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al suo supporto che l’attraversamento delle acque talvolta agitate e impetu-
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Introduction

Learning abilities derive by the human brain capability in recognizing and

categorizing objects, where the word object must be interpreted in its wider

acceptation. In this context, emotions, odorous, flavors, and whatever else

represents a part of the knowledge, are considered objects. Steven Pinker

wrote: “An intelligent being cannot treat every object it sees as a unique en-

tity unlike anything else in the universe. It has to put objects in categories

so that it may apply its hard-won knowledge about similar objects encoun-

tered in the past, to the object at hand.” (How the Mind Works, 1997).

When the human interest began to be addressed at the multiple faces of

real World, this inborn human knowledge process was quickly coded in

many fields of the Science. The Taxonomy exactly represents this process.

However, many other examples could be found: libraries and bookstores,

for example, arrange the books according to the topic and then by authors

name. Actually, a classification scheme represents a convenient method for

organising a large data set so it can be understood more easily and infor-

mation retrieved more efficiently. The final aim consists in summarising the

whole dataset by a small number of groups of homogeneous objects, then

groups are labeled by concise descriptions of the similarities in each group.

Wherever objects could be measured and coded into numerical data (like
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people, animals, chemical elements, sounds, etc.), the process based on the

grouping of similar objects can be automated. Statistics and statisticians

have largely contributed to the development of increasingly sophisticated

classification methods.

The need to group data is increasingly important because of the growing

of the whole quantity of digitally stored data. The exponential growth of

the global amount of the stored data has strongly stimulated the scholar on

clustering and classification: in statistics and in other disciplines, as well.

The interest is proven by the large number of scientific articles published

on the topic.

Some of these techniques have been independently proposed and imple-

mented by different scholars in their respective disciplines. However, the

different backgrounds have had a strong influence on the formal definitions

and notations, rather than on the substantial methodological proposal. So

we can observe that in biology classification is also called Numerical tax-

onomy, whereas psychologists use the term Q Analysis, in the artificial

intelligence domain it is used the term unsupervised pattern recognition to

refer to these methods. As the Statisticians have adopted the term Cluster

Analysis, in the following chapters of this work we will use this definition.

For sake of homogeneity, the same notation will be preserved, through all

over the thesis, even illustrating methods that have been originally pre-

sented with an alternative (and may be more appropriate) notation.

When dealing with Cluster Analysis, in Statistics we are used to divide

the methods in two main branches: hierarchical and non–hierarchical meth-

ods. The difference between these two big families depends on the clustering

strategy. Methods in the former category have two possible starting points:

i) n object grouped into n singleton clusters, where n is the total number

2
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of objects to classify; ii) one cluster made by n objects. Depending on

the starting configuration, the clustering algorithm aggregates into a clus-

ter the two most similar objects, at each step; alternatively, the algorithm

splits the most heterogeneous cluster into two more homogeneous clusters.

Former ones are called aggregative methods and latter ones are called di-

visive methods. However, independently from the strategy, the clustering

produces a nested clustering structure. Generally heterogeneity index per-

mits to identify the best clustering configuration. Moving up and down

along the clustering structure, it is possible to choose the most appropriate

partition, and the number of clusters as a consequence.

Hierarchical clustering algorithms (in the most of cases) permit to have

a graphical representation of the aggregative structure, they are preferably

implemented when the total number of objects to classify is almost limited

and when it is important to understand (and visualize) the dis/similarities

between two objects or two clusters.

In this thesis the attention is focused on non-hierarchical clustering

methods, which are also called partitioning methods. These methods as-

sume to be known the number of clusters in the data and their goal is to

achieve the best classification of the objects to the clusters. The quality of

the classification is evaluated according to a given criterion, and the word

best has no sense until the criterion has not been indicated by the analyst.

The clustering problem consists in grouping the objects so that the re-

sulting value of the chosen criterion satisfies its optimal condition (which

can be the maximum or the minimum according to the criterion itself). If

the number of clusters k is assumed known the total number of partitions

of n objects may be computed. However, it is clear and intuitive that this

number quickly becomes large (and even very large!) as n becomes large.

3
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From a numerical point of view, non-hierarchical clustering algorithms are

considered Non-deterministic Polynomial-time hard problems (NP-hard),

whose have no solutions in polynomial time. Only a very small n allows to

perform the exhaustive search to choose the best one. If n is large most

algorithms are likely to find a partition that is sub–optimal.

Moreover, in the most of the cases, the global number of available fea-

tures is quite large and not all features are really necessary. In a geometrical

optics, given a set of n statistical units represented as points in the multi-

dimensional space spanned by p variables, clustering aims at finding dense

regions in the original feature space or embedded in a properly defined sub-

space. However, when p is large, the global number of available variables

is definitively greater than the number of really necessary variables. From

a pure theoretical point of view, the number of dimensions that are really

necessary to separate k clusters is equal to int (log2(k)): the unidimensional

space can separate two clusters, from 2 to 4 clusters a two dimensional space

is needed, a three dimensional space permits to separate from 22 + 1 to 23

clusters, four dimensions from 23 + 1 to 16 clusters, an so on... In fact,

the high dimensional space determines that points are sparse and it makes

more difficult to find dense regions. Two solutions are possible: i) to select

the features holding the “good” variables and discarding the others; ii) to

define a set of q new variables, where q � p and the new variables are lin-

ear combinations of the original ones. Each strategy hat its drawbacks and

advantages, the thesis goes into more details on this aspects and mainly

focuses the attention on the variables transformation.

In the recent years, a new category of non-hierarchical clustering al-

gorithms has been introduced. The novelty aspect introduced with these

algorithms consists in having one integrated strategy where the variables

4
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transformation and the clustering phase are alternatively iterated satisfy-

ing the same common criterion. The algorithm stops when the criterion

reaches its highest (lowest) value. These algorithms permit to refine the

variable combination at each step increasing their separating capabilities.

The spread of these methods has been driven by the need to handle large

amounts of data, their considerable increase is due to the ever growing im-

provement of data storage capability and of informatics devices diffusion.

Applications as Internet or digital imaging or video surveillance are increas-

ingly diffused. These determine the increase of high-dimensional datasets

that can be spread through Internet or through portable device that are

more and more capacious. These datasets can be easily shared; on internet

everybody can have access to a huge number of datasets made by large

number of variables. In many fields every day there are new datasets that

can be shared with other people. The number of access to web pages is just

an example: every day million of people surf on Internet and it is possible

to know what website they have visited, which pages and how long they

stay on each page. These datasets are very interesting, they are real gold

mines for marketing managers, for a head of sales or for someone interested

in social or psychological science. Facing with such a huge amount of data,

how can we extract knowledge? How can we let the data ”speak”?

This is a very typical problem in which statisticians, or someone interested

in obtaining information are faced with. Useful methods are needed to

manage high-dimensional datasets and to catch information contained in

the data. Probably the need of these methods has led the birth of the

Knowledge Discovery in Databases (KDD) and of data mining. Data min-

ing refers to the process of selection and processing a large amount of data

to discover hidden relationships, patterns and similarities, not known a pri-

5
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ori. The word mining evokes the extraction of gold nuggets or precious

stone from the mine, the choose of this term emphasizes how difficult can

be the process.

Factorial clustering methods are based on two main approaches: proba-

bilistic and geometric. Probabilistic clustering methods, also called model

based clustering, start from the assumption that each cluster is a subpop-

ulation that has his own model with his own parameters. The population

is a mixture of all the subpopulations. The extension of this methods to

a factorial clustering methods has led to the development of mixtures of

factor analyzers where each subpopulation has been generated according

to a factorial model. The estimation of factorial models, one for each sub-

population, and of cluster membership leads to a partition of unit and to

a dimensionality reduction. Geometric clustering methods are based on

the concept of distance. According to these methods a partition adequacy

criterion is chosen, data points are projected on the factorial space that

optimize the criterion. In this new space the partition that optimizes the

same criterion is computed. The computation of the factorial space and

of the cluster partition simultaneously is unfeasible, the two quantity are

computed alternatively and iteratively. For this reason these methods are

also called iterative two-step clustering methods.

This thesis is focused on clustering methods for high-dimensional datasets

and in particular on factorial clustering methods. These methods give sta-

ble results dealing with large and very large datasets, however, they can

have problems dealing with datasets characterized by some issues. Corre-

lation between variables or heteroschedastic clusters can compromise the

right clustering structure detection. The same difficulties can be caused by

outliers, that can mask the real clustering structure. Some methods fail

6



Introduction

dealing with arbitrarily shaped clusters, to cope with these problems a new

factorial clustering method, Factorial Probabilistic Distance Clustering, is

proposed. It performs a linear transformation of data and Probabilistic

Distance clustering (PD-clustering) iteratively. PD-clustering is an itera-

tive, distribution free, probabilistic, clustering method. Clusters centers

are computed according to the constraint that the product between the

belonging probability of a point to clusters and the distance of the point to

clusters center is a constant. An iterative algorithm allows to compute the

centers. When the number of variables is large and variables are correlated

PD-Clustering becomes unstable and the correlation between variables can

hide the real number of clusters. A linear transformation of original vari-

ables into a reduced number of orthogonal ones using common criteria with

PD-Clustering can significantly improve the algorithm performance.

Thesis outline Chapter 1 presents a short historical overview of cluster

analysis; followed by a brief excursus of the main domains where cluster

analysis is used, putting the attention on the different purposes that cluster

analysis can have. At each purpose corresponds a different field of applica-

tion. In section 1.1 cluster analysis is detailed; the approach is a complex

process that does not consist in the the mere execution of an algorithm. In

the following subsections, each phase of the process is detailed.

There is a wide range of clustering methods, this thesis is focused on non

hierarchical clustering ones that are the object of chapter 2. These methods

require the a-priori choice of the number of clusters, some techniques the

allow to choose the right number of clusters are detailed in section 2.1. Non

hierarchical clustering methods are based on the optimization of a criterion

chosen. A wide range of methods are based on the variance decomposition

7
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that is detailed in section 2.2. The most simple and widely used non hierar-

chical clustering method is k-means that, under some optimality conditions,

allows to obtain a good classification of data in an efficient way, k-means

is detailed in section 2.2.1, 2.3 and 2.4. In section 2.5 methods for clusters

representation are illustrated.

Chapter 3 is focused on cluster analysis of high-dimensional datasets.

The first approach dealing with this type of data is two-step analysis that

can be used dealing with quantitative data, section 3.1, and qualitative

data, section 3.2. An improvement of these methods are the factorial clus-

tering methods that can be probabilistic, section 3.3, or geometric, section

3.4. When clusters are of arbitrary shape, classical clustering methods can

fail and sometimes is necessary to use methods based on the projection of

points in a feature space, these methods are illustrate in section 3.5.

In chapter 4 a new factorial clustering method, Factorial Probabilistic

Distance Clustering (FPDC), is detailed. FPDC is based on an already

existing clustering method presented in section 4.1. FPDC is explained in

section 4.2 and an example on a real dataset is presented in section 4.3.

Chapter 5 contains a computational study on Factorial Probabilistic Dis-

tance Clustering. Firstly in section 5.1 theoretical aspects of the simulation

are explained and then, in section 5.2, there are the simulation results.

8



Chapter 1

Cluster Analysis

Many research fields present a common need; it’s been given a dataset

composed by many statistical units, the main need is to find homogenous

groups of individuals, homogeneous is referred to individuals that present

similar characteristics. This is the aim of cluster analysis, that had its

origins in different areas at the same time. This phenomenon caused the

birth of different denominations for the same subject; even the method

cluster analysis is also called unsupervised classification. This circumstance

can cause communication problems between different sectors, statisticians

and ”learners”, specialized in machine learning, studied the same methods

using different words. Especially in such a field where cluster analysis

is applied, like biology or medicine, specialists in the field use a different

language. Thus before coming into cluster analysis details a clear definition

of concepts are important.

The term cluster analysis was first used by Robert Tryon [Tryon, 1939]

in 1939. He developed the theory of cluster analysis and a particular set of

cluster analysis methods in psychometric domain. However the first cluster
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approach can be dated in 1932 [Driver and Kroeber, 1932] with Driver and

Kroeber. They used a clustering approach studying the development of cul-

tures. In 1951 Florek [Florek et al., 1951] proposed a new approach that is

the father of modern, popular, hierarchical clustering. The development of

cluster analysis started with the improvement of computational techniques

and with the creation of modern computers in 1960. In 1967 MacQueen

[MacQueen, 1967] proposed the K-means method, the most commonly used

clustering method.

Nowadays cluster analysis has many field of applications: medicine, bi-

ology, social science, demography, psychology, . . . The goal is to investigate

the relationship between groups of units. Its aim is to establish whether

exist groups of objects that have similar characteristics. The base of these

methods is the definition of: i) a set of units; ii) a distance measure; iii) a

clustering strategy; iv) a validation. The clusters can be an already known

structure of the population that have to be revealed by the analysis, for ex-

ample in case of clustering of flowers when the species are already known.

The clusters and the number of clusters can also be unknown, like in the

classification of web sites. The objective is to look for groups that are not

already known, but that depends on: the variables taken into account, the

parameters chosen and the method used during the analysis. Groups or

clusters can be analyzed and defined from a geometric point of view; a

cluster is a set of units that are close to each other , according to a specific

criterion. In this case the chosen measure of distance have a central role.

It is important to choose how to measure the distance between two clus-

ters, linkage method, because each measure has his own characteristics and

weaknesses. Many widely used methods are based on this geometric way

of looking at clustering.

10



Clustering methods based on a geometric approach can be hierarchical or

non hierarchical. Hierarchical methods aim at building a hierarchy of clus-

ters that can be represented throughout a specific graph, called dendro-

gram, non hierarchical ones aim is to divide a set of object in K clusters.

Another way to look at clustering is to define clusters as high density re-

gions separated by low density regions.

In both cases the choice of search for groups of individuals in a datasets

can arise from three main purposes:

• Natural classification or taxonomy, the objective is to identify the

degree of similarity among shapes or organisms;

• Images recognition the aim is to recognize images or schemes into

the data;

• Find underlying structure the objective is to find information into

the data.

Taxonomy has been used since ancient times when Aristotle (384-322 B.C.),

classified animals and plants. He proposed the Five Predicables to classify:

genus, species, differences, properties and accidents. More than 2000 years

later taxonomy is still a valid and used instrument in many fields. In chem-

istry the elements are clustered according to their characteristics; in geol-

ogy the classification is applied on the earth structure, like: mineral, water,

mountains, etc., and on the associated phenomena, like: earthquakes, mag-

netic field, etc.. These phenomena are still an interesting and popular field

of study. Natural classification is used in human science too. In the lin-

guistic field where words are classified by theme and in social and political

sciences fields where a society function classification can be done.
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Image recognition is used in many fields; images can be of different kind

like letters or numbers or photos. The improvement of image recognition

techniques are very useful for the automatically read of a license plate or for

face recognition. Image recognition is obtained through specific clustering

method based on machine learning or neuronal network.

With the increase of computer power there are always more datasets, often

large dimensional dataset, in many field; this has led to a growing need

for methods that find information into the data. On internet there are al-

ways more dataset containing the history of download of documents where

the objective is to find interesting patterns. In genomic field there are

many dataset containing few units and many variables and the objective

is to catch the information in the data. This thesis is focused on this last

purpose, to find underlying structure into the data.

1.1 Cluster analysis process

The application of a clustering method does not represent the whole cluster-

ing process: When we refer to the term cluster analysis we are taking into

account an entire process where clustering maybe only a step [Gordon, 1999].

Cluster analysis can be split in 4 main steps:

• definition of the object matrix;

• transformation of the original data matrix;

• application of a clustering method;

• cluster validation.

Each step involves different choices that will be detailed in the following

sections.

12



1.1. Cluster analysis process

1.1.1 Definition of the object matrix

The first phase consists in the definition of the set of objects taken into

account during the analysis. Considering a multivariate data matrix X,

with n units and J variables, besides it some other informations about

units can exist. Often nowadays there is a lot of information due to the use

of automated methods of data collection and storage, these informations

can be used in the analysis or it can be ignored. The choice depends on

their correlation with the objective of the analysis. Moreover, the data

matrix is often large with many variables that are not necessary related

to the domain of interest. Sometimes it can be useful to select a subset

of them or to reduce the dimension of the data matrix before starting the

analysis.

Before choosing a way to treat the data, it is necessary to distinguish

between type of variables. The most general way to distinguish variables

is to divide them in three categories: numerical, ordinal and nominal. Nu-

merical variables can be whether continuous or discrete. A variable is said

continuous if it takes value in < or a compact subset of <; it is possible to

count, order and measure continuous variables. A variable is said discrete

if the observations belonging to it are distinct and separate.

A variable is said ordinal if it is ranked or if it has a rating scale attached.

It is possible to count and order, but not measure ordinal variables. The

categories for an ordinal set of variables have a natural order, however,

the distinction between neighboring points on the scale is not necessarily

always the same.

A variable is said to be nominal or categorical if it can be assigned to a

code as a numeric value where the numbers are simply labels. It is possible

13
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to count but not order or measure nominal variables.

Each type of variable allows its own set of operations.

1.1.2 Transformation of original data matrix

Cluster analysis implies the tranformation from data matrix to: pattern

matrix, distance matrix or (dis)similarity matrix. A pattern matrix X is

a n × J , objects × variables matrix, where the general element xij ex-

presses the value of the variable j for the i unit with i = 1, . . . , n and

j = 1, . . . , J . In many clustering methods, as hierarchical ones, data ma-

trix requires to be coded as distance matrix or (dis)similarity matrix, each

cell of the matrix have to express a distance or a (dis)similarity measure be-

tween two elements. Distance or (dis)similarity matrix are symmetric n×n
matrix where the general element di,j provides a measure of the distance

or (dis)similarity between the object i and the object j with i, j = 1, . . . , n.

Dealing with categorical data, distance measures used for numerical data

cannot be used but some dissimilarity coefficients can be applied. A list

of distance measures for numerical and categorical data can be found in

Arabie et al. book [Arabie et al., 1996].

1.1.3 Applying a clustering method

This is the core of clustering process. Data are assigned to clusters where

a cluster is a set of one or more objet that we are willing to call similar

to each other [Romesburg, 2004]. A cluster can even be composed by only

one object if there are not any other objects similar to it. Or a cluster can

be composed by all the data units if all of them are similar to each other.

Traditional clustering methods can be divided into two main groups: hier-

archical methods and nonhierarchical methods (fig. 1.1.3).
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Figure 1.1: Clustering methods

The original purpose of hierarchical clustering was to reveal the taxon-

omy or the hierarchical structure among species of animals. Then their

applications domain have been extended to marketing, in order to find a

structure of products, nowadays these methods are used in a wide range of

fields. Hierarchical clustering methods seek to build a hierarchy of clusters.

To derive a hierarchical structure of n units, two type of strategies can be

used: agglomerative and divisive.

Agglomerative methods start with n single element clusters and proceed by

successively combination of clusters according to a proximity criterion until

one single cluster is obtained. To use these methods it is necessary to define

a linkage criterion between clusters or elements. A widely used criterion is

Ward’s linkage that agglomerates the clusters giving the minimum increase

of the total sum of squares. To a complete detailed list of linkage criteria
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refers to [Wedel and Kamakura, 1999].

Divisive methods start with only one cluster of all elements that are succes-

sively separated in smaller clusters until n clusters of a single element are

obtained. In 1964 Macnaughton-Smith and others proposed splinter aver-

age distance method [Macnaughton-Smith et al., 1964]. In 1965 a method

based on least squared criterion has been proposed, however this method

has a high computational cost due to all possible divisions that had to

be computed [Edwards and Cavalli-Sforza, 1965]. In case of binary data

Monothetic methods are widely used.

After finding the hierarchy it can be represented through a dendrogram, it

is a tree representation of clusters. The units are arranged along the bottom

of the dendrogram and referred to as leaf nodes. Clusters are formed by

gathering individual units. The vertical axis refers to a distance measure

between units or clusters.

Non hierarchical clustering methods, also called partitioning methods,

divide a set of n objects in K clusters where K is a priori defined. The best

partition is obtained by computing all the possible partitions of the units in

K clusters and by finding the one that optimize the chosen criterion. This

is often unfeasible. If the dataset is composed by 100 units that have to be

divided in 3 clusters, exist 161700 partitions. To calculate all the possible

partitions and to compare them, it has a very high computational cost; this

issue makes this method unfeasible, especially for large dataset.

To cope with this issue exist three possible strategies: geometric, prob-

abilistic and mixture methods.

Geometric clustering methods are based on measure of distances between

units. Using these techniques a measure of adequacy of a partition must

be chosen and the aim is to find the partition that optimize the criterion.
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Several different adequacy measures have been proposed in literature, one

of the most commonly used nonhierarchical clustering method is K-means,

that seeks to minimize the variance inside each cluster. For a more detailed

development of nonhierarchical geometrical clustering methods refers to

chapter 2.

When using probabilistic clustering methods and mixture models, the

hypothesis in which a unit is assigned to one and only one cluster is relaxed.

In probabilistic clustering methods, a membership function pik is assigned

to each unit, it represents the probability that a generic unit i belongs to

a generic cluster k. Two other assumption are entered: the membership

function is a number in the interval [0, 1] and the total sum of each unit

membership is one (1). The advantage of these type of methods is finding

clusters of different shapes. A well known probabilistic method is c-means

cluster that minimize the sum of squared errors, like K-means and Ward’s

linkage criterion [Dunn, 1974], [Bezdek, 1974].

