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Introduction

Wireless Sensor Networks (WSNs) are emerging as a promising technology to foster

the design and the implementation of self-configuring, self-healing, and cost-effective

monitoring infrastructures. In the last decade, they have been used in several pilot

research applications, such as detection of fires [1], object tracking [2, 3], security

monitoring [4], supply chain monitoring [5] and stability monitoring of civil engi-

neering structures, such as buildings [6], bridges [7], railroad tunnels [8], and dams

[9, 10]. The commercial use of WSN is expected to grow dramatically in the next

few years. However, industries in the field of wired sensing and monitoring infras-

tructures are still questioning the adoption of WSN in critical applications, despite

attracted by their interesting features and by the possibility of reducing deployment

and management costs of more than one order of magnitude [8].

This gap between research achievements and industrial development is mainly due

to the little trust that companies repose in the reliability of WSNs. One of the

causes of this distrust is represented by the lack of work defining critical application

requirements for WSN and by the absence of effective approaches to be used at design

time for assessing non functional properties, such as WSN dependability.

Indeed, dependability assessment plays a central role in raising the level of trust

of WSNs for critical applications. WSNs are exposed to several faults due to both

wireless medium characteristic, the limited energy budget they are equipped with,

harsh environment [11], and cheap adopted hardware. Even if digital signals are less

1
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prone to electromagnetic interference, packets might be lost or delivered with errors,

sensors may be frozen to wrong fixed values and nodes may periodically reset due

to malfunctioning. In these systems, data sensed by WSN nodes has to be properly

delivered to the sink node (i.e., the node responsible of data collection), in spite of

”changes” introduced during WSN operation (e.g., a node failure). The situation

is finally exacerbated by the highly dynamic nature of WSN and their proneness in

manifesting transient failures [11], and self-reconfigurations. Such a complex behavior

introduces several challenges for WSN developers. The design of WSNs is hardened

by the lack of effective methods and approaches to master the intrinsic complexity

of WSN assessment, especially when aiming to design WSNs able to perform with a

persistent level of dependability while withstanding to manifesting changes, i.e. able

to perform with a given level of resiliency [12].

As discussed in Chapter 2, past research efforts have been devoted to define the

concept of connection (or network) resiliency for computer networks [13] and ad-hoc

networks [14], i.e., the number of “changes”, in terms of node failures, that can be

accommodated while preserving a specific degree of connectivity in the network. How-

ever, while these concepts still apply to WSNs, they are not enough to characterize

the data-driven nature of WSNs. The service delivered by the WSN does not encom-

pass only the connection, but also the computation, i.e., even when sensor nodes are

potentially connected ( a path exists between nodes and the sink node), data losses

can still occur. To overcome this limit, this thesis defines the concept of data delivery

resiliency and qualifies the concept of WSN resiliency as a non functional properties

composed by both connection resiliency and data delivery resiliency. Data delivery

resiliency is defined in this thesis as the number of changes in terms of node failure

that the WSN can accommodate while preserving packet delivery efficiency greater

than a threshold.
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The concept of connection resiliency and data delivery resiliency are not interrelated.

While the concept of connection resiliency relates to the WSN topology, i.e. the

degree of path redundancy in the network, the concept of data delivery resiliency

is related to i) the computational load on nodes which may causes packet losses

due to buffer overrun, ii) application requirements, e.g. at least a given amount of

produced measurements must be delivered to the sink node, iii) routing and MAC

protocols impacting on the data delivery features and packet error rate, and iv) radio

interferences and packet loss/corruption phenomenon on the propagation medium.

Hence, assessing the data delivery resiliency as well as the connection resiliency is

a crucial task in designing dependable WSNs, since it could help to i) anticipate

critical choices e.g., concerning node placement, running software, routing and MAC

protocols, ii) mitigate risks, e.g., by forecasting the time when the WSN will not be

able to perform with a suitable level of resiliency, and iii) prevent money loss, e.g.,

providing a criteria to plan and schedule maintenance actions effectively.

It is easy to figure out that resiliency assessment of WSNs is dramatically exacerbated

by the complexity of potential changes that may take place at runtime. The workload

impacts on the number of packets sent on the network. The path followed by packets

depends on the routing algorithm, on the topology, and on the wireless propagation

profile (packets can be lost). The energy profile is affected by the workload, by the

number of forwarded packets, and by the battery technology. All above factors impact

on the failure behavior, e.g., a node can fail due to battery exhaustion. A node can

also fail independently, due to faults in the sensing hardware. In turn, a failure of

a node may induce a partition of the network into two or more subsets, involving

a large set of nodes to be unavailable, i.e., isolated, since they are no more able to

deliver data to the sink. Clearly, such high degree of inter-dependence complicates

the assessment task, by dramatically increasing the number of variables and dynamics
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to encompass. Finally, but not less important, resiliency assessment cannot neglect

actual hardware/software platforms features and the sensing hardware being used:

different power consumptions and failure rates are indeed experienced when varying

the underlying platforms, such as sensing hardware, radio chip and node operating

system.

Resiliency assessment cannot deviate from the use of models. State-of-art techniques

for the assessment of non-functional properties, such as power consumption or de-

pendability are mostly based on behavioral simulators and analytical models, as

deeply discussed in Chapter 2.

WSN Behavioral simulators, such as ns-2 [15] or TOSSIM [16], are close to real

WSNs. They typically belong to the the final user (e.g. the deployer) domain of

knowledge and allow to reproduce the expected behavior of single WSN nodes on

the basis of the real application planned to execute. However, they are not designed

to express and to evaluate non-functional properties. Such an analysis requires to

evaluate statistical estimators and hence it needs several simulations runs in order

to achieve results with an acceptable confidence. This in turn increases the time

needed for the simulation by order of magnitudes, given the low-level of detail of

these approaches.

Analytical models, such as Petri nets and Markov chains, are the reference for re-

siliency assessment techniques. They have been successfully used for decades for the

assessment of computer systems, including WSNs [17, 18]. However, the highly dy-

namic nature of WSNs requires the definition of detailed and complex models which

are difficult to develop and hardly re-usable for different scenarios For instance, if a

modeling team would invest for a fine grain model of a WSN, taking into account

software, routing issues and hardware platforms, even a tiny change in the design

parameters of the considered WSNs, such as the software or the topology, would
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probably require a modeling phase ex-novo, incurring in unaffordable design costs,

while such aspects are well and easily reproduced in behavioral models. As matter of

fact, the assessment of WSN resiliency following a mere analytical approach requires

strong simplifying assumptions that often lead to rather abstract results.

To overcome the limitation of available approaches, this thesis proposes a novel and

holistic approach for the resiliency assessment of WSNs. Key focus of the approach

is the holistic resiliency assessment, i.e., the comprehensive assessment performed

by taking into account all subsystems and inter-related factors concurring to the

behavior of the WSN. Hence, an important step toward the resiliency assessment of

a WSN is to evaluate: i) how the node workload, hardware platforms, topology and

routing protocols impact on the failure proneness of nodes and of the network, and,

vice-versa, ii) how node and network failures impacts on the nominal behavior of the

WSN (e.g., how the failure of a node mutates the behavior of running workload or

routing protocols).

It is clear that the failure of a single node may impact on the behavior of the overall

network in an unmanageable number of ways. Conversely, different user choices (e.g.,

the node workload and the routing algorithm) influence the nominal behavior as well

as the failure behavior of every single node. To master this complexity, the approach

separates the assessment of the failure behavior from the evaluation of the nominal

behavior by considering i) a set of parametric analytical failure models, and ii) a

WSN behavioral model, respectively.

Initially, the behavioral model is exploited to configure the WSNs in terms of hard-

ware platform, topology, routing and MAC protocols, and to study the nominal

behavior of the software, included the OS, and the power consumption of the nodes.

Evaluations performed with the behavioral models are used to gather values for fail-

ure model parameters of the WSN under study, such as the packet forwarding rate
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of each node. Then the power of the analytical failure model is exploited to evaluate

a set of metrics of interest such as the resiliency. However, it is not difficult to realize

that some parameters are dynamic over time, i.e., their values need to be dynamically

updated during the assessment, driven by the failure model. To exemplify consider a

node X that stops working, due to battery exhaustion. After this failure, the routing

tree needs to be updated, and traffic patterns in the network change consequently.

Different traffic patterns in turn cause a different nodes battery discharge rate which

finally affects the lifetime of individual nodes, and likely, of the WSN. A possible

solution would be to stop the failure model at each change event, and to step back

to the behavioral simulation in order to re-compute network parameters coherently

with new working condition, however, at the price of unaffordable simulation costs.

For this reason, the proposed approach delegates the effort of computing the varia-

tion of dynamic parameters to an additional component, here referred as External

Engine which orchestrates the evolution of the failure model. The external engine

can be regarded as a supervision entity encapsulating and managing aspects that are

generally difficult to express at the level of abstraction of analytical models. Hence,

the engine is essential to keep models simple, general and reusable.

The use of the External Engine decouples analytical models from “changes“ man-

agement issues, allowing to simplify the failure model which can adapt to each man-

ifesting change, transparently. Moreover, the assessment is more realistic since it

encompasses all network/application related parameters which are likely to change

during WSN lifetime, without the need of strong simplifying assumption.

The proposed approach is also conceived to reduce the modeling effort of final users by

automating the creation of failure models, metrics to be estimated, and experiments

to be performed. To this aim, information collected after the behavioral model simu-

lation, concerning adopted node and sensing platform, radio chip, batteries workload
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and topology are exploited to specialize a specific set of templates from a Failure

Model Template Library. Failure Model Templates are skeletons of failure models,

described by means of XML files, which are produced una tantum by a domain ex-

pert. They are composed of i) a well defined interface, ii) a part depending on the

specific WSN , and iii) a fixed part. Well defined interface are used to compose

complex models by joining different sub-models together. Template parts depending

on the specific WSNs are the objective of the automated failure model generation

since they need to be generated according to the considered WSN. For instance, after

the behavioral simulation, a model is generated for each sensor node with as many

output links to other node failure models as its neighbors in the topology configured

by the user. Generated models are then populated with parameters which values

reflect the WSN studied in the behavioral simulation, e.g., for each nodes, generated

output links models are populated with packet loss probabilities which values have

been evaluated during the behavioral simulation. The generation phase ends by pro-

ducing a XML description for each generated models, which are completed with a

XML description of metrics and experiments of interests to perform (e.g., selected by

the user, consistently with his/her interests). Finally, a parser translates the XML

descriptors in a format compliant to the selected analytical model formalism, i.e.,

specializing the produced XML for the modeling framework chosen for performing

experiments of interest.

Relying on an automated modeling phase, the proposed approach allows final users

(i.e., WSN developers) to work within their knowledge domain, without requiring

specific modeling and/or programming skills. In other terms, developers interact

with artifacts that are related to their domain, such as behavioral simulators. Finally,

interested industries may release failure model libraries upon the release of WSN

hardware, following the same approach as for HDL libraries.
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In the context of this thesis, Stochastic Activity Networks (SAN) formalism [19] and

the Mobius [20] framework are adopted to develop and simulate WSNs failure models,

due to their flexibility and extensibility features.

The effectiveness of the approach is shown by means of a resiliency assessment cam-

paign based on a set of hypothetic, real-world WSNs. As it will detailed later, the ap-

proach allows to anticipate design choices by evaluating the resiliency under different

failure conditions and scenarios, workload behavior, and adopted routing algorithms,

using the same set of parametric SAN models. The approach can be adopted by

a hypothetic user, who can exploit simulation results to fine-tune his applications,

for instance, selecting an appropriate routing algorithm and/or application workload

which make the WSN able to fulfill given requirements, e.g. in terms of resiliency.

The proposed approach may help also in the case of already deployed WSN, for in-

stance, by forecasting the time when the WSN will exhibit a degraded behavior by

deviating from its specifications helping to schedule maintenance actions in advance.

This thesis is organized in 7 chapters as it follows. Chapter 1 provides a brief overview

of WSNs and their applications, stressing their requirements and the importance of

resiliency in the considered scenarios. Chapter 2 analyzes the state of the art in

the field of WSN simulation and dependability assessment. Chapter 3 provides the

definition of both connection and data resiliency. Chapter 4 is focused on the holistic

approach, objective of this thesis, and it presents challenges and solutions for the

orchestration of the behavioral and analytical simulation and for the automated fail-

ure model generation. Chapter 5 presents the behavioral models and the parameters

needed to generate the failure model. Chapter 6 presents the failure models and the

followed modeling approach. Chapter 7 finally provides a set of case studies aiming

at showing the effectiveness of the approach concerning different WSN deployments.



Chapter 1

Dependability of Wireless
Sensor Networks

Wireless Sensor Networks (WSNs) are emerging as one of the most compelling research areas,
with profound impact on technological development. WSNs have been used with success into
more and more critical application scenarios, such as structural monitoring of civil engineer-
ing structures, where the dependability of WSNs becomes an important factor, discriminating
the success of large-scale industrial applications. However, unreliable hardware, installed soft-
ware, energy consumption and topology are the major constraints affecting Wireless Sensor
Networks (WSNs) resiliency. For this reason, dependability evaluation of WSNs is gaining
popularity since it could help to reduce risks and money losses by forecasting the resiliency of
a WSN before the deployment. This Chapter briefly introduces this issue, WSNs applications
and requirements. Finally, it introduces the dependability requirements of WSN, motivating
the approach presented in this thesis.

1.1 Wireless Sensor Networks

Recent advances in wireless communications and electronics have enabled the devel-

opment of low-cost, low-power, multi-functional sensors, capable of local computation

and equipped with short range radio transmitting devices[21]. The main purpose of

a Wireless Sensor Network as a whole is to serve as an interface to the real world,

providing physical information such as temperature, light, radiation, and others, to

a computer system.

9
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WSN are expected to be a breakthrough in the way natural phenomenon are ob-

served: the accuracy of observations will be considerably improved, leading to a

better understanding of the monitored environment.

These networks have a simple structure: there are dozens up to 100s of elements,

called ”sensor nodes” able to sense physical features of their surroundings or to

monitoring a set of items. WSN nodes exchange information on environment in

order to build a global view of the monitored items/regions which is made accessible

to the external user through one or more gateway node(s), named base station or sink

node(s) [22]. Sensor nodes are often referred as smart sensors or smart dust because

of their processing, power, and memory capabilities [23, 24, 25, 26]. The small size of

sensors (about the size of a coin) allows them to be easily embedded into materials

[25] or deployed in a mobile scenarios such as remote health care, cars, or floats over

water [27].

A WSN typically operates by stepping through the following phases: i) sensor nodes

acquire sensed data, ii) data is locally processed, iii) data is routed in a multi-hop

fashion, iv) data is delivered to the sink node, and v) data is forwarded by the sink

node to a conventional network, e.g. Internet [26].

Sensor networks may be organized in two basic architectures, hierarchical and flat.

In flat configurations, all the nodes participate in both the decision-making processes

and the internal protocols, like routing. On the other hand, in hierarchical config-

urations the network can be divided into clusters, or group of nodes, where all the

organizational decisions, like data aggregation, are made by a single entity called
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cluster head.

The main components of a sensor node are its microprocessor, its communication

chip, its integrated sensors, and limited mass storage. It is also possible to have

support for external components, such as GPS chips or external flash cards, or a

better security support, like radio chips with hardware implementations of cryptog-

raphy mechanisms such as AES. The main drawback of WSN sensor nodes is the

restricted resource of energy leading to limited lifetimes. This fact motivates atten-

tion and effort the research community has devoted to the development of low power

consumption techniques, not only at MAC layer, but also at network and application

layers.

1.2 WSN Requirements

Lifetime

In most application scenarios, a majority, if not the totality of the nodes are self-

powered, and hence, in the best, they are able to survive for a limited time. The

most common adopted lifetime metric is related to the time till a certain percentage

of surviving nodes in the network falls below a given threshold [28]. When a WSN

should be considered non-functional, however, is application specific.

Area Coverage

Area coverage is defined as the ratio between the number of up, running, and con-

nected nodes at a given instant of time, over the number of initially deployed sensors.

Due to the aging and wear out process of nodes, the area coverage is a decreasing
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function of the time. WSN applications define the minimal level of area coverage

to assure so that the observed phenomenon can be monitored with acceptable confi-

dence.

Timeliness

In environment monitoring applications is often required to correlate samples coming

across different nodes in order to gather combined measurements. in such WSNs It

is a common practice to compute Fast Fourier Transforms across different nodes, for

instance upon a vibration event of the monitored structure[7] . In this case, nodes

must be synchronized in order to take part to the distributed computation correctly,

i.e. by providing samples acquired within a bounded interval of time. In WSNs,

nodes clock drifts apart over time due to inaccuracies in oscillators. High-precision

synchronization mechanisms must be provided to continually compensate for these

inaccuracies, e.g., by means of synchronization protocols, but this is in contrast with

lifetime, since such protocols often require periodic exchange of extra radio packets.

Data Delivery

The main mission of a typical WSN is to collect environmental data and to send

measurements to the sink node. Depending on the specific application, it may be

fundamental to collect at least a specific amount of data in order to fulfill applica-

tion requirements. However, despite at the deployment, the WSN is able to deliver

a sufficient amount of data to the sink node, interferences and failures may force

topology reconfiguration that may impact on the delivery efficiency. Consequently,
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it is important to evaluate the efficiency of WSNs in delivering data to the sink in

order to detect whether a WSN is still able to behave as expected. Moreover, the

evaluation of data delivery features may be used for topology control purposes, for

instance, enabling spare nodes or switching to a routing policy able to deal with new

working condition.

1.3 Critical Applications

The field of WSNs offers a rich, multi-disciplinary area of research, in which a variety

of tools and concepts can be employed to address a diverse set of applications. As

such, many potentials of this field have been under study both in academia and in

the industry. Only recently they have become a technology which is more and more

envisioned in real applications, included industrial systems or critical scenarios as a

good opportunity to drastically reduce installation, management, and maintenance

costs and related times.

According to the European Commission, Critical scenarios consist of ”[...] those

physical and information technology facilities, networks, services and assets which, if

disrupted or destroyed, would have a serious impact on the health, safety, security or

economic well-being of citizens. [...]” [29].

The number of critical scenarios where sensor networks can be used is incredibly

broad. It is not the primary aim of this thesis to overview and detail the large

spectrum of existing critical applications in the field; interested readers could refer

to good surveys in the literature [21, 30].
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Figure 1.1: WSN applications domains and basic applicative requirements.

Rather, in this section we review five main WSN application classes: environment

monitoring, security monitoring, object tracking, ambient intelligence and body net-

work applications. The majority of critical WSN applications will fall into one of

these class templates. Figure 1.1 provides a view of the considered WSN application

domains which can be classified according to three main parameters: density of the

deployment, scale of the deployment, and sensing capabilities of the network. De-

pending on the objective of the deployment, WSNs may be equipped of a number

of nodes spacing from few dozen (e.g. Body Sensor Networks) up to thousands (e.g.

Environment monitoring). Nodes may be deployed in a small area with high density

or be scattered on a large region. Finally, for each application scenario, different

requirements must be met, as reported in Figure 1.1 and as further discussed in the

following sections.
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1.3.1 Environment Monitoring

Environment monitoring applications generally consist of deploying a number of sen-

sors in the field to periodically measure meteorological and hydrological parameters,

such as wind speed and direction. Most of them change relatively slowly in time,

which allows for sparse sampling (one sample every two to five minutes is most often

sufficient). However, as interesting phenomena, such as rock slides or avalanches, oc-

cur seldom and are difficult to predict, deployments must last long enough to capture

them, and must assure a reliable delivery of gathered data to the sink node. Thus,

requirements of an environmental monitoring system are lifetime and data delivery

resiliency. Achieving resiliency is difficult because packet losses are more likely to

happen during harsh weather conditions (e.g., heavy rain, intense cold) which are

at the same time the most interesting episodes for data analysis. Moreover, due to

the multi-hop organizations of WSNs, as the network ages, it is very likely to ob-

serve node failures that may cause disconnections of nodes to the sink and network

partitions.

All these requirements are especially important when deploying a network in remote

and difficult-to-access places. For instance, one of the SensorScope deployments

[31] occurred in high mountain, in collaboration with authorities. A helicopter was

required for carrying hardware and people. Going back to the site a few days later

because a battery is depleted or because a station needs to be manually rebooted is

obviously inconceivable.
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1.3.2 Security Monitoring

Differently from environment monitoring, WSN Security monitoring applications do

not collect any data, and are classified as ”report by exception” networks. The

common task of each node is to frequently check the status of its sensors, and to

transmit a data report strictly only when an exception is detected, such as security

breaches or unauthorized access to an environment. Nodes are typically equipped

with both permanent and backup power sources. This has a significant impact on

the optimal network architecture and on nodes lifetime that is not as critical as for

environment monitoring. The timeliness and data delivery resiliency are the primary

system requirements.

1.3.3 Object Tracking

The purpose of this class of WSN applications is to provide an effective solutions for

the tracking of mobile objects [3] by using a combination of WSNs and radio fre-

quency identification/positioning technologies. With WSNs, objects can be tracked

by simply tagging them with a small sensor node. The sensor node will be tracked

as it moves through a field of sensor nodes that are deployed in the environment at

known locations. Instead of sensing environmental data, these nodes will be deployed

to sense the RF messages of the nodes attached to various objects.

Unlike sensing or security WSN, node tracking applications will continually have

topology changes as nodes move through the network. While the connectivity among

nodes at fixed locations will remain relatively stable, the connectivity to mobile



Chapter 1. Dependability of Wireless Sensor Networks 17

nodes will be continually changing. Additionally, the set of nodes being tracked will

continually change as objects enter and leave the system. Timeliness in detecting new

moving objects and in managing hand-offs as the tracked objects move is the first

requirement of such WSN applications. Moreover, a full coverage of the monitored

area and reliable delivery of data related to tracked object is essential.

1.3.4 Ambient Intelligence

Ambient Intelligence (AmI) is a paradigm that applies to a number of vertical do-

mains. AmI is a term coined by Philips management to conjure up a vision of an

imminent future in which persons are surrounded by a multitude of fine grained

distributed networks comprising sensors, and computational devices that are unob-

trusively embedded in everyday objects such as furniture, clothes, and vehicles, and

that together create electronic habitats that are sensitive, adaptive and responsive to

the presence of people [32, 33]. Examples of Ami applications are smart offices and

buildings [34]. In smart offices, it is possible to record the movement and meeting

patterns of employees, and also answer queries related to the employees (such as their

location) and related to the rooms (such as their temperature).

AmI applications are affected by several new treats due to mobility of resources [35,

36] and to the peculiarities of domains [37]. AmI requirements typically encompass

data delivery features, timeliness and lifetime.
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1.3.5 Body Sensor Networks

The term BSN is first coined in [38] in order to bring together scientists from different

disciplines such as computing, electronics, bioengineering and medicine for address-

ing the general issues related to using wearable/wireless and implantable sensors on

the human body. The basic structure of BSN consists on a set of wireless physi-

ological sensors, such as body temperature, blood pressure and oxygen saturation,

cardiac activity (ECG), and encephalic activity (EEG). Sensors are used jointly to

measure and monitor remotely the status of a patient. It is also possible to use BSN

in helping assisted-living and independent-living residents by continuously and un-

obtrusively monitoring health-related factors such as their heart-rate, heart-rhythm,

and temperature.

