . . . ; ~qN , ~pN ) denote the canonical

position coordinates and momenta of the system. Its Hamiltonian is then24

H(x) =
1

2m

N∑

i

~p2
i + U(~q1, . . . , ~qN ). (38)

The state x may be represented as a phase point in the mechanical phase space Γ. Under the

Hamiltonian equations of motion, this phase point evolves in time, and thus describes a trajectory xt

(t ∈ R). This trajectory is constrained to lie on a given energy hypersurface ΓE = {x ∈ Γ : H(x) =

E}. Boltzmann asks for the probability (i.e. the fraction of time during a very long period) that the

phase point lies in a region dx = d3~q1 · · · d3~pN , which we may write as:

ρ(x)dx = χ(x)δ(H(x)− E)dx. (39)

for some function χ. Boltzmann seems to assume implicitly that this distribution is stationary. This

property would of course be guaranteed if the “very long period” were understood as an infinite time.

He argues, by Liouville’s theorem, that χ is a constant for all points on the energy hypersurface that

are “possible”, i.e. that are actually traversed by the trajectory. For all other points χ vanishes. If we

neglect those latter points, the function χ must be constant over the entire energy hypersurface, and

the probability density ρ takes the form

ρmc(x) =
1

ω(E)
δ(H(x)− E), (40)

23Although Boltzmann does not mention it at this stage, his previous section added the stipulation that the particles are
enclosed in a finite space, surrounded by perfectly elastic walls.

24Actually Boltzmann allows the N masses to be different but restricts the potential as being due to external and mutual
two-particle forces only, i.e. H(x) =

P
i

~p2
i

2mi
+
P

i≤j Uij(‖~qi − ~qj‖) +
P

i Ui(~qi).
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the micro-canonical distribution, where

ω(E) =
∫

δH(x) = Edx (41)

is the so-called structure function.

In particular, one can now form the marginal probability density for the positions ~q1, . . . , ~qN by

integrating over the momenta:

ρmc(~q1, . . . , ~qN ) :=
∫

ρmc(x) d3~p1 · · · d3~pN =
2m

ω(E)

∫
δ
(∑

~p2
i − 2m(E − U(q))

)
d~p1 · · · d~pN .

(42)

The integral over the momenta can be evaluated explicitly (it is 2R−1 times the surface area of a

hypersphere with radius R =
√

2m(E − U) in n = 3N dimensions), to obtain

ρmc(~q1, . . . , ~qN ) =
2m(π)n/2

ω(E)Γ(n
2 )

(2m(E − U(q))(n−2)/2, (43)

where Γ denotes Euler’s gamma function: Γ(x) :=
∫∞
0

tx−1e−tdt.

Similarly, the marginal probability density for finding the first particle with a given momentum

component p1x as well as finding the positions of all particles at ~q1, . . . , ~qN is

ρmc(p1x, ~q1 . . . , ~qN ) =
∫

ρmc(x) dp1ydp1zd
3~p2 · · · d3~pN

=
2mπ(n−1)/2

ω(E)Γ(n−1
2 )

(
2m(E − U(q))− p2

1x

)(n−3)/2
. (44)

These two results can be conveniently presented in the form of the conditional probability that

the x-component of momentum of the first particle has a value between p and p + dp, given that the

positions have the values ~q1 . . . , ~qN , by taking the ratio of (44) and (43):

ρmc(p | ~q1, . . . , ~qN )dp =
1√
2mπ

Γ(n
2 )

Γ(n−1
2 )

(E − U − p2

2m
)(n−2)/2

(E − U)(n−3)/2
dp. (45)

This, in essence, is the general theorem Boltzmann had announced. Further, he shows that in the limit

where n −→ ∞, and the kinetic energy per degree of freedom κ := (E − U)/n remains constant,

the expression (45) approaches

1√
4πmκ

exp
(
− p2

4mκ

)
dp. (46)

This probability thus takes the same form as the Maxwell distribution (26), if one equates κ = 1
2kT .

Presumably, it is this result that Boltzmann had in mind when he claimed that all the special cases he
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has discussed in section 1 of his paper, would follow from the general theorem. One ought to note

however, that since U , and therefore κ, depends on the coordinates, the condition κ = constant is

different for different values of (~q1, . . . , ~qn).

Some comments on this result.

1. The difference between this approach and that relying on the Stoßzahlansatz is rather striking.

Instead of concentrating on a gas model in which particles are assumed to move freely except for

their occasional collisions, Boltzmann here assumes a much more general Hamiltonian model with

an arbitrary interaction potential U(~q1, . . . ~qN ). Moreover, the probability density ρ is defined over

phase space, instead of the space of molecular velocities. This is the first occasion where probability

considerations are applied to the state of the mechanical system as whole, instead of its individual

particles. If the transition between kinetic gas theory and statistical mechanics may be identified

with this caesura, (as argued by the Ehrenfests (1912) and by Klein (1973)) it would seem that the

transition has already been made right here.

But of course, for Boltzmann the transition did not involve a major conceptual move, thanks to

his conception of probability as a relative time. Thus, the probability of a particular state of the total

system is still identified with the fraction of time in which that state is occupied by the system. In

other words, he had no need for ensembles or non-mechanical probabilistic assumptions.

However, one should note that the equivocation between relative time and relative number of

particles, which was comparatively harmless in the first section of the 1868 paper, is now no longer

possible in the interpretation of ρ. Consequently, the conditional probability ρ(p|~q1, . . . ~qN ) gives

us the relative time that the total system is in a state for which particle 1 has a momentum with x-

component between p and p+dp, for given values of all the positions. There is no immediate route to

conclude that this has anything to do with the relative number of particles with the momentum p. In

fact, there is no guarantee that the probability (45) for particle 1 will be the same for other particles

too, unless we use the assumption that U is invariant under permutation of the particles. Thus, in

spite of their identical form, the distribution (46) has a very different meaning than (26).

2. The transition from (45) to (46), by letting the number of particles become infinite, also seems

to be the first instance of a thermodynamical limit. Since the Maxwell distribution is thus recovered

only in this limit, Boltzmann’s procedure resolves some questions raised above concerning Maxwell’s

distribution. For a finite number of particles, the distribution (45) always has a finite support, i.e.

ρmc = 0 for those values of p2
i ≥ 2m(E − U). Thus, we do not run into trouble with the finite

amount of energy in the gas.

3. Most importantly, the results (45,46) open up a perspective of great generality. It suggests

that the probability of the molecular velocities for an isolated system in a stationary state will always

assume the Maxwellian form if the number of particles tends to infinity. Notably, this proof seems
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to completely dispense with any particular assumption about collisions, or other details of the me-

chanical model involved, apart from the assumption that it is Hamiltonian. Indeed it need not even

represent a gas.

4. The main weakness of the present result is its assumption that the trajectory actually visits all

points on the energy hypersurface. This is nowadays called the ergodic hypothesis.25

Boltzmann returned to this issue on the final page of the paper (Abh. I, p. 96). He notes there

that there might be exceptions to his theorem, for example, when the trajectory is periodic. However,

Boltzmann observed, such cases would be sensitive to the slightest disturbance from outside. They

would be destroyed, e.g. by the interaction of a single free atom that happened to be passing by. He

argued that these exceptions would thus only provide cases of unstable equilibrium.

Still, Boltzmann must have felt unsatisfied with his own argument. According to an editorial

footnote in his collected works (Abh. I p.96), Boltzmann’s personal copy of the paper contains a

hand-written remark in the margin stating that the point was still dubious and that it had not been

proven that, even in the presence of interaction with a single external atom, the system would traverse

all possible values compatible with the energy equation.

4.1.2 Doubts about the ergodic hypothesis

Boltzmann’s next paper (1868b) was devoted to checking the validity of the ergodic hypothesis in a

relatively simple solvable mechanical model. This paper also gives a nice metaphoric formulation of

the ergodic hypothesis: if the phase point were a light source, and its motion exceedingly swift, the

entire energy surface would appear to us as homogeneously illuminated (Abh. I, p. 103). However,

25The literature contains some surprising confusion about how the hypothesis got its name. The Ehrenfests borrowed the
name from Boltzmann’s concept of an ”Ergode”, which he introduced in (Boltzmann 1884) and also discussed in his Lectures
on Gas Theory (Boltzmann 1898). But what did Boltzmann actually understood by an Ergode? Brush points out in his
translation of (Boltzmann 1898, p. 297), and similarly in (Brush 1976, p. 364), that Boltzmann used the name to denote a
stationary ensemble, characterized by the microcanonical distribution in phase space. In other words, in in the context of
Boltzmann’s (1898) an Ergode is just an microcanonical ensemble, and seems to have nothing to do to do with the so-called
ergodic hypothesis. Brush criticized the Ehrenfests for causing confusion by their terminology.

However, in his original (1884) introduction of the phrase, the name Ergode is used for a stationary ensemble with only a
single integral of motion , i.e. its total energy. As a consequence, the ensemble is indeed micro-canonical, but, what is more,
every member of the ensemble satisfies the hypothesis of traversing every phase point with the given total energy. Indeed, in
this context, being an element of an Ergode implies satisfaction of this hypothesis. Thus, the Ehrenfests were actually justified
in baptizing the hypothesis ”ergodic”.

Another dispute has emerged concerning the etymology of the term. The common opinion, going back at least to the
Ehrenfests has been that the word derived from ergos (work) and hodos (path). Gallavotti (1994) has argued however that ”un-
doubtedly” it derives from ergos and eidos (similar). Now one must grant Gallavotti that it ought to expected that the etymology
of the suffix “-ode” of ergode is identical to that of other words Boltzmann coined in this paper, like Holode, Monode, Orthode
and Planode; and that a reference to path would be somewhat unnatural in these last four cases. However, I don’t believe a
reference to “eidos” would be more natural. Moreover, it seems to me that if Boltzmann intended this etymology, he would
have written ”Ergoide” in analogy to planetoid, ellipsoid etc. That he was familiar with this common usage is substantiated
by him coining the term “Momentoide” for momentum-like degrees of freedom (i.e. those that contribute a quadratic term to
the Hamiltonian) in (Boltzmann 1892). The argument mentioned by Cercignani (1998, p. 141) (that Gallavotti’s father is a
classicist) fails to convince me in this matter.
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his doubts were still not laid to rest. His next paper on gas theory (1871a) returns to the study of a

detailed mechanical gas model, this time consisting of polyatomic molecules, and avoids any reliance

on the ergodic hypothesis. And when he did return to the ergodic hypothesis in (1871b), it was with

much more caution. Indeed, it is here that he actually first described the worrying assumption as an

hypothesis, formulated as follows:

The great irregularity of the thermal motion and the multitude of forces that act on a body

make it probable that its atoms, due to the motion we call heat, traverse all positions and

velocities which are compatible with the principle of [conservation of] energy (Abh. I

p. 284).26

Note that Boltzmann formulates this hypothesis for an arbitrary body, i.e. it is not restricted to gases.

He also remarks, at the end of the paper, that “the proof that this hypothesis is fulfilled for thermal

bodies, or even is fullfillable, has not been provided” (Abh. I p. 287).

There is a major confusion among modern commentators about the role and status of the ergodic

hypothesis in Boltzmann’s thinking. Indeed, the question has often been raised how Boltzmann

could ever have believed that a trajectory traverses all points on the energy hypersurface, since, as

the Ehrenfests conjectured in 1911, and was shown almost immediately in 1913 by Plancherel and

Rosenthal, this is mathematically impossible when the energy hypersurface has a dimension larger

than 1 (cf. paragraph 6.1).

It is a fact that both his (1868a, Abh. I, p.96) and (1871b, Abh. I, p.284) mention external distur-

bances as an ingredient in the motivation for the ergodic hypothesis. This might be taken as evidence

for ‘interventionism’, i.e. the viewpoint that such external influences are crucial in the explanation

of thermal phenomena (cf: Blatt 1959, Ridderbos & Redhead 1998). Yet even though Boltzmann

clearly expressed the thought that these disturbances might help to motivate the ergodic hypothesis,

he never took the idea very seriously. The marginal note in the (1868a) paper mentioned above indi-

cated that, even if the system is disturbed, there is still no easy proof of the ergodic hypothesis, and

all his further investigations concerning this hypothesis assume a system that is either completely

isolated from its environment, or at most acted upon by a static external force. Thus, interventionism

did not play a significant role in his thinking.27

It has also been suggested, in view of Boltzmann’s later habit of discretizing continuous variables,

that he somehow thought of the energy hypersurface as a discrete manifold containing only finitely

many discrete cells (Gallavotti 1994). On this reading, obviously, the mathematical no-go theorems

26An equivalent formulation of the ergodic hypothesis is that the Hamiltonian is the only independent integral of the Hamil-
tonian equations of motion. This version is given in the same paper (Boltzmann 1909, p. 281-2)

27Indeed, on the rare occasions on which he later mentioned external disturbances, it was only to say that they are “not
necessary” (Boltzmann 1895b). See also Boltzmann (1896, §91).
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Figure 2: Trajectories in configuration space for a two-dimensional harmonic oscillator with potential U(x, y) =
ax2 + by2. Illustrating the distinction between (i) the case where

√
a/b is rational (here 4/7) and (ii) irrational

(1/e). Only a fragment of the latter trajectory has been drawn.

of Rosenthal and Plancherel no longer apply. Now it is definitely true that Boltzmann developed a

preference towards discretizing continuous variables, and would later apply this procedure more and

more (although usually adding that this was fictitious and purely for purposes of illustration and more

easy understanding, cf. paragraph 4.2.2). However, there is no evidence in the (1868) and (1871b)

papers that Boltzmann implicitly assumed a discrete structure of the mechanical phase space or the

energy hypersurface.

Instead, the context of his (1871b) makes clear enough how he intended the hypothesis, as has

already been argued by Brush (1976). Immediately preceding the section in which the hypothesis

is introduced, Boltzmann discusses trajectories for a simple example: a two-dimensional harmonic

oscillator with potential U(x, y) = ax2 + by2. For this system, the configuration point (x, y) moves

through the surface of a rectangle. (Cf. Fig. 2. See also Cercignani (1998, p. 148).) He then notes

that if a/b is rational, (actually: if
√

a/b is rational) this motion is periodic. However, if this value

is irrational, the trajectory will, in the course of time, traverse “almählich die ganze Fläche” (Abh. I,

p. 271) of the rectangle. He says that in this case x and y are independent, since for each values of

x an infinity of values for y in any interval in its range are possible. The very fact that Boltzmann

considers intervals for the values of x and y of arbitrary small sizes, and stressed the distinction

between rational and irrational values of the ratio a/b, indicates that he did not silently presuppose

that phase space was essentially discrete, where those distinctions would make no sense.

Now clearly, in modern language, one should say that if
√

a/b is irrational the trajectory is dense

in the rectangle, but not that it traverses all points. Boltzmann did not possess this language. In fact,

he could not have been aware of Cantor’s insight that the continuum contains more than a countable

infinity of points. Thus, the correct statement that, in the case that
√

a/b is irrational, the trajectory

will traverse, for each value of x, an infinity of values of y within any interval however small, could

easily have led him to believe (incorrectly) that all values of x and y are traversed in the course of
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time.

It thus seems eminently plausible, in view of the fact that this discussion immediately precedes

the formulation of the ergodic hypothesis, that Boltzmann’s understanding of the ergodic hypothe-

sis is really what Ehrenfests dubbed the quasi-ergodic hypothesis: the assumption that the trajec-

tory is dense (i.e. passes arbitrarily close to every point) on the energy hypersurface.28 The quasi-

ergodic hypothesis is not mathematically impossible in higher-dimensional phase spaces. However,

the quasi-ergodic hypothesis does not entail the desired conclusion that the only stationary probabil-

ity distribution over the energy surface is micro-canonical.

Nevertheless, Boltzmann remained sceptical about the validity of his hypothesis, and attempted

to explore different routes to his goal of characterizing thermal equilibrium in mechanics. Indeed,

both the preceding (1871a) and his next paper (1871c) present alternative arguments, with the explicit

recommendation that they avoid hypotheses. In fact, he did not return to the ergodic hypothesis at

all until the 1880s (stimulated by Maxwell’s 1879 review of the last section of Boltzmann’s 1868

paper). At that time, perhaps feeling fortified by Maxwell’s authority, he was to express much more

confidence in the ergodic hypothesis. However, after 1885, this confidence disappears again, and

although he mentions the hypothesis occasionally in later papers, he never assumes its validity. Most

notably, the ergodic hypothesis is not even mentioned in his Lectures on Gas Theory (1896, 1898).

To sum up, what role did the ergodic hypothesis play for Boltzmann? It seems that Boltzmann

regarded the ergodic hypothesis as a special dynamical assumption that may or may not be true,

depending on the nature of the system, and perhaps also on its initial state and the disturbances from

its environment. Its role was simply to help derive a result of great generality: for any system for

which the hypothesis is true, its equilibrium state is characterized by (45), from which an analogy to

the Maxwell distribution may be recovered in the limit N −→ ∞, regardless of any details of the

inter-particle interactions, or indeed whether the system represented is a gas, fluid, solid or any other

thermal body.

As we discussed in paragraph 1.4, the Ehrenfests (1912) have suggested that the ergodic hypoth-

esis played a much more fundamental role. In particular, if the hypothesis is true, averaging over

an (infinitely) long time would be identical to phase averaging with the microcanonical distribution.

Thus, they suggested that Boltzmann relied on the ergodic hypothesis in order to equate time aver-

ages and phase averages, or in other words, to equate two meanings of probability (relative time and

relative volume in phase space.) There is however no evidence that Boltzmann ever followed this line

of reasoning neither in the 1870s, nor later. He simply never gave any justification for equivocating

time and particle averages, or phase averages, at all. Presumably, he thought nothing much depended

28Or some hypothesis compatible with the quasi-ergodic hypothesis. As it happens, Boltzmann’s example is also compatible
with the measure-theoretical hypothesis of ‘metric transitivity’ (cf. paragraph 6.1).
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on this issue and that it was a matter of taste.

4.2 The Boltzmann equation and H-theorem (1872)

In 1872 Boltzmann published one of his most important papers. It contained two celebrated results

nowadays known as the Boltzmann equation and the H-theorem. The latter result was the basis of

Boltzmann’s renewed claim to have obtained a general theorem corresponding to the Second Law.

This paper has been studied and commented upon by numerous authors, and an entire translation of

the text has been provided by (Brush 1966). Thus, for the present purposes, a succinct summary of the

main points might have been sufficient. However, there is still dispute among modern commentators

about its actual content.

The issue at stake in this dispute is the question whether the results obtained in this paper are

presented as necessary consequences of the mechanical equations of motion, or whether Boltzmann

explicitly acknowledged that they would allow for exceptions. Klein has written:

I can find no indication in his 1872 memoir that Boltzmann conceived of possible excep-

tions to the H-theorem, as he later called it (Klein 1973, p. 73).

Klein argues that Boltzmann only came to acknowledge the existence of such exceptions thanks to

Loschmidt’s critique in 1877. An opposite opinion is expressed by von Plato (1994). Calling Klein’s

view a “popular image”, he argues that, already in 1872, Boltzmann was well aware that his H-

theorem had exceptions, and thus “already had a full hand against his future critics”. Indeed, von

Plato states that

Contrary to a widely held opinion, Boltzmann is not in 1872 claiming that the Second

Law and the Maxwellian distribution are necessary consequences of kinetic theory (von

Plato 1994, p. 81).

So it might be of some interest to try and settle this dispute.

Boltzmann (1872) starts with an appraisal of the role of probability theory in the context of gas

theory. The number of particles in a gas is so enormous, and their movements are so swift that we

can observe nothing but average values. The determination of averages is the province of probability

calculus. Therefore, “the problems of the mechanical theory of heat are really problems in probability

calculus” (Abh. I, p. 317). But, Boltzmann says, it would be a mistake to believe that the theory of

heat would therefore contain uncertainties.

He emphasizes that one should not confuse incompletely proven assertions with rigorously de-

rived theorems of probability theory. The latter are necessary consequences of their premisses, just

like in any other theory. They will be confirmed by experience as soon as one has observed a suf-

ficiently large number of cases. This last condition, however, should be no significant problem in
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the theory of heat because of the enormous number of molecules in macroscopic bodies. Yet, in this

context, one has to make doubly sure that we proceed with the utmost rigour.

Thus, the message expressed in the opening pages of this paper seems clear enough: the results

Boltzmann is about to derive are advertised as doubly checked and utterly rigorous. Still, they are

theoretical. Their relationship with experience might be less secure, since any probability statement is

only reproduced in observations by sufficiently large numbers of independent data. Thus, Boltzmann

would have allowed for exceptions in the relationship between theory and observation, but not in the

relation between premisses and conclusion.

He continues by saying what he means by probability, and repeats its equivocation as a fraction

of time and the relative number of particles that we have seen earlier in 1868:

If one wants [. . . ] to build up an exact theory [. . . ] it is before all necessary to determine

the probabilities of the various states that one and the same molecule assumes in the

course of a very long time, and that occur simultaneously for different molecules. That is,

one must calculate how the number of those molecules whose states lie between certain

limits relates to the total number of molecules (Abh. I p. 317).

However, this equivocation is not vicious. For most of the paper the intended meaning of probability

is always the relative number of molecules with a particular molecular state. Only at the final stages

of his paper (Abh. I, p. 400) does the time-average interpretation of probability (suddenly) recur.

Boltzmann says that both Maxwell and he had attempted the determination of these probabilities

for a gas system but without reaching a complete solution. Yet, on a closer inspection, “it seems not

so unlikely that these probabilities can be derived on the basis of the equations of motion alone...”

(Abh. I, p. 317). Indeed, he announces, he has solved this problem for gases whose molecules consist

of an arbitrary number of atoms. His aim is to prove that whatever the initial distribution of state in

such a system of gas molecules, it must inevitably approach the distribution characterized by the

Maxwellian form (ibid. p. 320).

The next section specializes to the simplest case of monatomic gases and also provides a more

complete specification of the problem he aims to solve. The gas molecules are contained in a fixed

vessel with perfectly elastic walls. They interact with each other only when they approach each other

at very small distances. These interactions can be mimicked as collisions between elastic bodies.

Indeed, these bodies are modeled as hard spheres (Abh I, p. 320). Boltzmann represents the state

of the gas by a time-dependent distribution function ft(~v), called the “distribution of state”, which

gives us, at each time t, the relative number of molecules with velocity between ~v and ~v + d3~v.29

He also states two more special assumptions:

29Actually Boltzmann formulated the discussion in terms of a distribution function over kinetic energy rather than velocity.
I have transposed this into the latter, nowadays more common formulation.
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1. Already in the initial state of the gas, each direction of velocity is equally probable. That is:

f0(~v) = f0(v). (47)

It is assumed as obvious that this will also hold for any later time.

2. The gas is spatially uniform within the container. That is, the relative number of molecules

with their velocities in any given interval, and their positions in a particular spatial region R

does not depend on the location of R in the available volume.

The next and crucial assumption used by Boltzmann to calculate the change in the number of particles

with a velocity ~v1 per unit time, is the Stoßzahlansatz, (29) and (30).

For modern readers, there are also a few unstated assumptions that go into the construction of

this equation. First, the number of molecules must be large enough so that the (discrete) distribution

of their velocities can be well approximated by a continuous and differentiable function f . Secondly,

f changes under the effect of binary collisions only. This means that the density of the gas should be

low (so that three-particle collisions can be ignored) but not too low (which would make collisions

too infrequent to change f at all). These two requirements are already hard enough to put in a

mathematically precise form. The modern explicitation is that of taking the so-called Boltzmann-

Grad limit (cf. paragraph 6.4). The final (unstated) assumption is that all the above assumptions

remain valid in the course of time.

He addresses his aim by constructing a differentio-integral evolution equation for ft, by taking

the difference of (29) and (30) and integrating over all variables except ~v1 and t. The result (in a

modern notation) is the Boltzmann equation:

∂ft(~v1)
∂t

= N

∫ d

0

bdb

∫ 2π

0

dφ

∫

R3
d3~v2 ‖~v2 − ~v1‖

(
ft(~v1

′)ft(~v2
′)− ft(~v1)ft(~v2)

)
(48)

which describes the change of f in the course of time, when this function at some initial time is

given. (Recall from paragraph 3.3 that the primed velocities are to be thought of as functions of the

unprimed velocities and the geometrical parameters of the collision: ~v′i = ~vi
′(~v1, ~v2, b, φ), and d

denotes the diameter of the hard spheres.)

4.2.1 The H-theorem

Assuming that the Boltzmann equation (48) is valid for all times, one can prove, after a few well-

known manipulations, that the following quantity

H[ft] :=
∫

ft(~v) ln ft(~v)d3~v (49)
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decreases monotonically in time, i.e.
dH[ft]

dt
≤ 0; (50)

as well as its stationarity for the Maxwell distribution, i.e.:

dH[ft]
dt

= 0 (∀t) iff ft(v) = Ae−Bv2
. (51)

Boltzmann concludes Section I of the paper as follows:

It has thus been rigorously proved that whatever may have been the initial distribution

of kinetic energy, in the course of time it must necessarily approach the form found by

Maxwell. [. . . ] This [proof] actually gains much in significance because of its applica-

bility to the theory of multi-atomic gas molecules. There too, one can prove for a certain

quantity [H] that, because of the molecular motion, this quantity can only decrease or

in the limiting case remain constant. Thus, one may prove that because of the atomic

movement in systems consisting of arbitrarily many material points, there always ex-

ists a quantity which, due to these atomic movements, cannot increase, and this quantity

agrees, up to a constant factor, exactly with the value that I found in [(Boltzmann 1871c)]

for the well-known integral
∫

dQ/T .

This provides an analytical proof of the Second Law in a way completely different from

those attempted so far. Up till now, one has attempted to proof that
∫

dQ/T = 0 for

a reversible (umkehrbaren) cyclic30 process, which however does not prove that for an

irreversible cyclic process, which is the only one that occurs in nature, it is always nega-

tive; the reversible process being merely an idealization, which can be approached more

or less but never perfectly. Here, however, we immediately reach the result that
∫

dQ/T

is in general negative and zero only in a limit case... (Abh. I, p. 345)

Thus, as in his 1866 paper, Boltzmann claims to have a rigorous, analytical and general proof

of the Second Law. From our study of the paper until now, (i.e. section I) it appears that Klein’s

interpretation is more plausible than von Plato’s. I postpone a further discussion of this dispute to

paragraph 4.2.3, after a brief look at the other sections of the paper.

4.2.2 Further sections of Boltzmann (1872)

Section II is entitled “Replacement of integrals by sums” and devoted to a repetition of the earlier

arguments, now assuming that the kinetic energies of the molecules can only take values in a discrete

30The term “cyclic” is missing in Brush’s translation, although the original text does speak of “Kreisprozeß”. The special
notation

H
for cyclic integrals was not introduced until much later.
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set {0, ε, 2ε, . . . , pε}. Boltzmann shows that in the limit ε −→ 0, pε −→ ∞ the same results are

recovered.

Many readers have been surprised by this exercise, which seems rather superfluous both from a

didactic and a logical point of view. (However, some have felt that it foreshadowed the advent of

quantum theory.) Boltzmann offers as motivation for the detour that the discrete approach is clearer

than the previous one. He argues that integrals only have a symbolic meaning, as a sum of infinitely

many infinitesimal elements, and that a discrete calculation yields more understanding. He does not

argue, however, that it is closer to physical reality. Be that as it may, the section does eventually take

the limit, and recovers the same results as before.

The third section treats the case where the gas is non-uniform, i.e., when condition 2 above is

dropped. For this case, Boltzmann introduces a generalized distribution function ft(~r,~v), such that

ftd
3~rd3~v represents the relative number of particles with a position in a volume element d3~r around

~r and a velocity in an element d3~v around ~v.

He obtains a corresponding generalized Boltzmann equation:

∂ft(~r,~v)
∂t

+ ~v · ∇xft +
~F

m
· ∇vft =

N

∫
bdbdφd3~v2 ‖~v2 − ~v1‖

(
ft(~r,~v′1))ft(~r,~v′2)− ft(~r,~v1))ft(~r,~v2)

)
(52)

where ~F denotes an external force field on the gas. The quantity H now takes the form H[ft] :=
∫

ft(~r,~v)d3~rd3~v; and a generalization of the H-theorem dH/dt ≤ 0 is obtained.

The last three sections are devoted to polyatomic molecules, and aim to obtain generalized re-

sults for this case too. The key ingredient for doing so is, of course, an appropriately generalized

Stoßzahlansatz. The formulation of this assumption is essentially the same as the one given in his

paper on poly-atomic molecules (1871a), which was later shown wrong and corrected by Lorentz. I

will not go into this issue (cf. Lorentz 1887, Boltzmann 1887b, Tolman 1938).

An interesting passage occurs at the very end of the paper, where he expands on the relationship

between H and entropy. He considers a monatomic gas in equilibrium. The stationary distribution

of state is given as:

f∗(~r,~v) = V −1

(
3m

4πT

)3/2

exp(
−3mv2

4T
) (53)

where V is the volume of the container. (Note that in comparison with (27), Boltzmann adopts units

for temperature that make k = 2/3.) He shows that

H[f∗] :=
∫

f∗ log f∗dxdv = −N log V

(
4πT

3m

)3/2

− 3
2
N ; (54)

which agrees (assuming S = −kNH[f∗]) with the thermodynamical expression for the ideal gas
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(16) up to an additive constant. A similar result holds for the polyatomic gas.

4.2.3 Remarks and problems

1. The role of probability. As we have seen, the H-theorem formed the basis of a renewed claim

by Boltzmann to have obtained a theorem corresponding to the full Second Law (i.e. including both

parts) at least for gases. A main difference from his 1866 claim, is that he now strongly empha-

sizes the role of probability calculus in his derivation. It is clear that the conception of probability

expounded here is thoroughly frequentist and that he takes ‘the laws of probability’ as empirical

statements. Furthermore, probabilities can be fully expressed in mechanical terms: the probability

distribution f is nothing but the relative number of particles whose molecular states lie within cer-

tain limits. Thus, there is no conflict between his claims that on the one hand, “the problems of

the mechanical theory of heat are really problems in probability calculus” and that the probabilities

themselves are derived on the basis of the equations of motion alone, on the other hand. Indeed, it

seems to me that Boltzmann’s emphasis on the crucial role of probability in this paper is only in-

tended to convey that probability theory provides a particularly useful and appropriate language for

discussing mechanical problems in gas theory. There is no indication in this paper yet that probability

theory could play a role by furnishing assumptions of a non-mechanical nature, i.e., independent of

the equations of motion (cf. Boltzmann & Nabl 1904, p. 520).

2. The role of the Stoßzahlansatz. Note that Boltzmann stresses the generality, rigour and “an-

alyticity” of his proof. He puts no emphasis on the special assumptions that go into the argument.

Indeed, the Stoßzahlansatz, later identified as the key assumption that is responsible for the time-

asymmetry of the H-theorem, is announced as follows

The determination [of the number of collisions] can only be obtained in a truly tedious

manner, by consideration of the relative velocities of both particles. But since this con-

sideration has, apart from its tediousness, not the slightest difficulty, nor any special

interest, and because the result is so simple that one might almost say it is self-evident I

will only state this result.” (Abh. I, p. 323)

It thus seems natural that Boltzmann’s contemporaries must have understood him as claiming that

the H-theorem followed necessarily from the dynamics of the mechanical gas model.31 I can find no

evidence in the paper that he intended this claim to be read with a pinch of salt, as (von Plato 1991,

p.. 81) has argued.

31Indeed this is exactly how Boltzmann’s claims were understood. For example, the recommendation written in 1888 for
his membership of the Prussian Academy of Sciences mentions as his main feat that Boltzmann had proven that, whatever its
initial state, a gas must necessarily approach the Maxwellian distribution (Kirsten & Körber 1975, p.109).
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Is there then no evidence at all for von Plato’s reading of the paper? Von Plato refers to a passage

from Section II, where Boltzmann repeats the previous analysis by assuming that energy can take on

only discrete values, and replacing all integrals by sums. He recovers, of course, the same conclusion,

but now adds a side remark, which touches upon the case of non-uniform gases:

Whatever may have been the initial distribution of states, there is one and only one dis-

tribution which will be approached in the course of time. [. . . ] This statement has been

proved for the case where the distribution of states was already initially uniform. It must

also be valid when this is not the case, i.e. when the molecules are initially distributed

in such a way that in the course of time they mix among themselves more and more, so

that after a very long time the distribution of states becomes uniform. This will always

be the case, with the exception of very special cases, e.g. when all molecules were ini-

tially situated along a straight line, and were reflected by the walls onto this line (Abh. I,

p. 358).

It is this last remark that, apparently, led to the view that after all Boltzmann did already conceive

of exceptions to his claims. However, I should say that this passage does not convince me. True

enough, Boltzmann in the above quote indicates that there are exceptions. But he mentions them

only in connection with an extension of his results to the case when the gas is not initially uniform,

i.e. when condition (2) above is dropped. There can be no doubt that under the assumption of the

conditions (1) and (2), Boltzmann claimed the rigorous validity of the H-theorem. (Curiously, his

more systematic treatment of the non-uniform gas (Section III of (1872)) does not mention any

exception to the claim that “H can only decrease” (Abh. I p. 362).

As a matter of fact, when Loschmidt formulated the objection, it happened to be by means of

an example of a non-uniform gas (although nothing essential depended on this). Thus, if Boltzmann

had in 1872 a “full hand against his future critics”, as von Plato claims, one would expect his reply

to Loschmidt’s objection to point out that Loschmidt was correct but that he had already anticipated

the objection. Instead, he accused Loschmidt of a fallacy (see paragraph 4.3 below).