Using mixture models, probabilistic clustering assumptions are respected

[McLachlan and Basford, 1988] and one more parametric assumption is done:

K subgroups form the population, the proportion of the units that form

each subpopulation in the sample is unknown. The goal is to identify the

subgroups and to estimate the parameters of the density function under-

lying each subgroups. Maximum likelihood estimations are used to esti-

mate the vector parameter. Density function of each subgroup must be

specified, in many cases the subpopulations are assumed as normally dis-

tributed. To maximize the likelihood some complex routines are needed

and it is not always possible. To avoid this computational problem, expec-

tation maximization (EM) algorithms are used to estimate mixture models

[McLachlan and Krishnan, 2008], for details see section 3.3.
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Mixture models are a particular case of a greater set of methods: cluster-

wise regression models. According to these models, clusters are considered

a subset of the data points that can be modeled by a distribution. Each

class has its own reference distribution, consequently a different model can

be used for each class [Hennig, 1999]. Cluster-wise regression models can

be divided in two subgroups: mixture models and fixed partition models.

The main difference of fixed partition is that there are n parameters that

specify the cluster membership of each point.

1.1.4 Cluster validation

Cluster analysis is commonly used in exploratory data analysis. The aims of

these analysis are: finding underlying structure of data, finding important

variables, suggesting hypothesis about the causes of observed phenomena,

making assumptions on which statistical inference will be based on and

supporting the selection of the appropriate statistical tools and techniques.

Exploratory data analysis are usually followed by a post hoc interpretation

of results. However, sometimes these techniques can realease inappropriate

results. For this reason is necessary a validation step.

The first verification of results is the visualization of the datasets but this

is possible only if the dataset has maximum three variables. Otherwise

three types of validity criteria can be verified: internal, external and rela-

tive. Internal criteria compare the classification with the original dataset.

External criteria use the information not used during the classification to

test its validity, this validity criteria require a pre-specified structure im-

posed on the dataset. Relative criteria compare the results obtained with

different parameters. The validity can be verified on the whole structure or

on a partition or on a single cluster.
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Internal validity criteria The null hypothesis in cluster validity is that

the units are randomly structured, to test this hypothesis different models

can be used. Some models are briefly illustrated afterwords for a more

complete list of methods referring to [Gordon, 1999]. A simple model is

Random labels model, the basic assumption is that all the permutations

of the labels are equally likely. All the n! permutations are computed and

a statistical test is done in order to compare the observed value with an

statistic computed on the permutations. Another frequently used criterion

is the Monte Carlo one. A validity index must be chosen, the density func-

tion of this index is computed through Monte Carlo techniques. In order

to simulate the density function, a large amount of normally distributed

data are simulated, on each of this simulated dataset the value of the index

is computed. A density distribution of the index is obtained and it can be

used to test whether the obtained index on the original dataset is in the

not acceptation zone. In this case the null hypothesis is rejected; the units

structured with the clustering technique are not randomly grouped.

External validity criteria External validity criteria can be used only if

a pre-structure of data exists. The pre-existing structure is compared with

the structure obtained with the clustering techniques. The number of units

that belong to the same cluster in both classifications is denoted with a. The

number of units that belong to the same cluster using clustering technique

but not in the pre-existing classification is denoted with b. The number of

units that belong to different clusters using clustering technique but are part

of the same cluster in the pre-existing classification, is denoted with c. The
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number of points that belong to different clusters in both classifications is

denoted with d. Two index can be used to compute the degree of similarity

between the two structures: Simple matching, 1 − a+d
a+b+c+d , and Jaccard

coefficient, 1− a
a+b+c .

Some other specific index can be found in [Halkidi et al., 2002].

Relative validity criteria The aim of relative clustering validity criteria

is to evaluate a clustering structure by comparing it with other structures

obtained by the same algorithm with different parameters. Clustering algo-

rithm is run in the same dataset for different number of clusters K between

a minimum value Kmin and a maximum value Kmax. For each value of

the parameter K an index q is obtained. The evaluation of the values of

the index q changing K allows to choose the optimal value of K. A wide

range of index exist in literature. A well known and often used one is the

intra-cluster variance; it measures the homogeneity of the clusters and it

is used with non-overlapping clusters. The intra-cluster variance or within

variance is the sum of the squared distances between units and the center

of the clusters that they belong to.

However each clustering method optimize its own objective function that

depends on the criterion optimized by the method. The evaluation of the

values of the objective function changing K allows to choose the optimal

value of the parameter K.

Dealing with categorical or binary data CATANOVA method [Singh, 1993]

can be used to evaluate clustering methods. This method is the generaliza-

tion of ANOVA method to the case of categorical data.

These indices cannot be used to evaluate different clustering methods

because each method optimizes a different criterion and, consequently, a
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different objective function. For example, applying two different clustering

methods on the same dataset, the partitions l1 and l2 are obtained. The

partition l1 is the best according to the first method criterion, the partition

l2 is the best according to the second method criterion. So the values of the

objective functions cannot be used to compare two different methods. A

different index can be chosen, but the best partition is obtained by applying

another clustering method whose criterion optimize the chosen index.
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Chapter 2

Non hierarchical clustering
methods

This chapter deals with methods to solve the problem of partitioning n

objects in K clusters, also known as non hierarchical clustering methods.

Defining with X a n×J data matrix, the aim is to find K clusters of the n

objects that are similar inside each cluster and not similar to the objects of

other clusters. The way to obtain the best partition would be to investigate

all possible partitions of the n objects in K clusters: it is often unfeasible

for the very high computational cost. An alternative way is to define a mea-

sure of partition adequacy and to find clusters that optimize this measure.

In literature a wide range of measure of partition adequacy have been pro-

posed and consequently many non hierarchical clustering methods exist. A

lot of these can be brought back to the most used and well known K-means

[MacQueen, 1967]. K-means success is due to its simplicity and to its com-

putational advantages; the computational complexity of the method is very

low thus it can be easily applied dealing with a large number of units. This
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method is based on the variance decomposition and on the minimization

(maximization) of the within group (between groups) variance.

2.1 Definition of the number of clusters

Non hierarchical clustering methods aim at obtaining K clusters starting

from n units. The number of clusters K can be a priori known, but it is very

rare; more often it is a researcher choice. The most commonly used way

to choose K is to obtain the partitions from a range of the parameter K,

1 ≤ K ≤ n and to compare the partitions obtained. Dealing with dataset

composed by a small number of variables, clustering results can be visual-

ized and compared through a scatter plot. A more formal method consists

of finding stopping rules that can be global or local. Global rules use a

measure of goodness of a partition G(K) that evaluates the whole partition

structure; the purpose is to identify the value of K for witch G(K) is opti-

mal. Global rules are usually based on within-cluster and between-cluster

variance, they cannot be used in case of only one cluster consequently they

cannot be used to evaluate if the data should be partitioned or not. Local

rules are based on a part of the data, their objective is to evaluate if two

clusters should be agglomerated or if a cluster must be partitioned; these

indeces can be used only with hierarchical clustering, therefore they will be

not detailed in this context. In literature a lot of global stopping rules exist

[Milligan and Cooper, 1985], the most used are shown in the following for-

mulas. Defining with B the between-cluster sum of squared distances and

with W the total within-cluster sum of squared distances of the centroids;

the Caliński and Harabasz’s index (1974) is defined as:

G1(K) =
B/(K − 1)
W/(N −K)

. (2.1)

24



2.2. Variance decomposition

Goodman and Kruskal in 1954 proposed a modified version of their gamma

index γ. It is based on the comparison between all the within-cluster and

the between-cluster distances. If a within-cluster distance is strictly shorter

than a between-cluster distance their are said concordant and their are

indicated with S+. In the opposite case they are said discordant and they

are indicated with S−; the index is defined as the following formula:

G2(K) =
S+ − S−
S+ + S−

. (2.2)

A third well known index standardizes the sum of all within-cluster dis-

tances, D(K), for a fixed value of K.

G3(K) =
D(K)−min(D(k)

max(D(k)−min(D(k)
, (2.3)

with k = 1, . . . ,K.

The value of K that maximizes G1(K) and G2(K) or that minimizes G3(K)

is the optimal number of clusters; normally only small values of K are

investigated.

2.2 Variance decomposition

A measure of partition adequacy [Edwards and Cavalli-Sforza, 1965] is the

within-cluster variance, the idea is to minimize the within-cluster variance

and, consequently, to maximize the between-cluster variance. Defining with

X the original data matrix, with ckj the center of cluster k, with xki the ith

object belonging to cluster k, with nk the number of elements belonging

to the cluster k, where i = 1, . . . , N , j = 1, . . . , J and k = 1, . . . ,K, the

within-cluster J × J variance matrix, W and the between-cluster J × J

variance matrix B are defined with the following formulas:
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Wk =
nk∑
i=1

(xki − ck)(xki − ck)′,∀k = 1, . . . ,K;

W =
K∑
k=1

Wk
nk
n

; (2.4)

B =
K∑
k=1

nk(ck − x̄)(ck − x̄)′; (2.5)

where x̄ is the global mean. The sum of W and B is the total variance

hence to find the centers of clusters that minimize W is equivalent to find

the centers of clusters that maximize B. In case of only one cluster the

problem consists in finding a point that minimize the distances between

n points. In case of more than one cluster the problem becomes more

complex because K points must be found; several alternative ways are

feasible [Everitt et al., 2011].

An extension of the minimization of the sum of squares criterion is the

minimization of the sum of squares of the within groups variances, that is

equivalent to minimize the trace of W or equivalently to maximize the trace

of B. This criterion was first applied by Ward in the context of hierarchical

clustering [Joe and Ward, 1963]. This criterion is used in many clustering

methods, it was used explicitly by Singleton and Kautz but it was also

implicitly used by Forgy [Forgy, 1965], Jancey [Jancey, 1966], MacQueen

[MacQueen, 1967] and Ball and Hall [Ball and Hall, 1967].

To verify whether there is a difference between mean group vectors can be

used the ratio between the determinant of the total and within groups

variances matrix: det(T )
det(W ) . This ratio is as larger as mean vectors dif-

ference increase, thus a clustering criterion can be the maximization of
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this ratio that corresponds to the maximization of the determinant of W

[Friedman and Rubin, 1967]. Friedman and Rubin suggested the use of the

trace of (BW−1) as an indicator of the differences among mean group vec-

tors.

The most widely used criterion is the minimization of the trace of W even

if it is affected by some problems. The minimization is not obtained de-

riving the objective function, thus can be lead to local minima and not a

global one; several iterations of the same method can bring different results.

The method is scale dependent and finally this criterion can find clusters

of spherical form but it can not identify clusters of arbitrary form. To cope

with these problems Friedman and Rubin proposed the criterion previously

mentioned.

2.2.1 K-means method

K-means is the most known and used non-hierarchical clustering method

thanks to its simplicity. It has been proposed in 1967 by MacQueen and it

is based on the minimization of the trace of W .

The optimization problem consists in finding K centers ckj that minimize

the trace of W where W is defined in 2.4. The problem can not be solved

analytically, and is required an iterative procedure.

The procedure starts with a random initialization of center matrix C, Eu-

clidean distance between each unit of the matrix X and each center C

is computed and each unit is assigned to the closer center. According to

clustering structure new centers are computed as centroid of each cluster.

Distances of units from the new cluster centers are computed and each unit

is assigned to the closer center. The algorithm is iterated until obtaining

convergence. There are three main convergence criteria:
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• two consequently iterations define the same partition;

• inertia reduction is lower than a fixed level ε;

• maximum number of iterations is reached.

K-means is structured as: i) choice of K random centers; ii) attribution

of each unit to the nearest cluster; iii) computation of centers of the new

clusters; iv) iteration of step ii and iii until obtaining convergence.

The method is detailed in the algorithm 1.

Algorithm 1 K-means
1: function K-means(X,K)
2: C ← rand(K,J) . Matrix CK,J is randomly initialised
3: D ← distance(X,C) . Initialise the array D as distances of X from C
4: l← assing(X,D) . assign(X,D) assign each point to the closer center
5: W ← T . Initialise the array W to the maximum
6: repeat
7: C ← C∗ . Centers are updated as centroid of the clusters
8: for k = 1,K do
9: Dk ← distance(X,C(k)) . Dk distances of all units from the centre k

10: end for
11: W0 = W . Current W is stored in W0
12: l← assing(X,D) . assign(X,D) assign each point to the closer center
13: W ← withinvariance(X, l) . withinvariance(X, l) implements the 2.4
14: until W0 > W + ε

return C, l
15: end function

K-means requires three user-specified parameters: center initialization,

number of clusters K (see section 2.1), and distance metric [Jain, 2009].

The initial choice of centers significantly affects the results. Diday in 1971

proposed the dynamic clouds method in order to cope with this problem

[Diday, 1971]. According to this method the initial centers are not a unit

but each center is computed as a centroid of q units. However, both meth-
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ods allow to find a local optimum and not a global one [Steinley, 2003].

The best way to cluster a dataset using K-means is to perform the method

several times on the same dataset and to look for units that are always

together in the same cluster.

2.3 K-means advantages

K-means is the most widely used non hierarchical clustering algorithm; it

is due to its simplicity and mostly to its computational propriety. In prac-

tice K-means converges very fast thus, even if the global convergence is not

guaranteed, the method can be iterated several times. Duda et al. state

that the number of iterations until the clustering stabilizes is often linear

and yet the worst-case running time is exponential [Duda et al., 2000] (Sec.

10.4.3). The computational complexity is of order O(nKl) where n is the

number of units, K is the number of clusters, and l is the number of itera-

tions taken by the algorithm to converge. Often, K and l are fixed so the

algorithm has linear time complexity according to the size of the dataset.

Even the space complexity is small: O(K + n), however it requires addi-

tional space to store the data matrix [Jain et al., 1999].

Another advantage, K-means does not need parametric hypothesis, how-

ever, in presence of normal distributed clusters, it is still an optimal clus-

tering method.

These conditions make the K-means the most well-known and widely

used clustering method.

Under the following conditions K-means is the optimal clustering method:

• small number of variables J (J < n);
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• orthogonal variables (spherical clusters):

• clusters having the same variance;

• absence of outliers.

2.4 Violation of optimality of conditions

K-means is very simple and very fast, these characteristics make it the most

widely used clustering method. Nevertheless this method is not the optimal

one dealing with datasets that present some characteristics: large numbers

of variables, correlation between variables or clusters having different vari-

ance, and in presence of outliers. Moreover, the convergence to a global

minimum is not guaranteed and this can cause stability problems.

2.4.1 Clusters stability

K-means has tendency to converge to a local minimum. This issue can

significantly affect the results, different iterations of the same method on

the same dataset, can bring to different solutions. A part of this is due

to the initial random choice of centers because if a center is initialized in

an inappropriate position it can not move into an optimal one. In 1997

Fritzke [Fritzke, 1997] proposed a solution to this issue. He introduced a

measure of distortion errors; defined with x0 the center of the Euclidean

space and with xki the units belonging to the cluster k with k = 1, . . . ,K,

the distortion error Ik is:

Ik =
nk∑
i=1

(xki − x0)2 − nk(ck − x0)2 (2.6)
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where nk is the number of elements that belongs to cluster k.

After computing a clustering structure by using K-means, Fritzke proposes

to verify if there is a cluster that can be moved into an other position

reducing the sum of distortions. If so, the cluster center is moved and K-

means method is applyed starting from the new centers. He proposes to

jump the center of the cluster with the least distortion error to a random

position in the cluster with the most distortion error. When a center is

removed all the elements of the cluster will belong to the second nearest

cluster, the increment of the total distortion error is equal to the sum of

the squared distances between the units of the cluster and the second near-

est center. This measure does not consider that the center of the nearest

cluster moves when the points are added to the cluster. Pelleg and Moore

proposed to start K-means method with a smaller number of clusters K0,

then the number of cluster is doubled by adding other centers in suitable

positions [Pelleg and Moore, 2000]. The problems of this method are that

each cluster is divided in two parts independently from the others and the

method does not guarantee distortion errors minimization. In 2004 incre-

mental K-means has been proposed by Pham and al. [Pham et al., 2004].

The incremental algorithm starts by putting K = 1 and increasing K of 1

at each iteration until a fixed value is reached. In each iteration K centers

are obtained by using K-means algorithm; when K-means clusters are ob-

tained, the new center is inserted in the cluster with the highest distortion

error. In order to take into account the changes of clustering structure,

when a cluster is suppressed, the variation of distortion errors are taken

into consideration.
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2.4.2 High dimensional data

High dimensional data can be characterized by: large number of units n

or large number of variables J , or both. The definition of large and very

large have varied (and will constantly continue so) with improvement in

technology and computational fields (e.g., memory and processing time).

In the 1960s, large meant several thousand patterns. Nowadays, there are

applications where millions of patterns of high dimensionality have to be

clustered; taking into account the genomic field a dataset can be composed

by more than 1 million variables. K-means computational coast is of order

O(nKl) where n is the number of units, K the number of clusters and l the

number of iterations taken by the algorithm to converge [Jain, 2009]. The

number of variables does not affect K-means computational coast, however,

the method works well increasing the number of units but it can have

stability problem dealing with large number of variables. Several methods

have been proposed in order to face this problem, they will be detailed in

chapter 3.

2.4.3 Variable correlation

When clusters are spherical K-means is one of the best clustering algo-

rithm thanks to the fastness of the convergence. However K-means can not

separate clusters that are non-linearly separable. This can happen dealing

with: clusters of arbitrary form, correlation between variables and variance

changing among clusters. Fig. 2.4.3 shows two examples of applications

of K-means when variables are correlated (a) and variance changes among

clusters (b). The figure represent two simulated dataset where four clusters

have been normally generated. In the first case, variable correlation, the
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method do not catch the right clustering structure, in the second case there

are 6% of misclassified.

(a) variables correlated (b) variance changing

Figure 2.1: Scatter plot of two simulated datasets clustered using K-means

Two approaches have been proposed for tackling such a problem. One is

kernel K-means; before clustering, points are mapped to a higher-dimensional

feature space using a nonlinear function, and then kernel K-means divides

the points by linear separators in the new space. The other approach is

spectral clustering algorithms, which use the eigenvectors of an affinity ma-

trix to obtain a clustering of the data [Dhillon et al., 2004]. Kernel charac-

teristics are detailed in chapter 3.5.

2.4.4 Outliers

Outliers are some elements of the datasets that are far from all the others

elements. In the univariate case many methods already exist to avoid the

effects of outliers, but they can still cause problems in the multivariate

case. In cluster analysis application there are two types of outliers: external
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outlier, an element of the group that is located far from other groups or

internal outlier that compared with the distance of the other data in the

same group, is located far from the centroid. In both cases the outliers can

cause some issues in cluster analysis. K-means is based on the arithmetic

mean, it is known that the arithmetic mean is sensitive to outliers; this issue

is reflected on K-means method. A simulated dataset, composed by four

normally distributed clusters, has been created by adding 10% of outliers;

K-means failed detecting the right cluster structure, see fig. 2.4.4.

Figure 2.2: Scatter plot of a simulated datasets with 10% of outliers clus-
tered using K-means

Trimmed K-means methods have been proposed to robustify K-means

algorithm. In these algorithms outliers are detected and are excluded

from the analysis before applying K-means [Cuesta-Albertos et al., 1997]

[Ordonez, 2003]. Trimmings depend only on the joint structure of the data

and not on arbitrarily selected directions or zones for removing data. For

trimming details refer to [Gordaliza, 1991].
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2.5. Clusters representation

2.5 Clusters representation

There is not an unique approach to evaluate clustering partitions, however

the quality of the results assesses the ability of the clustering procedure.

A partition can be evaluated by different point of view like: stability, ho-

mogenity and separability. A visual representation can help in the evalu-

ation of the clustering structure and for the interpretation of results. A

widely used method to visualize a partition is the scatter plot; units are

projected on a Cartesian plane and different colors or symbols are used

according to the belonging cluster. This method can be used only when

dataset have 2 or 3 variables (fig. 4.4). An extension is the splom, where

a different scatter plot is built for every pair of variables (fig. B.9). This

representation is useful for the interpretation of results, however when the

number of variables is large these methods can not be used. Box plots are

a valid instrument for the interpretation of results too. For every variable a

box plot for each cluster can be built, this allows to evaluate the differences

between medians and distributions of each cluster (fig. 4.3).

In order to evaluate the stability of results an evaluating index must be

chosen; the value of the index can be easily represented through an his-

togram or a bar graphic (fig. 4.7).

Evaluating the separability of the clusters is a difficult task. Several evalu-

ating method are based on some measure of distance between objects and

clusters. One exploratory tool hanging on this idea is the silhouette in-

formation [Rousseeuw, 1987]. The silhouettes can be used only when the

proximities are on a ratio scale, in case of K-means method the metric used

is the Euclidian one that respect the condition. The objective is to evaluate

how compact and separated the clusters are. It is worth to note that for
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evaluating the goodness of a partition, the criterion used should be consis-

tent with the clustering method adopted to produce that partition.

