Centre for Economic and Financial Research at New Economic School

March 2007

Entry to and Exit from Poverty in Russia: Evidence from Longitudinal Data

Irina Denisova

Entry to and Exit from Poverty in Russia: Evidence from Longitudinal Data

Irina A. DENISOVA

Center for Economic and Financial Research and New Economic School (Moscow)
Suit 720, Nakhimovsky 47, 117418, Moscow, Russia

E-mail: idenisova@cefir.ru

March 2007

Abstract

Long-term sustainability requires social stability and hence could be undermined by high poverty levels. Still more than twenty five million Russians have incomes that are lower than subsistence level. Effective policies to fight poverty are to be based on clear understanding of its determinants and are to distinguish between measures to prevent from slipping into poverty, and measures to get out of poverty for those who are poor. The study is the first attempt to investigate how entry to poverty and exit from poverty in Russia are shaped, and what are the determinants of the processes.

We study entry and exit to poverty using survival analysis and utilizing the Russian Longitudinal Monitoring Survey (RLMS) panel for 1994-2004. The study allows obtaining some important insights. In particular, it shows that the two processes have both symmetries and important asymmetries, with an example of one of the most interesting results being the asymmetry in the influence of economic periods. It turns out that economic growth lowers chances to slip into poverty but also reduces hazards from poverty. This implies that households in poverty in the era of economic upturn are those with serious problems and are to be paid special attention to.

JEL Classification: I32, I38, C41, P36

Key words: Poverty, Duration Analysis, Entry to Poverty, Exit from Poverty, Transition,

RLMS

1. Introduction

Long-term sustainability requires social stability and hence could be undermined by high poverty levels. Poverty in Russia declined during the last five years from 29% of population in 2000 to 17% in 2004 (Rosstat (2005), p.32). Still more than twenty five million people have incomes that are lower than subsistence level (Ibid). Effective policies to fight poverty are to be based on clear understanding of its determinants.

There is significant body of literature studying poverty in Russia. Table 1 summarizes the key results of the selected studies on poverty in Russia in the 90s. Several points can be made on what is known on poverty in Russia. First, poverty rates are of significant magnitude and vary with the measure used. However, the poverty gap is not deep. Second, when examining poverty dynamics, the majority of the poor are found to be transitory poor, with the large inflows and outflows to and from poverty. The latter is consistent with the observation that poverty gap is small for the majority of families. A large share of families living near the poverty line, together with the reported lack of opportunities to smooth consumption, makes Russian households vulnerable to shocks. Third, based on observable characteristics, no significant distinction arises between factors which determine transitory poverty and chronic poverty. Put it differently, all the studies agree that the factors determining chronic and transient poverty are the same, and/or the magnitude of their influence is very similar. Fourth, the identified vulnerable categories are the following: large families; single parents with children and, more broadly, families with children; rural households; families with unemployed family heads or ones with wage arrears (in the 90s). Pensioners are found to be relatively well buffered from poverty. Better education, especially university degrees are also an effective buffer against poverty, especially in urban settlements.

The literature, however, analyzes primarily stocks of poverty, and, with only some indirect insights about flows in and out of poverty in terms of studying probability to leave poverty stock. What is lacking in the literature is an understanding of how entry to poverty and exit from poverty are shaped, and what are the determinants of the processes. In particular, are the two processes symmetric or there are important asymmetries? What are the time-related properties of the flows? Additionally, a longer time horizon allows studying possible changes brought to life by the economic growth that followed the economic decline. We study entry and exit to poverty using survival analysis pioneered by Bane and Ellwood (1986). The approach permits overcoming the estimation bias coming from the problem of non-normality of the distribution for time to an event and of right-censoring. The study utilizes the Russian Longitudinal Monitoring Survey (RLMS) panel for 1994-2004. Here comes another comparative advantage of the approach since it allows using an unbalanced panel over the period of eleven years. Given the serious attrition problem (Mills (2007)), this implies that our results are based on the information over the total sample rather than over less than half of the observations.

The paper is organized as follows. Methodology and data are discussed in Section2, Section 3 summarizes main results, and Section 4 concludes.

2. Methodology and data

2.1 Methodology

The core methodology of our study is survival (duration) analysis which was pioneered to study poverty by Bane and Elwood (1986).

The approach allows exploiting the features of longitudinal data and permits overcoming the estimation bias coming from the problem of non-normality of the distribution for time to an event and of right-censoring. The survey of the approach could be found in Kiefer (1988). Additionally, the methodology allows using unbalanced panel which is beneficial when there is serious attrition problem. The latter is a serious issue in the panel we use for the study.

The central idea of the approach is to estimate the hazard ratios, defined as the probability that the spell ends at time *t* conditional that the spell last till period t. In poverty analysis a spell is the poverty spell when exit from poverty is considered and the non-poverty spell when entry to poverty is studied.

We use proportional hazard model which allows analyzing the influence of various economic factors on the duration of the spell:

$$\lambda(t, x, \beta, \lambda_0) = \phi(x, \beta)\lambda_0(t),$$

where λ_0 - base hazard function, corresponding to $\phi(\cdot) = 1$, $\phi(x, \beta) = \exp(x'\beta)$, x - vector of explanatory variables, β - estimated coefficients. A flexible Cox proportional hazard model in which the base hazard function is left not specified is used.

The vector of explanatory variables *x* includes several groups of factors: demographic characteristics of a household; labor market attachment of adult family members; eligibility for public transfers; characteristics of human capital of a household; settlement type and economic region; time period.

2.2 Data and Construction of Variables

Data from Russian Longitudinal Monitoring Survey (RLMS), Rounds 5-13 (1994-2004) are used. RLMS is a nationally representative longitudinal survey of households' members on a large number of issues. It is available at http://www.cpc.unc.edu/project/rlms. The number of households surveyed fluctuate around 4,000. The statistics for both the initial panel and the panels utilized for poverty and non-poverty analysis are presented in Table 2, by year.

Overall, the initial unbalanced panel comprises of 8,323 households. There are some cases of a household split-up when a part of a household becomes a separate household in the next round¹. In the case of a split-up we treat the master household as being in the panel from the beginning, and the young household as entering the sample at the date of the separation².

Given the nature of our analysis, it is important not to have gaps in data across periods. Households with missing rounds or missing poverty status are dropped from the panel. This reduces the overall size of the panel to 6,214 households.

To accommodate multiple failures to the analysis, we duplicate households that have two, three and so on failure events – those that slip into and out of poverty several times over the observed period. As a result, the number of households in the panel inflated to 7,143 households with each having only a single failure record – either exiting poverty when considering hazard from poverty, or exiting non-poverty (entering poverty) when considering hazard from non-poverty.

The duration analysis is sensitive to gaps in the date of record. There are two gaps in RLMS data: there was a two-year gap from 1996 to 1998 (from round 7 to round 8), and another two-year gap from 1998 to 2000 (from round 8 to round 9). We treat the periods as if

² In other words, both households are kept in the panel, with the link of the young household to the master one being kept only in terms of the relevant dummy variable and not in terms of household identification numbers.

¹ It is worth mentioning that not all new households that spinned off are followed up.

there were no gaps and thus as if there was only one year between rounds 7 and 8, and between rounds 8 and 9. This implies that some spells in the analysis are shorter than they are: it could be that some households being poor in 1996 were also poor in 1997, and, by having no information on year 1997, we reduce their poverty spell from 3 to 2 (case 1 in Table 3), or from 2 to 1 (case 3 in Table 3). Poverty spell is also underestimated in case 5. Symmetrically, non-poverty spells are underestimated in cases 4, 6 and 8. At the same time, when the unobserved year was the one of a one-year switch from poverty to non-poverty or from non-poverty to poverty, we overestimate poverty and non-poverty spells, as is clear in cases 2 and 7. There is little one could do to improve the situation, however.

Total household income is taken as the welfare measure. Absolute poverty concept is employed in the analysis with regional poverty lines developed by Popkin et.al.(1996) being applied. The poverty lines are based on local diets that meet subsistence needs, take into account regional prices and equivalence scales for family size.

Descriptive statistics for the explanatory variables are presented in Table 5, with the second and the third columns reflecting the means and standard deviations calculated on the sub samples of that in poverty and in non-poverty respectively.

The first subgroup of variables reflects demographic composition of households in the sample. The mean family size is 2.75 for the total sample and 3.06 for those in poverty and 2.71 in non-poverty. About 80% of households do not have children of less than 7 years, 18% have only one child of the age group, and 2% - 2 children of the age group. The presence of small children is higher among families in poverty than in non-poverty. Almost 70% of households do not have children of 7-18 age groups, 23% have 1 child of the age group, and another 8% have two children, and only 1% has 3 children. Again, the presence of children is higher in families in poverty. Majority of households - 60% - are headed by an adult male, with the rest 14% being headed by an adult female, 12% - by retired male, and 13% - by retired females. The representation of households headed by retired people is significantly less among poor households than non-poor.

