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Private Interests in Public Tenders

Konstantin Sonin

Abstract

The paper explores auctions that assume additional conditions to be satisfied by the winner.

If it is the task of the auctioneer to determine some specific characteristics of the good, his

large discretion allows him to manipulate the results of the auction in his own interests. If the

auctioneer is self-interested, he choses the ’most specific’ conditions for the tender, while revenue

maximization requires the ’least specific’ conditions. The paper aims to provide a framework

for understanding of allocative and revenue inefficieny of many auctions and tenders held in

Russia during transition.



1. Introduction

When a good is to be auctioned off and it is the task of the auctioneer to determine some specific

characteristics of the good, his large discretion allows him to manipulate the results of the auction.

In particular, if the auctioneer is interested in getting side-transfers from bidders instead of revenue

maximization, he may choose a particular pattern of characteristics to favor some bidder. These

side-transfers (bribes) become potentially very large, when bidders’ preferences differ substantially.

In Russia and some other transition economies that have experienced a rapid privatization with very

large and heterogeneous assets being privatized, this problem is particularly severe. When a large

enterprise is privatized through an open auction, the requirement of large-scale investment favors

liquidity-rich agents (outsiders), while the requirement to keep (excess) employment favors liquidity-

constrained insiders. The same logic applies to many public tenders currently held in Russia and

other economies in transition.

The Moscow Times, a respected Russian newspaper, notes that ”the government’s instructions on

state contracts include clauses permitting both open and closed tenders. The latter could be used

to place contracts in the ”right,” pre-determined hands, just the way 1995’s loans-for-shares priva-

tization scheme ended up being a parody of open bidding.”1 The very recent experience shows that

the problem of designing tenders with special conditions is a real issue. In early 2000, the Ukrainian

government announced an open tender to sell a control (55 percent of voting shares) of Nikolaevsk

Alumina Factory. One of conditions specified was to built an additional alumina factory near-by.

Interestingly, the Siberian Aluminium Group, the major aluminium producer in Russia (and one of

the top ten in the world) and one of most-likely bidders for the Nikolaevsk Alumina Factory, had

announced its plan to built such a factory before the Ukrainian government decided to held a tender.

Even in developed countries (e.g., France or Italy) corruption may be a real issue in public market

auctions (Compte et al, 1999). In Russia, high discretion of bureaucrats, inconsistent and incomplete

normative acts, inadequate tax legislation and possibility of collusion of agents in court procedures,

make these issues much more serious. Also, normative acts issued at the federal and local levels often

lack overall inner consistency. For the issue of corruption, it is worth to emphasize that inconsistency

of normative acts creates discretion.

It should be noted that it is not necessarily the case that the auctioneer specifies conditions that lead

to inefficiency in exchange for bribes. Allocation of the good to particular hands through a formally

open may be due to some political reasons (see Boyko, Shleifer, and Vishny, 1993, and Shleifer, 1997),

and, at least theoretically, be consistent with the social welfare maximization.

1The Moscow Times, April 18, 1997.
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The theory being developed within this paper by no means applies to public auctions exclusively.

It also gives non-trivial insights for almost any allocative mechanism. For instance, the war-of-

attrition model, with its usual rent-seeking interpretation, might be modelled as an all-pay auction.

Anticipating a formal model below, the main idea is as follows. The bureaucrat has a task to

allocate a single indivisible good by an auction and, prior to the auction, to choose some condition α

(alternatively, one may call α ’quality’ of the good) from the set of possible conditions (alternatives)

A to be satisfied by the winner. Given any α, agents assign some expected value for the good and

compete in the auction.

The main model (Section 3 is based on Schwarz and Sonin, 2001; see also Schwarz, 2002) focuses

on the possibility of achieving an efficient outcome in an environment that allows agents to receive

both exogenous and endogenous shocks to their valuations and the auctioneer to alter rules of the

game by providing favors to the bidder. It might seem a little bit restrictive, as compared to

Section 2 approach, but there are some reasons to start with efficiency consideration. First, even

the most opportunistic auctioneer, a pure bribe-taker, not necessarily opposes the goal of achieving

efficiency. Often, it is an efficient outcome that generates maximum side-payments to the auctioneer,

especially when it generates a maximum surplus to the winner. Also, although we do not prove it

in this paper, there might be a result, analogous to the celebrated revenue-equivalence theorem, for

the environment, and in the corresponding equilibrium the auctioneer receives all the ’credibility’

payments

We consider a problem of designing an efficient mechanism for allocating the object in the environ-

ment, where signals about bidder’s private values (si, received at the beginning if the game and ti,

received after actions are taken and objects are allocated) are private signals. A traditional Vickrey-

Clarke-Groves mechanism cannot be straightforwardly employed since bidders do not know their

exact valuations which are evolving over time and bidders can take value-enhancing actions. Given

two-stage nature of information, efficiency requires two announcements of types. In contrast with

some models with multi-dimensional types, the announcements cannot be made at the same time,

due to dependence of the efficient investment decision on the realization of the preliminary signals.

First, we define an outcome as the identity of the bidder who receives the object and the list of private

investments taken by bidders. For a given outcome, the social surplus is equal to the value of the

object to the agent who receives it net of the total cost of investment. We consider a social planner as

an efficiency benchmark. The social planner pursues a strategy that maximizes the expected social

surplus. After the social planner observes the first-period signals si obtained by bidders, she has to

decide which bidders have to receive favors (equivalently, what are the characteristics of the object to

be sold) should act in the second period and which should abstain from actions. Since the exogenous
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shock of Stage 5 is not known at Stages 3 and 4 (when decisions to take actions are made), it may

be efficient to have more than one bidder receiving a favor or taking an action or to have no bidders

at all taking actions.2 Part (i) of Theorem 4.1 establishes that if the social planner orders an agent

with a value si to act, then she also orders all agents with value greater than si to act. Of course, an

all-knowing and well-intentioned social planner is rarely available in the real world. What happens

if there is no social planner but all the information is common knowledge, i.e. signals obtained by a

bidder about her private value are observed by all players? Theorem 4.1 establishes that the efficient

allocation can be achieved in a decentralized case.

The above mentioned results rely on bidders’ private values being common knowledge. A more

realistic case, where bidders privately observe their valuations, is of primary interest. Can an efficient

allocation be achieved in that case? It is straightforward that an efficient allocation can not be

attained without revelation of bidders’ private signals prior to the moment, when decisions are to

be made. If the object is allocated to the bidder with the highest value following revelation of

final information (using, say, a second-price sealed-bid auction) adding a cheap talk stage following

the initial period will not result in any information revelation and thus would lead to an inefficient

outcome (allocation). In the cheap talk stage each bidder would claim to be ‘the high type’ because

the higher is the perceived type of a bidder, the less likely are the other bidders to undertake

actions and thus the lower are the subsequent bids for the object by other players. Theorem 4.4

and Theorem 4.7 show that there exists a mechanism, where private information is revealed and the

object is assigned efficiently. First, after private signals si are received by agents, bidders reveal their

private signals si by making payments (we show that the higher is the private signal si, the higher is

the agent’s willingness to pay for reporting to other agents that the value of her private signal si is

high). Second, it consists of a second-price sealed-bid auction conducted after signals ti are received.

As long as private signals si are truthfully revealed in the first round, the subgame corresponding to

the second round is identical to the complete information game. Theorem 4.4 establishes that the

mechanism described above has an efficient separating equilibrium. Unfortunately, this mechanism

also has an inefficient pooling equilibrium. To rule out the pooling equilibrium, we propose a class of

mechanisms that force players to coordinate on the separating equilibrium. We refer to mechanisms

from this class as “ε−efficient mechanisms.” We prove that one can always choose an ε−efficient
mechanism which yields an efficient allocation with probability arbitrarily close to one. An ε−efficient
mechanism consists of two rounds. The first round takes place after private signals si are received by

2Indeed, for a given distribution of the Stage 5 exogenous shock, it becomes inefficient for anybody to undertake

an action as the cost of action approaches the benefit. On the other extreme, if the cost of action approaches zero it

becomes efficient for more than one agent to undertake an action.
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agents: a non-transferable discount for amount ε is sold via a sealed-bid all-pay auction. After the

all-pay auction all bids are made public. The ε discount can only be used in the second round auction.

In the second round the object is sold using a Vickrey auction (if the winner of the Vickrey auction

is a holder of the ε discount, she pays the second highest bid minus ε). For ε = 0, this mechanism

is identical to the efficient mechanism described above. Theorem 5.3 shows that an arbitrarily small

positive ε forces agents to coordinate on a separating equilibrium that yields an efficient allocation

with probability converging to one as ε converges to zero. In spirit, this mechanism is very close to

virtual implementation, a pure theoretical concept in mechanism design (e.g., Maskin and Sjostrom,

1999). The proposed mechanism is sufficiently straightforward and intuitive to have a chance of

being useful in practice. It is possibly a first example of a virtual-implementation mechanism simple

enough to be conceivably used in the real world.

A recent account of basic auction theory and an extensive literature survey could be found in Klem-

perer (1999). For the case of private values, the possibility to explore the Vickrey auction (instead of

English or first-price sealed-bid auctions) is justified by the use of the revenue equivalence theorem

(Myerson, 1981). Efficiency of generalized Vickrey auctions is proved in Dasgupta and Maskin (1998).

Common value auctions are introduced in Milgrom and Weber (1982). Auctions for privatization

are modelled in Maskin (1992, 2000). Effects of entry, which are closely related to the problem (as it

can be seen from Example 2), were studied in Levin and Smith (1994), McAfee and McMillan (1987)

and Riordan and Sappington (1987).

A major theoretical challenge is that a study of effects of bureaucrat’s discretion calls for modelling

agents with heterogenous tastes. However, many basic auction-theory results hold for homogenous

agents only. In particular, the first-price sealed bid auction is no longer efficient3 when bidders are

heterogenous (Dasgupta and Maskin, 1998), and the revenue equivalence theorem no longer holds

in its usual form (Myerson, 1981, Klemperer, 1999). Hopefully, the model would help in designing

multidimensional (e.g., price-quality) auctions (cf. Che, 1993, and Branco, 1997).

The rest of the report is organized as follows. Section 2 introduces a simple theoretical model and

derives policy implications. In Section 3, some extensions are discussed. Section 4 presents evidence,

and Section 5 concludes. Appendix contains all proofs.