But apart from the historical issue of whether Boltzmann did or did not envisage exceptions to his

H-theorem, it seems more important to ask what kind of justification Boltzmann might have adduced

for the Stoßzahlansatz. An attempt to answer this question must be somewhat speculative, since, as

we have seen, Boltzmann presented the assumption as “almost self-evident” and “having no special

interest”, and hence presumably as not in need of further explanation. Still the following remarks

may be made with some confidence.

First, we have seen that Maxwell’s earlier usage of the assumption was never far away from an

argument from insufficient reason. Thus, in his approach, one could think of the Stoßzahlansatz as

expressing that we have no reason to expect any influence or correlation between any pair of particles
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that are about to collide. The assumption would then appear as a probabilistic assumption, reflecting

a ‘reasonable judgment’, independent from mechanics.

In contrast, Boltzmann’s critique of Maxwell’s approach (cf. footnote 16) suggests that he did not

buy this arguments from insufficient reason. But since the Stoßzahlansatz clearly cannot be conceived

of as an assumption about dynamics —like the ergodic hypothesis—, this leaves only the option that

it must be due to a special assumption about the mechanical state of the gas. Indeed, in the years

1895-6, when Boltzmann acknowledged the need for the ansatz in the proof of his H-theorem more

explicitly —referring to it as “Assumption A” (Boltzmann 1895) or “the hypothesis of molecular

disorder” (Boltzmann 1896)—, he formulated it as an assumption about the state of the gas.

Yet, even in those years, he would also formulate the hypothesis as expressing that “haphazard

governs freely” (Boltzmann 1895, Abh. III, p. 546) or “that the laws of probability are applicable for

finding the number of collisions” (Boltzmann 1895b). Similarly, he describes states for which the

hypothesis fails as contrived “so as to intentionally violate the laws of probability”(Boltzmann 1896,

§3). However, I think these quotations should not be read as claims that the Stoßzahlansatz was a

consequence of probability theory itself. Rather, given Boltzmann’s empirical understanding of “the

laws of probability”, they suggest that Boltzmann thought that, as a matter of empirical fact, the

assumption would ‘almost always’ hold, even if the gas was initially very far from equilibrium.

3. The H-theorem and the Second Law. Note that Boltzmann misconstrues, or perhaps under-

states, the significance of his results. Both the Boltzmann equation and the H-theorem refer to a

body of gas in a fixed container that evolves in isolation from its environment. There is no question

of heat being exchanged by the gas during a process, let alone in an irreversible cyclic process. His

comparison in the quotation on page 46 with Clausius’ integral
∫

dQ/T (i.e.
∮

dQ/T in equation

(18) above) is therefore really completely out of place.

The true import of Boltzmann’s results is rather that they provide (i) a generalization of the

entropy concept to non-equilibrium states,32 and (ii)a claim that this non-equilibrium entropy −kH

increases monotonically as the isolated gas evolves for non-equilibrium towards an equilibrium state.

The relationship with the Second Law is, therefore, somewhat indirect: On the one hand, Boltzmann

proves much more than was required, since the second law does not speak of non-equilibrium en-

tropy, nor of monotonic increase; on the other hand it proves also less, since Boltzmann does not

consider the increase of entropy in general adiabatic processes.

32Boltzmann emphasized that his expression for entropy should be seen as an extension of thermodynamic entropy to non-
equilibrium states in (1877b, Abh. II, p. 218; 1896, §5) . Of course there is no guarantee that this generalization is the unique
candidate for a non-equilibrium entropy.
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4.3 Boltzmann (1877a): the reversibility objection

According to Klein (1973), Boltzmann seemed to have been satisfied with his treatments of 1871 and

1872 and turned his attention to other matters for a couple of years. He did come back to gas theory in

1875 to discuss an extension of the Boltzmann equation to gases subjected to external forces. But this

paper does not present any fundamental changes of thought. (However, it does contain some further

elucidation, for example, it mentions for the first time that the derivation of the Boltzmann equation

requires that the gas is so dilute that collisions between three or more particles simultaneously can

be ignored).

However, the 1875 paper did contain a result which, two years later, led to a debate with Lo-

schmidt. Boltzmann showed that (52) implied that a gas in equilibrium in an external force field

(such as the earth’s gravity) should have the same average kinetic energy at all heights and therefore,

a uniform temperature; while its pressure and density would of course vary with height. This con-

clusion conflicted with the intuition that when molecules travel upwards, they must do work against

the gravitational field, and pay for this by having a lower kinetic energy at greater heights.

Now Boltzmann (1875) was not the first to reach the contrary result, and Loschmidt was not the

first to challenge it. Maxwell and Guthrie entered into a debate on the very same topic in 1873.

But actually their main point of contention need not concern us very much. The discussion between

Loschmidt and Boltzmann is particularly important for quite another issue, which Loschmidt only

introduced as an side remark. Considering a gas container in a homogeneous gravitational field,

Loschmidt discussed a situation where initially all atoms except one lie at rest at the bottom of the

container. The single moving atom could then, by collisions, stir the others and send them into motion

until a “stationary state”, characterized by the Maxwell distribution, is obtained. He continues

By the way, one should be careful about the claim that in a system in which the so-called

stationary state has been achieved, starting from an arbitrary initial state, this average

state can remain intact for all times. I believe, rather, that one can make this prediction

only for a short while with full confidence.

Indeed, if in the above case, after a time τ which is long enough to obtain the stationary

state, one suddenly assumes that the velocities of all atoms are reversed, we would obtain

an initial state that would appear to have the same character as the stationary state. For

a fairly long time this would be appropriate, but gradually the stationary state would

deteriorate, and after passage of the time τ we would inevitable return to our initial

state: only one atom has absorbed all kinetic energy of the system [. . . ], while all other

molecules lie still on the bottom of the container.

Obviously, in every arbitrary system the course of events must be become retrograde
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when the velocities of all its elements are reversed (Loschmidt 1876, p. 139).

4.3.1 Boltzmann’s response (1877a)

Boltzmann’s response to Loschmidt is somewhat confusing. On the one hand, he acknowledges that

Loschmidt’s objection is “quite ingenious and of great significance for the correct understanding of

the Second Law.” However, he also brands the objection as a “fallacy” and a “sophism”.33 But then,

two pages later again, the argument is “of the greatest importance since it shows how intimately

connected are the Second Law and probability theory.”

The gist of the response is this. First, Boltzmann captures the essential core of the problem in an

admirably clear fashion:

“Every attempt to prove, from the nature of bodies and the laws of interaction for the

forces they exert among each other, without any assumption about initial conditions, that

∫
dQ

T
≤ 0 (55)

must be in vain” (Abh. II. p.119–121).

The point raised here is usually known as the reversibility objection. And since the H-theorem

(which only received this name in the 1890s) was presented in 1872 as a general proof that
∫

dQ
T ≤ 0

(cf. the long quotation on page 46), it would imply that this theorem was invalid. Boltzmann aims to

show, however, that this objection is a fallacy. His argument might be dissected into 5 central points.

1. Conceding that the proof cannot be given. Boltzmann says that a proof that every distribution

must with absolute necessity evolve towards a uniform distribution cannot be given, claiming that this

fact “is already taught by probability theory”. Indeed, he argues, even a very non-uniform distribution

of state is, although improbable to the highest degree, not impossible. Thus, he admits that there are

initial states for which H increases, just as well as those for which H decreases. This admission, of

course, is hard to rhyme with his professed purpose of showing that it is fallacious to conclude that

some assumption about the initial state would be needed.

Note that this passage announces a major conceptual shift. Whereas the 1872 paper treated

the distribution of state ft as if it defines probability (i.e. of molecular velocities), this time the

distribution of states is itself something which can be to a higher or lesser degree “probable”. That

is: probabilities are attributed to distributions of state, i.e. the distribution of state itself is treated as

33The very fact that Boltzmann called this conclusion —which by all means and standards is correct— a fallacy shows, in my
opinion, that he had not anticipated the objection. In fact, how much Boltzmann had yet to learn from Loschmidt’s objection
is evident when we compare this judgment to a quotation from his Lectures on Gas Theory (1898, p. 442): “this one-sidedness
[of the H-theorem] lies uniquely and solely in the initial conditions.”
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a random variable. This shift in viewpoint became more explicit in his (1877b); as we will discuss in

section 4.4 below.

2. Rethinking the meaning of ”probability”. Boltzmann argues that every distribution of state,

whether uniform or non-uniform, is equally improbable. But there are “infinitely many” more uni-

form distributions of state than non-uniform distributions. Here we witness another conceptual shift.

In (1872), the term “distribution of state” referred to the function f(~v) or f(~r,~v), representing the

relative numbers of molecules with various molecular states. In that sense, there would, of course,

only be a single uniform distribution of state: the Maxwellian distribution function (53). But since

Boltzmann now claims there are many, he apparently uses the term “distribution of state” to denote a

much more detailed description, that includes the velocity and position of every individual molecule,

so that permutations of the molecules yield a different distribution of state. That is, he uses the

term in the sense of what we would nowadays call a microstate, and what he himself would call

a “Komplexion” a few months later in his (1877b)—on which occasion he would reserve the name

‘distribution of state’ for the macrostate.

Note that Boltzmann assumes every Komplexion to be equally probable (or improbable) so that

the probability of a particular distribution of state is determined by the relative numbers. Indeed he

remarks that it might be interesting to calculate the probabilities of state distributions by determining

the ratio of their numbers; this suggestion is also worked out in his subsequent paper of 1877b.

This, indeed, marks another conceptual change. Not only are probabilities attributed to distribu-

tions of state instead of being defined by them; they are determined by an equiprobability assumption.

Boltzmann does not explicitly motivate the assumption. In view of the discussion in paragraph 3.1,

one might conjecture that he must have had something like Laplace’s principle of insufficient reason

in mind, which makes any two cases which, according to our information are equally possible, also

equally probable. But this would indicate an even larger conceptual change; and not just because

Boltzmann is broadly a frequentist concerning probability. Also, the principle of insufficient reason,

or any similar assumption, makes sense only from the view point that probability is a non-mechanical

notion: it reflects our belief or information about a system. I cannot find any evidence that he ac-

cepted this idea. Of course it is also possible to conjecture that he silently fell back upon the ergodic

hypothesis. But this conjecture also seems unlikely, given his avoidance of the hypothesis since 1871.

3. A claim about evolutions. Boltzmann says: “Only from the fact that there are so many more

uniform than non-uniform distributions of state [i.e.: microstates] follows the larger probability that

the distribution will become uniform in the course of time” (p. 120). More explicitly, he continues:

[. . . ] one can prove that infinitely many more initial states evolve after a long time

towards a more uniform distribution of states than to a less uniform one, and that even
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in that latter case, these states will become uniform after an even longer time (Abh. II,

p. 120)34

Note that this is a claim about evolutions of microstates. In fact, it is the first case of what the

Ehrenfests later called a statistical H-theorem, but what is perhaps better called a statistical reading

of the H-theorem, since in spite of Boltzmann’s assertion, no proof is offered.

4. The (im)probability of Loschmidt’s initial state. Boltzmann maintains that the initial con-

ditions considered by Loschmidt only have a minute probability. This is because it is obtained by

a time evolution and velocity reversal of a non-uniform microstate. Since both time evolution and

velocity reversal are one-to-one mappings (or more to the point: they preserve the Liouville mea-

sure), these operations should not affect the number or probability of states. Hence, the probability

of Loschmidt’s state is equal to that of the special non-uniform state from which it is constructed.

But by point 2 above, there are infinitely many more uniform states than non-uniform states, so the

probability of Loschmidt’s state is extraordinarily small.

5. From (im)probability to (im)possibility. The final ingredient of Boltzmann’s response is the

claim that whatever has an extraordinarily small probability is practically impossible.

The conclusion of Boltzmann’s argument, based on these five points, is that the state selected by Lo-

schmidt may be considered as practically impossible. Note that this is a completely static argument;

i.e., its logic relies merely on the points 1,2,4 and 5, and makes no assumption about evolutions, apart

from the general feature that the dynamical evolution conserves states (or measure). Indeed, point 3,

i.e. the statistical reading of the H-theorem, is not used in the argument.

As a consequence, the argument, although perfectly consistent, shows more than Boltzmann can

possibly have wanted. The same reasoning that implies Loschmidt’s initial state can be ignored,

also excludes other non-uniform states. In particular, the same probability should be assigned to

Loschmidt’s initial state without the reversal of velocities. But that state can be produced in the

laboratory, and, presumably, should not be considered as practically impossible. Indeed, if we adopt

the rule that all non-uniform states are to be ignored on account of their low probability, we end

up with a consideration of uniform states only, i.e. the theory would be reduced to a description of

equilibrium, and the H-theorem reduced to dH/dt = 0, and any time-asymmetry is lost.

This, surely, is too cheap a victory over Loschmidt’s objection. What one would like to see in

Boltzmann’s argument is a greater role for assumptions about the time evolution in order to substan-

tiate his statistical reading of the H-theorem.

34The clause about ‘the latter case’ is absent in the translation by (Brush 2003, p. 366).
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Summing up: From this point on, we shall see that Boltzmann emphasizes even more strongly the

close relations between the Second Law and probability theory. Even so, it is not always clear what

these relations are exactly. Further, one may question whether his considerations of the probability

of the initial state hit the nail on the head. Probability theory is equally neutral to the direction of

time as is mechanics.

The true source of the reversibility problem was only identified by Burbury (1894a) and Bryan

(1894) after Boltzmann’s lecture in Oxford, which created a intense debate in the columns of Nature.

They pointed out that the Stoßzahlansatz already contained a time-asymmetric assumption.

Indeed, this assumption requires that the number of collisions of the kind (~v1, ~v2) −→ (~v1
′, ~v2

′)

is proportional to the product f(~v1)f(~v2) where, ~v1, ~v2 are the velocities before the collisions. If we

would replace this by the requirement that the number of collisions is proportional to the product for

the velocities ~v1
′, ~v2

′ after the collision, we would obtain, by a similar reasoning, dH/dt ≥ 0. The

question is now, of course, why we should prefer one assumption above the other, without falling

into some kind of double standard. (I refer to Price (1996) for a detailed discussion of this danger.)

One thing is certain, and that is that any such preference cannot be obtained from mechanics and

probability theory alone.

4.4 Boltzmann (1877b): the combinatorial argument

Boltzmann’s next paper (1877b) is often seen as a major departure from the conceptual basis em-

ployed in his previous work. Indeed, the conceptual shifts already indicated implicitly in his re-

ply to Loschmidt become in this article explicit. Indeed, according to (ter Haar 1955, p. 296) and

(Klein 1973, p. 83), it is this paper that marks the transition from kinetic theory to statistical mechan-

ics. Further, the paper presents the famous link between entropy and ‘probability’ that later became

known as “Boltzmann’s principle”, and was engraved on his tombstone as “S = k log W ”.

Boltzmann’s begins the paper by stating that his goal is to elucidate the relationship between

the Second Law and probability calculus. He notes he has repeatedly emphasized that the Second

Law is related to probability calculus. In particular he points out that the 1872 paper confirmed this

relationship by showing that a certain quantity [i.e. H] can only decrease, and must therefore obtain

its minimum value in the state of thermal equilibrium. Yet, this connection of the Second Law with

probability theory became even more apparent in his previous paper (1877a). Boltzmann states that

he will now solve the problem mentioned in that paper, of calculating the probabilities of various

distributions of state by determining the ratio of their numbers.

He also announces that, when a system starts in an improbable state, it will always evolve towards

more probable states, until it reaches the most probable state, i.e. that of thermal equilibrium. When

this is applied to the Second Law, he says, “we can identify that quantity which is usually called
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entropy, with the probability of the state in question.” And: “According to the present interpretation,

[the Second Law] states nothing else but that the probability of the total state of a composite system

always increases” [Abh. II, pp. 165-6]. Exactly how all this is meant, he says, will become clear later

in the article.

4.4.1 The combinatorial argument

Succinctly, and rephrased in the Ehrenfests’ terminology, the argument is as follows. Apart from Γ,

the mechanical phase space containing the possible states x for the total gas system, we consider the

so-called µ-space, i.e. the state space of a single molecule. For monatomic gases, this space is just

a six-dimensional Euclidean space with (~r,~v) as coordinates. With each mechanical state x we can

associate a collection of N points in µ-space; one for each molecule.

Now, partition µ-space into m disjoint cells: µ = ω1 ∪ . . . ∪ ωm. These cells are taken to

be rectangular in the coordinates and of equal size. Further, it is assumed that the energy of each

molecule in cell ωi in has a value εi, depending only on i. For each x, henceforth also called the

microstate (Boltzmann’s term was the Komplexion), we define the macrostate or ‘distribution of

state’ as Z := (n1, . . . , nm), with ni the number of particles whose molecular state is in cell ωi. The

relation between macro- and microstate is obviously non-unique since many different microstates,

e.g. obtained by permuting the molecules, lead to the same macrostate. One may associate with

every given macrostate Z0 the corresponding set of microstates:

ΓZ0 := {x ∈ Γ : Z(x) = Z0}. (56)

The phase space volume |ΓZ0 | of this set is proportional to the number of permutations of the particles

that do not change the macrostate Z0. Indeed, when the six-dimensional volume of the cells ωi is

δω, i.e., the same for each cell, the phase space volume of the set ΓZ is

|ΓZ | = N !
n1! · · ·nm!

(δω)N . (57)

Moreover, assuming that ni À 1 for all i and using the Stirling approximation for the factorials,

one finds

ln ΓZ ≈ N ln N −
∑

i

ni ln ni + N ln δω. (58)

This expression is in fact proportional to a discrete approximation of the H-function. Indeed, putting

ni = Nf(~ri, ~vi)δω (59)
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where (~ri, ~vi) are the coordinates of a representative point in ωi, we find

∑

i

ni ln ni =
∑

i

Nf(~ri, ~vi) ln
(
Nf(~ri, ~vi)δω

)
δω

≈ N

∫
f(~r,~v)

(
ln f(~r,~v) + ln N + ln δω

)
d3~rd3~v

= NH + N ln N + N ln δω; (60)

and therefore, in view of (58):

−NH ≈ ln |ΓZ |. (61)

And since Boltzmann had already identified −kNH with the entropy of a macrostate, one can also

take entropy as proportional to the logarithm of the volume of the corresponding region in phase

space. Today, ln |ΓZ | is often called the Boltzmann entropy.

Boltzmann next considers the question for which choice of Z does the region ΓZ have maximal

size, under the constraints of a given total number of particles N , and a total energy E:

N =
m∑

i=1

ni, E =
m∑

i=1

niεi. (62)

This problem can easily be solved with the Lagrange multiplier technique. Under the Stirling ap-

proximation (58) one finds

ni = µeλεi , (63)

which is a discrete version of the Maxwell distribution. (Here, µ an λ are determined in terms of N

and E by the constraints (62).)

Boltzmann proposes to take the macrostate with the largest volume as representing equilibrium.

More generally, he also refers to these volumes as the “probability” or “permutability” of the macro-

state. He therefore now expresses the Second Law as a tendency for the system to evolve towards

ever more probable macrostates, until, in equilibrium, it has reached the most probable state.

4.4.2 Remarks and problems

1. the role of dynamics. In the present argument, no dynamical assumption has been made.

In particular, it is not relevant to the argument whether the ergodic hypothesis holds, or how the

particles collide. At first sight, it might seem that this makes the present argument more general than

the previous one. Indeed, Boltzmann suggests at the end of the paper (Abh. II p. 223) that the same

argument might be applicable also to dense gases and even to solids.
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However, it should be noticed that the assumption that the total energy can be expressed in the

form E =
∑

i niεi where the energy of each particle depends only on the cell in which it is located,

and not on the state of other particles is very strong. This can only be maintained, independently of

the number N , if there is no interaction at all between the particles. The validity of the argument is

thus really restricted to ideal gases (cf. Uhlenbeck and Ford 1963).

2. The choice of cells. One might perhaps hope, at first sight, that the procedure of partitioning

µ-space into cells is only a technical or didactic device and can be eliminated by finally taking a

limit in which δω −→ 0; similar to the procedure of his 1872 paper. This hope is dashed because

the expression (58) diverges. Indeed, the whole prospect of using combinatorics would disappear

if we did not adopt a finite partition. But also the special choice to give all cells equal volume

in position and velocity variables is not quite self-evident, as Boltzmann himself shows. In fact,

before he develops the argument given here, his paper presents a discussion in which the particles

are characterized by their energy instead of position and velocity. This leads him to carve up µ-space

into cells of equal size δε in energy. He then shows that the combinatorial argument fails to reproduce

the desired Maxwell distribution for particles moving in 3 spatial dimensions.35 This failure is then

remedied (Abh. II, p. 190) by switching to a choice of equally sized cells in δω in position and

velocity. The latter choice is apparently ’right’, in the sense that leads to the desired result. However,

since the choice clearly cannot be relegated to a matter of convention, it leaves open the question of

justification.

Modern commentators are utterly divided in the search for a direction in which a motivation

for the choice of the size of these cells can be found. Some argue that the choice should be made

in accordance with the actual finite resolution of measuring instruments or human observation ca-

pabilities. The question whether these do in fact favour a partition into cells of equal phase space

volume has hardly been touched upon. Others (Popper 1982, Redhead 1995) reject an appeal to

observation capacities on the grounds that these would introduce a ‘subjective’ or ‘anthropocentric’

element into the explanation of irreversibility (see also Jaynes 1965, Grünbaum 1973, Denbigh &

Denbigh 1985, Ridderbos 2002).

3. Micro versus macro. The essential step in the argument is the distinction between micro- and

macrostates. This is indeed the decisive new element, that allowed Boltzmann a complete reinterpre-

tation of the notion and role of probability.

In 1872 and before, the distribution of state f was identified with a probability (namely of a

35The problem is that for an ideal gas, where all energy is kinetic, δε ∝ vδv. On the other hand, for three-dimensional
particles, δω ∝ v2δv. The function f derived from (59) and (63) thus has a different dependence on v in the two cases. As
Boltzmann notes, the two choices are compatible for particles in two dimensions (i.e. discs moving in a plane).
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molecular state, cf. Remark 1 of paragraph 4.2.3). On the other hand, in the present work it, or its

discrete analogue Z, is a description of the macrostate of the gas, to which a probability is assigned.

Essentially, the role of the distribution of state has been shifted from defining a probability measure to

being a stochastic variable. Its previous role is taken over by a new idea: Probabilities are not assigned

to the particles, but to the macrostate of the gas as a whole, and measured by the corresponding

volume in phase space.

Another novelty is that Boltzmann has changed his concept of equilibrium. Whereas previously

the defining characteristic of equilibrium was its stationarity, in Boltzmann’s new view it is conceived

as the macrostate (i.e. a region in phase space) that takes up the largest volume. As a result, a system

in a state of equilibrium need not remain there: in the course of time, the microstate of the system

may fluctuate in and out of this equilibrium region. Boltzmann briefly investigated the probability

of such fluctuations in his (Boltzmann 1878). Almost thirty years later, the experimental predictions

for fluctuation phenomena by Einstein and Smoluchowski provided striking empirical successes for

statistical mechanics.

4. But what about evolutions? Perhaps the most important issue is this. What exactly is the

relation of the 1877b paper to Loschmidt’s objection and Boltzmann’s primary reply to it (1877a)?

The primary reply (cf. paragraph 4.3) can be read as an announcement of two subjects of further

investigation:

From the relative numbers of the various distributions of state, one might even be able

to calculate their probabilities. This could lead to an interesting method of determining

thermal equilibrium (Abh. II, p. 121)

This is a problem about equilibrium. The second announcement was that Boltzmann said “The case

is completely analogous for the Second Law” (Abh. II, p. 121). Because there are so very many more

uniform than non-uniform distributions, it should be extraordinarily improbable that a system should

evolve from a uniform distribution of states to a non-uniform distribution of states. This is a problem

about evolution (cf. point 3 of section 4.3). In other words, one would like to see that something like

the statistical H-theorem actually holds.

Boltzmann’s (1877b) is widely read as a follow-up to these announcements. Indeed, Boltzmann

repeats the first quote above in the introduction of the paper (Abh. II, p. 165), indicating that he will

address this problem. And so he does, extensively. Yet he also states:

Our main goal is not to linger on a discussion of thermal equilibrium, but to investigate

the relations of probability with the Second Law of thermodynamics (Abh. II, p. 166).

Thus, the main goal of 1877b is apparently to address the problem concerning evolutions and to

show how they relate to the Second Law. Indeed, this is what one would naturally expect since the
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reversibility objection is, after all, a problem concerned with evolutions. Even so, a remarkable fact

is that the 1877b paper hardly ever touches its self-professed “main goal” at all. As a matter of fact,

I can find only one passage in the remainder of the paper where a connection with the Second Law

is mentioned.

It occurs in Section V (Abh. II, p. 216-7). After showing that in equilibrium states for monatomic

gases the ‘permutability measure’ ln |ΓZ | (for which Boltzmann’s notation is Ω) is proportional to

the thermodynamical entropy, up to an arbitrary additive constant, he concludes that, by choosing the

constant appropriately:36 ∫
dQ

T
=

2
3
Ω

[
=

2
3

ln |ΓZ |
]

(64)

and adds:

It is known that when a system of bodies goes through reversible changes, the total sum

of the entropies of all these bodies remains constant; but when there are among these

processes also irreversible (nicht umkehrbar) changes, then the total entropy must nec-

essarily increase. This follows from the familiar circumstance that
∫

dQ/T is negative

for an irreversible cyclic process. In view of (64), the sum of all permutability measures

of all bodies
∑

Ω, or their total permutability measure, must also increase. Hence, per-

mutability is a quantity which is, up to a multiplicative and additive constant, identical

to entropy, but which retains a meaning also during the passage of an irreversible body

[sic– read: “process”], in the course of which it continually increases (Abh. II p.217)

How does this settle the problem about evolutions, and does it provide a satisfactory refutation of

the reversibility objection? In the literature, there are at least four views about what Boltzmann’s

response actually intended or accomplished.

4α. Relying on the separation between micro- and macroscales: A view that has been voiced

recently, e.g. by Goldstein (2001), is that Boltzmann had, by his own argument, adequately and

straightforwardly explained why entropy should tend to increase. In particular, this view argues, the

fact of the overwhelmingly large phase space volume of the set Γeq of all equilibrium phase points,

compared to the set of non-equilibrium points already provides a sufficient argument.

For a non-equilibrium phase point x of energy E, the Hamiltonian dynamics governing

the motion xt arising from x would have to be ridiculously special to avoid reasonably

quickly carrying xt into Γeq and keeping it there for an extremely long time —unless, of

course x itself were ridiculously special (Goldstein 2001, p. 6).

36Actually, equation (64) is the closest he got to the famous formula on his tombstone, since Ω = ln W , and Boltzmann
adopts a temperature scale that makes k = 2/3.
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In fact, this view may lay some claim to being historically faithful. As we have seen, Boltzmann’s

(1877a) did claim that the large probability for an evolution towards equilibrium did follow from the

large differences in number of states.

The main difficulty with this view is that, from a modern perspective, it is hard to maintain that it

is adequate. States don’t evolve into other states just because there are more of the latter, or because

they make up a set of larger measure. The evolution of a system depends only on its initial state

and its Hamiltonian. Questions about evolution can only be answered by means of an appeal to

dynamics, not by the measure of sets alone. To take an extreme example, the trajectory covered by

xt, i.e. the set {xt : t ∈ R} is a set of measure zero anyway; and hence very special. By contrast,

its complement, i.e. the set of states not visited by a given trajectory is huge: it has measure one.

Certainly, we cannot argue that the system cannot avoid wandering into the set of states that it does

not visit. Another example is that of a system of non-interacting particles, e.g., the ideal gas. In

this case, all the energies of the individual particles are conserved, and because of these conserved

quantities, the phase point can only visit a very restricted region of phase space.37

The lesson is, of course, that in order to obtain any satisfactory argument why the system should

tend to evolve from non-equilibrium states to the equilibrium state, we should make some assump-

tions about its dynamics. In any case, judgments like “reasonable” or “ridiculous” remain partly a

matter of taste. The reversibility objection is a request for mathematical proof (which, as the saying

goes, is something that even convinces an unreasonable person).

4β. Relying on the ergodic hypothesis: A second, and perhaps the most well-known, view to

this problem is the one supplied by the Ehrenfests. In essence, they suggest that Boltzmann somehow

relied on the ergodic hypothesis in his argument.

It is indeed evident that if the ergodic hypothesis holds, a state will spend time in the various

regions of the energy hypersurface in phase space in proportion to their volume. That is to say,

during the evolution of the system along its trajectory, regions with a small volume, corresponding

to highly non-uniform distributions of state are visited only sporadically, and regions with larger

volume, corresponding to more uniform distributions of state more often.

This should also make it plausible that if a system starts out from a very small region (an im-

probable state) it will display a tendency to evolve towards the overwhelmingly larger equilibrium

state. Of course, this ‘tendency’ would have to be interpreted in a qualified sense: the same ergodic

hypothesis would imply that the system cannot stay inside the equilibrium state forever and thus there

would necessarily be fluctuations in and out of equilibrium. Indeed, one would have to state that the

37It is somewhat ironic to note, in view of remark 1 above, that this is the only case compatible with Boltzmann’s argument.
This gives rise to Khinchin’s “methodological paradox” (cf. 101).
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tendency to evolve from improbable to probable states is itself a probabilistic affair: as something

that holds true for most of the initial states, or for most of the time, or as some or other form of aver-

age behaviour. In short, we would then hopefully obtain some statistical version of the H-theorem.

What exactly the statistical H-theorem should say remains an open problem in the Ehrenfests’ point

of view. Indeed they distinguish between several interpretations (the so-called ‘concentration curve’

and the ‘bundle of H-curves’ Ehrenfest & Ehrenfest-Afanassjewa (1912, p. 31–35)).

Now, it is undeniable that the Ehrenfests’ reading of Boltzmann’s intentions has some clear ad-

vantages. In particular, even though nobody has yet succeeded in proving a statistical H-theorem

on the basis of the ergodic hypothesis, or on the basis of the assumption of metric transitivity (cf.

paragraph 6.1, one might hope that some statistical version of the H-theorem is true.

One problem here is that the assumptions Boltzmann used in his paper are restricted to non-

interacting molecules, for which the ergodic hypothesis is demonstrably false. But even more im-

portantly, it is clear that Boltzmann did not follow this line of argument in 1877b at all. Indeed, he

nowhere mentions the ergodic hypothesis. In fact he later commented on the relation between the

1877b paper and the ergodic hypothesis of 1868, saying:

On that occasion [i.e. in (1877b)] . . . I did not wish to touch upon the question whether a

system is capable of traversing all possible states compatible with the equation of energy

(Boltzmann 1881a, Abh. II p. 572).

4γ. Relying on the H-theorem: A third point of view, one to which this author adhered until

recently, is that, in (1877b) Boltzmann simply relied on the validity of the H-theorem of 1872. After

all, it was the 1872 paper that proposed to interpret −NH as entropy (modulo multiplicative and

additive constants), on the basis of the alleged theorem that it could never decrease. The 1877b

paper presents a new proposal, to link the entropy of a macrostate with ln |ΓZ |. But this proposal

is motivated, if not derived, by showing that ln |ΓZ | is (approximately) equal to −NH , as in (61),

whose interpretation as entropy was established in (1872). It thus seems plausible to conjecture that

Boltzmann’s thinking relied on the results of that paper, and that the claim that states will evolve from

improbable to probable states, i.e. that ln |ΓZ | shows a tendency to increase in time, likewise relied

on the H-theorem he had proved there.38 The drawback of this reading is that it makes Boltzmann’s

response to the reversibility objection quite untenable. Since the objection as formulated in his

(1877a) calls the validity of the H-theorem into question, a response that presupposes the validity of

this theorem is of no help at all.

38The conjecture is supported by the fact Boltzmann’s later exposition in (1896) is presented along this line.
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4δ. Bypassing the H-theorem: Janssen (2002) has a different reading. He notes: “In Boltz-

mann’s 1877 paper the statement that systems never evolve from more probable to less probable

states is presented only as a new way of phrasing the Second Law, not as a consequence of the

H-theorem” (p. 13). Indeed, any explicit reference to the H-theorem is absent in the 1877b paper.

However, what we are to make of this is not quite certain. The earlier paper (1877a) did not mention

the theorem either, but only discussed “any attempt to prove that
∫

dQ
T ≤ 0”. Still, this is commonly

seen as an implicit reference to what is now known as the H-theorem, but which did not yet have a

particular name at that time. Indeed, the H-theorem itself was characterized in 1872 only as a new

proof that
∫

dQ
T ≤ 0 (cf. the quotation on page 46). So, the fact that the H-theorem is not explicitly

mentioned in (1877b) is not by itself a decisive argument that he did not intend to refer to it.

Even so, the fact that he presented the increase of entropy as something which was well-known

and did not refer to the 1872 paper at all, does make Janssen’s reading plausible. So, perhaps Boltz-

mann merely relied on the empirical validity of the Second Law as a ground for this statement, and

not at all on any proposition from kinetic theory of gases.39 This, of course, would undermine even

more strongly the point of view that Boltzmann had a statistical version of the H-theorem, or indeed

any theorem at all, about the probability of time evolution.

The reversibility objection was not about a relationship between the phenomenological Second

Law and the H-theorem, but about the relationship between the H-theorem and the mechanical

equations of motion. So even though Janssen’s reading makes Boltzmann’s views consistent, it does

not make the 1877b paper provide a valid answer to Loschmidt’s objection.