The second subgroup of variables is to reflect the labor market attachment of household members. In particular, 63% of adults in the sample are in the labor force, with 60% having a job and less than 5% unemployed according to ILO definition. Unemployed adult members are overrepresented in poor households. The average share of adults in a household working in public sector is 26%, being a bit higher among families in poverty. Additionally, we control for household involvement in subsistence farming. On average, 14% of families are involved in subsistence farming.

The role of public transfers in shaping poverty patterns in Russia is reflected by the share of pension recipients. The average ratio of those receiving pensions to adults in a household is about 40%, with the share being much less in households in non-poverty -25%. Additionally, the role of child benefits is reflected indirectly by the share of children in households.

The next subgroup of variables is related to the characteristics of human capital in the family. In particular, we consider the share of adults in bad and very bad health, and the educational attainments of adults. The mean share of adults in bad health is 18%, being only slightly higher in poor families. The average share of adults having completed secondary school only is 11%, with 15% in poor families. The share of adults with university degree is 16% on average. At the same time this share is only 10% among families in poverty. An alternative variable to measure educational attainment of families is the maximum education degree obtained, where those families with secondary school as the maximum degree obtained are prescribed 1, families whose members achieved secondary professional degree get 2, and those with university degree get 3. The average score in the sample is 1.98.

Majority of families in the sample, 66%, live in urban areas. The geographic distribution of households in the sample across geographic regions of Russia is presented in Table 5.

The eleven yeas under study comprise of two distinct periods in terms of macroeconomic development of the country. The period of economic decline is represented in our data by observations in 1994-1998, while the period of economic upturn encompasses the years 2000-

2004. It is interesting to test whether there are differences in exit from and entry to poverty across the two periods.

Table 7 provides the sample averages for each of the nine years under consideration. It turns out that the main parameters are rather stable across year with the exception of the variables that change naturally as the panel ages.

The data are translated into survival format using STATA statistical software with a year as a time unit. The entry time is defined as the time of first exposure to risk of poverty when analyzing exit from poverty, and to risk of non-poverty when analyzing entry to poverty (non-poverty hazard). Technically, the entry time is defined as the first year the household is non-poor and the first year the household is poor respectively.

Table 6 reports the number of households in each of the sub samples and the number of records: 3,445 households and 6,360 records when analyzing exit from poverty, and 6,819 households and 20,698 records when studying entry to poverty. There are 2,336 cases of completed poverty spells and 2,134 cases of completed spells of non-poverty.

Table 4 presents frequencies for incidence of poverty (total number of rounds in poverty) and duration of poverty (maximum duration of poverty spells), and frequencies for incidence of non-poverty and duration of non-poverty. It comes from the table that 54.5% of households in the panel never experienced poverty when in the sample³. Symmetrically, 526 households, or 8% of the sample, were poor in each round when in the survey. Another 27% of households were poor for only one year⁴, 9% for two years, 4% for three years, 2% for four years, and around 1% for five and six years.

Kaplan-Meier estimate is a convenient way of presenting the dependent variable of our study - survival and hazard functions of staying in poverty and in non-poverty. Diagram 1 presents the Kaplan-Meier estimate of survival function of staying in poverty, with the first part of Table 8 showing the corresponding hazard function. It comes that about 40% of families in the sample get out of poverty after one year, and another 20% after two years, and yet another 14% after three years. After five years in poverty the probability of getting out of poverty is already more than 90%.

Diagram 5 presents the estimate of survival function of staying in non-poverty, i.e. of not entering poverty. The second part of Table 8 shows the corresponding hazard function. It turns out that hazard to enter poverty is much flatter than hazard to escape poverty. In particular, the probability to enter poverty after a year in non-poverty is 14%, after two years - 26%, after three years - 34%. Even after nine years in non-poverty the probability of entering poverty is 43% confirming that more than half of the families in the sample never enter poverty.

In addition to the survival estimates for the total samples, the Kaplan-Meier survival functions by settlement type and by periods of decline and growth are estimated. The results are summarized in Table 9 and Diagrams 2-4 and 6-8. They suggest that there are significant differences across households living in rural and urban areas both in entry to poverty and in exit from poverty: those living in urban areas have significantly lower hazards of entering poverty and higher hazards of leaving poverty. The difference is even higher between metropolitan areas and non-metropolitan. In particular, there is no case of a family from a metropolitan area which survives in poverty for more than five periods. The decline and growth periods seem to shape the exit and entry rates. The survival functions are significantly different across the two periods, with the entry to poverty rate becoming lower during economic upturn and exit rate from poverty also lower. It is interesting to test whether the pattern survives when controlling for other important covariates.

³ Some of households are observed for all the 9 rounds, some for 1 or 2 years only.

⁴ Again, some of households are in the panel for all the 9 rounds, while others are for 1 or 2 years only.

⁵ Note that those are conditional probabilities of exit after t periods conditionally on staying until period t.

3. Results

3.1 Exit from poverty

To test for the determinants of hazard rate from poverty, we estimate Cox proportional hazard model. Several specifications are tried (Tables 10 and 11). To take into account the fact that some households have multiple episodes of poverty and non-poverty, i.e. multiple failures in technical terms, the estimates are done with clustering on the initial identification numbers of households. Additionally, stratifications on settlement type and on economic periods are tried in some specifications. This allows the baseline hazards to vary across the two groups though the estimated coefficients are not allowed to vary. Specifications (5)-(7) use maximum educational attainment in the household instead of the variables measuring share of adults with a particular education degree, as in specifications (1)-(4). Additionally, we test whether changes in family composition and labor market attachment affect exit rates. In particular, we include changes in family size, in share of adults in labor force, in share of adults having job, in share of adults unemployed, in share of adults in bad health, in share of adults working in public sector and in share of pension receivers as covariates (Table 11).

The results suggest that the larger the family the quicker it leaves poverty. This result holds for all the specifications with the coefficient being about 0.07. There is no effect of a change in family size. Presence of children lowers chances to escape poverty, with older children deteriorating the chances even stronger than younger (-0.11 versus -0.08).

Households headed by retired people – either male or female – have relatively larger exit rates from poverty as compared to households headed by adult males. The result is in line with the well-documented effect of pension transfers as a safety device against getting into poverty. In some specifications the effect is strengthen by the positive influence of the share of pension receivers on the hazard rate. Interestingly, the coefficient is much higher for retired females as compared to retied males. A plausible explanation behind could be the benefits a household with children gets from grandmother's childcare services in terms of labor market attachment and economizing on kindergarten. At the same time, adult female-headed households have no benefits or losses as compared to male-headed households.

Labor market attachment of adult family members turns to be only slightly significant. In particular, share of adults in labor force and share of adults with job is not significant, as well as the change in the shares. At the same time, the higher is the share of unemployed adults in the household the lower is the hazard rate. The share of family members working in the public sector is insignificant, while a change in the share is significant and negative implying that when the share of working for the public sector increases the chances of escaping from poverty decrease.

Involvement of a household in subsistence farming decreases hazard rate of getting out of poverty. This seems to point to the fact that very poor families choose to run subsistence farming, and it only helps meeting basic needs but is not sufficient to overcome poverty.

Bad health of some household members is only weakly significant, and only in some specifications, while the educational attainment of family members is highly significant in all specifications. In particular, a higher share of adults with university degree increases exit rates from poverty, and the corresponding coefficient is relatively high (0.26). Moreover, a higher share of adults with secondary school only diminishes the hazard rate, and the coefficient is also relatively high (-0.17).

Urban families keep having higher rates of escaping poverty even after controlling for other covariates. Living in Moscow or St.Petersburg does not add to the effect. The economic regions turn to be statistically indistinguishable from each other.

The influence of economic periods is still observed after controlling for other covariates. Economic growth turns to make the hazard from poverty lower implying that the families which slipped into poverty during the period of economic upturn or survived in poverty till the period of economic growth have lower chances to leave poverty. This seems intuitively plausible.

3.2 Entry to poverty

The estimates of Cox proportional model of hazard of slipping into poverty is presented in Tables 12 and 13. The list of explanatory variables is the same as in the exit from poverty analysis, while the results point to some interesting asymmetries in the two processes.

Family size is now not significant, and even slightly negative in some specifications implying that there is no regularity here. The presence of children increases chances of slipping into poverty, with the size of the influence being approximately the same for both younger and older children.