Requirements of BSN consists of limited and predictable time latency and reliable

transmission of sensed data and alarms. Moreover, area coverage is of paramount

importance, since BSN are constituted by a very limited number of sensor nodes,

without any overlap between sensed area or sensed parameters.

1.4 Challenges

Although the technology for WSNs is relatively mature, and WSN have been em-

ployed in several pilot research applications, real large scale applications are com-

pletely lacking. This is in part due to a number of still unsolved problems afflicting

WSNs.

A number of smart sensor prototypes have been designed and implemented by the
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academic research community. The most famous of such prototypes are probably the

Berkley Motes [39] and Smart Dust [25]. Later on, many academic interdisciplinary

projects have been funded (and are currently being funded) to actually deploy and

utilize sensor networks. One such example is the Great Duck Island project, in which

a WSN has been deployed to monitor the habitat of the nesting petrels without any

human interference with animals [11].

Smart sensor nodes are also being produced and commercialized by some electronic

manufacturer, such as Crossbow, Philips, Siemens, STMicroelectronic.

There is also a considerable standardization activity in the field if WSNs. The most

notable effort in this direction is the IEEE 802.15.4 standard which defines the phys-

ical and MAC layer protocols for remote monitoring and control, as well as sensor

network applications. ZigBee Alliance is an industry consortium with the goal of

promoting the IEEE 802.15.4 standard.

Other than standardization, main challenges related to WSN implementation are

reported in the following.

Energy Conservation

Because of the reduced size of the sensor nodes, the battery has low capacity and

the available energy is very limited. Despite the scarcity of energy, the network is

expected to operate for a relatively long time. Given that replacing/refilling batteries

is usually impossible or very expensive, one of the primary challenges is to maximize

the WSN lifetime while preserving acceptable performances.
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Low-quality communication

WSN are often deployed in harsh environments, and sometimes they operate under

extreme weather conditions. In these situations, the quality of the radio communi-

cation might be extremely poor and performing the requested collective sensing task

might become very difficult.

Operation in hostile environments

In many scenarios, WSN are expected to operate under critical environmental con-

ditions, which translates in an accelerated failure rate of sensor nodes. Thus, it is

essential that sensor nodes are carefully designed, and the WSN assessed under real

failure assumptions. Furthermore, the protocols for network operation should be

resilient to sensor fault, which must be considered in these scenarios a norm rather

than an exception.

Security Attacks

As networks grow, the vulnerability of network nodes to physical and software attack

increases. Attackers can also obtain their own commodity sensor nodes and induce the

network to accept them as legitimate nodes, or they can claim multiple identities for

an altered node. Once in control of a few nodes inside the network, the adversary can

then mount a variety of attacks, for instance, falsification of sensor data, extraction

of private sensed information from sensor network readings, and denial of service

attacks. Therefore, routing protocols must be resilient against compromised nodes

that behave maliciously. Ensuring that sensed information stays within the sensor
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network and is accessible only to trusted parties is an essential step toward achieving

security. Data encryption and access control is one approach. Another is to restrict

the network is ability to gather data at a detail level that could compromise privacy.

For example, in a healthcare environment, storing data in an anonymous format

and removing any personal referencing information. Another approach is to process

queries in the sensor network in a distributed manner so that no single node can

observe the query results in their entirety. In this case security comes at the price of

a reduced lifetime due to the extra overhead induced in the network.

Maintenance Cost

The initial deployment and configuration is only the first step in the WSN lifecycle.

In WSN where deployment is expected to surpass the lifetime of batteries, the total

cost of management for a system may have more to do with the maintenance cost

than the initial deployment cost. Throughout the lifetime of a deployment, nodes

may be relocated or replaced due to outages, and discharged batteries. In addition,

reintegrating the failed nodes adds further labor expenses. An approach to limit

interventions would be to increase the lifetime by adopting a trigger-based sampling

strategy: sensors start to acquire data only when given conditions are met. However,

this approach introduces a further coordination problem among sensors, e.g. ,nodes

monitoring the same area must agree on the triggered event, synchronize their clock,

and start to sample data coordinately. Since access costs are dominant over in-situ

costs, it is important, therefore i) to identify sources of maintenance related costs and

to reduce them, and ii) to schedule maintenance so that once the network is accessed,
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a convenient number of nodes are maintained and hence, the overall maintenance cost

optimized.

Lack of easy to commercialize applications

Nowadays, several chip makers and electronic companies started the production of

sensor nodes. However, it is much more difficult for these companies to commercialize

applications based on WSN. Selling applications, instead of relatively cheap sensors,

would be much more profitable for industry. Unfortunately, most sensor network

application scenarios are very specific, and companies would have little or no profit

in developing very specific applications, since the potential buyers would be very few.

1.5 Resiliency in WSN Critical Applications

The commercial use of WSN is expected to grow dramatically in the next few years,

however, industries in the field of wired sensing and monitoring infrastructures are

still questioning the adoption of WSN in critical applications, despite attracted by

their interesting features and by the possibility of reducing deployment and manage-

ment costs of more than one order of magnitude [8].

This gap between research achievements and industrial development is mainly due to

the little trust that companies repose in the resiliency of WSNs. Resiliency as been

recently defined as [12]: the persistence of dependability when facing ”changes”. This

change of perspective leads to new requirements of modern fault tolerant systems,

such as the ability of accommodating unforeseen environmental perturbations or

disturbances.
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WSNs are exposed to several faults due to both wireless medium characteristic, the

battery exhaustion of a sensor, harsh environment [11] and cheap hardware. Even if

digital signals are less prone to electromagnetic interference, packets might be lost

or delivered with errors, sensors may be frozen to wrong fixed values and nodes may

periodically reset due to malfunctioning. In these systems, data sensed by WSN

nodes has to be properly delivered to the sink node, in spite of ”changes” introduced

during WSN operation (e.g., a node failure, or a route update). This situation is

further exacerbated considering the the fail silent behavior of a sensor, that makes

difficult the detection of malfunctioning or failed nodes. As a result, the utilization

of a WSN for critical applications introduces specific resiliency requirements, which

relate to those reported in Figure 1.1.

Connection Resiliency

Path redundancy and self-organization are cost-free features provided by WSNs. Sen-

sor nodes are arranged in an ad hoc manner providing a number of potential redun-

dant paths toward the sink, depending on the number of their neighbors. However,

real installations are often subjected to specific deployment constraints such as num-

ber and density of sensor nodes. For instance, WSNs designed for bridges, towers and

buildings monitoring are typically organized following an in-line, grid or two chain

topology due to site constraints, limiting the number of redundant paths in the net-

work ( a node may reach only a very low number of neighbors) [17] . Consequently, a

failure of an inner node in the topology is likely to cause the isolation of a set of nodes.

Hence, judicious selection of node position and density is crucial to optimize the path
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redundancy and to enforce the connectivity resiliency of the WSNs. Referring to the

requirements showed in Figure 1.1, connection resiliency relates to lifetime and area

coverage.

Data Delivery Resiliency

In order for fulfill application requirements, such that for structural monitoring and

analysis or security monitoring, at least a minimum amount of measurements have

to be gathered during each measurement step, despite communication and/or sensor

faults. For example, if n sensors, forming a cluster, are used to cover a pillar of a

bridge, at least k-out-of-n sensor readings have to be delivered to the sink node in

time, at each measurement step. The value of k have to be selected with respect to

the physical characteristics of the structure’s section. Moreover, the k correct sensors

cannot be arbitrary chosen among the n available sensors. In other terms, other than

providing path redundancy to the sink, data delivery reliability is essential if not

necessary in most of WSN applications. Indeed, it may be possible that, despite

existing paths reaching the sink, a node is not able to deliver its measurements due

to buffer overflows, packet corruptions and application errors. Typically, to face this

issue, acknowledgement based routing protocol or epidemic routing protocols such as

flooding are used to decrease the probability of packet loss throughout the network.

However, such approaches strongly influence the WSN lifetime and time latency in

data delivery due to the overhead they cause in the forwarding nodes. Referring to

the requirements showed in Figure 1.1, data delivery resiliency relates to timeliness

and data delivery features.
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1.5.1 The Need of a Holistic Approach

Resiliency assessment of WSNs by means of fault forecasting represents an intriguing

research issue indirectly related to the defined requirements. Its proper application

could help to i) anticipate critical choices e.g., concerning node placement, running

software, routing and MAC protocols, ii) mitigate risks, e.g., by forecasting the time

when the WSN will not be able to perform with a suitable level of resiliency, and iii)

prevent money loss, e.g., providing a criteria to plan and schedule maintenance actions

effectively. However, it is easy to figure out that resiliency assessment of WSNs

is dramatically exacerbated by the complexity of potential changes that may take

place at runtime. The workload, included the use of aggregation/fusion algorithms,

impacts on the number of packets sent on the network. The path followed by packets

depends on the routing algorithm, on the topology, and on the wireless medium

(packets can be lost). The energy profile is affected by the workload, by the number

of forwarded packets, and by the battery technology. All above factors impact on

the failure behavior, e.g., a node can fail due to battery exhaustion. A node can also

fail independently, due to faults in the sensing hardware. In turn, a failure of a node

may induce a partition of the network into two or more subsets, involving a large

set of nodes to be unavailable, i.e., isolated, hence, unable to send acquired data to

the sink. Clearly, such high degree of inter-dependence complicates the assessment

task, by dramatically increasing the number of variables and dynamics to encompass.

Finally, but not less important, resiliency assessment must also take into account

actual hardware/software platforms features and the sensing hardware being used:
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different power consumptions and failure rates are indeed experienced when varying

the underlying platforms, such as sensing hardware, radio chip and node operating

system.

Resiliency assessment of WSN cannot deviate from the use of models. Although vari-

ous interesting dependability evaluation techniques and tools have been developed in

the last decades, still a little attention is devoted to define approaches able to master

the intrinsic complexity of WSN resiliency assessment. State-of-art techniques for

the assessment of non-functional properties, such as power consumption or depend-

ability attributes are mostly based on behavioral simulators and analytical models,

as deeply discussed in Chapter 2.

WSN Behavioral simulators, such as ns-2 [15] or TOSSIM [16], are closer to real

WSNs. They allow to reproduce the expected behavior of every single WSN node on

the basis of the real application planned to execute. However, they are not designed

to express and to evaluate non-functional properties. Such analysis would require to

evaluate statistical estimators and hence several simulation runs in order to achieve

results with an acceptable confidence. This in turn would increase the time needed

for the simulation by order of magnitudes, given the low-level of detail of these

approaches.

Indeed, analytical models, such as Petri nets and Markov chains, are the reference

for resiliency assessment techniques. They have been successfully used for decades

for the assessment of computer systems, including WSNs [17]. However, the highly

dynamic nature of WSNs requires the definition of detailed and complex models which
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are difficult to develop and hardly re-usable for different scenarios For instance, if a

modeling team would invest for a fine grain model of a WSN to design, taking into

account software, routing issues and hardware platforms, even a tiny change in the

design parameters of the considered WSNs, such as the software or the topology,

would probably require a modeling phase ex-novo, incurring in unaffordable design

costs. As matter of fact, the assessment of WSN resiliency following a mere analytical

approach requires strong simplifying assumptions that often lead to rather abstract

results.



Chapter 2

WSN Assessment: Models,
Tools and Related Work

While measurement is a valuable option for assessing an existing system or a prototype, it is
not a feasible option during the system design and implementation phases. Model-based eval-
uation has proven to be an appealing alternative. Several modeling paradigms, various tech-
niques and tools for model evaluation are currently used in the field of WSNs. This Chapter
revises modeling approaches and tools currently used in the field of dependability modeling,
network simulation and WSN assessment, including international project and related studies.

2.1 Dependability Modeling and Modeling Formalisms

Research in dependability analysis has led to a variety of models, each focusing on

particular levels of abstraction and/or system characteristics.

Dependability modeling and analysis assumes that the dynamics of the system can be

described by temporal random variables. Through dependability modeling it possible

to perform an evaluation of the system behavior with respect to fault occurrence or

activation (fault-forecasting) which is of paramount importance to evaluate a set of

metrics of interests such dependability attributes (See Appendix A). Hence, models

can give immediate feedback to the designers who can timely improve the design.

Models parameters are however based on past experiences on same systems, and

28
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these parameters can be often invalidated as the modeled system ages during the

simulation.

Traditional model formalisms used in the dependability analysis of stochastic systems

can be divided in two broad categories [40]: 1) combinatorial models (e.g. Reliability

Block Diagrams[41], Fault-tree [42, 43]), 2) state-space based models (Markov chains

[44], Petri nets [45], Stochastic Activity Networks [46]).

2.2 Combinatorial Modeling Formalisms

Combinatorial models assume the parts of the system to be statistically indepen-

dent and achieve high analytical tractability combined with a low modeling power.

Combinatorial methods are quite limited in the stochastic behavior that they can ex-

press. Despite several extensions that have been made to combinatorial models, they

do not easily capture certain features, such as stochastic dependence and imperfect

fault coverage.

2.2.1 Reliability Block Diagrams

Reliability Block Diagrams (RBD) consists of a graphical structure with two types of

nodes: blocks representing system components and dummy nodes for connections be-

tween the components. Edges and dummy nodes model the operational dependency

of a system on its components. At any instant of time, if there exists a path in the

system from the start dummy node to the end dummy node, then the system is con-

sidered operational; otherwise, the system is considered failed. A failed component

blocks all the paths on which it appears. RBDs thus map the operational dependency
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of a system on its components and not the actual physical structure of the system.

Series-Parallel RBDs are useful not only because they are very intuitive, but also

because they can be solved in linear time [47]. Such RBDs are quite frequently used

in reliability and availability modeling [48, 49] and many software packages exist that

support construction and solution of RBD models [47, 50].

2.2.2 Fault Trees

Fault Trees are acyclic graphs with internal nodes that are logic gates (e.g., AND,

OR, k-of-n) and external nodes (leaves or basic events) that represent system compo-

nents. The edges represent the flow of failure information in terms of Boolean entities

(TRUE and FALSE or 0s and 1s). Typically, if a component has failed, a TRUE is

transmitted; otherwise, a FALSE is transmitted. The edge connections determine the

operational dependency of the system on the components. At any instant of time,

the logic value at the root node determines whether or not the system is operational.

If shared (repeated) nodes (nodes that share a common input) are not allowed, then

the acyclic structure is a rooted tree. Fault trees without shared nodes are equivalent

to series-parallel RBDs [49], but when shared nodes (or repeated events) are allowed,

fault trees are more powerful [51].Fault trees have been extensively used in reliabil-

ity and availability modeling [52, 53, 54, 55], safety modeling [56], and modeling of

software fault tolerance[57].

Evolution of FTs are Dynamic Fault Trees [58] which are based on the definition

of new gates (Priority-AND, Functional Dependency and Warm Spare) that induce

temporal as well as statistical dependencies. The quantitative analysis of the DFT
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consists in exploding minimal modules of dynamic gates into their state-space rep-

resentation and computing the related occurrence probability by means of a CTMC

(Continuous Time Markov Chains) [44].

2.3 State Space Based Modeling Formalisms

State-space methods are much more comprehensive than combinatorial methods and

rely on the enumeration of the whole set of possible states of the system and on the

specification of the possible transitions among them. The main drawback of these

techniques is the well known state explosion problem, due to the circumstance that

the dimension of the state space grows exponentially with the number of components.

2.3.1 Markov models

Markov models consider the system behavior being modeled as a Markov process, on

a discrete state space. Markov Chains, Discrete Time Markov Chains are example of

formalisms bases on Markov models.

Markov models have been extensively used for dependability analysis of hardware

systems [48, 49, 47] real-time system performance in the presence of failures [59, 60],

combined analysis of hardware-software reliability [61, 62], system performance and

performability analysis [47, 63].

For complex systems with large numbers of components, the number of system states

can grow prohibitively large. This is called the largeness problem for Markov models.

A major objection to the use of Markov models in the evaluation of performance and

dependability behavior of systems is the assumption that the sojourn (holding) time
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in any state is exponentially distributed. The exponential distribution has many

useful properties that lead to analytic tractability, but it does not always realistically

represent the observed distribution functions.

2.3.2 Stochastic Petri nets

Stochastic Petri nets (SPNs) [64] and extensions have been developed as extensions

to Petri nets (originally introduced by C. A. Petri in 1962) with timed transitions for

which the firing time distributions are assumed to be exponential. SPNs have been

extensively used in the area of dependability evaluation [48] due to the small size of

their descriptions and their visual/conceptual clarity.

The firing of transitions is assumed to take an exponentially distributed amount of

time. Given the initial marking of an SPN, all the markings as well as the transition

rates can be derived, under the condition that the number of tokens in every

In the last two decades many extensions to the basic SPN model have been proposed

to enhance its modeling power and flexibility of use. The most popular model of

this type is called generalized stochastic Petri nets (GSPNs) [65]. More flexible firing

rules have also been proposed, most notably the introduction of gates in stochastic

activity networks (SANs)[66].

2.3.3 Stochastic Activity Networks

Stochastic activity networks [66] have been used since the mid-1980s for perfor-

mance, dependability, and performability evaluation. This formalism is more power-

ful and flexible than most other stochastic extensions of Petri nets such as SPNs and
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GSPNs. SANs permit the representation of concurrency, timeliness, fault-tolerance

and degradable performance in a single model [66].

Informally SANs are generalized Petri nets and provide a graphical representation

consisting of places, timed and instantaneous activities, input and output gates.

Timed activities represent the activities of the modeled system whose durations im-

pact the system’s ability to perform. The amount of time to complete a timed activity

can follow a specific distribution, such as Exponential, and Weibull. Instantaneous

activities, on the other hand, represent system activities that, relative to the per-

formance variable in question, are completed in a negligible amount of time. Cases

associated with activities permit the realization of two types of spatial uncertainty.

Uncertainty about which activities are enabled in a certain state is realized by cases

associated with intervening instantaneous activities, represented by circles on the

right side of an activity.

Uncertainty about the next state assumed upon completion of a timed activity is

realized by cases associated with that activity. Gates are introduced to permit greater

flexibility in defining enabling and completion rules.

SANs provides two different types of gates: input and output gates. input gates, each

of which has a finite set of inputs and one output. Associated with each input gate are

an n-ary computable predicate and an n-ary computable partial function over the set

of natural numbers which are called the enabling predicate and the input function,

respectively. The input function is defined for all values for which the enabling

predicate is true. Output gates have finite set of outputs and one input. Associated
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with each output gate is an n-ary computable function on the set of natural numbers,

called the output function. The use of gates permits a greater flexibility in specifying

enabling conditions and completion rules than simple SPN, by embedding C++ code

into the model.

SANs allow to define custom metrics by means of reward variables. The evaluation

of the reward variables involves specifying a performance (reward) variable and a

reward structure which associates reward rates with state occupancies and reward

impulses with state transitions, namely, a ”reward” is accumulated into a reward

structure every time a set of events of interests take place during the simulation of

the model.

SANs have been used as a modeling formalism in three modeling tools (METASAN

[67], UltraSAN [68], and Mobius [20]), and have been used to evaluate a wide range

of systems.

Multi-formalism approaches

As the system under study grows in complexity and heterogeneity a single mod-

eling formalism reveals almost always inadequate. Current research in the area of

dependability modeling tends to exploit the best from the different approaches by

combining them in some hierarchical way. Multi-formalism [69, 70, 71] allows to

adapt the modeling formalism to the nature and level of abstraction of the subsys-

tem to be modeled and provide the modeler with a single cohesive view of the entire

system. Modularity and compositionality ease modeling and also allows for the reuse

of components. Model complexity, is tackled by a heterogeneous combination of
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multi-formalism modeling techniques and related multi-solution analysis. Resorting

to a hierarchical approach brings benefits under several aspects, among which: i)

facilitating the construction of models; ii) speeding up their solution; iii)favoring

scalability; iv) mastering complexity by handling smaller models that hide at one

hierarchical level some modeling details of the lower one.

Examples of applications of multi-formalisms approaches comes from safety analysis.

Safety problems usually requires to account for some critical continuous variables

that exceed acceptable limits. Thus, even if the property called safety is considered

to be an attribute of the dependability, it often requires autonomous and specific

modeling techniques. Two main modeling approaches have been recently proposed

to deal with hybrid systems, i.e. systems modeled with a multi-formalism approach:

Hybrid Automata and Fluid Petri Nets. Fluid Petri Nets (FPN) [72] are an extension

of standard Petri Nets, where, beyond the places that contain a discrete number of

tokens, a new kind of place is added that contains a continuous quantity(fluid). The

fluid flows along fluid arcs according to an instantaneous flow rate. The discrete

part of the FPN regulates the flow of the fluid through the continuous part, and the

enabling conditions of a transition depend only on the discrete part. Hence, this

extension is suitable to be considered for modeling and analyzing hybrid systems.

2.4 Approaches for Assessing WSNs

Figure 2.1 presents a per year trend growth analysis concerning the number of pub-

lished works on several topics related to WSN. In particular, a number of papers,
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Figure 2.1: Per year trend growth analysis concerning the number of published works on
several WSN topics.

published on various leading IEEE and ACM journals and conference proceedings1

over the last nine years have been considered. The recent scientific production on

WSNs dependability reliability, assessment and modeling is growing due to the pro-

liferation of critical application scenarios where WSNs are starting to be adopted. In

the last three years, the attention of the community is focusing more and more on
1A Set of considered venues and journals are: IEEE International Conference on Distributed Comput-

ing Systems; IEEE International Conference on Sensor Technologies and Applications; The Sensors Journal;
International Symposium on Mobile Ad Hoc Networking & Computing; IEEE Transaction on Reliability;
IEEE Transaction on Parallel and Distributed Computing; IEEE Transaction on Wireless Communications;
IEEE Transaction on Computers; IEEE Micro; International Journal of Sensor Networks; IEEE International
conference on Dependable Systems and Networks; International Symposium on Reliable and Distributed Sys-
tems; Journal of parallel and distributed systems; International Conference on Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed Computing; World of Wireless, Mobile and Multimedia
Networks, 2008; Journal Wireless Networks; International Conference on Mobile Computing and Networking;
European Conference on Wireless Sensor Networks; ACM Transaction on Sensor Networks; ACM Confer-
ence on Embedded Networked Sensor Systems Networks; IEEE computer communications; IEEE Journal in
Selected Areas in Communications. International Conference on Parallel Processing.
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i) modeling, showing a 200% of increment in the number of published work (2006 -

2009) , ii) on reliability studies with an increment of the 100% from 2006, of which

73% of the publications are related to evaluation of real-world setups of WSNs, giving

evidence on the dependability threats that can be experienced in practice, and iii)

on fault tolerant solutions (200% of increment from 2006), which are giving more

and more attention to security (about the 80% of the analyzed work of this set). It

is interesting also to note that in the last three years, well established and mature

topics, such as researches on WSN routing shown a decreasing trend in the number

of published work, arriving to be comparable with minor topics such as modeling and

reliability assessment.