4ε. The urn analogy—victory by definition? At the risk of perhaps overworking the issue,

I also want to suggest a fifth reading. Boltzmann’s (1877b) contains an elaborate discussion of

repeated drawings from an urn. In modern terms, he considers a Bernoulli process, i.e., a sequence

of independent identically distributed repetitions of an experiment with a finite number of possible

outcomes. To be concrete, consider an urn filled with m differently labeled lots, and a sequence of

N drawings, in which the lot i is drawn ni times (
∑m

i=1 ni = N ). He represents this sequence by a

“distribution of state” Z = (n1, . . . , nm). In this discussion, the probability of these distributions of

state is at first identified with the (normalized) number of permutations by which Z can be produced.

In other words

Prob(Z) ∝ N !
n1! · · ·nm!

. (65)

39Further support for this reading can be gathered from later passages. For example, Boltzmann (1897b) writes “Experience
shows that a system of interacting bodies is always found ‘initially’ in an improbable state and will soon reach the most probable
state (that of equilibrium). (Abh.III, p. 607). Here too, Boltzmann presents the tendency to evolve from improbable to more
probable states as a fact of experience rather than the consequence of any theorem.
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But halfway this discussion (Abh. II, p. 171), he argues that one can redefine probabilities in an alter-

native fashion, namely, as the relative frequency of occurrence during later drawings of a sequence

of N lots. Thus, even when, on a particular trial, an improbable state Z occurred, we can still argue

that on a later drawings, a more probable state will occur. Boltzmann speaks about the changes in Z

during the consecutive repetitions as an evolution. He then says:

The most probable distribution of state must therefore be defined as that one to which

most [states] will evolve to (Abh. II, p. 172).

Although he does not make the point quite explicitly, the discussion of urn drawings is undoubt-

edly meant as an analogy for the evolution of the distribution of state in a gas. Hence, it is not

implausible that, in the latter case too, Boltzmann might have thought that by definition the most

probable distribution of state is the one that most states will evolve to. And this, in turn, would mean

that he regarded the problem about evolutions not as something to be proved, and that might depend

on the validity of specific dynamical assumptions like the ergodic hypothesis or the Stoßzahlansatz,

but as something already settled from the outset. This would certainly explain why Boltzmann did

not bother to address the issue further.

Even so, this reading too has serious objections. Apart from the fact that it is not a wise idea to

redefine concepts in the middle of an argument, the analogy between the evolution of an isolated gas

and a Bernoulli process is shaky. In the first case, the evolution is governed by deterministic laws of

motion; in the latter one simply avoids any reference to underlying dynamics by the stipulation of

the probabilistic independence of repeated drawings. However, see paragraph 6.2.4.

To sum up this discussion of Boltzmann’s answer to the reversibility objection: it seems that on

all above readings of his two 1877 papers, the lacuna between what Boltzmann had achieved and

what he needed to do to answer Loschmidt satisfactorily — i.e. to address the issue of the evolution

of distributions of state and to prove that non-uniform distributions tend, in some statistical sense, to

uniform ones, or to prove any other reformulation of the H-theorem — remains striking.

4.5 The recurrence objection

4.5.1 Poincaré

In 1890, in his famous treatise on the three-body problem of celestial mechanics, Poincaré derived

what is nowadays called the recurrence theorem . Roughly speaking, the theorem says that for every

mechanical system with a bounded phase space, almost every initial state of the system will, after

some finite time, return to a state arbitrarily closely to this initial state, and indeed repeat this infinitely

often.
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In modern terms, the theorem can be formulated as follows:

RECURRENCE THEOREM: Consider a dynamical system40 〈Γ,A, µ, T 〉with µ(Γ) < ∞.

Let A ∈ A be any measurable subset of Γ,and define, for a given time τ , the set

B = {x : x ∈ A & ∀t ≥ τ : Ttx 6∈ A} (66)

Then

µ(B) = 0. (67)

In particular, for a Hamiltonian system, if we choose Γ to be the energy hypersurface ΓE , take A to

be a ‘tiny’ region in ΓE , say an open ball of diameter ε in canonical coordinates, the theorem says

that the set of points in this region whose evolution is such that they will, after some time τ , never

return to region A, has measure zero. In other words, almost every trajectory starting within A will

after any finite time we choose, later return to A.

Poincaré had already expressed his objections against the tenability of a mechanical explanation

of irreversible phenomena in thermodynamics earlier (e.g. Poincaré 1889). But armed with his new

theorem, he could make the point even stronger. In his (1893), he argued that the mechanical con-

ception of heat is in contradiction with our experience of irreversible processes. According to the

English kinetic theories, says Poincaré:

[t]he world tends at first towards a state where it remains for a long time without apparent

change; and this is consistent with experience; but it does not remain that way forever,

it the theorem cited above is not violated; it merely stays there for an enormously long

time, a time which is longer the more numerous are the molecules. This state will not

be the final death of the universe but a sort of slumber, from which it will awake after

millions and millions of centuries.

According to this theory, to see heat pass from a cold body into a warm one, it will not

be necessary to have the acute vision, the intelligence and the dexterity of Maxwell’s

demon; it will suffice to have a little patience (Brush 2003, p.380).

He concludes that these consequences contradict experience and lead to a “definite condemnation of

mechanism” (Brush 2003, p.381).

Of course, Poincaré’s “little patience”, even for “millions and millions of centuries” is a rather

optimistic understatement. Boltzmann later estimated the time needed for a recurrence in 1 cc of air

to be 101019
seconds (see below): utterly beyond the bounds of experience. Poincaré’s claim that the

40See section 6.1 for a definition of dynamical systems. But in short: Γ is a phase space, A a family of measurable subsets
of Γ and T is a one-parameter continuous group of time evolutions Tt : Γ× R −→ Γ.
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results of kinetic theory are contradicted by experience is thus too hasty.

Poincaré’s article does not seem to have been noticed in the contemporary German-language

physics community —perhaps because he criticized English theories only. However, Boltzmann was

alerted to the problem when a slightly different argument was put forward by Zermelo in 1896. The

foremost difference is that in Zermelo’s argument experience does not play a role.

4.5.2 Zermelo’s argument

Zermelo (1896a) points out that for a Hamiltonian mechanical system with a bounded phase space,

Poincaré’s theorem implies that, apart from a set of singular states, every state must recur almost

exactly to its initial state, and indeed repeat this recurrence arbitrarily often. As a consequence,

for any continuous function F on phase space, F (xt) cannot be monotonically increasing in time,

(except when the initial state is singular); whenever there is a finite increase, there must also be a

corresponding decrease when the initial state recurs. (see (Olsen 1993) for a modern proof of this

claim) Thus, it would be impossible to obtain ‘irreversible’ processes. Along the way, Zermelo points

out a number of options to avoid the problem.

1. Either we assume that the gas system has no bounded phase space. This could be achieved by

letting the particles reach infinite distances or infinite velocities. The first option is however excluded

by the assumption that a gas is contained in a finite volume. The second option could be achieved

when the gas consists point particles which attract each other at small distances, (e.g. an F ∝ r−2

inter-particle attractive force can accelerate them toward arbitrarily high velocities.) However, on

physical grounds one ought to assume that there is always repulsion between particles at very small

distances.

2. Another possibility is to assume that the particles act upon each other by velocity-dependent

forces. This, however would lead either to a violation of the conservation of energy or the law of

action and reaction, both of which are essential to atomic theory.

3. The H-theorem holds only for those special initial states which are the exception to the re-

currence theorem, and we assume that only those states are realized in nature. This option would be

unrefutable, says Zermelo. Indeed, the reversibility objection has already shown that not all initial

states can correspond to the Second Law. However, here we would have to exclude the overwhelming

majority of all imaginable initial states, since the exceptions to the Recurrence Theorem only make

up a set of total extension (i.e. in modern language: measure) zero. Moreover, the smallest change in

the state variables would transform a singular state into a recurring state, and thus suffice to destroy

the assumption. Therefore, this assumption “would be quite unique in physics and I do not believe

that anyone would be satisfied with it for very long.”

This leaves only two major options:
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4. The Carnot-Clausius principle must be altered.41

5. The kinetic theory must be formulated in an essentially different way, or even be given up

altogether.

Zermelo does not express any preference between these last two options. He concludes that his

aim has been to explain as clearly as possible what can be proved rigorously, and hopes that this will

contribute to a renewed discussion and final solution of the problem.

I would like to emphasize that, in my opinion, Zermelo’s argument is entirely correct. If he can

be faulted for anything, it is only that he had not noticed that in his very recent papers, Boltzmann

had already been putting a different gloss on the H-theorem.

4.5.3 Boltzmann’s response

Boltzmann’s (1896b) response opens by stating that he had repeatedly pointed out that the theorems

of gas are statistical. In particular, he says, he had often emphasized as clearly as possible that

the Maxwell distribution law is not a theorem from ordinary mechanics and cannot be proven from

mechanical assumptions.42 Similarly, from the molecular viewpoint, the Second Law appears merely

as a probability statement. He continues with a sarcastic remark:

Zermelo’s paper shows that my writings have been misunderstood; nevertheless it pleases

me for it appears to be the first indication that these works have been noticed in Ger-

many.43

Boltzmann agrees that Poincaré’s recurrence theorem is “obviously correct”, but claims that Zer-

melo’s application of the theorem to gas theory is not. His counter argument is very similar to his

(1895) presentation in Nature, a paper that Zermelo had clearly missed.

In more detail, this argument runs as follows. Consider a gas in a vessel with perfectly smooth

and elastic walls, in an arbitrary initial state and let it evolve in the course of time. At each time

t we can calculate H(t). Further, consider a graph of this function, which Boltzmann called: the

H-curve. In his second reply to Zermelo (Boltzmann 1897a), he actually produced a diagram. A

rough an modernized version of such an H-curve is sketched in Fig. 3.

41By this term, Zermelo obviously referred to the Second Law, presumably including the Zeroth Law.
42This is, as we have seen, a point Boltzmann had been making since 1877. However, one might note that just a few years

earlier, Boltzmann (1892), after giving yet another derivation of the Maxwell distribution (this time generalized to a gas of hard
bodies with an arbitrary number of degrees of freedom that contribute quadratic terms to the Hamiltonian), had concluded:
“I believe therefore that its correctness [i.e. of the Maxwell distribution law] as a theorem of analytical mechanics can hardly
be doubted” (Abh.III p.432). But as we have seen on other occasions, for Boltzmann, statements that some result depended
essentially on probability theory, and the statement that it could be derived as a mechanical theorem, need not exclude each
other.

43Eight years earlier, Boltzmann had been offered the prestigious chair in Berlin as successor of Kirchhoff, and membership
of the Prussian Academy. The complaint that his works did not draw attention in Germany is thus hard to take seriously.
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H(t)

Hmin
t −→

Figure 3: A (stylized) example of an H-curve

Barring all cases in which the motion is ‘regular’, e.g. when all the molecules move in one

common plane, Boltzmann claims the following properties of the curve:

(i). For most of the time, H(t) will be very close to its minimum value, say Hmin. Moreover,

whenever the value of H(t) is very close to Hmin, the distribution of molecular velocities

deviates only very little from the Maxwell distribution.

(ii). The curve will occasionally, but very rarely, rise to a peak or summit, that may be well above

Hmin.

(iii). The probability of a peak decreases extremely rapidly with its height.

Now suppose that, at some initial time t = 0, the function takes a very high value H0, well above

the minimum value. Then, Boltzmann says, it will be enormously probable that the state will, in

the course of time, approach the Maxwell distribution, i.e., H(t) will decrease towards Hmin; and

subsequently remain there for an enormously long time, so that the state will deviate only very

little from the Maxwell distribution during vanishingly short durations. Nevertheless, if one waits

even longer, one will encounter a new peak, and indeed, the original state will eventually recur. In

a mathematical sense, therefore, these evolutions are periodic, in full conformity with Poincaré’s

recurrence theorem.

What, then, is the failure of Zermelo’s argument? Zermelo had claimed that only very special

states have the property of continually approaching the Maxwell distribution, and that these special

states taken together make up an infinitely small number compared to the totality of possible states.

This is incorrect, Boltzmann says. For the overwhelming majority of states, the H-curve has the

qualitative character sketched above.

Boltzmann also took issue with (what he claimed to be Zermelo’s) conclusion that the mechanical
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viewpoint must somehow be changed or given up. This conclusion would only be justified, he argues,

if this viewpoint led to some consequence that contradicted experience. But, Boltzmann claims, the

duration of the recurrence times is so large that no one will live to observe them.

To substantiate this claim about the length of the recurrence time, he presents, in an appendix an

estimate of the recurrence time for 1 cc of air at room temperature and pressure. Assuming there are

109 molecules in this sample,44 and choosing cells in the corresponding µ-space as six-dimensional

cubes of width 10−9 m in (physical) space and 1 m/s in velocity space, Boltzmann calculates the

number of different macrostates, i.e. the number of different ways in which the molecules can be

distributed over these cells as (roughly) 10109
. He then assumes that, before a recurrence of a previous

macrostate, the system has to pass through all other macrostates. Even if the molecules collide very

often, so that the system changes its macrostate 1027 times per second, the total time it takes to go

through this huge number of macrostates will still take 10109−27 ≈ 10109
seconds. In fact, this time

is so immensely large that its order of magnitude is not affected whether we express it in seconds,

years, millennia, or what have you.

The upshot is, according to Boltzmann: if we adopt the view that heat is a form of motion of the

molecules, obeying the general laws of mechanics, and assume that the initial state of a system is very

unlikely, we arrive at a theorem which corresponds to the Second Law for all observed phenomena.

He ends with another sarcasm:

All the objections raised against the mechanical view of Nature are therefore empty and

rest on errors. But whoever cannot overcome the difficulties, which a clear understanding

of the theorems of gas theory poses, should indeed follow the advice of Mr Zermelo and

decide to give up the theory completely. (Abh. III p. 576).

4.5.4 Zermelo’s reply

Zermelo (1896b) notes that Boltzmann’s response confirms his views by admitting that the Poincaré

theorem is correct and applicable to a closed system of gas molecules. Hence, in such a system, “all

[sic] motions are periodic and not irreversible in the strict sense”. Thus, kinetic gas theory cannot

assert that there is a strict monotonic increase of entropy as the Second Law would require. He adds:

“I think this general clarification was not at all superfluous” (Brush 2003, p. 404).

Therefore, Zermelo argues, his main point had been conceded: there is indeed a conflict between

thermodynamics and kinetic theory, and it remains a matter of taste which of the two is abandoned.

Zermelo admits that observation of the Poincaré recurrences may well fall beyond the bounds of

44Actually, modern estimates put the number of molecules in 1cc of air closer to 1019, which would make Boltzmann’s
estimate for recurrence time even larger still, i.e. 101019

.

69



human experience. He points out (correctly) that Boltzmann’s estimate of the recurrence time pre-

supposes that the system visits all other cells in phase space before recurring to an initial state. This

estimate is inconclusive, since the latter assumption is somewhat ad hoc. In general, these recurrence

times need not “come out so ‘comfortingly’ large” (Brush 2003, p. 405). But, as I stressed before,

the relation with experience simply was no issue in Zermelo’s objection.

The main body of Zermelo’s reply is taken by an analysis of the justification of and consequences

drawn from Boltzmann’s assumption that the initial state is very improbable, i.e., that H0 is very high.

Zermelo argues that even in order to obtain an approximate or empirical analogue of the Second Law,

as Boltzmann envisaged, i.e. an approach to a long-lasting, but not permanent equilibrium state, it

would not suffice to show this result for one particular initial state. Rather, one would have to show

that evolutions always take place in the same sense, at least during observable time spans.

As Zermelo understands it, Boltzmann does not merely assume that the initial state has a very

high value for H , but also that, as a rule, the initial state lies on a maximum, or has just passed a

maximum. If this assumption is granted, then it is obvious that one can only observe a decreasing

flank of the H-curve. However, Zermelo protests, one could have chosen any time as the initial

time. In order to obtain a satisfactorily general result, the additional assumption would thus have to

apply at all times. But then the H-curve would have to consist entirely of maxima. But this leads to

nonsense, Zermelo argues, since the curve cannot be constant. Zermelo concludes that Boltzmann’s

assumptions about the initial state are thus in need of further physical explanation.

Further, Zermelo points out that probability theory, by itself, is neutral with respect to the direc-

tion of time, so that no preference for evolutions in a particular sense can be derived from it. He also

points out that Boltzmann apparently equates the duration of a state and its extension (i.e. the relative

time spent in a region and the relative volume of that region in phase space). “I cannot find that he

has actually proved this property” (Brush 2003, p. 406).

4.5.5 Boltzmann’s second reply

In his second reply (1897a), Boltzmann rebuts Zermelo’s demand for a physical explanation of his

assumptions about the initial state of the system with the claim that the question is not what will

happen to an arbitrarily chosen initial state, but rather what will happen to a system in the present

state of the universe.

He argues that one should depart from the (admittedly unprovable) assumption that the universe

(or at least a very large part of the universe that surrounds us started in a very improbable state and still

is in an improbable state. If one then considers a small system (e.g. a gas) that is suddenly isolated

from the rest of the universe, there are the following possibilities: (i) The system may already be in

equilibrium, i.e. H is close to its minimum value. This, Boltzmann says, is by far the most probable
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case. But among the few cases in which the system is not in equilibrium, the most probable case is

(ii) that H will be on a maximum of the H-curve, so that it will decrease in both directions of time.

Even more rare is the case in which (iii) the initial value of H will fall on a decreasing flank of the

H curve. But such cases are just as frequent as those in which (iv) H falls on an increasing flank.45

Thus, Boltzmann’s explanation for the claim that H is initially on a maximum is that this would

be the most likely case for a system not in equilibrium, which isolated from the rest of the universe

in its present state.

This occasion is perhaps the first time that Boltzmann advanced an explanation of his claims as

being due to an assumption about initial state of the system, ultimately tied to an assumption about

the initial conditions of the universe. Today, this is often called the past-hypothesis (cf. Albert 2000,

Winsberg 2004, Callender 2004, Earman 2006).

He ends his reply with the observation that while the mechanical conception of gas theory agrees

with the Clausius-Carnot conception [i.e. thermodynamics] in all observable phenomena, a virtue of

the mechanical view is that it might eventually predict new phenomena, in particular for the motion

of small bodies suspended in fluids. These prophetic words were substantiated eight years later in

Einstein’s work on Brownian motion.

However, he does not respond to Zermelo’s requests for more definite proofs of the claims (1)

–(3), or of the equality of phase space volume and time averages in particular. He bluntly states that

he has thirty years of priority in measuring probabilities by means of phase space volume (which is

true) and adds that he has always had done so (which is false). Even so, one cannot interpret this

claim of Boltzmann as a rejection of the time average conception of probability. A few lines below,

he claims that the most probable states will also occur most frequently, except for a vanishingly small

number of initial states. He does not enter into a proof of this. Once again, this provides an instance

where the Ehrenfests conjectured that Boltzmann might have had the ergodic hypothesis in the back

of his mind.

4.5.6 Remarks

Boltzmann’s replies to Zermelo have been recommended as “superbly clear and right on the money”

(Lebowitz 1999, p. S347). However, as will clear from the above and the following remarks, I do not

share this view. See also (Klein 1973, Curd 1982, Batterman 1990, Cercignani 1998, Brush 1999,

Earman 2006) for other commentaries on the Zermelo-Boltzmann dispute.

45the Ehrenfests (1912) later added a final possible case (v): H may initially be on a local minimum of the H-curve, so that
it increases in both directions of time. But by a similar reasoning, that case is even less probable than the cases mentioned by
Boltzmann.
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1. The issues at stake It is clear that, in at least one main point of the dispute, Boltzmann and

Zermelo had been talking past each other. When Zermelo argued that in the kinetic theory of gases

there can be no continual approach towards a final stationary state, he obviously meant this in the

sense of a limit t −→∞. But Boltzmann’s reply indicates that he took the “approach” as something

that is not certain but only probable, and as lasting for a very long, but finite time. His graph of the

H-curve makes abundantly clear that limt−→∞H(t) does not exist.

It is true that his statistical reading of the H-theorem, as laid down in the claims (1)–(3) above,

was already explicit in (Boltzmann 1895), and thus Boltzmann could claim with some justification

that his work had been overlooked. But in fairness, one must note that, even in this period, Boltzmann

was sending mixed messages to his readers. Indeed, the first volume of Boltzmann’s Lectures on Gas

Theory, published in 1896, stressed, much like his original (1872) paper on the H-theorem, the

necessity and exceptionless generality of the H-theorem, adding only that the theorem depended on

the assumption of molecular disorder (as he then called the Stoßzahlansatz):46 ”

[T]he quantity designated as H can only decrease; at most it can remain constant.[. . . ]

The only assumption we have made here is that the distribution of velocities was initially

‘molecularly disordered’ and remains disordered. Under this condition we have therefore

proved that the quantity called H can only decrease and that the distribution of velocities

must necessarily approach the Maxwell distribution ever more closely (Boltzmann 1896,

§ 5, p. 38).

Zermelo might not have been alone in presuming that Boltzmann had intended this last claim liter-

ally, and was at least equally justified in pointing out that Boltzmann’s clarification “was not at all

superfluous”.

On the other hand, Boltzmann misrepresented Zermelo’s argument as concluding that the me-

chanical view should be given up. As we have seen, Zermelo only argued for a dilemma between

the strict validity of the kinetic theory and the strict validity of thermodynamics. Empirical matters

were not relevant to Zermelo’s analysis. Still, Boltzmann is obviously correct when he says that the

objection does not yet unearth a conflict with experience. Thus, his response would have been more

successful as a counter-argument to Poincaré than to Zermelo.

2. The statistical reading of the H-theorem. Another point concerns the set of claims (1)–

(3) that Boltzmann lays down for the behaviour of the H-curve. Together, they form perhaps the

46in his reply to Zermelo, Boltzmann claimed that his discussion of the H-theorem in the Lectures on Gas theory was
intended under the explicitly emphasized assumption that the number of molecules was infinite, so that the recurrence theorem
did not apply. However, I can find no mention of such an assumption in this context. On the contrary, the first occasion on which
this latter assumption appears is in §6 on page 46 where it is introduced as ”an assumption we shall make later”, suggesting that
the previous discussion did not depend on in it.
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most clearly stated and explicit form of the “statistical reading of the H-theorem” (cf remark 3 on

page 53). Yet they only have a loose connection to the original theorem. It is unclear, for example,

whether these claims still depend on the Stoßzahlansatz, the assumption that the gas is dilute, etc. It

thus remains a reasonable question what argument we have for their validity. Boltzmann offers none.

In his 1895 paper in Nature, he argued as if he had proved as much in his earlier papers, and added

tersely: ”I will not here repeat the proofs given in my papers”(Abh. III p. 541). But surely, Boltzmann

never proved anything concerning the probability of the time evolution of H , and at this point there

remains a gap in his theory. Of course, one might speculate on ways to bridge this gap; e.g. that

Boltzmann implicitly and silently relied on the ergodic hypothesis, as the Ehrenfests suggested or in

other ways, but I refrain from discussing this further. The most successful modern attempt so far to

formulate and prove a statistical H-theorem has been provided by Lanford, see paragraph 6.4 below.

5 Gibbs’ Statistical Mechanics

The birth of statistical mechanics in a strict sense, i.e. as a coherent and systematic theory, is marked

by the appearance of J.W. Gibbs’s book (1902) which carries this title: Elementary Principles in Sta-

tistical Mechanics; developed with especial reference to the rational foundation of thermodynamics.

His point of departure is a general mechanical system governed by Hamiltonian equations of motion,

whose (micro)states are represented by points in the mechanical phase space Γ.

Gibbs avoids specific hypotheses about the microscopic constitution of such a system. He refers

to the well-known problem concerning the anomalous values of the specific heat for gases consisting

of diatomic molecules (mentioned in footnote 10), and remarks:

Difficulties of this kind have deterred the author from attempting to explain the mysteries

of nature, and have forced him to be contented with the more modest aim of deducing

some of the more obvious propositions relating to the statistical branch of mechanics

(Gibbs 1902, p. viii).

It is clear from this quote that Gibbs’ main concern was with logical coherence, and less with the

molecular constitution. (Indeed, only the very last chapter of the book is devoted to systems com-

posed of molecules.) This sets his approach apart from Maxwell and Boltzmann.47

The only two ingredients in Gibbs’ logical scheme are mechanics and probability. Probability is

introduced here as an ingredient not reducible to the mechanical state of an individual system, but by

means of the now familiar “ensemble”:

47It also sets him apart from the approach of Einstein who, in a series of papers (1902, 1903, 1904) independently developed
a formalism closely related to that of Gibbs, but used it as a probe to obtain empirical tests for the molecular/atomic hypothesis
(cf. Gearhart 1990, Navarro 1998, Uffink 2006).

73



We may imagine a great number of systems of the same nature, but differing in the

configurations and velocities which they have at a given instant, and differing not merely

infinitesimally, but it may be so as to embrace every conceivable combination of configu-

ration and velocities. And here we may set the problem, not to follow a particular system

through its succession of configurations, but to determine how the whole number of sys-

tems will be distributed among the various conceivable configurations and velocities at

any required time, when the distribution has been given for some one time (Gibbs 1902,

p. v).

and

What we know about a body can generally be described most accurately and most simply

by saying that it is one taken at random from a great number (ensemble) of bodies which

are completely described. (p. 163)

Note that Gibbs is somewhat non-committal about any particular interpretation of probability. (Of

course, most of the presently distinguished interpretations of probability were only elaborated since

the 1920s, and we cannot suppose Gibbs to have pre-knowledge of those distinctions.) A modern

frequentist (for whom a probability of an event is the frequency with which that event occurs in a

long sequence of similar cases) will have no difficulty with Gibbs’ reference to an ensemble, and will

presumably identify that notion with von Mises’ notion of a Kollektiv. On the other hand, authors like

Jaynes who favour a subjectivist interpretation of probability (in which the probability of an event

is understood as a state of knowledge or belief about that event) have emphasized that in Gibbs’

approach the ensemble is merely ‘imagined’ and a tool for representing our knowledge.

The ensemble is usually presented in the form of a probability density function ρ over Γ, such that
∫

A
ρ(x)dx is the relative number of systems in the ensemble whose microstate x = (~q1, ~p1; . . . ; ~qN , ~pN )

lies in the region A. The evolution of an ensemble density ρ0 at time t = 0 is dictated by the Hamil-

tonian equations of motion. In terms of the (formal) time evolution operator Tt, we get

ρt(x) = ρ0(T−tx) (68)

or, in differential form:
∂ρt(x)

∂t
= {H, ρ} (69)

where {·, ·} denotes the Poisson bracket:

{H, ρ} =
N∑

i=1

∂H

∂~qi

∂ρ

∂~pi
− ∂H

∂~pi

∂ρ

∂~qi
(70)
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A case of special interest is that in which the density function is stationary, i.e.

∀t :
∂ρt(x)

∂t
= 0. (71)

This is what Gibbs calls the condition of statistical equilibrium. Gibbs notes that any density which

can be written as a function of the Hamiltonian is stationary, and proceeds to distinguish special

cases, of which the most important are:

ρE(x) =
1

ω(E)
δ(H(x)− E) (microcanonical) (72)

ρθ(x) =
1

Z(θ)
exp(−H(x)/θ) (canonical) (73)

ρθ,α(x,N) =
1

N !Z(θ, α)
exp(−H(x)/θ + αN) (grand-canonical) (74)

where ω(E), Z(θ) and Z(θ, α) are normalization factors. In the following I will mainly discuss the

canonical and microcanonical ensembles.

5.1 Thermodynamic analogies for statistical equilibrium

As indicated by the subtitle of the book, Gibbs’ main goal was to provide a ’rational foundation’

for thermodynamics. He approaches this issue quite cautiously, by pointing out certain analogies

between relations holding for the canonical and microcanonical ensembles and results of thermody-

namics. At no point does Gibbs claim to have reduced thermodynamics to statistical mechanics.

The very first analogy noticed by Gibbs is in the case of two systems, A and B put into thermal

contact. This is modeled in statistical mechanics by taking the product phase space, ΓAB = ΓA×ΓB ,

and a Hamiltonian HAB = HA +HB +Hint. If both A and B are described by canonical ensembles

and if Hint is ‘infinitely small’ compared to the system Hamiltonian, then the combined system will

be in statistical equilibrium if θA = θB . This, he says, “is entirely analogous to . . . the corresponding

case in thermodynamics” where “the most simple test of the equality of temperature of two bodies

is that they remain in thermal equilibrium when brought into thermal contact” (ibid. p. 37). Clearly,

Gibbs invites us to think of statistical equilibrium as analogous to thermal equilibrium, and θ as the

analogue of the temperature of the system.48

A second point of analogy is in reproducing the ‘fundamental equation’ (23) of thermodynamics:

dU = TdS +
∑

i

Fidai (75)

48A more elaborate discussion of the properties of the parameter θ and their analogies to temperature, is in Einstein (1902).
That discussion also addresses the transitivity of thermal equilibrium, i.e. the Zeroth Law of thermodynamics (cf. paragraph 2).

75



where ai are the so-called external parameters (e.g. volume) and Fi the associated generalized forces

(e.g. minus the pressure). For the canonical ensemble, Gibbs derives a relation formally similar to

the above fundamental equation:49

d〈H〉 = θdσ −
∑

i

〈Ai〉dai. (76)

Here, 〈H〉 is the expectation value of the Hamiltonian in the canonical ensemble, θ the modulus of

the ensemble, σ the so-called Gibbs entropy of the canonical distribution:

σ[ρθ] = −
∫

ρθ(x) ln ρθ(x)dx, (77)

ai are parameters in the form of the Hamiltonian and the 〈Ai〉 = 〈 ∂H
∂ai
〉 represent the ‘generalized

forces’.50 The equation suggests that the canonical ensemble averages might serve as analogues of

the corresponding thermodynamic quantities, and θ and σ as analogues of respectively temperature

and entropy.51

Note the peculiarly different role of θ and σ in (76): these are not expectations of phase space

functions, but a parameter and a functional of the ensemble density ρθ. This has a significant con-

ceptual implication. The former quantities may be thought of as averages, taken over the ensemble

of some property possessed by each individual system in the ensemble. But for temperature θ and

entropy σ, this is not so. In the case of θ one can diminish this contrast— at least when H is the

sum of a kinetic and a potential energy term and the kinetic part is quadratic in the momenta, i.e.

H =
∑

i αip
2
i + U(q1, . . . qn)—because of the well-known equipartition theorem. This theorem

says that θ equals twice the expected kinetic energy for each degree of freedom:

θ

2
= αi〈p2

i 〉θ. (78)

Thus, in this case, one can find phase functions whose canonical expectation values are equal to θ,

and regard the value of such a function as corresponding to the temperature of an individual system.52

49See (Uhlenbeck and Ford 1963, van Lith 2001b) for details.
50A more delicate argument is needed if one wishes to verify that −〈 ∂H

∂V
〉 can really be identified with pressure, i.e. the

average force per unit area on the walls of the container. Such an argument is given by Martin-Löf (1979, p. 21–25)
51A crucial assumption in this derivation is that the differential expressions represent infinitesimal elements of quasistatic

processes during which the probability density always retains its canonical shape. This assumption is in conflict with a dynam-
ical evolution (van Lith 2001b, p. 141).

52For proposals of more generally defined phase functions that can serve as an analogy of temperature, see (Rugh 1997, Jepps
et al. 2000).
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But no function χ on phase space exists such that

σ[ρθ] = 〈χ〉θ for all θ. (79)

Thus, the Gibbs entropy cannot be interpreted as an average of some property of the individual

members of the ensemble.

The next question is whether a differential equation similar to (76) can be obtained also for the

microcanonical ensemble. In this case, it is natural to consider the same expressions 〈Ai〉 and 〈H〉 as

above, but now taken as expectations with respect to the microcanonical ensemble, so that obviously

〈H〉mc = E. The problem is then to find the microcanonical analogies to T and S. Gibbs (1902,

p. 124–128, 169–171) proposes the following:

T ←→
(

d lnΩ(E)
dE

)−1

, (80)

S ←→ lnΩ(E), (81)

where

Ω(E) :=
∫

H(x)≤E

dp1 . . . dqn (82)

is known as the integrated structure function.

Remarkably, in a later passage, Gibbs (1902, p. 172–178) also provides a second pair of analogies

to temperature and entropy, namely:

T ←→
(

d ln ω(E)
dE

)−1

(83)

S ←→ ln ω(E), (84)

where ω is the structure function

ω(E) =
dΩ(E)

dE
=

∫

H(x)=E

dx.

For this choice, the relation (75) is again reproduced. Thus, there appears to be a variety of choice

for statistical mechanical quantities that may serve as thermodynamic analogue. Although Gibbs

discussed various pro’s and con’s of the two sets, —depending on such issues as whether we regard

the energy or the temperature as an independent variable, and whether we prefer expected values of

most probable values— he does not reach a clear preference for one of them. (As he put it, system

(80,81) is the more natural, while system (83,84) is the simpler of the two.) Still, Gibbs argued (ibid.,

77



p. 183) that the two sets of analogies will approximately coincide for a very large number degrees of

freedom. Nevertheless, this means there remains an underdetermination in his approach that one can

hope to avoid only in the thermodynamic limit.

The expressions (81) and (84) are also known as the ‘volume entropy’ and the ‘surface entropy’.

In modern textbooks the latter choice has been by far the most popular, perhaps because it coincides

with the Gibbs entropy for the microcanonical ensemble: σ[ρE ] = ln ω(E). However, it has been

pointed out that there are also general theoretical reasons to prefer the volume entropy (81), in par-

ticular because it is, unlike the surface entropy, an adiabatic invariant (see Hertz 1910, Rugh 2001,

Campisi 2005).