Households headed by retired males and females are again in a better position as compared to the households headed by adult male or female: conditional probability of slipping into poverty is lower for those families. Interestingly, the effect is now larger for (retired) male-headed households, while it was the other way round when studying exit from poverty. Adult female-headed households again have neither benefits nor losses as compared to adult male-headed.

Labor market attachment of adult family members turns to be not significant. The exception is the attachment to the public sector: the higher is the share of adults working in public sector the higher is the chance of entering poverty. This point to the well-known problem of low wages in the public sector.

Public transfers in the form of pensions paid are beneficial for escaping slipping into poverty. In particular, the higher is the share of pension recipients in a household the higher is lower are the chances of getting into poverty. The result survives all the specifications.

Human capital characteristics of adult household members are highly significant, both health and education related. In particular, a high share of adults with bad health increases chances of entering poverty, with the coefficient being pretty high (0.3). The role of university degree as a buffer against poverty is confirmed: the higher is the share of adults with university degree the lower are chances of slipping into poverty, with the coefficient being as high as -0.55. Interestingly, the share of adults with secondary school only becomes insignificant. The same asymmetry holds for the family involvement into subsistence farming: it does not determine chances of slipping into poverty while it was highly significant in determining exit from poverty.

Families living in urban areas have lower chances of slipping into poverty. Living in metropolitan areas of Moscow and St.Petersburg diminishes the probability even further while the effect was insignificant in the previous section.

The period of economic growth helps to escape getting into poverty: the hazard of non-poverty spell is much lower in the period 2000-2004 as compared with the earlier period. This is in comfort with the economic intuition of increased economic opportunities provided by economic growth.

All the change variables are statistically insignificant in determining hazard rate from non-poverty. The economic regions turn to be statistically indistinguishable from each other except for the aforementioned effect of metropolitan areas.

4. Conclusions

The study of entry to and exit from poverty allows obtaining some important insights in the processes that generate entry to and exit from poverty. In particular, it shows that the two processes have both symmetries and important asymmetries.

The presence of children increases chances to get into poverty and decreases chances to leave it. The influence of younger and older children is approximately equal when entry to poverty is considered and is larger from the presence of older children when exit from poverty is studied. Households headed by retired males and females tend to be in a stronger position than headed by an adult man in both cases, while the magnitude of the influence is asymmetric: more pronounced for females when exit from poverty is considered, and less

pronounced as compared to retired males when entry to poverty is discussed. Adult female-headed households are indistinguishable from adult male-headed households again in both cases. High share of adults with university degree is an effective buffer against poverty: it reduces entry to poverty and increases exit from it. Families that live in urban areas have lower chances to get into poverty and higher chances to get out of it.

At the same time, larger families are doing better when getting out of poverty, while family size does not matter when entry to poverty is considered. Labor market attachment of adults is only slightly significant and asymmetric across states: higher share of unemployed in the family reduces hazard from poverty but does not affect the rate of entry to poverty. A higher share of adults employed in the public sector increases entry to poverty but is insignificant for poverty exit rate. Involvement in subsistence farming is a sign of lower exit rate and has no influence on entry rate. A higher share of holders of secondary school degree only prevents families from getting out of poverty but does not affect entry to poverty. Bad health of family members work in the opposite direction: it increases chances to enter poverty but does not affect chances to escape it. Living in a metropolitan area does not add to the effect of urban versus rural settlement type when considering exit from poverty but decreases chances to enter poverty.

One of the most interesting results is the asymmetry in the influence of economic periods: economic growth lowers chances to slip into poverty but also reduces hazards from poverty. This implies that households in poverty in the era of economic upturn are those with serious problems and are to be paid special attention to.

There are some indications⁶ of positive duration dependence of hazards from poverty: the longer the family is in poverty, the higher is the chance to leave it. Hazard into poverty is closer to being independent of spell duration: the relevant coefficient is only slightly higher than 1 implying that the chance to get into poverty increases only slightly the longer the family is non-poor.

The results are important for a better design of policies to fight poverty. They suggest that it is important to distinguish between measures to prevent from slipping into poverty, and measures to get out of poverty for those who are poor.

-

⁶ Here we refer to the non-reported estimates of parametric proportional hazard model assuming Weibull distribution.

References

Bane, M.J. and D.T. Ellwood 1986 "Slipping Into And Out Of Poverty: The Dynamics Of Spells", *Journal Of Human Resources*, pp. 2-23

Commander, Simon, Andrei Tolstopiatenko, and Ruslan Yemtsov. 1999. "Channels of Redistribution: Inequality and Poverty in the Russian Transition." *Economics of Transition*. 7(2): 411-447.

Earle, John and Klara Sabirianova. 2002. "How Late to Pay? Understanding Wage Arrears in Russia." W.E. Upjohn Institute for Employment Research Staff Working Papers, #02-77.

Gerry, Christoper J. and Carmen A. Li. 2004. "Coping with Economic Shocks:

Consumption Smoothing and the 1998 Russian Financial Crisis." Unpublished mimeo.

Gottschalk, Peter and Enrico Spolaore. 2001. "On the Evaluation of Economic Mobility." Brown University Department of Economics Working Paper.

Heeringa, Steven G. 1997. "Russia Longitudinal Monitoring Survey Sample Attrition, Replenishment, and Weighting: Rounds V-VII." University of Michigan Institute for Social Research Mimeo.

Jalan, Jyotsna and Martin Ravillion. 2000. "Is Transient Poverty Different? Evidence from Rural China." *Journal of Development Studies*, 36(6): 82-99.

Kalungina, Ekaterina, Claude Montmarquette, and Catherine Sofer. "An Analysis of Poverty Persistence in Russia: 1994-2001." Undated Mimeo, Universite de Paris I – Pantheon – Sorbonne.

Kiefer, N. 1988 "Economic Duration Data and Hazard Function", *Journal of Economic Literature*, Vol. XXVI, pp. 646-679.

Lokshin, Michael and Barry M. Popkin. 1999. "The Emerging Underclass in the Russian Federation: Income Dynamics, 1992-1996." *Economic Development and Cultural Change*, 47(4): 803-829.

Lokshin, Michael and Ruslan Yemtsov. 2004. "Household Strategies of Coping with Shocks in Post-crisis Russia." *Review of Development Economics*, 8(1): 15-32.

Luttmer, Erzo F. P. 2000. "Inequality and Poverty Dynamics in Transition Economies: Disentangling Real Events from Noisy Data." World Bank Draft Mimeo.

Mills, B.F. 2007. "Chronic and Transient Poverty in the Russian Federation." *Paper submitted to Economics of Transition*.

Mu, Ren. 2003. "Risk, Consumption, Wealth, and Human Capital: Evidence From Russia. NEUDC Conference Paper.

Popkin, Barry M., Alexander K. Baturin, Marina Mozhina, and Tom Mroz. 1996. "The Russian Federation Subsistence Income Level: The Development of Regional Food Baskets and Other Methodological Improvements." World Bank Mimeo.

Rosstat (2005) Rossiiskii Statisticheskii Ezhegodnik Skoufias, Emmanuel. 2003. "Consumption Smoothing in Russia: Evidence from the RLMS." *The Economics of Transition*, 11(1): 67-91.

Spryskov, Dmitri. 2003. "Below the Poverty Line: Duration of Poverty in Russia," EERC-Russia Working Paper Series 03-04e, EERC-Russia and CIS.

Stillman, Steven and Duncan Thomas. 2004. "The Effect of Economic Crises on Nutritional Status: Evidence from Russia." IZA Discussion Paper No. 1092

Stillman, Steven. 2001. "The Response of Consumption in Russian Households to Economic Shocks." William Davidson Institute Working Paper 412.