To construct the silhouettes two quantities are needed: the partition and

the matrix containing the distances between all objects. For each object

the quantity s(i) is measured, it depends on a(i) and b(i). Having a generic

unit i belonging to cluster A:

a(i) = average dissimilarities between i and all unit belonging to A

d(i, C) = average dissimilarities between i and all unit belonging to C 6= A

b(i) = min
C 6=A

d(i, C). (2.7)

The cluster, for which the minimum value of d(i, C) is obtained, is called

neighbor of i. The quantity s(i) is computed as the follow formula:

s(i) =
b(i)− a(i)

max(a(i), b(i))
. (2.8)

When the cluster A contains one single object s(i) = 0. It can be seen that

−1 ≤ s(i) ≤ 1. When s(i) is equal to 1, a(i) is much smaller than b(i)

the dissimilarity within the cluster is much smaller than the dissimilarity

between the clusters, the point is well clustered. When s(i) is equal to 0

the point has the same distance from both clusters, when s(i) = −1, b(i)

is much smaller than a(i) the dissimilarity between the clusters is much

smaller than the dissimilarity within the cluster, i is misclassified. By

ranking the silhouettes of each cluster in a decreasing order they can be

represented on a plot, fig 2.5 represents silhouettes of the simulated dataset

represented in fig. 2.4.3a.
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2.5. Clusters representation

Figure 2.3: Silhouette plot of a simulated dataset clustered using K-means
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Chapter 3

Clustering in high
dimensional space

Thanks to the ever-growing informatics capability, data storage ability be-

comes bigger and bigger every time. Computers are largely used in many

fields and large databases are more frequent; large can be referred to both

units and variables. Classical statistics and data analysis methods work

well dealing with a large number of units however they can have problem

dealing with a large number of variables. When the aim is to cluster a

dataset the number of variables affects the quality of results; each variable

can be seen as an axis of the <J data-space, in a J dimensional problem the

space can be divided into a number of region equal to 2J . For every axis a

generic point on it allows to obtain two regions, each units can belong to

only one region. Taking into account two variables the number of regions

becomes 22, dealing with three variables the number of regions becomes 23.

The number of regions increases exponentially as the number of variables

increases.



Clustering in high dimensional space

The exponentially relationship between variables and number of regions

can cause stability problem even dealing with a relatively small number

of variables. Bellman’s in 1961 coined the phrase ”curse of dimensional-

ity” referring to the exponential growth of hyper-volume (number of dis-

tances to compute) as a function of dimensionality (number of variables)

[Bellman, 1961]. In many fields the number of variables is even large or very

large. A particular example can be obtained looking at genomic datasets

where the number of units is even smaller than the number of variables. In

genomic datasets the variables are nucleotides, little part of chromosome,

and the units are tissues. The number of nucleotides is huge, each chro-

mosome is composed by millions of nucleotides. However, the number of

tissues is low because the cost to obtain a chromosome complement is very

high. This is an extreme case but datasets with a very large number of

variables are frequent in many sectors.

To find information into an high dimensional database it is a very difficult

task. Generally clustering methods can have stability problems dealing

with large datasets. Several clustering strategies have been proposed in

order to cope with this issue. These strategies are based on dimensionality

reduction before applying a clustering technique. Furthermore clusters ob-

tained in a lower dimensional space can be easily interpretable and can be

graphically represented.

There are two main techniques: features selection and features transforma-

tion.

Feature selection attempts to find variables that are more relevant for the

objective of the analysis. According to this method some sets of variables

are evaluated according to a chosen criterion. At first feature selection was

used for supervised learning where variables are selected according to their
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closeness with the variable to be predicted. In unsupervised learning there

is not a variable to be predicted neither an universally measure of partition

adequacy. Parsons and al. [Parsons et al., 2004] proposed some entropy

measures adapted for the scope, however a universal criterion does not yet

exist. Moreover, the condition to apply a feature selection is that exists a

group of few variables that explain the phenomenon under study.

Feature transformation is based on the use of factorial techniques and clus-

tering techniques, these methods are called two-steps clustering methods.

Dealing with categorical datasets these methods can have two scopes: di-

mensionality reduction and variables quantification; a method can pur-

sue the two scope at the same time. To apply a feature transforma-

tion two quantities have to be computed: a linear transformation of the

dataset and a clustering partition; they cannot be computed at the same

time. Two strategies are feasible: two-steps or iterative two-steps meth-

ods. Two-steps methods, also called tandem analysis, minimizes two differ-

ent functions that can be in contrast between them and the first factorial

step can in part obscure or mask the clustering structure ([Chang, 1983],

[DeSarbo et al., 1990]). This issue can be overcame. De Soete and Car-

roll in 1994 proposed an alternative method [De Soete and Carroll, 1994];

this method is an alternative K-means procedure, after a clustering phase,

it represents the centroids in a lower dimensional space chosen such that

the distances between centroids and points belonging to the cluster are

minimized. Then all points are projected in this low-dimensional space

obtaining a low-dimensional representation of points and clusters. This

method can fail in finding the real clustering structure when the data have

a lot of variance in directions orthogonal to the one capturing the interest-

ing clustering.
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Iterative factorial clustering methods overcome these issues; they perform

a factorial step and a clustering step iteratively, optimizing a common cri-

terion.

Iterative methods are used when the direct solution is unfeasible or cannot

be computed. These methods attempt to solve a problem by finding suc-

cessive approximations to the solution, starting from an initial guess.

Factorial clustering methods can be divided in two type: probabilistic and

geometric methods.

The chapter is organized as the following description. Firstly two-step

methods are introduced. A section is dedicated to clustering of categori-

cal data; it will be done even a hint of clustering methods for categorical

data that does not require quantification. After the chapter is focused on

iterative two-step methods that can be probabilistic or geometric. In sec-

tion 3.3 probabilistic factorial clustering methods are detailed, in section

3.4 the attention is focused on geometric ones. Geometric factorial clus-

tering methods description is organized as; at first a factorial methods for

quantitative data, Factorial K-means [Vichi and Kiers, 2001] is introduced,

after the attention is focused on a factorial methods for qualitative data

[Hwang et al., 2006] and at the end a factorial methods for binary data is

described [Iodice D’Enza and Palumbo, 2010]. When clusters are charac-

terized by typical structures, like nested clusters, even factorial methods

can fail; in this case an efficient strategy is to project points in a feature

space. These type of methods are detailed in section 3.5.
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3.1 Two-step methods

Non hierarchical methods easily deal with a large number of units n, how-

ever they can fail when the number of variables J becomes large or very

large, and when the variables are correlated. The converge of these meth-

ods, like K-means, has been empirically demonstrated, yet they can con-

verge to a local solution: a different solution at each iteration of the method

on the same dataset [Bottou and Bengio, 1995]. To cope with these issues,

French school of data analysis [Lebart et al., 1984] suggested a strategy

to improve the overall quality of clustering that consists in two phases:

variables transformation through a factorial method and application of a

clustering method on transformed variables. Arabie and Hubert in 1996

[Arabie et al., 1996] formalized the method and called it tandem analysis.

Tandem analysis exploits the factor analysis capabilities that consist in ob-

taining a reduced number of uncorrelated variables which are linear combi-

nation of the original ones. This method gives more stability to the results

and makes the procedure faster. The choice of the factorial method is

an important and tricky phase because it will affect the results. It de-

pends on the type of data [Le Roux and Rouanet, 2004]. The main fac-

torial method for quantitative data is the Principal Component Analysis

(PCA) [Hotelling, 1933]. Factorial axes obtained according to PCA are or-

dered according to the explained variability, so a reduced number of factors

can be retained. Several criteria exist to choose the number of factors:

• the minimum number of factors that gives a significant value of the

explained variability;

• the number of factors that corresponds to eigenvalues larger than one,

otherwise the factor explains less variability than original variables;
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• to use a scree-test, choosing the factors that precede the regularization

of eigenvalues’ histogram.

The second phase of the tandem analysis consists in applying clustering

methods.

This technique has the advantage of working with a reduced number of

variables that are orthogonal and ordered respecting to the borrowed infor-

mation. Moreover, dimensionality reduction permits to visualize the cluster

structure in two or three dimensional factorial spaces [Palumbo et al., 2008].

3.2 Clustering categorical data

Categorical data clustering and classification presents well known issues.

Categorical data can be combined forming a limited subspace of data space.

This type of data is consequently characterized by non-linear association.

Moreover, when dealing with variables having different number of cate-

gories, the usually adopted complete binary coding leads to very sparse

binary data matrices. Dealing with a large dataset it is necessary to reduce

the dimensionality of the problem before applying clustering algorithms.

When there are linear associations between variables, suitable transforma-

tions of the original variables or proper distance measures allow to ob-

tain satisfactory solutions [Saporta, 1990]. However, when data are charac-

terized by non-linear association, the interesting cluster structure remains

masked to these approaches.

There are two main strategies to cope with the clustering in presence of

categorical data:

• to transform categorical variables into continuous ones and then to

perform clustering on the transformed variables;
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3.2. Clustering categorical data

• to adopt non-metric matching measures.

It is worth noticing that matching measures become less effective as the

number of variables increases.

3.2.1 Quantification

Quantification of categorical variables consists on a transformation of them

into continuous ones. Some factorial methods can be used in order to obtain

a categorical variables quantification:

• binary data

– Principal Component Analysis (PCA);

– Correspondence Analysis (CA)[Benzécri, 1973];

– Multiple Correspondence Analysis (MCA) [Greenacre, 2007];

• nominal data

– Multiple Correspondence Analysis (MCA);

One of the advantages of factorial methods is that factorial axes are

sorted according to the explained variability; a number of variables lower

than the number of original ones can be used without great lost of infor-

mation. In the case of binary data, dealing with sparseness, few factorial

axes can represent a great part of the variability of the data. Techniques

for the choice of the number of factors are illustrated in chapter 3.1. In

case of categorical data it is worth noticing that inertia rate (percentage

of variability explained by each factor) is a pessimistic measure of factors
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explicative power, due to disjunctive coding. For this reason Benzécri pro-

posed a corrective factor [Benzécri, 1979] to determinate the effectiveness

explained variability of first factors.

PCA is based on the Euclidean distance between points so it can be

applied on binary data but it cannot be used dealing with categorical data.

Nominal data are characterized by non-linear relations, PCA does not de-

tect this type of relations. Multiple Correspondence Analysis (MCA) per-

mits to combine the categorical variables into continuos variables preserving

the non-linear association structure and reducing the number of variables.

The main difference between the two methods is that using PCA the lin-

ear transformation is applied on the raw data matrix, using MCA on a

transformed data matrix. The effect of this transformation is detailed in

the following section. Anyhow dimensionality reduction is very useful with

both type of data; dealing with categorical data the dimensionality growth

as the number of category increase.

The use of MCA at first and the application of a clustering method on

the first factorial axes is a widely used approach, there are several example

of MCA combined with different clustering techniques ([Green et al., 1988],

[Lebart, 1994], [Arimond and Elfessi, 2001], [Marino and Tortora, 2009]).

ACM propriety MCA has some important proprieties.

Defined with:

• X data matrix of elements xij , with i = 1, . . . , n and j = 1, . . . , J ;

• nj number of modality for each variable J with j = 1, . . . , J ;

• J∗ =
∑J

j=1 nj total number of modality;
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• Z data matrix in disjunctive coding of elements zij , with i = 1, . . . , n

and j = 1, . . . , J∗;

• B Burt matrit B = Z ′Z;

• zi,j = 1 if i have chosen j, if not 0;

• fi,j = zi,j
np

• f·,j = n·,j
J∗ marginal frequencies of columns.

Matrices X and Z can be represented as:

Table 3.1: Original data matrix X of dimension n× J .
V1 . . . Vj . . . VJ

i 1 3 3

i′ 2 1 2

Table 3.2: Disjunctive coding data matrix Z of dimension n× J∗.
V11 V12 V13 . . . Vj1 Vj2 Vj3 . . . VJ1 VJ2 VJ3

i 1 0 0 0 0 1 0 0 1

i′ 0 1 0 1 0 0 0 1 0 J

n·,j nJ
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Starting from these definitions the distance between two generical points

i, i′ in the original data space can be computed using χ2 distance with metric

M = diag( 1
f.j

).

d2(i, i′)χ2 = n2
P∑
j=1

(fi,j − fi′,j)
f.j

2

(3.1)

Applying Multiple Correspondence Analysis new orthonormal factorial

axes are defined, as well as a matrix, F , that contains principal coordinates

of rows on the factorial axes. MCA gives B = UΛV .

Defining with s the number of not null eigenvalues, the first s rows of

matrix U, of general element µαj with α = 1, . . . , s and j = 1, . . . , J , are

taken into account.

Defining with:

f iJ the vector f ij = fi,j
fi.

;

fJ the vector f.j ;

µαJ the vector µαj ;

with j = 1, . . . , J∗. The factorial axes are orthonormal so it can be applied

the reconstruction formulas [Le Roux and Rouanet, 2004]:

(f iJ − fJ) =
s∑

α=1

Fα(i)µαJ (3.2)

The equation (3.2) represents the coordinates of point i on factorial

axes. On the factorial axes, distances between points can be computed

using Euclidean distance:

d2(i, i′)e =
s∑

α=1

(Fα(i)− Fα(i′))2. (3.3)
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THEOREM 1 : The euclidean distance between two genetical points i

and i′ 3.3 on the factorial axes is equal to the χ2 distance between i and i′

in the original space.

d(i, i′)e = d(f iJ , f
i′
J )χ2 (3.4)

PROOF : χ2 distance in the original data space can be defined as:

d(f iJ , f
i′
J )2χ2 = ||f iJ − f i

′
J ||2. (3.5)

Starting from the (3.2) the distance between the projection of two generic

points i and i′ on the factorial axes can be computed:

(f iJ − fJ) =
s∑

α=1

(Fα(i)µαJ) (3.6)

(f iJ − fJ)− (f i
′
J − fJ)) = (f iJ − f i

′
J ) (3.7)

Using (3.7) it can be said:

||f iJ − f i
′
J ||2 = ||

s∑
α=1

Fα(i)µαJ − Fα(i′)µαJ ||2 =

=
s∑

α=1

(Fα(i)− Fα(i′))2||µαJ ||2 +

+2
∑
α 6=α′

(Fα(i)− Fα(i′))(Fα′(i)− Fα′(i′))〈µαJµα′J〉 (3.8)

The factorial axes are, for construction, orthogonal and they have an

unitary norm, it is equal to say: ||µαJ ||2 = 1 and 〈µαJµα′J〉 = 0 if α 6= α′,

so (3.8) became:
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||fi,j − fi′,j ||2 =
s∑

α=1

(Fα(i)− Fα(i′))2 (3.9)

Because (3.3) and (3.9), then (3.4) is verified.

�

χ2 distance between two generic row profile i and i′ in the original space

is equal to the usual euclidean distance computed on the not null MCA

factors.

3.2.2 Non-metric matching measures

An alternative strategy to cluster categorical data is to adopt non-metric

matching measures. However these measures becomes less effective as the

number of variables increases, the main object of this thesis are large

dataset. Non-metric matching measures can not be used dealing with this

type of dataset, so the method is only briefly presented.

According to this approach items they can be grouped depending on the

rules they generate. A typical example of rules can be found in the market-

basket domain; A → B means that if someone buy the set of items A he

will probably buys the set of items B. There is a difference between the

association rule, that is based on the cooccurrences of the two groups of

items and gives asymmetric importance to A and B, and the logical impli-

cation A⇒ B or the equivalence A⇔ B. In a categorical database a large

quantity of rules can be found, the objective is to find interesting rules; thus

an appropriate measure of interestingness must be chosen in order to filter

the rules. There are two types of measures: user driven and data driven.

The first type of measures are subjective, the second one objective and are
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based on the use of some filters of rules.

Defined a rule as an assertion A→ B where A and B are two itemsets and

A∩B = Ø, in order to filter the rules some quality measure must be taken

into account [Lenca et al., 2008]:

• the support of A→ B is the percentage of items that have the value

1 for variables A and B;

• the confidence of A→ B is the ratio of the number of items that have

the value one for variables A and B against the number of items that

have the value one for variable A.

Agrawal and al. [Agrawal et al., 1993] proposed a two-step algorithm to

cluster data using non-metric matching measures:

1. to find frequent itemsets X (frequency higher than a minimum thresh-

old) by finding all the possible item-sets of size from 2 to nk;

2. to generate rules from frequent itemsets and filter them with the

minimum confidence threshold.

However this method finds a large number of rules; among them strong

rules can be found. A wide range of algorithms to select strong rules exist in

literature [Lenca et al., 2008]. It is worth noticing that matching measures

become less effective as the number of variables increases.

3.3 Probabilistic factorial clustering methods

These methods perform a model based clustering and a dimensionality re-

duction simultaneously. They can be parametric or non-parametric; among
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parametric methods the most used one is the Mixtures of Factor Analyzers

(MFA) proposed by McLachlan and Peel in 2000 [McLachlan and Peel, 2000]

[McLachlan et al., 2003]. Model based clustering consists on assuming that

the data come from several subpopulations. Each subpopulation has its own

model, the population is a mixture of the subpopulations. The global model

is a finite mixture model, where the observations xi with i = 1, . . . , n are

assumed to be a sample from a probability distribution with density:

p(xi|K, θK) =
K∑
k=1

pkφ(xi|ak); (3.10)

where pk, such that 0 < pk < 1 and
∑K

k=1 pk = 1, is the mixing proportion,

φ(.|ak) is the parametrized density, ak is the vector of parameters of the

kth cluster and θk = (p1, . . . , pK−1, a1, . . . , aK).

The most used density probability is a d-dimensional normal distribution,

in this case ak = (µk,Σk) where µk is the mean of the kth cluster and Σ is

the variance and covariance matrix of the kth cluster. The mixture model

is an incomplete structure, the corresponding complete structure is:

y = (y1, . . . , yn) = ((x1, u1), . . . , (xn, un)); (3.11)

u = (z1, . . . , un), with ui = (ui1, . . . , uiK), is the membership vector such

that uik = 1 if xi arise from group k.

Model based clustering methods have several advantages [Celeux, 2007]:

many versatile or parsimonious models are available and many algorithm

available. However, when the number of variables increases the number of

parameters to estimate is very high.
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For this reason mixtures of factor analyzers (MFA) have been proposed.

This method can be viewed as a dimensionally reduced model-based clus-

tering approach.

The basic assumption is that the data are generated according to a factor

model with a certain a priori probability. The number of parameters can

be consequently reduced and the method can be applied to a higher dimen-

sional dataset [Montanari and Viroli, 2011].

According to MFA the distribution of each J-dimensional vector yi of the

observed data can be modeled with an ordinary factor analysis model with

a certain probability πi:

y = µi + Λiz + ei, (3.12)

where µi is a location vector of length J , z is a q-dimensional vector of

common latent variables or factors, with q < J , and Λi is a J × q matrix of

factor loadings. The factors z are assumed to be distributed as a standard-

ized q-dimensional Gaussian, φ(q)(0, Iq), independently from the errors ei,

which are distributed as a J-dimensional Gaussian, φ(p)(0,Ψi), where Ψi

is a diagonal matrix. The density of the observed data is given by:

f(y; θ) =
K∑
i=1

πiφ
(J)(y;µi,ΛiΛ′i + Ψi), (3.13)

where θ = (π′, θ′1 . . . , θ
′
K)′. The weights vector π, of generic element πi, is

a K− 1 dimensional vector and θi = (µi, vecΛi, diagΨi), with i = 1, . . . ,K.

The method can be seen as a globally nonlinear latent variable model, K

factor models with Gaussian factors are fitted on the data.

The total number of parameters to be estimated is lower than the number
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of parameters needed in the estimation of an unconstrained model.

In an unconstrained model the number of parameters to be estimated is:
1
2J(J + 1) for each component. The number of parameters quadratically

increases as J increases, using MFA the number of parameters is: KJ(q+1).

In order to successfully perform an MFA q must be chosen lower than J−1
2 .

The weight πi are the a priori probabilities of belonging to each subpop-

ulation. Bayes theorem can be used to compute the posterior probability

τij(yi|θ):

τij(yj |θ) =
πiφ

(J)(yj ;µi,ΛiΛ′i + φi)∑K
k=1 πkφ

(J)(yj ;µk,ΛkΛ′k + φk)
(3.14)

The estimation of the whole model is obtained using an Expectation

Maximization (EM) algorithm, readers interested in algorithm details can

refer to [Montanari and Viroli, 2011],

3.4 Geometric factorial clustering methods

A first contribution to geometric two-step iterative methods was given by

Vichi and Kiers [Vichi and Kiers, 2001] with Factorial K-means analysis

for two-way data. Related methods have been developed to cope with

categorical and binary data. Some relevant methods are: multiple cor-

respondence analysis for identifying heterogeneous subgroups of respon-

dents [Hwang et al., 2006] and Iterative Factorial Clustering of Binary Data

[Iodice D’Enza and Palumbo, 2010].

All the methods listed above require the choice a priori of the number

R of factors and the number K of clusters. A way to choose the number

of factor is to apply once the factorial technique used in the factorial clus-
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tering method and to choose the number of factors using the techniques

illustrated in chapter 3.1 of the current thesis. To chose the number of

clusters a possible way is to apply the factorial clustering method with dif-

ferent input values of K, for a fixed value of R, and to choose the best

value using the techniques described in chapter 2.1. It is recommended

that the number of clusters is greater than the number of dimensions

[Van Buuren and Heiser, 1989]. A widely used non-statistical criterion is

to evaluate the usefulness and relevance of clusters.