Of course, all of this is restricted to (statistical) equilibrium. In the case of non-equilibrium,

one would obviously like to obtain further thermodynamical analogies that recover the approach to

equilibrium (the ‘Minus First Law’, cf. p. 20) and an increase in entropy for adiabatic processes that

start and end in equilibrium, or even to reproduce the kinetic equations on a full statistical mechanical

basis. What Gibbs had to say on such issues will be the subject of the paragraphs 5.3 and 5.4.

But Gibbs also noted that a comparison of temperature and entropy with their analogies in sta-

tistical mechanics “would not be complete without a consideration of their differences with respect

to units and zeros and the numbers used for their numerical specification” (Gibbs 1902, p.183). This

will be taken up below in §5.2.

5.2 Units, zeros and the factor N !

The various expressions Gibbs proposed as analogies for entropy, i.e. (77,81,84), were presented

without any discussion of ‘units and zeros’, i.e. of their physical dimension and the constants that

may be added to these expressions. This was only natural because Gibbs singled out those expres-

sions for their formal merit of reproducing the fundamental equation, in which only the combination

TdS appears. He discussed the question of the physical dimension of entropy by noting that the fun-

damental equation remains invariant if we multiply the analogue for temperature —i.e. the parameter

θ in the canonical case, or the functions (80 or (83) for the microcanonical case— by some constant

K and the corresponding analogues for entropy — (77), (81) and (84)— by 1/K. Applied to the

simple case of the monatomic ideal gas of N molecules, he concluded that, in order to equate the

analogues of temperature to the ideal gas temperature, 1/K should be set equal to

1
K

=
2
3

cV

N
, (85)

where cV is the specific heat at constant volume. He notes that “this value had been recognized by

physicists as a constant independent of the kind of monatomic gas considered” (Gibbs 1902, p. 185).
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Indeed, in modern notation, 1/K = k, i.e. Boltzmann’s constant.

Concerning the question of ‘zeros’, Gibbs noted that all the expressions proposed as analogy

of entropy had the dimension of the logarithm of phase space volume and are thus affected by the

choice of our units for length mass and time in the form of some additional constant (cf. Gibbs 1902,

p. 19,183). But even if some choice for such units is fixed, further constants could be added to the

statistical analogs of entropy, i.e. arbitrary expressions that may depend on anything not varied in

the fundamental equation. However, their values would disappear when differences of entropy are

compared. And since only entropy differences have physical meaning, a question of determining

these constants would thus appear to be immaterial. However, Gibbs went on to argue that “the

principle that the entropy of any body has an arbitrary additive constant is subject to limitations

when different quantities of the same substance are compared”(Gibbs 1902, p. 206). He formulated

further conditions on how the additive constant may depend on the number N of particles in his final

chapter.

Gibbs starts this investigation by raising the following problem. Consider the phase (i.e. mi-

crostate) (~q1, ~p1; . . . ; ~qN , ~pN ) of an N -particle system where the particles are said to be “indistin-

guishable”, “entirely similar” or “perfectly similar”.53 Now, if we perform a permutation on the

particles of such a system, should we regard the result as a different phase or not? Gibbs first ar-

gues that it “seems in accordance with the spirit of the statistical method” to regard such phases as

the same. It might be urged, he says, that for such particles no identity is possible except that of

qualities, and when comparing the permuted and unpermuted system, “nothing remains on which to

base the identification of any particular particle of the first system with any particular particle of the

second” (Gibbs 1902, p. 187).

However, he immediately rejects this argument, stating that all this would be true for systems

with “simultaneous objective existence”, but hardly applies to the “creations of the imagination”. On

the contrary, Gibbs argues:

“The perfect similarity of several particles of a system will not in the least interfere

with the identification of a particular particle in one case and with a particular particle

in another. The question is one to be decided in accordance with the requirements of

practical convenience in the discussion of the problems with which we are engaged”

(Gibbs 1902, p. 188)

He continues therefore by exploring both options, calling the viewpoint in which permuted phases are

regarded as identical the generic phase, and that in which they are seen as distinct the specific phase.

In modern terms the generic phase space is obtained as the quotient space of the specific phase space

53Presumably, these terms mean (at least) that the Hamiltonian is invariant under their permutation, i.e. they have equal mass
and interact in exactly the same way.
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obtained by identifying all phase points that differ by a permutation (see Leinaas & Myrheim 1977).

In general, there are N ! different permutations on the phase of a system of N particles,54 and there

are thus N ! different specific phases corresponding to one generic phase. This reduces the generic

phase space measure by an overall factor of 1
N ! in comparison to the specific phase space. Since

the analogies to entropy all have a dimension equal to the logarithm of phase space measure, this

factor shows up as an further additive constant to the entropy, namely − ln N ! in comparison to an

entropy calculated from the specific phase. Gibbs concludes that when N is constant, “it is therefore

immaterial whether we use [the generic entropy] or [the specific entropy], since this only affects the

arbitrary constant of integration which is added to the entropy (Gibbs 1902, p. 206).55

However, Gibbs points out that this is not the case if we compare the entropies of systems with

different number of particles. For example, consider two identical gases, each with the same energy

U , volume V and number of particles N , in contiguous containers, and let the entropy of each gas be

written as S(U, V, N). Gibbs puts the entropy of the total system equal to the sum of the entropies:

Stot = 2S(U, V, N). (86)

Now suppose a valve is opened, making a connection between the two containers. Gibbs says that

“we do not regard this as making any change in the entropy, although the gases diffuse into one

another, and this process would increase the entropy if the gases were different” (Gibbs 1902, p. 206-

7). Therefore, the entropy in this new situation is

S′tot = Stot. (87)

But the new system, is a gas with energy 2U , volume 2V , and particle number 2N . Therefore, we

obtain:

S′tot = S(2U, 2V, 2N) = 2S(U, V,N), (88)

where the right-hand side equation expresses the extensivity of entropy. This condition is satisfied

(at least for large N ) by the generic entropy but not by the specific entropy. Gibbs concludes “it is

evident therefore that it is equilibrium with respect to generic phases, and not that with respect to

specific, with which we have to do in the evaluation of entropy, . . . except in the thermodynamics of

bodies in which the number of molecules of the various kinds is constant” (Gibbs 1902, p. 207).

The issue expressed in these final pages is perhaps the most controversial in Gibbs’ book; at least

it has generated much further discussion. Many later authors have argued that the insertion of a factor

54This assumes that the molecular states ~pi, ~qi) of the particles do not coincide. However the points in specific phase space
for which one or more molecular states do coincide constitute a set of Lebesgue measure zero anyway.

55The same conclusion also obtains for the Boltzmann entropy (61) (Huggett 1999).
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1/N ! in the phase space measure is obligatory to obtain “correct” results and, ultimately due to a lack

of any metaphysical identity or “haecceity” of the perfectly similar particles considered. Some have

even gone on to argue that quantum mechanics is needed to explain this. For example, Huang (1987,

p. 154) writes “It is not possible to understand classically why we must divide [. . . ] by N ! to obtain

the correct counting of states. The reason is inherently quantum mechanical . . . ”. However, many

others deny this (Becker 1967, van Kampen 1984, Ray 1984). It would take me too far afield to

discuss the various views and widespread confusion on this issue.

Let it suffice to note that Gibbs rejected arguments from the metaphysics of identity for the

creations of the imagination. (I presume this may be taken to express that the phases of an N -

particles system are theoretical constructs, rather than material objects.) Further, Gibbs did not claim

that the generic view was correct and the specific view of incorrect; he preferred to settle the question

by “practical convenience”. There are indeed several aspects of his argument that rely on assumptions

that may be argued to be conventional. for example the ‘additivity’ demand (86) could be expanded

to read more fully:

Stot(U1, V1, N1;U2, V2, N2) + Ktot = S1(U1, V1, N1) + K1 + S2(U2, V2, N2) + K2, (89)

Applied to the special case where S1 and S2 are identical functions taken at the same values of

their arguments. The point to note here is that this relation only leads to (86) if we also employ the

conventions Ktot = K1 + K2 and K1 = K2. Also, his cautious choice of words concerning (87)

—“we do not regard this as making any change”— suggest that he wants to leave open whether this

equation expresses a fact or a conventional choice on our part. But by and large, it seems fair to

say that Gibbs’ criterion for practical convenience is simply the recovery of the properties usually

assumed to hold for thermodynamic entropy.

As a final remark, note that the contrast mentioned here in passing by Gibbs, i.e. that in ther-

modynamics the mixing of identical gases, by allowing them to diffuse into one another, does not

change the entropy, whereas this process does increase entropy if the gases are different, implicitly

refers to an earlier discussion of this issue in his 1875 paper (Gibbs 1906, pp. 165–167). The contrast

between the entropy of mixing of identical fluids and that of different fluids noted on that occasion is

now commonly known as the Gibbs paradox. (More precisely, this ‘paradox’ is that the entropy of

mixing different fluids is a constant (kT ln 2 in the above case) as long as the substances are differ-

ent, and vanishes abruptly when they are perfectly similar; thus negating the intuitive expectation one

might have had that the entropy of mixing should diminish gradually when the substances become

more and more alike). Now note that in the the specific view, mixing different substances and mixing

identical substances both lead to an entropy increase: in that view there is no Gibbs paradox, since

there is no abrupt change when the substances become more and more alike. On the other hand,
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the adoption of the generic view, i.e. the division of the phase space measure by N !, is used by

Gibbs to recover the usual properties of thermodynamic entropy including the Gibbs paradox — the

discontinuity between mixing of different and identical gases.

Still, many authors seem to believe that the division by N ! is a procedure that solves the Gibbs

paradox. But this is clearly not the case; instead, it is the specific viewpoint that avoids the paradox,

while the generic viewpoint recovers the Gibbs paradox for the statistical mechanical analogies to

entropy. The irony of it all is that, in statistical mechanics, the term “Gibbs paradox” is sometimes

used to mean or imply the absence of the original Gibbs paradox in the specific point of view, so that

a resolution of this “Gibbs paradox” requires the return of the original paradox.

5.3 Gibbs on the increase of entropy

As we have seen, the Gibbs entropy may be defined as a functional on arbitrary probability density

functions ρ on phase space Γ:56

σ[ρ] = −
∫

ρ(x) ln ρ(x)dx (90)

This expression has many well-known and useful properties. For example, under all probability

densities restricted to the energy hypersurface H(x) = E, the microcanonical density (72) has the

highest entropy. Similarly, one can show that of all distributions ρ with a given expectation value

〈H〉ρ, the canonical distribution (73) has the highest entropy, and that of all distributions for which

both 〈H〉 and 〈N〉 are given, the grand-canonical ensemble has the highest entropy.

But suppose that ρ is not stationary. It will therefore evolve in the course of time, as given by

ρt(x) = ρ(T−tx). One might ask whether this entropy will increase in the course of time. However,

Liouville’s theorem implies immediately

σ[ρt] = σ[ρ0]. (91)

In spite of the superficial similarity to Boltzmann’s H , the Gibbs entropy thus remains constant in

time. The explanation of the Second Law, or an approach to equilibrium, cannot be so simple.

However, Gibbs warns us to proceed with great caution. Liouville’s theorem can be interpreted

as stating that the motion of ρt can be likened to motion in a (multidimensional) incompressible

fluid. He thus compared the evolution of ρ to that of the stirring of a dye in a incompressible medium

56Gibbs actually does not use the term entropy for this expression. He calls the function ln ρ the “index of probability”,
and −σ “the average index of probability”. As we have seen, Gibbs proposed more than one candidate for entropy in the
microcanonical ensemble, and was well aware that: “ [t]here may be [. . . ], and there are, other expressions that may be thought
to have some claim to be regarded as the [. . . ] entropy with respect to systems of a finite number of degrees of freedom”
(Gibbs 1902, p. 169).
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(Gibbs 1902, p. 143-151). In this case too, the average density of the dye, as well as the average of

any function of its density, does not change. Still, it is a familiar fact of experience that by stirring

tends to bring about a uniform mixture, or a state with uniform density, for which the expression

− ∫
ρ ln ρ dx would have increased to attain its maximum value.

Gibbs saw the resolution of this contradiction in the definition of the notion of density. This, of

course, is commonly taken as the limit of the quantity of dye in a spatial volume element, when the

latter goes to zero. If we apply this definition, i.e. take this limit first, and then consider the stirring

motion, we will arrive at the conclusion that − ∫
ρ ln ρdx remains constant. But if we consider the

density defined for a fixed finite (non-zero) volume element, and then stir for an indefinitely long

time, the density may become ’sensibly’ uniform, a result which is not affected if we subsequently

let the volume elements become vanishingly small. The problem, as Gibbs saw it, is therefore one of

the order in which we proceed to take two limits.

Gibbs was aware that not all motions in phase space produce this tendency toward statistical

equilibrium, just as not every motion in an incompressible fluid stirs a dy to a sensibly homogeneous

mixture. Nevertheless, as he concluded tentatively,: “We might perhaps fairly infer from such con-

siderations as have been adduced that an approach to a limiting condition of statistical equilibrium is

the general rule, when the initial condition is not of that character” (Gibbs 1902, p. 148).

5.4 Coarse graining

The most common modern elaboration of Gibbs’ ideas is by taking recourse to a partitioning of phase

space in cells, usually called “coarse graining. Instead of studying the original distribution function

ρ(x) we replace ρ(x)dx by its phase average over each cell, by the mapping:

CG : ρ(x) 7→ CGρ(x) =
∑

i

ρ̂(i)11ωi(x), (92)

where

ρ̂(i) :=

∫
ωi

ρ(x)dx∫
ωi

dx
, (93)

and 11 denotes the characteristic function:

11A(x) =





1 if x ∈ A,

0 elsewhere.
(94)

The usual idea is that such a partition matches the finite precision of our observational capabilities,

so that a “coarse grained” distribution might be taken as a sufficient description of what is observ-

able. Obviously, the average value of any function on Γ that does not vary too much within cells is
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approximately the same, whether we use the fine-grained or the coarse-grained distribution.

For any ρ one can also define the coarse grained entropy Σ[ρ] as the composition of (92) and (90):

Σ[ρ] := σ[CGρ]. (95)

This coarse grained entropy need not be conserved in time. Indeed, it is easy to show (cf. Tolman

1938, p. 172) that:

Σ[ρ] ≥ σ[ρ]. (96)

Hence, if we assume that at some initial time that ρ0 = CGρ0, e.g. if ρ0 ∝ 1
Vi

11ωi
for some cell i,

then for all t:

Σ[ρt] ≥ σ[ρt] = σ[ρ0] = Σ[ρ0]. (97)

However, this does not imply that Σ[ρt] is non-decreasing or that it approaches a limiting value as

t −→∞.

If a property, similar to the stirring of a dye holds for the dynamical evolution of ρt, one may

have

lim
t−→∞

Σ[ρt] = Σ[ρmc] (98)

and hence, an approach towards equilibrium could emerge on the coarse-grained level. This con-

vergence will of course demand a non-trivial assumption about the dynamics. In modern work this

assumption is that the system has the mixing property (see paragraph 6.1).

5.5 Comments

Gibbs’ statistical mechanics has produced a formalism with clearly delineated concepts and methods,

using only Hamiltonian mechanics and probability theory. It can and is routinely used to calculate

equilibrium properties of gases and other systems by introducing a specific form of the Hamilto-

nian. The main problems that Gibbs has left open are, first, the motivation for the special choice

of the equilibrium ensembles and, second, that the quantities serving as thermodynamic analogies

are not uniquely defined. However, much careful work has been devoted to show that, under certain

assumptions about tempered interaction of molecules, unique thermodynamic state functions, with

their desired properties are obtained in the ‘thermodynamic limit’ (cf. §6.3.1).

1. Motivating the choice of ensemble. While Gibbs had not much more to offer in recommen-

dation of these three ensembles than their simplicity as candidates for representation for equilibrium,

modern views often provide an additional story. First, the microcanonical ensemble is particularly

singled out for describing an ensemble of systems in thermal isolation with a fixed energy E.
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Arguments for this purpose come in different kinds. As argued by Boltzmann (1868), and shown

more clearly by Einstein (1902), the microcanonical ensemble is the unique stationary density for an

isolated ensemble of systems with fixed energy, if one assumes the ergodic hypothesis. Unfortunately,

for this argument, the ergodic hypothesis is false for any system that has a phase space of dimension

2 or higher (cf. paragraph 6.1).

A related but more promising argument relies on the theorem that the measure Pmc associated

with the microcanonical ensemble via Pmc(A) =
∫

A
ρmc(x)dx is the unique stationary measure

under all measures that are absolutely continuous with respect to Pmc, if one assumes that the system

is metrically transitive (again, see paragraph 6.1).

This argument is applicable for more general systems, but its conclusion is weaker. In particular,

one would now have to argue that physically interesting systems are indeed metrically transitive, and

why measures that are not absolutely continuous with respect to the microcanonical one are somehow

to be disregarded. The first problem is still an open question, even for the hard-spheres model (as we

shall see in paragraph 6.1.1). The second question can be answered in a variety of ways.

For example, Penrose (1979, p. 1941) adopts a principle that every ensemble should be repre-

sentable by a (piecewise) continuous density function, in order to rule out “physically unreasonable

cases”. (This postulate implies absolute continuity of the ensemble measure with respect to the mi-

crocanonical measure by virtue of the Radon-Nikodym theorem.) See Kurth (1960, p. 78) for a

similar postulate. Another argument, proposed by Malament & Zabell (1980), assumes that the mea-

sure P associated with a physically meaningful ensemble should have a property called ‘translation

continuity. Roughly, this notion means that the probability assigned to any measurable set should be

a continuous function under small displacements of that set within the energy hypersurface. Mala-

ment & Zabell show that this property is equivalent to absolute continuity of P with respect to µmc,

and thus singles out the microcanonical measure uniquely if the system is metrically transitive (see

van Lith 2001b, for a more extensive discussion).

A third approach, due to Tolman and Jaynes, more or less postulates the microcanonical density,

as a appropriate description of our knowledge about the microstate of a system with given energy

(regardless of whether the system is metrically transitive or not).

Once the microcanonical ensemble is in place as a privileged description of an isolated system

with a fixed energy, one can motivate the corresponding status for the other ensembles with relatively

less effort. The canonical distribution is shown to provide the description of a small system S1 in

weak energetic contact with a larger system S2, acting as a ‘heat bath’ (see Gibbs 1902, p. 180–183).

Here, it is assumed that the total system is isolated and described by a microcanonical ensemble,

where the total system has a Hamiltonian Htot = H1 + H2 + Hint with H2 À H1 À Hint.

More elaborate versions of such an argument are given by Einstein (1902) and Martin-Löf (1979).
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Similarly, the grand-canonical ensemble can be derived for a small system that can exchange both

energy and particles with a large system. (see van Kampen 1984).

2. The ‘equivalence’ of ensembles. It is often argued in physics textbooks that the choice be-

tween these different ensembles (say the canonical and microcanonical) is deprived of practical rel-

evance by a claim that they are all “equivalent”. (See (Lorentz 1916, p. 32) for perhaps the earliest

version of this argument, or Thompson 1972, p. 72, Huang 1987, p. 161-2,) for recent statements.)

What is meant by this claim is that if the number of constituents increases, N −→ ∞, and the to-

tal Hamiltonian is proportional to N , the thermodynamic relations derived from each of them will

coincide in this limit.

However, these arguments should not be mistaken as settling the empirical equivalence of the

various ensembles, even in this limit. For example, it can be shown that the microcanonical ensemble

admits the description of certain metastable thermodynamic states, (e.g. with negative heat capacity)

that are excluded in the canonical ensemble (see Touchette 2003, Touchette et al. 2004, and literature

cited therein).

3. The coarse-grained entropy. The coarse-graining approach is reminiscent of Boltzmann’s

construction of cells in his (1877b); cf. the discussion in paragraph 4.4). The main difference is

that here one assumes a partition on phase-space Γ, where Boltzmann adopted it in the µ-space.

Nevertheless, the same issues about the origin or status of a privileged partition can be debated

(cf. p. 58). If one assumes that the partition is intended to represent what we know about the system,

i.e. if one argues that all we know is whether its state falls in a particular cell ωi, it can be argued

that the its status is subjective. If one argues that the partition is meant to represent limitations in the

precision of human observational possibilities, perhaps enriched by instruments, i.e. that we cannot

observe more about the system than that its state is in some cell ωi, one might argue that its choice

is objective, in the sense that there are objective facts about what a given epistemic community can

observe or not. Of course, one can then still maintain that the status of the coarse-graining would

then be anthropocentric (see also the discussion in §7.5). However, note that Gibbs himself did not

argue for a preferential size of the cells in phase space, but for taking the limit in which their size

goes to zero in a different order.

4. Statistical equilibrium. Finally, a remark about Gibbs’ notion of equilibrium. This is fun-

damentally different from Boltzmann’s 1877 notion of equilibrium as the macrostate corresponding

to the region occupying the largest volume in phase space (cf. section 4.4). For Gibbs, statistical

equilibrium can only apply to an ensemble. And since any given system can be regarded as belong-

ing to an infinity of different ensembles, it makes no sense to say whether an individual system is
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in statistical equilibrium or not. In contrast, in Boltzmann’s case, equilibrium can be attributed to a

single system (namely if the microstate of that system is an element of the set Γeq ⊂ Γ). But it is not

guaranteed to remain there for all times.

Thus, one might say that in comparison with the orthodox thermodynamical notion of equilibrium

(which is both stationary and a property of an individual system) Boltzmann (1877b) and Gibbs

each made an opposite choice about which aspect to preserve and which aspect to sacrifice. See

(Uffink 1996b, Callender 1999, Lavis 2005) for further discussions.

6 Modern approaches to statistical mechanics

This section will leave the more or less historical account followed in the previous sections behind,

and present a selective overview of some influential modern approaches to statistical physics. In

particular, we focus on ergodic theory (§ 6.1–6.2), the theory of the thermodynamic limit §6.3, the

work of Lanford on the Boltzmann equation (§6.4), and the BBGKY approach in §6.5.

6.1 Ergodic theory

When the Ehrenfests critically reviewed Boltzmann’s and Gibbs’ approach to statistical physics in

their renowned Encyclopedia article (1912), they identified three issues related to the ergodic hypoth-

esis.

1. The ambiguity in Boltzmann’s usage of “probability” of a phase space region (as either the

relative volume of the region or the relative time spent in the region by the trajectory of the

system).

2. The privileged status of the microcanonical probability distribution or other probability distri-

butions that depend only on the Hamiltonian.

3. Boltzmann’s argument that the microstate of a system, initially prepared in a region of phase

space corresponding to a non-equilibrium macrostate, should tend to evolve in such a way that

its trajectory will spend an overwhelmingly large majority of its time inside the region of phase

space corresponding to the equilibrium macrostate Γeq.

In all these three problems, a more or less definite solution is obtained by adopting the ergodic

hypothesis. Thus, the Ehrenfests suggested that Boltzmann’s answer to the above problems depended

on the ergodic hypothesis. As we have seen, this is correct only for Boltzmann’s treatment of issue (2)

in his (1868a). The doubtful status of the ergodic hypothesis, of course, highlighted the unresolved

status of these problems in the Ehrenfests’ point of view.

In later works the “ergodic problem” has become more exclusively associated with the first issue

on the list above, i.e., the problem of showing the equality of phase and time averages. This problem
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can be formulated as follows. Consider a Hamiltonian system and some function f defined on its

phase space Γ. The (infinite) time average of f , for a system with initial state x0 may be defined as:

f(x0) = lim
T→∞

1
T

∫ T

0

f(Ttx0)dt (99)

where Tt is the evolution operator. On the other hand, for an ensemble of systems with density ρt(x),

the ensemble average of f is

〈f〉t =
∫

f(x)ρt(x)dx. (100)

The ergodic problem is the question whether, or under which circumstances, the time average and

ensemble average are equal, i.e.: f(x0)
?= 〈f〉t. Note that there are immediate differences between

these averages. f depends on the initial state x0, in contrast to 〈f〉. Indeed, each choice of an initial

phase point gives rise to another trajectory in phase space, and thus gives, in general, another time

average. Secondly, 〈f〉 will in general depend on time, whereas f is time-independent. Hence, a

general affirmative answer to the problem cannot be expected.

However, in the case of a stationary ensemble (statistical equilibrium) the last disanalogy disap-

pears. Choosing an even more special case, the microcanonical ensemble ρmc, the simplest version

of the ergodic problem is the question:

f(x0)
?= 〈f〉mc. (101)

Now it is obvious that if Boltzmann’s ergodic hypothesis is true, i.e. if the trajectory of the

system traverses all points on the energy hypersurface ΓE , the desired equality holds. Indeed, take

two arbitrary points x and y in ΓE . The ergodic hypothesis implies that there is a time τ such that

y = Tτx. Hence:

f(y) = lim
T→∞

1
T

∫ T

0

f(Tt+τx)dt

= lim
T→∞

1
T

(∫ τ

0

f(Ttx)dt +
∫ T

0

f(Ttx)dt

)

= lim
T→∞

1
T

∫ T

0

f(Ttx)dt = f(x)

In other words, f must be constant over ΓE , and hence, also equal to the microcanonical expectation

value.

For later reference we note another corollary: the ergodic hypothesis implies that ρmc is the only

stationary density on ΓE (cf. section 4.1).
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The Ehrenfests doubted the validity of the ergodic hypothesis, as Boltzmann had himself, and

therefore proposed an alternative, which they called the quasi-ergodic hypothesis. This states that

the trajectory lies dense in ΓE , i.e., xt will pass through every open subset in ΓE , and thus come

arbitrarily close to every point in ΓE . The system may be called quasi-ergodic if this holds for all its

trajectories. As we have seen, this formulation seems actually closer to what Boltzmann may have

intended, at least in 1871, than his own literal formulation of the hypothesis.

Not long after the Ehrenfests’ review, the mathematical proof was delivered that the ergodic hy-

pothesis cannot hold if ΓE is a more than one-dimensional manifold (Rosenthal 1913, Plancherel

1913). The quasi-ergodic hypothesis, on the other hand, cannot be immediately dismissed. In fact,

it may very well be satisfied for Hamiltonian systems of interest to statistical mechanics. Unfor-

tunately, it has remained unclear how it may contribute to a solution to the ergodic problem. One

might hope, at first sight, that for a quasi-ergodic system time averages and microcanonical averages

coincide for continuous functions, and that the microcanonical density ρmc is the only continuous

stationary density. But even this is unknown. It is known that quasi-ergodic systems may fail to have

a unique stationary measure (Nemytskii and Stepanov 1960, p. 392). This is not to say that quasi-

ergodicity has remained a completely infertile notion. In topological ergodic theory, the condition is

known under the name of “minimality”, and implies several interesting theorems (see Petersen 1983,

p. 152ff).

While the Rosenthal-Plancherel result seemed to toll an early death knell over ergodic theory in

1913, a unexpected revival occurred in the early 1930s. These new results were made possible by the

stormy developments in mathematics and triggered by Koopman’s results, showing how Hamiltonian

dynamics might be embedded in a Hilbert space formalism where the evolution operators Tt are

represented as a unitary group. This made a whole array of mathematical techniques (e.g. spectral

analysis) available for a new attack on the problem.

The first result was obtained by von Neumann in a paper under the promising (but mislead-

ing) title “Proof of the Quasi-Ergodic Hypothesis” (1932). His theorem was strengthened by G.D.

Birkhoff in a paper entitled “Proof of the Ergodic Theorem” (1931), and published even before von

Neumann’s.

Since their work, and all later work in ergodic theory, involves more precise mathematical no-

tions, it may be worthwhile first to introduce a more abstract setting of the problem. An abstract

dynamical system is defined as a tuple 〈Γ,A, µ, T 〉, where Γ as an arbitrary set, A is a σ-algebra

of subsets of Γ, called the ‘measurable’ sets in Γ, and µ is a probability measure on Γ, and T de-

notes a one-parameter group of one-to-one transformations Tt on Γ (with t ∈ R or t ∈ Z) that

represent the evolution operators. The transformations Tt are assumed to be measure-preserving, i.e.

µ(TtA) = µ(A) for all A ∈ A. In the more concrete setting of statistical mechanics, one may take Γ
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to be the energy hypersurface,A the collection of its Borel subsets, µ the microcanonical probability

measure and T the evolution induced by the Hamiltonian equations.

The von Neumann-Birkhoff ergodic theorem can be formulated as follows:

ERGODIC THEOREM: Let 〈Γ,A, µ, T 〉 be any dynamical system and f be an integrable

function on Γ. Then

(i) f(x) = limT→∞ 1
T

∫ T

0
f(Ttx)dt exists for almost all x;

i.e. the set of states x ∈ Γ for which f(x) does not exist has µ-measure zero.

(ii) f(x) = 〈f〉µ for almost all x iff the system is metrically transitive.

Here, metric transitivity means that it is impossible is to carve up Γ in two regions of positive measure

such that any trajectory starting in one region never crosses into the other. More precisely:

METRIC TRANSITIVITY: A dynamical system is called metrically transitive57 iff the

following holds: for any partition of Γ into disjoint sets A1, A2 such that TtA1 = A1

and TtA2 = A2, it holds that µ(A1) = 0 or µ(A2) = 0.

It is not difficult to see why this theorem may be thought of as a successful solution of the orig-

inal ergodic problem under a slight reinterpretation. First, metric transitivity captures in a measure-

theoretic sense the idea that trajectories wander wildly across the energy hypersurface, allowing only

exceptions for a measure zero set. Secondly, the theorem ensures the equality of time and micro-

canonical ensemble average, although only for integrable functions and, again, with the exception of

a measure zero set. But that seemed good enough for the taste of most physicists.

The ergodic theorem was therefore celebrated as a major victory. In the words of Reichenbach:

Boltzmann introduced [. . . ] under the name of ergodic hypothesis [. . . ] the hypothesis

that the phase point passes through every point of the energy hypersurface. This for-

mulation is easily shown to be untenable. It was replaced by P. and T. Ehrenfest by the

formulation that the path comes close to every point within any small distance ε which

we select and which is greater than 0.

There still remained the question whether the ergodic hypothesis must be regarded as

an independent supposition or whether it is derivable from the canonical equations, as

Liouville’s theorem is.

This problem[ . . . ] was finally solved through ingenious investigations by John von

Neumann and George Birkhoff, who were able to show that the second alternative is true.

[. . . ] With von Neumann and Birkhoff’s theorem, deterministic physics has reached its

57This name is somewhat unfortunate, since the condition has nothing to do with metric in the sense of distance, but is
purely measure-theoretical. Metrically transitive systems are also called ‘metrically indecomposable’ or, especially in the later
literature ‘ergodic’. I will stick to the older name in order to avoid confusion with the ergodic hypothesis.
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highest degree of perfection: the strict determinism of elementary processes is shown to

lead to statistical laws for macroscopic occurrences.” (Reichenbach 1956, p. 78)

Unfortunately, nearly everything stated in this quotation is untrue.

6.1.1 Problems

1. Do metrically transitive systems exist? An immediate question is of course whether met-

rically transitive systems exist. In a mathematical sense of ‘exist’ the answer is affirmative. More

interesting is the question of whether one can show metric transitivity for any model that is realistic

enough to be relevant to statistical mechanics.

A few mechanical systems have been explicitly proven to be metrically transitive. For example:

one hard sphere moving in a vessel with a convex scatterer, or a disc confined to move in a ‘stadium’

(two parallel line-segments connected by two half circles) or its three-dimensional analogue: one

hard sphere moving in a cylinder, closed on both sides by half-spheres. But in statistical mechanics

one is interested in systems with many particles.

In 1963, Sinai announced he had found a proof that a gas consisting of N hard spheres is metri-

cally transitive. The ergodic theorem thus finally seemed to be relevant to physically interesting gas

models. Of course, the hard-spheres-model is an idealization too, but the general expectation among

physicists was that a transition to more sophisticated models of a gas system would only make the

metric transitivity even more likely and plausible, even though admittedly harder to prove.

The problem proves to be extraordinarily tedious, and Sinai’s proof was complicated and, actu-

ally, never completely published. But many partial results were. In fact, the development of ideas

and techniques needed for the effort contributed much to the emergence of a vigorous mathematical

theory, nowadays called ‘ergodic theory’. And since Sinai’s claim seemed so desirable, many books

and articles presented the claim as a solid proven fact (e.g. Lebowitz & Penrose 1973, Sklar 1993).

But by the 1980s, the delay in the publication of a complete proof started to foster some doubts

about the validity of the claim. Finally, Sinai and Chernov (1987, p. 185) wrote: “The announcement

made in [(Sinai 1963)] for the general case must be regarded as immature.” What has been shown

rigorously is that a system of three hard spheres is metrically transitive. Recently, the problem has

been taken further by Szász (1996) and Simányi and Szász (1999). They have ascertained that for a

model of N hard spheres, the ergodic component, i.e. a subset of the energy hypersurface on which

the assumption of metric transitivity holds has positive measure. The full problem, however, still

awaits solution.

2. Infinite times. In the definition of the time average (99) the limit T →∞ is taken. This brings

along a number of problems:
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(i). The time average is interesting because it is experimentally accessible. The hope is that it

represents the equilibrium value of f . But the limit T →∞ tells us nothing about what happens

in a finite time. What is empirically accessible, at best, is the quantity 1
T

∫ T

0
f(Ttx0)dt for a

large but finite T . This expression can still deviate arbitrarily far from the limiting value.