3An auction is efficient if it allocates the good to the buyer with the highest valuation. The second-price auction

is always efficient in the case of private values.
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2. The 2 Bidders Model

In this section, we develop a simple model with two bidders.4 The object to be sold has a quality

α ∈ A. The auctioneer wants to allocate a good by an auction to maximize a social (or, in an

alternative interpretation, the owner’s) utility function US = US(p, α), where p is the price paid by

the winner (i.e. the revenue) and α is the quality of the good sold.

There are two risk-neutral agents (participants). Each bidder i privately values a good with the

quality α at vi(α) drawn from a uniform distribution on the set [0, Vi(α)] , functions Vi(α) being

common knowledge. The formal procedure is as follows: the auctioneer (who has his own utility

function UB, possibly different from US) chooses and announces some α, then agents bid for the

good, and the highest bidder pays the second price.

Assume now that the function V1(α) decreases with α, while the function V2(α) is an increasing

function5. These assumptions reflect diversity of agents’ preferences: the agent’s 1 preferred choice

(with respect to quality only) is α∗1 = 0, while the agent’s 2 preferred choice is α∗2 = 16. For the

sake of simplicity, we maintain additional assumptions: the functions Vi(α) are continuous7, and

V1(0) > V2(0) and V1(1) < V2(1). These assumptions yield that there is a unique α such that

V1(α) = V2(α). However, the analysis can be carried on without changing results if they are relaxed.

Timing Stage 1. The bureaucrat chooses some αb ∈ A.

Stage 2. Agents independently learn their values vi(α) ∈ [0, Vi(α)] for each α ∈ A and determine

bribes they are ready to pay for each α.

Stage 3. The bureaucrat announces αb ∈ A.

Stage 4. Agents bid for the good with characteristics αb. The winning price is determined, and the

winner gets the good and pays the price. If the bureaucrat is corrupt and the agent he favors wins,

the bureaucrat receives a bribe. Otherwise, his pay-off is zero.

The auction at Stage 4 is organized as a Vickrey second-price sealed-bid auction: First, all partic-

ipants independently submit their bids. Second, the highest bidder obtains the prize and pays the

second highest bid. Let R(α) and Si(α) denote the expected revenue of the auctioneer, i.e. the

expected second price, and the expected surplus of the ith bidder, when α is chosen as the good’s

4This game is analyzed in detail in Kutsevich (2003).
5If it is assumed, in addition, that the functions Vi(α) are differentiable, they satisfy the following properties:

V 0
1(α) < 0, and V 0

2(α) > 0.
6Note that the analysis below is not consistent with the case when the agents’ interests are aligned. More precisely,

the general theory works if Vi are co-monotonic too, but all propositions should be stated quite differently.
7Clearly, continuity of value functions is a redundant assumption.
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quality.

An important advantage of Vickrey auctions with private values is that for each bidder, it is a

weakly dominant strategy to reveal truthfully her valuation (see Appendix A). This greatly simplifies

all calculations. At the same time, the revenue equivalence theorem (see Appendix A) states that

the expected revenue and pay-offs of participants are the same in a wide range of auctions with

private values, including English and first-price sealed bid auctions. Thus, although actual auctions

are usually English (ascending) or first-price sealed-bid, it is very instructive to study second-price

Vickrey auctions.

The only purpose of the first result is to provide a benchmark for study of the case of a corrupt

auctioneer.

Assume that the bureaucrat’s and social interests are completely aligned, UB = US = p, i.e. the

auctioneer is benevolent and maximizes revenues; and the two bidders are symmetric, V2(1 − α) =

V1(α). Then the optimal choice of the auctioneer is α∗ = 1
2
. This result essentially says that to

maximize revenue, the auctioneer chooses the ’least specific’ good.

Next, consider a more general example with heterogenous bidders.

Theorem 2.1. 8. Assume that UB = US = p, and V1(α) is a decreasing function, while V2(α) is an

increasing function. Then the optimal (revenue-maximizing) choice of the auctioneer is a unique α∗

such that V1(α∗) = V2(α
∗).

The expected payment of the winner (second-highest valuation when α = α∗) is equal to 1
3
V1(α

∗). In

a more general case, UB = US = U(α, p), the optimal choice of the auctioneer is, at the same time,

the social choice. However, the higher is the difference between US and U = p (the more strongly α

matters), the less revenue is expected.

If the auctioneer is corrupt, the result may be completely different. Suppose that the auctioneer

accept bribes in exchange for announcing some α. By assumption, the auctioneer has all the bar-

gaining power over the bribe; that is, if some α0 is announced in exchange for bribe b = b(α0, j) from

the agent j, then the bribe is equal to the expected payment of the agent j, when α0 is announced9.

Theorem 2.2. Assume that the auctioneer is fully corrupt, i.e. is interested in the size of a bribe

only, UB = b. Then the auctioneer announces α∗B ∈ {0, 1}, with α∗B = 0 if S1(0) ≥ S2(1) and α∗B = 1,

otherwise.
8All proofs are given in Appendix B.
9If the bureaucrat and the winner divide the surplus by another rule (e.g., employ Nash bargaining solution), main

results remain the same.
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The expected bribe to be paid by the winner amounts to

max {S1(0), S2(1)} = max
½
V1(0)− V2(0)

2
+

V 2
2 (0)

6V1(0)
,
V2(1)− V1(1)

2
+

V 2
1 (1)

6V2(1)

¾
.

The result is the opposite to the one of Theorem 2.1: to maximize side-payments, the auctioneer

chooses a ”most-specific” good. The intuition behind this result is straightforward: the higher is the

difference between the bidders’ expected valuation, the higher is the winner’s expected surplus, that

is, the amount she wants to pay as a bribe. In our simple setup, the boundary points (α ∈ {0, 1})
are the ones with the highest difference between the bidders’ interests. Thus, the auctioneer focuses

exclusively on the two boundary points. In economic terms, the bureaucrat, once he decided on

whose offer he accepts, tries to maximize the favorite’s surplus by suppressing competition. Here,

the possibility to push down competition is provided by the bureaucrat’s discretion over the choice

of α.

In the presence of corruption, expected revenues are sub-optimal. In the equilibrium of Theorem 2.2,

the expected revenue of the owner is equal toR(0) = V2(0)
2
− V 2

2 (0)

6V1(0)
if α∗B = 0, and toR(1) =

V1(1)
2
− V 21 (1)

6V2(1)

if α∗B = 1. Consider, for example, the case of α
∗
B = 0. If V1(0) is much higher than V2(0), which is

not an unreasonable assumption in the point of maximum difference in interests, then the amount of

side-transfer, b = S1(1) =
V1(1)−V2(1)

2
+

V 2
2 (1)

6V1(1)
is much higher than R(0) = V2(0)

2
− V 2

2 (0)

6V1(0)
. If V2(0) = 0, i.e.

nobody except the winner, needs the good, the expected revenue is zero!10 This allows to understand

the magnitude of losses in the case of corrupt tenders.

In real life, the auctioneer verifiable revenue would not be zero if a reserved price r is specified. In

1995 loans-for-shares auctions, the final price paid typically exceeded the reservation price by a small

amount (e.g., $170.1 mln instead of the reserved $170 mln for Norilsky Nikel with the two loosing

bids of $170 mln). This comes at no surprise in the perfect-information world, but bidding close to

the reservation price is highly unlikely to be an optimal strategy in a competitive environment with

uncertainty.

Theorem 2.2 demonstrates that if the bureaucrat has large discretion over determination of the

good’s quality, and cares about side-payments only, the outcome might be tremendously inefficient.

Also, onc show that if the public is able to reduce the bureaucrat’s discretion, this reduces efficiency

losses. Namely, let D0 ⊂ D be subsets of A = [0, 1]. Suppose that the auctioneer maximizes the

difference between bidders valuations and the intersection of bidders valuation lies within D0. Then

the expected revenue (social utility) will be higher and the expected bribe lower if the bureaucrat’s

choice is restricted to D0, rather than to D. This explains the bureaucrat’s willingness to have

large discretion, since it brings him more side-payments. Thus, if the domain D itself is a matter

10Note that this result holds for all standard auctions, not only for the second-price sealed bid one.
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of government choice, the bureaucrat will try to make it as large as possible. In reality, such an

enlargement (an opportunity to impose more and more conditions) is often justified by necessity to

maintain social stability/benefits if it is a liquidation procedure, or to defend national (regional, local)

interests in a public tender. The message here is that this is usually done at the cost of efficiency.

In many cases, a more realistic assumption about behavior of the organizer of public tender is that

he is neither benevolent (UB = US), nor fully corrupt (UB = b), but lies somewhere in-between. That

is, UB = λUS +(1−λ)b, where λ might reflect the extent of control (by public or by owner) over the

auctioneer, 0 ≤ λ ≤ 1. Let |v| denote the absolute value of v.

Theorem 2.3. Given any UB and US, a higher level of control, λ, makes the social and bureaucrat’s

interests more aligned, d|UB(α∗)−US(α∗)|
dλ

< 0.

2.1. Allocative Efficiency

Few words should be said about allocative efficiency when the auctioneer is corrupt.11 In the case

of two bidders considered above, the final allocation is always efficient: the bidder with the highest

valuation wins the auction at Stage 4. However, this would not be the case if we consider an

extension of the basic model with n heterogenous bidders. For n = 3 and the quality parameter,

α, being still one-dimensional, one might consider the following example: Suppose, as above, that

the function V1(α) decreases with α, while the function V2(α) is an increasing function. In addition,

let V3(α) = V2(α) for all α, and assume that V1(1) = V2(0) = V3(0) = 0, and V1(0) < V2(1). It

is straightforward that a benevolent auctioneer would choose α∗ = 1, with the expected revenue

equal to V2(1)
3

, while a corrupt auctioneer will choose α∗B = 0. Another possibility to get an inefficient

allocation is to consider co-monotonic valuations (e.g., V 0
1(α) > 0, V

0
2(α) > 0 for all α).

2.2. Policy Implications

Before proceeding to a general model, which focuses on specific issues of efficient mechanism design

in the environment, where the auctioneer can change parameters of the competition, we formulate

some non-technical implications that follow from the simple model:

1. A benevolent auctioneer will specify conditions to enhance price competition of bidders. When

the agent have different tastes satisfying the conditions above, the revenue-maximizing choice

would be the ’least specific’.

11Recall that efficiency assumes that the bidder with the highest valuation obtains the good.
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2. An auctioneer that cares about side-payments chooses the ”most-specific” condition.