3.4.1 Factorial K-means

The aim of this method is to identify the best partition of the objects and

to find a subset of factors that best describe the classification according to

the least squares criterion. An alternating Least Squares (ALS) two-step

algorithm solves this problem.

Let’s define it with:

• X a data matrix with n units and J variables;

• A a J ×R orthonormal matrix, whose elements are a linear combina-

tion of observed variables, R is the number of factor to be used;

• U a n×K matrix, of generic element uij , that represents the binary

membership to each cluster, with K number of clusters;

• E a n× J error components matrix;

• Ȳ a K ×R centroids matrix.

Factorial K-means model is defined as:

XAA′ = UȲ A′ + E (3.15)
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The model is an orthogonal projection of units on a subspace spanned by

the columns of the orthonormal matrix A. The objective is to minimize f

according to A, wheref is:

f = ||XA− UȲ ||2. (3.16)

The minimization problem is:

minA ||XA− UȲ ||2 (3.17)

subject to A′A = I
J∑
j=1

uij = 1 ∀i

Centroids matrix Ȳ can be expressed as:

Ȳ = (U ′U)−1U ′XA, (3.18)

so the expression minimized in the (3.16) becomes:

f = ||XA− U(U ′U)−1U ′XA||2.

This quantity can be decomposed in two parts and the function to be

minimized becomes:

min[tr(A′X ′XA)− tr(A′X ′U(U ′U)−1U ′XA)]. (3.19)

The first component of the (3.19) is the total deviance of XA, the second

one is the between classes deviance. An ALS algorithm can be used to

solve the (3.19) [de Leeuw et al., 1976]; the algorithm minimizes the object

function in two steps. In the first step U is computed applying K-means
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algorithm; in the second step the value of A that minimizes the (3.19), given

U , is found. The value of A is obtained by finding the first R eigenvectors

of B:

B = X ′(U(U ′U)−1U ′ − In)X, (3.20)

where In is an n dimensional identity matrix.

The algorithm is detailed in Algorithm 2.

The advantage of Factorial K-means is that the two steps optimize a single

Algorithm 2 Factorial K-means
1: function Factorial K-means(X,K,R)
2: U ← rand(n,K) . matrix Un,K is randomly initialised
3: A← rand(J,R) . Matrix AJ,R is randomly initialised
4: Ȳ ← centroids(U,A) . centroids(U,A) implements the 3.18
5: f ← max . initialise f to the maximum
6: repeat
7: U ← K −means(A,K) . U is computed according to algorithm 1
8: B ← b(X,U) . b(X,U) implements the 3.20
9: A← svd(B) . svd(B) take the first R eigenvectors of B

10: Ȳ ← centroids(U,A) . centroids(U,A) implements the 3.18
11: fo ← f . Current f is stored in fo
12: f ← f(A,U, Ȳ ) . f (A,U , Ȳ )implements the 3.16
13: until f < fo

return A,U
14: end function

objective function. Another advantage is that clustering method is applied

on factorial axes. If the number of chosen factors is lower than the number

of variables the method is external robust [Vichi and Saporta, 2009].
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3.4.2 Multiple correspondence analysis for identifying het-
erogeneous subgroups of respondents

In 2006 Hwang and al. proposed to combine MCA and K-means in a unified

framework [Hwang et al., 2006]. K-means is easily compatible with the

MCA’s distribution free optimization problem. The optimization criteria

of the two methods are combined creating a single criterion.

Let’s define it with:

• Z a n× J∗ disjunctive coding data matrix;

• F a n × R matrix of R-dimensional representation of J categorical

variables, R is the number of factor to be used;

• U a n×K matrix, of generic element uij , that represents the binary

membership to each cluster, with K number of clusters;

• Ȳ a K ×R centroids matrix;

• Wj a J∗ ×R matrix of weights, with j = 1, . . . , J ;

• α1, α2 non-negative scalar weights.

The object of the method is to find a low-dimensional representation

of variables and, at the same time, to identify clusters of respondents that

are relatively homogenous in the low-dimensional representation. This is

equivalent to:

min
U,W

α1

J∑
j=1

SS(F − ZjWj) + α2SS(F − UȲ ) (3.21)

subject to F ′F = I
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where α1 + α2 = 1 and SS indicates the sum of squares of (F − ZjWj).

When α1 = 1 the criterion is equal to the standard criterion of MCA; when

α2 = 1 the criterion is equal to the standard criterion of K-means. When

both α1 and α2 are non null, minimizing the criteria is equivalent to find a

low-dimensional representation of data F such data the cluster structure is

recognized. The values of α1 and α2 are a priori chosen, if α1 = α2 = 0.5

MCA and K-means are balanced. If someone wants to give more weight to

one of two methods, α1 6= α2. To minimize the (3.21) F,Wj , U and Ȳ must

be estimated; an ALS algorithm is used [de Leeuw et al., 1976]. At first F

and U are fixed; Wj and Ȳ are updated:

Ŵj = (Z ′jZ)−1Z ′jF, (3.22)

ˆ̄Y = (U ′U)−1U ′F. (3.23)

The first step consists in the estimation of F . Let’s define it with: ωj =

Zj(Z ′jZ)−1Z ′j and Ψ = U(U ′U)−1U ′, the value of F that optimize the (3.21)

is obtained as eigenvalues decomposition of:

α1

J∑
j=1

Ωj + α2Ψ. (3.24)

In the second step U is computed using K-means algorithm, for given values

of F,Wj and Ȳ . The algorithm is summarized in Algorithm 3.

Using the ALS algorithm the value of 3.21 monotonically decreases; how-

ever, the convergence to a global minimum is not guaranteed. In particular

the K-means is sensitive to local minimum. A strategy to overcome this

issue consists in running the all algorithm several times starting from dif-

ferent initial parameters.
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Algorithm 3 MCA for identifying heterogeneous subgroups of respondents
1: function MCA K-means(Z,K,R, α1, α2)
2: U ← rand(n,K) . matrix Un,K is randomly initialized
3: F ← rand(n,R) . Matrix Fn,R is randomly initialized
4: Ȳ ← centroids(U,F ) . centroids(U,F) implements the 3.23
5: for j = 1, J do
6: Wj ← weight(Z,F ) . weight(Z,F ) implements the 3.22
7: end for
8: f ← max . initialise f to the maximum
9: repeat

10: B ← b(Ωj ,Ψ) . b(Ω,Ψ) implements the 3.24
11: F ← svd(B) . svd(B) take the first R eigenvectors of B
12: U ← K −means(F,K) . U is computed according to algorithm 1
13: Ȳ ← centroids(U,F ) . centroids(U,F) implements the 3.23
14: for j = 1, J do
15: Wj ← weight(Z,F ) . weight(Z,F ) implements the 3.22
16: end for
17: fo ← f . Current f is stored in fo
18: f ← f(F,U,Wj , Ȳ ) . f (A,U ,Wj Ȳ )implements the 3.21
19: until f < fo

return F,U
20: end function
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3.4.3 Iterative Factorial Clustering of Binary data

Iodice D’Enza and Palumbo in 2010 [Iodice D’Enza and Palumbo, 2010]

proposed a new factorial clustering method, iterative Factorial Clustering

of Binary data (i-FCB), in order to cope with clustering of high-dimensional

binary data. Dealing with this type of data the main issue is the sparseness.

Sparsity in high-dimensional binary databases causes two main effects: clus-

ter solutions are unstable and they consist of a single large group and further

very small residual groups. The i-FCB find stable clusters of binary data.

Let’s define with:

• X a n× 2J disjunctive coded binary data matrix;

• Xj with j = 1, . . . , J binary attributes;

• U a n × Kmatrix of binary membership to each cluster, with K

number of clusters;

• H = UTX a K × J matrix of general element hkj frequency of the

jth attribute in the kth group;

• xj the general column vector of X with j = 1, . . . , J .

The aim of i-FCB is to seek to organize information about variables so

that K homogeneous groups of statistical units can be formed. Each of

the group is coded via an indicator variable. Thus there will be K of such

indicators Uk, k = 1, . . . ,K, with Uk = 1 if the ith statistical unit is in the

group k, Uk = 0 otherwise.

Considering n trials, the random vector U = (U1,U2, . . . ,UK) follows

a multinomial distribution with parameters (n;π1, π2, . . . , πK), with πk =

Pr(Uk = 1). Assuming the parameters (π1, π2, . . . , πK) to be known, the
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optimal criterion for the allocation of the n statistical units into the K

groups is to randomly assign units to groups proportionally to the corre-

sponding πk parameters.

The aim of i- FCB is to estimate πk in order to maximize the heterogeneity

among groups with respect to the Xj attributes. Each of the attributes

Xj is Bernoulli distributed (with x indicating success and x̄ failure) with

parameter πX . According to the same criterion, new statistical units are

processed in order to update both the clustering solution and the binary

attribute quantifications.

For the sake of simplicity the criterion maximization is illustrated in the

simple case of one single binary attribute X, and its generalization to the

J attributes case afterwards. Consider U as a qualitative variable with

k = 1, . . . ,K categories and X a binary variable with attributes {x, x̄}.
Let H be a cross-classification table with general element hkl being the

co-occurence number of the categories k and l, with l = 1, 2; the row margin

hk+ is the number of occurrences of the category k (k = 1, . . . ,K) and the

column margin h+l is the number of occurrences of the category l (l = 1, 2),

with h++ = n being the grand total of the table. The qualitative variance,

or heterogeneity, of U can be defined by the Gini index

G(U) = 1−
K∑
k=1

(
hk+
n

)2

= 1−
K∑
k=1

h2
k+

n2
. (3.25)

Within the category of x (the same occurs for x̄) the variation is

G (U | x) = 1−
K∑
k=1

h2
k1

h2
+1

. (3.26)

The variation of Z within the categories of the variable X is obtained by
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averaging G (U | x) and G (U | x̄) and it is denoted by G (U | X), formally

G(U | X) =
2∑
l=1

h+l

n

(
1−

K∑
k=1

h2
kl

h2
+l

)
= 1− 1

n

K∑
k=1

2∑
l=1

h2
kl

f+l
. (3.27)

Then the variation of U explained by the categories of X is

G(U)−G(U | X) = 1−
K∑
k=1

h2
k+

n2
−

(
1− 1

n

K∑
k=1

2∑
l=1

h2
kl

h+l

)
=

=
1
n

K∑
k=1

2∑
l=1

h2
kl

h+l
− 1
n

K∑
k=1

hs2k+
n

. (3.28)

The groups heterogeneity corresponds to the qualitative variance between

the K levels of the Z variable, then with n statistical units described by J

binary attributes X1, X2, . . . , Xj , . . . , XJ , the quantity to maximize is

J∑
j=1

(G(U)−G(U | Xj)). (3.29)

This expression represents the sum of variances explained by each of the at-

tributesXj and it is the generalization of expression 3.28 to the J−attributes

case gives the expression 3.29.

The algebraic formalization of the 3.29 is:

tr

[
1
n
H(∆)−1HT − J

n2
(UT 11TU)

]
=

tr

[
1
n
UTX(∆)−1XTU − J

n2
(UT 11TU)

]
,

where ∆ = diag(XTX), 1 is a n-dimensional vector of ones.

The solution is obtained solving the following equation:
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1
n

[
UTX(∆)−1XTU − J

n
(UT 11TU)

]
V = ΛV, (3.30)

where V and U are unknown.

The problem corresponds to a classical eigenanalysis problem where the

diagonal matrix Λ contains eigenvalues while the matrix V contains eigen-

vectors. A direct solution is unfeasible, an iterating strategy can be used

to compute V and U alternatively. Given the matrix ψ, such that:

ψ =
(
X(∆)−1XT − J

n
11T

)
UV Λ1/2, (3.31)

the eigenvalue decomposition of ψ permits to compute the values of V and

U .

The algorithm can be summarized as shown in Algorithm 4.

Algorithm 4 i-FCB
1: function i-FCB(X,K)
2: U ← rand(n,K) . matrix Un,K is randomly initialised
3: f ← 0 . initialize f to the minimum
4: repeat
5: ∆← diag(XTX)
6: ψ ← svd(X,∆, U) . svd(X,∆, U) implements the 3.31
7: U ← K −means(ψ,K) . U is computed according to algorithm 1
8: fo ← f . Current f is sored in fo
9: f ← f(X,Z,U,Λ) . f(X,Z,U,Λ) implements the 3.30

10: until fo < f
return U

11: end function
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3.5 Clustering in a feature space

The methods presented before solves a lot of clustering problems; however

real dataset are characterized by non linear relations that sometimes remain

invisible to these methods too. The non linearity is frequently dealing

with categorical dataset. In order to face this problem a used approach

consists in projecting points in a higher dimensional feature space where

the relations between variables are linearized. Kernel functions are used in

order to project points in the feature space.

3.5.1 Feature space

A feature space F = {φ(x)|x ∈ X} is an abstract t-dimensional space where

each statistical unit is represented as a point. Being given data matrix X,

units × variables, with general term xij , i = 1, 2, . . . , n and j = 1, 2, . . . , J ,

any generic row or column vector of X can be represented into a feature

space using a non linear mapping function. Formally, the generic column

(row) vector xj (x′i) of X is mapped into a higher dimensional space F

trough a function

x = (x1, . . . , xn)→ ϕ(xj) = (φ1(xj), φ2(xj), . . . , φt(xj)) ,

with t > J (t > n in the case of row vectors) and t ∈ n, see fig. 3.5.1

[Muller et al., 2001].

If the feature space has been properly chosen data points, that are not

linearly separable in the original space, it can be linearly separable.

This transformation can be used for both: reducing or enlarging the original

data space. An example of second degree function ϕ(x) that project points

from a two dimensional space to a three dimensional space is: (x1, x2) →
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Figure 3.1: Projection of original data point X in the feature space through
function ϕ(x).

ϕ(x) = (x2
1, x

2
2, x1x2). Points can be projected in a generical

(
n+ d− 1

d

)
dimensional space by using a dth degree function.

When points projection objective is to cluster , according to a support

vector approach, the computation of the function ϕ(·) is unnecessary, the

function only appears in products. The dot products ϕ(xj) · ϕ(xj′) can be

computed using an appropriate kernel function K(xj , xj′).

A Kernel function is a function of K, so that for every x, y ∈ X

K(x, y) = 〈ϕ(x) · ϕ(y)〉 . (3.32)

3.5.2 Kernel functions

Kernel functions permit to reduce the computational cost because the fea-

ture space must be only implicitly defined. Thanks to the use of kernel

function the function ϕ(xi) and its inner product ϕ(xj) ·ϕ(xj′) do not have

to be computed.

66



3.5. Clustering in a feature space

The inner product can be defined as:

K(x, y) = 〈ϕ(x) · ϕ(y)〉 =
∞∑
n=1

a2
nϕn(x)ϕn(y). (3.33)

It is worth noticing that not all the type of function define a feature space

or equivalently the kernel function. Necessary but not sufficient conditions

so that K(x, y) is a kernel function are:

• symmetry

k(x, y) = 〈ϕ(x) · ϕ(y)〉 = 〈ϕ(y) · ϕ(x)〉 = K(y, x)

• Cauchy - Schwarz inequality

k(x, y)2 = 〈ϕ(x) · ϕ(y)〉2 ≤ ‖ϕ(x)‖2 ‖ϕ(y)‖2 =

= 〈ϕ(x) · ϕ(x)〉 〈ϕ(y) · ϕ(y)〉 = K(x, x)K(y, y)

A sufficient condition to define a kernel function is given by Mercer theorem:

In the simplest case when K(x, y) is a simmetric function defined on X =

(x1, . . . , xn), K is a matrix as:

K = (K(xi, xj))ni,j=1. (3.34)

If K is simmetric than it exists an orthogonal matrix V such that K =

V ΛV ′, where Λ is a diagonal matrix of eigenvalues λt of K corresponding

to eigenvectors vt = (υti)ni=1 columns of matrix V . Assuming that the

eigenvalues are nonnegative:

ϕ(x) : x→ (
√
λtυti)nt=1 ∈ <n, i = 1, . . . , n. (3.35)
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then:

〈ϕ(xi) · ϕ(xj)〉 =
n∑
t=1

λtυtiυtj = (V ΛV ′)ij = kij = K(xi, xj) (3.36)

K(xi, xj) is the kernel function corresponding to ϕ(x). Eigenvectors must

be positive, assuming by contradiction that λs is negative than it will exist

a point z such that:

z =
n∑
t=1

υsiϕ(xi) =
√

ΛV ′vs (3.37)

The norm of z in the feature space is:

‖z‖2 = 〈z · z〉 = v′s(V )
√

Λ
√

Λ(V )′vs = v′s(V )Λ(V )′vs = v′skvs = λs < 0

it is impossible. Thus it can be said that:

Given a finite input space X and a simmetric function K(x, y) of X, K(x, y)

is a kernel function if and only if:

K = (K(xi, xj))ni,j=1

is positive semidefined (eigenvectors are not negative).

Most used Kernel functions are [Abe, 2005]:

• linear: K(xi, xj) = 〈xi · xj〉

• polinomial: k(xi, xj) = (〈xi · xj〉+ 1)d con d ∈ N e d 6= 0

• gaussian: k(xi, xj) = exp(−q ‖xi − xj‖2 /2σ2)
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Distances in the feature space Through kernel functions the inner

product of ϕ(x) and the distance between two generic points in the space

can be computed without computing ϕ(x)

Defined with P the generic point in the feature space F defined by ϕ(x):

P =
l∑

i=1

αiϕ(xi) = (αi, xi)li=1. (3.38)

Defined with Q = (βi, zi)li=1 a point in the same space; the distance between

the two points is defined as follow:

‖P −Q‖2F = (3.39)

= 〈P −Q · P −Q〉
=

∑
i,j

αiαjK(xi, xj)− 2
∑
i,j

αiβjK(xi, zj) +
∑
i,j

βiβjK(zi, zj).

3.5.3 Support Vector Clustering

Support Vector Clustering (SVC) is a non parametric cluster method based

on support vector machine that maps data points from the original variable

space to a higher dimensional feature space trough a proper kernel function

(Muller et al., 2001).

The solution of the problem implies the identification of the minimal radius

hypersphere that includes the images of all data points; points that are on

the surface of the hypersphere are called support vectors. In the data space

the support vectors divide the data in clusters. The problem is to minimize

the radius under the constraint that all the points belong to the hyper-

sphere: r2 ≥ ‖ϕ(xj)− a‖2 ∀j, where a is the center of the hypersphere

and ‖·‖ denotes tha Euclidean norm.
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To avoid that only the most far point determines the solution, slack vari-

ables ξj ≥ 0 can be added:

r2 + ξj ≥ ‖ϕ(xj)− a‖2 ∀j.

This problem can be solved by introducing the Lagrangian:

L(r, a, ξj) = r2 −
∑
j

(r2 + ξj − ‖ϕ(xj)− a‖2)βj −
∑
j

ξjµj + C
∑
j

ξj(3.40)

where βj ≥ 0 and µj ≥ 0 are Lagrange multipliers, C is a constant and

C
∑

j ξj is a penality term. To solve the minimization problem we set to

zero the derivate of L with respect to r, a and ξj and we get the following

solutions: ∑
j

βj = 1

a =
∑
j

βjϕ(xj)

βj = C − µj

We remind that Karush-Kuhn-Tucker complementary condition implies:

ξjµj = 0

(r2 + ξj − ‖ϕ(xj)− a‖2)βj = 0

The Lagrangian is a function of r, a and µj . Turning the Lagrangian into

the more simple Wolfe dual form, which is a function of the variables βj ,

we obtain:

W =
∑
j

ϕ(xj)2βj −
∑
j,j′

βjβj′ϕ(xj) · ϕ(xj′) ∀{j, j′}, (3.41)
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with the constraints 0 ≤ βj ≤ C.

It is worth noticing that in (3.41) the function ϕ(·) only appear in products.

The dot products ϕ(xj)·ϕ(xj′) can be computed using an appropriate kernel

function K(xj , xj′). The Lagrangian W is now written as:

W =
∑
j

K(xj , xj)βj −
∑
j,j′

βjβj′K(xj , xj′). (3.42)

The SVC problem requires the choice of a kernel function. The choice of

the kernel function remains a still open issue (Shawe-Taylor and Cristianini

2004). There are several proposal in the recent literature:

• Linear Kernel (k(xi, xj) = 〈xi · xj〉);

• Gaussian Kernel ( k(xi, xj) = exp(−q ‖xi − xj‖2 /2σ2));

• polynomial Kernel ( k(xi, xj) = (〈xi · xj〉+ 1)d.

These Kernel functions (with d ∈ N and d 6= 0) are among the most largely

used functions. In the present work we adopt a polynomial kernel function;

the choice was based on the empirical comparison of the results (Abe 2005).

Most important for the final clustering result is the choice of the parameter

d because this parameter affects the number of clusters.