(ii). The limit may even exist while the system is not in equilibrium. A time-averaged value need

not be an equilibrium value, because in general

lim
T→∞

1
T

∫ T

0

f(Ttx) dt 6= lim
t→∞

f(Ttx). (102)

For periodical motions, for example, the left-hand side exists but the right-hand side does not.

(iii) Empirically, equilibrium often sets in quite rapidly. But the time T needed to make 1
T

∫ T

0
f(Ttx0)dt

even remotely close to 〈f〉mc might be enormous, namely of the order of Boltzmann’s estimate

of the Poincaré-recurrence times! (See also Jaynes (1967, p. 94).)

3. The measure-zero problem. The result that the ergodic theorem provides is that for metrically

transitive systems f(x) = 〈f〉mc except for a set of microstates with measure zero. So the suggestion

here is that this set of exceptions is in some sense negligible. And, as judged from the probability

measure µmc, that is obviously true. But a set of measure zero need not be negligible in any other

sense. It is well-known that if one compares ‘smallness in measure’ with other natural criteria by

which one can judge the ‘size’ of sets, e.g. by their cardinality, dimension or Baire category, the

comparisons do not match. Sets of measure zero can be surprisingly large by many other standards

Sklar (1993, pp. 181–188).

More importantly, one might choose another measure µ′, such that µ-measure zero sets are no

longer sets of µ′-measure zero and conversely. It is of course the choice of the measure that de-

termines which sets have measure zero. Thus, if one decides to disregard or neglect sets with a

microcanonical measure zero, a privileged status of the microcanonical measure is already presup-

posed. But this means the virtue of the ergodic theorem as a means of motivating a privileged role of

the microcanonical measure is diminished to a self-congratulating one.

6.2 The mixing property, K systems and Bernoulli systems

Ergodic theory, the mathematical field that emerged from the theorems of Birkhoff and von Neumann,

may be characterized as a rigorous exploration of the question to what extent a deterministic, time-

reversal invariant dynamical system may give rise to random-like behaviour on a macroscopic scale,

by assuming various special properties on its dynamics.

In its modern carnation, this theory distinguishes a hierarchy of such properties that consists of
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various strengthenings of metric transitivity. Perhaps the most important are the mixing property,

the property of being a ‘K system’ and the Bernoulli systems. The higher up one goes this ladder,

the more ‘random’ behaviour is displayed. The evolution at the microlevel is in all cases provided

by the deterministic evolution laws. In the (extensive) literature on the subject, many more steps

in the hierarchy are distinguished (such as ‘weak mixing’, ‘weak Bernoulli’, ‘very weak Bernoulli’

etc.), and also some properties that do not fit into a strict linear hierarchy (like the ‘Anosov’ property,

which relies on topological notions rather than on a purely measure-theoretical characterization of

dynamical systems). It falls beyond the scope of this paper to discuss them.

6.2.1 Mixing

The idea of mixing is usually attributed to Gibbs, in his comparison of the evolution of ensembles with

stirring of a dye into an incompressible fluid (cf. section 5.4). Even if initially the fluid and the dye

particles occupy separate volumes, stirring will eventually distribute the dye particles homogeneously

over the fluid. The formal definition is:

MIXING: A dynamical system 〈Γ,A, µ, T 〉 is called mixing iff ∀A, B ∈ A

lim
t→∞

µ(TtA ∩B) = µ(A)µ(B). (103)

In an intuitive sense the mixing property expresses the idea that the dynamical evolution will thor-

oughly stir the phase points in such a way that points initially contained in A eventually become

homogeneously distributed over all measurable subsets B of Γ. One can easily show that mixing is

indeed a stronger property than metric transitivity, by applying the condition to an invariant set A

and choosing B = A. The converse statement does not hold. (E.g.: the one-dimensional harmonic

oscillator is metrically transitive but not mixing).

Again, there is an interesting corollary in terms of probability measures or densities. Consider

a mixing system, and a time-dependent probability density ρt, such that ρt is absolutely continuous

with respect to the microcanonical measure µ. (This means that all sets A ∈ A with µ(A) = 0,

also have
∫

A
ρt(x)dx = 0, or equivalently, that ρt is a proper density function that is integrable with

respect to µ.) In this case, the probability measure associated with ρt converges, as t −→ ∞, to

the microcanonical measure. Thus, an ensemble of mixing systems with an absolutely continuous

density will asymptotically approach to statistical equilibrium. Note that the same result will also

hold for t −→ −∞, so that there is no conflict with the time reversal invariance. Is it in conflict with

Poincaré’s recurrence theorem? No, the recurrence theorem is concerned with microstates (phase

points), and not probability densities. Even when almost all trajectories eventually return close by

their original starting point, the recurrence time will differ for each phase point, so that the evolution
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of an ensemble of such points can show a definite approach to statistical equilibrium.

Note also that if the result were used as an argument for the privileged status of the microcanon-

ical measure (viz., as the unique measure that all absolutely continuous probability distributions

evolve towards), the strategy would again be marred by the point that the condition of absolute con-

tinuity already refers to the microcanonical measure as a privileged choice.

Despite the elegance of the mixing property, we can more or less repeat the critical remarks made

in the context of the ergodic theorem. In the first place, the condition considers the limit t → ∞,

which implies nothing about the rate at which convergence takes place. Secondly, the condition

imposed is trivially true if we choose A or B to be sets of measure zero. Thus, the mixing property

says nothing about the behaviour of such sets during time evolution. And thirdly, one is still faced

with the question whether the mixing property holds for systems that are physically relevant for

statistical mechanics. And since the property is strictly stronger than metric transitivity, this problem

is at least as hard.

6.2.2 K systems

The next important concept is that of a K system (‘K’ after Kolmogorov). For simplicity, we assume

that time is discrete, such that Tt = T t, for t ∈ Z. There is a perfectly analogously defined concept

for continuous time, called K flows (cf. Emch, this volume, Definition 10.3.2).

K SYSTEM:58 A dynamical system 〈Γ,A, µ, T 〉 is called a K system if there is a subal-

gebra A0 ⊂ A, such that

1. TnA0 ⊂ TmA0 for times m < n; where ⊂ denotes proper inclusion.

2. the smallest σ-algebra containing ∪∞n=1T
−nA0 is A.

3. ∩∞n=1T
nA0 = N , whereN is the σ-algebra containing only sets of µ-measure zero

or one.

At first sight, this definition may appear forbiddingly abstract. One may gain some intuition by means

of the following example. Consider a finite partition α = {A1, . . . Am} of Γ into disjoint cells and

the so-called coarse-grained history of the state of the system with respect to that partition. That is,

instead of the detailed trajectory xt, we only keep a record of the labels i of the cell Ai in which the

state is located at each instant of time, until time t=0:

. . . i−k, . . . , i−3, i−2, i−1, i0 i−k ∈ {1, . . . , m}, k ∈ N. (104)

58There is a considerable variation in the formulation of this definition (Cornfeld, Fomin & Sinai 1982, Batterman 1991,
Berkovitz et al. 2006). The present formulation adds one more. It is identical to more common definitions if one replaces n and
m in the exponents of T by −n and −m respectively.
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This sequence is completely determined by the microstate x at t = 0:

i−k(x) =
m∑

j=1

j11Aj
(T−kx) (105)

where 11 denotes the characteristic function (94). Yet, as we shall see, for a K system, this sequence

typically behaves in certain respects like a random sequence. Observe that

i−k(x) = j ⇐⇒ T−kx ∈ Aj ⇐⇒ x ∈ T kAj ; (106)

so we can alternatively express the coarse-grained history by means of evolutions applied to the cells

in the partition. If Tα := {TA1, . . . , TAm}, let α ∨ Tα := {Ai ∪ TAj : i, j = 1, . . . m} denote

the common refinement of α and Tα. Saying that x belongs to Ai ∪ TAj is, of course, equivalent

to providing the last two terms of the sequence (104). Continuing in this fashion, one can build the

refinement ∞∨

k=0

T kα = α ∨ Tα ∨ T 2α · · · ∨ T kα ∨ · · · , (107)

each element of which corresponds to a particular coarse-grained history (104) up to t=0. The col-

lection (107) is no longer finite, but still a countable partition of Γ.

Now take A0 to be the σ-algebra generated from the partition
∨∞

k=0 T kα. Clearly, the events

in this algebra are just those whose occurrence is completely decided whenever the coarse-grained

history is known. In other words, for all A ∈ A0, µ(A|C) is zero or one, if C is a member of (107). It

is easy to see that T−mA0 is just the σ-algebra generated from T−m
∨∞

k=0 T kα =
∨∞

k=−m T kα, i.e.

from the partition characterizing the coarse-grained histories up to t = m. Since the latter partition

contains the history up to t = n for all n < m, we have:

T−mA0 ⊆ T−nA0 for all n < m. (108)

This is equivalent to condition 1, but with ‘⊂’ replaced by ‘⊆’.

Further, to explain condition 2, note that the smallest σ-algebra containing ∪N
n=1T

−nA0 is gener-

ated by the union of the partitions
∨∞

k=−n T kα for all n ≤ N , which in view of (108) is just T−NA0.

Thus, condition 2 just says that if we extend the record of the coarse-grained history to later times

t = N > 0, and let N −→∞, the partition eventually becomes sufficiently fine to generate all mea-

surable sets in A. This is a strong property of the dynamics. It means that the entire coarse-grained

record, extending from−∞ to∞, provides all information needed to separate all the measurable sets

in A, (except, possibly, if they differ by a measure zero set.)
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Similarly, in order to explain condition 3, note that (108) implies that ∩N
n=1T

nA0 = TNA0,

which is generated from
∨∞

k=0 T kα, i.e., the coarse-grained histories up to time−N . Thus, condition

3 expresses the demand that, as we let N −→ ∞, the class of events that are settled by the coarse-

grained histories up to time t = −N shrinks to the ‘trivial’ algebra of those sets that have probability

one or zero. In other words, for every event A ∈ A, with 0 < µ(A) < 1, the occurrence of A is

undecided at some early stage of the coarse-grained history.

Yet the truly remarkable feature of K systems lies in the strict inclusion demanded in condition

1: at any time n, the collection of events decided by the coarse-grained histories up to n, is strictly

smaller than the collection of events decided at time n + 1. Since the latter is generated from the

former by adding the partition T−(n+1)α to the partition
∨

T−kα, this means that at each time n the

question which cell of the partition is occupied at time n + 1 is not answerable from the knowledge

of the previous coarse-grained history. This is quite a remarkable property for a sequence generated

by a deterministic law of motion, although, of course, it is familiar for random sequences such as

tosses with a die or spins of a roulette wheel.

In this attempt at elucidation, we have presupposed a particular finite partition α. One may ask

whether there always is, for each Kolmogorov system, such a partition. The answer is yes, provided

the system obeys some mild condition (that 〈Γ,A, µ〉 is a Lebesgue space59 Another question is

whether the claims made about coarse-grained histories are specific for this particular partition. The

answer is no. One may show that, given that they hold for some partition α, they also hold for any

choice of a finite partition of Γ. (Very roughly speaking: because the partition
∨

n Tnα generates the

σ-algebra of all events, the coarse-grained histories constructed from another finite partition can be

reconstructed in terms of the coarse-grained histories in terms of α.

6.2.3 Bernoulli systems

The strongest property distinguished in the ergodic hierarchy is that of Bernoulli systems. To intro-

duce the definition of this type of dynamical systems, it is useful to consider first what is usually

known as a ‘Bernoulli’ scheme. Consider an elementary chance set-up with outcomes {A1, . . . Am}
and probabilities pj . A Bernoulli scheme is defined as the probability space obtained from doubly

infinite sequences of independent identically distributed repetitions of trials on this elementary set-

up. Formally, a Bernoulli scheme for a set (or “alphabet”) α = {1, . . . ,m} with probabilities {pj}
is the probability space 〈Γ,A, µ〉, where Γ is the set of all doubly infinite sequences

η = (. . . , i−2, i−1, io, i1, i2 . . . , ) ik ∈ {1, . . . , m}; k ∈ Z (109)

59Roughly, this condition means that 〈Γ,A, µ〉 is isomorphic (in a measure-theoretic sense) to the interval [0, 1], equipped
with the Lebesgue measure. (see (Cornfeld, Fomin & Sinai 1982, p. 449) for the precise definition).
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and A is defined as the smallest σ-algebra on Γ containing the sets:

Aj
k := {η ∈ Γ : ik = j}. (110)

A is also known as the cylinder algebra. Further, we require of a Bernoulli scheme that:

µ(Aj
k) = pj for all k ∈ Z. (111)

One can turn this probability space into a dynamical system by introducing the discrete group of

transformations Tm, m ∈ Z, where T denotes the shift, i.e. the transformation on Γ that shifts each

element of a sequence η one place to the left:

For all k ∈ Z: T (ik) = ik−1. (112)

Thus we define:

BERNOULLI SYSTEM: A dynamical system 〈Γ,A, µ, T 〉 with a discrete time evolution

T is a Bernoulli-system iff there is a finite partition α = {A1, . . . , Am} of Γ such that

the doubly infinite coarse-grained histories are (isomorphic to) a Bernoulli scheme for α

with distribution

pi = µ(Ai) i ∈ {1, . . . m}. (113)

Thus, for a Bernoulli system, the coarse-grained histories on α behave as randomly as indepen-

dent drawings from an urn. These histories show no correlation at all, and the best prediction one can

make about the location of the state at time n + 1, even if we know the entire coarse-grained history

from minus infinity to time n, is no better than if we did not know anything at all. One can show that

every Bernoulli-system is also a K-system, but that the converse need not hold.

6.2.4 Discussion

Ergodic theory has developed into a full-fledged mathematical discipline with numerous interesting

results and many open problems (for the current state of the field, see Cornfeld, Fomin & Sinai 1982,

Petersen 1983, Mañé 1987). Yet the relevance of the enterprise for the foundations of statistical

mechanics is often doubted. Thus Earman & Rédei (1996) argue that the enterprise is not relevant for

explaining ‘why phase averaging works’ in equilibrium statistical mechanics; Albert (2000, p. 70)

even calls the effort poured into rigorous proofs of ergodicity “nothing more nor less —from the

standpoint of foundations of statistical mechanics— than a waste of time”. (For further discussions,

see: (Farquhar 1964, Sklar 1973, Friedman 1976, Malament & Zabell 1980, Leeds 1989, van Lith
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2001a, Frigg 2004, Berkovitz et al. 2006))

This judgment is usually based on the problems already indicated above; i.e. the difficulties of

ascertaining that even the lowest property on the ergodic hierarchy actually obtains for interesting

physical models in statistical mechanics, the empirical inaccessibility of infinite time averages, and

the measure zero problem. Also, one often appeals to the Kolmogorov-Arnold-Moser (KAM) re-

sults60 in order to temper the expectations that ergodicity could be a generic property of Hamiltonian

systems. These difficulties are serious, but they do not, in my opinion, justify a definitive dismissal

of ergodic theory.

Instead, it has been pointed out by (Khinchin 1949, Malament & Zabell 1980, Pitowsky 2001)

that further progress may be made by developing the theory in conditions in which (i) the equality of

ensemble averages and time averages need not hold for all integrable functions, but for only a physi-

cally motivated subclass, (ii) imposing conditions that fix the rate of convergence in the infinite time

limits in (99) and (103) and (iii) relaxing the conditions on what counts as an equilibrium state. In-

deed important progress concerning (i) has been achieved in the ‘theory of the thermodynamic limit’,

described in paragraph 6.3.1. It is clear that further alterations may be mathematically obstreperous;

and that any results that might be obtained will not be as simple and general as those of the existing

ergodic theory. But there is no reason why progress in these directions should be impossible. See

e.g. (Vranas 1998, van Lith 2001b).

The measure zero problem, I would argue, is unsolvable within any “merely” measure-theoretic

setting of the kind we have discussed above. The point is, that any measure theoretic discussion of

dynamical systems that differ only on measure zero sets are, in measure-theoretical terms, isomorphic

and usually identified. Measure theory has no way of distinguishing measure zero sets from the empty

set. Any attempt to answer the measure zero problem should call upon other mathematical concepts.

One can expect a further light only by endowing the phase space with further physically relevant

structure, e.g. a topology or a symplectic form (cf. Butterfield 2006, Belot 2006).

Furthermore, even if ergodic theory has little of relevance to offer to the explanation of ‘why

phase averaging works’ in the case of equilibrium statistical mechanics, this does not mean it is a

waste of time. Recall that the equality of phase and time averages was only one of several points

on which the Ehrenfests argued that claims by Boltzmann could be substantiated by an appeal to the

ergodic hypothesis. Another point was his (1877) claim that a system initially in a non-equilibrium

60Quite roughly, the KAM theorems show that some Hamiltonian systems for which trajectories are confined to an invariant
set in phase space of small positive measure —and therefore not metrically transitive—, will continue to have that property
when a sufficiently small perturbation is added to their Hamiltonian (for a more informative introduction, see Tabor 1989).
This conclusion spoilt the (once common) hope that non-metrically transitive systems were rare and idealized exceptions
among Hamiltonian systems, and that they could always be turned into a metrically transitive system by acknowledging a tiny
perturbation from their environment. As we have seen (p. 39), Boltzmann (1868) had already expressed this hope for the
ergodic hypothesis.
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macrostate should tend to evolve towards the equilibrium macrostate.

It is ironic that some critics of ergodic theory dismiss the attempt to show in what sense and

under which conditions the microstate does display a tendency to wander around the entire energy

hypersurface as irrelevant, while relying on a rather verbal and pious hope that this will “typically”

happen without any dynamical assumption to fall back on. Clearly, the ergodic hierarchy might still

prove relevant here.

Still, it is undeniable that many concrete examples can be provided of systems that are not ergodic

in any sense of the word and for which equilibrium statistical mechanics should still work. In a solid,

say an ice cube, the molecules are tightly locked to their lattice site, and the phase point can access

only a minute region of the energy hypersurface. Similarly, for a vapour/liquid mixture in a ∩-shaped

vessel in a gravity field, molecules may spend an enormously long proportion of time confined to the

liquid at the bottom of one leg of the vessel, even though the region corresponding to being located

in the other leg is dynamically accessible. And still one would like to apply statistical mechanics to

explain their thermal properties.

Summing up, even admitting that ergodic theory cannot provide the whole story in all desired

cases does not mean it is irrelevant. I would argue that, on a qualitative and conceptual level, one of

the most important achievements of ergodic theory is that it has made clear that strict determinism on

the microscopic level is not incompatible with random behaviour on a macroscopic level, even in the

strong sense of a Bernoulli system. This implies that the use of models with a stochastic evolution

like urn drawings, that Boltzmann used in 1877, or the dog flea model of the Ehrenfests, (cf. §7.2),

are not necessarily at odds with an underlying deterministic dynamics.

6.3 Khinchin’s approach and the thermodynamic limit

In the ‘hard core’ version of ergodic theory, described in the previous two paragraphs, one focuses on

abstract dynamical systems, i.e. the only assumptions used are about a measure space equipped with

a dynamical evolution. It is not necessary that this dynamics arises from a Hamiltonian. Further, it

is irrelevant in this approach whether the system has a large number of degrees of freedom. Indeed,

the ‘baker transformation’, an example beloved by ergodic theorists because it provides a dynamical

system that possesses all the properties distinguished in the ergodic hierarchy, uses the unit square as

phase space, and thus has only two degrees of freedom. On the other hand, Hamiltonian systems with

large numbers of degrees of freedom, may fail to pass even the lowest step of the ergodic hierarchy,

i.e. metric transitivity.

This aspect of ergodic theory is often criticized, because the thermal behaviour of macroscopic

systems that the foundations of statistical mechanics ought to explain, arguably appears only when

their number of degrees of freedom is huge. As Khinchin puts it:
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All the results obtained by Birkhoff and his followers [...] pertain to the most general

type of dynamic systems [...]. The authors of these studies have not been interested in

the problem of the foundations of statistical mechanics which is our primary interest in

this book. Their aim was to obtain the results in the most general form; in particular all

these results pertain equally to the systems with only a few degrees of freedom as well

as to the systems with a very large number of degrees of freedom.

From our point of view we must deviate from this tendency. We would unnecessarily

restrict ourselves by neglecting the special properties of the systems considered in statis-

tical mechanics (first of all their fundamental property of having a very large number of

degrees of freedom) [...]. Furthermore, we do not have any basis for demanding the pos-

sibility of substituting phase averages for the time averages of all functions; in fact the

functions for which such substitution is desirable have many specific properties which

make such a substitution apparent in these cases (Khinchin, 1949, p. 62).

Thus, partly in order to supplement, partly in competition to ergodic theory, Khinchin explored an

approach to the ergodic problem that takes the large number of degrees of freedom as an essential

ingredient, but only works for a specific class of functions, the so-called sum functions.

In particular, consider a Hamiltonian dynamical system 〈Γ,A, T, µ〉 of N point particles. That

is, we assume: x = (~q1, ~p1; . . . ; ~qN , ~pN ) ∈ Γ ⊂ R6N . A function f on Γ is a sum function if

f(x) =
N∑

i=1

φi(xi) (114)

where xi = (~pi, ~qi) is the molecular state of particle i.61 Under the further assumption that the

Hamiltonian itself is a sum function, Khinchin proved:

KHINCHIN’S ERGODIC THEOREM: For all sum functions f there are positive constants

κ1, κ2 such that, for all N :

µ

({
x ∈ Γ :

∣∣∣∣∣
f(x)− 〈f〉µ

〈f〉µ

∣∣∣∣∣ ≥ κ1N
−1/4

})
≤ κ2N

−1/4 (115)

In words: as N becomes larger and larger, the measure of the set where f̄ and 〈f〉 deviate more than

a small amount goes to zero.

This theorem, then, provides an alternative strategy to address the ergodic problem: it says that

time average and microcanonical phase average of sum functions will be roughly equal, at least in a

very large subset of the energy hypersurface, provided that the number of particles is large enough.

61Note that Khinchin does not demand that sum functions are symmetric under permutation of the particles.
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Of course, this ‘rough equality’ is much weaker than the strict equality ‘almost everywhere’ stated

in the von Neumann-Birkhoff ergodic theorem. Moreover, it holds only for the sum functions (114).

However, the assumption of metric transitivity is not needed here; nor is any of the more stringent

properties of the ergodic hierarchy.

The advantages of this approach to the ergodic problem are clear: first, one avoids the problem

that ergodic properties are hard to come by for physically interesting systems. Second, an important

role is allotted to the large number of degrees of freedom, which, as noted above, seems a necessary,

or at least welcome ingredient in any explanation of thermal behaviour,62 and thirdly a physically

motivated choice for special functions has been made.

However, there are also problems and drawbacks. First, with regard to the “infinite-times” prob-

lem (cf. p. 91), Khinchin’s approach fares no better or worse than the original ergodic approach.

Second, since the rough equality does not hold “almost everywhere” but outside of a subset whose

measure becomes small when N is large, the measure-zero problem of ergodic theory (p. 92) is now

replaced by a so-called ”measure-epsilon problem”: if we wish to conclude that in practice the time

average and the phase average are (roughly) equal, we should argue that the set for which this does

not hold, i.e. the set in the left-hand side of (115) is negligible. This problem is worse than the o

measure-zero problem. For example, we cannot argue that ensembles whose density functions have

support in such sets are excluded by an appeal to absolute continuity or translation continuity (cf. the

discussion on p. 85). Further, if we wish to apply the result to systems that are indeed not metrically

transitive, there may be integrals of the equations of motion that lock the trajectory of the system into

a tiny subset of Γ for all times, in which case such a set cannot be neglected for practical purposes

(cf. Farquhar 1964).

Khinchin argued that the majority of physically important phase functions that one encounters in

statistical mechanics are sum functions (cf. Khinchin 1949, p. 63,97). However, this view is clearly

too narrow from a physical point of view. It means that all quantities that depend on correlations or

interactions between the particles are excluded.

Finally there is the ‘methodological paradox’ (Khinchin 1949, p. 41–43). This refers to the fact

that Khinchin had to assume that the Hamiltonian itself is also a sum function. Let me emphasize that

this assumption is not made just for the purpose of letting the Hamiltonian be one of the functions

to which the theorem applies; the assumption is crucial to the very derivation of the theorem. As

Khinchin clearly notes, this is paradoxical because for an equilibrium state to arise at all, it is essential

that the particles can interact (e.g. collide), while this possibility is denied when the Hamiltonian is a

sum function.

62The point can be debated, of course. Some authors argue that small systems can show thermal behaviour too, which
statistical mechanics then ought explain. However, the very definition of thermal quantities (like temperature etc.) for such
small systems is more controversial (Hill 1987, Feshbach 1987, Rugh 2001, Gross & Votyakov 2000).
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In Khinchin’s view, the assumption should therefore not be taken literally. Instead, one should

assume that there really are interaction terms in the Hamiltonian, but that they manifest themselves

only at short distances between the particles, so that they can be neglected, except on a tiny part

of phase space. Still, it remains a curious feature of his work that his theorem is intended to apply

in situations that are inconsistent with the very assumptions needed to derive it (cf. Morrison 2000,

p. 46-47). As we shall see in the next paragraph, later work has removed this paradox, as well as

many other shortcomings of Khinchin’s approach.

6.3.1 The theory of the thermodynamic limit

The approach initiated by Khinchin has been taken further by van der Linde and Mazur (1963),

and merged with independent work of van Hove, Yang and Lee, Fisher, Griffiths, Minlos, Ruelle,

Lanford and others, to develop, in the late 60s and early 70s, into what is sometimes called the

’rigorous results’ approach or the ‘theory of the thermodynamic limit’. The most useful references

are (Ruelle 1969, Lanford 1973, Martin-Löf 1979). The following is primarily based on Lanford

(1973), which is the most accessible and also the most relevant for our purposes, since it explicitly

addresses the ergodic problem, and on (van Lith 2001b).

As in Khinchin’s work, this approach aims to provide an explanatory programme for the thermal

behaviour of macroscopic bodies in equilibrium by relying mostly on the following central points,

- One adopts the microcanonical measure on phase space.

- the observable quantities are phase functions F of a special kind (see below).

- The number of particles N is extremely large.

It is shown that, under some conditions, in the ‘thermodynamic limit’, to be specified below, the mi-

crocanonical probability distribution for F/N becomes concentrated within an narrow region around

some fixed value. This result is similar to Khinchin’s ergodic theorem. However, as we shall see, the

present result is more powerful, while the assumptions needed are much weaker.

To start of, we assume a Hamiltonian, of the form

H(x) =
N∑

i

~p2
i

2m
+ U(~q1, . . . , ~qN ). (116)

defined on the phase space Γ for N particles. For technical reasons, it is more convenient and simpler

to work in the configuration space, and ignore the momenta. Consider a sequence of functions

F (~q1, . . . ~qn), n = 1, 2, . . . with an indefinite number of arguments, or, what amounts to the same

thing, a single function F defined on

∪∞n=1(R3)n. (117)
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Such a function is called an ‘observable’ if it possesses the following properties:

(a). Continuity: For each n, F (~q1, . . . ~qn) is a continuous function on R3n

(b). Symmetry: For each n, F (~q1, . . . ~qn) is invariant under permutation of its arguments.

(c). Translation invariance: For each n, and each ~a ∈ R3, F (~q1 + ~a, . . . ~qn + ~a) = F (~q1, . . . ~qn)

(d). Normalization: F (~q1) = 0

(e). Finite range: There exists a real number R ∈ R such that, for each n, the following holds:

Suppose we divide the n particles into two clusters labeled by i = 1, . . . m, and i′ = 1, . . . m′,

where m + m′ = n. If |~qi − ~qi′ | > R for all i, i′, then F (~q1, . . . ~qm; ~q1, . . . , ~qm′) =

F (~q1, . . . ~qm) + F (~q1, . . . , ~qm′).

For the most part, these conditions are natural and self-explanatory. Note that the symmetry

condition (b) is very powerful. It may be compared to Boltzmann’s (1877b) combinatorial approach

in which it was argued that macrostates occupy an overwhelmingly large part of phases space due to

their invariance under permutations of the particles (see §4.4). Note further that condition (e) implies

that F reduces to a sum function if all particles are sufficiently far from each other. It also means that

the observables characterized by Lanford may be expected to correspond to extensive quantities only.

(Recall that a thermodynamical quantity is called extensive if it scales proportionally to the size of the

system, and intensive if it remains independent of the system size.) In the present approach, intensive

quantities (like temperature and pressure) are thus not represented as observables, but rather identified

with appropriate derivatives of other quantities, after we have passed to the thermodynamical limit.

Further, it is assumed that the potential energy function U in (116) also satisfies the above condi-

tions. In addition, the potential energy is assumed to be stable,63 i.e.:

(f). Stability: There is a number B ∈ R, such that, for all n and all ~q1, . . . ~qn:

U(~q1, . . . ~qn) ≥ −nB. (118)

This condition —which would be violated e.g. for Newtonian gravitational interaction— avoids that

as n becomes large, the potential energy per particle goes to minus infinity, i.e., it avoids a collapse

of the system.

For some results it is useful to impose an even stronger condition:

63Strictly speaking, condition (f) is not needed for the existence of the thermodynamic limit for the configurational micro-
canonical measure. It is needed, however, when these results are extended to phase space (or when using the canonical measure).
Note also that the term ”stability’ here refers to an extensive lower bound of the Hamiltonian. This should be distinguished
from thermodynamic concept of stability, which is expressed by the concavity of the entropy function (cf. p. 21).
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(f′.) Superstability: The potential energy U is called superstable if, for every continuous function Φ

of compact support in R3:

U(~q1, . . . ~qN ) + λ
∑

i 6=j

Φ(~qi − ~qj) (119)

is stable for a sufficiently small choice of λ > 0. In other words, a stable potential is superstable

if it remains stable when perturbed slightly by a continuous finite-range two-body interaction

potential.

As in Khinchin’s approach, the assumption (f) or (f′) is not just needed because one would like

to count the potential energy among the class of observables; rather it is crucial to the proof of the

existence of the thermodynamic limit. Of course, the assumption that the interaction potential is con-

tinuous and of finite range is still too restrictive to model realistic inter-molecular forces. As Lanford

notes, one can weaken condition (e) to a condition of ‘weakly tempered’ potentials,64, dropping off

quickly with distance (cf. Fisher 1964, p. 386, Ruelle 1969, p. 32) , although this complicates the

technical details of the proofs. Again, it is clear, however, that some such condition on temperedness

of the long range interactions is needed, if only to avoid another catastrophe, namely that the poten-

tial energy per particle goes to +∞ as n increases, so that system might tend to explode. (As could

happen, e.g. for a system of charges interacting by purely repulsive Coulomb forces.)

Now, with the assumptions in place, the idea is as follows. Choose a given potential U and

an observable F obeying the above conditions. Pick two numbers u and ρ, that will respectively

represent the (potential) energy per particle and the particle density (in the limit as N gets large), a

bounded open region Λ ⊂ R3, and a large integer N , such that N
V (Λ) ≈ ρ. ( Here, V (Λ) denotes

the volume of Λ.) Further, choose a small number δu > 0, and construct the (thickened) energy

hypersurface in configuration space, i.e. the shell:

ΩΛ,N,u,δu =
{

(~q1, . . . ~qN ) ∈ ΛN :
U(~q1, . . . ~qN )

N
∈ (u− δu, u + δu)

}
. (120)

Let µ denote the Lebesgue measure on ΛN ; its (normalized) restriction to the above set may then

be called the ‘thickened configurational microcanonical measure’. Note that

ωcf(E) :=
∫

ΛN

d~q1 · · · ~qN δ(U(~q1 . . . ~qN )− E) (121)

64If, for simplicity, the potential U is a sum of pair interactions U =
P

i 6=j φ(~qi − ~qj), it is weakly tempered iff there are
real constants R, D, ε > 0, such that φ(~r) ≤ D‖~r‖3+ε when ‖~r‖ ≥ R.
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may be considered as the configurational analogue of the structure function (41). Thus

µ(ΩΛ,N,u,δu) =
∫

ΛN

d~q1 · · · ~qN 11(u−δu,u+δu)(U/N) =
∫ N(u+δu)

N(u−δu

dE ωcf(E), (122)

so that 1
2Nδuµ(ΩΛ,N,u,δu) provides a thickened or smoothened version of this configurational struc-

ture function. The reason for working with this thickened hypershell instead of the thin hypersurface

is of course to circumvent singularities that may appear in the latter. In any case, we may anticipate

that, when δu is small, this expression will represent the configurational part of the microcanoni-

cal entropy (84. A further factor 1/N ! may be added to give this entropy a chance of becoming

extensive.65 (See also paragraph §5.2.

We are interested in the probability distribution of F/N with respect to this thickened micro-

canonical measure on configuration space. For this purpose, pick an arbitrary open interval J , and

define

V(Λ, N, u, δu, F, J) :=
1

N !
µ

({
(~q1, . . . , ~qN ) ∈ Ωu,δu :

F (~q1, . . . , ~qN )
N

∈ J

})
. (123)

So,
1

µ(ΩΛ,N,u,δu)
V(Λ, N, u, δu, F, J) =

V(Λ, N, u, δu, F, J)
V(Λ, N, u, δu, F,R)

(124)

gives the probability that F/N lies in the interval J with respect to the above microcanonical mea-

sure.

We wish to study the behaviour of this probability in the thermodynamic limit, i.e. as N becomes

large, and V (Λ) grows proportional to N , such that N/V (Λ) = ρ. This behaviour will depend on

the precise details of the limiting procedure, in particular on the shape of Λ. Lanford chooses to take

the limit in the sense of van Hove: A sequence of bounded open regions Λ in R3 is said to become

infinitely large in the sense of Van Hove if, for all r > 0, the volume of the set of all points within a

distance r from the boundary of Λ, divided by the volume of Λ, goes to zero as N goes to infinity. In

other words, the volume of points close to the surface becomes negligible compared to the volume

of the interior. This avoids that surface effects could play a role in the limiting behaviour — and

eliminates the worry that interactions with the walls of the container should have been taken into

account.