3. A tender held by a corrupt auctioneer might result in allocative inefficiency, as well as in losses

in revenues.

4. The larger is the discretion of bureaucrats in determining the actual tender structure, the larger

are efficiency losses.

5. Designing tenders to maintain social utility might result not only in inefficiency, but also in

reduced social benefits.

3. The Main Model

3.1. The Environment

There are N identical agents. First, agents receive some private information about their private

values of the object to be sold.12 Then the auctioneer makes a decision that affects the value of the

object to the bidders (provides favors, determines additional conditions, or specifies quality of the

object to be sold). After that, each of the agents has an opportunity to take a costly action that

increase her private value of the object. Then agents receive some additional information about the

private value of the object to them.13 Finally, an auction takes place.

Timing

Stage 1. Each agent receives a signal si ≥ 0 about her private values (her capacity), drawn inde-
pendently from the same atomless distribution F (·).
Stage 2. The lobbying (or, alternatively, a bribing) game takes place. During a game, some

information (possibly, zero) is revealed. Below this game is described in detail.

Stage 3. The auctioneer chooses the individual-specific level of requirements θ = (θ1, ..., θN) ∈ RN ,P
θi ≤ D.14

Stage 4. Each agent i has an opportunity to take an unobservable action, i.e. choose ai ∈ {0, 1},
which increases the agent’s private value by bai and costs cai ≥ 0.15
12In particular, these first signals make agents ex-ante asymmetric.
13This structure does not necessarily assume some time passing. For example, the first signal might be interpreted

as a raw estimate of the value, and the second one is a refined one.
14Alternative specifications are possible, e.g. one can assume that each vector θ is associated with some cost k(θ)

(see also Schwarz, 2002).
15When ai = 1 we say that the agent i undertakes the action or simply ‘acts’; if ai = 0 we say the agent i abstains
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Stage 5. Agents receive independent signals ti ≥ 0 about their private values. We assume that a
higher Stage 1 signal si makes a higher second-period ti more likely. Formally, if si > s0i, then the

distribution of ti conditional on si stochastically dominates the distribution of ti conditional on s0i.
16

Stage 6. The object is sold via second-price sealed-bid auction.17

Agent’s i private value of the object equals Vi = V (si, ti), which depends on her first and Stage 5

signals plus the benefit from taking an action. Thus the utility of the agent is given by:

Ui =

½
V (si, ti) + θi + (b− c)ai − pi, if the agent i wins the object

−cai − pi, otherwise,

where pi denotes the total amount of payments made by the agent i within a mechanism (i.e. not

including c).18 Note that pi need not be equal to zero for loosing bidders. We assume that V (si, ti)

is continuous and increasing in both arguments.

Social surplus is the value of the object to the agent that gets the object minus the cost of actions

taken by all agents: S = V (sj, tj) + θi + baj −
PN

i=1 cai, where j is the identity of the agent that

receives the object. An allocation is a vector consisting of the list of agents who took actions and

the identity of the agent who received the object. An allocation needs to specify the identities of

agents who took actions because actions affect the social surplus. An equilibrium strategy profile

of a mechanism (e.g., an auction) is referred to as an allocation rule. If a mechanism has multiple

equilibria, each equilibrium strategy profile defines an allocation rule.

Any allocation rule induces a probability distribution over values of social surplus induced by a

mechanism or by a social choice rule adopted by the social planner. Allocation rules can be ranked

in terms of efficiency by comparing corresponding expected values of the social surplus. An allocation

rule is efficient (first-best), if it yields the same expected social surplus as the maximum expected

social surplus that can be achieved by the social planner, who observes all signals received by agents,

orders agents to take or not to take actions, and, finally, assigns the object.

The equilibrium concept we are mostly concerned with is a Bayesian perfect equilibrium. We will

call it simply equilibrium in cases, where it leads to no ambiguity. Also, in most cases, where beliefs

that support an equilibrium are self-evident, we do not specify them explicitly. Since we describe

from acting or skips the action. Obviously, only the case of b > c is of interest.
16For instance, this condition holds if random variables si and ti are affiliated (Milgrom and Weber, 1982), which

includes independent variables as a particular case.
17Second-price sealed-bid auctions are a rare event in the real life. However, having such an auction at Stage 6 is

strategically equivalent to having a usual open ascending-bid (English) auction.
18It is possible to extend our model to the case when the utility function takes the form Ui(si, ti, ai), where ai

is continuous, and higher values of ai makes a higher third-period signal ti more likely. However, it would make

exposition much more complex, while providing no new insight.
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the lobbying game below, we do not give a unifying formal description of an equilibrium here. In the

most important case, each equilibrium consists of a profile of reports bsi (being functions of Stage 1
signals), payments hi that make these reports credible and the corresponding beliefs, a favors profile

and an action profile as functions of reports (and consistent with the beliefs), and dominant strategies

at the auction of Stage 6.

For convenience of the reader, below we list notation used in the paper.

Notation

s = (s1, ..., sN) = (si, s−i) agents’ signals received at Stage 1

t = (t1, ..., tN) agents’ signals received at Stage 5

V (si, ti) agent i’s value to object

a = (a1, ..., aN) action profile, ai ∈ {0, 1}
b benefit from action (applies if the object is won)

c cost of action

S social surplus

Gi change in expected social surplus due to i’s action

gi change in agent’s i expected pay-off due to action

a(m) actions profile: agents with m highest si’s actbs = (bs1, ..., bsN) = (bsi,bs−i) agents’ reports of their first-period signals

hi, Hi payments making agent’s i report credible

πi(si, ŝi, s−i) agent i’s pay-off net of signaling costs

X,Y, Z generic random variables (in Appendix)

θ = (θ1, ..., θN) vector of favors provided by auctioneer

pi agent i’s payment within a mechanism

4. Efficient Mechanisms

In this section, we start with considering a benchmark case of the efficient mechanism for allocating

the object that can be achieved by a social planner who knows all the private information available

to bidders. In this case, the bureaucrat is essentially an all-knowing and benevolent social planner.

Then we consider a mechanism that allocates the object efficiently in the incomplete information

case.
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4.1. The Social Planner’s Problem

Let us start by characterizing the solution to the social planner problem. After observing the first

signals, the social planner decides which agents should receive favors and what agents should act.

Formally, there is a mapping of a vector of the first signals (received at Stage 1) into two vectors, a

vector of favors θ∗(s) =(θ1, ..., θN) and a vector of actions a∗ = a∗(s) at Stage 4.19 At Stage 6, the

social planner assigns the object, thus mapping a triplet of vectors (s,a, t) into a number between 1

and N . The final assignment of the object is easily characterized: The social surplus maximization

calls for assigning the object to the agent with the highest ex-post private value: if the efficient

allocation assigns the object to the agent j, then for any i 6= j, we have V (sj, tj) + θj + baj ≥
V (si, ti) + θi + bai. Thus, assigning the object before agents have learned their final values of the

object is likely to be inefficient. Obviously, in our environment, giving the object to the agent with

the highest ex-post value is necessary, but not sufficient for efficiency. It remains to characterize the

function (θ∗(s), a∗(s)) that describes the favors and actions needed to maximize the expected social

surplus, given s. So, the social planner’s problem might be written as follows:

max
a,θ

Et[S|s, a] = max
a,θ

(
Etmax

i
{V (si, ti) + θi + bai}− c

NX
j=1

aj

)
.

Before proceeding to general results, let us illustrate this problem with a simple example.

Technically, it is useful to introduce a function Gi(s, a−i) representing the difference in the expected

social surplus that results from the agent i acting and not acting (keeping the actions of other agents

unchanged):

Gi(s,a−i) = Et[S|s, a−i, ai = 1]− Et[S|s, a−i, ai = 0]. (4.1)

Here we assume that favors profile is given. (Later, we use this machinery to describe the optimal

profile chosen by the planner.) Also, since the social planner maximizes social surplus, the expected

surplus in the above formula should be computed under assumption that at the last stage the social

planner allocates the object to the agent with the highest value. The social planner faces the following

trade-off: each additional agent’s act increases the expected private value of the agent who receives

the object, but is associated with the cost of c. Let a(m) = a(m, s) denote the vector of actions,

where the agents with the highest m Stage 1 signals act, while the other N −m agents skip action.

19In the most general case, the social planner may assign mixed strategies to the agents. We show later that almost

surely, the social planner problem has a unique pure strategy solution. Consequently, we focus on pure strategies of

the social planner.

13



Theorem 4.1. For a given vector of Stage 1 private signals s and any profile of favors θ, there exists

a threshold r∗ = r∗(s) such that the social planner assigns agents with the highest r∗ Stage 1 signals

to act.20 ,21

Proof. To prove Theorem 4.1, we need to establish the following Lemma (a proof is relegated to the

Appendix).

Lemma 1. Consider vectors of actions a and a0 such that
P

i ai =
P

i a
0
i, ai = a0i for all i 6= j, k,

and let aj = 1, ak = 0, a0j = 0, and a0k = 1. If sj ≥ sk, then the expected social surplus from a is

greater than that from a0.

This Lemma shows that a vector of actions maximizing the expected social surplus must be of the

form a(m) for some m, 0 ≤ m ≤ N. Since there is a finite number of possible m’s, there exists some

r∗ such that a(r∗) is the global maximizer of the expected social surplus. This completes the proof

of Theorem 4.1.¥

Next, we turn to a world without an all-knowing and well-intentioned social planner. Namely,

we consider the case, where agents act non-cooperatively, given that Stage 1 signals are common

knowledge. This is an essential step towards mechanism design for the incomplete information case.

One might expect that in the decentralized case too many or too few players may take actions, since

they may not fully internalize the effect of their private actions on other players. We show that an

efficient allocation can be achieved in a decentralized case, when bidders know each other’s Stage 1

signals. Theorem 4.2 states that in this case there exists an equilibrium outcome of a second price

auction conducted at Stage 6 period that yields an efficient allocation, the same allocation as the

first best obtained by the social planner.