To simplify the notation, we indicate with K∗(·) the parametrised kernel

function: then in our specific context the problem consists in maximising

the following quantity with respect to β

W =
∑
m

K∗(ym, ym)βm −
∑
m,m′

βjβm′K
∗(ym, ym′), (3.43)

where ym represents the generic coordinate obtained via MCA, 1 ≤ m ≤ q.
This involves a quadratic programming problem solution, the objective
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function is convex and has a globally optimal solution (Ben–Hur et al.,

2001).

The distance of the image of each point in the feature space and the center

of the hypersphere is:

R2(y) = ‖ϕ(y)− a‖2 (3.44)

Applying previous results the distance is obtained as:

R2(y) = K∗(y, y)− 2
∑
j

K∗(yj , y)βj +
∑
j,j′

βjβj′K
∗(yj , yj′). (3.45)

Points, whose distance from the surface of the hypersphere is less than ξ,

are the support vectors and they define a partition of the feature space.

These points are characterized by 0 < βi < C; points with βi = C are

called bounded support vectors and they are outside the feature-space hy-

persphere. If βi = 0 the point is inside the feature-space hypersphere. The

number of support vectors affects the number of clusters, as the number of

support vectors increases the number of clusters increases. The numbers

of support vectors depend on d and C: as d increases the number of sup-

port vectors increases because the contours of the hypersphere fit better

the data; as C decreases the number of bounded support vectors increases

and their influence on the shape of the cluster contour decreases.

The (squared) radius of the hypersphere is:

r2 = {R(yi)2|yi is a support vector}. (3.46)

Cluster labeling The last clustering phase consists in assigning the

points projected in the feature space to the classes. It is worth reminding

that the analytic form of the mapping function ϕ(x) = (φ1(x), φ2(x), . . . , φt(x))
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is unknown, so that computing points coordinates in the feature space is

an unfeasible task. Alternative approaches permit to define points mem-

berships without computing all coordinates. Traditional SVC cluster label-

ing algorithm is Complete Graph (CG) [Ben-Hur et al., 2001]. Given two

generic points xi and xj , where xixj is the line segment connecting the two

points, the two points belong to the same cluster if, for all point y belonging

to the segment xixj , the projection on the feature space ϕ(y) belong to the

hypersphere. if it exists at least one point of the segment whose projection

falls outside the hypersphere the two points belong to different clusters.

Starting from this principle an adjacency matrix A, of general element aij ,

can be defined.

aij =
{

1 if, ∀y belonging to xixj , R(y) > R
0 otherwise

(3.47)

In practice points y are a sample of all the points belonging to the seg-

ment xixj . CG method has an high computational cost, order of N2 time

complexity. Same alternative method have been proposed:

• Support Vector Graph (SVG) [Ben-Hur et al., 2001]: based on the

same approach of CG, according to this method the adjacency matrix

is built considering the distances between support vectors and all data

points xi, order of nnsv time complexity;

• Proximity Graph (PG) [Lee and Lee, 2005]: adjacency matrix is built

on a different graph, order of n time complexity;

• Gradient Descend (GD) [Yang et al., 2002]: Stable Equilibrium Points

(SEP) are found and the adjacency matrix is built on the SEPs, order

of nSEP time complexity;
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• Cone Cluster Labeling(CCL) [Lee and Danels, 2006]: explained in

the following, order of nsv2 time complexity;

where nsv is the number of Support Vectors and nSEP the number of Stable

Equilibrium Points.

The cone cluster labeling is different from classical methods because it

is not based on distances between pairs of point. This method look for a

surface that cover the hypersphere, this surface consists of a union of coned-

shaped regions. Each region is associated with a support vector’s features

space image, the phase of each cone Φi = ∠(φ(vi)Oa) is the same, where

vi is a support vector, a is the center of the minimal hypersphere and O is

the feature space origin. The image of each cone in the data space is an

hypersphere, if two hypersphere overlap the two support vectors belong to

the same class. So the objective is to find the radius of these hyperspheres

in the data space ‖vi − gi‖ where g is a generic point on the surface of

the hypersphere. It can be demonstrated that K(vi, gi) =
√

1− r2 (Lee et

Daniels 2006) so in case of polynomial kernel we obtain:

K(vi, gi) = ((vig′i) + 1)d,√
1− r2 = ((vig′i) + 1)d. (3.48)

Starting from (3.48) it is possible to compute the coordinate of gi: g′i =

[(1 − r2)
1
2d − 1]v′i and consequently the value of ‖vi − gi‖. If distances

between two generic support vector is less than the sum of the two radius

they belong to the same cluster.

3.5.4 Support Vector Clustering for categorical data

In this framework we have proposed a clustering approach based on a mul-

tistep strategy [Marino et al., 2009]: i) Factor Analysis on the raw data
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matrix; ii) projection of the first factor coordinates into a higher dimen-

sional space; iii) clusters identification in the high dimensional space; iv)

clusters visualisation in the factorial space [Marino and Tortora, 2009]. The

core of the proposed approach consists of steps i and ii This section aims

at motivating the synergic advantage of this mixed strategy.

When the number of variables is large, projecting data into a higher di-

mensional space is a self-defeating and computationally unfeasible task. In

order to carry only significant association structures in the analysis, deal-

ing with continuos variables, some authors propose to perform a Principal

Component Analysis on the raw data, and then to project first components

in a higher dimensional feature space [Ben-Hur et al., 2001]. In the case

of categorical variables, the dimensionality depends on the whole number

of categories, this implies an even more dramatic problem of sparseness.

Moreover, as categories are a finite number, the association between vari-

ables is non-linear.

Multiple Correspondence Analysis (MCA) on raw data matrix permits to

combine the categorical variables into continuos variables that preserve the

non-linear association structure and to reduce the number of variables,

dealing with sparseness few factorial axes can represent a great part of the

variability of the data. Indicating with F the n× q coordinates matrix of n

points into the orthogonal space spanned by the first q MCA factors. Map-

ping the first factorial coordinates into a feature space permits to cluster

data via a Support Vector Clustering approach.
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Chapter 4

Factorial Probabilistic
Distance Clustering

In this chapter a new factorial clustering method, Factorial Probabilistic

Distance Clustering (FPDC), is introduced [Tortora et al., 2011b]; it is clas-

sified as a non-parametric probabilistic method. FPDC is a generalization

of Probabilistic Distance (PD) Clustering [Ben-Israel and Iyigun, 2008] to a

two steps iterative clustering method. PD-Clustering is an iterative, distri-

bution free, probabilistic, clustering method that assigns units to a cluster

according to their probability of belonging to that cluster. The probabili-

ties are computed according to the constraint that the product between the

probability and the distance of each point to any cluster center is a con-

stant. When the number of variables is large and variables are correlated,

PD-Clustering becomes unstable and the correlation between variables can

hide the real number of clusters. A linear transformation of original vari-

ables into a reduced number of orthogonal ones using common criterion

with PD-Clustering can significantly improve the algorithm performance.



Factorial Probabilistic Distance Clustering

The objective of Factorial PD-Clustering is to perform a linear transfor-

mation of the original variables and a clustering on transformed variables

optimizing the same criterion.

4.1 Probabilistic Distance Clustering

PD-clustering [Ben-Israel and Iyigun, 2008] is a non hierarchical algorithm

that assigns units to clusters according to their belonging probability to the

cluster. Being given some random centers, the probability of any point to

belong to each class is assumed to be inversely proportional to the distance

from the centers of the clusters. Being given an X data matrix with n

units and J variables, given K clusters that are assumed not empty, PD-

Clustering is based on two quantities: the distance of each data point xi
from the K clusters centers ck, d(xi, ck), and the probabilities for each

point to belong to a cluster, p(xi, ck) with i = 1, . . . , n and k = 1, . . . ,K.

The relation between them is the basic assumption of the method. Let’s

consider the general term xij of X and a center matrix C, of elements ckj
with i = 1, . . . , n, j = 1, . . . , J and k = 1, . . . ,K, their distance can be

computed according to different criteria, the squared norm is one of the

most commonly used. The probability p(xi, ck) of each point to belong

to a cluster can be computed according to the following assumption: the

product between the distances and the probabilities is a constant, JDF (xi),

depending on xi.

To simplify the notation we use pik = p(xi, ck) and dk(xi) = d(xi, ck);

PD-clustering basic assumption is expressed as:

pikdk(xi) = JDF (xi). (4.1)

for a given value of xi and for all k = 1, . . . ,K.
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4.1. Probabilistic Distance Clustering

At decreasing the closeness of point from cluster center the belonging

probability of the point to the cluster decreases. The constant depends

only on the point and does not depend on the cluster k.

Starting from the 4.1 it is possible to compute pik. Indeed

pimdm(xi) = pikdk(xi); pim =
pikdk(xi)
dm(xi)

; ∀m = 1, . . . ,K (4.2)

The term pik is a probability so, under the constraint
∑K

m=1 pim = 1, the

sum over m of 4.2 becomes:

pik

K∑
m=1

(
dk(xi)
dm(xi)

)
= 1,

pik =

(
K∑
m=1

(
dk(xi)
dm(xi)

))−1

=

∏
m 6=k dm(xi)∑K

m=1

∏
k 6=m dk(xi)

, k = 1, . . .K. (4.3)

Starting from the 4.1 and using 4.3 it is possible to define the value of the

constant JDF (xi):

JDF (xi) = pikdk(xi), k = 1, . . .K,

JDF (xi) =
∏K
m=1 dm(xi)∑K

m=1

∏
k 6=m dk(xi)

. (4.4)

The quantity JDF (xi), also called Joint Distance Function (JDF), is a

measure of the closeness of xi from all clusters’ centers. The JDF measures

the classificability of the point xi with respect to the centers ck with k =

1, . . . ,K. If it is equal to zero, the point coincides with one of the clusters’

centers, in this case the point belongs to the class with probability 1. If all
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the distances between the point and the centers of the clusters are equal

to d, JDF (xi) = d/k and all the belonging probabilities to each cluster

are equal to: pik = 1/K. The smaller the JDF value is, the higher the

probability for the point to belong to one cluster.

The whole clustering problem consists in the identification of the centers

that minimizes the JDF.

Without loss of generality, the PD-Clustering optimality criterium can be

demonstrated according to K = 2:

min
(
d1(xi)p2

i1 + d2(xi)p2
i2

)
(4.5)

subject to pi1 + pi2 = 1

pi1, pi2 ≥ 0

The probabilities are squared because it is a smoothed version of the original

function. The Lagrangian of this problem is:

L(pi1, pi2, λ) = d1(xi)p2
i1 + d2(xi)p2

i2 − λ(pi1 + pi2 − 1) (4.6)

Setting to zero the partial derivates with respect to pi1 and pi2, substituting

the probabilities 4.3 and considering the principle pi1d1(xi) = pi2d2(xi) we

obtain the optimal value of the Lagrangian.

L(pi1, pi2, λ) =
d1(xi)d2(xi)
d1(xi) + d2(xi)

. (4.7)

This value coincides with the JDF, the matrix of centers that minimizes

this principle minimizes the JDF too. Substituting the generic value dk(xi)

with ‖xi − ck‖, it can be found the equations of the centers that minimize

the JDF (and maximize the probability of each point to belong to only one
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cluster).

ck =
∑

i=1,...,N

(
uk(xi)∑

j=1,...,N uk(xj)

)
xi, (4.8)

where

uk(xi) =
p2
ik

dk(xi)
. (4.9)

As showed before, the value of JDF at all centers is equal to zero and it

is necessarily positive elsewhere. So the centers are the global minimizer

of the JDF. Other stationary points may exist because the function is not

convex neither quasi-convex, but they are saddle points [Iyigun, 2007].

There are alternative ways for modeling the relation between probabil-

ities and distances, for example the probabilities can decay exponentially

as distances increase. In this case the probabilities pik and the distances

dk(xi) are related by:

pike
dk(xi) = E(xi), (4.10)

where E(xi) is a constant depending on xi.

Many results of the previous case can be extended to this case by replacing

the distance dk(xi) with edk(xi). Interested readers are referred to Ben-Israel

and Iyigun [Ben-Israel and Iyigun, 2008].

The optimization problem presented in 4.5 is the original version pro-

posed by Ben-Israel and Iyigun. Notice that in the optimization problem

the probabilities pik are considered in squared form. The authors affirm that

it is possible to consider dk(xi) as well d2
k(xi). Both choices have some ad-

vantages and drawbacks. Squared distances offer analytical advantages due
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to linear derivates. Using simple distances endures more robust results and

the optimization problem can be re-conducted to a Fermat-Weber location

problem. The Fermat-Weber location problem aims at finding a point that

minimizes the sum of the Euclidean distances from a set of given points.

This problem can be solved with the Weiszfeld method [Weiszfeld, 1937].

Convergence of this method was established by modifying the gradient so it

is always defined [Khun, 1973]. The modification is not carried out in prac-

tice. The global solution is guaranteed only in case of one cluster. Dealing

with more than one cluster, in practice, the method converges only for a

limited number of centers depending on the data.

In this thesis we consider the squared form:

dk(xi) =
J∑
j=1

(xij − ckj)2, (4.11)

where k = 1, . . . ,K and i = 1, . . . , N . Starting from the 4.11 the distance

matrix D of order n × K is defined, where the general element is dk(xi).

The final solution ˆJDF is obtained minimising the quantity:

JDF =
n∑
i=1

K∑
k=1

dk(xi)p2
ik =

n∑
i=1

J∑
j=1

K∑
k=1

(xij − ckj)2p2
ik, (4.12)

ˆJDF = arg min
C

n∑
i=1

J∑
j=1

K∑
k=1

(xij − ckj)2p2
ik. (4.13)

Where ck is the generic center and dk(xi) is defined in 4.11.

The solution of PD-clustering problem can be obtained through an it-

erative algorithm.
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4.2. Factorial PD-Clustering

Algorithm 5 Probabilistic Distance Clustering Function
1: function PDC(X,K)
2: C ← rand(K,J) . Matrix CK,J is randomly initialised
3: JDF ← 1/eps . JDF is initialised to the maximum
4: D ← 0 . Initialise the array D, of dimension n×K, to 0
5: p← 1

k
. Initialise to 1

k
the probability vector p of n elements

6: repeat
7: for k = 1,K do
8: Dk ← distance(X,C(k)) . Dk distances computed according to 4.11
9: end for

10: JDF0← JDF . Current JDF is stored in JDF0
11: C ← C∗ . Centres are updated according to formula 4.8
12: JDF ← jdf(D) . ← jdf(D) implements the formula 4.4
13: until JDF0 > JDF
14: P ← compp(D) . function compp implements the formula 4.3

return C,P, JDF
15: end function

The algorithm convergence is demonstrated in [Iyigun, 2007].

Each unit is then assigned to a cluster according to the highest probability

that is computed a posteriori using the formula in equation 4.3.

4.2 Factorial PD-Clustering

When the number of variables is large and variables are correlated, PD-

Clustering becomes very unstable and the correlation between variables can

hide the real number of clusters. A linear transformation of the original

variables into a reduced number of orthogonal ones can significantly improve

the algorithm performance. Combination of PD-Clustering and variables

linear transformation implies a common criterion [Tortora et al., 2011a].

This section shows how the Tucker3 method [Kroonenberg, 2008] can be

properly adopted for the transformation into the Factorial PD-Clustering;
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an algorithm is then proposed to perform the method.

4.2.1 Same theoretical aspects of Factorial PD-clustering

Firstly it is demonstrated that the minimization problem in 4.12 corre-

sponds to the Tucker3 decomposition of the n× J ×K distance matrix G

of general elements gijk = |xij− ckj |, where i = 1, . . . , n indicates the units,

j = 1, . . . , J the variables and k = 1, . . . ,K the clusters. For any ck a n×J
Gk distances matrix is defined. In matrix notation:

Gk = X − hck (4.14)

where h is an n× 1 column vector with all terms equal to 1; X and ck have

been already defined in section 4.1.

Tucker3 method decomposes the matrix G in three components, one for

each mode, in a full core array Λ and in an error term E.

gijk =
R∑
r=1

Q∑
q=1

S∑
s=1

λrqs(uirbjqvks) + eijk, (4.15)

where λrqs and eijk are respectively the general terms of the three way

matrices Λ of order R × S × Q and E of order n × J ×K. The elements

uir, bjq and vks are respectively the general terms of the matrices U of

order n × R, B of order J × Q and V of order K × S, with i = 1, . . . , n,

j = 1, . . . , J , k = 1, . . . ,K.

As in all factorial methods, factorial axes in Tucker3 model are sorted ac-

cording to the explained variability. The first factorial axes explain the

greatest part of the variability, latest factors are influenced by anoma-

lous data or represent the ground noise. For this reason the choice of a

number of factors lower than the number of variables makes the method
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robust. According to Kiers and Kinderen [Kiers and Kinderen, 2003] the

choice of the parameters R, Q and S is a ticklish problem because they

define the overall explained variability. The interested readers are referred

to [Kroonenberg, 2008] for the theoretical aspects concerning this choice.

In the present thesis it is used an heuristic approach to cope with this cru-

cial issue: it is suggested to choose the minimum number of factors that

corresponds to a significant value of the explained variability.

The coordinates x∗iq of the generic unit xi into the space of variables ob-

tained through Tucker3 decomposition are obtained by the following ex-

pression:

x∗iq =
J∑
j=1

xijbjq. (4.16)

Finally on these x∗iq coordinates a PD-Clustering is applied in order to solve

the clustering problem.

Let’s start considering the expression 4.12; it is worth noting that minimiz-

ing the JDF:

min
C

n∑
i=1

J∑
j=1

K∑
k=1

(xij − ckj)2p2
ik (4.17)

subject to
∑n

i=1

∑K
k=1 p

2
ik ≤ n, (4.18)

is equivalent to:

max
c

n∑
i=1

J∑
j=1

K∑
k=1

(xij − ckj)2p2
ik, (4.19)

subject to
∑n

i=1

∑K
k=1 p

2
ik ≤ n. (4.20)
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Taking into account the following Proposition 1 (proved in section 4.2.3)

and the lemma given below, we demonstrate that the Tucker3 decomposi-

tion is a consistent linear variable transformation that determines the best

subspace according to the PD-clustering criterion.

Proposition 1 Given an unknown matrix B of generic element bim
and a set of coefficients 0 ≤ ψim ≤ 1, with m = 1, . . . ,M and i = 1, . . . , n

maximize

−
M∑
m=1

n∑
i=1

bimψ
2
im,

s.t.
∑M

m=1

∑n
i=1 ψ

2
im ≤ n is equivalent to solve the equation

M∑
m=1

n∑
i=1

bimψim = µ
M∑
m=1

n∑
i=1

ψim,

where µ ≥ 0.

Lemma. Tucker3 decomposition permits to define the best subspace for the

PD-clustering.

Considering the Proposition 1 where:

M = K

bik =
J∑
j=1

(xij − ckj)2 (4.21)

and

ψik = pik, with i = 1, . . . , n : k = 1, . . . ,K
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Let us assume that ckj and pik are known, replacing (xij − ckj) with gijk in

4.17 we obtain the following squared form:

max

− K∑
k=1

n∑
i=1

 J∑
j=1

g2
ijk

 p2
ik


subject to

∑K
k=1

∑n
i=1 p

2
ik ≤ n

according to the Proposition 1 we obtain:

K∑
k=1

n∑
i=1

 J∑
j=1

g2
ijk

 pik = µ
K∑
k=1

n∑
i=1

pik (4.22)

The value of µ that optimize the 4.22 can be find trough the singular value

decomposition of the matrix G, which is equivalent to the following Tucker3

decomposition:

gijk =
R∑
r=1

Q∑
q=1

S∑
s=1

λrqs(uirbjqvks) + eijk, (4.23)

with i = 1, . . . , n, j = 1, . . . , J , k = 1, . . . ,K.

Where R is number of components of U , Q the number of components of

B and S the number of components of V .

The 4.23 can be rewrite in matrix notation as:

G = UΛ(V ′ ⊗B′) + E (4.24)

�

The Proposition 1 and the Lemma 1 demonstrate that the Tucker3

transformation of the distance matrix G minimizes JDF. Subsection 4.2.3

presents an iterative algorithm to alternatively calculate ckj and pik on one
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hand, and bjq on the other hand, until the convergence is reached. In section

5.2 it is empirically demonstrated that the minimisation of the quantity in

the formula 4.17 converges at least to local minima.

4.2.2 Factorial PD-clustering iterative algorithm

Let’s start considering the equation 4.13, where it is applied the linear

transformation xijbjq to xij according to 4.16:

ˆJDF = arg min
C;B

n∑
i=1

Q∑
q=1

K∑
k=1

(x∗iq − ckq)2p2
ik. (4.25)

Let’s note that in formula 4.25: xij and bjq are the general elements of the

matrices X and B that have been already defined in section 4.2.1; ckq is

the general element of the matrix C (see eq. 4.8).

It is worth to note that C andB are unknown matrices and pik is determined

as C and B are fixed. The problem does not admit a direct solution and

an iterative two steps procedure is required.

The two alternative steps are:

• linear transformation of original data;

• PD-Clustering on transformed data.

The procedure starts with a pseudorandomly defined centre matrix C of

elements ckj with k = 1, . . . ,K and j = 1, . . . , J . Then a first solution for

probabilities and distance matrices is computed according to 4.14. Given

the initial C and X, the matrix B is calculated; once B is fixed the ma-

trix C is updated (and the values pik are consequently updated). Last two

steps are iterated until the convergence is reached: ˆJDF
(t)− ˆJDF

(t−1)
> 0,
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where t indicates the number of iterations.