Now, the first major result is:

(EXISTENCE OF THE THERMODYNAMIC LIMIT.) As N −→ ∞, and Λ becomes in-

65For example, if the system is an ideal gas, i.e. if U(~q1, . . . , ~qN ) ≡ 0, one will have ωcf(E) = V N =
“

N
ρ

”N

, so that

ln 1
N !

ωcf(E) scales proportionally to N , but ln ωcf(E) does not.
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finitely large in the sense of Van Hove, in such a way that N/V (Λ) = ρ, then either of

the following cases holds:

(α). V(Λ, N, u, δu, F, J) goes to zero faster than exponentially in N , or:

(β). V(Λ, N, u, δu, F, J) ≈ eNs(ρ,u,δu,F,J) where s(ρ, F, J) does not depend on Λ or

N , except through the ration N
V (Λ) = ρ.

In other words, this result asserts the existence of

s(ρ, u, δu, F, J) := lim
N−→∞

1
N

lnV(Λ, N, u, δu, F, J) (125)

where s is either finite or −∞. (The possibility that s = −∞ for all values of the arguments of s is

further ignored.) This already gives some clue for how the probability (123) behaves as a function of

J . If J1 and J2 are two open intervals, N is large, and we suppress the other variables for notational

convenience, we expect:

µ( F
N ∈ J1)

µ( F
N ∈ J2)

=
V(J1)
V(J2)

≈ eN(s(J1)−s(J2)). (126)

If s(J2) > s(J1), this ratio goes to zero exponentially in N . Thus, for large systems, the probability

µ( F
N ∈ J) will only be appreciable for those open intervals J for which s(J) is large.

A stronger statement can be obtained as follows. Associated with the set function s(J) one may

define a point function s:

s(x) := inf
J3x

J open

s(J) (127)

It can then be shown that, conversely, for all open J :

s(J) = sup
x∈J

s(x) (128)

Moreover, —and this is the second major result— one can show:

s(x) is concave. (129)

Further, s(x) is finite on an open convex subset of its domain (Lanford 1973, p. 26).

Now, it is evident that a concave function s(x) may have three general shapes: It either achieves

its maximum value: (i) never; (ii) exactly once, say in some point x0; or (iii) on some interval. In

case (i), F/N ‘escapes to infinity’ in the thermodynamic limit; this case can be excluded by imposing

the superstability condition (f′). Case (ii) is, for our purpose, the most interesting one. In this case,

we may consider intervals J2 = (x0− ε, x0 + ε), for arbitrarily small ε > 0 and J1 any open interval

106



that does not contain x0; infer from (127,128) that s(J2) > s(J1), and conclude from (126) that the

relative probability for F/N to take a value in J2 rather than J1 goes to zero exponentially with the

size of the system.

Thus we get the desired result: As N becomes larger and larger, the probability distribution of

F/N approaches a delta function. Or in other words, the function F/N becomes roughly constant

on an overwhelmingly large part of the configurational energy-hypershell:

lim
N−→∞

µ

({
(~q1, . . . , ~qN ) ∈ ΩΛ,N,u,δu : |F (~q1, . . . , ~qN )

N
− x0| > ε

})
= 0 (130)

In case (iii), finally, one can only conclude that the probability distribution becomes concentrated on

some interval, but that its behaviour inside this interval remains undetermined. One can show, if this

interval is bounded, that this case is connected to phase transitions (but see Lanford 1973, p. 12, 58

for caveats). 66

6.3.2 Remarks.

1. Phase transitions. First, it is obviously an immense merit of the theory of the thermodynamic

limit that, in contrast to ergodic theory, it is, in principle, capable of explaining and predicting the

occurrence of phase transitions from a model of the microscopic interaction, in further work often in

conjunction with renormalization techniques. Indeed, this capability is its major claim to fame, quite

apart from what it has to say about the ergodic problem. What is more, it is often argued that phase

transitions are strictly impossible in any finite system, and thus absolutely require the thermodynamic

limit (Styer 2004, Kadanoff 2000).

This argument raises the problem that our experience, including that of phase transitions in real

physical bodies, always deals with finite systems. A theory that presents an account of phase tran-

sitions only in the thermodynamic limit, must then surely be regarded as an idealization. This con-

clusion will not come as a shock many physicists, since idealizations are ubiquitous in theoretical

physics. Yet a curious point is that this particular idealization seems to be ‘uncontrollable”. See

(Sklar 2002) and (Liu 1999, Callender 2001, Batterman 2005) for further discussion. I also note

that an alternative approach has been proposed recently. In this view phase transitions are asso-

ciated with topology changes in the microcanonical hypersurface {x : H(x) = E} with varying

66To see the connection (loosely), note that if one removes the condition F/N ∈ J from the definition (123) —or equiv-
alently, chooses J = R—, then s in (125) can be interpreted as the (thickened, configurational) microcanonical entropy per
particle. Considered now as a function of the open interval (u− δu, u + δu), s has the same properties as established for s(J),
since U itself belongs to the class of observables. Thus, here too, there exists a point function s(u) analogous to (127), and this
function is concave (Actually, if we restore one more variable in the notation, and write s(ρ, u), the function is concave in both
variables). In case (iii), therefore, this function is constant in u over some interval, say [u′0.u

′′
0 ]. This means that there is then a

range of thermodynamical states with the same temperature T = ( ∂s
∂u

)−1
ρ , for a range of values of u and ρ, which is just what

happens in the condensation phase transition in a van der Waals gas.
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E. The crucial distinction from the theory of the thermodynamic limit is, of course, is that such

topology changes may occur in finite, —indeed even in small— systems.(cf. Gross 1997, Gross &

Votyakov 2000, Casetti et al 2003) However this may be, I shall focus below on the virtues of the

thermodynamic limit for the ergodic problem.

2. The ergodic problem revisited. When compared to ergodic theory or Khinchin’s approach,

the theory of the thermodynamic limit has much to speak in its favour. As in Khinchin’s work, the

problem of establishing metric transitivity for physically interesting systems does not arise, because

the approach does not need to assume it. Further, as in Khinchin’s work, the approach works only for

special functions. But the class of functions singled out by the assumptions (a–f.) or (a–f′.) above

is not restricted to (symmetric) sum functions, and allows for short-range interactions between the

particles. Thus, unlike Khinchin, there is no methodological paradox (cf. p.101).

Yet one might still question whether these assumptions are not too restrictive for physically in-

teresting systems. On the one hand, it is clear that some conditions on temperedness and stability

are needed to rule out catastrophic behaviour in the thermodynamic limit, such as implosion or ex-

plosion of the system. One the other hand, these assumptions are still too strong to model realistic

thermal systems. The Coulomb interaction, which according to Lieb & Lebowitz (1973, p. 138) is

“the true potential relevant for real matter”, is neither tempered nor stable. A tour the force, per-

formed by Lenard, Dyson, Lebowitz and Lieb, has been to extend the main results of the theory of

the thermodynamical limit to systems interacting purely by Coulomb forces (if the net charge of the

system is zero or small), both classically and quantum mechanically (for fermions) (see Lieb 1976,

and literature cited therein). This result, then, should cover most microscopic models of ordinary

matter, as long as relativistic effects and magnetic forces can be ignored. But note that this extension

is obtained by use of the canonical, rather than the microcanonical measure, and in view of the exam-

ples of non-equivalence of these ensembles (cf. p. 5.5) one might worry whether this result applies

to ordinary matter in metastable states (like supersaturated vapours, and superheated or supercooled

liquids).

Another remarkable point is that, unlike Khinchin’s result (115), the result (130) does not refer

to time averages at all. Instead, the instantaneous value of F/N is found to be almost constant

for a large subset of the configurational energy hypersurface. Hence, there is also no problem with

the infinite time limit (cf. p. 91. Indeed, dynamics or time evolutions play no role whatsoever in

the present results, and the contrast to the programme of ergodic theory is accordingly much more

pronounced than in Khinchin’s approach.

3. Problems left. What is left, in comparison to those two approaches to the ergodic problem, are

two problems. First, there is still the question of how to motivate the choice for the configurational
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microcanonical measure (i.e. the normalized Lebesgue measure restricted to the energy hypershell).

Lanford is explicit that the theory of the thermodynamic limit offers no help in this question:

It is a much more profound problem to understand why events which are very improbable

with respect to Lebesgue measure do not occur in nature. I, unfortunately, have nothing

to say about this latter problem. (Lanford 1973, p. 2).

For this purpose, one would thus have to fall back on other attempts at motivation (cf. p. 84).

Secondly, there is the measure-epsilon problem (cf. p. 101). The desired equality F/N ≈ x

holds, according to (130), if N is large, outside of a set of small measure. Can we conclude that

this set is negligible, or that its states do not occur in nature? In fact, the result (130) instantaneous

values is so strong that one ought to be careful of not claiming too much. For example, it would be

wrong to claim that for macroscopical systems (i.e. with N ≈ 1027), the set in the left-hand side

of (130) does not occur in nature. Instead, it remains a brute fact of experience that macroscopic

systems also occur in non-equilibrium states. In such states, observable quantities take instantaneous

values that vary appreciably over time, and thus differ from their microcanonical average. Therefore,

their microstate must then be located inside the set of tiny measure that one would like to neglect.

Of course, one might argue differently if N is larger still, say N = 10100 but this only illustrates the

‘uncontrollability’ of the idealization involved in this limit, i.e. one still lacks control over how large

N must be to be sure that the thermodynamic limit is a reasonable substitute for a finite system.

Further points. Other points, having no counterpart in the approaches discussed previously, are

the following. The approach hinges on a very delicately construed sequence of limits. We first have

to take the thickened energy shell, then take N, Λ to infinity in the sense of van Hove, finally take

δu to zero. But one may ask whether this is clearly and obviously the right thing to do, since there

are alternative and non-equivalent limits (the sense of Fisher), the order of the limits clearly do not

commute (the thickness of the energy hypershell is proportional to Nδu), and other procedures like

the ‘continuum limit’ (Compagner 1989) have also been proposed.

Finally, in order to make full contact to classical statistical mechanics, on still has to lift re-

striction to configuration space, and work on phase space. Lanford (1973, p. 2) leaves this as a

”straightforward exercise” to the reader. Let’s see if we can fill in the details.

Suppose we start from a thickened microcanonical measure on phase space, with the same thick-

ness 2Nδu, around a total energy value of E0 = Ne0. Its probability density is then given by

ρNe0,Nδu(~p1, . . . ~pN ; ~q1 . . . ~qN ) =
1

2Nδu

∫ E0+Nδu

E0−Nδu

1
ω(E)

δ(H(x)− E)dE (131)

For the Hamiltonian (116), the integral over the momenta can be performed (as was shown by Boltz-
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mann (1868) (cf. Eqn (43). This yields a marginal density

ρNe0, Nδu(~q1, . . . , ~qN ) =
1

2Nδu

2mπ3N/2

Γ( 3N
2 )

∫ E0+Nδu

E0−Nδu

1
ω(E)

(2m(E − U(q)))(3N−2)/2
dE

(132)

This is not quite the normalized Lebesgue measure on configuration space employed by Lanford, but

since the factor (2m(E−U(q))(3N−2)/2 is a continuous function of U ,—at least if E0−Nδu−U >

0— it is absolutely continuous with respect to the Lebesgue measure on the shell, and will converge

to it in the limit δu −→ 0.

But in a full phase space setting, the physical quantities can also depend on the momenta, i.e.,

they will be functions F (~p1, . . . ~pN ; ~q1 . . . ~qN ) and, even if one assumes the same conditions (a–f) as

before for their dependence on the second group of arguments, their probability distribution cannot

always be determined from the configurational microcanonical measure. For example, let F1 and F2

be two observables on configuration space, for which F1/N and F2/N converge to different values

in the thermodynamical limit, say x1 and x2, and let G be any symmetric function of the momenta

that takes two different values each with probability 1/2. For example, take

G(~p1, . . . ~pN ) =





1 if
∑

i ~pi · ~n ≥ 0,

0 elsewhere.
, (133)

for some fixed unit vector ~n. Now consider the following function on phase space:

A(~p1, . . . ~pN ; ~q1 . . . ~qN )) = G(~p1, . . . ~pN )F1(~q1 . . . ~qN ) + G′(~p1, . . . ~pN )F2(~q1 . . . ~qN ), (134)

where G′ = 1 − G. If we first integrate over the momenta, we obtain Ã = 1
2 (F1 + F2), which

converges in the thermodynamical limit to 1
2 (x1 + x2). However, it would be wrong to conclude

that A is nearly equal to 1
2 (x1 + x2) (x1 + x2)/2 in an overwhelmingly large part of phase space.

Instead, it is nearly equal to x1 on (roughly) half the available phase space and nearly equal to x2 on

the remaining half.

The extension of (130) to phase space functions will thus demand extra assumptions on the form

of such functions; for example, that their dependence on the momenta comes only as some function

of the kinetic energy, i.e.

A~p1, . . . ~pN ; ~q1, . . . ~qN ) = ψ(
∑ ~p2

i

2m
) + F (~q1, . . . , ~qN ) (135)

for some continuous function ψ.
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6.4 Lanford’s approach to the Boltzmann equation

We now turn to consider some modern approaches to non-equilibrium statistical mechanics. Of

these, the approach developed by Lanford and others (cf. Lanford 1975, Lanford 1976, Lanford 1981,

Spohn 1991, Cercignani, Illner &Pulvirenti 1994) deserves special attention because it stays concep-

tually closer to Boltzmann’s 1872 work on the Boltzmann equation and the H-theorem than any

other modern approach to statistical physics. Also, the problem Lanford raised and tried to answer is

one of no less importance than the famous reversibility and recurrence objections. Furthermore, the

results obtained are the best efforts so far to show that a statistical reading of the Boltzmann equation

or the H-theorem might hold for the hard spheres gas.

The question Lanford raised is that of the consistency of the Boltzmann equation and the under-

lying Hamiltonian dynamics. Indeed, if we consider the microstate of a mechanical system such as a

dilute gas, it seems we can provide two competing accounts of its time evolution.

(1) On the one hand, given the mechanical microstate x0 of a gas, we can form the distribution of

state f(~r,~v), such that f(~r,~v)d3~vd3~r gives the relative number of molecules with a position between

~r and ~r + d3~r and velocity between ~v and ~v + d3~v. Presumably, this distribution should be uniquely

determined by the microstate x0. Let us make this dependence explicit by adopting the notation f [x0].

This function, then, should ideally serve as an initial condition for the Boltzmann equation (48), and

solving this equation —assuming, that is, that it, that it has a unique solution— would give us the

shape of the distribution function at a later time, f
[x0]
t (~r,~v).

(2) On the other hand, we can evolve the microstate x0 for a time t with the help of the Hamilto-

nian equations. That will give us xt = Ttx0. This later state xt will then also determine a distribution

of state f [xt](~r,~v).

It is a sensible question whether these two ways of obtaining a later distribution of state from an

initial microstate are the same, i.e. whether the two time evolutions are consistent. In other words,

the problem is whether the diagram below commutes:

x0
Hamilton−→ xt

↓ ↓
f [x0] Boltzmann−→ f

[x0]
t

?= f [xt]

(136)

The first issue that has to be resolved here is the precise relation between a microstate and the

distribution of state f . It is obvious that, in so far as this function represents the physical property of

a gas system, it should be determined by the momentary microstate x. It is also clear, that in so far

as it is assumed to be continuous and differentiable in time in order to obey the Boltzmann equation,

this cannot be literally and exactly true.

So let us assume, as Boltzmann did, that the gas consists of N hard spheres, each of diameter
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d and mass m, contained in some fixed bounded spatial region Λ with volume |Λ| = V . Given a

microstate x of the system one can form the ‘exact’ distribution of state:

F [x](~r,~v) :=
1
N

N∑

i

δ3(~r − ~qi)δ3(~v − ~pi

m
). (137)

This distribution is, of course, not a proper function, and being non-continuous and non-differentiable,

clearly not a suitable object to plug into the Boltzmann equation. However, one may reasonably sup-

pose that one ought to be able to express Boltzmann’s ideas in a limit in which the number of particles,

N , goes to infinity. However, this limit clearly must be executed with care.

On the one hand, one ought to keep the gas dilute, so that collisions involving three or more par-

ticles will be rare enough so that they can safely be ignored in comparison to two-particle collisions.

On the other hand, the gas must not be so dilute that collisions are altogether too rare to contribute to

a change of f . The appropriate limit to consider, as Lanford argues, is the so-called Boltzmann-Grad

limit in which N −→∞, and:67

Nd2

V
= constant > 0. (138)

Denote this limit as “N BG−→∞”, where it is implicitly understood that d ∝ N−1/2. The hope is then

that in this Boltzmann-Grad limit, the exact distribution F [xN ] will tend to a continuous function that

can be taken as an appropriate initial condition for the Boltzmann equation. For this purpose, one has

to introduce a relevant notion of convergence for distributions on the µ-space Λ× R3. A reasonable

choice is to say that an arbitrary sequence of distributions fn (either proper density functions or in

the distributional sense) converges to a distribution f , fn −→ f , iff the following conditions hold:

For each rectangular parallelepiped ∆ ⊂ Λ× R3 :

lim
n−→∞

∫

∆

fNd3~rd3~v =
∫

∆

fd3~rd3~v, (139)

and lim
n−→∞

∫
~v2fnd3~rd3~v =

∫
~v2fd3~rd3~v, (140)

where the second condition is meant to guarantee the convergence of the mean kinetic energy.

It is also convenient to introduce some distance function between (proper or improper) distribu-

tions that quantifies the sense in which one distribution is close to another in the above sense. That

67The condition can be explained by the hand-waving argument that Nd2/V is proportional to the ‘mean free path’, i.e.
a typical scale for the distance traveled by a particle between collisions, or also by noting that the collision integral in the
Boltzmann equation is proportional to Nd2/V , so that by keeping this combination constant, we keep the Boltzmann equation
unchanged.
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is to say, one might define some distance d(f, g) between density functions on Λ×R3 such that

d(fn, f) −→ 0 =⇒ fn −→ f. (141)

There are many distance functions that could do this job, but I won’t go into the question of how to

pick out a particular one.

The hope is then, to repeat, that F [xN ] −→ f in the above sense when N
BG−→ ∞, where

f is sufficiently smooth to serve as an initial condition in the Boltzmann equation, and that with

this definition, the Boltzmannian and Hamiltonian evolution become consistent in the sense that the

diagram (136) commutes. But clearly this will still be a delicate matter. Indeed, increasing N means

a transition from one mechanical system to another with more particles. But there is no obvious

algorithm to construct the state xN+1 from xN , and thus no way to enforce convergence on the level

of individual states.

Still, one might entertain an optimistic guess, which, if true, would solve the consistency problem

between the Boltzmann and the Hamiltonian evolution in an approximate fashion if N is very large.

OPTIMISTIC GUESS: If F [xN
0 ] is near to f then F [xN

t ] is near to ft for all t > 0, and

where ft is the solution of the Boltzmann equation with initial condition f .

As Lanford (1976) points out, the optimistic guess cannot be right. This is an immediate consequence

of the reversibility objection: Indeed, suppose it were true for all x ∈ Γ, and t > 0. (Here, we

momentarily drop the superscript N from xN to relieve the notation.) Consider the phase point Rx

obtained from x by reversing all momenta: R(~q1, ~p1; . . . ; ~qN , ~pN ) = (~q1,−~p1; . . . , ; ~qN ,−~pN ). If

F [x](~r,~v) is near to some distribution f(~r,~v), then F [Rx](~r,~v) is near to f(~r,−~v). But as x evolves

to xt, Rxt evolves to TtRxt = RT−txt = Rx. Hence F [TtRxt](~r,~v) = F [Rx](~r,~v) is near to

f(~r,−~v). But the validity of the conjecture for Rxt would require that F [TtRxt](~r,~v) is near to

ft(~r,−~v) and these two distributions of state are definitely not near to each other, except in some

trivial cases.

But even though the optimistic guess is false in general, one might hope that it is ‘very likely’

to be true, with some overwhelming probability, at least for some finite stretch of time. In order to

make such a strategy more explicit, Lanford takes recourse to a probability measure on Γ, or more

precisely a sequence of probability measures on the sequence of ΓN ’s.

Apart from thus introducing a statistical element into what otherwise would have remained a

purely kinetic theory account of the problem, there is a definite advantage to this procedure. As men-

tioned above, there is no obvious algorithm to construct a sequence of microstates in the Boltzmann-

Grad limit. But for measures this is different. The microcanonical measure, for example is not just

a measure for the energy hypersurface of one N -particles-system; it defines an algorithmic sequence

113



of such measures for each N .

In the light of this discussion, we can now state Lanford’s theorem as follows (Lanford 1975,

1976):

LANFORD’S THEOREM: Let t 7→ ft be some solution of the Boltzmann equation, say for

t ∈ [0, a) ⊂ R. For each N , let ∆N denote the set in the phase space ΓN of N particles,

on which F [xN ] is near to f0 (the initial condition in the solution of the Boltzmann

equation) in the sense that for some chosen distance function d and for tolerance ε > 0:

∆N = {xN ∈ ΓN : d(F [xN ], f0) < ε}. (142)

Further, for each N , conditionalize the microcanonical measure µN on ∆N :

µ∆,N (·) := µN (·|∆N ). (143)

In other words, µ∆,N is a sequence of measures on the various ΓN that assign measure 1

to the set of microstates xN ∈ ΓN that are close to f0 in the sense that d(F [xN ], f0) < ε.

Then: ∃τ , 0 < τ < a such that for all t with 0 < t < τ :

µ∆,N ({xN ∈ ΓN : d(F [xN
t ], ft) < ε}) > 1− δ (144)

where δ −→ 0 as both ε −→ 0 and N
BG−→∞.

In other words: as judged from the microcanonical measure on ΓN restricted to those states xN that

have their exact distribution of state close to a given initial function f0, a very large proportion (1−δ)

evolve by the Hamiltonian dynamics in such a way that their later exact distribution of state F [xN
t ]

remains close to the function ft, as evolved from f0 by the Boltzmann equation.

6.4.1 Remarks

Lanford’s theorem shows that a statistical and approximate version of the Boltzmann equation can be

derived from Hamiltonian mechanics and the choice of an initial condition in the Boltzmann-Grad

limit. This is a remarkable achievement, that in a sense vindicates Boltzmann’s intuitions. According

to Lanford (1976, p. 14), the theorem says that the approximate validity of the Boltzmann equation,

and hence the H-theorem, can be obtained from mechanics alone and a consideration of the initial

conditions.

Still the result established has several remarkable features, all of which are already acknowledged

by Lanford. First, there are some drawbacks that prevent the result from having practical impact for
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the project of justifying the validity of the Boltzmann equation in real-life physical applications. The

density of the gas behaves like N/d3, and in the Boltzmann-Grad limit this goes to zero. The result

thus holds for extremely rarified gases. Moreover, the length of time for which the result holds, i.e.

τ , depends on the constant in (138), which also provides a rough order of magnitude for the mean

free path of the gas . It turns out that, by the same order of magnitude considerations, τ is roughly

two fifths of the mean duration between collisions. This is a disappointingly short period: in air at

room temperature and density, τ is in the order of microseconds. Thus, the theorem does not help to

justify the usual applications of the Boltzmann equation to macroscopic phenomena which demand

a much longer time-scale.

Yet note that the time scale is not trivially short. It would be a misunderstanding to say that the

theorem establishes only the validity of the Boltzmann equation for times so short that the particles

have had no chance of colliding: In two fifths of the mean duration between collisions, about 40 %

of the particles have performed a collision.

Another issue is that in comparison with Boltzmann’s own derivation no explicit mention seems

to have been of the Stoßzahlansatz. In part this is merely apparent. In a more elaborate presentation

(cf. Lanford 1975, 1976), the theorem is not presented in terms of the microcanonical measure, but

an arbitrary sequence of measures νN on (the sequence of phase spaces) ΓN . These measures are

subject to various assumptions. One is that each νN should be absolutely continuous with respect to

the microcanonical measure µN , i.e. νN should have a proper density function

dνN (x) = nN (x1, . . . xN )dx1 · · ·xN (145)

where xi = (~qi, ~pi) denotes the canonical coordinates of particle i. Further, one defines, for each N

and m < N , the reduced density functions by

n
(m)
N (x1, . . . xm) :=

N !
(N −m)!

1
Nm

∫
nN (x1, . . . xN )dxm+1 · · · dxN (146)

i.e. as (slightly renormalized) marginal probability distributions for the first m particles. The crucial

assumption is now that

lim
N

BG−→∞
n

(m)
N (x1, . . . xm) = n(1)(x1) · · ·n(1)(xm) (147)

uniformly on compact subsets of (Λ× R3)m. This assumption (which can be shown to hold for the

microcanonical measures) is easily recognized as a measure-theoretic analogy to the Stoßzahlansatz.

It demands, in the Boltzmann-Grad limit, statistical independence of the molecular quantities for any

pair or m-tuple of particles at time t = 0. As Lanford also makes clear, it is assumption (146) that
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would fail to hold if we run the construction of the reversibility objection; (i.e. if we follow the states

x in ∆N for some time t, 0t < τ , then reverse the momenta, and try to apply the theorem to the set

∆′
N = {Rxt : x ∈ ∆N} ).

But another aspect is more positive. Namely: Lanford’s theorem does not need to assume ex-

plicitly that the Stoßzahlansatz holds repeatedly. Indeed a remarkable achievement is that once the

factorization condition (146) holds for time t = 0 it will also hold for 0 < t < τ , albeit in a weaker

form (as convergence in measure, rather than uniform convergence). This is sometimes referred to

as “propagation of chaos” (Cercignani, Illner &Pulvirenti 1994).

But the main conceptual problem concerning Lanford’s theorem is where the apparent irreversibi-

lity or time-reversal non-invariance comes from. On this issue, various opinions have been expressed.

Lanford (1975, p. 110) argues that irreversibility is the result of passing to the Boltzmann-Grad

limit. Instead, Lanford (1976) argues that it is due to condition (146) plus the initial conditions (i.e.:

xN ∈ ∆N ).

However, I would take a different position. The theorem equally holds for −τ < t < 0, with the

proviso that ft is now a solution of the anti-Boltzmann equation. This means that the theorem is, in

fact, invariant under time-reversal.

6.5 The BBGKY approach

The so-called BBGKY-hierarchy (named after Bogolyubov, Born, Green, Kirkwood and Yvon) is

a unique amalgam of the description of Gibbs and the approach of Boltzmann. The goal of the

approach is to describe the evolution of ensembles by means of reduced probability densities, and to

see whether a Boltzmann-like equation can be obtained under suitable conditions —and thereby an

approach to statistical equilibrium.

First, consider an arbitrary time-dependent probability density ρt. The evolution of ρ is deter-

mined via the Liouville-equation by the Hamiltonian:

∂ρt

∂t
= {H, ρ}. (148)

Central in the present approach is the observation that for relevant systems in statistical mechanics,

this Hamiltonian will be symmetric under permutation of the particles. Indeed, the Hamiltonian for

a system of N indistinguishable particles usually takes the form

H(~q1, ~p1; . . . ; ~qN , ~pN ) =
N∑
=1

~pi
2

2m
+

N∑

i

V (~qi) +
N∑

i<j

φ(‖qi − ~qj‖) (149)
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where V is the potential representing the walls of the bounded spatial region Λ, say:

V (~q) =





0 if ~q ∈ Λ

∞ elsewhere
(150)

and φ the interaction potential between particle i and j. This is not only symmetric under permutation

of the particle labels, but even has the more special property that it is a sum of functions that never

depend on the coordinates of more than two particles. (cf. the discussion in §6.3.)

Let us again use the notation x = (~q1, ~p1; . . . ; ~qN , ~pN ) = (x1, . . . , xN ); with xi = (~qi, ~pi), and

consider the sequence of reduced probability density functions, defined as the marginals of ρ:

ρ(1)(x1) :=
∫

ρt(x) dx2 · · ·xN

... (151)

ρ(m)(x1, . . . , xm) =
∫

ρt(x) dxm+1 · · · dxN

Here, ρ(m) gives the probability density that particles 1, . . . ,m are located at specified positions

~q1, . . . ~qm and moving with the momenta ~p1, . . . ~pm, whereas all remaining particles occupy arbitrary

positions and momenta.

Symmetry of the Hamiltonian need not imply symmetry of ρ. But one might argue that we may

restrict ourselves to symmetric probability densities if all observable quantities are symmetric. In that

case, it makes no observable difference when two or more particles are interchanged in the microstate

and one may replace ρ by its average under all permutations without changing the expectation values

of any observable quantity. However this may be, we now assume that ρ is, in fact, symmetric under

permutations of the particle labels. In other words, from now on ρ(m) gives the probability density

that any arbitrarily chosen set of m particles have the specified values for position and momentum.

The guiding idea is now that for relevant macroscopic quantities, we do not need the detailed

form of the time evolution of ρt. Rather, it suffices to focus on no more than just a few marginals

from the hierarchy (151). For example, suppose a physical quantity represented as a phase function

A is a symmetric sum function on Γ:

A(x) =
N∑

i=1

A(xi) (152)

Then

〈A〉 = N

∫
A(x1)ρ(1)(x1) dx1 (153)

which is a considerable simplification. But this is not to say that we can compute the evolution of
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〈A〉 in time so easily.

Consider in particular ρ
(1)
t in (151). This is the one-particle distribution function: the probability

that an arbitrary particle is in the one-particle state (~p, ~q). This distribution function is in some sense

analogous to Boltzmann’s f . But note: ρ1 is a marginal probability distribution; it characterizes an

ensemble, whereas f is (in this context) a stochastic variable, representing a property of a single gas:

f(~r,~v)) =
1
N

∑

i

δ(~qi − ~r)δ(~v − ~pi

m
). (154)

How does ρ
(1)
t evolve? From the Liouville-equation we get

∂ρ(1)(x1)
∂t

=
∫
{H, ρ}d3~p2 · · · ~pNd~q2 · · · ~qN . (155)

It is convenient here to regard the Poisson bracket as a differential operator on ρ, usually called the

Liouville operator L:

Lρ :=
N∑

i=1

(
∂H

∂~qi
· ∂

∂~pi
− ∂H

∂~pi
· ∂

∂~qi

)
ρ. (156)

For the Hamiltonian (149) this can be expanded as:

L =
N∑

i

L(1)
i +

N∑

i<j

L(2)
ij (157)

where

L(1)
i := ~pi · ∂

∂~qi
(158)

and

L(2)
ij :=

∂φij

∂~qi
·
(

∂

∂~pi
− ∂

∂ ~pj

)
(159)

The evolution of ρ(1) is then given by:

∂ρ
(1)
t (x1)
∂t

= L(1)
1 ρ

(1)
t (x1) +

∫
dx2L(2)

12 ρ(2)(x1, x2) (160)

More generally, for higher-order reduced distribution functions ρ(m) (m ≥ 2), the evolution is gov-

erned by the equations:

∂ρ
(m)
t (x1, . . . , xm)

∂t
=

m∑

i=1

L(1)
i ρ

(m)
t (x1, . . . xm) +

m∑

i<j=1

L(2)
ij ρ

(m)
t (x1, . . . , xm)

+
m∑

i

∫
dxm+1L(2)

i,m+1ρ
(m+1)
t (x1, . . . xm+1) (161)
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The equations (160,161) form the BBGKY hierarchy. It is strictly equivalent to the Hamiltonian

formalism for symmetric ρ and H , provided that H contains no terms that depend on three or more

particles. As one might expect, solving these equations is just as hard as for the original Hamiltonian

equations. In particular, the equations are not closed: in order to know how ρ
(1)
t evolves, we need to

know ρ
(2)
t . In order to know how ρ

(2)
t evolves, we need to know ρ

(3)
t etc.

The usual method to overcome this problem is to cut off the hierarchy, i.e. to assume that for

some finite m, ρ(m) is a functional of ρ(`) with ` < m. In particular, if we just consider the easiest

case (m = 2) and the easiest form of the functional, we can take ρ(2) to factorize in the distant past

(t −→ −∞), giving:

ρ
(2)
t (x1, x2) = ρ

(1)
t (x1)ρ

(1)
t (x2); if t −→ −∞ (162)

i.e., requiring that the molecular states of any pair of particles are uncorrelated before their interac-

tion. This is analogous to the Stoßzahlansatz (29), but now, of course, formulated in terms of the

reduced distribution functions of an ensemble.

It can be shown that for the homogeneous case, i.e. when ρ(2) is uniform over the positions ~q1

and ~q2, i.e. when ρ(2)(x1, x2) = ρ(2)(~p1, ~p2) and when φ is a interaction potential of finite range,

the evolution equation for ρ(1) becomes formally identical to the Boltzmann equation (48). That is

to say, in (160) we may substitute L(1)
i = 0 and:

∂ρ
(1)
t (~p1)
∂t

=
∫
L(2)

12 ρ(~p1, ~p2)d3 ~p2

=
N

m

∫
bdbdφ

∫
d~p2‖~p2 − ~p1‖

(
ρ
(1)
t (~p1

′)ρ(1)
t (~p2

′)− ρ
(1)
t (~p1)ρ

(1)
t (~p2)

)
(163)

(See Uhlenbeck and Ford (1963, p. 131) for more details.)