Current adopted approaches to evaluate WSN dependability attributes can be cate-

gorized according to two classes: experimental, and model based approaches.

2.4.1 Experimental approaches

Experimental test-beds are used in several works such as [73, 74, 75, 76, 77, 78]. One

of the most relevant studies dealing with an experimental test-bed is the Great Duck

Island project [11]. This project focuses on a in-depth study of applying WSN to real-

world habitat monitoring on Great Duck Island (Maine, USA). The paper provides

important analysis regarding the experimental evaluation of node failure cumulative

probability, demonstrating that, in harsh environment, the 50% of the nodes becomes

unavailable within only four days out of three months of the deployment.

Experimental setup of WSNs is thus useful to gain insight in the actual failure be-

havior of WSNs, and to come up with proper failure mode assumptions. However,
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results are difficult to reproduce and are too specific for the given application scenario.

Hence, they can hardly been used to validate design choices through dependability

assessment at development time.

For this reason, recent research studies on WSNs adopt either analytical or simulative

approaches to validate proposed solutions and anticipate deployment choices at design

and development time.

In [77] a prototype WSN composed of 27 Crossbow Mica2 motes [23] is deployed

in a real coal mine. System errors, detection latency, packet loss rate, and network

bandwidth were measured. Based on the collected data, authors conducted a large-

scale simulation to evaluate the system scalability and reliability.

In [78] authors claim that i) despite software algorithms can be tested through sim-

ulations and syntax checking, it is difficult to predict or test for problems that may

occur once the WSN has been deployed, due to the high complexity of the WSN dy-

namics, and ii) the requirement for testing is not limited at the design phase. Hence,

they propose a framework for in-situ testing and validation which instruments the fi-

nal applications, using the environmental data and stimuli as real input to the testing

and validation process.

2.4.2 Model Based Approaches

The work in [4] faces the design and implementation of a complete running WSN

for surveillance missions, called VigilNet. They show that common reliability as-

sumptions in much current research on WSN, do not hold well in practice, leading

to wrong evaluation of critical parameters, e.g., network lifetime. For instance, they
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found that the packet loss in the MICA2 [23] platform can be as large as 20%.

A number of analytical approaches are presented in [79, 80, 81, 82, 83, 84, 85, 86],

which allow to formally express the main characteristics of WSNs in order to assess

their properties. Energetic consumption modeling and lifetime analysis of a WSN

are presented in [79, 80, 87, 88]. In [79] authors provide an analytical model used to

forecast the power consumption and thus the lifetime of the network, only related to

the communication activity. In [80] a network state model is presented to forecast the

network residual energy. In [87] an on-line battery model for estimating the remaining

energy of a node battery in WSNs is presented. In [88] author studied the effect of

using mobile sinks for data gathering in wireless sensors networks, to mitigate energy

holes issues in proximity of fixed sink nodes. All the work in [80, 87, 88] consider

the network divided in several zones in order to detect those critical due to energetic

aspects.

In each of these work, the lifetime is concerned as dependent both on power con-

sumption and on how many packets have been processed. In [82] authors propose

a generic definition of sensor network lifetime for use in analytic evaluations as well

as in simulation models. They claim that available definitions of network lifetime

are unable to reflects all the application demands and environmental influences. The

provided definition of lifetime is composed in a modular way, enabling the incorpora-

tion of different application requirements, such as i) number of alive nodes, ii) time

latency in the delivery process, ii) delivery ratio, iii) connectivity, iv) coverage, and

v) availability. Finally they define the WSN lifetime as the time in which application
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requirements on i)-v) are fulfilled.

The work in [81] focused on reliability and delay measures for a WSN. In this work,

a probabilistic graph is adopted to model the network behavior, associating an op-

erational probability to each node, achieved by means of field data analysis on real

sensors. Authors assume that failures are caused by component wear out, power fail-

ures and in some cases by natural catastrophes, and they are randomly distributed

in the network. They showed that evaluating the reliability of an arbitrary WSN

is a #NP-hard problem for arbitrary networks. Then they present two algorithms

in order to compute the reliability, and the expected message delay for arbitrary

networks. Finally authors provide numerical results on the proposed algorithms.

In [86] authors investigate node aging process phenomena. They examine the general

node aging problem by unfolding the energy consumption rate and the failure rate.

To this aim, authors provides for each node a survivor function in terms of a Weibull

distribution. Then, the energy consumption rate in a data gathering tree is pre-

sented with and without data aggregation strategies. It is shown that the node aging

process has a significant impact on the connectivity as the hop distance increases.

In particular the simulation process evidences that nodes at first hop without data

aggregation consume their energy much faster than the case with aggregation. Thus

the consumption is proven to be dependent on the number of children nodes. The

work ends evidencing that data aggregation scheme enhances the node lifetime and

thus the network reliability.

The work in [84, 85] focus on sensor network where nodes send their data to a sink
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node by using multi-hop transmissions. In in [84] authors develop an analytical to

investigate the trade-offs existing between energy saving and system performance, as

the sensors dynamics in sleep/active mode vary. The proposed model allowed au-

thors to derive several performance metrics, among which the distribution of the data

delivery delay. The work in [84] is one of the first work adopting analytical model

specifically representing the sensor dynamics in sleep/active mode, while taking into

account channel contention and routing issues. However, they assume that the WSN

can be model using Markovian techniques, which may result in overestimated met-

rics. Finally, they do not take into account how the energy consumption and failure

behavior impact on evaluated performance metrics. In [85] the problem of multi-hop

lifetime aware routing is addressed. Authors provide a linear programming model to

compute the minimum cost arborescence for reaching the sink node, preserving the

maximum lifetime of nodes.

All mentioned works show that analytical approaches are suitable to assess non-

functional properties of WSNs, such as lifetime, coverage, reliability, and so on. How-

ever, it has been proven that the analytical evaluation of non-functional properties

of an arbitrary WSN is a NP-hard problem [81]. Similar observation is provided in

[89] in which authors show that maximizing WSN lifetime, while maintaining cov-

erage and connectivity simultaneously, without any sensing or communication range

restrictions. is a NP-hard problem.This is partially due to the potentially unlim-

ited number of deployment choices that can affect WSN applications (e.g., adopted

hardware, routing algorithm, network topology, etc.). In addition, the potential of
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analytical models is also affected by the high level of abstraction that does not al-

low to consider detailed deployment aspects, leading to approximate and unrealistic

results.

Fault/Failure Models

Experimental studies have contributed to the definition of failure mode assumptions

for WSNs. They provide valuable understanding on how WSNs fail in practice. Fol-

lowing this wave, [90] introduces a taxonomy for WSN faults. A fault is concerned

with respect to inconsistent measurements provided by a sensor, such as measure-

ments offset bias, frozen reading, death of a sensor. The work in [91] classifies hard-

ware components of a sensor node into two groups: i) computation engine, storage

subsystem, power supply infrastructure; ii) sensor and actuators. The latter is as-

sumed to be failure prone due to calibration error, random noise error, and complete

malfunctioning. [92] evaluates energy/reliability trade-off of multipath schemes, as-

suming two widely different failure model: independent and geographically correlated

(patterned failures).

Simulative approaches aims at evaluating WSN fault/failure models are provided

in [93, 94, 91, 95]. In [93] authors evaluate the reliability of the communication

infrastructure of a WSN. To the best of our knowledge, this is one of the few work that

does not assume WSN failures randomly or uniformly distributed on the network area.

The paper reports also consideration of common cause failures [96] in the provided
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reliability analysis. A sensor node can fail s-independently2 due to component wear-

out, power failure or depletion, and natural catastrophes according to an exponential

distribution with a rate of λ = 1E − 7 failure per second. The network can fail due

to collision, interference and jamming. However, no assumption on the fault nature

are provided.

In [95] author study the connectivity properties of large-scale wireless sensor networks

and discuss their implicit effect on routing algorithms and network reliability. They

assume a network model of n sensors which are randomly distributed over a field. The

sensors may be unreliable with a probability distribution, which possibly depends on

n and the location of sensors. Two active sensor nodes are connected with probability

p e (n) if they are within communication range of each other. Author prove a general

result relating unreliable sensor networks to reliable networks. These results are

shown through graph theoretical derivations and are also verified through simulations.

The work in [92] evaluates energy/resilience tradeoff of multipath schemes, assuming

two widely different failure model: independent and geographically correlated. Au-

thors show that multipath routing (e.g. random walk routing) can preserve WSN

lifetime by means of its path-resiliency. They finally provide useful insights on the

relationship between the probability of node isolation from the sink, and the path

length. In [97] simulations are used to evaluate the impact of failures and routing pro-

tocols on achievable sensing coverage. They start from the observation that different

routing protocols lead to different values of achievable sensing coverage when some
2s node can fail due to a common cause.
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nodes are no longer available. Finally authors propose coverage-preserving routing

protocols for randomly distributed WSNs that is shown by simulation to be able to

substantially improve the performance of network sensing coverage, if compared with

the original ones.

In [94] a framework for modeling reliability of data transport protocols in WSN is

presented. Here, faults are categorized in i) communication failures ii) Node failures.

These are further subdivided in accidental damage, sensing devices, energy depletion

and transient failures.

Fault model used in fault detection strategies are presented in [91]. The work in

[91] defines a network and a fault model. Hardware components of sensor motes

are here divided into two groups: i) computation engine, storage subsystem, power

supply infrastructure; ii) sensor and actuators: these are assumed to be the only

components prone to failure. The assumed faults are only calibration error, random

noise error, and complete malfunctioning. Nodes are assumed to be still capable of

receiving, sending, and processing when they are faulty.

Work that deal both with WSN dependability evaluation and network dynamics are

[98, 99, 100]. In [98] authors give evidence of the network dynamics awareness as

a fundamental concept to evaluate/develop faut tolerant WSN solutions. In [99]

is evidenced the dependency of WSN dependability on the base station position.

In [100] authors make their point on the paramount importance that environment,

sensing hardware and network related aspects have in a pragmatic evaluation of WSN

lifetime, outlining the basic structure for a WSN evaluation framework.
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2.4.3 Discussion

All the analyzed work presented interesting methods and/or techniques which are

agnostic for the target application being used. This is a limiting factor since that

nodes’ lifetime is strictly dependent upon the activities performed by the installed

software applications (e.g., different aggregation schemes [101], or different compu-

tational loads ). In addition, most of the existing failure models, stem from strong

assumptions on network topology (e.g., random topology, which is most often unre-

alistic) and on power consumption figures (e.g., infinite energy or ideal battery cells).

Finally each analyzed work defined its own fault model, making it difficult to gener-

alize the results. The lack of a realistic fault model is also due to the fact that the

majority of results (over the 80% of the papers considered in our study) are drawn by

means of rather abstract simulations. Finally, None of the presented works take into

the account the nature and the objective of the considered WSN, i.e. the envisioned

mission.

2.5 Available WSN assessment Frameworks

In this section we analyze the main characteristics of the most adopted WSNs simu-

lation frameworks. Detailed aspects of frameworks are out of the scope of this thesis,

and can be found in the referenced papers. Several simulation engines for WSNs have

been recently proposed. A subset of the most referenced/used simulation/emulation
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Table 2.1: Characteristics of the analyzed simulators
Characteristics

Simulator Routing Propagation Failures Energy Workload Topology

YES Partial YES
SHAWN (programmed in YES (packet loss NO (programmed in YES

C++) & corruptions) C++)
YES Partial YES YES

ALGOSENSIM (described in YES (packet (simple YES (random &
XML) loss) model uniform)
YES Partial YES

NS-2 (choice of 4 YES (packet YES (programmed in YES
algorithms) loss) TCL)

YES Partial YES
GLOMOSIM (choice of several YES (packet NO (programmed as YES

algorithms) loss) modules)
YES Partial YES

J-SIM (choice of several YES (packet YES (programmed in YES
algorithms) loss) TCL)

YES Partial YES
TOSSIM (programmed in YES (packet loss YES (programmed in YES

nesc) & corruptions) nesc)
YES Partial YES

EMSTAR (programmed in YES (packet NO (programmed in YES
nesc) loss) nesc)
YES Partial YES

ATEMU (programmed in YES (packet loss NO (programmed in YES
nesc) & corruptions) nesc)
YES YES

AVRORA (programmed in NO NO YES (programmed in YES
assembly) assembly)

environment of WSNs are reported in Table 2.1 which relates the considered as-

sessment frameworks to the provided capabilities in terms of the possibility to re-

produce/take into account i) routing protocol behavior, ii) medium propagation, ii)

failures, iv) energy consumption, v) workload and vi) customizable topology. Let us

analyze the table by columns.

Examples are TOSSIM [16], Avrora [102], Ns-2 [15], J-SIM [103], Glomosim [104] and

EMstaremstar. TOSSIM [16] is an event-based simulation environment for WSNs

based on the TinyOS operating system [105]. The user can simulate his applications

written with the NesC programming language [106]. The simulator permits to ob-

serve the behavior of nodes, even in terms of energy consumption, under different



Chapter 2. WSN Assessment: Models, Tools and Related Work 47

conditions in terms of topology and wireless propagation models. TOSSIM simulates

the execution of nesC code on TinyOS/MICA hardware, aims to study the behav-

ior of TinyOS and its applications rather than analyzing the performance of new

protocols.

Avrora is a WSN emulator which helps developing sensor network with clock-cycle

accurate execution of microcontroller programs [102]. Avrora attempts to find a

middle ground between TOSSIM and microcontroller emulator, such as ATEMU

[107]. Avrora is implemented in Java, unlike the other two emulators, which are

written in C. Similar to many of the object-oriented simulators, Avrora implements

each node as its own thread. However, it still emulates actual Mica code. Avrora

runs code in an instruction-by-instruction fashion. However, the simulator attempts

to achieve better scalability and speed than TOSSIM by avoiding synchronization of

all nodes after every instruction.

Ns-2 [15] is a discrete event networks simulator that began in 1989 as a variant of

an even earlier network simulator. It is written in a combination of C++ and OTcl,

an object oriented scripting language. Support for wireless networks was added in

1997; it is designed to simulate wireless LAN protocols, though later expanded to

mobile ad-hoc networks. A project at the Naval Research Laboratory produced an

extension to NS-2 for sensor networks [108].

This extension adds a channel module for modeling physical phenomena such as

sensor nodes and the environment. Although NS-2 has been used to evaluate wireless

sensor networks, the accuracy of results are questionable since the MAC protocols,
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packet formats, and energy models are very different from those of typical WSN

platforms.

J-Sim (formerly known as JavaSim) is a general purpose Java-based simulation en-

vironment [103] and is based on the ns-2 network simulator. It permits to describe

the WSN in terms of network components and TCL scripts and considers correlated

aspects, such as energy depletion and network topology. It has been built upon

the notion of the autonomous component programming model. The main benefit of

J-Sim is its considerable list of supported protocols, including a WSNs simulation

framework with a very detailed model of sensor networks, and a implementation of

localization, routing and data diffusion algorithms. J-Sim provides a GUI library for

animation, tracing and debugging support and a java scripting interface Jacl.

GloMoSim [104] is a simulation environment for wireless and wired network sys-

tems. It employs the parallel discrete-event simulation capability provided by Parsec

(PARSEC: Parallel Simulation Environment for Complex System) which is a C-based

simulation language. GloMoSim source and binary code can be downloaded only by

academic institutions for research purposed. Commercial users must use sQualNet

(sQualnet: A Scalable Simulation Framework for Sensor Networks), which is the

commercial version of GloMoSim. While effective for simulating IP networks, it is

not capable of simulating any other type of network. This effectively ensures that

WSNs cannot be simulated accurately.

EmStar [109] is a software framework to develop WSN applications on 32-bit plat-

forms as Microservers, running Linux, as well as for conventional 8-bit platforms
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running the TinyOS operating system. The EmStar environment contains a Linux

micro kernel extension, libraries, services and tools. The most important tools are:

(1) EmSim: A simulator of the microservers environment where every simulated node

runs an Em-Star stack, and is connected through a simulated radio channel model.

EmSim is not a discrete event but a time-driven simulator, which means that there

is no virtual clock. (2) EmCee: An interface to real low-power radios, instead of

a simulated radio model, obtaining radio emulation. Additionally, the UCLA staff

has developed (3) EmTOS: An extension of EmStar that enables nesC/TinyOS ap-

plications to run in an EmStar framework. OMNeT++ [110] is a public source

component-based discrete event network simulator. The simulator mainly supports

standard wired and wireless IP communication networks, but some extensions for

WSN exist. Like NS-2, OMNeT++ is popular, extensible and actively maintained

by its user community in the Academia who has also produced extensions for WSN

simulation. OMNeT++ uses C++ language for simulation models. Simulation mod-

els (modules) are assembled with high-level language NED into larger components

to represent greater systems. OMNeT++ is capable of running most TinyOS simu-

lations by NesCT application that converts TinyOS source to simulator compatible

C++ code [111].

SENS (Sensor, Environment and Network Simulator) [112], is a platform-independent

and has a modular, layered architecture which is capable of modeling the application,

networking and physical environment. The ability to model physical environments

by defining them as a grid of interchangeable tiles is a core strength of SENS. Three
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modeling implementations with different signal propagation characteristics including

concrete, grass and walls are currently available. However, the existing power model

needs an improvement to include a battery model. No details of routing protocols

behavior are available.

Shawn [113] is open source simulator designed to to support large-scale network

simulation. Shanw is a algorithm oriented simulator [5][6] and it provides a support

to the user for writing algorithms to simulate in C++ language. In addition, the

simulator allows to decide simulation characteristics such as topological model (which

can be selected among a set of already available models) and medium propagation

model which can be used to reproduce delivery delay and packet loss.

Similarly to Shawn, Algosensim is a algorithm oriented simulator [114]. Algosensim

provides powerful means for the development of routing and positioning algorithms

for WSN. In addition, Algosensim includes the simulation of sensor nodes hardware

aspects, such as battery discharge process. Mobile scenarios are also envisioned, de-

spite not implemented yet. Packet corruption and loss is simulated and the simulator

allow to select nodes to be considered as failed, but it does not allow to reproduce

the failure behavior by itself.

2.5.1 Discussion

The failure behavior is faced partially, i.e., only with respect to network failures,

such as packet loss and packet corruption (corruptions are modeled only by SHAWN,

TOSSIM, and ATEMU; AVRORA does not model network failures). As for node

failures, only node switch offs (due to battery exhaustion) are simulated, and only
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Figure 2.2: Classification of analyzed simulator: the darker the color, the more
extensible the simulator

by a subset of simulators, such as, ALGOSENSIM , NS-2, J-SIM, and AVRORA.

Node failures due to the sensing hardware or to the software running on nodes are

not considered at all.

The energy consumption is an important aspect affecting (and affected by) WSN

applications, network dynamics and routing algorithms. However, several frameworks

do not model this aspect, and other frameworks simplify it. For instance, TOSSIM

estimates the energy consumed by nodes, by means of an energy profile of the software

running on the emulated nodes, but it does not simulate battery exhaustion (WSN

nodes run without interruption during the simulation).

A further qualitative classification of a subset of the considered simulator is pro-

vided in Figure 2.2, considering scalability, extendibility and level of abstraction

provided by the considered simulator/emulator environment.
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If compared to analytical approaches, simulative approaches are closer to real WSN

settings, with greater attention to low-level aspects. They allow to reproduce the

expected behavior of every single WSN node on the basis of the real algorithms that

are planned to be run on nodes. Despite this, WSN simulators still miss to consider

several real-world aspects that may affect the results, such as detailed failure models

and their link to network dynamics (e.g., how a failure of a node in the network

affects the behavior of the remaining nodes). In addition, it is not always possible to

express and hence evaluate non-functional properties trough simulative approaches.

In addition, such evaluation would require several simulation runs in order to achieve

results with adequate confidence. This in turn would increase the time needed for the

simulation by order of magnitudes, given the low-level of detail of these approaches.

As another issue, the analyzed frameworks present a not negligible difficulty of man-

aging the inter-dependence between all aspects impacting on WSN behavior (routing,

energy, failures, etc.), which is driven by state changes (e.g. topology update due

to failures/recoveries). The deriving complexity has to be explicitly managed by

users. This brings to another limitation: the difficulty of use. Users have to program

the workload and the routing algorithm. In some cases, the routing algorithm can

be chosen from a library, but the inclusion of new algorithms (e.g., facing change

management) in the library is not a simple task.



Chapter 3

Resiliency of WSNs

Available definitions of network resiliency encompassing only the connectivity to the sink or
between nodes, are not enough to characterize the data-driven nature of WSNs. The service
delivered by the WSN does not encompass only the connection, but also the computation,
i.e., even when sensor nodes are potentially connected ( a path exists between nodes and sink
node), data losses can still occur.
This chapter introduces the concept of WSN resiliency as compound non-functional property,
composed of Connection Resiliency and Data Delivery Resiliency, which not interrelated.
Data Delivery Resiliency is defined in this thesis as the persistence of the delivery efficiency of
node measurements/computation to the sink, against manifesting changes. Then, it presents
the holistic approach proposed in this thesis for assessing the resiliency of WSNs.

3.1 System Assumptions

The system under study is a wireless sensor network made out of N nodes. Each node

is composed of a processor board, a sensor board equipped with one or more sensors

(e.g., humidity sensor, thermistor, photo resistance, etc.), a radio board enabling the

wireless communication between nodes, and a power supply unit, including batteries.

We assume that initially all nodes have the same characteristics and capabilities.

The network is stationary, i.e., nodes do not move during the WSN lifetime, which

is typical for environmental and structural monitoring applications. The network

includes a higher-level node (usually a laptop or a set-top-box), called “sink” node,

which is responsible of gathering data and of controlling WSN nodes. Sink node
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failures are not considered in this thesis. This is reasonable due to the more reliable

hardware/software equipment a sink is typically made of, if compared to a WSN

node.

The mission of the considered WSN is to gather data from nodes (e.g. envi-

ronmental measurements) and to forward it to the sink node. Typical application

requirements for this types of WSNs are i) to deliver of a given amount (or fraction)

of measurements to the sink node, and ii) to keep a given connectivity degree of the

network, avoiding that significant portions (or sub-networks) of the WSN are com-

pletely isolated from the sink. Both the requirements have to be met within a given

time horizon, i.e., the considered mission time.