In algorithm 6 the procedure is presented according to the usual flow dia-

gram notation.

Algorithm 6 Factorial Probabilistic Distance Clustering
1: function FPDC(X,K)
2: JDF ← 1/eps . JDF is initialised to the maximum
3: G← 0 . Initialise the array G, of dimension n× J ×K, to 0
4: P ← 1

k
. Initialise to 1

k
the probability vector p of n elements

5: C ← rand(K,J) . Matrix CK,J is randomly initialised
6: repeat
7: for k = 1,K do
8: Gk ← distance(X,C(k)) . Gk distances of all units from the centre k
9: end for

10: B ← Tucker3(G) . Tucker3 fun. in MatLab Toolbox N-way [Chen, 2010]
11: X∗ ← XB
12: JDF0← JDF . Current JDF is stored in JDF0
13: (C,P, JDF )← PDC(X∗,K) . PDC() function is defined by the algorithm 5
14: until JDF0 > JDF

return C,P
15: end function

4.2.3 Proof of the Proposition 1

Proposition 1 Given an unknown matrix B of generic element bim and

a set of coefficients 0 ≤ ψim ≤ 1, with m = 1, . . . ,M and i = 1, . . . , n.

Maximising

−
M∑
m=1

n∑
i=1

bimψ
2
im,

s.t.
∑M

m=1

∑n
i=1 ψ

2
im ≤ n is equivalent to solve the equation

M∑
m=1

n∑
i=1

bimψim = µ
M∑
m=1

n∑
i=1

ψim,
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where µ ≥ 0.

Proof (Proposition 1). To prove the proposition we introduce the Lagrangian

function:

L = −
M∑
m=1

n∑
i=1

bimψ
2
im + µ(

M∑
m=1

n∑
i=1

ψ2
im − n)

where µ is the Lagrange multiplier. Let us consider the first derivative of

L w.r.t. ψim equal to 0 :

∂L
∂ψim

= −2
M∑
m=1

n∑
i=1

bimψim + 2µ
M∑
m=1

n∑
i=1

ψim = 0

which is equivalent to

M∑
m=1

n∑
i=1

bimψim = µ
M∑
m=1

n∑
i=1

ψim

�

4.3 Example on a real quantitative dataset

In order to evaluate the performances of Factorial PD-clustering it has been

applied on the dataset used in [Vichi and Kiers, 2001]. The dataset lat-

est short-term indicators and economic performance indicators1 contains 6

macroeconomic variables measured on 20 countries members of the OECD.

Variables are: Gross Domestic Product (GDP), Leading Indicator (LI),

Unemployment Rate (UR), Interest Rate (IR), Trade Balance (TB), Net

National Savings (NNS). Table 4.1 contains the dataset.
1OECD, Paris 1999
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Country Label GDP LI UR IR TB NNS

Australia A-lia 4.80 8.40 8.10 5.32 0.70 4.70
Canada Can 3.20 2.50 8.40 5.02 1.60 5.20
Finland Fin 3.90 -1.00 11.80 3.60 8.80 7.70
France Fra 2.30 0.70 11.70 3.69 3.90 7.30
Spain Spa 3.60 2.50 19.00 4.83 1.20 9.60
Sweden Swe 4.10 1.10 8.90 4.20 7.00 4.00
United States USA 4.10 1.40 4.50 5.59 -1.40 7.00
Netherlands Net 2.90 1.60 4.20 3.69 7.00 15.80
Greece Gre 3.20 0.60 10.30 11.70 -8.30 8.00
Mexico Mex 2.30 5.60 3.20 20.99 0.00 12.70
Portugal Por 2.80 -7.50 4.90 4.84 -8.70 14.00
Austria A-tria 1.10 0.60 4.70 3.84 -0.60 9.40
Belgium Bel 1.40 -0.10 9.60 3.64 4.50 12.40
Denmark Den 1.00 1.50 5.30 4.08 3.30 5.00
Germany Ger 0.80 -2.00 9.50 3.74 1.50 7.70
Italy Ita 0.90 -0.40 12.30 6.08 4.30 8.20
Japan Jap 0.10 5.40 4.20 0.74 1.20 15.10
Norway Nor 1.40 0.90 3.30 4.47 7.10 15.10
Switzerland Swi 1.10 2.10 3.80 1.84 4.40 13.20
United Kingdom UK 1.20 4.90 6.40 7.70 -0.50 4.80

Table 4.1: Six macroeconomic performance indicators of twenty OECD
countries (percentage change from the previous year, September 1999)

The first step of Factorial PD-clustering is choosing the number of clus-

ters K that has been fixed equal to 3.

The choice of the number of factors is a ticklish well known issue. An

empirical technique has been used for this choice, FPDC is iterated vary-

ing the number of factors for units and variables and at each iteration the

explained variability is measured. The number of factors for clusters di-

mension is fixed equal to K − 1. The values of the explained variability

are plotted on a graphic where the horizontal axis is the number of factors

for units and the vertical one is the value of the explained variability. The
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Figure 4.1: Explaiend variabilty varying the number of Tucker 3 factors

number of factors for variables is fixed. A different line is plotted for every

number of factor for variables chosen. We choose the minimum number of

factors that corresponds to a significant value of the explained variability.

In this case the plot is represented in fig. 4.3. The number of factor for

clusters is chosen equal to K−1 = 2, the significant value for the explained

variability is chosen equal to 92% of the variability. Looking at fig. 4.3 92%

of explained variability corresponds to 4 factors for the units. The mini-

mum number of factors for variables that corresponds to 92% of explained

variability is 2. Summarizing the number of factors that have been chosen

are: 2 factors for the variables, 4 factors for the units and 2 factors for the

clusters.

The factors correspond to the values of R, Q and S respectively in the

(4.23).
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The method has been iterated 50 times, to test the stability of the results.

Figure 4.2: Frequency of JDF on 200 iterations of the Factorial PD-
clustering

The JDF index has been measured at each iteration, fig. 4.7 represents the

JDF value. In the best case the value of JDF is 15.12, it occurs in 4% of

the cases. The modal value 16.19 occurs in 35% of cases.

Table 4.3 displays Factorial PD-clustering iterations summary statistic2.

The partition of units in clusters is:

• cluster 1 Mexico, Austria, Denmark, Japan, Norway, Switzerland,

United Kingdom;

• cluster 2 Finland, France, Spain, Netherlands, Portugal, Belgium,

Germany, Italy;

• cluster 3 Australia, Canada, Sweden, United States, Greece.

2The time has been measured by using Matlab R2007a on a Mac os X Snow leopard,
Ram 4gb 1067Mhz DDR3, processor 2.26 GHz Intel Core 2 Duo.
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JDF Frequency mean execution time mean number of iterations

15,12 4,08% 0,39 8
15,17 4,08% 0,46 12
15,61 6,12% 0,34 6
15,95 4,08% 0,18 5
15,99 8,16% 0,67 17,75
16,04 2,04% 0,3 8
16,09 4,08% 0,33 8
16,14 10,20% 0,33 8,6
16,19 34,69% 0,45 10,23
16,24 6,12% 0,29 6,33
16,33 2,04% 0,32 7
16,38 10,20% 0,24 5,6
16,53 2,04% 0,38 5
17,01 2,04% 0,12 3

Table 4.2: Summary statistics on 200 iterations of Factorial PD-clustering

To describe the separating power of our variables in the following expla-

nation are shortly described results illustrated in figures 4.3 to 4.6.

The differences between the medians have been evaluated for each cluster

and for each variable, to understand which are the variables that mostly

contribute to the class separability. The results can be better understood

looking at the box-plots in fig. 4.3. The variable Net National savings

presents the highest difference between the medians. NNS variable sepa-

rates the second cluster from the others, where the values of the variable

are lower, in cluster 1 the variable has a high variability. The variable Un-

employment Rate presents a high difference between clusters medians: in

cluster 1 the values of this variables are smaller than in the other clusters;

in cluster 2 UR presents a small variability. The variable Gross Domestic

Product presents high values in cluster 2 and small values in cluster 1. The

variable Trade Balance is low in cluster 2. The medians of the variables
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Figure 4.3: Box-plot of variables for each cluster obtained with Factorial
PD-clustering
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Interest Rate and Leading Indicator are not significantly different among

clusters.

Fig. 4.4, 4.5 and 4.6 represent scatter-plots of units on the variables

ordered according to discriminating power. Leading indicator and Interest

rate have not discriminating power for the cluster partition obtained, see

fig. 4.6.

Scatter-plots in figures 4.4 and 4.5 show that:

• Mexico, Austria, Denmark, Japan, Norway, Switzerland and United

Kingdom have a low variation of Gross Domestic Product but they

have a low Unemployment Rate and hight Trade Balance;

• Australia, Canada, Sweden, United States and Greece have a high

Gross Domestic Product variations, low Unemployment Rate but they

have low values of the Net National Savings variable, Greece is dif-

ferent from other elements of the cluster for some aspects;

• Finland, France, Spain, Netherlands, Portugal, Belgium, Germany

and Italy have average values of Gross Domestic Product and Unem-

ployment Rate and high values of Net National Savings.

The clusters description, presented in the foregoing, corresponds to the

most frequent case of the JDF. Taking into account all iterations, it is

worth noticing that three stable groups of countries are always together in

the same cluster:

• Australia, Canada, United States;

• Finland, France, Spain;

• Belgium, Germany, Italy.
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Figure 4.4: Scatter-plot of units divided in clusters obtained with Factorial
PD-clustering

Figure 4.5: Scatter-plot of units divided in clusters obtained with Factorial
PD-clustering
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Figure 4.6: Scatter-plot of units divided in clusters obtained with Factorial
PD-clustering

4.3.1 A comparison with Factorial K-means

In order to evaluate Factorial PD-clustering results, the method has been

compared with Factorial K-means discussed in section 3.4.1. The method

have been iterated 200 times.

Whitin variance Frequency mean execution time mean number of iterations

5865,59 16,53% 0,004 2,63
961,92 23,14% 0,004 2,64
970,9 3,31% 0,004 2,75
999,52 54,55% 0,004 2,27
1256,42 2,48% 0,004 2

Table 4.3: Summary statistics on 200 iterations of Factorial K-means

Using the same scheme adopted for Factorial PD-Clustering result descrip-

tion, in the following Factorial K-means results are shortly described. The
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Figure 4.7: Frequency of within variance on 200 iterations of Factorial K-
means

method has been applied on the same dataset; the results shown are con-

sistent with those presented in the original Vichi and Kiers’ paper.

To identify the most discriminating variables, in this case, the differences

between the mean values of the clusters have been evaluated. This is be-

cause the K-means maximizes the differences between cluster centroids.

In order to easily compare the results, the same graphics are represented:

box-plots in fig. 4.8; Scatter-plots indicating the cluster membership are

represented in fig.4.9, 4.10, 4.11. Variables have not the same order used

to describe FPDC results because the discriminating power is different.

It is important to notice that Factorial K-means results are consistent with

the Factorial PD-clustering ones: specially the method identifies the same

stable groups of countries. The most significative difference is in cluster

2: Factorial K-means identifies a cluster composed by Portugal, Greece

and Mexico; Factorial PD-clustering assigns Portugal, Greece and Mexico

in three different clusters. Looking at the scatter plot in fig. 4.9, where
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statistical units are represented according to the two most separating vari-

ables, these three countries appear as the most different from the global

mean. It is not surprising that the K-means algorithm separates this three

points from the others, because it minimizes the variance within the clus-

ters, and as a consequence it gives maximum importance to the variables

Trade Balance and Interest Rate.

To summarize: Factorial K-means has found a cluster of few elements

and large variability and two clusters having a larger number of elements

(7 and 10 elements, respectively) and a small variability. This partition

emphasizes the differences between the variables: Interest Rate, Trade Bal-

ance and Net National Savings. Differently Factorial PD-clustering have

divided the space in three regions defining three clusters having almost the

same variability and almost the same number of elements (7,8 and 5 ele-

ments, respectively). The clusters emphasize the differences between the

variables: Net National Savings, Unemployment Rate and Gross Domestic

Product.

The results obtained with Factorial K-means are different in terms of

discriminating variables; the two methods emphasize different aspects of

the same phenomenon.
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Figure 4.8: Box-plot of variables for each cluster obtained with Factorial
K-means
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Figure 4.9: Scatter-plot of units divided in clusters obtained with Factorial
K-means

Figure 4.10: Scatter-plot of units divided in clusters obtained with Factorial
K-means
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4.3. Example on a real quantitative dataset

Figure 4.11: Scatter-plot of units divided in clusters obtained with Factorial
K-means
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Chapter 5

Computational aspects

This chapter involves a simulation study in order to evaluate the perfor-

mance of the Factorial Probabilistic Distance Clustering (FPDC). The sim-

ulation design is based on the study made by Maronna and Zamar in 2002

[Maronna and Zamar, 2002].

The results presented in the following sections have been produced with

Matlab. The toolbox N-way have been integrated in Matlab code to obtain

Tucker3 decomposition. The toolbox is freely available at Matlab Central

web site.1.

The Matlab code used for the realization of this simulation study is in

Appendix A.2.

5.1 Simulation design

Clusters structure and shape affects the performance of clustering meth-

ods. The objective of this section is to evaluate FPDC behavior facing the

1http://www.mathworks.com/matlabcentral/



Computational aspects

following issues:

1. within-cluster variance changing among clusters;

2. clusters with different number of elements;

3. correlation among the variables;

4. outliers;

5. clusters of different shape.

Point 2 is a weak point of Classical PD-clustering [Iyigun, 2007], the al-

gorithm works well when the number of elements in each cluster is sim-

ilar but it can have some problem in finding the right clustering struc-

ture in the opposite case. In order to evaluate the performance of FPDC

dealing with these issues, ad hoc datasets have been simulated. In each

dataset every cluster have been obtained generating uncorrelated normal

data xi ∼ Nk(0, I) where I is a J×J identity matrix. For every cluster nk J

dimensional vectors xi have been generated, where nk is the number of ele-

ments of each cluster, with k = 1, . . . ,K, the number of clusters K ∈ [2, 4].

After, every cluster have been centered on a different center, the centers are

uniformly distributed on a hypersphere. In order to study the performance

of FPDC facing each issue presented above, 4 specific datasets for every

issue have been generated. Datasets structures are: 2 clusters and 3 vari-

ables, 2 clusters and 6 variables, 3 clusters and 2 variables,4 cluster and 2

variables. The simulation have been obtained also for a different number of

variables but for sake of brevity only significant results have been detailed.

To evaluate the performances of FPDC when within-cluster variance changes

among clusters (issue 1) each element xi of every cluster have been trans-

formed according to: yi = Gkxi, where G2
k is a covariance matrix with
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Gjj = vjk and Gjr = 0 for r 6= j and vjk is the variance of variable j in

cluster k. In this case variables are supposed to be uncorrelated, G2
k is a

diagonal variance matrix.

To examine the performances of FPDC when clusters have different number

of elements (issue 2) nk changes varying the value of k.

To control the effect of the correlation among the variables (issue 3) on the

performance of FPDC, each element of every cluster xi have been trans-

formed according to: yi = Gkxi, where G2
k is a covariance matrix with

Gjj = 1 and Gjr = ρ for r 6= j.

To evaluate whether the presence of outliers (issue 4) affects the results,

the dataset have be contaminated at a fixed level ε. The levels of contami-

nation investigated are: 10% and 20%. The contamination is obtained by

generating xi ∼ Nk(ra0

√
J,Gk) where a0 is a unitary vector generated or-

thogonal to (1, 1, . . . , 1)T and r measures the distance between the outliers

and the cluster center. In this simulation design the parameter r varies be-

tween rmin and 9 where rmin =

“
1.2
q
χ2
J,1−α+

q
χ2
J,1−α

”
√
J

to avoid that outliers

overlap the elements of the clusters.

To control the effect of clusters of different shapes (issue 5) on the perfor-

mance of FPDC two dataset have been generated. Each dataset is com-

posed by two clusters, the first one normally generated, xi ∼ N(c1, I), the

second one log-normally generated, xi ∼ logN(0, I).

For each simulation the method has been iterated 50 times in order to

evaluate the stability of the results.
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Structure N Characteristics exp. var. iter. error

400 standard 65.83% 3 0
400 within variance changing 64% 4 0.25%
300 different number of elements 72.62% 3 0.3%

2 clusters 400 variable cor. 87.57% 29 0
3 variables 440 variable cor. r = min ε = 10% 80.42% 16 0.91%

440 variable cor. r = max ε = 10% 79.19% 11 1.14%
480 variable cor. r = min ε = 20% 80.1% 7 1.04%
480 variable cor. r = max ε = 20% 79.98% 10 1.04%
400 different shape 66.7% 3 4.5%

400 standard 94.7% 5 0
400 within variance changing 93, 5% 6 2%
300 different number of elements 94.7% 5 0

2 clusters 400 variable cor. 91.7% 5 0
6 variables 440 variable cor. r = min ε = 10% 95.7% 13 0

440 variable cor. r = max ε = 10% 97.7% 13 0
480 variable cor. r = min ε = 20% 96, 5% 14 0
480 variable cor. r = max ε = 20% 97.9% 14 0
400 different shape 93.8% 19 1.5%

600 standard 91% 3 0
600 within variance changing 91.64% 3 1%
450 different number of elements 92.84% 3 0.67%

3 clusters 600 variable cor. 90.53% 29 0.02%
2 variables 660 variable cor. r = min ε = 10% 91.4% 3 0.3%

660 variable cor. r = max ε = 10% 92.30% 3 0.3%
720 variable cor. r = min ε = 20% 93.63% 3 0.28%
720 variable cor. r = max ε = 20% 92.15% 3 0.28%

400 standard 98.32% 3 0
400 within variance changing 97.81% 3 2%
450 different number of elements 95.72% 3.72 0.89%

4 clusters 400 variable cor. 95.98% 3 1%
2 variables 440 variable cor. r = min ε = 10% 96.24% 3 0.68%

440 variable cor. r = max ε = 10% 96.39% 3 0.91%
480 variable cor. r = min ε = 20% 93.31% 3 0.63%
480 variable cor. r = max ε = 20% 96.47% 4.78 0.63%

Table 5.1: Results on 50 iterations of FPDC
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5.2 Simulation results

The results of the application of FPDC on the datasets described in the

section 5.1 are described in table 5.1 . For each simulation the following

attribute are described:

• N: number of units;

• exp. var.: explained variability of factorial axes;

• iter.: average number of FPDC iterations on 50 iterations of the

method;

• error: percentage of misclassified units.

The average time elapsed to run FPDC on 50 iterations is between 0.12

and 3.4 seconds. The time has been measured by using Matlab R2007a on

a Mac os X2.

The first simulated dataset is composed by 2 normal distributed clus-

ters, each cluster is composed by 200 elements and 3 variables. fig. 5.1a.

FPDC catch the right clustering structure. In fig. 5.1b the two clusters

are normally distributed, the within variance of the red cluster is 2, the

within variance of the blu cluster is 0.5, in this case there is 1 misclassified

unit. In 5.1c the two clusters are normally distributed, the red cluster is

composed by 200 elements, the blu one by 100 elements, 1 misclassified unit

is obtained. In 5.1d there is correlation between variables and there are not

misclassified units.

2Snow leopard, Ram 4gb 1067Mhz DDR3, processor 2.26 GHz Intel Core 2 Duo
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(a) 2 clusters (b) variance changing

(c) different number of elements (d) variables correlated

Figure 5.1: Clustering obtained applying FPDC on the dataset composed
by 2 clusters and 3 variables

In the dataset in fig. 5.2 outliers have been added, with a 10% of outliers

the number of the misclassified units is between 4 and 5. By adding 20%

of outliers the number of misclassified units is 5.

Fig. 5.3 represents the results obtained by applying FPDC on the

dataset composed by 6 variables. The points are plotted on the first two

110



5.2. Simulation results

(a) r = min, ε = 10% (b) r = min, ε = 20%

(c) r = max, ε = 10% (d) r = max, ε = 20%

Figure 5.2: Clustering obtained applying FPDC on the dataset composed
by 2 clusters and 3 correlated variables

axes, to see the results on the six axes refers to Appendix B. In fig. 5.3a the

two clusters are normally distributed and there are not misclassified units.

In fig. 5.3b the two clusters are normally distributed, the within variance

of the red cluster is 2, the within variance of the blu cluster is 0.5, there are

8 misclassified units. In the other cases, clusters composed by a different
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(a) 2 clusters (b) variance changing

(c) different number of elements (d) variables correlated

Figure 5.3: Clustering obtained applying FPDC on the dataset composed
by 2 clusters and 6 variables, scatter plot of two first dimentions.

number of elements and in presence of the correlation among the variables,

the algorithm catches the right clustering structure.

In the dataset In fig. 5.4 outliers have been added; each cluster has been

contaminated at a level ε equal to 10% in fig. a and c, 20% in b and d. In

all cases the algorithm catch the right clustering structure.
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(a) r = min, ε = 10% (b) r = min, ε = 20%

(c) r = max, ε = 10% (d) r = max, ε = 20%

Figure 5.4: Clustering obtained applying FPDC on the dataset composed
by 2 clusters and 6 correlated variables, scatter plot of two first dimentions.