6.5.1 Remarks

The BBGKY approach is thoroughly Gibbsian in its outlook, i.e. it takes a probability density over

phase space as its basic conceptual tool. An additional ingredient, not used extensively by Gibbs, is its

reliance on permutation symmetry. It gives an enormous extension of Gibbs’ own work by providing

a systematic hierarchy of evolution equations for reduced (or marginalized) density functions, which

can then be subjected to the techniques of perturbation theory. An ensemble-based analogy of the

Boltzmann equation comes out of this approach as a first-order approximation for dilute gases with

collision times much smaller than the mean free time. The Boltzmann equation for inhomogeneous

gases cannot be obtained so easily– as one might expect also on physical grounds that one will need

extra assumptions to motivate its validity.

It is instructive to compare this approach to Lanford’s. His analogy of the Boltzmann equation is
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obtained for a different kind of function, namely the one-particle distribution function F [x], i.e. the

exact relative number of particles with molecular state (~r,~v), instead of ρ(1). Of course, there is a

simple connection between the two. Noting that F [x] is a sum function (cf. equation (137), we see

that

〈F [x]〉 =
∫

ρ(1)(~p1, ~q1)f(δ(~r − ~q1)δ(~v − ~p1

m
)dp1dq1 = ρ(1)(~r,~v). (164)

In other words, the one-particle distribution function ρ(1) is the expected value of the exact distri-

bution of state. It thus appears that where Lanford describes the probability of the evolution of the

exact distribution of state, the BBGKY result (163) describes the evolution of the average of the exact

distribution of state. Lanford’s results are therefore much more informative.

One might be tempted here to argue that one can justify or motivate that that actual particle

distribution might be taken equal to its ensemble average by arguments similar to those employed

in ergodic theory. In particular, we have seen from Khinchin’s work (cf. §6.3) that for large enough

systems, the probability that a sum function such as F [x] deviates significantly from its expectation

value is negligible. However, an important complication is that this reading of Khinchin’s results

holds for equilibrium, i.e. they apply with respect to the microcanonical distribution ρmc, not to an

arbitrary time-dependent density ρt envisaged here.

The time asymmetry of the resulting equation does not derive from the hierarchy of equations,

but from the ensemble-based analogy of the Stoßzahlansatz (162). That is to say, in this approach

time asymmetry is introduced via an initial condition on the ensemble, i.e. the absence of initial

correlations. It can be shown, just like for the original Boltzmann equation, that when the alternative

boundary condition is imposed that makes the momenta independent after collisions, (i.e. if (162)

is imposed for t −→ ∞ instead) the anti-Boltzmann equation is obtained (see Uhlenbeck and Ford

1963, p. 127).

7 Stochastic dynamics

7.1 Introduction

Over recent decades, some approaches to non-equilibrium statistical mechanics, that differ decid-

edly in their foundational and philosophical outlook, have nevertheless converged in developing a

common unified mathematical framework. I will call this framework ‘stochastic dynamics’, since

the main characteristic feature of the approach is that it characterizes the evolution of the state of a

mechanical system as evolving under stochastic maps, rather than under a deterministic and time-

reversal invariant Hamiltonian dynamics.68

68Also, the name has been used in precisely this sense already by Sudarshan and coworkers, cf. (Sudarshan et al. 1961, Mehra
& Sudarshan 1972).
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The motivations for adopting this stochastic type of dynamics come from different backgrounds,

and one can find authors using at least three different views.

1. “Coarse graining”(cf. van Kampen 1962, Penrose 1970): In this view one assumes that on the

microscopic level the system can be characterized as a (Hamiltonian) dynamical system with deter-

ministic time-reversal invariant dynamics. However, on the macroscopic level, one is only interested

in the evolution of macroscopic states, i.e. in a partition (or coarse graining) of the microscopic phase

space into discrete cells. The usual idea is that the form and size of these cells are chosen in accor-

dance with the limits of our observational capabilities. A more detailed exposition of this view is

given in §7.5.

On the macroscopic level, the evolution now need no longer be portrayed as deterministic. When

only the macrostate of a system at an instant is given, it is in general not fixed what its later macrostate

will be, even if the underlying microscopic evolution is deterministic. Instead, one can provide

transition probabilities, that specify how probable the transition from any given initial macrostate to

later macrostates is. Although it is impossible, without further assumptions, to say anything general

about the evolution of the macroscopically characterized states, it is possible to describe the evolution

of an ensemble or a probability distribution over these states, in terms of a stochastic process.

2. “Interventionism”, “tracing” or “open systems” (cf. Blatt 1959, Davies 1976, Lindblad 1976,

Lindblad 1983, Ridderbos 2002): On this view, one assumes that the system to be described is not

isolated but in interaction with the environment. It is assumed that the total system, consisting of

the system of interest and the environment can be described as a (Hamiltonian) dynamical system

with a time-reversal invariant and deterministic dynamics. If we represent the state of the system by

x ∈ Γ(s) and that of the environment by y ∈ Γ(e), their joint evolution is given by a one-parameter

group of evolution transformations, generated from the Hamiltonian equations of motion for the

combined system: Ut : (x, y) 7→ Ut(x, y) ∈ Γ(s) × Γ(e). The evolution of the state x in the course

of time is obtained by projecting, for each t, to the coordinates of Ut(x, y) in Γ(s); call the result

of this projection xt. Clearly, this reduced time evolution of the system will generally fail to be

deterministic, e.g. the trajectory described by xt in Γ(s) may intersect itself.

Again, we may hope that this indeterministic evolution can nevertheless, for an ensemble of

the system and its environment, be characterized as a stochastic process, at least if some further

reasonable assumptions are made.

3. A third viewpoint is to deny (Mackey, 1992, 2001), or to remain agnostic about (Streater 1995),

the existence of an underlying deterministic or time-reversal invariant dynamics, and simply regard

the evolution of a system as described by a stochastic process as a new fundamental form of dynam-

ics in its own right.
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While authors in this approach thus differ in their motivation and in the interpretation they have of

its subject field, there is, as we shall see, a remarkable unity in the mathematical formalism adopted

for this form of non-equilibrium statistical mechanics. The hope, obviously, is to arrange this de-

scription of the evolution of mechanical systems in terms of a stochastic dynamics in such a way

that the evolution will typically display ‘irreversible behaviour’: i.e. an ‘approach to equilibrium’,

that a Boltzmann-like evolution equation holds, that there is a stochastic analogy of the H-theorem,

etc. In short, one would like to recover the autonomy and irreversibility that thermal systems in

non-equilibrium states typically display.

We will see that much of this can be achieved with relatively little effort once a crucial technical

assumption is in place: that the stochastic process is in fact a homogeneous Markov process, or,

equivalently, obeys a so-called master equation. Much harder are the questions of whether the central

assumptions of this approach might still be compatible with an underlying deterministic time-reversal

invariant dynamics, and in which sense the results of the approach embody time-asymmetry. In fact

we shall see that conflicting intuitions on this last issue arise, depending on whether one takes a

probabilistic or a dynamics point of view towards this formalism.

From a foundational point of view, stochastic dynamics promises a new approach to the explana-

tion of irreversible behaviour that differs in interesting ways from the more orthodox Hamiltonian or

dynamical systems approach. In that approach, any account of irreversible phenomena can only pro-

ceed by referring to special initial conditions or dynamical hypotheses. Moreover, it is well-known

that an ensemble of such systems will conserve (fine-grained) Gibbs entropy so that the account

cannot rely on this form of entropy for a derivation of the increase of entropy.

In stochastic dynamics, however, one may hope to find an account of irreversible behaviour that is

not tied to special initial conditions, but one that is, so to say, built into the very stochastic-dynamical

evolution. Further, since Liouville’s theorem is not applicable, there is the prospect that one can

obtain a genuine increase of Gibbs entropy from this type of dynamics.

As just mentioned, the central technical assumption in stochastic dynamics is that the processes

described have the Markov property.69 Indeed, general aspects of irreversible behaviour pour out

almost effortlessly from the Markov property, or from the closely connected “master equation”.

Consequently, much of the attention in motivating stochastic dynamics has turned to the assump-

tions needed to obtain this Markov property, or slightly more strongly, to obtain a non-invertible

Markov process (Mackey 1992). The best-known specimen of such an assumption is van Kam-

pen’s (1962) “repeated randomness assumption”. And similarly, critics of this type of approach

(Sklar 1993, Redhead 1995, Callender 1999) have also focused their objections on the question just

69Some authors argue that the approach can and should be extended to include non-Markovian stochastic processes as well.
Nevertheless I will focus here on Markov processes.
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how reasonable and general such assumptions are (cf. paragraph 7.5).

I believe both sides of the debate have badly missed the target. Many authors have uncritically

assumed that the assumption of a (non-invertible) Markov process does indeed lead to non-time-

reversal-invariant results. As a matter of fact, however, the Markov property (for invertible or non-

invertible Markov processes) is time-reversal invariant. So, any argument to obtain that property need

not presuppose time-asymmetry. In fact, I will argue that this discussion of irreversible behaviour

as derived from the Markov property suffers from an illusion. It is due to the habit of studying the

prediction of future states from a given initial state, rather than studying retrodictions towards an

earlier state. As we shall see, for a proper description of irreversibility in stochastic dynamics one

needs to focus on another issue, namely the difference between backward and forwards transition

probabilities.

In the next paragraphs, I will first (§7.2) recall the standard definition of a homogeneous Markov

process from the theory of stochastic processes. Paragraph 7.3 casts these concepts in the language

of dynamics, introduces the master equation, and discusses its analogy to the Boltzmann equation. In

§7.4, we review some of the results that prima facie display irreversible behaviour for homogeneous

Markov processes. In paragraph 7.5 we turn to the physical motivations that have been given for the

Markov property, and their problems, while §7.6 focuses on the question how seemingly irreversible

results could have been obtained from a time-symmetric assumptions. Finally, §7.7 argues that a

more promising discussion of these issues should start from a different definition of reversibility of

stochastic processes.

7.2 The definition of Markov processes

To start off, consider an example. One of the oldest discussions of a stochastic process in the physics

literature is the so-called ‘dog flea model’ of P. and T. Ehrenfest (1907).

Consider N fleas, labeled from 1 to N, situated on either of two dogs. The number of fleas on dog

1 and 2 are denoted as n1 and n2 = N−n1. Further, we suppose there is an urn with N lots carrying

the numbers 1, . . . N respectively. The urn is shaken, a lot is drawn (and replaced), and the flea with

the corresponding label is ordered to jump to the other dog. This procedure is repeated every second.

It is not hard to see that this model embodies an ‘approach equilibrium’ in some sense: Suppose

that initially all or almost all fleas are on dog 1. Then it is very probable that the first few drawings

will move fleas from dog 1 to 2. But as soon as the number of fleas on dog 2 increases, the probability

that some fleas will jump back to dog 1 increases too. The typical behaviour of, say, |n1 − n2| as a

function of time will be similar to Boltzmann’s H-curve, with a tendency of |n1 − n2| to decrease if

it was initially large, and to remain close to the ‘equilibrium’ value n1 ≈ n2 for most of the time. But

note that in contrast to Boltzmann’s H-curve in gas theory, the ‘evolution’ is here entirely stochastic,
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i.e. generated by a lottery, and that no underlying deterministic equations of motion are provided.

In general, a stochastic process is, mathematically speaking, nothing but a probability measure

P on a measure space X , whose elements will here be denoted as ξ, on which there are infinitely

many random variables Yt, with t ∈ R (or sometimes t ∈ Z). Physically speaking, we interpret t as

time, and Y as the macroscopic variable(s) characterizing the macrostate —say the number of fleas

on a dog, or the number of molecules with their molecular state in some cell of µ-space, etc. Further,

ξ represents the total history of the system which determines the values of Yt(ξ). The collection Yt

may thus be considered as a single random variable Y evolving in the course of time.

At first sight, the name ‘process’ for a probability measure may seem somewhat unnatural. From

a physical point of view it is the realization, in which the random variables Yt attain the values

Yt(ξ) = yt that should be called a process. In the mathematical literature, however, it has become

usual to denote the measure that determines the probability of all such realizations as a ‘stochastic

process’.

For convenience we assume here that the variables Yt may attain only finitely many discrete

values, say yt ∈ Y = {1, . . . , m}. However, the theory can largely be set up in complete analogy for

continuous variables.

The probability measure P provides, for n = 1, 2, . . ., and instants t1, . . . , tn definite probabili-

ties for the event that Yt at these instants attains certain values y1, . . . , yn:

P(1)(y1, t1)

P(2)(y2, t2; y1, t1)
...

P(n)(yn, tn; . . . ; y1, t1) (165)
...

Here, P(n)(yn, tn; . . . ; y1, t1) stands for the joint probability that at times t1, . . . , tn the quantities Yt

attain the values y1, . . . yn, with yi ∈ Y . It is an abbreviation for

P(n)(yn, tn; . . . ; y1, t1) := P ({ξ ∈ X : Ytn(ξ) = yn & · · · & Yt1(ξ) = y1}) (166)

Obviously the probabilities (165) are normalized and non-negative, and each P(n) is a marginal of

all higher-order probability distributions:

P(n)(yn, tn; . . . ; y1, t1) =
∑

yn+m

· · ·
∑
yn+1

P(n+m)(yn+m, tn+m; . . . ; y1, t1). (167)
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In fact, the probability measure P is uniquely determined by the hierarchy (165).70

Similarly, we may define conditional probabilities in the familiar manner, e.g.:

P(1|n−1)(yn, tn|yn−1, tn−1; . . . ; y1, t1) :=
P(n)(yn, tn; . . . ; y1, t1)

P(n−1)(yn−1, tn−1; . . . ; y1, t1)
(168)

provides the probability that Ytn attains the value yn, under the condition that Ytn−1 , . . . , Yt1 have

the values yn−1, . . . , y1.

In principle, the times appearing in the joint and conditional probability distributions (165,168)

may be chosen in an arbitrary order. However, we adopt from now on the convention that they are

ordered as t1 < · · · < tn.

A special and important type of stochastic process is obtained by adding the assumption that such

conditional probabilities depend only the condition at the last instant. That is to say: for all n and all

choices of y1, . . . yn and t1 < . . . < tn:

P(1|n)(yn, tn|yn−1, tn−1; . . . ; yn, tn) = P(1|1)(yn, tn|yn−1, tn−1) (169)

This is the Markov property and such stochastic processes are called Markov processes.

The interpretation often given to this assumption, is that Markov processes have ‘no memory’.

To explain this slogan more precisely, consider the following situation. Suppose we are given a piece

of the history of the quantity Y : at the instants t1, . . . , tn−1 its values have been y1, . . . , yn−1. On

this information, we want to make a prediction of the value yn of the variable Y at a later instant tn.

The Markov-property (169) says that this prediction would not have been better or worse if, instead

of knowing this entire piece of prehistory, only the value yn−1 of Y at the last instant tn−1 had been

given. Additional information about the past values is thus irrelevant for a prediction of the future

value.

For a Markov process, the hierarchy of joint probability distributions (165) is subjected to strin-

gent demands. In fact they are all completely determined by: (a) the specification of P(1)(y, 0) at one

arbitrary chosen initial instant t = 0, and (b) the conditional probabilities P(1|1)(y2, t2|y1, t1) for all

t2 > t1. Indeed,

P(1)(y, t) =
∑
y0

P(1|1)(y, t|y0, 0)P(1)(y0, 0); (170)

70At least, when we assume that the σ-algebra of measurable sets in X is the cylinder algebra generated by sets of the form
in the right-hand side of (166).
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and for the joint probability distributions P(n) we find:

P(n)(yn, tn; . . . ; y1, t1) = P(1|1)(yn, tn|yn−1, tn−1) P(1|1)(yn−1, tn−1|yn−2, tn−2)×
× · · · × P(1|1)(y2, t2|y1, t1)P(1)(y1, t1). (171)

It follows from the Markov property that the conditional probabilities P(1|1) have the following prop-

erty, known as the Chapman-Kolmogorov equation:

P(1|1)(y3, t3|y1, t1) =
∑
y2

P(1|1)(y3, t3|y2, t2)P(1|1)(y2, t2|y1, t1) for t1 < t2 < t3. (172)

So, for a Markov process, the hierarchy (165) is completely characterized by specifying P(1) at an

initial instant and a system of conditional probabilities P(1|1) satisfying the Chapman-Kolmogorov

equation. The study of Markov processes therefore focuses on these two ingredients.71

A following special assumption is homogeneity. A Markov process is called homogeneous if

the conditional probabilities P(1|1)(y2, t2|y1, t1) do not depend on the two times t1, t2 separately but

only on their mutual difference t = t2 − t1; i.e. if they are invariant under time translations. In this

case we may write

P(1|1)(y2, t2|y1, t1) = Tt(y2, y1) (173)

such conditional probabilities are also called transition probabilities.

Is the definition of a Markov process time-symmetric? The choice in (169) of conditionalizing

the probability distribution for Ytn on earlier values of Yt is of course special. In principle, there

is nothing in the formulas (165) or (168) that forces such an ordering. One might, just as well, ask

for the probability of a value of Yt in the past, under the condition that part of the later behaviour is

given (or, indeed, conditionalize on the behaviour at both earlier and later instants.)

At first sight, the Markov property makes no demands about these latter cases. Therefore, one

might easily get the impression that the definition is time-asymmetric. However, this is not the case.

One can show that (169) is equivalent to:

P(1|n−1)(y1, t1|y2, t2; . . . ; yn, tn) = P(1|1)(y1t1|y2, t2) (174)

where the convention t1 < t2 < · · · < tn is still in force. Thus, a Markov process does not only

have ‘no memory’ but also ‘no foresight’. Some authors (e.g. Kelly 1979) adopt an (equivalent)

71Note, however, that although every Markov process is fully characterized by (i) an initial distribution P(1)(y, 0) and (ii) a
set of transition probabilities P(1|1) obeying the Chapman-Kolmogorov equation and the equations (171), it is not the case that
every stochastic process obeying (i) and (ii) is a Markov process. (See (van Kampen 1981, p. 83) for a counterexample). Still,
it is true that one can define a unique Markov process from these two ingredients by stipulating (171).
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definition of a Markov process that is explicitly time-symmetric: Suppose that the value yi at an

instant ti somewhere in the middle of the sequence t1 < · · · < tn is given. The condition for a

stochastic process to be Markov is then

P(n|1)(yn, tn; . . . ; y1, t1|yi, ti) =

P(n−i|1)(yn, tn; . . . ; yi+1, ti+1|yi, ti) P(i−1|1)(yi−1, ti−1; y1, t1|yi, ti) (175)

for all n = 1, 2, . . . and all 1 ≤ i ≤ n. In another slogan: The future and past are independent if one

conditionalizes on the present.

7.3 Stochastic dynamics

A homogeneous Markov process is for t > 0 completely determined by the specification of an initial

probability distribution P(1)(y, 0) and the transition probabilities Tt(y2|y1) defined by (173). The

difference in notation (between P and T ) also serves to ease a certain conceptual step. Namely, the

idea is to regard Tt as a stochastic evolution operator. Thus, we can regard Tt(y2|y1) as the elements

of a matrix, representing a (linear) operator T that determines how an initial distribution P(1)(y, 0)

will evolve into a distribution at later instants t > 0. (In the sequel I will adapt the notation and write

P(1)(y, t) as Pt(y).)

Pt(y) = (TtP )(y) :=
∑

y′
Tt(y|y′)P0(y′). (176)

The Chapman-Kolmogorov equation (172) may then be written compactly as

Tt+t′ = Tt ◦ Tt′ for t, t′ ≥ 0 (177)

where ◦ stands for matrix multiplication, and we now also extend the notation to include the unit

operator:

11(y, y′) = T0(y, y′) := δy,y′ (178)

where δ denotes the Kronecker delta.

The formulation (177) can (almost) be interpreted as the group composition property of the evo-

lution operators T . It may be instructive to note how much this is due to the Markov property. Indeed,

for arbitrary conditional probabilities, say, if Ai, Bj and Ck denote three families of complete and

mutually exclusive events (i.e. ∪iAi = ∪jBj = ∪kCk = Y; Ai ∩ Ai′ = Bj ∩Bj′ = Ck ∩ Ck′ = ∅
for i 6= i′, j 6= j′ and k 6= k′), the rule of total probability gives :

P (Ai|Ck) =
∑

j

P (Ai|Bj , Ck)P (Bj |Ck). (179)
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In general, this rule can not be regarded as ordinary matrix multiplication or a group composition!

But the Markov property makes P (Ai|Bj , Ck) in (179) reduce to P (Ai|Bj), and then the summation

in (179) coincides with familiar rule for matrix multiplication.

I wrote above: ‘almost’, because there is still a difference in comparison with the normal group

property: in the Chapman-Kolmogorov-equation (177) all times must be positive. Thus, in general,

for t > 0, Tt may not even be defined and so it does not hold that

T−t ◦ Tt = 11. (180)

A family of operators {Tt, t ≥ 0}which is closed under a operation ◦ that obeys (177), and for which

T0 = 11 is called a semigroup. It differs from a group in the sense that its elements Tt need not be

invertible, i.e., need not have an inverse. The lack of an inverse of Tt may be due to various reasons:

either Tt does not possess an inverse, i.e. it is not a one-to-one mapping, or Tt does possess an inverse

matrix T inv
t , which however is itself non-stochastic (e.g. it may have negative matrix-elements). We

will come back to the role of the inverse matrices in Sections 7.4 and 7.7.

The theory of Markov processes has a strong and natural connection with linear algebra. Some-

times, the theory is presented entirely from this perspective, and one starts with the introduction of a

semigroup of stochastic matrices, that is to say, m by m matrices T with Tij ≥ 0 and
∑

i Tij = 1.

Or, more abstractly, one posits a class of states P , elements of a Banach space with a norm ‖P‖1 = 1,

and a semigroup of stochastic maps Tt, (t ≥ 0), subject to the conditions that Tt is linear, positive,

and preserves norm: ‖TtP‖1 = ‖P‖1, (cf. Streater 1995).

The evolution of a probability distribution P (now regarded as a vector or a state) is then partic-

ularly simple when t is discrete ( t ∈ N):

Pt = T tP0, where T t = T ◦ · · · ◦ T︸ ︷︷ ︸
t times

. (181)

Homogeneous Markov processes in discrete time are also known as Markov chains.

Clearly, if we consider the family {Tt} as a semigroup of stochastic evolution operators, or a

stochastic form of dynamics, it becomes attractive to look upon P0(y) as a contingent initial state,

chosen independently of the evolution operators Tt. Still, from the perspective of the probabilistic

formalism with which we started, this might be an unexpected thought: both P(1) and P(1|1) are

aspects of a single, given, probability measure P . The idea of regarding them as independent in-

gredients that may be specified separately doesn’t then seem very natural. But, of course, there is

no formal objection against the idea, since every combination of a system of transition probabili-

ties Tt obeying the Chapman-Kolmogorov equation, and an arbitrary initial probability distribution

P0(y) = P(1)(y, 0) defines a unique homogeneous Markov process (cf. footnote 71). In fact, one
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sometimes even goes one step further and identifies a homogeneous Markov process completely with

the specification of the transition probabilities, without regard of the initial state P0(y); just like the

dynamics of a deterministic system is usually presented without assuming any special initial state.

For Markov chains, the goal of specifying the evolution of Pt(y) is now already completely

solved in equation (181). In the case of continuous time, it is more usual to specify evolution by

means of a differential equation. Such an equation may be obtained in a straightforward manner

by considering a Taylor expansion of the transition probability for small times (van Kampen 1981,

p.101–103)— under an appropriate continuity assumption.

The result (with a slightly changed notation) is:

∂Pt(y)
∂t

=
∑

y′
(W (y|y′)Pt(y′)−W (y′|y)Pt(y)) (182)

Here, the expression W (y|y′) is the transition probability from y′ to y per unit of time. This differen-

tial equation, first obtained by Pauli in 1928, is called the master equation. (This name has become

popular because an equation of this type covers a great variety of processes.)

The interpretation of the equation is suggestive: the change of the probability Pt(y) is determined

by making up a balance between gains and losses: the probability of value y increases in a time dt

because of the transitions from y′ to y, for all possible values of y′. This increase per unit of time

is
∑

y′ W (y|y′)Pt(y′). But in same period dt there is also a decrease of Pt(y) as a consequence of

transitions from the value y to all other possible values y′. This provides the second term.

In this “balancing” aspect, the master equation resembles the Boltzmann equation (48), despite

the totally different derivation, and the fact that Pt(y) has quite another meaning than Boltzmann’s

ft(v). (The former is a probability distribution, the latter a distribution of particles.) Both are first-

order differential equations in t. A crucial mathematical distinction from the Boltzmann equation is

that the master equation is linear in P , and therefore much easier to solve.

Indeed, any solution of the master equation can formally be written as:

Pt = etLP0, (183)

where L represents the operator

L(y|y′) := W (y|y′)−
∑

y′′
W (y′′|y′)δy,y′ . (184)

The general solution (183) is similar to the discrete time case (181), thus showing the equivalence of

the master equation to the assumption of a homogeneous Markov process in continuous time.

A final remark(not needed for later paragraphs). The analogy with the Boltzmann equation can
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even be increased by considering a Markov process for particle pairs, i.e. by imagining a process

where pairs of particles with initial states (i, j) make a transition to states (k, l) with certain transition

probabilities (cf. Alberti & Uhlmann 1982, p. 30) Let W (i, j|k, l) denote the associated transition

probability per unit of time. Then the master equation takes the form:

∂Pt(i, j)
∂t

=
∑

k,l

(W (i, j|k, l)Pt(k, l)−W (k, l|i, j)Pt(i, j)) . (185)

Assume now that the transitions (i, j) −→ (k, l) and (k, l) −→ (i, j) are equally probable, so

that the transition probability per unit of time is symmetric: W (i, j|k, l) = W (k, l|i, j), and, as an

analogue to the Stoßzahlansatz, that P (i, j) in the right-hand side may be replaced by the product of

its marginals:

P (i, j) −→
∑

j

P (i, j) ·
∑

i

P (i, j) = P ′(i)P ′′(j) (186)

Summing the above equation (185) over j, we finally obtain

∂P ′t (i)
∂t

=
∑

j

∂Pt(i, j)
∂t

=
∑

j,k,l

T (i, j|k, l)
(
P ′t (k)P ′′t (l)− P ′t (i)P

′′
t (j)

)
, (187)

i.e., an even more striking analogue of the Boltzmann equation (48). But note that although (185)

describes a Markov process, the last equation (187) does not: it is no longer linear in P , as a conse-

quence of the substitution (186).

7.4 Approach to equilibrium and increase of entropy?

What can we say in general about the evolution of Pt(y) for a homogeneous Markov process? An

immediate result is this: the relative entropy is monotonically non-decreasing. That is to say, if we

define

H(P, Q) := −
∑

y∈Y
P (y) ln

P (y)
Q(y)

(188)

as the relative entropy of a probability distribution P relative to Q, then one can show (see e.g.

Moran 1961; Mackey 1991, p. 30):

H(Pt, Qt) ≥ H(P, Q) (189)

where Pt = TtP , Qt = TtQ, and Tt are elements of the semigroup (181) or (183).

One can also show that a non-zero relative entropy increase for at least some pair probability

distributions P and Q, the stochastic matrix Tt must be non-invertible.

The relative entropy H(P |Q) can, in some sense, be thought of as a measure of how much P and
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Q “resemble” each other.72 Indeed, it takes its maximum value (i.e. 0) if and only if P = Q; it may

become −∞ if P and Q have disjoint support, (i.e. when P (y)Q(y) = 0 for all y ∈ Y .) Thus, the

result (189) says that if the stochastic process is non-invertible, pairs of distributions Pt and Qt will

generally become more and more alike as time goes by.

Hence it seems we have obtained a general weak aspect of “irreversible behaviour” in this

framework. Of course, the above result does not yet imply that the ‘absolute’ entropy H(P ) :=

−∑
y P (y) ln P (y) of a probability distribution is non-decreasing. But now assume that the process

has a stationary state. In other words, there is a probability distribution P ∗(y) such that

TtP
∗ = P ∗. (190)

The intention is, obviously, to regard such a distribution as a candidate for the description of an

equilibrium state. If there is such a stationary distribution P ∗, we may apply the previous result and

write:

H(P, P ∗) ≤ H(TtP, TtP
∗) = H(Pt, P

∗). (191)

In other words, as time goes by, the distribution TtP will then more and more resemble the stationary

distribution than does P . If the stationary distribution is also uniform, i.e.:

P ∗(y) =
1
m

, (192)

then not only the relative but also the absolute entropy H(P ) := −∑
y P (y) ln P (y) increases,

because

H(P, P ∗) = H(P )− ln m. (193)

In order to get a satisfactory description of an ‘approach to equilibrium’ the following questions

remain:

(i) is there such a stationary distribution?

(ii) If so, is it unique?

(iii) does the monotonic behaviour of H(Pt) imply that limt−→∞ Pt = P ∗?

Harder questions, which we postpone to the next subsection 7.5, are:

(iv) how to motivate the assumptions needed in this approach or how to make judge their (in)compa-

tibility with an underlying time deterministic dynamics; and

(v) how this behaviour is compatible with the time symmetry of Markov processes.

72Of course, this is an asymmetric sense of “resemblance” because H(P, Q) 6= H(Q, P ).
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Ad (i). A stationary state as defined by (190), can be seen as an eigenvector of Tt with eigenvalue 1,

or, in the light of (183), an eigenvector of L for the eigenvalue 0. Note that T or L are not necessarily

Hermitian (or, rather, since we are dealing with real matrices, symmetric), so that the existence of

eigenvectors is not guaranteed by the spectral theorem. Further, even if an eigenvector with the

corresponding eigenvalue exists, it is not automatically suitable as a probability distribution because

its components might not be positive.

Still, it turns out that, due to a theorem of Perron (1907) and Frobenius (1909), every stochastic

matrix indeed has a eigenvector, with exclusively non-negative components, and eigenvalue 1 (see

e.g. Gantmacher 1959, Van Harn & Holewijn 1991). But if the set Y is infinite or continuous this is

not always true.

A well-known example of the latter case is the so-called Wiener process that is often used for the

description of Brownian motion. It is characterized by the transition probability density:

Tt(y|y′) =
1√
2πt

exp
(y − y′)2

2t
, y, y′ ∈ R. (194)

The evolution of an arbitrary initial probability density ρ0 can be written as a convolution:

ρt(y) =
∫

Tt(y|y′)ρ0(y′)dy′; (195)

which becomes gradually lower, smoother and wider in the course of time, but does not approach

any stationary probability density. Because this holds for every choice of ρ0, there is no stationary

distribution in this case.

However, it is not reasonable to see this as a serious defect. Indeed, in thermodynamics too one

finds that a plume of gas emitted into free space will similarly diffuse, becoming ever more dilute

without ever approaching an equilibrium state. Thermodynamic equilibrium is only approached for

systems enclosed in a vessel of finite volume.

However, for continuous variables with a range that has finite measure, the existence of a sta-

tionary distribution is guaranteed under the condition that the probability density ρy is at all times

bounded, i.e. ∃M ∈ R such that ∀t ρt ≤ M ; (see Mackey 1992, p. 36).

Ad (ii). The question whether stationary solutions will be unique is somewhat harder to tackle.

This problem exhibits an analogy to that of metric transitivity in the ergodic problem (cf. paragraph

6.1).

In general, it is very well possible that the range Y of Y can be partitioned in two disjoint regions,

say A and B, with Y = A ∪ B, such that there are no transitions from A to B or vice versa (or that

such transitions occur with probability zero). That is to say, the stochastic evolution Tt might have
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the property

Tt(Y ∈ A|Y ∈ B) = Tt(Y ∈ B|Y ∈ A) = 0 (196)

In other words, its matrix may, (perhaps after a conventional relabeling of the outcomes) be written

in the form: 
 TA 0

0 TB


 . (197)

The matrix is then called (completely) reducible. In this case, stationary distributions will generally

not be unique: If P ∗A is a stationary distribution with support in the region A, and P ∗B is a stationary

distribution with support in B, then every convex combination

αP ∗A(y) + (1− α)P ∗B(y) with 0 ≤ α ≤ 1. (198)

will be stationary too. In order to obtain a unique stationary solution we will thus have to assume

an analogue of metric transitivity. That is to say: we should demand that every partition of Y into

disjoint sets A and B for which (196) holds is ‘trivial’ in the sense that P (A) = 0 or P (B) = 0.

So, one may ask, is the stationary distribution P ∗ unique if and only if the transition probabilities

Tτ are not reducible? In the ergodic problem, as we saw in 6.1, the answer is positive (at least if P ∗

is assumed to be absolutely continuous with respect to the microcanonical measure). But not in the

present case!

This has to do with the phenomenon of so-called ‘transient states’, which has no analogy in

Hamiltonian dynamics. Let us look at an example to introduce this concept. Consider a stochastic

matrix of the form: 
 TA T ′

0 TB


 (199)

where T ′ is a matrix with non-negative entries only. Then:


 TA T ′

0 TB





 PA

0


 =


 TAPA

0


 ,


 TA T ′

0 TB





 0

PB


 =


 T ′PB

TBPB


 (200)

so that here transitions of the type a −→ b have probability zero, but transitions of the type b −→ a

occur with positive probability. (Here, a, b stand for arbitrary elements of the subsets A and B.) It

is clear that in such a case the region B will eventually be ‘sucked empty’. That is to say: the total

probability of being in region B (i.e. ‖T tPB‖) will go exponentially to zero. The distributions with

support in B are called ‘transient’ and the set A is called ‘absorbing’ or a ‘trap’.

It is clear that these transient states will not play any role in the determination of the stationary

distribution, and that for this purpose they might be simply ignored. Thus, in this example, the only
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stationary states are those with a support in A. And there will be more than one of them if TA is

reducible.