Appendix

Table 1. Selected studies of poverty and welfare in Russia

		overty and welfare in Ru		Desire / wester 1.1
Study Commander,	Data RLMS,	Poverty/ income measure Income (incl. in-kind) and	Groups identified Chronically poor, never	Design/ methodology Poverty and inequality is studied.
Tolstopiatenko and	two balanced panel	expenditure; regionally and time	poor, dropped into transient	Income mobility is studied.
Yemtsov (1999)	samples: 1992-1993	deflated. Absolute regional poverty	poverty	Transition (between income quintiles)
	(5,600) and 1994-1997	line. Equivalence scale applied.	postery	matrices are estimated. Probit is used
	(2,900).	me. Equivalence scale applica.		to identify stable losers and winners.
Lokshin and		Total monthly disposable h\h	Dargigtantly	-
	•		Persistently poor;	Poverty and income dynamics
Popkin (1999)	samples: 1992-1993 and	income.	persistently rich; never	Random effect probit model and
	1994-1996	Absolute poverty line based on	poor; transitory poor (once	pooled probit.
		national food basket is used	poor; twice poor; three	
	*****		rounds poor)	
Lokshin and	RLMS, 1996 and 1998,	Objective (consumption	Persistently poor;	Welfare impact of 1998 crisis is
Ravallion (2000)	balanced panel (2,875	expenditures and incomes) and	persistently non-poor; h\hs	studied; winners and losers are
	households)	subjective indicators of h/h and	that fell into poverty; h\hs	identified; public safety net
		individual welfare.	that escaped poverty	performance is assessed.
		Absolute poverty line (household		Joint distributions of incomes and
		and region-specific based on region-		expenditures as proportion of poverty
		specific prices and age-gender		line are studied. Simulations of
		specific food baskets).		distributions are done.
Luttmer (2000)	For Russia: RLMS, 1994-	Consumption expenditure and	Persistent shocks and	Inequality and poverty dynamics is
	1998, balanced panel	income, equivalence scale adjusted.	transitory shocks are	studied.
	(2,256 h\hs)	Time-average income or	distinguished between.	Income and expenditure dynamics
		consumption for families is used.	Always poor; sometimes	model is estimated using the method
		Relative poverty measure.	poor and never poor are	of moments. Instrumented variables
			defined.	approach is applied to estimate the
				variance of measurement error.
Stillman (2001)	RLMS, 1994-1998,	Two measures of consumption (total	Not applicable	Estimation of the average effect of an
, ,	unbalanced panel (2,335),	food expenditure and total non-	••	exogenous transitory change in h/h
	rural households	durable expenditure) and income		income on h/h expenditure is
	excluded	measure are used. PSU and time		attempted.
		deflated		Fixed effects model of h\h
				consumption is estimated
Mu (2003)	RLMS, 1994-2000,	Consumption expenditure and net	Not applicable	Consumption smoothing is tested.
(2003)	balanced panel (1,412	(of endogenous components)	approact	Estimate consumption equation (in
	households)	income		differences) for stratified by assets
	nousenoius	moone		groups, with and without attrition
				corrections, by OLS and IV
Spryskov (2003)	RLMS, 1994-2000,	Relative poverty line (half the	Non-poor, temporarily	Transition probabilities
5pryskov (2003)		1 3 \		Determinants of being in one of the
	balanced panel (2145	median) based on household	poor8, households with	· ·
	households)	permanent7 expenditure measure.	volatile expenditures near	four groups (ordered logit).
		Equivalence scale is applied.	the poverty line, and	Reasons for poverty entry and exit
			persistently poor9 are	(logit and multinomial logit models)
				, ,
			identified.	,

⁷ Averaged across the five years under consideration.
⁸ With household permanent expenditure being higher than the permanent poverty line and one-two episodes of

poverty in particular years.

9 With household permanent expenditure being lower than the permanent poverty line and poor in the majority of years.

Skoufias (2003)	RLMS, 1994-2000,	Food consumption, non-food	Non applicable	Consumption smoothing is studied
	Unbalanced panel with	expenditures (excl. durables and		(OLS in differences and IV
	restrictions (14,097	luxury goods), gross income (cash +		regressions) as well as the extent and
	observations)	value in-kind)		nature of coping with shocks strategies
				of h\hs (probit models).
Gerry and Li	RLMS, 1996-2000,	Consumption as a proxy for welfare	Not applicable	Vulnerability (as uninsured exposure
(2004)	unbalanced panel (9,429	(the sum of expenditures on food		to risk) to financial crisis of 1998
	adults)	and non-food items, excl. durables		(consumption smoothing) is studied.
		and luxury goods)		Coping strategies are considered.
				Quintile regression techniques is used.
Lokshin and	For Russia: RLMS, 1994-	Household income (cash and in-	Not applicable	Household income dynamics is
Ravallion (2004)	1998, balanced panel	kind) is calculated		studied; existence of poverty traps is
	(1,970 households)			tested.
				Simultaneous income equations are
				estimated (SPFIML and GMM)
Lokshin and	RLMS, 1996 and 1998,	Total h\h expenditure as an	Not applicable	Choice of poverty coping strategies is
Yemtsov (2004)	balanced panel (2,875	objective measure; subjective		estimated using simultaneous
	households)	evaluation of a number of coping		estimation of three equations with
		strategies		binary dependent variables (ML
		Absolute poverty line		estimations)
Lukyanova (2004)	RLMS, 1994-2001	Contracted wage indicator is used;	Not applicable	Earnings inequality is studied.
	unbalanced panel of	relative poverty (with respect to		Earnings' mobility for the working
	individuals	wage) concept is applied.		poor is investigated using probit
				corrected and not corrected for
				selection bias.
Poverty	NOBUS, 2003;	Consumption (excl. durables);	Poor and almost poor	Basic poverty indicators were
assessment	ОБДХ (Goskomstat)	household-specific (equivalence-		estimated. Poverty profiles, including
report (WB,	2002	scale-based) and regionally adjusted		the risk of becoming poor, were
2004)		absolute poverty lines		identified.
Mills (2007)	RLMS, 1994-2003	Total monthly disposable h\h	Chronic and transient poor	Determinants of severity of poverty is
	balanced panel of	income.		studied. Tobit procedure corrected for
	households	Absolute poverty line based on		sample attrition bias is used
		national food basket is used		

Table 2. Panel statistics

Year	# of hh	1994	1995	1996	1998	2000	2001	2002	2003	2004
					Iı	nitial panel				
Frequency										
initial id	8323	3,973	3,781	3,750	3,831	4,006	4,528	4,668	4,718	4,715
Percent		10.46	9.96	9.88	10.09	10.55	11.93	12.29	12.43	12.42
					Pover	rty panel				
Frequency initial id	6214									
new id	7143	2,810	2,808	2,763	2,835	2,995	3,296	3,441	3,569	3,551
Percent		10.01	10	9.84	10.1	10.67	11.74	12.26	12.72	12.65
					Non-	poverty pan	el			
Frequency initial id	6214									
new id	7143	2,810	3,188	3,063	3,044	3,017	3,285	3,424	3,548	3,494
Percent		9.73	11.04	10.61	10.54	10.45	11.38	11.86	12.29	12.1

Table 3. Gaps in data record: an example

	1996	1997 (unobserved)	1998
1	poor	poor	poor
2	poor	non-poor	poor
3	poor	poor	non-poor
4	poor	non-poor	non-poor
5	non-poor	poor	poor
6	non-poor	non-poor	poor
7	non-poor	poor	non-poor
8	non-poor	non-poor	non-poor

Table 4. Poverty and non-poverty incidence and duration

				To	tal number	of rounds	in poverty				
	0	1	2	3	4	5	6	7	8	9	Total
Number of											
hh	3,388	1,451	596	332	182	118	72	45	25	5	6,214
%	54.52	23.35	9.59	5.34	2.93	1.9	1.16	0.72	0.4	0.08	100
				Ма	ximum dure	ation of po	verty spell	S			
	0	1	2	3	4	5	6	7	8	9	Total
Number of											
hh	3,388	1,706	585	245	130	72	45	21	17	5	6,214
%	54.52	27.45	9.41	3.94	2.09	1.16	0.72	0.34	0.27	0.08	100
				Total	l number oj	f rounds in	non-pover	ty			
	0	1	2	3	4	5	6	7	8	9	Total
Number of											
hh	526	1,761	827	610	563	400	334	345	436	412	6,214
%	8.46	28.34	13.31	9.82	9.06	6.44	5.37	5.55	7.02	6.63	100
				Maxin	num durati	on of non-	poverty spe	ells			
	0	1	2	3	4	5	6	7	8	9	Total
Number of											
hh	526	1,942	938	715	628	503	303	141	106	412	6,214
%	8.46	31.25	15.09	11.51	10.11	8.09	4.88	2.27	1.71	6.63	100