3.2 WSN Resiliency

Resiliency has been recently defined as the persistence of dependability when facing

”changes”[12]. Changes are related to mutations in the topology, workload, link

quality etc. due to failure/recovery of nodes. For instance, a node failure in a WSN

has the effect of modifying the system topology by the removal of a communication

node and its corresponding links. Since a real WSN configuration is not generally a

fully connected graph, successive failures may result in a disconnection of the system,

namely a disconnection failure, and therefore prevent a set of nodes from reaching

the sink (i.e. isolated nodes). Hence, the concept of connection resiliency is related to

the WSN topology, i.e. the degree of path redundancy in the network. However, the

service delivered by the WSN does not encompass only the connection, but also the
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computation, i.e., even when sensor nodes are potentially connected (a path exists

between nodes and sink node), data losses can still occur.

To overcome this limit, this thesis defines the concept of data delivery resiliency

and qualifies the concept of WSN resiliency as a non functional properties composed

by both connection resiliency and data delivery resiliency, which are not interrelated.

The concept of data delivery resiliency relates to i) the computational load on

nodes which may causes packet losses due to buffer overrun, ii) application require-

ments, e.g. at least a given amount of produced measurements must be delivered to

the sink node iii) routing and MAC protocols impacting on the data delivery features

and packet error rate and iv) radio interferences and packet loss/corruption phenom-

ena on the propagation medium. The variation in the amount of useful data received

by the sink due to disconnection failures that can be tolerated by the WSN depends

on the requirements of the application.

Hence, assessing the data delivery resiliency as well as the connection resiliency is

a crucial if not essential task in designing dependable WSNs, since it could help to i)

anticipate critical choices e.g., concerning node placement, running software, routing

and MAC protocols, ii) mitigate risks, e.g., by forecasting the time when the WSN

will not be able to perform with a suitable level of resiliency, and iii) prevent money

loss, e.g., providing a criteria to plan and schedule maintenance actions effectively.

The idea of complementing connection resiliency with data delivery resiliency

stems from the observation that connection resiliency can be misleading for char-

acterizing the overall resiliency level of a WSNs. Let us discuss this claim with an



Chapter 3. Resiliency of WSNs 56

example. Let’s consider a WSN deployed so that the sink node is connected only to

a single node of the WSN, and all the remaining nodes rely on that node for reach-

ing the sink. The network is connected, i.e. every node of the WSN can reach the

sink. However, the only node connected to the sink may experience higher packet

loss and failure rate than other nodes, since the more stressful forwarding activity

it have to face. Hence, the WSN, despite presenting a high connection resiliency (a

high number of nodes fails in the network but not the only node directly connected

to the sink), manifests low level in data delivery resiliency, since measurements pro-

duced by all nodes are funneled to the sink through a single node that, due to the

induced overhead, is not able to accept all incoming packets. This way, not all the

produced data is delivered to the sink. Depending on application requirements this

may lead to a WSN failure or not. For instance, structural health monitoring and

security monitoring applications (See Chapter 1) require all data from every node to

be delivered to the sink node. For structural health monitoring, typically acceleration

samples down to 500μG have to be acquired at a frequency higher than 1KHz and

synchronously at all nodes. Failing in delivering synchronization commands, or data

then an imperfect picture of the monitored structured will be achieved, making anal-

ysis in the best inaccurate. Nevertheless, optimizing the WSN topology is not the

panacea to the mentioned scenario, and the evaluation of only connection resiliency

may anyway produce misleading results.

As a further example, figure 3.1 anticipates some of the results of Chapter 7,

and in particular it sketches the results we obtain from two hypothetical WSNs,
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Figure 3.1: WSN Resiliency (failure domain) (a) connection resiliency, (b) data de-
livery resiliency

A and B, both of them connected and with same topology (the sink is reachable

through multiple nodes). In this example, the only difference between the considered

WSN regards the routing algorithm being adopted. A adopts a random walk routing

algorithm (which randomly selects one of the neighboring nodes to forward a packet

to the sink), and B uses a reliable multi-hop routing algorithm (which builds a routing

tree and uses acknowledgments and retransmissions to reduce data losses).

Looking at figure 3.1.(a), it seems that random routing has a greater capacity

to withstand failures, keeping a higher level of connection resiliency, if compared to

reliable multi-hop routing (this result is confirmed under several different network

conditions, in Chapter 7). Random routing is a very light weight protocol, which

better preserves the life of WSN nodes. Hence, at a first sight, a developer would be

induced to choose random routing for a given WSN. However, figure 3.1.(b) shows

that data delivery resiliency of WSN B outperforms WSN A, due to the higher

capacity of reliable multi-hop at delivering a higher amount of useful data to the
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Figure 3.2: Scheme for the definition of the resiliency of WSNs

sink, even in the presence of failures. Hence, depending on application requirements,

data delivery resiliency add one further element to discriminate between different

solutions. Also, results are affected by other factors, such as the workload running

on nodes and the failure rate. This variable factors complicate the evaluation task,

and motivate the need for an holistic approach for resiliency assessment.

3.2.1 Definitions

Figure 3.2 shows the taxonomy of WSN resiliency proposed in this thesis. We con-

ceive the Resiliency of a WSN as a compound property composed of connection

resiliency and data delivery resiliency. The former is the persistence of the amount

of data delivered to the sink , the latter is the persistence of network connectivity,

both in spite of WSN changes. Data delivery resiliency and connection resiliency can

be estimated in the time domain, i.e. as a function of time, or against the number

of failures manifested in the WSN. Estimating the resiliency in the time domain is

useful to forecast non functional properties (e.g. provided level of dependability) in

order to drive design choices, at design time, or to schedule maintenance actions,

during the operational phase. On the other side, the evaluation of the resiliency
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against manifested failures is of paramount importance to assess the behavior of the

WSN when dealing with fault tolerant routing algorithms, clustering strategies, and

redundant nodes.

The concept of connection resiliency for computer networks and ad-hoc networks

has already been defined in the literature. In particular, we extend the definition

provided in [13] and define the probability of disconnection P (n) as follows:

P (n) = Q(n)
n−1∏
j=1

(1 − Q(j)) (3.1)

where Q(j) is the probability that after the nth failure, a set of K nodes is isolated

from the sink, given that for n − 1 failures, they are connected. In this work we

assume K = 1 for the sake of simplicity. This does not impact on the quality of

provided results neither on the followed approach. Consistently with data delivery

resiliency, from Equation 3.1, we define the connection resiliency in the time domain

(Equation 3.2) the longest time interval in which the WSN is able to survive while

preserving a disconnection probability lower or equal to a given threshold. ρ, namely:

∫ t∗∧t∗∈[0,T ]

0
p(t) dt ≤ γ (3.2)

where [0, T ] is the observation interval, t∗ the instant of time : ∀t > t∗ Equation

3.2 is not verified. p(t) is the probability density function of WSN failures in the

observation interval.

Similarly, we define the Connection Resiliency with respect to manifested failures, as

the greatest number of failures NF that the WSN can accommodate while preserving
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a disconnection probability lower or equal than a threshold. In other terms:

NF∑
i=1

P (i) ≤ γ (3.3)

In addition to connection resiliency, we define the concept of data delivery re-

siliency for WSNs. To this aim, we start from the definition of probability of data

delivery failure to the sink as:

D(k, n) = R(k, n)
n−1∏
j=1

(1 − R(k, j)) (3.4)

where R(k, n) is the probability that after the nth failure, a given amount of data (k)

computed by nodes is not received by the sink, given that for n − 1 failures, it was

delivered. More in detail, R(k, n) is defined as:

R(k, n) =
∫ T (n)

T (n−1)
r(k, t|corruptions)dt +

∫ T (n)

T (n−1)
r(k, t|duplications )dt (3.5)

Where i) the first term takes into account the delivery probability of a given amount

of data when no corruption caused the discard of the packet (e.g. the MAC layer was

able to correct a bit error or no bit inversion manifested during the transmission),

ii) the second term takes into account the delivery of non duplicated packets, hence

relating to routing protocol efficiency. Equation 3.5 relates to the manifested failures

by means of T (n− 1) and T (n). More specifically, when computing 3.5 with respect

to the number of manifested failures, T (n − 1) is the time when the n − 1th failure

manifested and ΔT (n) is the time interval between the n − 1th and the n − th

failure. When computing 3.5 with respect to time, T (n) is the instant of time of

the n − th evaluation of the Data Delivery resiliency over an observation interval of

T (n) − T (n − 1).
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From Equation 3.5 we define the data delivery resiliency in the time domain as

the longest time interval [0, t∗]in which the WSN is able to contain data delivery

failures hence delivering an acceptable amount of useful data to the sink, i.e.:

∫ t∗∧t∗

0
d(t) dt ≤ ρ (3.6)

where [0, T ] is the observation interval, t∗ the instant of time : ∀t > t∗ Equation 3.2

is not verified. Analogously, we define the data delivery resiliency with respect to

manifested failures, as the greatest number of manifested failures NF that can take

place in the WSN, while preserving an acceptable amount of data delivered to the

sink, i.e. :
NF∑
i=1

D(k, i) ≤ ρ (3.7)

It is worth noting that the provided definitions of Date Delivery Resiliency relate to

the size of the amount of data delivered to the sink by means of equation 3.4. This

way it is possible to compute the Data Delivery Resiliency with respect to application

requirements, e.g. at least on k computed measurements, a fraction of them must be

correctly received by the sink node.

3.3 Routing issues influencing WSN Resiliency

It is not the primary aim of this thesis to overview and detail the large spectrum of

existing routing algorithms for WSNs; interested readers could refer to good surveys

in the literature [21, 115]. Rather, in this section we review and classify the main

underlying characteristics, common to several routing solutions, affects the WSN

resiliency. The first characteristic we consider is the selection mode of forwarding
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nodes. This is a basic function of each routing algorithm: each sensor node has to

select one (or more) node, among its neighboring nodes, to be used as a forwarder to

the sink node. According to this characteristic, routing algorithms can be classified

as random or based on a selection function.

Flooding and Gossiping [116] are well-known examples of the first class of algo-

rithms, where no selection function is used. Nodes simply forward they packets to

all their neighbors (flooding) or to a random subset of them (gossiping), with the as-

sumption that data will eventually reach the sink. These algorithms are very simple

to implement, but are inefficient in terms of the number of packets actually delivered

to the sink, in a time unit. The second class of algorithms can be broken into several

sub-classes, depending on the selection function. A non-exhaustive list of selection

criteria is reported in the following. For each criterion, we indicate the name gen-

erally used in the literature to refer to the corresponding routing solutions. Clearly,

different criteria have a different impact on performance metrics. i) Select the neigh-

bor on the path that minimizes the number of hops to reach the sink (flat and/or

hierarchical multi-hop routing); ii) select the neighbor on the path that minimizes

the overall energy to reach the sink (energy-aware routing); iii) select the neighbor

on the path that satisfies a set of quality metrics (other than energy), such as delay,

reliability, bandwidth, etc. (QoS-based routing); iv) select the neighbor geographi-

cally closest to the sink (location-based routing); and v) select the neighbor based

on the type of information contained in the packets (data-centric routing). All these

solutions require sensor nodes to maintain a routing table to perform the selection.
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The update of such tables requires extra operation, impacting on performance met-

rics. Hence, the second characteristic to be considered is the routing table update

mode. Without loss of generality, three update modes can be considered: i) reactive

update, i.e., tables are updated upon changes (such as node crashes, residual energy

depletion, etc.), ii) proactive update, e.g., the table is periodically updated, and iii)

application driven update, i.e., tables are computed on-demand, only when required

by applications (this is typical of query-based solutions, often used in conjunction

with data-centric routing).

Another key characteristic is the overhead introduced by routing solutions in

terms of extra packets. For instance, the implementation of a reliable multi-hop

protocol requires acknowledgments packets. Another example is data-centric rout-

ing, such as SPIN (Sensor Protocols for Information via Negotiation) [117]. SPIN

requires to flood advertisement packets (to announce the presence of new data), and

to send back request packets (to command the data transfer and to update routing

tables on demand). The last characteristic we consider is the use of data aggrega-

tion techniques. The main idea of data aggregation is to combine the data coming

from different sources en route (in-network aggregation) by minimizing the num-

ber of transmissions, thus prolonging network lifetime. Directed Diffusion [118] is a

well-known example of routing algorithm using data aggregation as its foundation.



Chapter 4

Orchestrating Behavioral and
Analytical Simulation: the
Holistic Approach

This chapter presents the holistic approach proposed in this thesis. The objective of the
approach is to evaluate holistically how inter-dependent factors such as workload and failure
behavior interacts, and hence, to assess how the WSN behaves in whole. To this aim, the
approach combines the expressiveness of analytical models with the capability of behavioral
simulators to estimate detailed figures on the system behavior.
In order to avoid behavioral simulations upon each change manifesting during the simulation
of the failure model, the approach relies on an external component. Such component is here
referred as External Engine and orchestrates the failure model simulation recomputing model
parameters values upon triggered changes. The External Engine decouples analytical models
from change management issues, achieving higher modularity and simplifying the structure of
the failure model, while taking into account all needed details. Moreover, the External Engine
is in charge of generating the analytical model with respect to behavioral simulation results
and user preferences, avoiding a modeling phase performed by the final user.

4.1 Holistic Approach for Resiliency Assessment

The proposed approach is depicted in Figure 4.1 and it is organized in 7 steps. In step

1 the user provides the needed inputs to configure the real WSN scenario in terms of:

i) the number and type of nodes, ii) the network topology, iii) the workload (i.e., the

user application) to be run on each node, iv) the radio communication technology, v)

the adopted routing algorithm, vi) the battery technology for each node, and vii) the
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Figure 4.1: The proposed approach

sensing hardware technology for each node. Inputs from i) to v) are used to setup

the behavioral simulator (we adopted TOSSIM, as motivated in next section). All

the inputs not explicitly considered by the adopted behavioral simulator (vi and vii

in our case) are stored as user preferences.

Step 2 concerns the behavioral simulation of the WSN under study. Simulation

results consists of a set of network parameters which are specialized for the WSN

under study and which will be used by the external engine to feed SAN models

and to handle changes. Examples of computed parameters are the per-node energy

consumption profile, the link-by-link loss probability, and workload characteristics,

such as the duty-cycle (e.g., the average percentage of useful work performed by each

node when woken up), and the average size of sent/received packets.

The automatic generation of analytical models and related metrics (e.g. resiliency)
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is performed in the third step by the Model Generator component of the External

Engine.

The Model Generator produces SAN models starting from a predefined library

of model templates (stored in a knowledge base and developed una tantum by a

domain expert). The number and type of models to be generated depends on user

inputs. For instance, N node models will be generated for a WSN composed of N

nodes. Each node model will be then specialized depending on the topology (which

determines the neighbors of each node), on the hardware platform (which impact

on the failure model of the sensor board), on the energy profile, and so on. Initial

values for model parameters are configured starting from the results of the behavioral

simulation (e.g., the link loss probability of each link is set depending on the values

computed by the behavioral simulation) and from a set of pre-defined parameters

(e.g., the failure rates of hardware components) which are provided una tantum by

domain experts and stored in the knowledge base.

Step 4 concerns the simulation of generated analytical models by means of a SAN sim-

ulator engine, such as Mobius [20]. To deal with changes, models are programmed to

notify changes to the External Engine (i.e., to the Changes Manager sub-component)

and to react to consequent updates propagated by the engine. The external engine

can be regarded as a supervision entity encapsulating all the coordination functions

(among analytical models) that are generally difficult to express at the same level

of abstraction of models (i.e., through the same modeling formalism). Hence, the

engine is essential to keep models simple, general and re-usable. We can think at
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the external engine as an inter-model interface facility, which is used to generate and

bootstrap the analytical failure model by parsing behavioral simulation logs (i.e.,

containing behavioral simulation results). However, it is not difficult to realize that

some parameters are dynamic over time, i.e., their values need to be dynamically

updated during the simulation, driven by changes. To exemplify let us consider a

case for a node X. Let us assume that, due to a change in the workload behavior,

the node increases the amount of work to be committed. The change is intercepted

by the engine, which processes it and propagates an energy consumption update to

node X model, which adapts itself to the change (the node starts to consume more

energy). To complicate the picture, let us assume that, later in time, a neighboring

node Y starts to send more packets to node X. This change (managed by the en-

gine) results in a further increase of energy consumed by node X. As a result, at a

given point in time, node X stops working, due to battery exhaustion. The failure is

notified to the engine which re-computes the routing tree (according to the routing

algorithm chosen by the user), and propagates a routing tree update to the models

of all involved nodes.

From the above example, it is clear how the behavior of a single node impacts on

the behavior of the overall network in an unmanageable number of ways. Conversely,

different user choices (e.g., on the routing algorithm) influence the behavior of every

single node. To master this complexity, we use parametric and re-usable models,

which are autonomous and capable of adapting to changes induced by other models.
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During the simulation, resiliency metrics are evaluated and results are finally deliv-

ered to the user in step 5.

It is worth noting that the proposed approach allows final users to work within

their knowledge domain by interacting only with the behavioral WSN simulator and

by providing his preferences as inputs. In other terms, developers interact with

artifacts that are related to their domain, such as number and type of nodes, nodes

placement, the program/algorithm running on each node, and so on. At the end,

they get required resiliency figures which are the results of the SAN simulation.

Finally, it is important to note that the proposed approach is general enough to be

extended to other classes of systems and to assess other classes of metrics.

4.2 The External Engine

The External Engine (EE) aims at i) automating the generation of SAN failure

models with initial parameters values, and ii) at handling changes on behalf of the

SAN models, computing dynamic parameters values, adapting the behavior of SAN

models to network changes. The EE is composed of two main components, namely

Model Generator and Changes Manager, whose details are provided in the following.

The Changes Manager also includes a set of utility functions, designed to keep SAN

models simple.
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4.2.1 Model Generator

Objectives of the Model Generator component is to reduce the effort a hypothetic

have to face in order to use the proposed approach. More in detail, the Model Gen-

erator component is designed to automate the creation of SAN models, metrics to

be estimated, and experiments to be performed, according to preferences collected

by the user interface during step 1. Hence, the Model Generator component can

be seen as the ”‘interface”’ of the generated model for parametric data: trough this

component, the SAN model can be easily generated and fed with data gathered from

the behavioral simulation and user preferences. It works in two phases: i) genera-

tion of the SAN models, and ii) specialization of the generated models. During i),

information collected by the user interface (see Chapter 5 ) concerning adopted node

and sensing platform, radio chip, batteries and workload, are exploited by the Model

Generation component to select a specific set of templates from the model template

library, as reported in Figure 4.1. Model templates are skeletons of SAN models, de-

scribed by means of XML files. They are produced una tantum by a domain expert

they are organized in a way so that all the details that strictly depend on the con-

sidered WSN (e.g. nodes interconnections, parameters), have to be generated once

the behavioral simulation has terminated. For instance, if the model template T

represents the network layer of the WSN, its structure has to be generated according

to the topology considered during the behavioral simulation, i.e. modeling only the

links that actually are present. Hence, if node X is a neighbor of node Y and Z, then

the model of node X will present two distinct output branches toward the model
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of node Y and Z. This way, the Model Generator component greatly reducing the

user modeling effort, giving flexibility to the approach, so that different WSN can be

studied without requiring a new modeling phase.

During the phase ii), the Model Generator components populates the generated mod-

els parameters with values reflecting the considered WSN. Such values are gathered

from behavioral simulation and from user preferences on metrics and experiments

of interests. For instance, for each of the modeled links, probabilities of packet loss

need to be specialized according to behavioral simulation results. Therefore, at the

end of the specialization phase, a XML description of all of the generated models

is produced. Then, a parser, translates the XML description of models to a format

understandable by the tool chosen for the simulation of SAN models. In the rest of

this thesis, we refer to the Mobius modeling environment [119] to simulate the SAN

model1. In particular, we designed the XML parser to i) translate the XML files to

the XML format used in Mobius to describe SAN model, metrics and experiments, ii)

to exploit the facilities provided by Mobius for compiling XML descriptions of SAN

models to C++ and executable files, and iii) to make it possible to visualize the gen-

erated model through the Mobius User Interface. Hence, at the end of the generation

process of SAN models the user may decide to either visualize/modify/simulate the

SAN model within the Mobius environment or to proceed independently, ignoring

implementation details of the generated SAN model. Table 4.1 reports a subset of

the facilities provided by the Model Generator Component.
1Other simulation frameworks may be taken into account by implementing different parsers,

without interfering with the proposed approach.
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Table 4.1: Facilities for the automated generation of the model.

4.2.2 Changes Manager

This component is in charge of handling changes that occur during the simulation of

the SAN model. Changes management is needed due to the occurrence of node fail-

ures or reconfiguration actions which may cause topology changes (e.g. the network

is partitioned due to the failure of a node). Once a topology change has occurred,

it is important to update all parameters coherently, so that the SAN model simu-

lation can compute updated figures, such as power consumption (and hence nodes

lifetime) due to the different traffic they have to forward toward the sink. Hence,

after each change in the network topology, the routing three must be re-computed

for each node. This is accomplished by running on the updated topology the routing

algorithm(s), as indicated by the user at step 1 of the proposed approach. To this
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aim, the Changes Manager holds an abstract model of the network layer of the WSN:

a weighted connectivity graph representing the topology of the considered WSN is

built starting from the packet loss matrix (see Chapter 5) stored in the behavioral

simulation logs (step 2 approach in Figure 4.1). A weight on an edge (i,j) in the

graph represents the packet loss probability of the wireless link between nodes i and

j. Then, the change manager build the routing three on the updated topology.

Once the routing three is updated, the Changes Manager allows the SAN model

to update the energy consumption of the running nodes. This is accomplished by

using parameters values about energy consumption, estimated from the behavioral

simulation. For instance, a leaf node X (e.g. a node that is not forwarding packets

to other nodes) after a node failure, may be selected by other nodes as a forwarder

to the sink, due to the updated routing tree. Consequently, node X may experience

a higher energy consumption rate that is dependent to all the packets that now it

forwards to the sink.

The Changes Manager component is implemented as an external library linked to the

SAN model. In particular, the Model Generator instruments the SAN model with

explicit calls to the methods of the Changes Manager. For instance, methods are

invoked during the simulation of the SAN model upon topology changes (e.g. failure

of a node) with the objective of propagating network changes to the graph managed

by the Changes Manager. Using an external library to handle such changes in the

network preserves the generality of the failure model making it possible, for instance,

to simulate different routing algorithms, without the need of different SAN models.
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A subset of the methods provided by the Changes Manager is shown in Table 4.2.

For instance, upon each failure event, the function Failing (Table 4.2) is invoked

by the SAN model, in order to update the graph of the available nodes held by

the Changes Manager component. Consequently, a running node may be notified of

the change in the topology after the manifested failure. If the failed node was the

only parent (i.e. the gateway currently used to reach the sink node) of a running

node, then that node is temporary isolated from the sink. To signal this event, the

function propagate_isolation,is invoked by the isolated node with the objective

of propagating this information to all its children nodes (e.g. all the nodes sending

packets through the isolated node). The involved nodes will then select alternative

paths to the sink. Once the new routing tree is computed, and if alternative paths

to the sink are found, the function propagate_reconnect (Table 4.2) is invoked by

the SAN model in order to update the list of online nodes.