A matrix T that may be brought (by permutation of the rows and columns) in the form (199),

with TA reducible is called incompletely reducible (van Kampen 1981, p. 108). Further, a stochastic

matrix is called irreducible if it is neither completely or incompletely reducible. An alternative

(equivalent) criterion is that all states ‘communicate’ with each other, i.e. that for every pair of i, j ∈
Y there is some time t such that Pt(j|i) > 0.

The Perron-Frobenius theorem guarantees that as long as T irreducible, there is a unique station-

ary distribution. Furthermore, one can then prove an analogue of the ergodic theorem:(Petersen

1983, p. 52)

ERGODIC THEOREM FOR MARKOV PROCESSES: If the transition probability Tt is irre-

ducible, the time average of Pt converges to the unique stationary solution:

lim
τ→∞

1
τ

∫ τ

0

TtP (y)dt = P ∗(y). (201)

Ad (iii). If there is a unique stationary distribution P ∗, will TtP converge to P ∗, for every choice

of P ? Again, the answer is not necessarily affirmative. (Even if (201) is valid!) For example,

there are homogeneous and irreducible Markov chains for which Pt can be divided into two pieces:

Pt = Qt + Rt with the following properties (Mackey 1992, p. 71):

1. Qt is a term with ‖Qt‖ −→ 0. This is a transient term.

2. The remainder Rt is periodic, i.e. after some finite time τ the evolution repeats itself: Rt+τ =

Rτ .

These processes are called asymptotically periodic. They may very well occur in conjunction with

a unique stationary distribution P ∗, and show strict monotonic increase of entropy, but still not

converge to P ∗. In this case, the monotonic increase of relative entropy H(Pt, P
∗) is entirely due

to the transient term. For the periodic piece Rt, the transition probabilities are permutation matrices,

which, after τ repetitions, return to the unit operator.

Besides, if we arrange that P ∗ is uniform, we can say even more in this example: The various

forms Rt that are attained during the cycle of permutations with period τ all have the same value for

the relative entropy H(Rt, P
∗), but this entropy is strictly lower than H(P ∗, P ∗) = 0. In fact, P ∗ is

the average of the Rt’s, i.e.: P ∗ = 1
τ

∑t=τ
t=1 Rt, in correspondence with (201).

Further technical assumptions can be introduced to block examples of this kind, and thus en-

force a strict convergence towards the unique stationary distribution, e.g. by imposing a condition of

‘exactness’ (Mackey 1992). However, it would take us too far afield to discuss this in detail.
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In conclusion, it seems that a weak aspect of ”irreversible behaviour”, i.e. the monotonic non-

decrease of relative entropy is a general feature for all homogeneous Markov processes, (and indeed

for all stochastic processes), and non-trivially so when the transition probabilities are non-invertible.

Stronger versions of that behaviour, in the sense of affirmative answers to the questions (i), (ii) and

(iii), can be obtained too, but at the price of additional technical assumptions.

7.5 Motivations for the Markov property and objections against them

(ad iv). We now turn to the following problem: what is the motivation behind the assumption

of the Markov property? The answer, of course, is going to depend on the interpretation of the

formalism that one has in mind, and may be different in the ‘coarse-graining’ and the ‘open systems’

or interventionist approaches (cf. Section 7.1). I shall discuss the coarse-graining approach in the

next paragraph below, and then consider the similar problem for the interventionist point of view .

7.5.1 Coarse-graining and the repeated randomness assumption

In the present point of view, one assumes that the system considered is really an isolated Hamiltonian

system, but the Markov property is supposedly obtained from a partitioning of its phase space. But

exactly how is that achieved?

One of the clearest and most outspoken presentations of this view is (van Kampen 1962). As

in paragraph 5.4, we assume the existence of some privileged partition of the Hamiltonian phase

space Γ —or of the energy hypersurface ΓE— into disjoint cells: Γ = ω1 ∪ · · · ∪ ωm. Consider an

arbitrary ensemble with probability density ρ on this phase space. Its evolution can be represented

by an operator

U∗
t ρ(x) := ρ(U−tx), (202)

where, —in order to avoid conflation of notation— we now use Ut to denote the Hamiltonian evo-

lution operators, previously denoted as Tt, e.g. in (68) and throughout section 6. Let transition

probabilities between the cells of this partition be defined as

Tt(j|i) := P (xt ∈ ωj |x ∈ ωi) = P (Utx ∈ ωj |x ∈ ωi) =

∫

(U−tωj)∩ωi

ρ(x)dx

∫
ωi

ρ(x)dx
, (203)

Obviously such transition probabilities will be homogeneous, due to the time-translation invari-

ance of the Hamiltonian evolution Ut. Further, let p̂0(i) := P (x ∈ ωi) =
∫

ωi
ρ(x)dx, i ∈ Y =

{1, . . . ,m}, be an arbitrary initial coarse-grained probability distribution at time t=0.

Using the coarse-graining map defined by (92), one may also express the coarse-grained distri-
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bution at time t as

CGU∗
t ρ(x) =

∑

ji

Tt(j|i)p̂0(i)
1

µ(ωj)
11ωj (x) (204)

where µ is the canonical measure on Γ, or the microcanonical measure on ΓE . This expression

indicates that, as long as we are only interested in the coarse grained history, it suffices to know the

transition probabilities (203) and the initial coarse grained distributions.

But in order to taste the fruits advertised in the previous paragraphs, one needs to show that

the transition probabilities define a Markov process, i.e., that they obey the Chapman-Kolmogorov

equation (172),

Tt′+t(k|i) = Tt′(k|j)Tt(j|i); for all t, t′ > 0. (205)

Applying (204) for times t, t′ and t + t′, it follows easily that the Chapman-Kolmogorov equation is

equivalent to

CGU∗
t′+t = CGU∗

t′ CGU∗
t , for all t, t′ > 0. (206)

In other words, the coarse-grained probability distribution at time t + t′ can be obtained by first

applying the Hamiltonian dynamical evolution during a time t, then performing a coarse-graining

operation, next applying the dynamical evolution during time t′, and then coarse-graining again. In

comparison to the relation U∗
t′+t = U∗

t′U
∗
t , we see that the Chapman-Kolmogorov condition can be

obtained by demanding that it is allowed to apply a coarse-graining, i.e. to reshuffle the phase points

within each cell at any intermediate stage of the evolution. Of course, this coarse-graining halfway

during the evolution erases all information about the past evolution apart from the label of the cell

where the state is located at that time; and this ties in nicely with the view of the Markov property as

having no memory (cf. the discussion on p. 125).

What is more, the repeated application of the coarse-graining does lead to a monotonic non-

decrease of the Gibbs entropy: If, for simplicity, we divide a time interval into m segments of duration

τ , we have

ρmτ = CGU∗
τ CGU∗

τ · · · CGU∗
τ︸ ︷︷ ︸

m times

ρ (207)

and from (96):

σ[ρmτ ] ≥ σ[ρ(m−1)τ ] ≥ . . . ≥ σ[ρτ ] ≥ σ[ρ0]. (208)

But since the choice of τ is arbitrary, we may conclude that σ[ρt] is monotonically non-decreasing.

Thus, van Kampen argues, the ingredient to be added to the dynamical evolution is that, at any

stage of the evolution, one should apply a coarse-graining of the distribution. It is important to note

that it is not sufficient to do that just once at a single instant. At every stage of the evolution we need

to coarse-grain the distribution again and again. Van Kampen (1962, p. 193) calls this the repeated
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randomness assumption.

What is the justification for this assumption? Van Kampen points out that it is “not unreasonable”

(ibid., p. 182), because of the brute fact of its success in phenomenological physics. Thermodynamics

and other phenomenological descriptions of macroscopic systems (the diffusion equation, transport

equations, hydrodynamics, the Fokker-Planck equation, etc.) all characterize macroscopic systems

with a very small number of variables. This means that their state descriptions are very coarse in

comparison with the microscopic phase space. But their evolution equations are autonomous and

deterministic: the change of the macroscopic variables is given in terms of the instantaneous values

of those very same variables. The success of these equations shows, apparently, that the precise

microscopic state does not add any relevant information beyond this coarse description. At the same

time, van Kampen admits that the coarse-graining procedure is clearly not always successful. It is

not difficult to construct a partition of a phase space into cells for which the Markov property fails

completely.

Apparently, the choice of the cells must be “just right” (van Kampen 1962, p. 183). But there

is as yet no clear prescription how this is to be done. Van Kampen (1981, p. 80) argues that it is

“the art of the physicist” to find the right choice, an art in which he or she succeeds in practice by a

mixture of general principles and ingenuity, but where no general guidelines can be provided. The

justification of the repeated randomness assumption is that it leads to the Markov property and from

there onwards to the master equation, providing a successful autonomous, deterministic description

of the evolution of the coarse-grained distribution.

It is worth noting that van Kampen thus qualifies the ‘usual’ point of view (cf. p. 58 above,

and paragraph 5.4) on the choice of the cells; namely, that the cells are chosen in correspondence

to our finite observation capabilities. Observability of the macroscopic variables is not sufficient

for the success of the repeated randomness assumption. It is conceivable (and occurs in practice)

that a particular partition in terms of observable quantities does not lead to a Markov process. In

that case, the choice of observable variables is simply inadequate and has to be extended with other

(unobservable) quantities until we (hopefully) obtain an exhaustive set, i.e. a set of variables for

which the evolution can be described autonomously. An example is the spin-echo experiment: the

(observable) total magnetization of the system does not provide a suitable coarse-grained description.

For further discussion of this theme, see: (Blatt 1959, Ridderbos & Redhead 1998, Lavis 2004, Balian

2005).

Apart from the unsolved problem for which partition the repeated randomness assumption is to be

applied, other objections have been raised against the repeated randomness assumption. Van Kampen

actually gives us not much more than the advice to accept the repeated randomness assumption

bravely, not to be distracted by its dubious status, and firmly keep our eyes on its success. For
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authors as Sklar (1993), who refers to the assumption as a ”rerandomization posit”, this puts the

problem on its head. They request a justification of the assumption that would explain the success

of the approach. (Indeed, even van Kampen (1981, p. 80) describes this success as a “miraculous

fact”!). Such a request, of course, will not be satisfied by a justification that relies on its success.

(But that does not mean, in my opinion, that it is an invalid form of justification.)

Another point that seems repugnant to many authors, is that the repeated coarse-graining opera-

tions appear to be added ‘by hand’, in deviation from the true dynamical evolution provided by Ut.

The increase of entropy and the approach to equilibrium would thus apparently be a consequence of

the fact that we shake up the probability distribution repeatedly in order to wash away all information

about the past, while refusing a dynamical explanation for this procedure. Redhead (1995, p. 31)

describes this procedure as “one of the most deceitful artifices I have ever come across in theoretical

physics” (see also Blatt (1959) Sklar (1993) and Callender (1999) for similar objections).

One might ask whether the contrast between the repeated randomness assumption and the dy-

namical evolution need so bleak as Van Kampen and his critics argue. After all, as we have seen in

paragraph 6.2.3, there are dynamical systems so high in the ergodic hierarchy that they possess the

Bernoulli property for some partition of phase space (cf. paragraph 6.2.3). Since the Markov prop-

erty is weaker than the Bernoulli property, one may infer there are also dynamical systems whose

coarse grained evolutions define a homogeneous Markov process.73 Thus one might be tempted to

argue that the Markov property, or the repeated randomness assumption proposed to motivate it, need

not require a miraculous intervention from an external ‘hand’ that throws information away; a suffi-

ciently complex deterministic dynamics on the microscopic phase space of the system might do the

job all by itself. However, the properties distinguished in the ergodic hierarchy all rely on a given

measure-preserving evolution. Thus, while some dynamical systems may have the Markov property,

they only give rise to stationary Markov processes. Its measure-preserving dynamics still implies

that the Gibbs entropy remains constant. Thus, the result (208) can only be obtained in the case when

all inequality signs reduce to equalities. To obtain a non-trivial form of coarse-graining, we should

indeed suspend the measure-preserving dynamics.

In conclusion,!!! although the choice of a privileged partition remains an unsolved problem, there

need not be a conflict between the repeated randomness assumption and the deterministic character

of the dynamics at the microscopic level. However, whether the assumption (206) might actually

hold for Hamiltonian systems interesting for statistical mechanics is, as far as I know, still open.

73Strictly speaking this is true only for discrete dynamical systems. For continuous time, e.g. for Hamiltonian dynamics,
the Markov property can only be obtained by adding a time smoothing procedure to the repeated randomness assumption
(Emch 1965),(Emch & Liu 2001, pp. 484–486).
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7.5.2 Interventionism or ‘open systems’

Another approach to stochastic dynamics is by reference to open systems. The idea is here that the

system in continual interaction with the environment, and that this is responsible for the approach to

equilibrium.

Indeed, it cannot be denied that in concrete systems isolation is an unrealistic idealization. The

actual effect of interaction with the environment on the microscopic evolution can be enormous. A

proverbial example, going back to Borel (1914), estimates the gravitational effect caused by displac-

ing one gram of matter on Sirius by one centimeter on the microscopic evolution of an earthly cylin-

der of gas. Under normal conditions, the effect is so large, that, roughly and for a typical molecule

in the gas, it may be decisive for whether or not this molecule will hit another given molecule after

about 50 intermediary collisions. That is to say: microscopic dynamical evolutions corresponding to

the displaced and the undisplaced matter on Sirius start to diverge considerably after a time of about

10−6 sec. In other words, the mechanical evolution of such a system is so extremely sensitive for

disturbances of the initial state that even the most minute changes in the state of the environment

can be responsible for large changes in the microscopic trajectory. But we cannot control the state

of environment. Is it possible to regard irreversible behaviour as the result of such uncontrollable

disturbances from outside?74

Let (x, y) be the state of a total system, where, as before, x ∈ Γ(s) represents the state of the

object system and y ∈ Γ(e) that of the environment. We assume that the total system is governed by

a Hamiltonian of the form

Htot(x, y) = H(s) + H(e) + λHint(x, y), (209)

so that the probability density of the ensemble of total systems evolves as

ρt(x, y) = U∗
t ρ0(x, y) = ρ (U−t(x, y)) (210)

i.e., a time-symmetric, deterministic and measure-preserving evolution.

At each time, we may define marginal distributions for both system and environment:

ρ
(s)
t (x) =

∫
dy ρt(x, y), (211)

ρ
(e)
t (x) =

∫
dx ρt(x, y). (212)

74Note that the term ‘open system’ is employed here for a system in (weak) interaction with its environment. This should
be distinguished from the notion of ‘open system’ in other branches of physics where it denotes a system that can exchange
particles with its environment.
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We are, of course, mostly interested in the object system, i.e. in (211). Assume further that at time

t = 0 the total density factorizes:

ρ0(x, y) = ρ
(s)
0 (x)ρ(e)

0 (y). (213)

What can we say about the evolution of ρ
(s)
t (x)? Does it form a Markov process, and does it show

increase of entropy?

An immediate result (see e.g. Penrose & Percival 1962) is this:

σ[ρ(s)
t ] + σ[ρ(e)

t ] ≥ σ[ρ(s)
0 ] + σ[ρ(e)

0 ], (214)

where σ denotes the Gibbs fine-grained entropy (90). This result follows from the fact that σ[ρt] is

conserved and that the entropy of a joint probability distribution is always smaller than or equal to the

sum of the entropies of their marginals; with equality if the joint distribution factorizes. This gives a

form of entropy change for the total system, but it is not sufficient to conclude that the object system

itself will evolve towards equilibrium, or even that its entropy will be monotonically increasing.

(Notice that (214) holds for t ≤ 0 too.)

Actually, this is obviously not to be expected. There are interactions with an environment that

may lead the system away from equilibrium. We shall have to make additional assumptions about

the situation. A more or less usual set of assumptions is:

(a). The environment is very large (or even infinite); i.e.: the dimension of Γ(e) is much larger than

that of Γ(s), and H(s) ¿ H(e).

(b). The coupling between the system and the environment is weak, i.e. λ is very small.

(c). The environment is initially in thermal equilibrium, e.g., ρ(e)(y) is canonical:

ρ
(e)
0 =

1
Z(β)

e−βH(e)
(215)

(d). One considers time scales only that are long with respect to the relaxation times of the envi-

ronment, but short with respect to the Poincaré recurrence time of the total system.

Even then, it is a major task to obtain a master equation for the evolution of the marginal state (211)

of the system, or to show that its evolution is generated by a semigroup, which would guarantee that

this forms a Markov process (under the proviso of footnote 71). Many specific models have been

studied in detail (cf. Spohn 1980). General theorems were obtained (although mostly in a quantum

mechanical setting) by (Davies 1974, Davies 1976a, Lindblad 1976, Gorini et al. 1976). But there

is a similarly to the earlier approach: it seems that, here too, an analogue of ‘repeated randomness’

must be introduced. (Mehra & Sudarshan 1972, van Kampen 1994, Maes & Netočný 2003).
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At the risk of oversimplifying and misrepresenting the results obtained in this analysis, I believe

they can be summarized as showing that, in the so-called ‘weak coupling’ limit, or some similar

limiting procedure, the time development of (211) can be modeled as

ρ
(s)
t (x) = Ttρ

(s)(x) t ≥ 0, (216)

where the operators Tt form a semigroup, while the environment remains in its steady equilibrium

state:

ρ
(e)
t (y) = ρ

(e)
0 (y) t ≥ 0. (217)

The establishment of these results would also allow one to infer, from (214), the monotonic non-

decrease of entropy of the system.

To assess these findings, it is convenient to define, for a fixed choice of ρ
(e)
0 the following linear

map on probability distributions of the total system:

T R : ρ(x, y) 7→ T Rρ(x, y) =
∫

ρ(x, y)dy · ρ0(y) (218)

This map removes the correlation between the system and the environment, and projects the marginal

distribution of the environment back to its original equilibrium form.

Now, it is not difficult to see that the Chapman-Kolmogorov equation (which is equivalent to the

semigroup property) can be expressed as

T RU∗
t+t′ = T RU∗

t′T RU∗
t for all t, t′ ≥ 0 (219)

which is analogous to (206).

There is thus a strong formal analogy between the coarse-graining and the open-systems ap-

proaches. Indeed, the variables of the environment play a role comparable to the internal coordinates

of a cell in the coarse graining approach. The exact microscopic information about the past is here

translated into the form of correlations with the environment. This information is now removed by

assuming that at later times, effectively, the state may be replaced by a product of the form (213), ne-

glecting the back-action of the system on the environment. The mappings CG and T R are both linear

and idempotent mappings, that can be regarded as special cases of the projection operator techniques

of Nakajima and Zwanzig, which allows for a more systematical and abstract elaboration, sometimes

called subdynamics.

Some proponents of the open systems approach, (e.g. Morrison 1966, Redhead 1995), argue that

in contrast to the coarse-graining approach, the present procedure is ‘objective’. Presumably, this

means that there is supposed to be a fact of the matter about whether the correlations are indeed
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‘exported to the environment’. However, the analogy between both approaches makes one suspect

that any problem for the coarse-graining approach is translated into an analogous problem of the

open systems approach. Indeed, the problem of finding a privileged partition that we discussed in

the previous paragraph is mirrored here by the question where one should place the division between

the ‘system’ and ‘environment’. There is no doubt that it practical applications this choice is also

arbitrary.

7.6 Can the Markov property explain irreversible behaviour?

Ad (v). Finally, I turn to what may well be the most controversial and surprising issue: is the

Markov property, or the repeated randomness assumption offered to motivate it, responsible for the

derivation of time-reversal non-invariant results?

We have seen that every non-invertible homogeneous Markov process displays “irreversible be-

haviour” in the sense that different initial probability distributions will tend to become more alike

in the course of time. Under certain technical conditions, one can obtain stronger results, e.g. an

approach to a unique equilibrium state, monotonic non-decrease of absolute entropy, etc. All these

results seem to be clearly time-asymmetric. And yet we have also seen that the Markov property is

explicitly time symmetric. How can these be reconciled?

To start off, it may be noted that it has often been affirmed that the Markov property is the key

towards obtaining time-asymmetric results. For example, Penrose writes:

“ . . . the behaviour of systems that are far from equilibrium is not symmetric under time

reversal: for example: heat always flows from a hotter to a colder body, never from

a colder to a hotter. If this behaviour could be derived from the symmetric laws of

dynamics alone there would, indeed, be a paradox; we must therefore acknowledge the

fact that some additional postulate, non-dynamical in character and asymmetric under

time reversal must be adjoined to the symmetric laws of dynamics before the theory can

become rich enough to explain non-equilibrium behaviour. In the present theory, this

additional postulate is the Markov postulate” (Penrose 1970, p. 41).

In the previous paragraph, we have already questioned the claim expressed here that the Markov

property is “non-dynamical”. But now we are interested in the question whether postulating the

Markov property would be asymmetric under time-reversal. Many similar statements, e.g. that the

repeated randomness assumption is “the additional element by which statistical mechanics has to be

supplemented in order to obtain irreversible equations” (van Kampen 1962, p. 182), or that the non-

invertibility of a Markov process provides the origin of thermodynamic behaviour (Mackey 1992)

can be found in the works of advocates of this approach.
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But how can this be, given that the Markov property is explicitly time-symmetric? In order to

probe this problem, consider another question. How does a given probability distribution P (y, 0)

evolve for negative times? So, starting again from (170), let us now take t ≤ 0. We still have:

P (y, t) =
∑

y′
P (y, t, |y′, 0)P (y′, 0). (220)

These conditional probabilities P (y, t, |y′, 0) satisfy the ‘time-reversed’ Markov property (174), that

says that extra specification of later values is irrelevant for the retrodiction of earlier values. As a

consequence, we get for t ≤ t′ ≤ t′′, 0:

P (y, t|y′′, t′′) =
∑

y′
P (y, t|y′, t′)P (y′, t′|y′′, t′′) (221)

i.e., a time-reversed analogue of the Chapman-Kolmogorov equation.

We may thus also consider these conditional probabilities for negative times as backward evolu-

tion operators. If we could assume their invariance under time translation, i.e. that they depend only

on the difference τ = t− t′, we could write

Sτ (y|y′) := P (y, t|y, t′) with τ = t− t′ ≤ 0, (222)

and obtain a second semigroup of operators Sτ , obeying

Sτ+τ ′ = Sτ ◦ Sτ ′ τ, τ ′ ≤ 0 (223)

that generate stochastic evolutions towards the past.

Further, these backward conditional probabilities are connected to the forward conditional prob-

abilities by means of Bayes’ theorem:

P(1|1)(y, t|y′, t′) =
P(1|1)(y′, t′|y, t)P (y, t)

P (y′, t′)
; (224)

and if the process, as before, is homogeneous this becomes

P(1|1)(y, t|y′, t′) =
T−τ (y′|y)Pt(y)

Pt′(y′)
; τ = t− t′ < 0. (225)

The matrix P(1|1)(y, t|y′, t′) always gives for t < t′ the correct ‘inversion’ of Tt. That is to say:

∑

y′
P (y, t|y′, t′)(Tt′−tPt)(y′) = Pt(y) (226)
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Note firstly that (225) is not the matrix-inverse of Tt! Indeed, the right-hand side of (225) depends

on Pt and Pt′ as well as T . Even if the matrix-inverse T (inv) does not exist, or is not a bona fide

stochastic matrix, the evolution towards the past is governed by the Bayesian inversion, i.e. by the

transition probabilities (225).

Note also that if the forward transition probabilities are homogeneous, this is not necessarily so

for the backward transition probabilities. For example, if in (225) one translates both t and t′ by δ,

one finds

P (y, t + δ|y′, t′ + δ) =
T−τ (y′|y)P (y, t + δ)

P (y′, t′ + δ)
.

Here, the right-hand side generally still depends on δ. In the special case that the initial distribution

is itself stationary, the backward transition probabilities are homogeneous whenever the forward

ones are. If P (y, t) is not stationary, we might still reach the same conclusion, as long as the non-

stationarity is restricted to those elements y or y′ of Y for which Tt(y|y′) = 0 for all t. Otherwise,

the two notions become logically independent.

This gives rise to an unexpected new problem. Usually, an assumption of homogeneity (or time

translation invariance) is seen as philosophically innocuous, as compared to time reversal invariance.

But here we see that assuming time translation invariance for a system of forward transition proba-

bilities is not equivalent to assuming the same invariance for the backward transition probabilities. If

one believes that one of the two is obvious, how will one go about explaining the failure of the other?

And how would one explain the preference for which one of the two is obvious, without falling into

the “double standards” accusation of the kind raised by (Price 1996)?

But what about entropy increase? We have seen before that for every non-invertible Markov pro-

cess the relative entropy of the distribution P with respect to the equilibrium distribution increases,

and that the distribution evolves towards equilibrium. (Homogeneity of the process is not needed for

this conclusion.) But the backward evolution operators form a Markov process too, for which exactly

the same holds. This seems paradoxical. If TtP0 = Pt, we also have Pt = S−tP0. The entropy of Pt

can hardly be both higher and lower than that of P0! An example may clarify the resolution of this

apparent problem: namely, the stationary solutions of S are not the same as the stationary solutions

of T !

Example Consider a Markov chain with Y = {1, 2} and let

T =




1
2

1
2

1
2

1
2


 . (227)
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Choose an initial distribution P0 =


 α

1− α


. After one step we already get

TP =




1
2

1
2


 (228)

which is also the (unique) stationary distribution P ∗. The backward transition probabilities are given

by Bayes’ theorem, and one finds easily:

S =


 α α

1− α 1− α


 . (229)

The stationary distribution for this transition probability is

P̃ ∗ =


 α

1− α


 . (230)

That is to say: for the forward evolution operator the transition


 α

1− α


 T−→




1
2

1
2


 (231)

is one for which a non-stationary initial distribution evolves towards a stationary one. The relative

entropy increases: H(P0, P
∗) ≤ H(TP, P ∗). But for the backward evolution, similarly:




1
2

1
2


 S−→


 α

1− α


 (232)

represents an evolution from a non-stationary initial distribution to the stationary distribution P̃ ∗ and,

here too, relative entropy increases: H(P1, P̃
∗) ≤ H(P0, P̃

∗).

The illusion that non-invertible Markov processes possess a built-in time-asymmetry is (at least

partly) due to the habit of regarding Tτ as a fixed evolution operator on an independently chosen dis-

tribution P0. Such a view is of course very familiar in other problems in physics, where deterministic

evolution operators generally do form a group and may be used, at our heart’s desire, for positive and

negative times.

Indeed, the fact that these operators in general have no inverse might seem to reflect the idea that

Markov processes have no memory and ‘loose information’ along the way and that is the cause of
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the irreversible behaviour, embodied in the time-asymmetric master equation, increase of relative or

absolute entropy or approach to equilibrium. But actually, every Markov process has apart from a

system of forward, also a system of backward transition probabilities, that again forms a semigroup

(when they are homogeneous). If we had considered them as given we would get all conclusions we

obtained before, but now for negative times.

I conclude that irreversible behaviour is not built into the Markov property, or in the non-invertibility

of the transition probabilities, (or in the repeated randomness assumption75, or in the Master equation

or in the semigroup property). Rather the appearance of irreversible behaviour is due to the choice

to rely on the forward transition probabilities, and not the backward. A similar conclusion has been

reached before (Edens 2001) in the context of proposals of Prigogine and his coworkers. My main

point here is that the same verdict also holds for more ‘mainstream’ approaches as coarse-graining

or open systems.

7.7 Reversibility of stochastic processes

In order not to end this chapter on a destructive note, let me emphasize that I do not claim that the

derivation of irreversible behaviour in stochastic dynamics is impossible. Instead, the claim is that

motivations for desirable properties of the forward transition probabilities are not enough; one ought

also show that these properties are lacking for the backward transitions.

In order to set up the problem of irreversibility in this approach to non-equilibrium statistical me-

chanics for a more systematic discussion, one first ought to provide a reasonable definition for what

it means for a stochastic process to be (ir)reversible; a definition that would capture the intuitions

behind its original background in Hamiltonian statistical mechanics.

One general definition that seems to be common (cf. Kelly 1979 p. 5) is to call a stochastic

process reversible iff, for all n and t1, . . . , tn and τ :

P(n)(y1, t1; . . . ; yn, tn) = P(n)(y1, τ − tn; . . . ; yn, τ − tn). (233)

See Grimmett & Stirzaker 1982, p. 219) for a similar definition restricted to Markov processes) The

immediate consequence of this definition is that a stochastic process can only be reversible if the

single-time probability P(1)(y, t) is stationary, i.e. in statistical equilibrium. Indeed, this definition

seems to make the whole problem of reconciling irreversible behaviour with reversibility disappear.

75In recent work, van Kampen acknowledges that the repeated randomness assumption by itself does not lead to irreversi-
bility: “This repeated randomness assumption [. . . ] breaks the time symmetry by explicitly postulating the randomization at
the beginning of the time interval ∆t. There is no logical justification for this assumption other than that it is the only thing
one can do and that it works. If one assumes randomness at the end of each ∆t coefficients for diffusion, viscosity, etc. appear
with the wrong sign; if one assumes randomness at the midpoint no irreversibility appears” (van Kampen 2002, p.475, original
emphasis).
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As Kelly (1979, p. 19) notes in a discussion of the Ehrenfest model: “there is no conflict between

reversibility and the phenomenon of increasing entropy — reversibility is a property of the model in

equilibrium and increasing entropy is a property of the approach to equilibrium”

But clearly, this view trivializes the problem, and therefore it is not the appropriate definition for

non-equilibrium statistical mechanics. Recall that the Ehrenfest dog flea model (§7.2) was originally

proposed in an attempt of showing how a tendency of approaching equilibrium from a initial non-

equilibrium distribution (e.g. a probability distribution that gives probability 1 to the state that all fleas

are located on the same dog) could be reconciled with a stochastic yet time-symmetric dynamics.

If one wants to separate considerations about initial conditions from dynamical considerations

at all, one would like to provide a notion of (ir)reversibility that is associated with the stochastic

dynamics alone, independent of the initial distribution is stationary.

It seems that an alternative definition which would fulfill this intuition is to say that a stochastic

process is reversible if, for all y and y′ and t′ > t,

P(1|1)(y, t|y′, t′) = P(1|1)(y, t′|y′, t). (234)

In this case we cannot conclude that the process must be stationary, and indeed, the Ehrenfest model

would be an example of a reversible stochastic process. I believe this definition captures the intuition

that if at some time state y′ obtains, the conditional probability of the state one time-step earlier being

y is equal to that of the state one time-step later being y.

According to this proposal, the aim of finding the “origin” of irreversible behaviour or “time’s

arrow”, etc. in stochastic dynamics must then lie in finding and motivating conditions under which

the forward transition probabilities are different from the backwards transition probabilities, in the

sense of a violation of (234). Otherwise, irreversible behaviour would essentially be a consequence

of the assumptions about initial conditions, a result that would not be different in principle from

conclusions obtainable from Hamiltonian dynamics.
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Boltzmann, L. (1866). Über die Mechanische Bedeutung des Zweiten Hauptsatzes der Wärmetheorie.
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schaften, Vol V-1, pp. 493–557.
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100, 253-280. English translation in (Brush 1966), Vol.1. pp. 111–134.

Clausius, R. (1862). ‘Ueber die Anwendung des Satzes von der Aequivalenz der Verwandlungen auf
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(Ed.). Leipzig: Teubner.

Kirsten, C. & H.-G. Körber, (1975). Physiker über Physiker, Berlin: Akademie-Verlag.

Klein, M.J. (1970). Maxwell, his demon and the second law of thermodynamics, American Scientist

58, 82–95, 1970; also in (Leff & Rex 1987, pp. 59–72).

Klein, M.J. (1972). Mechanical explanation at the end of the nineteenth century. Centaurus, 17,

58–82.

Klein, M.J. (1973). The Development of Boltzmann’s Statistical Ideas. In E.G.D. Cohen &

W. Thirring (eds.), The Boltzmann equation, Wien: Springer, pp. 53–106.

Klein, M.J. (1974). Boltzmann, monocycles and mechanical explanation. In R.J. Seeger & R.S. Co-

hen (Eds.), Philsophical foundations of science; Boston Studies in the Philosophy of Science XI

Dordrecht: Reidel, pp. 155–175.

Klein, M.J. (1978). The thermostatics of J. Willard Gibbs: atyransformation of thermoidynamics. In

E.G. Forbes (Ed.) Human implications of scientific advance. Edinburgh: Edinburgh University

Press, pp. 314–330.

Kroes, P.A. (1985). Time: its structure and role in physical theories. Dordrecht: Reidel.

157



Kurth, R. (1960). Axiomatics of classical statistical mechanics. Oxford: Pergamon Press.

Ladyman, J., Presnell, S., Short, T. & Groisman, B. (2006). The connection between logical and

thermodynamical irreversibility. http://philsci-archive.pitt.edu/archive/00002374/.

Landau, L.D. & Lifshitz, E.M. (1987). Fluid Mechanics 3rd Edition, Oxford: Butterworth-

Heinemann.

Lanford, O.E. (1973). Entropy and equilibrium states in classical statistical mechancs. In A. Lenard

(Ed.) Statistical mechanics and mathematical problems. Berlin: Springer-Verlag, pp. 1–113.

Lanford, O.E. (1975). Time evolution of large classical systems. In J. Moser (Ed.) Dynamical Sys-

tems, Theory and Applications, Lecture Notes in Theoretical Physics Vol. 38, Berlin: Springer,

pp. 1–111.

Lanford, O.E. (1976). On a derivation of the Boltzmann equation. Astérisque, 40 117–137. Also in
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