Table 5. Panel sample descriptive statistics

Table 3. Failer sample descriptive			When in	poverty	When in poverty	non-
		Std.		-	1 3	
Variable	Mean	Dev.	Mean	Std. Dev.	Mean	Std. Dev.
family size, number of people	2.755	1.427	3.061	1.539	2.712	1.391
change in family size	0.015	0.271	0.031	0.310	0.009	0.258
# of kids <7 yrs in hh	0.214	0.486	0.303	0.597	0.190	0.453
# of kids 7-18 yrs in hh	0.466	0.746	0.668	0.879	0.430	0.712
HH headed by adult male	0.609	0.488	0.722	0.448	0.573	0.495
HH headed by adult female	0.135	0.342	0.165	0.371	0.122	0.328
HH headed by retired male	0.121	0.327	0.039	0.194	0.155	0.362
HH headed by retired female	0.134	0.340	0.072	0.258	0.150	0.357
HH headed by a young person	0.001	0.031	0.002	0.045	0.001	0.026
share of adults in LF	0.627	0.423	0.679	0.394	0.606	0.430
change in share in LF	-0.009	0.246	-0.022	0.283	-0.007	0.236
share of adults with job	0.579	0.419	0.586	0.399	0.572	0.424
change in share with job	-0.007	0.254	-0.032	0.298	-0.001	0.240
share of adults unemployed BLS	0.046	0.160	0.091	0.225	0.033	0.130
change in share of BLS unemployed	-0.001	0.172	0.011	0.236	-0.005	0.148
share of adults in bad health	0.183	0.309	0.167	0.292	0.190	0.310
change in share in bad health	0.003	0.243	0.000	0.239	0.004	0.245
share of adults-pensioners	0.399	0.439	0.248	0.369	0.455	0.447
change in share of pensioners	0.009	0.172	-0.007	0.189	0.015	0.167
share of adults in public sector	0.264	0.354	0.289	0.364	0.265	0.353
change in share in public sector	-0.010	0.253	-0.020	0.297	-0.007	0.247
share of adults with university degree	0.166	0.316	0.099	0.251	0.177	0.322
share of adults with secondary school						
only	0.110	0.244	0.151	0.280	0.100	0.232
maximum level of education	1.978	0.863	1.901	0.760	1.987	0.888
family involved in subsistence	0.1.10	0.240	0.111	0.214	0.166	0.252
farming	0.142	0.349	0.111	0.314	0.166	0.372
Economic region 1 (Moscow&St.Petersburg)	0.073	0.259	0.037	0.189	0.102	0.303
Economic region 2 (Northern and	0.073	0.239	0.037	0.189	0.102	0.303
North Western)	0.046	0.210	0.054	0.226	0.057	0.232
Economic region 3 (Central and		***			*****	**
Central Black-Earth)	0.158	0.364	0.167	0.373	0.199	0.399
Economic region 4 (Volga-Vyatski						
and Volga Basin)	0.167	0.373	0.224	0.417	0.199	0.399
Economic region 5 (North Caucasian)	0.095	0.293	0.153	0.360	0.106	0.307
Economic region 6 (Ural)	0.126	0.331	0.150	0.357	0.154	0.361
Economic region 7 (Western Siberian)	0.081	0.273	0.105	0.307	0.097	0.296
Economic region 8 (Eastern Siberian						0.0=0
and Far Eastern)	0.074	0.261	0.108	0.311	0.085	0.279
settlement type: 1 urban, 0 rural	0.657	0.475	0.545	0.498	0.687	0.464

Table 6 Mean number of records, time at risk and failures per subject in survival data

	Out	of poverty	Out of r	non-poverty
		mean per		mean per
Category	total	subject	total	subject
no. of subjects	3445		6819	
no. of records	6360	1.846	20698	3.035
time at risk	6360	1.846	20698	3.035
failures	2336	0.678	2134	0.313

Table 7 Panel sample descriptive statistics by year

	19	94	19	95	19	96	19	98	20	000	20	01	20	002	20	03	20	004
		Std.		Std.		Std.		Std.		Std.		Std.		Std.		Std.		Std.
Variable	Mean	Dev.	Mean	Dev.	Mean	Dev.	Mean	Dev.	Mean	Dev.	Mean	Dev.	Mean	Dev.	Mean	Dev.	Mean	Dev.
family size, number of people	2.786	1.409	2.796	1.445	2.775	1.433	2.801	1.461	2.769	1.425	2.722	1.413	2.727	1.438	2.707	1.402	2.737	1.423
change in family size	0.000	0.000	0.011	0.235	0.021	0.310	0.028	0.369	0.009	0.287	0.012	0.253	0.020	0.282	0.016	0.270	0.015	0.276
# of kids <7 yrs in hh	0.262	0.551	0.247	0.535	0.235	0.523	0.211	0.498	0.200	0.462	0.192	0.455	0.197	0.458	0.193	0.440	0.204	0.461
# of kids 7-18 yrs in hh	0.469	0.766	0.490	0.795	0.497	0.795	0.514	0.795	0.492	0.756	0.457	0.727	0.446	0.709	0.432	0.698	0.423	0.697
HH headed by adult male	0.615	0.487	0.614	0.487	0.610	0.488	0.607	0.488	0.599	0.490	0.595	0.491	0.601	0.490	0.612	0.487	0.625	0.484
HH headed by adult female	0.114	0.318	0.115	0.319	0.123	0.329	0.125	0.331	0.138	0.345	0.145	0.352	0.148	0.355	0.150	0.358	0.144	0.351
HH headed by retired male	0.130	0.336	0.126	0.332	0.122	0.327	0.133	0.340	0.133	0.339	0.128	0.334	0.119	0.324	0.108	0.310	0.102	0.302
HH headed by retired female	0.139	0.346	0.144	0.351	0.144	0.351	0.133	0.340	0.130	0.337	0.131	0.337	0.130	0.337	0.128	0.335	0.128	0.335
HH headed by a young person	0.001	0.033	0.000	0.019	0.000	0.019	0.001	0.033	0.001	0.026	0.002	0.039	0.001	0.034	0.001	0.037	0.001	0.029
share of adults in LF	0.625	0.422	0.627	0.425	0.616	0.421	0.609	0.424	0.624	0.425	0.620	0.423	0.628	0.424	0.638	0.420	0.646	0.423
change in share in LF	0.000	0.000	-0.006	0.245	-0.015	0.251	-0.028	0.273	-0.011	0.284	-0.011	0.264	-0.010	0.254	0.001	0.253	-0.002	0.248
share of adults with job	0.574	0.419	0.580	0.419	0.559	0.416	0.549	0.417	0.576	0.423	0.578	0.419	0.587	0.420	0.598	0.417	0.601	0.417
change in share with job	0.000	0.000	-0.004	0.251	-0.023	0.248	-0.027	0.279	0.001	0.292	-0.004	0.273	-0.007	0.270	0.002	0.262	-0.005	0.261
share of adults unemployed BLS	0.048	0.165	0.045	0.160	0.055	0.172	0.058	0.175	0.047	0.162	0.042	0.148	0.040	0.147	0.040	0.154	0.045	0.157
change in share of BLS																		
unemployed	0.000	0.000	-0.001	0.181	0.008	0.185	-0.001	0.192	-0.010	0.188	-0.007	0.175	-0.003	0.178	-0.001	0.166	0.003	0.185
share of adults with bad health	0.207	0.317	0.204	0.318	0.208	0.323	0.188	0.309	0.183	0.308	0.178	0.307	0.165	0.299	0.169	0.305	0.162	0.299
change in share in bad health	0.000	0.000	0.000	0.275	0.005	0.265	0.000	0.266	0.007	0.256	-0.001	0.249	-0.001	0.247	0.012	0.254	0.001	0.246
share of adults-pensioners	0.407	0.439	0.411	0.442	0.413	0.442	0.419	0.446	0.413	0.448	0.397	0.438	0.388	0.434	0.381	0.430	0.372	0.432
change in share of pensioners	0.000	0.000	0.010	0.169	0.008	0.183	0.027	0.215	0.023	0.208	-0.004	0.183	0.009	0.163	0.009	0.161	0.004	0.166
share of adults in public sector	0.301	0.368	0.289	0.367	0.284	0.363	0.260	0.351	0.258	0.352	0.260	0.353	0.266	0.358	0.242	0.340	0.235	0.336
change in share with school only share of adults with university	0.000	0.000	-0.013	0.307	-0.009	0.300	-0.030	0.297	-0.011	0.282	-0.002	0.246	0.000	0.246	-0.018	0.236	-0.008	0.232
degree	0.159	0.308	0.150	0.300	0.153	0.305	0.150	0.300	0.157	0.306	0.172	0.321	0.173	0.323	0.185	0.335	0.183	0.329
share of adults with secondary	0.129	0.261	0.125	0.264	0.106	0.242	0.097	0.226	0.104	0.233	0.114	0.249	0.110	0.245	0.107	0.243	0.101	0.235
maximum level of education	1.955	0.876	1.869	0.929	1.900	0.912	1.933	0.889	1.973	0.856	2.008	0.843	2.018	0.828	2.037	0.832	2.059	0.812
family involved in subsistence	0.125	0.331	0.118	0.322	0.140	0.347	0.141	0.348	0.155	0.362	0.161	0.367	0.146	0.353	0.154	0.361	0.133	0.340
Moscow&St.Petersburg	0.086	0.281	0.073	0.259	0.066	0.247	0.051	0.221	0.037	0.189	0.118	0.323	0.127	0.332	0.112	0.316	0.106	0.308
settlement type: 1 urban, 0 rural	0.679	0.467	0.663	0.473	0.654	0.476	0.641	0.480	0.635	0.481	0.659	0.474	0.659	0.474	0.663	0.473	0.658	0.474