Theorem 4.2. For any vector of favors θ =(θ1, ..., θN), if Stage 1 signals s are public knowledge,

there exists a socially efficient (given θ) perfect Bayesian equilibrium of the game. In this equilibrium,

agents take unobservable actions as if they were assigned by the social planner resulting in the

allocation rule characterized in Theorem 4.1.22

20r∗ is determined almost uniquely: The event that the expected social surplus is maximized by more than one

action vector of the form a(r∗) and a(r∗∗) where r∗ 6= r∗∗ has zero probability.
21Definition of Gi(s,a−i) implies that an action vector maximizing the social surplus must satisfy Gi(s,a−i) ≥ 0

when ai = 1 and Gi(s,a−i) ≤ 0 when ai = 0.
22The equilibrium described in Theorem 4.2 seems to be a natural focal point. However, the game has a coordination

component: there are other perfect Bayesian equilibria that are not efficient. For example, if there are only two players,

there might be two equilibria: one with the highest-ranked agent acting and the other abstaining, and another one

with the second-ranked agent acting and the highest-ranked abstaining.
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The basic intuition is as follows: the expected increase in an agent’s utility from taking an action

is exactly equal to the change in the expected social surplus due to her action.23 Then the fact that

a(r∗) is the social planner’s optimal choice ensures that a(r∗) is an equilibrium vector of actions in

the non-cooperative game.

Proof of Theorem 4.2. First, we note that to prove all the assertions concerning favors profile

θ, it is enough to redefine signals si and then leave the whole proof unchanged. Lemma A4 from

the Appendix B shows that it is optimal for the social planner to allocate all favors to one bidder (a

first-runner). (See Schwarz, 2002 for another proof.)

We introduce a function gi(s, a−i) defined as the change in the expected utility of the agent i as a

result of taking an action instead of skipping it, and prove the following assertion (a proof is in the

Appendix).

Lemma 2. gi(s, a−i) = Gi(s,a−i).

Now observe that if a is a solution to the social planner’s problem, then Gi(s,a−i) ≥ 0 when ai = 1

and Gi(s, a−i) ≤ 0 when ai = 0. Indeed, if Gi(s,a−i) < 0 when ai = 1, the agent’s i switch from

acting to non-acting would strictly increase the expected social surplus, contradicting the choice of a.

Similarly, Gi(s, a−i) ≤ 0 when ai = 0. Then Lemma 2 asserts that for the change in private benefits

we have gi(s, a−i) ≥ 0 for agents that act, and gi(s, a−i) ≤ 0 for others. Thus, no agent has incentives
to deviate, and Theorem 4.2 is proven.¥

Theorem 4.3. (i) Suppose that the auctioneer believes that after the favors are allocated, the agents

play the complete-information game as described in Theorem 4.2. Then, observing all Stage 1 signals,

she allocates all the favors to one bidder with the highest Stage 1 signal.

This theorem, though a straightforward corollary of Theorem 4.1, is an important observation leading

to our main result. In the next section, we show that when Stage 1 signals are private information

of agents, there exists a signalling mechanism that forces all agents to report their Stage 1 signals

truthfully. Then, the auctioneer can makes her allocation of favors conditional on agents Stage 1

signals.

4.2. Efficient Lobbying

Now we are ready to investigate the incomplete information case. Here we consider a model similar

to the one considered in the preceding section. The only (but crucial) difference here is that bidders’

23The logic behind the result is similar to the one that insures efficient entry in McAfee and McMillan (1987) and

Levin and Smith (1994).
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signals regarding their private values (s and t) are observed privately. Now a simple mechanism

consisting of an auction conducted at Stage 6 no longer leads to an efficient allocation, since under

such a mechanism the auctioneer allocates favors and agents take actions without knowledge of the

private signals obtained by other players.24 On the other hand, an efficient allocation rule can not

always assign the final ownership of the object prior the end of Stage 5.

Is it possible to allocate an object efficiently in this environment, when both the auctioneer and

agents have to face two problems (i) revelation of agents’ private information and coordination and

(ii) exogenous shocks represented by Stage 5 signal? This question is answered affirmatively by

Theorem 4.4. We explicitly construct an efficient allocation mechanism. In doing this, we always

assume that the auctioneer maximizes the expected social surplus, while allocating favors. Theorem

4.3 allows us to skip all the notation related to the allocation of favors in the subsequent analysis.

The Signalling Mechanism:

After Stage 1 (after the private signals s have been received by agents), all agents make simulta-

neous public announcements bsi about their private values si. Then each agent voluntarily selects a
payment amount, hi ≥ 0, that depends on the announcements of other agents, as well as on her own
announcement. These payments hi(bs) are necessary to make announcements credible, and actually
are money-burning. Later we give the auctioneer a possibility to devise a special mechanism to

collect the ’credibility payments’.

Theorem 4.4. There exists a perfect Bayesian equilibrium of the Signaling Mechanism that yields

a socially efficient allocation rule.

In brief, Theorem 4.4 describes the following sequence of events. After agents learn their private

signals, they make credible announcements about their private information. Then the auctioneer

allocates all the favors to the agent with the highest signal. After that, some agents act to increase

the value of the object for them conditional on winning, and some not. Then agents learn their

refined signals and a second-price sealed-bid auction is conducted.

24For the sake of completeness, one can consider the no-signalling case, where an auction is conducted after the

third period and no signaling takes place before the second period. (Note that cheap talk communication following

the first stage is not credible because everybody has an incentive to exaggerate his signal.) To describe the symmetric

equilibria of this game, one can show that there exists a unique constant s∗ such that any agent acts if her first-stage

value si is higher or equal to s∗, and abstains from acting otherwise. In the equilibrium, the expected number of

actions is N (1− Fs(s
∗)) . So, in some cases, there are too few actions, while in others there are too many. This is a

generalization of the Example from the Introduction. Also, there are a number of asymmetric equilibria. Of course,

an asymmetric equilibrium can not lead to an efficient allocation rule.
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Proofs of Theorem 4.4 and all subsequent results are relegated to the Appendix. Here, let us discuss

the logic behind the result. First, note that if Stage 1 signals are revealed truthfully, the remaining

subgame is identical to the game where Stage 1 signals s are common knowledge. Theorem 4.2

established that an efficient allocation is an equilibrium of that game. Consequently, in order to

establish existence of an efficient allocation mechanism, it suffices to show that for some payment

schedule hi(bs), truthful reporting is an equilibrium, when agents anticipate that the equilibrium
characterized in Theorem 4.2 will be played in the remaining subgame. The intuition behind the

possibility of truthful revelation is as follows. The higher is Stage 1 signal si received by an agent

i, the higher is that agent’s relative willingness to pay in order to signal that her value of si is

high. Agents are willing to pay in order to reveal their Stage 1 signals, because this information

discourages other agents from taking actions, thus increasing the probability of winning for the agent

i and decreasing the expected price that she will pay for the object (in the subsequent second price

auction) conditional on winning. The expected price decrease affects agents with different private

values differently. For instance, someone with a very low Stage 1 signal is unlikely to win the object,

thus her willingness to pay for sending a signal that depress the price of the object is lower than

that of an agent with a relatively high Stage 1 signal about her private value. This observation,

which is critical to the existence of a separating signaling equilibrium, is formalized in Lemma 4.5.

This Lemma establishes an appropriate analog of the increasing-differences property (Milgrom and

Shannon, 1994) for the pay-offs in the subgame.

Lemma 4.5. Let Eπi(si, ŝi, s−i) be bidder i’s expected pay-off gross of hi(bs), when her true private
signal is si, while other agents believe that the vector of Stage 1 private signals is (ŝi, s−i). For any

s−i and any ŝ0i > ŝi, and any s0i > si,

Eπi(s
0
i, ŝ

0
i, s−i)−Eπi(s

0
i, ŝi, s−i) ≥ Eπi(si, ŝ

0
i, s−i)−Eπi(si, ŝi, s−i). (4.2)

In the above Lemma, Eπi(si, ŝi, s−i) is the expected pay-off of agent i in the mechanism described

in Section ??, when Stage 1 private signals are given by (si, s−i) and player i plays the best response

to the action profile of players −i given by a(r∗(ŝi, s−i)). (The action profile a(r∗(ŝi, s−i)) is charac-
terized in Theorem 4.1.) Essentially, Eπi(si, ŝi, s−i) is the pay-off received by agent i in the subgame

computed under an assumption that all first round announcements are believed to be truthful, and

that agent i reported ŝi, while her true private value is si.

Lemma 4.5 states that the same change in announcement (from ŝi to ŝ0i) brings more in expected

surplus to the agent with relatively high true signal, s0i. Note that Eπi(si, ŝi, s−i) is not the same as

the expected utility of agent i, because it does not include the payments hi made in the first round

of the mechanism. The agent’s utility is given by Eπi(si, ŝi, s−i) − hi. Thus, truthful reporting si
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is consistent with an equilibrium, if there exists a payment schedule h(ŝi, s−i) such that incentive

compatibility and individual rationality constraints are satisfied. Namely, for any agent i and all

(si, ŝi, s−i) the payments should satisfy the following conditions:

Eπi(si, si, s−i)− h(si, s−i) > Eπi(si, ŝi, s−i)− h(ŝi, s−i) (IC)

Eπi(si, si, s−i)− h(si, s−i) > Eπi(si, ŝi = 0, s−i) (IR)

Note that finding h(ŝi, s−i) that satisfies the above constraints is sufficient for proving the claim of

Theorem 4.4. Such payment schedule hi(ŝi, s−i) is characterized in Theorem 4.6. Before proceeding

to Theorem 4.6, we need to introduce one more definition.

Consider the efficient allocation rule characterized in Theorem 4.1. It implies that for any vector of

Stage 1 private signals s−i, there exists a sequence 0 = s̄i(k
∗
i ) ≤ s̄i(k

∗
i − 1) ≤ ... ≤ s̄i(1) ≤ s̄i(0) <∞,

where s̄i(k) is defined to be the minimal type of i such that exactly k highest-ranked agents (different

from the agent i herself) act in the subgame equilibrium described in Theorem 4.2. Let k∗i = k∗i (0, s−i)

be the number of agents acting, when i has the lowest possible type (zero). Within each segment

described above, an agent’s i report is irrelevant to the other agents’ decisions on whether or not to

act.

As above, let a(m) denote the vector of actions, where the agents with the highest m Stage 1 signals

act, while the other N −m agents skip action. Note that a(m) is a function of the vector of Stage 1

signals s.