Table 4.2: A subset of the facilities provided by the Changes Manager
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Accounting for Routing Behavior

The computeRoutingTable(nodeID) method is invoked to request an update of the

routing table of a node. This is accomplished by implementing this method con-

sistently with the selected routing algorithm. Different sub-functions are included

in computeRoutingTable,making it possible to reproduce the behavior of different

routing algorithms without changing the SAN model.

More specifically, the Changes Manager component takes into account only the char-

acteristics of routing algorithms that have a direct impact on the resiliency of the

considered WSN. The first characteristic we consider is the selection function of for-

warding nodes. This is a basic function of each routing algorithm: each sensor node

has to select one (or more) nodes, among its neighboring nodes, to be used as a

forwarder to the sink node. According to this characteristic, routing algorithms can

be classified as random or based on a selection function. The former simply for-

wards they packets to all their neighbors (flooding), to a random subset of them

(gossiping), or to a random neighbor (random path routing) with the assump-

tion that data will eventually reach the sink. The latter selects the neighbor on the

path that minimizes/maximize a cost function (e.g. quality of traversed links, overall

energy to reach the sink, QoS-based routing ). For instance, concerning a multi-hop

routing algorithm, a function is computed maximizing the quality of the overall path

to be traversed to reach the sink from each node.

The last characteristic we consider is the use of acknowledgments and data aggre-

gation techniques. The first are used to signal to the sending node that the recipient
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node received the packet, hence providing a feed-back for reliable transmissions. The

latter consists in waiting a specific interval of time before forwarding a packet, so to

combine different packets coming from different sources en route, hence reducing the

number of transmissions and increasing network lifetime. As will be later described

in Chapter 6, we take into account data aggregation and acknowledgments in the

routing SAN model.

It is worth noting that the approach pursued in the design of the change manager

component enables the simulation of a large number of routing algorithms by re-

placing graph weights, node selection function or both, without any change to the

structure of the SAN model. For instance, it is possible to simulate energy aware

routing algorithms by replacing multi-hop graph weights with figures related to the

remaining energy available on nodes, and by implementing a routing function finding

paths from all nodes to the sink maximizing WSN lifetime.

4.2.3 Utility functions

The EE includes a set of utility functions used to simplify the structure of SAN

models. For instance, a set of functions is included to manage packets, including

their structure (e.g., the sender and receiver, the time to live field, the signature).

This is useful to evaluate the number of useful (i.e., not duplicated) packets reaching

the sink. Another set of functions is used to handle acknowledgment packets (only

when needed, e.g., required for a given routing algorithms, such as reliable multi-

hop). In particular, the EE implements a linked list for each node in the network

for storing the packets sent by a node and waiting for an acknowledgement. Packets
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in the list can be thus re-sent if an acknowledgement is not received within a given

timeout.

4.3 User interface

The use of an interface makes possible to decrease the semantic gap between the WSN

and the model used to assess the resilience, allowing potential users to interacts with

artifacts that are closer to their domain, such as behavioral simulators.

The user interface is used to collect static information which is not computed by the

behavioral simulator, such as node position, the adopted hardware platform (sensing

hardware and micro-controller), battery technology (e.g. lithium ions or nickel metal

hydrate) and the software to be run on nodes. In addition, the interface allows to

explicitly specify intervals of variation for some parameters (e.g., intervals for the

workload duty cycle, the packet size, the number and type of routing algorithms) in

order to ease the conduction of sensitivity analysis studies.
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Behavioral Models

In the presented approoach, a behavioral model is exploited to configure the WSNs in terms of
hardware platform, topology, routing and MAC protocols, and to study the nominal behavior
of the software, included the OS, and the power consumption of the nodes. Evaluations
performed with the behavioral models are used to gather values for failure model parameters
of the WSN under study, such as the packet forwarding rate of each node. This Chapter
presents the considered behavioral model and how it is realized in the TOSSIM simulator.

5.1 Requirements and Rationale

The objective of the behavioral simulation is to evaluate the parameters needed by the

external engine to specialize the SAN model, during steps 3 and 4 of the approach

(see Figure 4.1 in Chapter 4). Three classes of parameters are evaluated: i) the

energy consumption profile of each node, ii) the loss probability of each link, and iii)

the workload characteristics of each node. These parameters are crucial to initialize

and drive the SAN model simulation. To exemplify, when a packet transmission

event is triggered for node X during the SAN simulation, the SAN model has to

drain an amount of energy from the battery of node X, which depends on the energy

consumption of the radio board and on the packet size. Then, the SAN model

will either simulate a packet delivery or a packet loss depending on the link loss

77
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Table 5.1: Behavioral model parameters needed by the SAN models

probability. On the other hand, the number of packets transmission events triggered

for each node varies over time, and depends on the current configuration of the WSN

(e.g., number of failed and isolated nodes, network topology, routing tree) which is

updated by the Change Manager during the simulation.

Such parameters can be static or dynamic, and are summarized in Table 5.1.

Static parameters are related to aspects that do not mutate during the simulation of

the SAN model, such as the hardware platform, the battery technology, and the radio

communication technology. Dynamic parameters depend on the current configuration

of the WSN (e.g. number of failed nodes, number of isolated nodes, transmission rate

of each link) and need to be re-computed in the face of every change triggered during

SAN model simulation. The change manager component (step 4 Figure 4.1 ) is in

charge of computing updated values for dynamic SAN model parameters, avoiding a

behavioral simulation upon each manifested change.

The evaluation of model parameters is based on a behavioral simulator able to
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i) simulate or emulate commercial hardware (e.g. commercial sensor boards, micro-

controllers), ii) to mimic the behavior of running applications with a good level of

details, and iii) be extended with custom facilities in order to be integrated within

the proposed approach.

As reported in Chapter 2 (see Section 2.5), a number of the most cited/used en-

vironments for the simulation of WSNs have been analyzed. The performed analysis

shows that the TOSSIM simulator [105] provides a convenient trade-off between the

level of details and extensibility. TOSSIM provides a set of facilities that make it pos-

sible to emulate real node hardware and to simulate WSN applications (programmed

in NesC [106] and running on TinyOS) with a realistic level of details. We also ex-

tended TOSSIM with facilities to collect user preferences on the considered WSN

by means of a customized user interface, used in step 2 of the approach depicted in

Figure 4.1.

More details on parameters evaluation and on the user interface are provided in

the following.

5.2 Energy Consumption Model

We consider the overall energy consumption of a generic node as the sum of three

main components, namely: energy needed for sensing, for computing and for send-

ing/receiving packets. More specifically, the energy needed for sensing is dependent

on the adopted sensing platform. Information about energy needs of sensors is gath-

ered from data-sheets. The energy needed for computing activity is dependent on
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the running software and on the workload duty-cycle. Finally, the aliquot of energy

spent for managing packets depends on i) type of radio chip used and programmed

transmissive level of power, ii) length of packets in bytes, iii) packet loss rate, iv)

topology (e.g. per node incoming and outgoing links).

We instrumented TOSSIM simulation engine in order to profile the energy con-

sumption of node subsystems. In particular, we hijack simulation events from the

TOSSIM simulation engine that are responsible for the energy consumption, consider-

ing i) cpu power transition (sleep to active and vice-versa), ii) radio events (reception

and sending of packets), iii) application events, and iv) hardware events (e.g. sens-

ing hardware events). Each time one of the mentioned events take place, an overall

energy consumption figure is computed as the sum of all the energy requests taking

place in that instant of time. In turn, such figures are periodically averaged on a

specific interval of time, obtaining, for each considered subsystem of the node an en-

ergy consumption rate. This computation is performed during the whole behavioral

simulation that is forced to terminate when the computed figures reach an interval

of confidence of 95%. At the end of the behavioral simulation, values for energy

consumption parameters are stored to a set of simulation logs that are later used by

the model generator and Changes Manager component shown in Figure 4.1.

5.3 Radio Model

We collect this information in a matrix where the element aij is the packet loss

probability on the link between node i and node j. Such a matrix is stored in the
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simulation logs available to the model generator component, depicted in Figure 4.1.

In order to evaluate packet loss figures of WSN links, it is necessary to adopt an

accurate mathematical model for radio propagation. We extended TOSSIM simulator

by integrating a well know model for the estimation of the node-by-node Received

Signal Strength Indicator (RSSI) [120] in its radio modeling facilities. More in detail,

we use information on nodes mutual distances, specified in the user interface, to

evaluate the RSSI from a node to all the others by means of the following equation1.

Rxpow = Txpow + Txgain − Txloss − FSL − Xσ + Rxgain − Rxloss (5.1)

where:

FSL = −27.55dbm + 20log10(FreqMHZ) + n ∗ 20log10(dm) (5.2)

• FSL is the free space loss factor, expressed in dBm (decibel milliwatt) .

• dm = is the transmissive distance between the source and the destination ex-

pressed in meters

• Txpow, Txgain Txloss are the transmissive power, antennas gain and transmis-

sion losses factors, respectively, all expressed in dBm;

• Rxpow, Rxgain Rxloss are the reception power, antennas gain and reception

losses factors, respectively, all expressed in dBm;

• Xσ is a random variable modeling environmental reverb, e.g. multipath, fading;
1Further details on the propagation model may be found in [121]
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• n is the path loss exponent depending on the environment and on the node

deployment.

Values for Txpow, Txgain, Txloss, Rxgain, Rxloss are gathered from the data-sheet

of the radio chip selected by the user for the simulation. Xσ and n are selected

depending on the user preferences on the nodes deployment (e.g. indoor or outdoor).

After computing Equation 5.1 for each node, we figure out about the lower bound

of the RSSI after that there is a bit inversion in the transmission. Finally depend-

ing on the packet length and adopted MAC protocols2, we achieve the relationship

between bit error rate and packet loss.

5.4 Workload model

The periodic workload models a typical monitoring sensor network in which readings

are generated at fixed time intervals. Deployments exhibiting this traffic pattern

are quite common in practice [122, 123, 11]. In this workload, each sensor sources

traffic at some offered load, and helps to forward other sensors’ traffic to a sink.

Depending on the amount of data gathered from sensors, on the number of computed

samples, and on the local performed computation, one or more packets of a given

size are produced periodically. Data may be also stored in the local non volatile

memory for being sent later. Hence, we opted to model such a type of workload

by considering the following parameters: i) application duty-cycle, i.e., the time

interval of the application, ii) the average size of generated packets, iii) the total time
2Information collected by the user interface.
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spent in local computation, iv) the application packet generation rate, v) the time

spent in idle state by the application, e.g. while waiting for data being sampled by

sensors. Similarly to energy consumption evaluation, these parameters are computed

by intercepting TOSSIM events responsible of i) cpu power transition, ii) radio events,

and iii) application events [16].
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WSN Failure Model

In this chapter we model the failure behavior of a Wireless Sensor Network by relating single
contribution of a node failure to the entire topology of the network, including the routing
algorithm being used. The model is parametric in the sense that its parameters are taken
by field measurement campaigns and/or by external simulative tools. We adopt a two-steps
modeling approach. First, we perform a classification of failures as they have been observed on
actual WSNs and as they have been indicated in the existing literature. In particular, failures
are classified according to Failure Mode and Effect Analysis (FMEA), i.e., from functional
components, down to failure modes and possible causes, as better detailed in section 6.1.
Second, starting from the conducted FMEA, we infer a detailed failure model, according to
a bottom-up approach: a detailed SAN model is built for each of the classified failure mode,
then the models are combined to form the failure model of a single sensor node, and finally
the failure model of the overall network).

6.1 Failures and Failure Modes Assumptions

In this section the results of the FMEA is presented. The most frequent failure

occurrences have been derived from past experiences on real testbed prototypes and

from the existing literature, trying to relate failure occurrences with potential causes

(faults). The use of a FMEA makes it possible to evidence the Critical Item List

(CIL) of the network. Each CIL element represents a critical component/function:

a failure of one of these components hardly impacts on system dependability. Thus,

CIL information can be used i) to drive the implementation of the failure model

(FM), and ii) to provide failure mode assumptions that reflects real world.

84
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The following high-level assumptions have been made when performing the FMEA

and when building the model:

1. Each node is composed by a processor board, a sensor board with one or more

sensors (e.g. temperature, humidity etc.), a radio board, and a set of batteries.

2. Initially all the nodes have the same capabilities and characteristics and are

stationary.

3. Sink node failures are not considered. This is reasonable since a sink is typically

realized with more reliable hardware/software equipment (e.g., laptop or a linux

embedded device).

In this thesis, both single wireless node and whole network failure modes are en-

compassed. Failures due to physical damage of nodes (e.g. physical crashes due to

accidents or very adverse weather conditions), malicious activities (e.g. manual, and

unexpected, node withdrawal or substitution), and security threats are excluded.

FMEA results are summarized in Table 6.1: six components/functions have been

identified for the node: the sensor board, the power supply unit, the radio board,

the communication function, the CPU, and the operating system. For each compo-

nent/function of a node or of the overall network, failure modes, potential effects and

possible causes are reported.

6.1.1 Node failures.

From the prospective the mission of the WSN, a node is failed when i) it is no longer

able to deliver its measurements to the sink, and ii) it is not longer able to provide
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Table 6.1: FMEA results.

meaningful measurements. This can be due the malfunction of one of the components

of the node, as detailed in the following.

Sensor Board : we assume the sensor board can fail according to four failure modes:

stuck-at-zero, null reading, out-of-scale reading, and stuck-at-N. A stuck-at-zero of the

sensor board produces the effect of a out-of-order device, which does not deliver any

outputs to external inputs. Potential causes lay into faults of the sensing hardware

(e.g., as can be observed in [124], the humidity sensor produces a short circuit,

causing a high current drain which turns off the overall node). Potential causes lay
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into faults of the sensing hardware (e.g., as can be observed in [124], the humidity

sensor produces a short circuit, causing a high current drain which turns off the

overall node).

Null readings cause the sensor to deliver null output values, for a certain interval of

time. This may be caused by temporary short circuits that also cause the node to

drain excessive power from batteries, hence shortening the overall lifetime of the node

[124]. Out-of-scale readings and stuck-at-N cause the sensor board to respectively

provide no meaningful outputs and frozen readings, for a certain interval of time.

These failures may be due to faults of the analog-to-digital converter or due to error

in the sensing device firmware.

Power Supply : the power supply component may exhibit stuck-at-zero as well as

reset failure modes (i.e., the node shutdowns and restarts itself). The former is due

to battery energy exhaustion. The latter can be caused by anomalous power requests

that cannot be supplied by batteries, e.g. the residual charge is not sufficient to

provide the required amount of power.

Radio Board : it can exhibit packet losses, i.e., the radio packet is not delivered to its

intended destination for instance due to packet corruption.

Communication: the communication function can be compromised by so-called iso-

lation failures: a well behaving node X, which does not fail itself, can manifest an

isolation failure when it is no longer connected to the sink node. This is due to the

failure of all the nodes which act as forwarders for the node X.

It is important to note that the characteristics of all considered node failures depend
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on the network configuration. For instance, the isolation failure strictly depends

on the actual network topology, whereas sensor board failure rates depend on the

adopted hardware, and battery failures on the running software and routing algo-

rithm.

6.1.2 Network Failures.

At the network level, we encompass two failure modes, which are consistent to the

mission of the WSN and to defined requirements: coverage failures, data delivery

failure and disconnection failure. Coverage failures occur when the number of nodes

in a specific area of the network drops below a given threshold. Data delivery failures

occur when the network is not able to deliver the required amount of measurements

to the sink. Disconnection failures occur when all the nodes belonging to a cut set

of the network fail. As a result, the network is partitioned into two or more isolated

sub-networks. In both cases, the number of failures that can be tolerated strictly

depend on the application requirements.

6.2 WSN Failure Model

Starting from the classification obtained with the FMEA, we define a the WSN failure

model which reproduces the failing behavior of WSNs and sensor nodes. We build the

model according to a bottom-up approach: for each identified component/function

of a node, we defined a detailed failure model (FM), adopting the Stochastic Ac-

tivity Networks (SANs) formalism. The failure model of a single node is achieved

as interconnection of atomic models. The interconnection of the failure models of
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Figure 6.1: Overall WSN failure model

all the nodes determine in turn the failure model of the overall WSN, which also

embodies network failures (e.g., coverage and net partition), and network dynamics

(e.g., current network topology, traffic and computational load). The model is then

solved by means of simulation, using the MOBIUS tool.

The structure of the proposed model is shown in Figure 6.1 in terms of a UML class

diagram. Each class in the lower part of the diagram corresponds to the SAN failure

model of the component/function defined by the FMEA. We can thus find the sensor

board, the power supply, the routing and the communication function. The sensor

board FM encompasses all the hardware-related failures of the sensor board. The
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power supply FM reproduces the battery discharge process, taking into account stuck-

at-zero and reset. The routing FM reproduces the transmission/reception/forwarding

activity of the node, reproducing the behavior of a specific routing algorithm (selected

by the user) and the effects of packet losses. The communication FM takes into the

account isolation failures.

Note that we opted to not consider CPU and OS failures. CPU failures are neglected

since the mean time to failure (MTTF) of micro-controllers is greater by orders of

magnitude than the MTTF of other components1. As for the OS, we assume the

bug incidence to be usually low with respect to other failure dynamics, due to the

extreme simplicity and reduced size of node operating systems [105].

As shown in Figure 6.1, the failure model of a single node is composed of the above

mentioned failure models. The network level failure class embodies the failure model

of the network component, i.e., coverage, data delivery and disconnection failures,

depending on the information provided by the routing and communication failure

model. A coverage failure is indeed strictly related to the communication state of all

the nodes. The failure model of the overall WSN is then obtained as the composition

of n single node failure models and of the network level failure model, where n is the

total number of nodes.

It is wort noting that the External Engine interacts with the whole WSN model by

means of the ChangesManager interface, which is used by single node models as well

as by the routing models. As will discussed in Section 6.3.2, the routing model exploit
1According to manufacturers, typical order of magnitude for a micro-controller MTTF is around

ten thousand hours.
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(a)

(b)

Figure 6.2: (a) SAN model of the overall network; (b) SAN model of a single node.

the facilities of the Changes Manager and of the External Engine to reproduce the

behavior of the routing protocol being simulated. The ChangesManager interface is

also dependent on the Model Generator component, since it is generated jointly with

the SAN Failure model, depending on the specific modeling framework being used

(See Chapter 4). Following sections will provide example on the interactions between

the model and the External Engine.

Figure 6.2.(a) and (b) shows the compositional schema of the WSN and single node

failure mode generated for a hypothetical WSN composed of 9 sensor nodes and 1

sink node. Both schemes are automatically generated at the end of step 2 (see section

4.1) as a set of MOBIUS XML descriptors. The number and, as will be detailed in

Section 6.3.2, the interconnections of single node models are generated according to

the topology provided by the user for the behavioral simulation.Single node models
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are interconnected to each other (via the join operator - realizing the WSN model

- and the use of places with are shared2 between linked models) according to the

topology of the WSN to simulate.

The models are composed accordingly to the items in figure 6.1. In addition, a node

coordinator model, called nodeState (see Figure 6.2.(b)) is added to coordinate single

node sub-models.

The proposed model has been validated adopting a trace validation approach [125],

i.e., the behavior of different types of specific entities in the model is traced to de-

termine if the model logic is correct. To accomplish this task, we used the Tra-

viando framework [126], a software tool capable of analyzing and visualizing simu-

lation traces. In particular, by means of Traviando we validated the causal order of

events, assuring that the model was behaving like expected.

6.2.1 The Network Failure Model

The Network FM, shown in Figure 6.3 model is in charge modeling coverage, data

delivery and disconnection failures. To this aim, the Network Failure model holds

information on the number of working nodes in the WSN by means of the shared

place running nodes Each time a failure of a node takes place, a token is moved from

the place running nodes to the place number of failed nodes. Upon this transition,

the input gate areaCoverage invokes a method of the Changes Manager (see section

4.2.2) to test if the density of running nodes is still able to produce an amount
2In the SAN terminology, a model can provide an “interface“ to other models by sharing places

with other sub-models by means of the join operator.
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of data compatible with the WSN mission. For instance, it may happen that due

to disconnection failures, a subset of the WSN is isolated from the sink. Hence,

at the sink, the area monitored by the disconnected set of nodes is not producing

measurements. In this case, despite the remaining nodes are working correctly, a data

delivery failure manifests due to a coverage failure. The Changes Manager allow also

to specify for each node, the area where it is deployed, hence enabling the evaluation

of the density of nodes, area by area.

Figure 6.3: The network SAN mode

Disconnection failures are modeled by the Network Failure model upon each man-

ifesting failure, by means of the methods provided by the change manager. Such

methods permits to evaluate if, eliminating the failed node by the current topology,

other nodes than it result isolated. In this case, a Disconnection failure is triggered

and a token is moved in the place disconnection failure.

Upon a node recovery (signaled by the shared place A node recovering) a place

is moved from number of failed nodes to the place running nodes by means of the



Chapter 6. WSN Failure Model 94

action recovering. In this case, if the former failure caused a data delivery failure,

after a recovery the input gate Coverage granted evaluate if the new configuration of

the network is able to fulfill application requirements on the area coverage and on

the data to produce. If this condition is met, then a token is moved out from the

place coverage failure by enabling the action coverage recovery.

6.3 Single Node Model

The single node model, which Mobius scheme is shown in Figure 6.2.(b) is composed

by a failure model (referred as failure model node), a routing model and a node

state model (referred as nodeState). Consistently with the assumptions provided

in Section 3.1, the failure model is composed by i) the sensor board failure model,

which encompasses all the hardware-related failures of the sensor board (e.g., stuck-

at-zero, null reading, etc.), ii) the power supply failure model, which reproduces

the battery discharge process, taking into account stuck-at-zero and reset, and iii)

the communication failure model, modeling isolation failures. This last model is of

particular importance to measure the connection resiliency.

The routing model describes the packet generation and delivery process of the node,

according to the profiled workload and the chosen routing algorithm respectively,

taking into account packet loss. Modeling the packet generation and delivery process

is fundamental to measure the data delivery resiliency as a function of both simulated

failures and simulated time.

The failures triggered by failure models are used to update the overall state of the
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single node in the nodeState model (i.e., the node is up, it is temporary failed, it is

permanently failed, or it is isolated). It is worth noting that all node sub-models are

correlated to each other, since a failure triggered in a sub-model can in turn affect

another sub-model. For instance, a null reading of a sensor (sensor board failure

model) can cause an excessive drain of power, hence shortening the life of the sensor

(power supply failure model).

In the MOBIUS tool, SAN models and their compositions are represented by means of

XML descriptors. The Model Generator component of the External Engine generates

the descriptors and populate them with proper parameters values (e.g., link-by-link

loss rate) according both to the results of the behavioral simulation and to user

preferences.