Table 8 Hazard function from poverty and non-poverty, total samples

		Exit from	n poverty		Exit from non-poverty			
Analytical	Beg.		Failure	Std.	Beg.		Failure	Std.
Time	Total	Fail	Function	Error	Total	Fail	Function	Error
1	3434	1361	0.396	0.008	6797	975	0.143	0.004
2	1454	512	0.609	0.009	4311	601	0.263	0.006
3	739	240	0.736	0.009	3008	328	0.343	0.007
4	385	108	0.810	0.009	2167	133	0.384	0.007
5	183	55	0.867	0.009	1598	55	0.405	0.007
6	94	34	0.915	0.009	1127	27	0.419	0.008
7	44	15	0.944	0.008	760	9	0.426	0.008
8	22	11	0.972	0.007	518	6	0.433	0.008
9	5	0	0.972	0.007	412	0	0.433	0.008

Table 9. Survival functions from poverty and non-poverty, by period and by settlement type

	Survival fun	ction of stay i	n poverty	
Analytical	Period		Settlement t	ype
Time	Decline	Growth	Rural	Urban
1	0.581	0.640	0.638	0.581
2	0.358	0.435	0.434	0.359
3	0.259	0.282	0.293	0.243
4	0.181	0.204	0.214	0.171
5		0.143	0.160	0.108
6		0.091	0.104	0.068
7		0.060	0.074	0.041
8		0.030	0.043	0.016
9		0.030	0.043	0.016
	Log-rank tes	sts for equality	y of survivor f	functions
	0.0	001	0.	000
Pr>chi2	(H ₀ rej	ected)	(H ₀ re	ejected)
	Survival fun	ction of stay i	n non-poverty	,
Analytical	Survival fun Period	ction of stay i	<i>n non-povert</i> y Settlement t	
Analytical Time		ction of stay i Growth		
	Period	•	Settlement t	ype
Time	Period Decline	Growth	Settlement t Rural	ype Urban
Time 1	Period Decline 0.813	Growth 0.924	Settlement t Rural 0.789	ype <u>Urban</u> 0.885
Time 1 2	Period Decline 0.813 0.636	Growth 0.924 0.867	Settlement t Rural 0.789 0.631	ype <u>Urban</u> 0.885 0.785
Time 1 2 3	Period Decline 0.813 0.636 0.511	Growth 0.924 0.867 0.819	Settlement t Rural 0.789 0.631 0.551	ype <u>Urban</u> 0.885 0.785 0.706
Time 1 2 3 4	Period Decline 0.813 0.636 0.511	Growth 0.924 0.867 0.819 0.781	Settlement t Rural 0.789 0.631 0.551 0.497	Urban 0.885 0.785 0.706 0.675
Time 1 2 3 4 5	Period Decline 0.813 0.636 0.511	Growth 0.924 0.867 0.819 0.781 0.754	Settlement t Rural 0.789 0.631 0.551 0.497 0.470	Urban 0.885 0.785 0.706 0.675 0.658
Time 1 2 3 4 5 6	Period Decline 0.813 0.636 0.511	Growth 0.924 0.867 0.819 0.781 0.754 0.736	Settlement t Rural 0.789 0.631 0.551 0.497 0.470 0.453	Urban 0.885 0.785 0.706 0.675 0.658 0.646
Time 1 2 3 4 5 6 7	Period Decline 0.813 0.636 0.511	Growth 0.924 0.867 0.819 0.781 0.754 0.736 0.727	Settlement t Rural 0.789 0.631 0.551 0.497 0.470 0.453 0.442	Urban 0.885 0.785 0.706 0.675 0.658 0.646 0.642
Time 1 2 3 4 5 6 7 8	Period Decline 0.813 0.636 0.511	Growth 0.924 0.867 0.819 0.781 0.754 0.736 0.727 0.719	Settlement t Rural 0.789 0.631 0.551 0.497 0.470 0.453 0.442 0.430	Urban 0.885 0.785 0.706 0.675 0.658 0.646 0.642 0.639
Time 1 2 3 4 5 6 7 8	Period Decline 0.813 0.636 0.511 0.465	Growth 0.924 0.867 0.819 0.781 0.754 0.736 0.727 0.719 0.719 ests for equality	Settlement t Rural 0.789 0.631 0.551 0.497 0.470 0.453 0.442 0.430 0.430 v of survivor form	Urban 0.885 0.785 0.706 0.675 0.658 0.646 0.642 0.639 0.639 functions
Time 1 2 3 4 5 6 7 8	Period Decline 0.813 0.636 0.511 0.465 .	Growth 0.924 0.867 0.819 0.781 0.754 0.736 0.727 0.719 0.719 ets for equality	Settlement t Rural 0.789 0.631 0.551 0.497 0.470 0.453 0.442 0.430 0.430 v of survivor to 0.	Urban 0.885 0.785 0.706 0.675 0.658 0.646 0.642 0.639 0.639

Diagram 1. Survival function of staying in poverty, number of censored observations

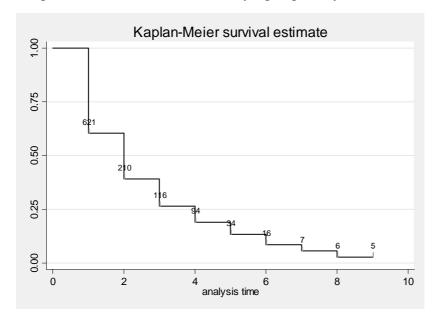


Diagram 2. Survival function of staying in poverty, by settlement type

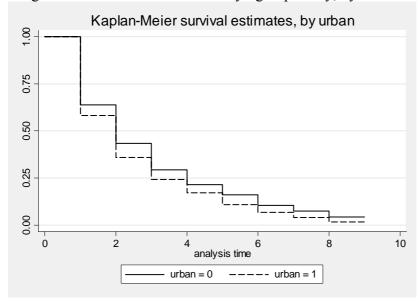


Diagram 3. Survival function of staying in poverty, by area

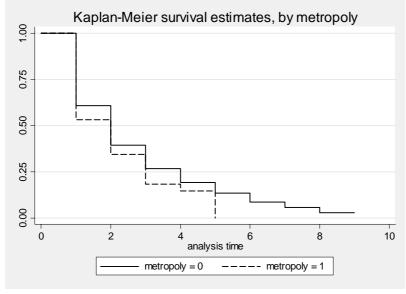


Diagram 4. Survival function of staying in poverty, by period

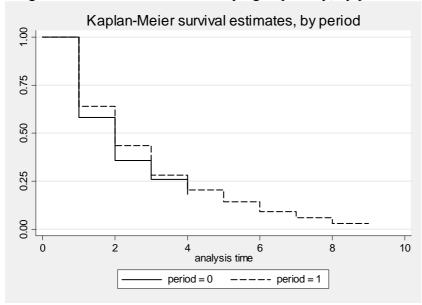


Diagram 5. Survival function of staying out-of-poverty, number of censored observations