Theorem 4.6. The following payments hi(ŝi, ŝ−i) are consistent with an efficient equilibrium of the

Efficient Mechanism. For any i,

hi(ŝi, ŝ−i) = 0, whenever s̄i(k∗i ) ≤ ŝi ≤ s̄i(k
∗
i − 1), (4.3)

hi(ŝi, ŝ−i) = hi(s̄i(k), ŝ−i) +Eπi(s̄i(k),a(k))− Eπi(s̄i(k),a(k + 1)),

whenever s̄i(k) < ŝi ≤ s̄i(k − 1), k < k∗i .

Theorem 4.6 shows that for any agent i, the payment schedule satisfies incentive compatibility and

individual rationality (IC and IR, respectively) constraints. Then, if agents in the set −i report their
type truthfully, ŝ−i = s−i, the payment scheme for the agent i given by (4.3) induces her to report her

type truthfully, ŝi = si. The proof of Theorem 4.4 is based on combining Theorem 4.2 and Theorem

4.6.

Proof of Theorem 4.4. Lemma 4.5 proves that the above payment schedule induces truthful

reporting by agent i, provided that all other agents’ reports are truthful. The beliefs supporting the
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equilibrium in the signaling stage are straightforward: if a payment by an agent i is defined by (4.3),

then the agents Stage 1 signal is perceived to lie within the respective range. In the subgame that

starts after Stage 1 signals are revealed, agents play according to the strategies described in Theorem

4.2.¥
In the above equilibrium, each agent reports her type truthfully regardless of the other agents’ types

given that these types are reported truthfully.25 This is a kind of an ex-post equilibrium (Perry

and Reny,1999), where no agent regrets her announcement after learning the other agents’ types;

thus, this mechanism is similar in spirit to the well-known Vickrey-Clarke-Groves mechanism (e.g.,

Vickrey, 1961, Krishna and Perry, 1998). However, unlike the Vickrey-Clarke-Groves mechanism,

this is a two-round mechanism, where payments made in the signaling round of the mechanism have

no direct impact on allocating of the object – these payments influence the allocation of object

indirectly by shaping beliefs about Stage 1 signals.

The mechanism described above provides an ex-post efficient ex-post equilibrium. In such an equi-

librium, agents’ payments may depend on the other agents’ announcements. Below we show that

the Signalling Mechanism described in the previous section also has an ex-ante efficient separating

equilibrium. In this equilibrium, agents make no announcements (or make uninformative announce-

ments) in the cheap talk stage of the mechanism. They simultaneously make publicly observable

payments Hi; an agent decides on the payment size without knowing the private signals of other

agents. We show that there exists a fully separating equilibrium where there is a unique payment

corresponding to each private signal si. Consequently, agents no longer need to make announcements,

because the announcements of their private signals are revealed in the size of payments they make.

Theorem 4.7. There exists an ex-ante efficient perfect Bayesian equilibrium in the Signalling Mech-

anism, where agents simultaneously make payments H(si) that depend only on their private informa-

tion si. Equilibrium payments are given by Hi(ŝi) = Es−ihi(ŝi, s−i), where hi(ŝi, s−i) are equilibrium

payments defined in Lemma 4.5. The auctioneer allocates all the favors to a bidder with the highest

payment H(·).

Let us discuss the intuition behind the proof of Theorem 4.7. According to Theorem 4.2, an efficient

allocation can be obtained when Stage 1 signals si are common knowledge. It remains to show that

the signaling mechanism proposed above is incentive compatible when an efficient equilibrium is

chosen in the subgame following the signaling stage. More formally we need to show that for any

25As usual, the revelation principle (Myerson, 1979) allows us to assume that agents report their types directly,

rather than conveying information via a special set of signals.
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s−i,

si ∈ argmax
ŝi

©
Es−i,tπi(si, ŝi, s−i)−Hi(ŝi)

ª
(note that here expectation is taken with respect to s−i and t). This result is a straightforward

corollary to the existence of an ex-post equilibrium established in Lemma 4.5. Existence of this

‘ex-ante’ separating equilibrium essentially follows from the fact that if the agent’s i truth-telling is

a best reply to any vector s−i of other agents’ signals, than it is a best reply on the average as well.

Proof of Theorem 4.7. It suffices to observe that

si ∈ argmax
ŝi
{Etπi(ŝi, s−i)− hi(ŝi, s−i)}

for any s−i and any si, and take sum over all s−i.

Then note that all hi(ŝi, s−i) and thus the function H(si) increase in the bidder’s i Stage 1 signal si.

This allows to use H(si) to report the true value of si. Beliefs are straightforward, and the rest of

the proof follows that of Theorem 4.4.¥
We interpret the result of Theorem 4.7 as saying that if agents are able to make costly lobbying

efforts, than the ultimate outcome is socially efficient. Agents are able to report credibly their prior

information and that allows the auctioneer to allocate all the favors to a front-runner.

4.3. Inefficient Lobbying

An efficient allocation mechanism requires that the ownership of the object is assigned at Stage 6,

and reporting Stage 1 signals prior to allocation of favors and the action stage. For the sake of

completeness, one can consider the no-signalling case, where an auction is conducted after the third

period and no signaling takes place before the second period. (Note that cheap talk communication

following the first stage is not credible because everybody has an incentive to exaggerate his signal.)

To describe the symmetric equilibria of this game, one can show that there exists a unique constant

s∗ such that any agent acts if her first-stage value si is higher or equal to s∗, and abstains from acting

otherwise. In the equilibrium, the expected number of actions is N (1− Fs(s
∗)) . So, in some cases,

there are too few actions, while in others there are too many. This is a generalization of the Example

from the Introduction. Also, there are a number of asymmetric equilibria. Of course, an asymmetric

equilibrium can not lead to an efficient allocation rule.

Example 4.8. Let the number of participants be N = 2, assume that si are privately observed

signals independently drawn from the uniform distribution on [0, 1]. For simplicity, assume that there
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is no third period signal, ti ≡ 0.26 In a symmetric equilibrium with no revelation of the first-period

signals, each agent acts if her probability of winning conditional on her own type is higher than c
b
.

That is, agent i acts if si ≥ s∗ = c
b
. If s∗ = 3

4
, then with probability 1

16
both agents act (which is

inefficient), and with probability 9
16
no agent acts (which is inefficient as well). Therefore, on average

there are too few actions (1
2
instead of 1). If s∗ = 1

4
, the situation is reverse: with probability 9

16

both agents act, and with probability 1
16
no agent acts. On average, there are too many actions (3

2

instead of 1). This is hardly surprising: without signaling, there are too few actions, when actions are

relatively costly (c
b
= 3

4
), and there are too many actions, when actions are relatively cheap (c

b
= 1

4
).

Now suppose that N ≥ 2. If there is no third-period uncertainty (ti ≡ 0), then the social planner
chooses exactly one agent to act — the one with the highest first-period signal. On the other extreme,

if there is no first-period signal (si ≡ 0), and the cost of action is sufficiently cheap, then the social
planner would assign all agents to act.

The same thing happens if lobbying efforts of an agent are hidden from other bidders. This illustrates

why corruption (i.e. a situation where bribes are unobservable) is inefficient as compared to lobbying

with observable efforts. The above Example can be readily extended as follows.

Theorem 4.9. If lobbying efforts are unobservable (e.g. as a result of putting additional restrictions

on the belief space), there is no efficient perfect Bayesian equilibrium.

5. Auctioning Favors

The mechanism described in the previous section has two stages: first, each agents spends resources

to persuade others that he has a high signal. Second, they decide whether or not to undertake

actions (make investments) basing upon the information they inferred from the lobbying efforts of

other agents. Here we show that the lobbying stage, where agents spend resources to reveal their

types, might be replaced by a sealed-bid all-pay auction, where the object being sold is worth some

additional favor ε > 0. In most of the subsequent analysis, it does not assumed that ε need to be

small. The only result that requires the discount to be small is the one that shows that when ε

approaches zero, the allocation mechanism becomes almost efficient. Because of this latter feature,

we will generally refer to such a mechanism as an ε−efficient mechanism .
26In the special case of all ti’s equal to zero, an efficient allocation rule can be implemented by assigning the

ownership of the object by conducting a Vickrey auction at the end of the first period after si’s are privately learned.

Also note that for any non-degenerate distribution of third-period signals, assigning the ownership of the object at

the end of the first period is no longer efficient. Of course, the inefficiency of allocating the object at the end of the

third period demonstrated by the example does not go away when ti’s are not equal to zero.
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An ε−efficient mechanism has another advantage (Schwarz and Sonin, 2001). Theorem 4.7 estab-

lished existence of an efficient perfect Bayesian equilibrium of this two stage auction. Unfortunately,

this is not a unique equilibrium: a pooling equilibrium, where everybody bids zero in the signaling

stage, is a natural focal point. Nevertheless, introducing an arbitrarily small inefficiency into the

auction design can force bidders to coordinate on an efficient separating equilibrium. Finally, in

the previous section, the costs of making reports credible have not been captured by the auctioneer.

There is no reason why bidders would opt to announce their types by writing checks to the auctioneer,

and not by burning money in some other way.

We start with describing an ε−efficient mechanism and then proceed to establish efficiency properties
of this mechanism in Theorem 5.3.

Rounds of ε−Efficient Mechanism
1. The first (reporting) round takes place at the end of Stage 1 (after the private signals s have been

received by agents, but before agents take actions). In this round one coupon is sold via all pay sealed

bid auction.27 All bids are announced at the end of the round. The coupon sold in the signaling

round entitles its owner to a discount of size ε for the price in the final auction (the discount coupon

is non-transferable, only the winner of the final auction can benefit from having the coupon).

2. The second round (final) auction takes place at the end of Stage 5, after agents observe private

signals t. In the second round the ownership of the object is assigned using a second-price sealed-bid

auction, as prescribed by our procedure. (If the highest bidder in the final round is the owner of the

ε−coupon, then she pays the second highest bid minus ε.)
There are two rounds and three decision nodes in an ε-efficient mechanism. At the first decision node,

agents make bids in an all-pay auction, i.e. the i’s actions space is {Hi|Hi ≥ 0}. The information
set of agent i at the first decision node is given by si. The first round strategy is described by the

probability distribution ρi(·; si) over the set of pure strategies {Hi|Hi ≥ 0}. At the second decision
node, agents make a decision to act or not to act. The information set of agent i at the second

decision node is given by (si,Hi,H−i,w), where w is an N-dimensional vector with wk = 1 if the

agent k won the coupon in the all pay auction, and wk = 0 otherwise. (There is a unique vector

w consistent with vector of payments H, unless there is a tie). The probability that agent i acts

(ai = 1) is denoted by λi = λi(si,Hi,H−i,w). At the third decision node, agents submit bids in the

second price sealed-bid auction. At this moment, the information sets are (si,Hi,H−i,w, ai, ti). It is

27In an all pay sealed bid auction every agent submits a sealed bid. All agents have to pay the amount of their bids

regardless of whether or not they won the object. The agent with the highest bid receives the object. (In case of a tie

the winner is randomly chosen from the set of highest bidders.) Fullerton and McAfee (1999) use an all-pay auction

in their ’contestant selection auction’.
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well known that in an equilibrium in weakly dominant strategies of a private value Vickrey auction

bidders bid their true values. Thus, equilibrium bids are given by V (si, ti) + bai + εwi.