In fig. 5.5 the red clusters are normally distributed, the blu ones are

log-normally distributed; each cluster is composed by 200 elements and the

within-cluster variance is 1. In the first case points are in a 3 dimensional

space and there are 18 misclassified points, 5.5a. In the second case the

original space is a 6 dimensional space, 6 misclassified units have been ob-
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(a) 3 variables (b) 6 variables

Figure 5.5: Clusters of different shape; red clusters generated according
to a normal distribution; blu clusters generated according to a lognormal
distribution

tained; in fig. 5.5b are shown clusters obtained on the first two factorial

axes, to see the results on all factorial axes refers to Appendix B.9. The

relatively high number of misclassified units is due to the presence of points

far from the centers, belonging to the log-normally generated cluster. How-

ever, their belonging probability to the wrong cluster is low, between 40%

and 49% and in the worst case the error rate is 4.5%.

The dataset in fig. 5.6 is composed by 2 variables; In fig. 5.6a the 3

clusters are normally distributed and well clustered. In fig. 5.6b the within-

cluster variance, vk changes among clusters: red v1 = 2, blu v2 = 1, black

v3 = 0.5. The number of misclassified units is 6. In fig. 5.6c the number

of elements, nk changes among clusters: red n1 = 100, blu n2 = 200, black

n3 = 150; there are 3 misclassified units. In fig. 5.6d there is 1 misclassified

unit, in this case variables are correlated. In the worst case the error rate

is 1%.
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(a) 3 clusters (b) variance changing

(c) different number of elements (d) variables correlated

Figure 5.6: Clustering obtained applying FPDC on the dataset composed
by 3 clusters and 2 variables

In the dataset represented in fig. 5.7 outliers have been added, the

contamination level ε is equal to 10% in fig. a and c, 20% in b and d. The

number of misclassified points is 2.

Four normally distributed cluster are represented in fig. 5.8. By varying

the value within-cluster variance, vk, among clusters (v1 = v2 = 2 in clusters
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(a) r = min, ε = 10% (b) r = min, ε = 20%

(c) r = max, ε = 10% (d) r = max, ε = 20%

Figure 5.7: Clustering obtained applying FPDC on the dataset composed
by 3 clusters and 2 correlated variables

red and magenta, v3 = v4 = 0.5 in clusters blue and black) 8 misclassified

units have been obtained, fig. 5.8b. Varying the number of elements, nk,

among clusters (magenta n1 = 50, black and red n2 = n3 = 100, blue

n4 = 200) 4 misclassified points have been obtained, fig. 5.8c. In case of

correlated variables, fig. 5.8d, the number of misclassified units is 4.
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(a) 4 clusters (b) variance changing

(c) different number of elements (d) variable correlated

Figure 5.8: Clustering structure obtained on the dataset composed by 4
clusters and 2 variables

In dataset in fig. 5.9 outliers have been added, with 10% of outliers the

number of misclassified units is between 3 and 4. By adding 20% of outliers

the number of misclassified points is 3.

The graphic 5.10 shows the value of the JDF at each iteration of FPDC

on 50 iterations. The first iteration is not counted. The convergence of the

algorithm has not been analytically demonstrated. In the simulation study
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(a) r = min, ε = 10% (b) r = min, ε = 20%

(c) r = max, ε = 10% (d) r = max, ε = 20%

Figure 5.9: Clustering obtained applying FPDC on the dataset composed
by 4 clusters and 2 correlated variables

the algorithm always converges to the same solution. The convergence is

not shown for all the datasets for the sake of brevity, the algorithm always

converges to the same solution with the exception of dataset showed in fig

5.8c. In this case some local minima have been obtained. The value of the

JDF at each iteration of the algorithm is shown in 5.10a. In order to show
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(a) 2 variables 4 clusters (b) 5 variables 4 clusters

Figure 5.10: JDF behavior at each iteration of FPDC algorithm obtained
along 50 iterations on two simulated datasets

another example of convergence problems a simulated dataset has been

created. It is a 5 dimensional dataset composed by 4 normally distributed

clusters. Variables are correlated and there is a contamination of ε = 20%

and r = max. At each iteration of the algorithm the value of the JDF

has been measured. The results are shown in fig. 5.10b. In both cases the

algorithm converges to a minimum.

Summarizing, the algorithm works well in presence of outliers, it can

detect the right clustering structure in presence of 20% of outliers. The dif-

ference of variance among clusters does not affect the algorithm efficiency.

Looking at two clusters dataset, although the error rate is still relatively

low, it can be noticed a significant difference between the case of 2 variables

and 6 variables. In the first case a dimensionality reduction is not needed

and all dimension are taken into account to obtain the partition. Dealing

with the 6 dimensional dataset, clustering is applied on few dimensions,

this allows to avoid that ground noise interferes with the analysis and to
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improve the algorithm performance. In practice FPDC is applied only on

large datasets, in other cases a factorial clustering algorithm is not needed.

Classical PD-clustering becomes less efficient when the number of elements

in each cluster is different, FPDC results are not affected by this issue. The

worst case is obtained on the dataset made by 4 clusters where the error

rate is 0.89%.

The biggest error rate is obtained on the dataset where one cluster is nor-

mally distributed and the other one is log-normally distributed. In case of

two variables dataset the error rate obtained is 4.5%, on the dataset made

by 6 variables the error rate becomes 1.5%. As the number of variable

increases the performance of the algorithm improves.
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The increasing diffusion of large datasets in many fields has lead to the

development of new clustering techniques that face problems connected

to high dimensional datasets. Classical clustering techniques, indeed, can

become unstable dealing with such a kind of datasets. One of the first

solution has been the use of two-step clustering methods. These meth-

ods reduce the dimensionality of the dataset before applying a clustering

method. An evolution of these techniques was possible by the improvement

in computational capabilities; it consists in iterative two-step methods, or

factorial methods, that perform a factorial technique and a clustering tech-

nique iteratively, by optimizing a common criterion.

In this thesis a new factorial two-step clustering method has been brought

up: Factorial Probabilistic Distance Clustering (FPDC). It performs itera-

tively a linear transformation of data and Probabilistic Distance clustering

(PD-clustering). PD-clustering is an iterative, distribution free, probabilis-

tic, clustering method. Clusters centers are computed according to the con-

straint that the product between the probability and the distance of each

point to any cluster center is a constant. An iterative algorithm allows to

compute the centers. When the number of variables is large and variables

are correlated PD-Clustering becomes unstable and the correlation between
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variables can hide the real number of clusters. A linear transformation of

original variables into a reduced number of orthogonal ones using com-

mon criteria with PD-Clustering can significantly improve the algorithm

performance. In the thesis it has been demonstrated that Tucker3 transfor-

mation of the distance matrix permits to obtain a subspace that optimizes

the same criterion of PD-clustering. PD-clustering is applied on the pro-

jection of units in this new space where clusters are better separated. The

method can be summarized as: i) random initialization of centers matrix

ii) computation of distances matrix iii) Tucker 3 decomposition of distances

matrix iv) PD-clustering of Tucker 3 factors. Steps ii-iv are iterated until

convergence is obtained.

Factorial PD-clustering allows to work with large datasets improving the

stability and the robustness of the method. A computational study on sev-

eral simulated dataset have been done in order to test FPDC performance

facing some issues. The method performs well in presence of outliers, it

can detect the right clustering structure in presence of 20% of outliers. Dif-

ference of variance among clusters does not affect the algorithm efficiency.

Classical PD-clustering becomes less efficient when the number of elements

in each cluster is different, FPDC results are not affected by this issue.

To test whether different shaped clusters are detected by the method, two

dataset have been generated, satisfactory results have been obtained. The

simulation study has the aim to test the effect of different number of vari-

ables on the results too. The results obtained show that as the number of

variables increase the number of misclassified units decrease.

Results presented in this thesis have been obtained applying FPDC on

quantitative datasets. Some applications of FPDC on binary data have lead

to interesting results, however the method can not be applied directly on
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categorical datasets. An important issue in future researches is the FPDC

generalization to the case of categorical data. Dealing with big nominal

and binary data matrices, the sparseness of data and the non-linearity in

the association can be more prejudicial to the overall cluster stability.
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Appendix A

Routines in Matlab
Language

A.1 Support Vector Clustering

For the kernel computation the toolbox SVMKM has been used1.

f unc t i on [ beta , sv , l abe l , r2 , a , b]= svc ( xapp , kerne l , ke rne lopt ion , Cpen , b e t a a l l )
%Support vector c l u s t e r i n g us ing cone c l u s t e r l a b e l i n g
%%%%%%%%%INPUT%%%%%%%%%
% xapp input data
%Kernel ke rne l func t i on
%kerne l op t i on ke rne l parameters
% Cpen between 0 and 1 , weight f o r o u t l i e r s
%be t a a l l sum of beta
%kerne l : k e rne l func t i on
% Type Function Option
% Polynomial ' poly ' Degree (<x , xsup>+1)ˆd
% Homogeneous polynomial 'polyhomog ' Degree <x , xsup>ˆd
% Gaussian ' gauss ian ' Bandwidth
% Heavy Tai led RBF ' htrbf ' [ a , b ] %see
% Chappel le 1999
% Mexican 1D Wavelet ' wavelet '
% Frame ke rne l ' frame ' ' s in ' , ' numerical ' . . .
%
% kerne l op t i on : s c a l a r or vec tor conta in ing the opt ion f o r the ke rne l
% ' gauss ian ' : s c a l a r gamma i s i d e n t i c a l f o r a l l c oo rd ina t e s
% otherwi se i s a vector o f l ength equal to the number o f
% coord inate

1http://asi.insa-rouen.fr/enseignants/ arakotom/toolbox/index.html
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%
%
% ' poly ' : k e rne l op t i on i s a s c a l a r g iven the degree o f the polynomial
% or i s a vec tor which f i r s t element i s the degree o f the polynomial
% and other e lements g i v e s the bandwidth o f each dimens ion .
% thus the vector i s o f s i z e n+1 where n i s the dimension o f the
% problem.

%i n i t i a l i z a t i o n
q=kerne l op t i on ;
i f narg in < 6

b e t a a l l = [ ] ;
end ;
i f narg in < 5

Cpen=i n f ;
end ;

%computation o f ke rne l func t i on
i f ¬isempty ( xapp ) ;

[ kapp]= svmkernel ( xapp , kerne l , k e rne l op t i on ) ;
i f Cpen6=0

kapp=kapp+(1/ Cpen)∗ eye ( s i z e ( kapp ) ) ;
end ;

e l s e i f i s f i e l d ( kerne lopt ion , ' matrix ' ) ;
kapp=ke rne l op t i on .mat r i x +(1/ Cpen)∗ eye ( s i z e ( k e rne l op t i on .mat r i x ) ) ;

e l s e
e r r o r ( 'No ways f o r p ro c e s s i ng the r a d i u s . Check i n p u t s . . . ' ) ;

end ;

%computation o f beta
s i z e ( kapp )
D=diag ( kapp ) ;
A = ones ( s i z e (D) ) ;
b=1;
lambda=1e−7;
verbose =0;
s i z e ( kapp )
[ betaaux , lagrangian , pos ]=monqpCinfty (2∗kapp ,D,A, b , lambda , verbose , [ ] , [ ] , b e t a a l l ) ;
beta=ze ro s ( s i z e (D) ) ;
beta ( pos)=betaaux ;
r2=−betaaux ' ∗ kapp ( pos , pos )∗ betaaux + betaaux ' ∗D( pos ) ;
n=length ( kapp ) ;

%support ve c to r s computation
nsv=s i z e ( pos , 1 ) ;
sv=ze ro s ( nsv , s i z e ( xapp , 2 ) ) ;
f o r i =1:nsv

sv ( i , : )= xapp ( pos ( i ) , : ) ;
end

%graph i c s
i f s i z e ( xapp ,2)==2

f i g u r e
p lo t ( sv ( : , 1 ) , sv ( : , 2 ) , ' r ∗ ' )
hold on
p lo t ( xapp ( : , 1 ) , xapp ( : , 2 ) , ' k . ' )

e l s e i f s i z e ( xapp ,2)==3
f i g u r e
p lo t3 ( sv ( : , 1 ) , sv ( : , 2 ) , sv ( : , 3 ) , ' ro ' )
hold on
p lo t3 ( xapp ( : , 1 ) , xapp ( : , 2 ) , xapp ( : , 3 ) , ' b. ' )

e l s e i f s i z e ( xapp ,2)==4
f i g u r e
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p lo t ( sv ( : , 1 ) , sv ( : , 2 ) , ' r ∗ ' )
hold on
p lo t ( xapp ( : , 1 ) , xapp ( : , 2 ) , ' k . ' )

f i g u r e
p lo t ( sv ( : , 3 ) , sv ( : , 4 ) , ' r ∗ ' )
hold on
p lo t ( xapp ( : , 3 ) , xapp ( : , 4 ) , ' k . ' )

e l s e i f s i z e ( xapp ,2)==5
f i g u r e
p lo t ( sv ( : , 1 ) , sv ( : , 2 ) , ' r ∗ ' )
hold on
p lo t ( xapp ( : , 1 ) , xapp ( : , 2 ) , ' k . ' )

f i g u r e
p lo t3 ( sv ( : , 1 ) , sv ( : , 2 ) , sv ( : , 3 ) , ' r ∗ ' )
hold on
p lo t3 ( xapp ( : , 1 ) , xapp ( : , 2 ) , xapp ( : , 3 ) , ' k . ' )

e l s e i f s i z e ( xapp ,2)==6
f i g u r e
p lo t3 ( sv ( : , 1 ) , sv ( : , 2 ) , sv ( : , 3 ) , ' r ∗ ' )
hold on
p lo t3 ( xapp ( : , 1 ) , xapp ( : , 2 ) , xapp ( : , 3 ) , ' k . ' )

f i g u r e
p lo t3 ( sv ( : , 4 ) , sv ( : , 5 ) , sv ( : , 6 ) , ' r ∗ ' )
hold on
p lo t3 ( xapp ( : , 4 ) , xapp ( : , 5 ) , xapp ( : , 6 ) , ' k . ' )

e l s e
f i g u r e
p lo t3 ( sv ( : , 1 ) , sv ( : , 2 ) , sv ( : , 3 ) , ' r ∗ ' )
hold on
p lo t3 ( xapp ( : , 1 ) , xapp ( : , 2 ) , xapp ( : , 3 ) , ' k . ' )

end

%adiacency matrix
z=sq r t ((− l og ( sq r t ((1− r2 ) ) ) / q ) ) ;
l s=s i z e ( sv , 1 ) ;
a=ze ro s ( l s , l s ) ;
%i =1;
%j =1;
f o r i =1: l s

f o r j =1: l s
i f (norm( sv ( i , : )− sv ( j , : ) ) )ˆ2 <2∗ z

a ( i , j )=1;
e l s e

a ( i , j )=0;
end ;

end ;
end ;

%trans fo rmat ion o f adiaceency matirx

b=ze ro s ( l s , l s ) ;
f o r i =1: l s

k=1;
f o r j =1: l s

i f i 6=j
i f a ( i , j )==1

b( i , k)= j ;
k=k+1;

end ;
end ;
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end ;
end ;

% c l u s t e r s computation us ing cone c l u s t e r l a b e l i n g
c=ze ro s ( l s , l s ) ;
d=ones (1 , l s ) ;
e=ze ro s (1 , l s ) ;

idc =0;

whi le i s e qua l (d , e )==0;
idc=idc +1;
v=f ind (d ) ;
i=v ( 1 ) ;
c ( idc ,1)= i ;
j =1;
d( i )=0;

whi le ( ( j<( l s ))&&( b( i , j ) 6=0))
c ( idc , j+1)=b( i , j ) ;
j=j +1;

end ;
l =2;

whi le ( ( c ( idc , l ) 6=0)&&( l<l s ) )
i=c ( idc , l ) ;
d ( i )=0;
k=1;
whi le ( ( b( i , k ) 6=0)&&(k<l s ) )

i f not in (b( i , k ) , c ( idc , : ) )
c ( idc , j+1)=b( i , k ) ;

end
k=k+1;

end
l=l +1;

end
end

%l ab e l i n g
lab=ze ro s ( l s , 1 ) ;
f o r k=1: l s ;

f o r i =1: l s ;
f o r j =1: l s ;

i f c ( i , j )==k
lab (k)= i ;

end ;
end ;

end ;
end ;
l a b e l=ze ro s (n , 1 ) ;
f o r i =1:n

f o r j =1: l s
d i s t ( j )=norm( xapp ( i , : )− sv ( j , : ) ) ;

end
[ y , j i ]=min ( d i s t ) ;
l a b e l ( i )= lab ( j i ) ;

end
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A.2 Factorial PD-clustering

In order to apply Tucker 3 decomposition Tucker3 function in MatLab

Toolbox N-way [Chen, 2010] has been used.

%TUCKER multi−way tucker model
%
% funct i on [ Factors ,G, ExplX ,Xm]=
% =tucker (X, Fac [ , Options [ , ConstrF , [ ConstrG [ , Factors [ ,G ] ] ] ] ] ) ;
%
% Change : True LS unimodal i ty now supported .
%
% This a lgor i thm r equ i r e s a c c e s s to :
% ' f n i p a l s ' 'gsm ' ' i n i tuck ' ' ca l co r e ' 'nmodel ' ' nonneg ' ' se topts ' 'misssum '
% 'missmean ' ' t3core '
%
% See a l s o :
% ' parafac ' 'maxvar3 ' 'maxdia3 ' 'maxswd3 '
%
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% The gene ra l N−way Tucker model
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%
% [ Factors ,G, ExplX ,Xm]= tucker (X, Fac , Options , ConstrF , ConstrG , Factors ,G) ;
% [ Factors ,G, ExplX ,Xm]= tucker (X, Fac ) ;
%
% INPUT
% X : The multi−way data a r r ay .
% Fac : Row−vector d e s c r i b i ng the number o f f a c t o r s
% in each o f the N modes. A '−1 ' (minus one )
% w i l l t e l l the a lgor i thm not to es t imate f a c t o r s
% f o r t h i s mode , y i e l d i n g a Tucker2 model.
% Ex. [ 3 2 4 ]
%
% OPTIONAL INPUT
% Options : See pa r a f a c .
% ConstrF : Const ra int s that must apply to ' Factors ' .
% Def ine a row−vector o f s i z e N that d e s c r i b e s how
% each mode should be t r e a t e d .
% '0 ' o r thogona l i t y ( d e f au l t )
% '1 ' non−nega t i v i t y
% '2 ' unconstra ined
% '4 ' unimodal ity and non−n e g a t i v i t y .
% E.g . : [ 0 2 1 ] y i e l d s ortho in f i r s t mode , uncon in the second
% and non−neg in the th i rd mode.
% Note : The algor i thm uses random va lues i f the re are no
% non−negat ive components in the i t e r a t i o n i n t e rmed i a t e s . Thus ,
% i f non−nega t i v i t y i s appl ied , the i t e r a t i o n s may be
% non−monotone in minor s equence s .
% ConstrG : Const ra int s that must apply to 'G' .
% ' [ ] ' or '0 ' w i l l not con s t r a in the e lements o f 'G' .
% To de f i n e what core e lements should be allowed , g ive a core that
% i s 1 ( one ) on a l l a c t i v e p o s i t i o n s and zero e l s ewhere − t h i s boolean
% core array must have the same dimensions as de f ined by 'Fac ' .
%
% OUTPUT
% Factors : A row−vector conta in ing the s o l u t i o n s .
% G : Core array that matches the dimensions de f ined by 'Fac ' .
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% ExplX : Fract ion o f v a r i a t i on ( sums o f squares exp la ined )
% Xm : Xhat ( the model o f X)
%
% This a lgor i thm app l i e s to the gene ra l N−way case , so
% the array X can have any number o f d imens ions . The
% p r i n c i p l e s o f ' pro j e c t i on s ' and ' sys temat i c un fo ld ing
% methodology (SUM) ' are used in t h i s a lgor i thm to provide
% a f a s t approach − a l s o f o r l a r g e r data a r r a y s . This
% algor i thm can handle miss ing va lues i f denoted
% by NaN ' s . I t can a l s o be used to make TUCKER2/1 models by
% proper ly s e t t i n g the e lements o f 'Fac ' to −1 .
%
% Note : When es t imat ing a Tucker model on data us ing non−orthogonal f a c t o r s ,
% the sum of square o f the core may d i f f e r between models o f the
% same da t a s e t . This i s in order s i n c e the f a c t o r s may
% thus be c o r r e l a t e d . However , the e xp l . va r . should always be the same.
%
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A.2.1 PD-clustering

f unc t i on [ l , cnew , p , dis , cont , deu ,JDF]= pdc lu s t e r ( data , k )
% Cluste r the data whit d−c l u s t e r i n g Algoritmh
%
%
%%%%%%%INPUT%%%%%%%%%
%data=input data
%k=number o f c l u s t e r
%
%
%%%%%%%OUTPUT%%%%%%%%
%cnew=c lu s t e r ' s c ente r
%l=c l a s s l a b e l
%p=nxk matrix p r obab i l i t y to belong to each c l a s s
%cont=number o f i t e r a t i o n s un t i l convergence
%JDF j o n i t d i s t ance func t i on