6.3.1 The Node State Model

Node state model accomplish to two main tasks:

1. “start” (boot) of the whole single node model;

2. collection of detailed information from every sub-model, modeling the global

state of the node;

The objective of the first task is to initialize the data structure used by the single

node model and containing all the information achieved from the behavioral simulator

by means of the External Engine (see Chapter 5). The timed action gettingParam-

eters is used for this task and a Normal timing distribution is used to avoid false

synchronization between the boot of different nodes. The place running enable the
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single node model. All the events (e.g. battery exhaustion) which makes the token

be moved out from the place running cause the total stop of the node model.

Figure 6.4: sub-model node state

The objective of the second task is to collect and propagate information on the state of

the node sub-systems. The model node state depends on and manages all the other

node sub-models. It can be seen as an event bus that transmits events generated

from a component to all the other components which manifested the interest in

such information. To this aim,node state model interface, shown in Table. 6.2, is

exploited by other models upon every failure or recovery event. The places used as

input parameters of the interface are in charge of collecting the state of node sub-

models (e.g. a failure triggered by a sub-model) in order to update the node state.

The output parameters of the interface are used from node state to rise events on

the sub-models, such as to align the mark of the running place shared with all other

models, e.g., after a failure.
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The places Num sensors and num of motes represent respectively the number of the

sensors on the node still operating.

Table 6.2: NodeState model interface

6.3.2 Routing Failure Model

Figure 6.5 reports the SAN model in charge of modeling the packet generation and

delivery process of a single node. The model reported in the Figure 6.5 is related to

an exemplary node X with three neighbors (nodes 2, 9, and 10 in the example, as

reported in Figure 6.6), and it is divided in 5 zones, each of them responsible for a

specific task.

Zone 1 is in charge managing packet loss ratio parameters for each link between node

X and its neighbors (places sendY loss in Figure 6.5, zone 1, where Y is the ID of

the neighboring node). It also manage radio energy consumption parameters for each

sent or received bit (places radioConsPerReceivedBit, radioConsPerSentBit), and the

initial energy of batteries (place battery charge status, shared with the power supply

failure model). Specific values for the parameters are gathered from the results of
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(a) (b)

Figure 6.5: SAN of the Routing model.

the behavioral simulation.

Zone 2 models the reception of packets from other nodes. A packet is received when a

token is placed in the place Incoming. The received packet can be discarded if its TTL

is zero, by means of the action discard, otherwise the packet is made available and

processed (places packetAvaliable and processing in Zone 5). In both the cases, when

a packet is received, a quantity of energy is subtracted from the battery charge status

place, depending on the adopted radio chip (in terms of energy per received bit) and

on the packet size.

Items included in Zone 3 model the packets generation process. The timed action

sendOwn, models the duty-cycle profiled during the behavioral simulation. Once that

the sendOwn activity fires, a packet of given length is generated through the utility
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Figure 6.6: Topology considered in Figure 6.5. Labels of edges represent the places used in
the model.

functions of the Changes Manager (see Chapter 5) and stored in the place Own. At

the same time, a token flows from the place generating to the places packetAvailable

and processing.

Zone 4 is in charge of reproducing the acknowledgment mechanism, if employed in

the simulated routing algorithm. This includes the retransmission of missing packets.

The modeling is simplified by the use of the Changes Manager, which implements a

linked list for each node, storing the packets waiting for an acknowledgment. Figure

6.7 shows the portion of code of the Routing output gate responsible for managing

acknowledgments, acting on the list, providing an example of interaction with the

Changes Manager component.

All the items in Zone 5 of Figure 6.5 are used to model the routing of received or

generated packets. The output gate routing is in charge of modeling the selection

of the destination node for the packet stored in the processing place. Figure 6.5.(b)

reports the code used for this task, providing a further example of the interaction

between the SAN model and the Changes Manager. Depending on the routing al-

gorithm being simulated, the output gate routing invokes a specific parent selection
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Figure 6.7: Output gate routing : extract of the code responsible for managing ac-
knowledgements

function of the Changes Manager to select the destination node. If the algorithm

employs a routing tree (e.g., multi-hop routing), the gate will select only one parent,

e.g., the node 10, from its neighbor list by means of the method getParent() of the

Changes Manager. Then, a token is inserted in the sending10 place, reproducing the

sending of the packet toward node 10. On the other hand, if a flooding (or gossip-

ing) algorithm is being simulated, a broadcast is simulated and a token is inserted

in all (or a subset) of the places of the neighbor nodes. The IDs of the neighbor-

ing nodes are gathered by the method AmIconnectedTo(). The code responsible for
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the forwarding is generated automatically by the Model Generator component of the

External Engine, as highlighted in Figure 6.5.(b).

When a token reaches one of the sendingY places (where Y represents the ID of

the destination node), the packet is forwarded to the specific node by means of the

corresponding sendY activity and the routeY output gate. All sendY activities are

characterized by cases, used to model packet losses. A packet is lost or forwarded,

depending on the loss rates contained in the sendY loss places (Zone 1). When a

packet is sent, a specific quantity of energy is drawn from the batteries, depending

on i) the current settings of the radio hardware of the node (e.g. transmissive power,

gathered from behavioral simulation ), and ii) the packet size. After updating the

remaining energy (place battery charge status) the packet is transferred to the cor-

responding place OutgoingY. A token is placed also into the shared place outgoingY

to signal to the destination node that a new packet is available. Such shared places

represent the model interface towards the models of neighboring nodes. In particular,

the outgoingY place is shared with the incoming place of the Routing model of node

Y.

It is worth noting that the routing model represents a good example of model tem-

plate. It is clear that the number and the names of all the items present in Zones 1

and 5 of Figure 6.5 strictly depend on the topology of the network. Hence they need

to be generated by the Model Generator (places, gates, C++ code, and activities)

consistently to the results of the behavioral simulation and to user preferences. For

instance, in the case node X had another neighbor node, node 5, then the routing
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model of node X would have been generated with another output branch linked to

the route output gate, and ending in the places outgoing5, and Outgoing5.

6.3.3 Power Supply Failure Model

The maximum temporal horizon of life for a node of a WSN is determined from the

time-to-failure of its batteries.

The behavioral description of batteries is a complex problem because of the non-

linearity between the voltage and remaining charge. This non linearity is strongly

emphasized especially when the discharge current is not constant (as it happens for

a node of a WSN). For an ideal generator of voltage, the voltage V(t) of the battery

is constant on all the period of discharge and is equals to Voc (open circuit voltage )

until the energy of the batteries is exhausted; after this point, a discontinuity in the

voltage to the terminals of the batteries is generated, making the voltage drop from

Vcutoff
3 to zero.

An other factor that generates not-linearity in the characteristic of discharge of the

battery is the charge ”recovery effect”. This effect is due to transient current re-

quests: a rapid current request causes the depletion of the electrical charges from

the electrode, with a consequent drop in the voltage. If the request is massive, then

the voltage may drop below the Vcutoff , causing the temporary unavailability of the

batteries, and hence a temporary shutdown of the node. Nevertheless, after a given

amount of time, the charge will again move from the electrolyte to the electrode,
3It is the voltage in which the battery does not succeed to distribute current on any load, included

its inner resistance
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thus, making the node again available. This effect is closely dependent on the nature

of the battery, and for lithium battery it can be neglected.

In WSN nodes, batteries are not directly connected to the load: a so called DC-DC

converted is usually used to stabilize the voltage to the clamps of the load, but at

the price of a reduced overall life of the device due to conversion inefficiencies4.

Mathematical model

In this thesis, power supply stage is assumed to be composed by batteries and by the

DC-DC converter ,in a unique black-box, so that the voltage of the batteries can be

considered constant in the interval (Voc, Vcutoff−dc).

In this model the battery is considered as a ”tank” of known capacity, from which

it is possible to drain energy. The maximum capacity of the battery is assumed to

be constant, without considering the effects capacity lessening due to the current

request: this choice is reasonable due to the negligible current absorption for the

nodes (about 5-15 mA). The energy supplied by the batteries, represents a starting

point in the model and it is calculated as follows:

Ebatt = Vcc · 3600
s

h
· CeffBatt (6.1)

where:

• Vcc=voltage;
4They rise the Vcutoff .
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• CeffBatt=Total battery capacity really usable by a load and expressed in Ah5.

The remaining capacity of the batteries after a t∗ seconds long operation, measured

in Ah, is expressed by the following equation:

U = U ′ −
∫ to+t∗

t0
I(t)dt (6.2)

where:

• U ′ is the remaining capacity as result from the previous calculation step, and

measured in Ah;

• I(t) is the current drained from the batteries at time t, measured in A;

The equation above 6.2 can also be expressed in terms of the energy requested from

the batteries, expressed in Joule, or in other words:

U = U ′ − 3600
s

h

∫ to+t∗

t0

E(t)
Vcc

dt + R′(e) (6.3)

where R(e) is the non linear function of the charge recovery effects of the batteries,

represented as a decreasing exponential function of the state of charge of the battery

[127].

Power consumption assumption

The batteries model can be easily achieved from the 6.2, assuming that:
5Experimentally it has been measured as the 80% of total capacity
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• the integration interval is small enough to consider the energy consumption

constant;

• the voltage of the battery is constant, since we suppose that the load (the node)

does not absorb excessive current to cause drop of voltage on DC-DC converter;

Under these assumptions the Equation 6.3 can be expressed with respect to the

Energy E as:

E = E′ − EΔt + ε (6.4)

with ε being the contribution of the charge recovery effect function. From the previous

Figure 6.8: Finite state automata relative to the battery model

assumptions it is correct to consider that the ”state of charge” of the battery can

be considered as the remaining energy. That allows to model the above equation

by means of the automata outlined in Fig. 6.8. N is assumed to be the number of

charge units that can be drained from the battery under constant discharge. In the

proposed schema, every request for discharge of i energy unit causes a transition in

the state correspondent to the level of remaining energy. Dually the phenomena of
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(a)

(b)

Figure 6.9: (a) SAN model of the Power Supply FM; (b) Output gate definition of
charge drawn.

recovery causes transitions in the opposite sense.

San Model

Figure 6.9.(a). shows the SAN model of the power supply component. It models

stuck-at-zero and reset failures of a single node, by considering the natural battery

discharge process, charge recovery effect and anomalous energy requests due to hard-

ware faults.

Node’s natural battery discharge process can be thought as the sum of two main

contributions: i) processing activity, including CPU, I/O devices (e.g., leds), and

sensing hardware, and ii) radio activity. T Node activity is considered as the alter-

nation between two states: “running” and “sleep”. The CPU awakening is modeled
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through a timed deterministic action (wake up). At each awakening, the output

gate charge drawn drains the energy requested by the processing activity (see Figure

6.9.(b)).

The other contribution (radio activity) is modeled in the Routing model. In

particular, a proper amount of energy is drained every time a packet is sent, received

or forwarded, depending on the current radio power being used, and on the size of

the packet.

As reported in Figure 6.9.(b), the charge drawn output gate is in charge of modeling

stuck-at-zero and reset failures. A stuck-at-zero occurs when the residual charge

is not sufficient to satisfy the processing request. Hence a token is placed in the

battery failed place. A reset is instead caused by anomalous energy requests due to

temporary hardware faults. As shown in [86], these faults can be modeled as a Weibull

stochastic process. When this activity fires, a token is moved in the inducedReset

place. Figure 3.b also shows how model parameters (such as the energy consumption

aliquot) can be gathered from the Changes Manager.

Finally, the model also takes into account nonlinear phenomena due to the so-called

energy “recovery effect” [128], which is typical of several battery technologies (e.g.,

nickel metal hydride), apart from lithium batteries. The effect is modeled through

a timed action (battery recovery). When the action fires, the remaining charge is

increased of a quantity which value depends on the adopted battery technology.

We validate the battery model by simulating a single node model and no failures. In

this test, the Mica2 platform [23] is considered, achieving a 170 hours node lifetime,
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against the 172 hours lifetime measured on a real stand alone node running a simple

broadcast counter application, as reported in [129, 16].

6.3.4 Communication Failure Model

(a)

(b)

Figure 6.10: (a) Connection failure SAN model; (b) Output gate definition of checkConnec-
tion.

Figure 6.10.(a) shows the SAN of the Communication failure model. It models the

behavior of the node when isolation failures occur. The model reproduces different

behaviors depending on the nature of the routing tree update policy, namely if a reac-

tive or proactive routing algorithm is being simulated [115]. If the proactive routing

is considered, the model checks for isolation failures periodically (routingTimer ac-

tivity). In the reactive case, the model checks for isolation failures when needed, i.e.
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before sending a packet. In particular, the reactive input gate enable the execution

of the gate check connection just before sending a packet. In order to simplify the

model, the route update is not executed every time, but only when there is a change

in the topology. This is accomplished exploiting the places somebody isolated and

somebody connected that contain the ID of the last node manifesting a failure or the

ID of the node that re-connected to the network, respectively. If the ID of the node

contained in one of the mentioned places is present on the routing tree, or is a neigh-

bor of a checking node, then the route is updated. In the case of proactive routing,

this check is executed periodically. The code of the gate check connection is reported

in Figure 6.10.(b)., The function computeRoutingTable() provided by the Changes

Manager (line 2 of Figure 6.10.(b)) is in charge of recomputing the routing tree of the

node toward the sink node, i.e. it evaluate the route to the sink, if any. If there no

route to the sink, (the checking node is isolated), a token is moved from the connected

to the isolated place (lines 9-12). Similarly, when a node becomes connected after

the computation of the routing table (e.g., nodes on the path to the sink recover), a

token is moved from the isolated place to the connected place (lines 4-8). Then an

isolation or reconnect event is notified to the Changes Manager, in order to propagate

the event to all the interested nodes, and to compute new parameters for the model

consistently with the updated topology. Note that the token from the running place

is not removed when the node becomes isolated, modeling the common situation of

a node which is up and running, but no more connected to the network. In this case,

the node continues to produce packets, hence continuing to discharge its batteries.
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Figure 6.11: Internal structure of the ”‘Sensor”’ FM

6.3.5 Sensor Board Failure Model

Sensor board failures are strictly dependent on the sensing hardware being used.

Hence, we implemented a number of SAN libraries concerning the most common

used sensor boards in WSN applications. Information collected by the user interface

(see Section 5.1) indicates which sensor board is used for the WSN nodes, and which

template among those available has to be specialized for the node model.

Figure 6.11 illustrates the conceptual structure of the sensor board model template.

The hardware dependent part of the model is shown in the cloud, and need to be

specialized according to user preferences. The places out of the cloud are the “in-

terface” of this sub-model. Through the interface, the model generates and receives

events related to other sub-models. The “sensorFailure” activity models the failing

behavior of the board, according to an exponential distribution with constant rate

[130], which depends on the adopted hardware. The part of the model reproducing

specific hardware behavior is modeled starting from a FMEA approach (see section
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6.1) conducted on several sensor boards, and added to the template by the model

generation component (see Chapter 4, Section 4.2.1) . For example, to model the

Crossbow Weather board [124], humidity, temperature and light sensor failures have

been considered. The specific failure modes, and their rates, have been specified

according to [124], where several failure dynamics related to this board have been

observed. For the Crossbow sensor board, after the generation process we achieve

the following failure model.

Crossbow Weather Board Failure Model

Figure 6.12 shows the SAN model of the Mica2 weather sensor board. The model is

composed by two main sections:

1. failure event section;

2. recovery section.

The exponential distribution activities fail sensor action and represents the times to

failure of the sensor board. After the ith failure, which is represented by the number

of tokens in the places permanent and transient, the time to the next failure is reduced

by using a distribution with a mean equal to the original one divided by 2i. When

the number of tokens of the places Num sensors (initialized at a value equal to the

number of the sensors on the board) becomes zero, the token is extracted from the

place running, and the node becomes unavailable. The situation is the same when

critical failures, such as those causing the stuck of the node (place stuck), such as

failures of the humidity sensor. The place stuck is connected to the interface of the
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model node state (see the Section 6.3.1)

The exponential activities Normal and Burst represent the alternation of normal pe-

riods whose expected duration is indicated by the parameter TN , where the failures

occurs with rate λN , and of abnormal periods, having expected duration TB, char-

acterized by a higher rate λB. The rate of the exponential activity fail sensor, is λN

or λB, depending on the marking of the places NormalHWF and burstHWF.

Each time the action (Sensor fail) fires, the choice of the sensor responsible for the

fault is made, with respect to the statistics obtained by failure data analysis presented

in [11]. The sensor is put as unavailable after its failure. This operation demands

a re-normalization of remaining probabilities relating to the sensors still operating.

Dually, after an action of recovery of a sensor, the probability of failure for the sensor

(through the actions with the post-fix recover) is restored to a value different from

zero, demanding a new action of re-normalization.

The action will stuck models the time to failure of the node, when given conditions

are met, as observed in [11]. It follows a Weibull6 distribution with shape parameter

α = 27. Considering the statistics provided in [11] for the considered sensor board,

null reading failures are likely to cause in the 45% of the cases permanent node

failures within two days, and the following value for the distribution parameters are

achieved:
6F (x) = 1 − e−λtα

is the temporal distribution of probability
7The shape equal to 2 is translated in a hazard rate h(t) that it increases linearly over time
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P (x < t∗ + 172800s | x > t∗) = 0.55

P (x < t∗ + 172800 | x > t∗) =
P (t∗ < x < t∗ + 172800)

P (x > t∗)

Fx(t∗ + 172800s) + Fx(t∗)
1 − Fx(t∗)

=
e−λ(t∗)2 − e−λ(t∗+172800)2

e−λ(t∗)2
=

1 − e−λ(t∗+172800)2

e−λ(t∗)2
= 1 − e−λ·172800·(172800+2(t∗)2) = 0.55

⇒ λ = − ln(0.45)
1728002 + 345600t∗

(6.5)

where t∗ indicates the time in which the failure of the sensor has taken place.

Similar consideration is made regarding recovery actions, modeled as a lognormal

distribution with shape parameter equal to 2 and λ in such way that within 1 day

the 90% of the transient failures are recovered.



Chapter 6. WSN Failure Model 114

Figure 6.12: Mobius schema of the failure model of the Crossbow Weather sensor
board



Chapter 7

Case Studies

This chapter describes the results obtained following the approach proposed in this thesis,
and it focuses on three different WSN deployments, namely a 10 nodes in line WSN, a 50
nodes randomly deployed WSN, and a 30 nodes WSN deployed on a hypothetical bridge. The
simulations aim at showing how the approach proposed in this thesis can be adopted to evaluate
significant resiliency measures for a specific network, when varying application configuration
and routing protocols.

7.1 Selecting realistic case studies

In order to consider realistic scenarios, we analyzed the experiences reported in the

field of WSN for environmental and structural monitoring.

Table 7.1 reports a number of real world case studies on bridges and tunnels

([131, 132, 133, 134]), buildings and infrastructures ([135, 6, 136, 137, 138]), and

environment ([11]) monitoring. In particular, for each work, we report information

about number of nodes, size of radio packets, application duty-cycle, topology, routing

algorithm being used and, where specified, measured network lifetime. From Table

7.1 we can see that the typical number of sensor nodes used in such applications is

around to few tens which are typically organized in a in-line, 2-lines or grid topology.

For such installations, radio packet sizes are always around tens of Bytes. Reported

115
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Table 7.1: Analysis of existing studies
Work Nodes Packet Duty-cycle Topology Routing Measured

[Byte] [s] lifetime

[136] 25 80 0.5 grid Reliable several
m-hop weeks

[131] 14 6 600 2 lines Regular 6
m-hop months

[131] 13 6 600 2 lines custom NA
[132] 12 NA NA 2 lines Reliable NA

m-hop
[134] 18 NA NA 2 lines NA NA
[139] 48 NA NA 2 lines NA NA
[6] 16 NA 4 custom Regular 3.2

m-hop months
[133] 64 36 43200 1 line Regular NA

m-hop
[135] 8 NA NA 1 line Regular NA

m-hop
[137] 15 50 NA grid custom NA

Regular/
[138] 14 16 0.5 2 lines Reliable NA

m-hop
[11] 43 32 300 custom Regular 4

m-hop months
[11] 92 32 1200 custom Regular 2.5

m-hop months

duty-cycles, instead, are different since they depend on application requirements. It

ranges from 1 or more packets generated per second, up to a packet generated each

12 hours. Finally, adopted routing algorithms are multi-hop and reliable multi-hop

(see Section 3.3), other than custom implementations. Details on mentioned routing

protocols can be found in [115].

Table 7.2 reports the details of all the case studies performed in the following

sections. In particular, to easily show the capabilities of the proposed approach, we

consider three case studies related to different platform, topology, applications, and

routing algorithms.
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Table 7.2: Performed Experiments
Platform Case Nodes Packet Duty-cycle Topology Routing Metrics

Study [Byte] [s]

Xbow 1 10 25 2,4,20 in line Regular m-hop MTTF, uptime
Mica 2 1* 13 25 2,4,20 hybrid in line Regular m-hop MTTF, uptime

Xbow 120, Regular m-hop Connection Res.
Mica Z 2 50 25 600, random Reliable m-hop , data delivery Res.

1800 random walk lifetime

Regular m-hop
Reliable m-hop Connection Res.

Xbow 3 30 [25,250] 360,3600 Bridge random walk, data delivery Res.
Mica Z gossiping lifetime,

flooding overhead

7.2 Experiments on simple in line topology

Figure 7.1 depict the topology composed of 10 nodes considered in this set of exper-

iments. The inter node distances are set so that nodes are able to communicate only

with their 1-hop neighbors. Despite its simplicity, this deployment is often adopted

in many real-world applications as shown in Table 7.1. Moreover, this topology can

be thought as a single branch of a more complex topology.

Figure 7.1: The considered linear topology.

7.2.1 Evaluated Metrics

The metrics we evaluate are: i) node uptime, and ii) node Mean Time To Failure

(MTTF), referred to isolation failures (see Table 6.1). The node uptime is defined

as the availability of a node (probability that a node is running) multiplied by the

overall observation period. They have been defined as reward variables in the Mobius

tool [140].
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For several applications, it is interesting to evaluate such metrics per cluster of

nodes. A cluster of nodes can be considered as a group of nodes which lays in the

spatial proximity of each other and which shares the same neighboring nodes. The

cluster uptime can be defined as the maximum of uptime values of all the nodes be-

longing to the cluster. In the same way, the cluster MTTF is the maximum of MTTF

values of all cluster nodes. We chose these definitions because they are consistent

with the mission of the WSN as a whole, instead of the mission of single nodes:

nodes belonging to the same cluster are indeed usually adopted to monitor the same

environmental phenomena. Moreover, it is sufficient that a single node per cluster is

available to let produced measurements be forwarded to the sink

It is worth noting that other metrics can be simply defined using the same for-

malism. Hence the measurements can be tailored for the specific objectives of the

analysis.

Sensitivities analysis are conducted on these metrics as a function of both the

workload and the failure rate. The workload can be considered as the set of activities

periodically performed by each node (measuring, computing, transmitting, receiving

and forwarding) every X seconds, where X is the so called “duty-cycle“ or “idle

period“.