Clearly, an ε-efficient mechanism has multiple equilibria. Some of these equilibria are highly implau-

sible. In order to rule out such equilibria we introduce a restriction on strategies in the spirit of

‘intuitive’ criteria such as D1 of Cho and Kreps (1987) or stability of Kohlberg and Mertens (1986).

Definition 5.1. A strategy of an agent j is monotonic, if two vectors H−j and H0
−j differ only in

component i so that Hi > H 0
i, then pj(sj, Hj,H−j,w) ≤ pj(sj ,Hj,H

0
−j,w

0).

In words, a monotonic strategy of an agent j assumes that for any history, the probability that the

agent j takes an action is non-increasing in the size of the payment that some agent i, i 6= j makes

in the signaling stage.

As we will see, the requirement that the strategies are monotonic rules out the ‘bizarre’ equilibrium,

where all agents bid zero in the signaling stage and an agent who bids a positive amount is perceived

to be of the lowest type. Basically, there are two reasons why an equilibrium strategy may not be

monotonic: First, perverse beliefs may sustain an equilibrium in strategies that are not monotonic.

An example of such ‘unnatural’ beliefs is as follows: The more an agent bids for a discount coupon,

the lower is her perceived si. Obviously, this is counter-intuitive: the higher is an agent’s si, the

more she values the discount coupon. The second possibility stems from coordination aspect of

the game. If bids in the signaling stage are used as coordination devices for selecting a perfect

Bayesian equilibrium in the remaining subgame, an equilibrium resulting from these beliefs may

include strategies that are not monotonic.

Definition 5.2. A robust equilibrium of an ε−efficient mechanism is any symmetric perfect Bayesian
equilibrium in monotonic strategies.

Theorem 5.3. For an ε-efficient mechanism, the following is true:

(i) There exists a robust equilibrium.

(ii) The robust equilibrium is unique.

(iii) The probability that the robust equilibrium yields an efficient allocation converges to one as

ε→ 0.

Before proceeding to a formal proof, let us sketch the intuition behind this result. A pooling equi-

librium where everybody bids zero for the coupon is not robust. Indeed, if everybody bids zero for

the discount, it can be purchased for an arbitrarily small amount. Thus, the pooling equilibrium is
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sustainable only if bidders are discouraged from bidding a positive amount by a belief that a positive

bid would encourage other bidders to act more aggressively in the action stage. However, this belief

is inconsistent with strategies being monotonic. The same argument applies to any partially pooling

equilibrium. We show that there are no equilibria in mixed strategies, because the willingness to pay

for the discount is an increasing function of the bidder’s signal. Efficiency of a robust equilibrium

follows from Theorem 4.7 that establishes that for ε = 0, there exists an efficient symmetric equi-

librium. To prove asymptotic efficiency of a robust equilibrium, we show that when ε approaches 0,

the robust equilibrium converges to the equilibrium described in Theorem 4.7.28

Proof of Theorem 5.3.

(i) The proof of existence follows the pattern of the proof of Theorem 4.4. Construction of an ex-ante

equilibrium in the previous section used existence of an ex-post equilibrium in a mechanism, where

credibility payments are allowed to be functions of announcements. Here, we use the same idea. As

an intermediate step, consider a mechanism, where the discount is not auctioned off using an all-pay

auction. Instead, bidders announce their types in the reporting stage (much like in the mechanism

described in Section 4). After the announcement, bidders make payments hi(bsi,bs−i) to make the
announcement credible, and the bidder with the highest announced si receives the ε−discount.
Rounds of the “intermediate” mechanism:

1. After each agent privately learns si, all agents simultaneously announce their types in the cheap

talk stage. Afterwards, each agent must make a payment of hi(bsi,bs−i). The agent with the highest
Stage 1 announcement bs receives the discount coupon (ties are broken using a lottery). Agents take
action after observing announcements bs.
2. After Stage 5 signals t are revealed, the object is sold via a second-price sealed-bid auction.

We shall show that there exists a payment schedule hi(bsi,bs−i) such that truthful reporting supported
by paying hi(bsi,bs−i) is an ex-post equilibrium. The private value of the bidder with the highest
Stage 1 signal is essentially boosted by the amount equal to the discount ε. Let es(s,bs) be a vector
of ‘adjusted’ private value signals, where esi = si + ε if bsi > bsj = sj for all j 6= i, and esi = si

otherwise. Assuming bs−i = s−i, we study the ith agent incentives to misreport the true signal si. If
all the equilibrium reports bsi are truthful, then the subgame after ε discount is assigned is identical
to the game considered in Section 4.1. The equilibrium expected pay-off of agent i of the subgame,

which does not include hi, is denoted by Eeπi(si, ŝi, s−i). One can express Eeπi(si, ŝi, s−i) in terms
of Eπi(si, ŝi, s−i) (defined in Lemma 4.5) using ‘adjusted’ private signals. Let bes denote a vector of
perceived ‘adjusted’ signals of agents; the ith component of bes is besi = besi(si, bsi,bs−i) = esi + (si − bsi).
That is, es is a vector of ‘adjusted’ private value signals and bes is public perception about es. Now we
28Also, if the ε-efficient mechanism yields an inefficient outcome, efficiency losses are of magnitude ε.
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can write Eeπi(si, ŝi, s−i) = Eπi(esi,besi,es−i).
To prove that a separating equilibrium exists, we need to formulate an increasing-differences condition

similar to (4.2).

Claim. For any N − 1-tuple of truthful reports s−i, and any ŝ0i ≥ ŝi, s
0
i ≥ si,

Eeπi(s0i, ŝ0i, s−i)− Eeπi(s0i, ŝi, s−i) ≥ Eeπi(si, ŝ0i, s−i)− Eeπi(si, ŝi, s−i) (5.1)

To prove the claim, we need to consider three cases: (a) the agent wins the ε discount if she makes

announcement ŝ0i but not ŝi; (b) an agent wins the discount for either announcement ŝ
0
i or ŝi; (c)

neither ŝ0i, nor ŝi are high enough to win the discount.

For (b) and (c), (5.1) follows immediately from Lemma 4.5. It remains to show that it also holds for

the case (a). Denote s−i = (sm−i, s
−m
−i ), where s

m
−i is the largest component of the vector s−i and s

−m
−i

is an N − 2-dimensional vector that consists of all components of vector s−i other than its largest
component sm−i. Applying the new notation, one gets Eeπi(si, ŝi, s−i) = Eeπi(si, ŝi, sm−i, s−m−i ). In case
(a), we have es−m−i = s−m−i . Therefore, one can re-write (5.1) as follows:

Eπi(s
0
i + ε, ŝ0i, s

m
−i)−Eπi(s

0
i, ŝi, s

m
−i + ε) ≥ Eπi(si + ε, ŝ0i, s

m
−i)−Eπi(si, ŝi, s

m
−i + ε). (5.2)

Let

X = V (si, ti) + ε−max
j 6=i

©
V (sj, tj) + ba∗j(ŝ

0
i, s

m
−i, s

−m
−i )

ª
,

X 0 = V (si, ti) + ε−max
j 6=i

©
V (sj, tj) + ba∗j(ŝi, s

m
−i + ε, s−m−i )

ª
,

Y = V (s0i, ti) + ε−max
j 6=i

©
V (sj, tj) + ba∗j(ŝ

0
i, s

m
−i, s

−m
−i )

ª
,

Y 0 = V (s0i, ti) + ε−max
j 6=i

©
V (sj, tj) + ba∗j(ŝi, s

m
−i + ε, s−m−i )

ª
We know that X 0 º X, Y 0 º Y. Then

Eπi(s
0
i + ε, ŝ0i, s

m
−i)− Eπi(si + ε, ŝ0i, s

m
−i) = EY + − EX+,

Eπi(s
0
i, ŝi, s

m
−i + ε)− Eπi(si, ŝi, s

m
−i + ε) = EY 0+ −EX 0+.

Using Lemma A3 (from the Appendix) completes the proof of (5.2).

Since (5.2) holds, there exists an ex-post separating equilibrium in the “intermediate mechanism”.

Using existence of an ex-post equilibrium, we can apply the same argument as in the proof of Theorem

4.7 to establish existence of ex-ante separating signaling mechanism, where agents make signaling

payments that are strictly increasing in their signals. This completes the proof of existence.

Now we shall prove that any robust equilibrium is unique, fully separating, and ’almost efficient’.
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In an equilibrium, the probability of any particular bid value H in the signaling stage is zero. Indeed,

if there is a positive mass of agents that plays some Hmass with positive probability, then there is a

positive probability of a tie. Then an agent playing Hmass can increase the likelihood of winning the

discount ε > 0 by increasing her bid by an infinitesimal amount. Since the strategies are monotonic,

none of the agents would increase their likelihood of taking actions. Thus, such a deviation would

be profitable.

Probability that players in the set −i take actions is denoted here as p−i. Let Π(si,p−i, s−i) denote
the pay-off of player i in the subgame after signaling payments H’s are sunk. We want to show that

if p−i ≥ p0−i then for every s0i > si we have

Π(s0i,p−i, s−i)−Π(si,p
0
−i, s−i) ≤ Π(s0i,p−i, s−i)−Π(si,p

0
−i, s−i). (5.3)

Essentially this condition says that any decrease in “final” private values of player in the set −i is
more valuable for player i with a larger Stage 1 private signal. Inequality (5.3) follows from the proof

of Lemma 4.5.