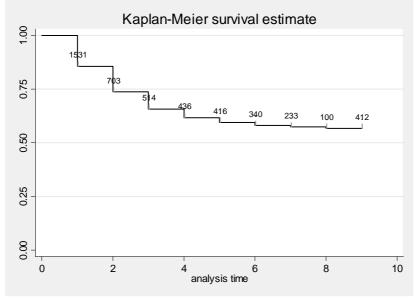


Diagram 6. Survival function of staying out-of-poverty, by settlement type

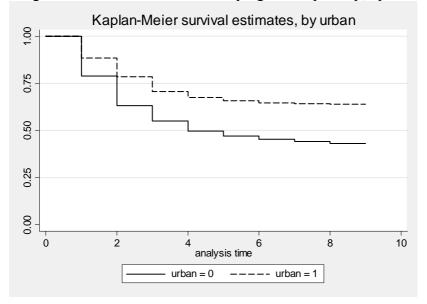


Diagram 7. Survival function of staying out-of-poverty, by area

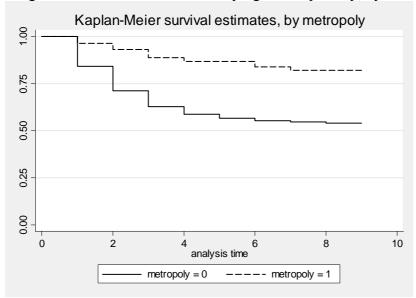


Diagram 8. Survival function of staying out-of-poverty, by period

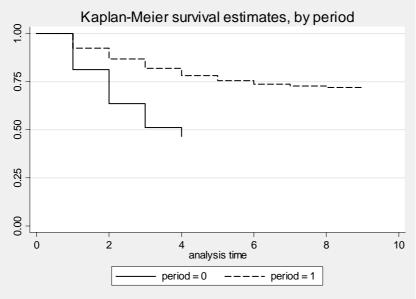


Table 10. Estimation of Cox proportional hazard model, exit from poverty

Table 10. Estimation of	Cox propo	Tuonai naz	cluster ID,	cluster ID,	poverty	cluster ID,	cluster ID,
			strata on	strata on		strata on	strata on
	cluster ID	cluster ID	urban	period	cluster ID	urban	period
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Hazard	Hazard	Hazard	Hazard	Hazard	Hazard	Hazard
	rate	rate	rate	rate	rate	rate	rate
family size, number of people in family	0.079	0.079	0.078	0.079	0.066	0.065	0.067
	[0.020]***	[0.020]***	[0.020]***	[0.020]***	[0.020]***	[0.020]***	[0.020]***
# of kids <7 yrs in hh:demcat=1	-0.08	-0.086	-0.085	-0.087	-0.077	-0.075	-0.077
	[0.039]**	[0.039]**	[0.039]**	[0.039]**	[0.039]**	[0.039]*	[0.039]**
# of kids 7-18 yrs in hh demcat=2	-0.11	-0.114	-0.114	-0.115	-0.104	-0.104	-0.105
•	[0.029]***	[0.029]***	[0.029]***	[0.029]***	[0.029]***	[0.029]***	[0.029]***
HH headed by adult female	-0.034	-0.028	-0.027	-0.028	-0.018	-0.017	-0.019
,	[0.051]	[0.051]	[0.051]	[0.051]	[0.051]	[0.051]	[0.051]
HH headed by retired male	0.186	0.184	0.186	0.179	0.222	0.224	0.217
	[0.088]**	[0.087]**	[0.087]**	[0.087]**	[0.088]**	[0.088]**	[0.088]**
HH headed by retired female	0.281	0.277	0.275	0.274	0.336	0.334	0.332
Till headed by felifed felifate	[0.084]***	[0.084]***	[0.084]***	[0.084]***	[0.085]***	[0.085]***	[0.085]***
share of adults in LF	0.547	0.501	0.514	0.518	0.497	0.511	0.515
share of addits in Er	[0.355]	[0.359]	[0.361]	[0.373]	[0.364]	[0.368]	[0.379]
share of adults with job	-0.513	-0.46	-0.474	-0.479	-0.456	-0.472	-0.476
share of addits with job		[0.355]	[0.357]	[0.369]	[0.361]	[0.364]	
share of adults unemployed BLS	[0.351] -0.671		-0.65	-0.654	-0.63	-0.646	[0.375]
share of adults unemployed BLS		-0.636					-0.65
1 6 1 16 24 1 11 14	[0.360]*	[0.363]*	[0.366]*	[0.378]*	[0.369]*	[0.373]*	[0.384]*
share of adults with bad health	-0.089	-0.102	-0.103	-0.102	-0.097	-0.097	-0.096
	[0.060]	[0.060]*	[0.060]*	[0.060]*	[0.060]	[0.060]	[0.060]
share of adults-pensioners	0.109	0.101	0.102	0.097	0.101	0.102	0.097
	[0.066]	[0.067]	[0.067]	[0.067]	[0.067]	[0.067]	[0.067]
share of adults in public sector	-0.003	-0.018	-0.015	-0.017	0	0.003	0.002
	[0.056]	[0.056]	[0.056]	[0.056]	[0.056]	[0.056]	[0.056]
share of adults with university degree	0.257	0.261	0.26	0.258			
	[0.057]***	[0.057]***	[0.057]***	[0.057]***			
share of adults with secondary school							
only	-0.168	-0.17	-0.168	-0.171			
	[0.065]**	[0.066]***	[0.066]**	[0.066]***			
family involved in subsistence farming	-0.115	-0.104	-0.104	-0.105	-0.106	-0.107	-0.107
	[0.058]**	[0.057]*	[0.057]*	[0.058]*	[0.057]*	[0.057]*	[0.058]*
1- urban 0- rural or pgt	0.106	0.099		0.098	0.106		0.106
	[0.034]***	[0.034]***		[0.034]***	[0.035]***		[0.035]***
Moscow&St.Petersburg	0.095	0.114	0.114	0.122	0.14	0.139	0.147
	[0.075]	[0.076]	[0.076]	[0.077]	[0.075]*	[0.075]*	[0.075]*
decline =0 growth=1		-0.107	-0.106		-0.107	-0.107	
		[0.038]***	[0.038]***		[0.038]***	[0.038]***	
maximum level of education in family					0.074	0.074	0.072
•					[0.024]***	[0.024]***	[0.024]***
Observations	6347	6347	6347	6347	6347	6347	6347
Log Pseudo-Likelihood	-17494	-17491	-15928	-16050	-17497	-15934	-16055
Rank test of proportional hazard							
assumption, prob>chi ²	0.998	0.998	0.998	0.998	0.997	0.997	0.998
Robust standard errors in brackets							
# · · · · · · · · · · · · · · · · · · ·	***	.4 -4 10/					

^{*} significant at 10%; ** significant at 5%; *** significant at 1%

Table 11. Estimation of Cox proportional hazard model, exit from poverty, incl.changes