In this set of experiments, attention is focused on measures related to links in-

stead of nodes because, as reported in Section 6.1, the WSN fails when ( see Table

6.1): a) the amount of data delivered to the sink is less than a given threshold (data

delivery failure), and/or b) when a subset of the network is not able to reach the
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Table 7.3: Parameters used for the simulation process (their values are provided by
the External Engine)

Variable Type Range type Range

isReactive bool Fixed 1
bandwidth int Fixed 19600
batteryEnergyJoule int Fixed 11700
CoverageThreshold double Fixed 0.7
CpuEnergySeconds double Fixed 2,00E-06
dutyCycle int Manual [2,4,20]
numberOfNodes int Fixed 10
packetSize int Manual 50
defaultRXRadioConsumption double Fixed 4.0E-5
defaultTXRadioConsumption double Fixed 6.5E-5
routingType int Fixed 0
TimerCheckConnection int Fixed 20
sensorFailureRate double Manual [1E-7, 5E-7, 9E-7, 1.1E-6]
simulationTime int Fixed 30 days
timeOutACK int Fixed 20

sink (disconnection failure). Node oriented metrics could return a finer-grain anal-

ysis however not useful and not cost-effective when evaluating the whole network.

Moreover considering only the coverage failures will results in a too much coarse-

grain analysis. Metrics i) and ii) are a good trade-off between detailed analysis and

evaluation costs.

7.2.2 Simulation Setup

Table 7.3 summarizes most of the parameters of the SAN model, along with the

values we adopted for the experiments. Actual values for these parameters have been

gathered from the related work (see section 2). The last three parameters are set

as variable. In particular, sensor failure rate and idle period parameters are used to

conduct sensitivity analysis, hence their values change during the simulation.

Each simulated node is a Crossbow Mica2, which has an Atmel ATmega128L
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microcontroller with 4 KB of RAM, 128 KB of ash, and a CC1000 radio. The radio

operates at 968 MHz, transmits at 38.4 Kbps, and uses Manchester encoding. Each

node was attached to a Crossbow Weather board [39, 124, 23] equipped with light,

humidity and temperature sensors. We assume every node to run a typical TinyOS

multi-hop application which senses and sends light and temperature values to a sink

node periodically, in multi-hop fashion, without stand-by periods, i.e. periods spent

by node in a low power state.

The model has been numerically solved using the Mobius tool, by performing a

transient analysis in a period of 30 days. The assumed observation period is longer

than the maximum expected lifetime of a single node [129] for the considered platform

and application i.e. 200 hours, considering the nature of the proposed application

(always-on and periodic WSN).

7.2.3 Results

Figure 7.2 shows the results of the sensitivity analysis conducted on the node uptime

and MTTF as a function of the idle period (i.e., the workload) and the failure rate.

In particular, Figures 7.2.a and 7.2.b show the results obtained with a failure rate

fixed to 5E − 7 and a idle period varying from 20 seconds down to 4 and 2 seconds.

Figures 7.2.c and 7.2.d are relative to a fixed idle period (4 seconds) and a varying

failure rate (1E − 7, 5E − 7, 9E − 7, 1.1E − 6 failures per second - fps). The plotted

values are obtained within a relative confidence interval of 95% of their mean and

variance.

As one could expect, the longer the idle period, the higher the uptime. As a
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(a) (b)

(c) (d)

Figure 7.2: Uptime (a),(c) and Mean Time To Isolate (b),(d) both in hours, for topology
of fig.7.1: (a) and (b) for different idle period of the application with constant failure rate of
5E − 7, (c) and (d) for different failure rate for a idle period of 4s.

general result, the estimated slope of the uptime increases as the idle period decreases,

for the considered topology. More in detail, for the 20s idle period experiment, the

uptime assumes almost the same value for the last 6 nodes, then it starts to decrease.

This is due to the critical value that the aggregated traffic assumes, starting from node

3 down to 1. In other terms, the more a node/cluster is close to the sink, the more

traffic it has to manage, the faster it will discharge its battery. This effect “shifts”

to the right as the idle period decreases. In particular, for idle periods equal to 4s
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and 2s, the uptime starts to significantly decrease from nodes 6 and 8, respectively

(short idle periods involve more traffic to be produced).

Moreover, for the last experiment (duty cycle of 2s) more than one knee can be noted

on the plot due to the great traffic that flows into the network: on the fourth and

sixth ‘hop’.

Figure 7.2.b outlines the values obtained for the MTTF. This plot evidences the

occurrence of isolation failures and how they propagate into the network. Consis-

tently with intuition, the MTTF is a decreasing function of the distance to the sink.

For instance, the failure of the node 2 implies that all other nodes, from 3 to 9, are

isolated. Moreover, the plots translate down as the idle period decreases. It is inter-

esting to relate MTTF estimates to uptime estimates. For example, with reference to

the 20s idle period, node number 9 is alive for 153.2 hours (Figure 7.2.a). However,

it is able to reach the sink for only 113.3 hours on average, wasting about 40 hours

of its lifetime.

As for Figures 7.2.c and 7.2.d, the relationship between the plots is dual to the one

observed in the previous case. When the failure rate increases, the uptime plots trans-

lates down (Figure 7.2.c), whereas the MTTF plots slope increases (Figure 7.2.d).

This last behavior is intuitive: the more often a node fails, the more often its child

nodes will result isolated. Note that the uptime plots obtained in correspondence of

failure rates equal to 9E − 7, 1.1E − 6 failures per second exhibit a more irregular

profile, due to the big impact of node failures: if a node fails, its one-hop neighbor

will be subject to less traffic to be forwarded, hence it will live longer.
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7.2.4 Improving the linear Topology

Measurements obtained for the linear topology show that the more a node is next to

the sink, the more it is prone to fail. Although peripheral nodes are less stressed, they

also fail prematurely, due to the isolation from the sink. A resiliency improvement

would thus be the MTTF improvement of peripheral nodes. To this aim, an intuitive

approach is to enforces the network topology duplicating the nodes in proximity of

the sink. Specifically, node 1 is duplicated with node 10, forming a pseudo-node 1’,

node 2 with 11, forming 2’, and node 3 with node 12, forming 3’ as shown in Figure

7.3.a. for a 30% cost increase. This enforcement introduces redundant paths into

the network, so as to tolerate the failure of one of the nodes belonging to one of the

mentioned groups (pseudo-nodes).

(a)

(b) (c)

Figure 7.3: (a) Improved topology: alternative paths are outlined with dotted arrows; (b)
and (c) MTTF achieved measures.
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Let us describe how the proposed approach helps to quantify the resiliency im-

provement we expect for this enforced topology. The MTTF benefit introduced by

this simple improvement is shown in Figures 7.3.b and 7.3.c. The Figure report the

MTTF as a function of the distance of the replicas to the sink, when varying the idle

period and the failure rate. We observe an overall improvement of the MTTF for all

the nodes, especially for the peripheral ones. With reference to Figure 7.3.b, the last

node results isolated after 127h, 121h and 110 h respectively, instead of 114h, 105h

and 96h obtained with the linear topology. A rapid change of slope can be observed

at the third cluster. The change is justifiable by the fact that node 4 acts as a bottle-

neck for all the network traffic, hence failing prematurely and causing the isolation

of all the nodes that depend on it. From Figure 7.3.c it is interesting observe that,

for a low failure rate (1E-7 fps), a almost constant MTTF is obtained (almost equals

to 155h). In this case, we obtain a MTTF increment for the last node of about 27

hours (21% of improvement). This also applies to other nodes. It is also clear that

even in this case node 4 still represent a resiliency bottleneck for the given topology.

7.3 Experiment on a Random Topology

This section presents results of the simulation of a WSN of 50 nodes randomly de-

ployed. The topology has been generated achieving a distribution of number of

neighbors per node reported in Figure 7.4 In our analysis, we consider 3 distinct

routing algorithms, namely i) multihop, ii) TinyOS Reliable Multihop, iii) Random

Parent Selection, here referred as random routing. For each considered algorithm,
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we evaluate a set of metrics to pinpoint both dependability bottlenecks and, for the

considered topology, the most appropriate routing algorithm among those consid-

ered. The same approach can be followed by a hypothetic user of the model, who

can exploit simulation results to fine-tune his applications.

Figure 7.4: Initial Routing tree for the considered topology

7.3.1 Evaluated Metrics

The following metrics (or reward variables) are used to evaluate system performances:

- Connection Resiliency as a function of time, defined as the average number of

alive and not isolated nodes, evaluated on a daily basis. The metric can be used to

estimate the maximum mission time after which the WSN is no more able to fulfill

the required coverage.

- Relative Data Delivery Resiliency as a function of time, defined as the

average number of useful packets delivered to the sink over the number of produced

packets, evaluated on a daily basis. It is useful to estimate the maximum mission

time after which the WSN is no more able to deliver the required fraction of data to
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the sink.

Node lifetime defined as the summing of all the interval of times where the

node is not failed.

Consistently with the former set of performed experiments, the workload is con-

sidered as the set of activities periodically performed by each node (measuring, com-

puting, transmitting, receiving and forwarding) every X seconds, where X is the

”duty cycle”. We assume every node to run a typical TinyOS multi-hop application

which senses and sends measurements to a sink node periodically (node 0) according

to the adopted routing algorithm. We focus on the Mica2 platform, equipped with

the Chipcon CC1000 radio devices at 968MHz and weather sensor board.

7.3.2 Simulation setup

Table 7.4 summarizes most of the parameters of the SAN model, along with the

values adopted for the experiments. Actual values for these parameters have been

gathered from real settings [11]. Sensitivity analyses are conducted by computing

the mentioned metrics as a function of i) node duty cycle (120s, 600s, and 1800s),

and ii) failure rate (1E-7, 5E-7, 9E-7, 1.1E-6 failures per hour). The model has been

numerically solved using the Mobius tool, by performing a transient analysis in a

period of 60 days. It is worth noting that in this set of experiments we consider

a larger time horizon for the simulation than in the former case studies, since the

simulated application use a larger duty-cycle, and hence nodes are likely to survive

for a larger amount of time.
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Table 7.4: Values for parameters used in the simulations.
Variable Type Range type Range

numberOfRetries int Fixed 5
isReactive bool Fixed 1
TTL short Fixed 50
ackSize int Fixed 1
aggregationTime int Fixed 10
bandwidth int Fixed 39600
batteryEnergyJoule int Fixed 11700
CoverageThreshold double Fixed 0.7
CpuEnergySeconds double Fixed 2,00E-06
IsDataAggregation bool Fixed 0
dutyCycle int Manual [120, 600, 1800]
gossipingProbability double Fixed 0.3
numberOfNodes int Fixed 50
packetSize int Manual 25
defaultRXRadioConsumption double Fixed 0.00004
defaultTXRadioConsumption double Fixed 6.5E-5
routingType int Manual [0,1,2,3,4]
TimerCheckConnection int Fixed 60
sensorFailureRate double Manual [1E-7, 5E-7, 9E-7, 1.1E-6]
simulationTime int Fixed 7776000
timeOutACK int Fixed 20

7.3.3 Results

Figure 7.5 sketches the routing tree computed on the considered topology at the

startup of the simulation by the multihop algorithm (both regular and reliable). As

shown in Figure 7.5, there are several nodes that act as leaf nodes, i.e. nodes without

children, while there are other nodes, such as node 47, acting as router node for

a conspicuous amount of nodes (for node 47, we account for 24 nodes). Consistent

with the intuition, such router nodes are more stressed by the forwarding activity and

hence more prone to fail. A failure of one of such nodes requires the re-computation

of the routing tree since new router nodes have to been selected in order to reach the

sink. For instance, we measured for node 47 a lifetime of only about 15 days over
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the 60 simulated. Consequently, after the failure of node 47, a new router is selected

. In this case, the analysis showed that node 48, a leaf node in the former topology,

starts to act as a router node, replacing node 47. Figure 7.4 reports the distribution

of the number of neighbor per node.

Figure 7.5: Initial Routing tree for the considered topology

This effect manifests more frequently when adopting the multihop and the reliable

multihop algorithms, since they tend to use the same set of routes while available,

hence overloading always the same set of nodes. This is very unlikely to happen when

using the random routing algorithm. This algorithm acts selecting randomly one of

the neighbors from the neighbor list, for each packet sent, thus distributing the load

in the network. While this could seam an acceptable solution, its main drawback is

that often packets transit following non optimal routes, in turn increasing the average

hops to pass to reach the sink, causing a low level of packets delivered to the sink.

Figure 7.6.(a) provides an example of estimation of the connection resiliency. In

the first days, the coverage of the two multihop based algorithms is higher than

that delivered by the random routing. However, as nodes start to fail (both due
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(a) (b)

Figure 7.6: (a) Connection Resiliency for the considered routing protocols, and for
duty cycle = 600s, failure rate = 5e-7 f/h, packet length = 25B; (b)Data Delivery
Resiliency for packet size of 25B, duty cycle 600s and failure rate 5E-7 f/h

to hardware failures, network partition or battery depletion), the random routing

algorithm tends to deliver better connection resiliency than the others. As shown in

Figure 7, this is due to the uniform discharge induced by selecting a random parent in

place of a fixed one, with the final effect of increasing the average number of surviving

nodes, and consequently, the overall connection resiliency.

Figure 7.6.(b) shows the metric of data delivery resiliency of the considered rout-

ing algorithms, for a packet size of 25Bytes, a failure rate of 5e-7 f/h and a duty-cycle

of 1 packet generated per 600s. Coherently with the intuition, the reliable multihop

is capable of delivering a larger amount of useful data to the sink (packet that are not

duplicated) - 95% on average of the generated packets. On the other side, the random

routing, while showing interesting characteristics for the coverage, is not capable of

delivering acceptable performance, since it is only capable of delivering 36% of the

packets, on average.
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Figure 7.7: Data Delivery Resiliency for packet size of 25B, duty cycle 600s and
failure rate 5E-7 f/h

Figure 7.7 shows the lifetime distributions related to the considered routing algo-

rithms.

Table 7.5 shows statistics for the distribution of Figure 7.7. As reported, the

random routing enables 23 nodes out of 50 nodes to reach the end of the simulation

without failing (maximum value for the lifetime, i.e., 60 days), while the multihop

and reliable multihop allow only 9 and 2 nodes to reach the maximum lifetime,

respectively. The distributions of Figure 7.7 shows also that the lifetime distributions

related to the reliable multihop routing has a small range of variance (26 days), tightly

concentrating values for the lifetime of nodes around the mean of 49 days.

This translates in a more foreseeable behavior of the WSN due the small interval

for node lifetime values. Moreover, the reliable multihop is capable of delivering a

higher rate of information to the sink node than the regular multihop, however at the

price of an additional overhead due to the acknowledgement, and extra transmissions

of lost packets. Oppositely, while the random algorithm delivers higher coverage and

smaller overhead, it is not capable of delivering the same amount of information to
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Table 7.5: Statistics for the lifetime distributions shown in Figure 7.7
statistics Multihop Rel. Multihop Random

No. Of observations 49 49 49
Minimum 23 34 24
Maximum 60 60 60
Freq. Of Minumum 1 1 1
Freq. Of Maximum 9 2 23
Range 37 26 36

1st Quartile 44 45 43
Median 51 49 57

3rd Quartile 55 55 60
Mean 49,857 49,184 51,163
Standard Deviation 7,962 6,435 10,502

the sink as the multihop.

As final analysis, for the considered topology, platform and for the considered

parameters, the simulation pinpoints the reliable multihop as the most convenient

routing algorithm to be used in order to achieve a good trade-off between the lifetime

of the network and the amount of data delivered to the sink. Analysis for different

value of parameters revealed similar insights showing that the reliable multihop is

an effective solution when dealing with large networks with non negligible failure

rates. It also pointed out that the random routing is a viable solution for smaller

networks and short duty-cycle where the overhead of the reliable multihop overweighs

the provided benefits.

7.4 Experiment on a Real Topology

The objective of the following analysis is to demonstrate how the proposed approach

may be employed during the design of a WSN for infrastructure monitoring.

Consistently with the size of the real world case studies reported in Table 7.1, we
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Figure 7.8: Topology of the studied WSN

focus on a 30 nodes WSN covering a hypothetic bridge composed of a 250 meters

suspended roadway and of two 50 meters high towers. The 2-dimensional topology

of the considered WSN is depicted in Figure 7.8.

7.4.1 Evaluated Metrics

According to the definitions provided in Section 3, the following reward metrics are

evaluated:

- Relative Connection Resiliency as a function of the number of manifested

failures, defined as the fraction of alive and not isolated nodes over the number of

alive nodes. This metric is useful to measure the WSN ability to keep the network

connected in the presence of failures.

- Absolute Connection Resiliency as a function of time, defined as the average

number of alive and not isolated nodes, evaluated on a daily basis. The metric can
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be used to estimate the maximum mission time after which the WSN is no more able

to fulfill the required coverage.

- Relative Data Delivery Resiliency as a function of the number of mani-

fested failures, defined as the fraction of useful packets delivered to the sink over

the number of produced packets. It is used to measure the WSN ability to keep the

required data delivery efficiency in the presence of failures.

- Relative Data Delivery Resiliency as a function of time, defined as the average

number of useful packets delivered to the sink over the number of produced packets,

evaluated on a daily basis. It is useful to estimate the maximum mission time after

which the WSN is no more able to deliver the required fraction of data to the sink.

- Overhead, defined as the ratio between the number of non useful packets (dupli-

cated and corrupted) and useful packets delivered to the sink in ΔT , i.e.

Overhead(ΔT ) =
Dup Packets(ΔT ) + Corr Packets(ΔT )

Useful Packets(ΔT )
(7.1)

- Node Lifetime defined as the time after which a node stops working.

7.4.2 Evaluation Strategy

We aim to assess the WSN resiliency as a function of routing algorithms and several

application parameters values. We focus on the following routing algorithms: i)

multihop, ii) TinyOS reliable multihop, iii) random parent selection1, iv) gossiping,

and v) flooding. As for application parameters, we focus on packet sizes (from 25 up

to 250 Byes) and application duty-cycles (from 3600 down to 360 seconds). Finally,
1here referred as random routing
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since there is no agreement in the literature on the hardware failure rate of these

networks, we repeat each analysis for different failure rates. The rate of the hardware

faults is 1 each 115 days (1E-7 failures per second - fps) and 11,5 days (1E-6 fps).

In the following, results of three out of eight possible experimental campaigns are

reported:

Experiment 1: low workload (packet size of 25B and duty-cycle of 3600s) and low

failure rate (1E-7 fps);

Experiment 2: high workload (packet size of 250B and duty-cycle of 360s) and low

failure rate, to analyze the impact of a more stressful application;

Experiment 3: low workload and high failure rate (1E-6 fps), to analyze the con-

sequences due to a harsher environment.

We use the Mobius modeling environment [119] to simulate the SAN model. A

simulation on a period of 6 months is used. The confidence level is 95%. Unless

otherwise specified, the parameter values are as in Table 7.6.

According to the proposed approach, experiments consist of the following phases.

behavioral simulation. The topology is built and the network is simulated

by the TOSSIM simulator. Values for static parameters are gathered and stored in

simulator logs. As for the sensor node, we focus on Crossbow MicaZ platform, which

is the evolution of the Mica2 [23], which has an Atmel ATmega128L microcontroller

with 4 KB of RAM, 128 KB of ash, and a CC2420 radio. The radio operates at 2.4GHz

using the Zig-Bee standard, and it transmits at 256 Kbps. Each node was attached to
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Table 7.6: Simulation parameters
Parameters Description Default Value

Energy PerReceivedBit Energy consumption for radio activity, per received bit 1.36E-6J
Energy PerSentBit Energy consumption for radio activity, per sent bit 2,80E-06J
NumberOfRetries Number of retries when sending a packet, after that 3

if no ack is received, the packet is discarded 3
TimeToLive Time to Live of sent packets 15

Vcc Batteries Voltage 3V
Ack Size Size of the acknowledgement in Byte 10B

Bandwidth Available bandwidth 19200 bit/s
Batt energy Total battery energy in Joule 10800J

Cpu Consumption CPU active Energy Consumption in mA 0.0087mA
Cpu IdleConsumption CPU idle Energy Consumption in mA 2.16E-4mA

Duty Cycle Application duty cycle [3600.0s, 360.0s]
Gossiping Prob Probability of gossiping - used in gossiping routing 0.03
Sensor number Number of sensors composing the sensor board 3
Nodes number Number of nodes 30
Packet Size Size of the packets in Byte [25B, 250B]

Routing Type Type of routing algorithm. 0 multihop [0-4]
1 reliable multihop, 2 random, 3 gossiping, 4 flooding [0-4]

Routing time Time period for sending route check packets 120s
Sensors fault rate Rate of sensor board hardware faults [1.0E-7fps, 1.0E-6fps]
Simulation End Simulation time 15552001s
Ack timeout Time-out after that a packet is resent 20s

a Crossbow Weather board equipped with light, humidity and temperature sensors

[39, 124].We assume every node to run a typical WSN application which senses and

sends light and temperature values to a sink node, periodically. We assume that all

nodes are initially equipped with two AA lithium ions batteries capable of providing

10800 Joules of total energy (see Table 7.6).

Model generation. The Model Generator component is used to generate the

SAN model by using the result of the behavioral simulation. Single node models are

joined together forming the WSN failure model, according to the simulated topology.

The Changes Manager component is added to the model as an external library and

the overall model is compiled into a single executable file.
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SAN model simulation. The SAN model is simulated and the reward variables

are estimated.

(a) (b) (c)

Figure 7.9: Relative connection resiliency against the number of manifested failures.
(a) Experiment 1, (b) Experiment 2, (c) Experiment 3. Comparing (a) and (b), the
difference between algorithms is more evident as the workload increases. Comparing
(a) and (c), an increasing slope can be observed when the failure rate increases, and
no differences are observed between routing algorithms, since hardware faults become
the predominant cause of node failures.

(a) (b) (c)

Figure 7.10: Absolute connection resiliency against time. (a) Experiment 1, (b)
Experiment 2, (c) Experiment 3.

7.4.3 Results from Low Failure Rate Scenario

Figures 7.9-7.13 show the results of the performed analysis.
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(a) (b) (c)

Figure 7.11: Relative data resiliency against the number of manifested failures. (a)
Experiment 1, (b) Experiment 2, (c) Experiment 3. Comparing (a) and (b), flooding,
gossiping and reliable multi-hop show a sharp drop, which is increased and anticipated
in the case of higher workload. Random and regular multi-hop are less sensitive to
workload changes, at the cost of lower resiliency. Comparing (a) and (c), Differences
between flooding, gossiping and reliable multi-hop are mitigated by the higher failure
rates. At the end in fig. (c), after several failures, all the algorithms tend to the same
resiliency level.