Let us show that all robust equilibria are separating. In a robust equilibrium, actions taken by

players depend on their private signals and the announcements of other players. Thus, we can write

p−i = p−i(s−i,H−i, Hi) and p0−i = p−i(s−i,H−i,H
0
i). (According to Step 1 a tie is a measure zero

event; and thus have no impact on expected payoffs.) For monotonic strategies p−i ≥ p0−i forH 0
i > Hi

(the inequality holds for all components). Inequality (5.3) implies that H(s) is weakly increasing in

s. Combining this fact with result of Step 1, we conclude that H(s) is strictly increasing in s (expect

perhaps for a measure-zero set).

Let us show that in equilibrium, pi(H−i, Hi(si), si) is non decreasing in si. Indeed, p−i = p−i(s−i,H−i, Hi)

is weakly decreasing in Hi. Thus, according to single crossing condition, if agent with a Stage 1 sig-

nal si acts with positive probability pi(H−i,Hi(si), si) > 0, then any agent with a signal s0i > si

strictly prefers to act, and pi(H−i, Hi(s
0
i), s

0
i) = 1. Therefore, there exists a unique equilibrium in the

subgame that is consistent with a robust equilibrium strategy profile. In this equilibrium, all agents

with private values exceeding some critical value s∗(H) act.

From the previous paragraph and Theorem 4.2, it follows that ε−efficient mechanism yields an

efficient allocation with probability converging to one as ε converges to zero.

To establish uniqueness of the robust equilibrium, we use a standard argument (e.g., Klemperer,

1999). Condition (5.3) implies that dH(s)
ds

is the same in any robust equilibrium. In Step 5, we

showed that there is a unique robust equilibrium in the subgame following the all-pay auction. It

remains to show that H(0) = 0. Suppose otherwise, say H(0) = H0 > 0. For a player with si = 0,
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H(0) = 0 is a profitable deviation: Indeed, after this she does not change the perception of her type

(she is correctly perceived to have si = 0). It was demonstrated that in a robust equilibrium each

player either acts with probability one or zero (except perhaps for a set of measure zero). Thus,

the deviation can only cause other players to increase the probability with which they act; however,

given the set of players that act, non of the players that do not act in a robust equilibrium would

choose to act. ¥
Let us now consider an example illustrating that the all pay auction part of the ε-efficient mechanism

is crucial for ensuring that any robust equilibrium is separating and nearly efficient.

Example 5.4. Suppose the all-pay auction is replaced with a second-price sealed-bid auction. When

a sufficiently small discount is auctioned off via a second price auction, the following inefficient pooling

equilibrium is robust: all agents bid ε for the discount of size ε. Indeed, we need to specify beliefs

that support this equilibrium. If an agent deviates by bidding less than ε, she is perceived to have

the lowest possible signal si. Thus, there are no incentives to bid less than ε, provided that ε is

sufficiently small. If an agent bids more than ε, the beliefs of other agents about her type are the

same as if she bids ε. Thus, bidding more than ε is a bad strategy: If there are N agents bidding

ε each in a second-price auction, each of them has a 1
N
chance of getting the discount. The winner

of the discount “envy” the bidders who did not win the discount, and thus do not have to pay

anything in the signaling stage. By bidding more than ε, an agent insures that she wins the discount

and will have to pay for it, thus, making herself worse off. In contrast, there are no robust pooling

equilibrium of the ε-efficient mechanism (by Theorem 5.3). For instance, if all agents bid ε for the

discount, bidding slightly more than ε is a profitable deviation.

6. Conclusion

The paper develops an auction-theory type model to demonstrate sources of inefficiency when the

bureaucrat’s interests are different from the social ones. In the model, the main source of inefficiency

is the bureaucrats large discretion over parameters of the auction, and the possibility that his private

interests are not fully aligned with public interests. If the auctioneer is not benevolent (does not

maximize proceeds from the auction), he exploits his discretion to obtain ’non-competitiveness’ rents.

If the society has a possibility to reduce his discretion or introduce some external control over his

action, the revenue (or, alternatively, the social utility) rise, while the rent (bribes) of the bureaucrat

is reduced.

The consideration above is not complete, however. It seems that the model allows to obtain some

additional insights. In particular, in the current paper, the usual rent-seeking interpretation of the
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all-pay auctions has not been employed. It would be extremely interesting to learn that the above

mechanism may allow to achieve simultaneously: (i) spending-maximization in an all-pay auction

(the bureaucracy side) and (ii) market-sharing (the large bidders side). The parties loosing are public

(the state) and small bidders.

The main model in this paper is focused on the auctioneer trying to achieve efficiency. However, a

revenue-plus-bribe-maximizing auctioneer might opt for another strategy.

Procurement auctions. At least five years ago, it was suggested to allocate all public procurement

contracts in Russia by public tenders. The main concern was possibility of corruption when it is

bureaucrat’s own discretion to allocate the good. Although corruption need not necessarily challenge

the allocative efficiency, it is harmful for cost minimization (revenue maximization in selling-the-good

terms).29

Privatization and Liquidation Auctions. Many privatization auctions in Russia (both cash

and non-cash) were organized in a way, where the winner had to fulfill some conditions (e.g., to

make a specified investment or to keep some level of employment and/or output) to obtain the

good. From the theoretical point of view, providing such an opportunity may result in revenue or

social inefficiency. The possibility to determine some specific conditions while holding a liquidation

auction (as specified by Russian bankruptcy law) may lead to huge efficiency losses, as it allows the

liquidation manager to manipulate the results of the auction. This in turn affects both ex-ante and

ex-post incentives of management and creditors. Cornelli and Felli (1999) try to design a bankruptcy

procedure that maximize creditors (ex-post) returns. The model below might be used to demonstrate

that it is done at a cost of efficiency. Also, the model sheds some light on mechanisms of ’targeted

sales’ in liquidation auctions. (See Lambert, Sonin, and Zhuravskaya, 2000, for a thorough study of

bankruptcy in Russia.)

Collusion, Package-Bidding and Market-Sharing. In auction theory literature, collusion

among bidders is considered as a major obstacle to revenue-maximization in auctions. (See a survey

of collusion-in-auctions literature in Lyk-Jensen, 1998.) The proposed framework provides additional

(and complementary) insights by noting that to have a bidding ring of colluding bidders, there should

be a restriction on free entry to the auction. The possibility to specify conditions is the most natural

way of restricting entry. (Compte et al, 2000 and Lambert and Sonin consider a particular case.) In a

variety of cases, the main problem is that the package bidding is left to a bureaucrat. The approach of

this paper allows to study effects of discretion in package bidding on allocative efficiency and revenue

maximization. Indeed, if the set of all possible partitions (packages) constitute the set of conditions

29Note that in case of a procurement contract, all results should be re-stated in terms of costs instead of values,

payments from the government instead of prices payed for the good being allocated, etc.
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under which one single good is sold, then the problem of packaging is effectively transferred to the

problem of choosing such a condition.

Lobbying and rent-seeking. Lobbying activities are often modelled as a game of attrition (e.g.,

Klemperer, 1999). More broadly, lobbying and rent-seeking may be considered as an all-pay auction

(see definition below). Here the bureaucrat might be interested in total-spending maximization (i.e.

not only in the winner’s payment maximization). In a corruption-type interpretation, the bureaucrat

chooses a set of rules (regulation) that maximize spending of bidders.
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Appendix A: The Simple Model
Proof of Theorem 2.1.

To simplify notation, let a = V1(α) and b = V2(α).

Assume that x and y drawn from distributions with c.d.f. Fx and Fy on [0, a] and [0, b], respectively,

and let a ≤ b. Then the first order statistics (i.e. the second price in the case of two bidders) has the

following c.d.f.: Fξ(1) = 1− (1− Fx)(1− Fy). Thus, the expected revenue of the auctioneer is

Eξ(1) =

Z a

0

zdFξ(1)(z).

If Fx(z) =
z
a
on [0, a] and Fy(z) =

z
b
on [0, b] (i.e. both distributions are uniform, but domains are

generally different), then

Eξ(1) =

Z a

0

z

a
+

z

b
− 2z

2

ab
dz =

a

2
− a2

6b
.

Suppose that a = a(α) and b = b(α), α ∈ [0, 1] and a0(α) < 0, while b0(α) > 0. Denote by α∗ a

unique point of intersection, a(α∗) = b(α∗). (Recall that we assumed that there is a unique point of

intersection.)

The auctioneer solves the problem:

Eξ(1) = Eξ(1)[α]→ max
α

The derivative of Eξ(1) w.r.t. α is

dEξ(1)
dα

=
a0

2
− 2aa

0b− b0a2

6b2
.

Note that
dEξ(1)
dα

> 0 for all α ≤ α∗. Thus, α∗ is a unique solution for the revenue maximization

problem given a ≤ b. The other case (a > b) is similar. Thus, α∗ is a unique solution for all a, b.

When α = α∗, the expected revenue is

R(α∗) = Eξ(1) =
a

2
− a2

6b
=
1

3
a =

1

3
V1(α

∗).¥

Proof of Theorem 2.2.

Expected (ex-ante) surplus of the bidder with the larger domain ([0, b]) is equal to

Sb = E(y − x | x < y)P (x < y) =

Z a

0

Z b

t

zdFy(z)dFx(t)−
Z b

0

Z z

0

tdFx(t)dFy(z).
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It is straightforward that Sb > Sa = E(x− y | x > y)P (x > y). Given that x and y are drawn from

uniform distributions, one gets E(y | x < y)P (x < y) = b
2
− a2

6b
and E(x | x < y)P (x < y) = a

2
− a2

3b
,

summing up to

Sb =
b− a

2
+

a2

6b
.

Clearly, ∂Sb
∂b

> 0 for all b > a > 0. If α < α∗, then V1(α) > V2(α) and thus the above formula applies.

Therefore,

S1(α) =
V1(α)− V2(α)

2
+

V 2
2 (α)

6V1(α)

is maximized when α = 0. Similarly, S2(α) is maximized when α = 1. Hence, the self-interested

auctioneer is concerned with α ∈ {0, 1} exclusively.¥
Theorem 2.3 is a straightforward calculation.
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Appendix B: The Main Model
To prove propositions in the body text, we need some auxiliary notation and lemmas. For any

number (function) x, let x+ = max{x, 0}. A random variable X (first-order) stochastically dominates

a random variable Y (denoted X º Y ) if and only if for cumulative density functions, one has

FX(z) ≤ FY (z) for any z ∈ R. An equivalent condition is that Eh(X) ≥ Eh(Y ) for any increasing

function h (e.g., Levy, 1992).