%cente r i n t i a l i z a t i o n
cnew (1 , : )=min ( data ) ;
cnew (2 , : )=max( data ) ;
f o r i =3:k
cnew ( i , : )= rand (1 , s i z e ( data , 2 ) ) ;
end
n=s i z e ( data , 1 ) ;
ver =100;
cont=0;

whi le ( ver>0.001 && cont <1000);%( ver>eps ) nobb≤obb
cont=cont+1;
c=cnew ;
%STEP 1
%di s tance matrix computation
f o r i =1:n ;

f o r j =1:k ;
d i s ( i , j )=norm( data ( i , : )− c ( j , : ) ) ;

end ;
end ;
%STEP 2
%cente r matrix computation
nu2=ones (n , k ) ;

f o r i =1:n ;
f o r h=1:k ;

f o r j =1:k ;
i f j 6=h ;

nu2 ( i , h)=d i s ( i , j )∗nu2 ( i , h ) ;
end

end
end

end
deu=sum(nu2 , 2 ) ;
%p robab i l i t y matrix computation
f o r i =1:n

f o r j =1:k
p( i , j )=nu2 ( i , j )/ deu ( i ) ;
u ( i , j )=p( i , j )ˆ2/ d i s ( i , j ) ;

end
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end
som=sum(u , 1 ) ;
f o r j =1:k

par=ze ro s (1 , s i z e ( data , 2 ) ) ;
f o r i =1:n

par=par+(u( i , j )/som( j ) )∗ data ( i , : ) ;
end
cnew ( j , : )= par ;

end
%STEP 3
%check convergence

f o r j =1:k
ver1 ( j )=norm( cnew ( j , : )− c ( j , : ) ) ;
end
ver=sum( ver1 ) ;

end
i f cont==1000
h = warndlg ({ ' Convergence not reached ' } ) ; %#ok<NASGU>
end
%Points as s i gned to the c l o s e r cente r
[m, l ]=max(p , [ ] , 2 ) ;
f o r i =1:n
JDF=d i s ( i , 1 ) ' ∗ p( i , 1 ) ;
end

end
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A.2.2 Number of Tucker3 factors

f unc t i on [ exp l e ined ]=Fattor iTucker (dataO , nc , mi )
%h e u r i s t i c approach to cope with the cho i c e o f Tucker 3 f a c t o r s .
%we choose the minimum number o f f a c t o r s that corresponds to a s i g n i f i c a n t
%value o f the exp la ined v a r i a b i l i t y .
%
%%%%%%%%%INPUT%%%%%%%%%%
%dataO datase t
% nu number o f c l u s t e r s
%mi minimum number o f f a c t o r s
%%%%%%%%%OUTPUT%%%%%%%%%%
%exp le ined exp l e ined v a r i a b i l i t y

%i f not sp e c i f y ed minimum number o f f a c t o r s i s 1
i f nargin<3

mi=1;
end

[ n , ppp]= s i z e ( dataO ) ;
i f (ppp>1000)

mi=2;
end
m1=0;
m2=0;
%data s tanda rd i za t i on
data=zs co r e ( dataO ) ;

%Computation o f d i s t ance matrix G
[ la , c ]=dcluster1ALG ( data , nc ) ;
d i s t = [ ] ;

ddt = [ ] ;
dd = [ ] ;
f o r j =1:nc ;

f o r i =1:n ;
dd( i , : )= abs ( data ( i , : )− c ( j , : ) ) ;
d i s t ( i , j )=norm( data ( i , : )− c ( j , : ) ) ;

end ;
ddt=[ddt ; dd ] ;

end ;
tway=reshape ( ddt , n , ppp , nc ) ;
%nf= number o f f a c t o r s f o r v a r i a b l e s
%nu= number o f f a c t o r s f o r un i t s

%graph s e t t i n g s
exp l e ined=ze ro s ( 8 , 3 ) ;

nf =4;
exp l e ined (1 : 8 , 2 )=4 ;
exp l e ined (1 ,1)= round (n /2 ) ;
exp l e ined (4 ,1)=5;
exp l e ined (5 ,1)=4;
exp l e ined (6 ,1)=3;
exp l e ined (7 ,1)=2;
exp l e ined (8 ,1)=1;

%Computation o f exp la ined v a r i a b i l i t y
nu=round (n /2 ) ;
dim=[nu , nf , nc−1] ; %Computation o f exp la ined v a r i a b i l i t y
[ tuk , g , expl ]= tucker1 ( tway , dim ) ; %tucker3decompos i t ion
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exp l e ined (1 ,3)= expl ;%explaned v a r i a b i l i t y i s s to r ed

%Computation o f exp la ined v a r i a b i l i t y
cont=3;
f o r i =5:−1:mi

cont=cont+1;
nu=i ;
dim=[nu , nf , nc−1] ;%Computation o f exp la ined v a r i a b i l i t y
[ tuk , g , expl ]= tucker1 ( tway , dim ) ;%tucker3decompos i t ion
exp l e ined ( cont ,3)= expl ;%explaned v a r i a b i l i t y i s s to r ed

end

%graph s e t t i n g s
nf =3;

exp l e ined (9 :16 ,2 )=3 ;
exp l e ined (9 ,1)= round (n /2 ) ;
exp l e ined (12 ,1)=5;
exp l e ined (13 ,1)=4;
exp l e ined (14 ,1)=3;
exp l e ined (15 ,1)=2;
exp l e ined (16 ,1)=1;

nu=round (n /2 ) ;
dim=[nu , nf , nc−1] ;
[ tuk , g , expl ]= tucker1 ( tway , dim ) ;
exp l e ined (9 ,3)= expl ;

cont =11;
f o r i =5:−1:mi

cont=cont+1;
nu=i ;
dim=[nu , nf , nc−1] ;
[ tuk , g , expl ]= tucker1 ( tway , dim ) ;
exp l e ined ( cont ,3)= expl ;

end

%graph s e t t i n g s
nf =2;

exp l e ined (17 :24 ,2 )=2 ;
exp l e ined (17 ,1)= round (n /2 ) ;
exp l e ined (20 ,1)=5;
exp l e ined (21 ,1)=4;
exp l e ined (22 ,1)=3;
exp l e ined (23 ,1)=2;
exp l e ined (24 ,1)=1;

%Computation o f exp la ined v a r i a b i l i t y
nu=round (n /2 ) ;
dim=[nu , nf , nc−1] ;
[ tuk , g , exp]= tucker1 ( tway , dim ) ;
exp l e ined (17 ,3)= exp ;

%Computation o f exp la ined v a r i a b i l i t y
cont =19;
f o r i =5:−1:mi

cont=cont+1;
nu=i ;
dim=[nu , nf , nc−1] ;
[ tuk , g , expl ]= tucker1 ( tway , dim ) ;
exp l e ined ( cont ,3)= expl ;

end
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%Computation o f exp la ined v a r i a b i l i t y
nf =2;
i f round (n/8)>5
exp l e ined (19 ,1)= round (n /8 ) ;
nu=round (n /8 ) ;
dim=[nu , nf , nc−1] ;
[ tuk , g , expl ]= tucker1 ( tway , dim ) ;
exp l e ined (19 ,3)= expl ;
e l s e

exp l e ined ( 1 9 , : )= [ ] ;
end

%Computation o f exp la ined v a r i a b i l i t y
i f round (n/4)>5;
exp l e ined (18 ,1)= round (n /4 ) ;
nu=round (n /4 ) ;
dim=[nu , nf , nc−1] ;
[ tuk , g , expl ]= tucker1 ( tway , dim ) ;
exp l e ined (18 ,3)= expl ;
e l s e

exp l e ined ( 1 8 , : )= [ ] ;
end

%Computation o f exp la ined v a r i a b i l i t y
nf =3;
i f round (n/8)>5
exp l e ined (11 ,1)= round (n /8 ) ;
nu=round (n /8 ) ;
dim=[nu , nf , nc−1] ;
[ tuk , g , expl ]= tucker1 ( tway , dim ) ;
exp l e ined (11 ,3)= expl ;
e l s e

m1=1;
exp l e ined ( 1 1 , : )= [ ] ;

end

%Computation o f exp la ined v a r i a b i l i t y
i f round (n/4)>5;
exp l e ined (10 ,1)= round (n /4 ) ;
nu=round (n /4 ) ;
dim=[nu , nf , nc−1] ;
[ tuk , g , expl ]= tucker1 ( tway , dim ) ;
exp l e ined (10 ,3)= expl ;
e l s e

m2=1;
exp l e ined ( 1 0 , : )= [ ] ;

end

%Computation o f exp la ined v a r i a b i l i t y
nf =4;
i f round (n/8)>5
exp l e ined (3 ,1)= round (n /8 ) ;
nu=round (n /8 ) ;
dim=[nu , nf , nc−1] ;
[ tuk , g , expl ]= tucker1 ( tway , dim ) ;
exp l e ined (3 ,3)= expl ;
e l s e

exp l e ined ( 3 , : ) = [ ] ;
end

%Computation o f exp la ined v a r i a b i l i t y
i f round (n/4)>5;
exp l e ined (2 ,1)= round (n /4 ) ;
nu=round (n /4 ) ;
dim=[nu , nf , nc−1] ;
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[ tuk , g , expl ]= tucker1 ( tway , dim ) ;
exp l e ined (2 ,3)= expl ;
e l s e

exp l e ined ( 2 , : ) = [ ] ;
end

%graph s e t t i n g s
i f m1==1;

a s c i s s e =(5:−1:1) ;
a s c i s s e =[10 , a s c i s s e ] ;
ord1=exp le ined ( 1 : 6 , 3 ) ;
ord2=exp le ined ( 7 : 1 2 , 3 ) ;
ord3=exp le ined ( 1 3 : 1 8 , 3 ) ;

e l s e i f m2==1;
a s c i s s e =(6:−1:1) ;
a s c i s s e =[10 , a s c i s s e ] ;
ord1=exp le ined ( 1 : 7 , 3 ) ;
ord2=exp le ined ( 8 : 1 4 , 3 ) ;
ord3=exp le ined ( 1 5 : 2 1 , 3 ) ;

e l s e
a s c i s s e =(7:−1:1) ;
a s c i s s e =[10 , a s c i s s e ] ;
ord1=exp le ined ( 1 : 8 , 3 ) ;
ord2=exp le ined ( 9 : 1 6 , 3 ) ;
ord3=exp le ined ( 1 7 : 2 4 , 3 ) ;

end

%graph
p lo t ( a s c i s s e , ord1 , 'bd− ' )
hold on
p lo t ( a s c i s s e , ord2 , 'gd− ' )
p l o t ( a s c i s s e , ord3 , ' rd− ' )
legend ( ' 4 f o c t o r s ' , ' 3 f a c t o r s ' , ' 2 f a c t o r s ' , ' l o c a t i o n ' , ' SouthEast ' )
x l ab e l ( 'number o f f a c t o r s f o r un i t s ' )
t i t l e ( ' ex lpe ined v a r i a b i l i t y ' )
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A.2.3 FPDC

f unc t i on [ la , i t e r , t , JDF, JDFv , expl , tuk , ddt , d i s t , p , c , nc ]= i te rDc (dataO , nc , nf , nu , s )
%%%%%%%%%%%%%%Performs Fac t o r i a l PD−Clus t e r ing%%%%%%%%%%%%%%%%%%
%%%%%%%%INPUT%%%%%%%%%
%data=data matrix nxp
%nc= number o f c l u s t e r s
%nf= number o f f a c t o r s
%s= standard i z e 1=yes
%%%%%%%OUTPUT%%%%%%%%%%
%la=c l u s t e r l a b e l s
%i t e r= number o f i t e r a t i o n s
%t= e lapsed time
%d i s t=d i s t ance matrix
%p=probab i l i t y matrix ,
%expl=exp la ined v a r i a b i l i t y
%c= cente r matrix
%JDF= Joint d i s t ance func t i on
%nc= number o f c l u s t e r s

[ n , ppp]= s i z e ( dataO ) ;

%Data Standard i zat ion

i f s==1
data=zs co r e ( dataO ) ;

e l s e
data=dataO ;

end

%i n i t i a l i z a t i o n
t=0;
i t e r =0;
JDF=1;
JDFo=0;
JDFv= [ ] ;

%cente r i n i t i a l i z a t i o n
c (1 , : )=min ( data )+1;
c (2 , : )=max( data )−1;
f o r i =3:nc

c ( i , : )= rand (1 , s i z e ( data , 2 ) ) ;
end

%I t a r a t i o n : stop i f JDF stop dec rea s i ong or 100 i t e r a t i o n s are reached
whi le ( abs (JDF−JDFo)>0 .01 && i t e r <100)

t i c
JDFo=JDF;
JDFoo=JDFo ;
co=c ;

%Computation o f d i s t ance matrix (n∗nc )x p

%computation o f d i s t an c e s as squared norm
d i s t = [ ] ;
ddt = [ ] ;
dd = [ ] ;
p=ze ro s (n , nc ) ;
f o r j =1:nc ;

f o r i =1:n ;

137



Routines in Matlab Language

dd( i , : )= abs ( data ( i , : )− c ( j , : ) ) ;
d i s t ( i , j )=norm( data ( i , : )− c ( j , : ) ) ;%needed in p r obab i l i t y computation

end ;
ddt=[ddt ; dd ] ;

end ;

%p robab i l i t y matrix computation
nu2=ones (n , nc ) ;
f o r i =1:n ;

f o r h=1:nc ;
f o r j =1:nc ;

i f j 6=h ;
nu2 ( i , h)=d i s t ( i , j )∗nu2 ( i , h ) ;

end
end

end

end
deu=sum(nu2 , 2 ) ;
f o r i =1:n

f o r j =1:nc
p( i , j )=nu2 ( i , j )/ deu ( i ) ;

end
end

%Tucker3
tway=reshape ( ddt , n , ppp , nc ) ;
dim=[nu , nf , nc−1] ;
[ tuk , g , expl ( i t e r )]= tucker1 ( tway , dim ) ;
tuk2=tuk {2} ;
%data p r o j e c t i on in the new space
tuk=data∗ tuk2 ;

%check f o r NaN
numc=nc ;

%PD−c l u s t e r i n g
[ la , c ]=dcluster1ALG ( tuk , nc ) ;
cp=c ;
f o r i =1:numc
i f ( i snan ( c ( i ,1)))==1

numc=numc−1;
i f numc6=1

cp ( i , : ) = [ ] ;
%cambio=1;
crim=i ;
co ( crim , : ) = [ ] ;

e l s e
numc=numc+1;

end
nc=numc ;
end
end
c=cp ;

%New cente r computation
c=c∗ tuk2 ' ;
t=t+toc ;
%l a b e l i n g
[mmmm, la ]=max(p , [ ] , 2 ) ;

%check i f a l l the cente r are d i f f e r e n t form each other
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i f nc>2
f o r k=1:(nc−1)

numc=nc ;
f o r kk=nc :−1:( k+1)

i f abs ( c (k , :)− c (kk , : ) ) <0 .000001
numc=numc−1;
i f numc6=1

ct=[c (k , : ) ; c ( kk , : ) ] ;
c (k , : )=mean( ct ) ;
c ( kk , : ) = [ ] ;

e l s e

numc=numc+1;
end

end
end
nc=numc ;

end
end

%convergence c r i t e r i a update
JDF=d i s t ( : , 1 ) ' ∗ p ( : , 1 ) ;
JDFv=[JDFv ,JDF ] ;
%check f o r loop
i f abs (JDFoo−JDF)<1

cp=c ;
f o r i =1:nc

cc=[co ( i , : ) ; c ( i , : ) ] ;
cp ( i , : )=mean( cc ) ;

end
c=cp ;

end

end
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Displays
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Displays

Figure B.1: Clustering structure obtained on the dataset composed by 6
variables.
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Figure B.2: Clustering structure obtained on the dataset composed by 6
variables, clusters have been normally generated with different value of
variance
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Displays

Figure B.3: Clustering structure obtained on the dataset composed by 6
variables, the clusters have been normally generated each cluster is com-
posed by a different number of elements
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Figure B.4: Clustering structure obtained on the dataset composed by 6
variables, clusters have been normally generated variables are correlated
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Figure B.5: Clustering structure obtained on the dataset composed by 6
variables, clusters have been normally generated variables are correlated,
10% of outliers with r = min
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Figure B.6: Clustering structure obtained on the dataset composed by 6
variables, clusters have been normally generated variables are correlated,
10% of outliers with r = max
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Displays

Figure B.7: Clustering structure obtained on the dataset composed by 6
variables, clusters have been normally generated variables are correlated,
20% of outliers with r = min
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Figure B.8: Clustering structure obtained on the dataset composed by 6
variables, clusters have been normally generated variables are correlated,
20% of outliers with r = max
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Displays

Figure B.9: Clustering structure obtained on the dataset composed by 6
variables, the first cluster has been normally genereted, the second one has
been log normally generated
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(2008). On selecting interestingness measures for association rules: User

oriented descripition and multiple criteria decison aid. European journal

of Operational Research.

[Macnaughton-Smith et al., 1964] Macnaughton-Smith, P., Williams,

W. T., Dale, M. B., and Mockett, L. G. (1964). Dissimilarity analysis: a

new technique of hierarchical sub-division. letters to nature, 2:1034–1035.

[MacQueen, 1967] MacQueen, J. (1967). Some methods for classification

and analysis some methods for classification and anlysis of multivariate

observations. Proceedings of the fifth Berkeley symposium, 1:281–297.

[Marino et al., 2009] Marino, M., Palumbo, F., and Tortora, C. (2009).

Clustering in feature space for interesting pattern identification of cate-

gorical data. In extendedpaper proceedings of the SIS 2009 statistical con-

ference on Statistical Methods for the analysis of large data-sets, Pescara

ISBN 978-3-642-21036-5.

157



Bibliography

[Marino and Tortora, 2009] Marino, M. and Tortora, C. (2009). A compar-

ison between k-means and support vector clustering of categorical data.

Statistica applicata, 21(1):5–16.

[Maronna and Zamar, 2002] Maronna, R. A. and Zamar, R. H. (2002). Ro-

bust estimates of location and dispersion for high-dimensional datasets.

Technometrics, 44(4):307–317.

[McLachlan and Basford, 1988] McLachlan, G. J. and Basford, K. E.

(1988). Mixture models: inference and applications to clustering, vol-

ume 84. Statistics, textbooks and monographs.

[McLachlan and Krishnan, 2008] McLachlan, G. J. and Krishnan, T.

(2008). The EM algorithm and extensions. Wiley interscience.

[McLachlan and Peel, 2000] McLachlan, G. J. and Peel, D. (2000). Mix-

tures of factor analyzers. Langley, Proccedings of the seventeenth Inter-

national Conference on Machine Learning. Morgan Kaufman, San Fran-

cisco, pages 599–606.

[McLachlan et al., 2003] McLachlan, G. J., Peel, D., and Bean, R. W.

(2003). Modelling high-dimensional data by mixtures of factor analyzers.

Computational Statistics and Data Analysis, 41:379–388.

[Milligan and Cooper, 1985] Milligan, G. and Cooper, M. (1985). An ex-

amination of procedures for determining the number of clusters in a data

set. Psychometrika, 50(2):159–179.

[Montanari and Viroli, 2011] Montanari, A. and Viroli, C. (2011). Max-

imum likelihood estimation of mixtures of factor analyzers. Computa-

tional Statistics and Data Analysis, 55:2712–2723.

158



Bibliography

[Muller et al., 2001] Muller, K. R., Mika, S., Ratsch, G., K.Tsuda, and

Scholkopf, B. (2001). An inroduction to kernel-based learning algorithms.

IEEE transaction on neral networks, 12.

[Ordonez, 2003] Ordonez, C. (2003). Clustering binary data streams with

k-means. Proceedings of the 8th ACM SIGMOD workshop on Research

issues in data mining and knowledge discovery, pages 12–19.

[Palumbo et al., 2008] Palumbo, F., Vistocco, D., and Morineau, A.

(2008). Huge Multidimensional Data Visualization: Back to the Virtue

of Principal Coordinates and Dendrograms in the New Computer Age,

volume Handbook of Data Visualization, pages 349–387. Springer.

[Parsons et al., 2004] Parsons, L., Haque, E., and Liu, H. (2004). Sub-

space clustering for high dimensional data: a review. ACM SIGKDD

Explorations Newsletter, 6(1):90–105.

[Pelleg and Moore, 2000] Pelleg, D. and Moore, A. (2000). X-means: Ex-

tending k-means with e cient estimation of the number of clusters. ICML-

2000.

[Pham et al., 2004] Pham, D., Dimov, S., and Nguyen, C. (2004). An

incremental k-means algorithm. Proceedings of the Institution of Me-

chanical Engineers, Part C: Journal of Mechanical Engineering Science,

218(7):783–795.

[Romesburg, 2004] Romesburg, H. C. (2004). Cluster analysis for re-

searcher. LULU Press North Carolina.

159



Bibliography

[Rousseeuw, 1987] Rousseeuw, P. (1987). Silhouettes: a graphical aid to

the interpretation and validation of cluster analysis. Journal of compu-

tational and applied mathematics, 20:53–65.

[Saporta, 1990] Saporta, G. (1990). Probabilités Analyse des Données et

Statistiques. Technip, Paris.

[Singh, 1993] Singh, B. (1993). On the analysis of variance method for
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