Figure 7.9.(a) reports the relative connection resiliency against the number of

manifested failures in the network2 for Experiment 1. Initially, all the considered

routing algorithms rebound to failures in a similar way, despite their different be-

havior. Differences start to be noticed after the 25th failure (connection resiliency

of about 0.7) when the resiliency of gossiping and flooding start to decrease more

sharply. This is mainly due to the higher overhead these algorithms cause in the

network (see Figure 7.13.(a)), which cause a collapse of the WSN at a given point.

The positive slope shown for multi-hop and reliable multi-hop algorithm after the

30th failure is indicative also of transient isolation failures, i.e. induced by transient

hardware failures of inner nodes. This effect is however not observable if looking
2note that both transient and permanent failures are considered in this work, hence the number

of observed failures can be greater than the number of nodes.
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(a) (b) (c)

Figure 7.12: Relative data resiliency against time. (a) Experiment 1, (b) Experiment
2, (c) Experiment 3. The differences observed in sub-fig. (c) after 64 days are not
significant, since at that time almost all nodes are failed, as shown in Fig. 7.10.(c).

at Figure 7.10.(a), which reports the absolute connection resiliency as a function of

time. This is due to the different scale: the time-to-failure process is not uniform

with respect to time, and several failures tend to concentrate at the last days of

exercise. On the other hand, 7.10.(a) is useful to estimate the maximum mission

time after which the WSN is no more able to fulfill the required connectivity degree.

Hence, it might be useful to schedule maintenance actions in advance (e.g., battery

replacement and damaged sensor nodes substitution). The collapse is also observable

from Figure 7.10.(a), which reports the absolute connection resiliency as a function of

time. From this Figure we can also estimate that the collapse occurs after about 145

days of exercise. This is useful to guide developer choices or to schedule maintenance

actions in advance. For instance, for a WSN with a mission time of 120 days (i.e.,

before the collapse) and a 15 nodes minimum coverage, gossiping and flooding may

still represent a reasonable choice, for the given workload and failure rate.

The situation changes when considering a more stressful workload (Experiment 2,
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(a) (b) (c)

Figure 7.13: Network overhead (log scale) induced by routing algorithms over time;
regular multi-hop and random are not reported, since they do not introduce overhead.
(a) Experiment 1: flooding and gossiping present almost the same large overhead;
reliable multi-hop overhead increases as the network ages, due to the reduction of
available nodes and (good quality) paths to the sink. (b) Experiment 2: flooding and
gossiping overhead drops earlier, due to the shorter lifetime of the network; reliable
multi-hop overhead has a peak value at 78 days of exercise, corresponding to the sharp
drop in both data and connection resiliency (Figs. 7.10.(b) and 7.12.(b)). (c) Exper-
iment 3: the peak for reliable multi-hop overhead shifts left (at 15 days), justifying
the earlier drop in data and connection resiliency (Figs. 7.10.(c) and 7.12.(c)).

Figures 7.9.(b) and 7.10.(b)). In this case, flooding and gossiping are not a suitalble

choice since they tend to overload the network, shortening the lifetime of forwarding

nodes that exhaust their energy budget sooner than when running random, multihop,

and reliable multihop routing algorithms. In particular, as shown in Figure 7.9.(b),

the random routing outperforms the others in terms of the connection resiliency.

However, looking only at connection resiliency may lead to incorrect conclusions. As

a matter of fact, random routing is not able to deliver more than the 24% of the

produced data (see Figure 7.11.(b) reporting the relative data delivery resiliency as

a function of the number of failures). This result is confirmed also for Experiment

1 (see Figure 7.11.(a)). Hence, a judicious choice may be to adopt reliable multihop
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that enables the network to deliver a larger amount of data to the sink thanks to its

transmission control policy.

This result was expected due to the presence of lossy links and to the absence

of retransmission mechanisms, as anticipated in sections 3.2 and 5.3. Random rout-

ing performs even worse than regular multi-hop, due to the simplicity of its parent

selection function which does not always select the best node over the path to the

sink. However, this situation changes as network ages, especially in the case of a

more stressful workload. Looking at Figures 7.11.(b) and 7.12.(b) it is worth noting

that after 127 days, corresponding to 16 failures, reliable multi-hop is outperformed

by regular multi-hop, and, after 162 days (19 failures), it is outperformed even by

random routing. In other terms, as the network ages, and the number of alive sen-

sors starts to decrease, it is more resilient to send packets randomly, rather than

consuming resources for reliable transmission (the rate of retransmitted packets in-

creases due to the worse quality of available paths). This effect can also be observed

in figure 7.13.(a): the overhead induced by reliable multi-hop increases over time.

This suggests the adoption of adaptive routing strategies, able to change the adopted

routing policy according to the current resiliency level.

7.4.4 Results from High Failure Rate Scenario

All mentioned observations are mitigated when the WSN manifests higher failure

rates (Experiment 3). In this case, the connection resiliency (Figures 7.9.(c) and

7.10.(c)) does not help for selecting the best routing algorithm, since hardware faults
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become the predominant cause of node failures, and the different behavior of rout-

ing algorithms does not impact on the failure dynamics. On the other hand, data

delivery resiliency (Figures 7.11.(c) and 7.12.(c)) is still useful to observe significant

differences, suggesting that i) redundant (flooding and gossiping) and reliable algo-

rithms are the best choice to face the higher number of failures, as expected, and ii)

the difference between redundant and reliable algorithms is not as relevant as in the

former experiments, hence a reasonable choice is to select flooding or gossiping, since

they are simpler to implement.

Table 7.7: Nodes with the shortest evaluated lifetime, for each experiment and routing
algorithm

Flooding Gossiping Multi-hop Reliable multi-hop Random
Exp node ID lifetime node ID lifetime node ID lifetime node ID lifetime node ID lifetime

days days days days days

12 120,7 12 119,6 21 132,6 11 129,2 20 136,7
6 123,8 6 124,4 23 136,8 22 131,2 22 138,1

1 4 124,7 7 124,7 29 137,0 24 132,0 28 138,2
7 125,1 4 124,9 17 137,6 1 132,6 13 138,8
15 125,6 13 124,9 4 137,9 7 133,6 15 138,8
13 126,6 10 126,6 25 138,4 4 134,2 1 139,7
12 4,9 12 4,9 4 59,2 16 68,1 29 41,4
6 5,1 13 5,1 19 70,4 15 73,3 27 95,4

2 13 5,1 14 5,2 11 71,7 14 86,9 15 97,5
14 5,3 6 5,3 7 80,7 6 88,5 3 98,8
3 5,3 3 5,4 12 91,1 5 97,0 18 100,1
4 5,4 4 5,4 15 96,0 4 104,8 25 102,9
29 21,6 19 22,3 5 23,0 1 22,5 26 23,0
6 22,8 8 22,4 7 23,3 5 23,5 13 23,2

3 22 23,2 1 22,9 27 23,3 25 23,8 9 23,3
20 23,4 10 23,3 21 23,5 26 24,0 2 23,4
8 23,5 20 23,5 29 23,5 27 24,0 14 23,5
9 23,7 23 23,6 11 23,8 18 24,1 19 23,6

7.4.5 Discussion

Table 7.7 reports lifetime results. In particular, the table lists the nodes with the

shortest evaluated lifetime for each experiment and routing algorithm. This is use-

ful to highlight dependability bottlenecks and to gain more insight on the failure
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behavior. For instance, in experiments 1 and 2 flooding and gossiping tend to dis-

charge inner nodes first, e.g., nodes number 12 and 6 which are deployed on the

suspended roadway and which are forwarders to the sink for the other nodes. This

causes network disconnection earlier than other algorithms. In particular, concerning

experiment 2, the estimated lifetime of the first failing nodes is about 5 days, against

61 days of average network lifetime (see Table 7.8). Hence, after only 5 days, the

majority of nodes result isolated, which justifies the collapse observable in Figure

7.11.(b) and 7.12.(b). This effect is not observed for the remaining algorithms. For

instance, reliable multi-hop tend to stress the nodes which are closer to the sink (e.g.,

nodes 16, 15 and 14). In other terms, the more a node is close to the sink, the more

traffic and retransmissions it has to manage, the faster it will discharge its battery.

At the same time, both data and connection resiliency are better than in the previous

case, since: i) the most stressed nodes for reliable multi-hop exhibit a lifetime of one

order magnitude greater than the one estimated for flooding and gossiping (e.g. 68

days for node 16 with reliable multi-hop against 5 days for node 12 with flooding),

and ii) being closer to the sink, these nodes have a larger set of redundant paths

to the sink. More detailed results can be achieved by looking at the traces of the

experiments. For instance, we are able to evaluate how many transient failures occur

on each node, when they occur, and what consequences they imply, e.g., in terms

of lost packets. Also, we can study the path followed by each packet flowing in the

network, assessing if it reaches the sink, if (and where) it is lost and why (e.g., due

to a node failure, a link failure, or a TTL expiration), and if it is retransmitted.
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Table 7.8: Summary of experiments

Table 7.8 reports a summary of the experimental results achievable with the

proposed approach. In particular the Table reports the connection and data delivery

resiliency obtained for each experiment in terms of the days and number of failures

after which the resiliency becomes lower than 75% In addition the table includes

the average node lifetime, the average time spent in isolation by the nodes, and the

simulation time needed to perform one batch of simulation for each experiment.

The table is useful to have a quick understanding of the results. For instance, it is

clear that the random routing exhibits the best performance in terms of connection

resiliency, especially for experiment 2. This is confirmed by lifetime and isolation

results: nodes equipped with random routing usually live longer (e.g., 137.4 days

for experiment 2 against 122.6 days of reliable multi-hop) and are connected to the

sink (e.g., only 13.3 days of isolation for experiment 2, against 29 days of reliable
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multi-hop). On the other hand, nodes are not able to deliver their packets to the

sink, since data delivery resiliency equals 0.24 at most. This again confirms that

data delivery resiliency is very useful to countermeasure traditional metrics, such

as connection resiliency and nodes lifetime. Reliable multi-hop appears to be best

trade-off in terms of connection and data delivery resiliency results, and it also leads

to lifetime and isolation results which are comparable to regular multi-hop. As for

flooding and gossiping, it is interesting to look at the results obtained for experiment

2. After only 2 failures, and after about 6 days of operation, both connection and

data delivery resiliency becomes lower than 75%. This is consistent with the short

nodes lifetime (i.e., about 62 days) and with the long isolation time: nodes spend

about 60% of their time, on average, being isolated from the sink. This is due to the

fact that flooding and gossiping tend to discharge inner nodes first, leaving a large

set of nodes isolated from the sink after only few days of operation.

The simulation time for each experiment is reported to give evidence of the prac-

tical feasibility of the approach. In our settings the time needed for one batch is

less than 200 seconds in most of the cases. From the table is however evident that

the time needed changes depending on the complexity of the particular experiment.

For instance, more time is needed for experiment 2, which implies more events to

be processed (due to the more stressful workload). On the opposite, experiment 3

require less time, due to the higher failure rate which shorten nodes lifetime. Also,

the simulation of flooding and gossiping requires more time due to the larger amount

of packets to be simulated.
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Conclusions

This thesis addressed the problem of the resiliency assessment of WSN. Assessing

the resiliency of WSNs is a crucial task in designing dependable WSNs, since it

could help to i) anticipate critical choices e.g., concerning node placement, running

software, routing and MAC protocols, ii) mitigate risks, e.g., by forecasting the time

when the WSN will not be able to perform with a suitable level of resiliency, and iii)

prevent money loss, e.g., providing a criteria to plan and schedule maintenance actions

effectively. Nowadays, the lack of effective approaches for the resiliency assessment

of WSNs is the major cause of distrust of industries that are still questioning the

adoption of WSN in critical application scenario, despite WSNs represent a good

opportunity to reduce the installation and maintenance cost of more than one order

of magnitude. However, in order to assess the resiliency of WSNs, two main challenges

must be overcome.

145
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1. Definition of Resiliency. Resiliency has been defined as the persistence of de-

pendability when facing ”changes”[12], and past research efforts have been de-

voted to define the concept of connection (or network) resiliency, i.e., the num-

ber of “changes”, in terms of node failures, that can be accommodated while

preserving a specific degree of connectivity in the network. However, while this

concept still applies to WSNs, it is not enough to characterize the data-driven

nature of WSNs. The service delivered by the WSN does not encompass only

the connection, but also the computation, i.e., even when sensor nodes are

potentially connected ( a path exists between nodes and the sink node), data

losses can still occur.

2. Complexity of the assessment. It is easy to figure that, even assessing only the

connection resiliency of WSN is dramatically exacerbated by the complexity of

potential changes that may take place at runtime. The workload, included the

use of aggregation/fusion algorithms, impacts on the number of packets sent on

the network. The path followed by packets depends on the routing algorithm,

on the topology, and on the wireless medium (packets can be lost). The energy

profile is affected by the workload, by the number of forwarded packets, and by

the battery technology. All above factors impact on the failure behavior, e.g.,

a node can fail due to battery exhaustion. A node can also fail independently,

due to faults in the sensing hardware. In turn, a failure of a node may induce a

partition of the network into two or more subsets, involving a large set of nodes

to be unavailable, i.e., isolated, hence, unable to send acquired data to the sink.
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Clearly, such high degree of inter-dependence complicates the assessment task,

by dramatically increasing the number of variables and dynamics to encompass.

Hence, important questions to answer are : i) how the node workload, hardware

platforms, topology and routing protocols impact on the failure proneness of

nodes and of the network, and, vice-versa, ii) how node and network failures

impacts on the nominal behavior of the WSN (e.g., how the failure of a node

mutates the behavior of running workload or routing protocols.

This thesis defined the concept of data delivery resiliency and qualifies the concept of

WSN resiliency as a non functional properties composed by both connection resiliency

and data delivery resiliency. Data delivery resiliency is defined as the number of

failures (or the longer time interval) the WSN can sustain (a WSN can survive)

while delivering an amount of data to the sink node greater than a threshold. The

concept of data delivery resiliency relates to i) the computational load on nodes which

may causes packet losses due to buffer overrun, ii) application requirements, e.g. at

least a given amount of produced measurements must be delivered to the sink node

iii) routing and MAC protocols impacting on the data delivery features and packet

error rate and iv) radio interferences and packet loss/corruption phenomena on the

propagation medium. The variation in the amount of useful data received by the

sink due to disconnection failures that can be tolerated by the WSN depends on the

requirements of the application.

In order to assess the resiliency mastering the intrinsic complexity, this thesis

proposed a novel and holistic approach for the resiliency assessment of WSNs. Key
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focus of the proposed approach is the holistic assessment, i.e., the comprehensive

assessment performed by taking into account all subsystems and inter-related factors

concurring to the behavior of the WSN.

To master the assessment complexity, the approach separates the assessment of

the failure behavior from the evaluation of the nominal behavior by considering i)

a set of parametric analytical failure models, and ii) a WSN behavioral model, re-

spectively. The behavioral model is exploited to configure the WSNs in terms of

hardware platform, topology, routing and MAC protocols, and to study the nominal

behavior of the software, included the OS, and the power consumption of the nodes.

Evaluations performed with the behavioral models are used to gather values for fail-

ure model parameters of the WSN under study, such as the packet forwarding rate

of each node. Then the power of the analytical failure model is exploited to evaluate

a set of metrics of interest such as the resiliency. The approach delegates the effort

of re-computing dynamic parameters which vary during the evaluation of the failure

model, to an external component, namely the External Engine which orchestrates the

evolution of the failure model. The external engine can be regarded as a supervision

entity encapsulating and managing aspects that are generally difficult or onerous to

express at the level of abstraction of analytical models, such as routing protocols and

topology.

Another goal obtained following the proposed approach is the automated failure

model generation. By decoupling the analytical models from “changes“ management

issues, the External Engine allows to simplify the failure model which can adapt to
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each manifesting change, transparently, e.g., by invoking facilities provided by the

External Engine. The extreme simplification obtained, allowed the implementation

of a Failure Model Template Library which is used to generate the final WSN failure

model consistently with the WSN observed in the behavioral simulation, thus avoid-

ing manual modeling phases when changing the structure or the features of the WSN

under study.

Relying on an automated modeling phase, the proposed approach allows final

users (i.e., WSN developers) to work within their knowledge domain, without requir-

ing specific modeling and/or programming skills. In other terms, developers interact

with artifacts that are related to their domain, such as behavioral simulators.

Other than providing specific considerations on the presented case studies, this

chapter summarizes the general lessons which have been learned and that can be

reasonably taken into account when assessing the resiliency of WSN or developing

resilient WSN.

8.0.6 Lessons Learned

The approach has been experimented considering a set of realistic case studies, relat-

ing to different hardware platform, routing protocols, topology and applications. A

Quantitative evaluation concerning MTTF, lifetime, network overhead, data delivery

resiliency and connection resiliency (both against the time and the number of mani-

fested failures), has been provided. Performed simulations shown how the approach

can be used to pinpoint critical nodes. Moreover, achieved results also shown to be
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useful to i) guide possible resiliency improvement strategies, for instance to quan-

titatively and judiciously configure the topology and software of nodes in terms of

duty-cycle, size of radio packet and adopted routing algorithm, and ii) to evaluate

possible cost-dependability trade-offs. In particular, we demonstrate that, concern-

ing a simple in line topology, we obtained an overall MTTF improvement (e.g., 21%

for the last node in the topology for a given setting), by increasing the cost of 30%

(three more nodes in the network).

Achieved results allowed us also to justify the need of complementing the concept

of connection resiliency with the concept of data delivery resiliency. Experiments

showed that connection resiliency can be misleading for characterizing the overall

resiliency level of a WSNs and that data delivery resiliency is very useful to counter-

measure traditional metrics, such as connection resiliency and nodes lifetime, adding

one further element to discriminate between different solutions. For instance, experi-

ments demonstrated that the random routing exhibits the best performance in terms

of connection resiliency, especially for stressing workload. This is confirmed by life-

time and isolation results: nodes equipped with random routing usually live longer

and are longer connected to the sink wasting a short time as isolated. However, it

is not able to deliver a sufficient amount of data to the sink showing a data delivery

resiliency equals 0.24 at most.

Interesting results come also across the evaluation of the sensitivity of the resiliency

against varying failure rates and routing algorithms. Results show that in the case

of high failure rate, the resiliency of a WSN is not sensitive to workload parameters
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and routing algorithms, which on the other side became a tricky task for low failure

rates. In the case of low failure rate, and low workload, epidemic and reliable routing

protocols are able to deliver the same level of connection and data delivery resiliency,

while in the case of low failure rate and high workload the use of acknowledgment-

based multi-hop is the best choice for preserving acceptable levels in data delivery

and connection resiliency in a large time horizon, since epidemic algorithms tend to

discharge inner nodes first, leaving a large set of nodes isolated from the sink after

only few days of operation.

However, WSN aging phenomena and network degradation suggest that, from a given

instant of time (or after a given number of manifested failures ), random walk routing

represents a good backup solution to reliable multi-hop, enabling a longer lifetime

and higher network resiliency due to its null overhead and uniform node discharge

features. Consequently, performed analysis showed that the WSN resiliency may

benefit of a routing policy switching at a given point.

This thesis demonstrated that in order to assess the resiliency of a complex system,

a holistic assessment strategy is needed. Moreover, the proposed approach poses also

an intriguing challenge for interested industries in the field of (and not limited to)

sensor networks, consisting in the chance of releasing failure model libraries upon the

release of WSN hardware, following the same approach as for HDL libraries. This

way, following the presented approach, the resiliency assessment may play a central

role in making the vision of the successful and trustworthy adoption of WSNs in

critical scenarios come true.
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Appendix A

A.1 Basic Notion of Dependability and Resiliency

In [141] computer system dependability was defined as ” the quality of the delivered

service such that reliance can justifiably be placed on this service”. This notion has

evolved over the years. Recent effort from the same community defines the depend-

ability as ”the ability to avoid service failures that are more frequent and more severe

than is acceptable” [142]. This last definition has been introduced since it does not

stress the need for justification of reliance.

The dependability is a composed non-functional attribute, that encompasses the

following sub-attributes:

• Availability: readiness for correct service. A system is said to be available at

a the time t if it is able to provide a correct service at that instant of time. The

availability can thus be thought as the expected value E(A(t)) of the following

A(t) function:
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A(t) =

{
1 if proper service at t

0 otherwise
(A.1)

In other terms, the availability is the fraction of time that the system is oper-

ational;

• Reliability: continuity of correct service. The reliability R(t) of a system is

the conditional probability of delivering a correct service in the interval [0; t],

given that the service was correct at the reference time 0 [RIF]:

R(0; t) = P (no failures in [0; t] | correct service in 0) (A.2)

Since reliability is a function of the mission duration T, mean time to failure

(MTTF) is often used as a single numeric indicator of system reliability [RIF

82]. In particular, the time to failure (TTF) of a system is defined as the

interval of time between a system recovery and the consecutive failure.

• Safety: absence of catastrophic consequences on the user(s) and the environ-

ment;

• Confidentiality: absence of improper system alterations;

• Maintainability: ability of a system to be easily repaired after the occurrence

of a failure. A commonly adopted indicator for the maintainability is the mean

time to recover (MTTR). In particular, the time to recover (TTR) can be

defined as the time needed to perform a repair, that is, the interval of time

between a failure and its consequent recovery.
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Recently, the notion of dependability is shifting more and more to the concept

of resiliency [12]: the persistence of dependability when facing ”changes”. This

change of perspective leads to new requirements of modern fault tolerant systems,

such as the ability of accommodating unforeseen environmental perturbations or

disturbances. At same time, the concept of resiliency dictates the need for new

evaluation approaches, since, resiliency assessment approaches now must deal with

i) dependability assessment when ii) changes manifests in driving and environmental

variables. However, as will be detailed later in Chapter 2, still a little attention is

devoted in this new perspective due to limitation of past approaches.

A.1.1 Threats

The causes that lead a system to deliver an incorrect service, i.e., a service deviating

from its function, are manifold and can manifest at any phase of its life-cycle. Hard-

ware faults and design errors are just an example of the possible sources of failure.

These causes, along with the manifestation of incorrect service, are recognized in the

literature as dependability threats, and are commonly categorized as failures, errors,

and faults [142].

A failure is an event that occurs when the delivered service deviates from correct

service. A service fails either because it does not comply with the functional specifi-

cation, or because this specification did not adequately describe the system function.

A service failure is a transition from correct service to incorrect service. The period

of delivery of incorrect service is referred as service outage. The transition from

incorrect service to correct service is a service recovery or repair action.
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An error can be regarded as the part of a system’s total state that may lead to a

failure. In other words, a failure occurs when the error causes the delivered service

to deviate from correct service. The adjudged or hypothesized cause of an error is

called a fault.

Failures, errors, and faults are related each other in the form of a chain of threats.

A fault is active when it produces an error; otherwise, it is dormant. A failure occurs

when an error is propagated to the service interface and causes the service delivered

by the system to deviate from correct service. An error which does not lead the

system to failure is said to be a latent error. A failure of a system component causes

an internal fault of the system that contains such a component, or causes an external

fault for the other system(s) that receive service from the given system.
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