Lemma A1. Suppose that X,Z and Y,W are random variables, and in both pairs variables are

independent of each other. Suppose that X º Y, W º Z. Then X − Z º Y −W.

Proof. We need to prove that for any t, FX−Z(t) ≤ FY−W (t). One has

FX−Z(t) =

Z ∞

−∞

·Z ∞

x−t
dFZ(z)

¸
dFX(x) =

Z ∞

−∞
(1− FZ(x− t))dFX(x)

≤
Z ∞

−∞
(1− FW (x− t))dFX(x) =

Z ∞

−∞

·Z ∞

x−t
dFW (w)

¸
dFX(x)

=

Z ∞

−∞

·Z z+t

−∞
dFX(x)

¸
dFW (w) =

Z ∞

−∞
FX(w + t)dFW (z)

≤
Z ∞

−∞
FY (w + t)dFW (z) =

Z ∞

−∞

·Z w+t

−∞
dFY (y)

¸
dFW (z) = FY−W (t).

¥

Lemma A2. For any random variables X and Y such that X º Y , and a random variable Z,

which is independent of X,Y,

max{X,Z} º max{Y, Z}.
Proof. Straightforward.¥

Lemma A3. For any random variables X and Y such that X stochastically dominates Y , and any

constant z ≥ 0,
E(X + z)+ − EX+ ≥ E(Y + z)+ −EY +.

Proof. For any z ≥ 0, the function hz(x) = (x + z)+ − x+ is a bounded increasing function of x.

Therefore, the definition of stochastic dominance yields that Ehz(X) ≥ Ehz(Y ).¥

Lemma A4. For any independent random variables X,Y, Z such that X º Y, and any constant

t ≥ 0,
Emax{X + t, Y, Z} º Emax{X,Y + t, Z}.
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Proof. For any numbers x, y, and z, max{x, y} = (x−y)++y.We start with the following identites

max{X + t, Y, Z} = (X + t−max{Y,Z})+ +max{Y,Z},
max{X,Y,Z} = (X −max{Y, Z})+ +max{Y, Z}.

Then

max{X + t, Y, Z}−max{X,Y, Z} = (X + t−max{Y, Z})+ − (X −max{Y, Z})+,
max{X,Y + t, Z}−max{X,Y, Z} = (Y + t−max{X,Z})+ − (Y −max{X,Z})+.

From Lemma A2, we know that max{X,Z} º max{Y, Z}. Lemma A1 implies thatX−max{Y,Z} º
Y −max{X,Z}. Using Lemma A3 completes the proof. ¥
Lemma A5. Let q(x, y) be a continuous function increasing in both arguments, and let X,Y be

two random variables. For any realizations x1 > x2 of the random variable X, the distribution of

Y conditional on x1 (first-order) stochastically dominates the distribution of Y conditional on x2.

Then q(x1, Y ) º q(x2, Y ).

Proof. Define τ(x, z) to satisfy q(x, τ(x, z)) = z. Clearly, τ(x, z) is increasing in z. Now Fq(x1,Y )(z) =

FY |x1(τ(x1, z)) ≤ FY |x1(τ(x2, z)) and Fq(x2,Y )(z) = FY |x2(τ(x2, z)) ≥ FY |x1(τ(x2, z)), the latter in-

equality following from the fact that Y |x1 º Y |x2. Therefore, for any z, Fq(x1,Y )(z) ≤ Fq(x2,Y )(z).

¥

Proof of Lemma 1. Let ea be a vector of actions with eaj = eak = 0 and eai = ai = a0i for all i 6= j, k.

Lemma A4 yields that V (sj, Tj) º V (sk, Tk) whenever sj ≥ sk. Now one can use Lemma A3 with

the constant beaj = beak.¥
Proof of Lemma 2. Let Z = maxj 6=i {V (sj, tj) + baj}), and X = V (si, ti). By definition,

gi(s,a−i) = E(X + b− Z)+ −E(X − Z)+.

Using the formula max{x, y} = (x− y)+ + y, we get

Gi(s,a−i) = Emax{X + b, Z}− Emax{X,Z}
= E(X + b− Z)+ +EZ − (E(X − Z)+ +EZ)

= E(X + b− Z)+ −E(X − Z)+ = gi(s, a−i),

as claimed.¥

Proof of Lemma 3. First, we claim that for any i, and for any s and s̃ such that s−i ≤ s̃−i and
si = s̃i, a

∗
i (̃s) ≤ a∗i (s). Indeed, let Xi(s) = V (si, ti) and Zi(s) = maxj 6=i

©
V (sj, tj) + ba∗j

ª
.
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Suppose that a∗j(si, s−i) ≤ a∗j(si, s̃−i) for all j 6= i. Then

Xi(si, s−i)− Zi(si, s−i) º Xi(si,es−i)− Zi(si,es−i)
by Lemmas A1 and A2. To prove that gi(s) ≥ gi(̃s), recall that

gi(s) = E (Xi(s) + b− Zi(s))
+ −E (Xi(s)− Zi(s))

+ ,

and then apply Lemma A3 to prove the claim. By definition, gi(s) ≥ gi(̃s) implies that a∗i (̃s) ≤ a∗i (s).

It is enough to consider the case of a∗j(si, s−i) ≤ a∗j(si, s̃−i) for all j 6= i. Indeed, if a switch from 1 to

0 occurred with an agent that ends up higher than i as a result of increase from s−i to s̃−i, then it

is definite that a∗i (̃s) = 0, and thus a
∗
i (̃s) ≤ a∗i (s) for any a

∗
i (s). Otherwise (if a change have occurred

with an agent ranked lower than the agent i), a∗i (s) = 1.

Second, we claim that the function gi increases with si. The first claim shows, in particular, that if si
increases, while s−i is constant, the number of agents acting (weakly) decreases. Thus, the random

variable Xi(si, s−i)− Zi(si, s−i) raises in terms of stochastic dominance, and Lemma A3 applies.

Now we shall prove that

Eπi(s
0
i, ŝ

0
i)−Eπi(si, ŝ

0
i) ≥ Eπi(s

0
i, ŝi)−Eπi(si, ŝi),

which is equivalent to (4.2).

DefineXi = V (si, ti), X
0
i = V (s0i, ti), Yi = maxj 6=i

©
V (sj, tj) + ba∗j(ŝi, s−i)

ª
, and Y 0

i = maxj 6=i
©
V (sj, tj) + ba

Eπi(s
0
i, ŝi)−Eπi(si, ŝi) = E(X 0

i − Yi)
+ −E(Xi − Yi)

+,

Eπi(s
0
i, ŝ

0
i)−Eπi(si, ŝ

0
i) = E(X 0

i − Y 0
i )
+ −E(Xi − Y 0

i )
+,

and so it remains to prove that

E(X 0
i − Y 0

i )
+ −E(Xi − Y 0

i )
+ ≥ E(X 0

i − Yi)
+ −E(Xi − Yi)

+.

The two claims proved above yield thatX 0
i º Xi and Yi º Y 0

i .Using Lemma A3 (for each non-negative

constant) completes the proof.¥

Proof of Theorem 4.6. Let si be the true agent’s i first-period signal, and consider k such that

s̄i(k) < ŝi ≤ s̄i(k−1). Since ŝ−i is fixed throughout the argument, we suppress the notation. Truthful
reporting brings the expected utility of

Eπi(si, a(k))− hi(si) = Eπi(si,a(k))− hi(s̄i(k))−Eπi(s̄i(k),a(k)) +Eπi(s̄i(k), a(k + 1)).
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First, we prove that the agent i has no incentives to under-report her first-period signal, i.e. to

report ŝi < si. Consider incentives the agent i with the first-period signal s̄i(k) faces. For any ε such

that s̄i(k) − s̄i(k + 1) > ε > 0, she is indifferent between reporting s̄i(k) and reporting s̄i(k) − ε.

Indeed, the ’credibility payment’ is the same and the number of acting rivals is the same (k+1). The

condition (4.2) assures that if the agent with s̄i(k) is indifferent between reporting s̄i(k) to reporting

s̄i(k)−ε, then the agent with si > s̄i(k) (weakly) prefers reporting s̄i(k) to reporting s̄i(k)−ε. Thus,
ŝi can not be less than s̄i(k). (To rule out reports below s̄i(k + 1), one can consider incentives the

s̄i(k + 1)-agent faces.) It remains to show that ŝi (weakly) exceeds s̄i(k). So, we need to prove that

Eπi(si,a(k))− hi(s̄i(k))− Eπi(s̄i(k),a(k)) +Eπi(s̄i(k),a(k + 1)) ≥ Eπi(si,a(k + 1))− hi(s̄i(k)),

or equivalently,

Eπi(si, a(k))−Eπi(si, a(k + 1)) ≥ Eπi(s̄i(k), a(k))−Eπi(s̄i(k), a(k + 1)),

but this is true by (4.2). Since the agent i having the signal si is indifferent between reporting si

and reporting any signal that is larger than s̄i(k) and does not exceed si, the proof that the agent i

has no incentives to under-report her signal is complete.

The proof that there is no incentives to over-report the signal is somewhat symmetric. The si−agent
is indifferent between reporting the true signal and reporting s̄i(k − 1). Indeed, the mechanism
assumes that the agents with reports si and s̄i(k − 1) pay the same amount. Now, for any ε such

that s̄i(k − 2)− s̄i(k − 1) > ε > 0, the agent with s̄i(k − 1) is indifferent between reporting the true
signal and reporting s̄i(k − 1) + ε. To see this, note that

Eπi(s̄i(k − 1),a(k))− hi(s̄i(k − 1)) = Eπi(s̄i(k − 1), a(k − 1))− hi(s̄i(k − 1))
−Eπi(s̄i(k − 1),a(k − 1)) +Eπi(s̄i(k − 1),a(k)).

By (4.2),

Eπi(s̄i(k − 1),a(k − 1))−Eπi(s̄i(k − 1), a(k)) ≥ Eπi(si, a(k − 1))−Eπi(si,a(k)).

Thus, if the s̄i(k − 1) is indifferent between reporting the truth and reporting s̄i(k − 1) + ε, the

si-agent (weakly) prefers to report s̄i(k−1) (which is pay-off equivalent to reporting the truth), than
to report s̄i(k−1)+ε. To show, that ŝi would not exceed s̄i(k−2), one should consider the incentives
the s̄i(k− 2)-agent faces, etc. Therefore, the agent i has no incentives to over-report her first-period
signal.¥
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