Table 11. Estimation of	Cox prope	ortionai na	cluster ID,	cluster ID,	i poverty, i	cluster ID,	cluster ID,
			strata on	strata on		strata on	strata on
	cluster ID	cluster ID	urban	period	cluster ID	urban	period
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Hazard rate	Hazard rate	Hazard rate	Hazard rate	Hazard rate	Hazard rate	Hazard rate
family size, number of people in family	0.078	0.078	0.077	0.079	0.066	0.065	0.067
running size, number of people in running	[0.020]***	[0.020]***	[0.020]***	[0.020]***	[0.021]***	[0.021]***	[0.021]***
change in family size	-0.035	-0.037	-0.035	-0.038	-0.038	-0.036	-0.039
, , , , , , , , , , , , , , , , , , ,	[0.054]	[0.054]	[0.054]	[0.054]	[0.054]	[0.054]	[0.054]
# of kids <7 yrs in hh:demcat=1	-0.074	-0.081	-0.079	-0.081	-0.071	-0.07	-0.072
•	[0.039]*	[0.039]**	[0.039]**	[0.039]**	[0.039]*	[0.039]*	[0.039]*
# of kids 7-18 yrs in hh demcat=2	-0.108	-0.112	-0.111	-0.113	-0.102	-0.102	-0.103
	[0.029]***	[0.029]***	[0.029]***	[0.029]***	[0.029]***	[0.029]***	[0.029]***
HH headed by adult female	-0.044	-0.037	-0.037	-0.038	-0.028	-0.027	-0.029
	[0.051]	[0.051]	[0.051]	[0.051]	[0.051]	[0.051]	[0.051]
HH headed by retired male	0.167	0.163	0.165	0.159	0.202	0.204	0.197
	[0.088]*	[0.087]*	[0.087]*	[0.087]*	[0.089]**	[0.088]**	[0.089]**
HH headed by retired female	0.257	0.253	0.251	0.25	0.312	0.311	0.308
	[0.084]***	[0.084]***	[0.084]***	[0.084]***	[0.085]***	[0.085]***	[0.085]***
share of adults in LF	0.469	0.419	0.428	0.422	0.418	0.428	0.422
the section described E	[0.496]	[0.511]	[0.511]	[0.516]	[0.525]	[0.525]	[0.529]
change in share in LF	0.123	0.127 [0.485]	0.134	0.157	0.117	0.126	0.15
share of adults with job	[0.487] -0.42	-0.361	[0.488] -0.371	[0.492] -0.365	[0.496]	[0.499] -0.371	[0.503] -0.365
share of addits with job	[0.491]	[0.506]	[0.506]	[0.511]	[0.520]	[0.520]	[0.525]
change in share with job	-0.142	-0.15	-0.159	-0.182	-0.144	-0.154	-0.178
change in share with job	[0.484]	[0.483]	[0.485]	[0.489]	[0.494]	[0.497]	[0.501]
share of adults unemployed BLS	-0.589	-0.554	-0.563	-0.554	-0.55	-0.561	-0.552
	[0.500]	[0.515]	[0.515]	[0.520]	[0.529]	[0.529]	[0.533]
change in share of BLS unemployed	-0.117	-0.116	-0.125	-0.153	-0.11	-0.121	-0.15
. ,	[0.493]	[0.491]	[0.494]	[0.498]	[0.502]	[0.505]	[0.509]
share of adults with bad health	-0.069	-0.085	-0.085	-0.083	-0.082	-0.082	-0.08
	[0.067]	[0.067]	[0.067]	[0.067]	[0.067]	[0.067]	[0.067]
change in share in bad health	-0.051	-0.046	-0.047	-0.049	-0.041	-0.043	-0.045
	[0.077]	[0.076]	[0.076]	[0.076]	[0.076]	[0.076]	[0.076]
share of adults-pensioners	0.157	0.152	0.152	0.147	0.152	0.152	0.148
	[0.072]**	[0.072]**	[0.073]**	[0.072]**	[0.072]**	[0.072]**	[0.072]**
change in share of pensioners	-0.202	-0.209	-0.084	-0.085	-0.095	-0.206	-0.096
	[0.092]**	[0.091]**	[0.067]	[0.067]	[0.067]	[0.067]	[0.067]
share of adults in public sector	0.032	0.013	0.016	0.014	0.035	0.038	0.037
the second of the second of the second of	[0.062]	[0.062]	[0.062]	[0.062]	[0.062]	[0.062]	[0.062]
change in share in public sector	-0.092 [0.067]	-0.084 [0.067]	-0.205 [0.091]**	-0.205 [0.091]**	-0.21 [0.091]**	-0.095 [0.091]**	-0.207 [0.091]**
share of adults with university degree	0.255	0.26	0.259	0.257	[0.091]	[0.091]	[0.091]
share of adults with university degree	[0.057]***	[0.057]***	[0.057]***	[0.058]***			
share of adults with secondary school	[0.037]	[0.037]	[0.037]	[0.050]			
only	-0.163	-0.166	-0.164	-0.167			
	[0.065]**	[0.066]**	[0.066]**	[0.066]**			
family involved in subsistence farming	-0.113	-0.103	-0.103	-0.103	-0.105	-0.105	-0.106
	[0.058]*	[0.057]*	[0.057]*	[0.058]*	[0.057]*	[0.057]*	[0.058]*
1- urban 0- rural or pgt	0.108	0.102		0.101	0.11		0.109
	[0.034]***	[0.034]***		[0.034]***	[0.035]***		[0.035]***
Moscow&St.Petersburg	0.093	0.112	0.112	0.12	0.138	0.137	0.145
1.1. 0 4. 1	[0.076]	[0.077]	[0.077]	[0.077]	[0.075]*	[0.075]*	[0.075]*
decline =0 growth=1		-0.107	-0.106		-0.107	-0.106	
maximum layal of advantion in famil-		[0.038]***	[0.038]***		[0.038]***	[0.038]***	0.071
maximum level of education in family					0.072 [0.024]***	0.073 [0.024]***	[0.024]***
Observations	6347	6347	6347	6347	6347	6347	6347
Log Pseudo-Likelihood	-17492	-17489	-15926	-16047	-17495	-15931	-16053
Rank test of proportional hazard ass.	0.991	0.994	0.993	0.994	0.993	0.991	0.992
reality took of proportional mazara ass.	0.771	0.774	0.773	0.774	0.773	0.771	0.772

Table 12. Estimation of Cox proportional hazard model, exit from non-poverty

Table 12. Estimation of	Cox propo	Ttional naz	cluster ID,	cluster ID,	non pover	cluster ID,	cluster ID,
			strata on	strata on		strata on	strata on
	cluster ID	cluster ID	urban	period	cluster ID	urban	period
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Hazard	Hazard	Hazard rate	Hazard	Hazard	Hazard	Hazard
family size number of needle in family	rate -0.037	rate -0.047	-0.048	rate -0.046	rate -0.021	rate -0.022	rate -0.02
family size, number of people in family							
# of Lide <7 in blode-most-1	[0.027]	[0.028]*	[0.028]*	[0.028]*	[0.028]	[0.028]	[0.028]
# of kids <7 yrs in hh:demcat=1	0.202	0.195	0.196	0.194	0.17	0.171	0.169
# C1:1 7.10 : 11.1	[0.049]***	[0.048]***	[0.048]***	[0.048]***	[0.049]***	[0.049]***	[0.049]***
# of kids 7-18 yrs in hh demcat=2	0.244	0.225	0.226	0.228	0.207	0.207	0.21
IIII 1 11 1 1 C 1	[0.036]***	[0.036]***	[0.036]***	[0.036]***	[0.036]***	[0.036]***	[0.036]***
HH headed by adult female	0.048	0.097	0.097	0.095	0.075	0.075	0.072
	[0.066]	[0.065]	[0.065]	[0.065]	[0.065]	[0.065]	[0.065]
HH headed by retired male	-0.529	-0.618	-0.622	-0.622	-0.676	-0.68	-0.679
	[0.107]***	[0.108]***	[0.108]***	[0.108]***	[0.108]***	[0.108]***	[0.108]***
HH headed by retired female	-0.213	-0.241	-0.243	-0.243	-0.35	-0.352	-0.35
	[0.107]**	[0.107]**	[0.107]**	[0.107]**	[0.109]***	[0.109]***	[0.109]***
share of adults in LF	0.513	0.083	0.073	0.103	0.037	0.029	0.059
	[0.495]	[0.500]	[0.501]	[0.502]	[0.506]	[0.507]	[0.507]
share of adults with job	-0.639	-0.19	-0.178	-0.219	-0.127	-0.116	-0.157
	[0.491]	[0.496]	[0.497]	[0.498]	[0.502]	[0.503]	[0.503]
share of adults unemployed BLS	-0.449	-0.05	-0.04	-0.076	0.006	0.014	-0.021
	[0.507]	[0.511]	[0.512]	[0.513]	[0.517]	[0.518]	[0.518]
share of adults with bad health	0.387	0.304	0.303	0.308	0.295	0.294	0.299
	[0.076]***	[0.075]***	[0.075]***	[0.075]***	[0.075]***	[0.075]***	[0.076]***
share of adults-pensioners	-0.13	-0.23	-0.226	-0.229	-0.223	-0.219	-0.222
	[0.081]	[0.081]***	[0.081]***	[0.081]***	[0.080]***	[0.080]***	[0.080]***
share of adults in public sector	0.241	0.136	0.135	0.139	0.113	0.112	0.115
	[0.063]***	[0.062]**	[0.062]**	[0.062]**	[0.062]*	[0.062]*	[0.062]*
share of adults with university degree	-0.545	-0.545	-0.543	-0.544			
	[0.077]***	[0.078]***	[0.078]***	[0.079]***			
share of adults with secondary school							
only	0.107	0.112	0.112	0.115			
	[0.074]	[0.073]	[0.073]	[0.073]			
family involved in subsistence farming	-0.049	-0.055	-0.057	-0.053	-0.046	-0.047	-0.044
	[0.057]	[0.056]	[0.056]	[0.056]	[0.056]	[0.056]	[0.056]
1- urban 0- rural or pgt	-0.378	-0.399		-0.4	-0.407		-0.409
	[0.042]***	[0.042]***		[0.042]***	[0.042]***		[0.042]***
Moscow&St.Petersburg	-1.059	-0.877	-0.883	-0.886	-0.896	-0.902	-0.905
	[0.124]***	[0.123]***	[0.122]***	[0.123]***	[0.123]***	[0.122]***	[0.123]***
decline =0 growth=1		-1.043	-1.041		-1.036	-1.034	
		[0.050]***	[0.050]***		[0.050]***	[0.050]***	
maximum level of education in family					-0.154	-0.153	-0.152
					[0.025]***	[0.025]***	[0.025]***
Observations	20664	20664	20664	20664	20664	20664	20664
Log Pseudo-Likelihood	-17653	-17434	-17653	-15981	-16313	-17447	-15993
Rank test of proportional hazard							
assumption, prob>chi ²	0.404	0.126	0.404	0.134	0.403	0.227	0.245
Robust standard errors in brackets	0.101	0.120	0.101	0.15	0.103	0.227	0.2.13
the interest of the interest o	ale ale ale · · · · · · · · · · · · · · · · · · ·	10/					

^{*} significant at 10%; ** significant at 5%; *** significant at 1%

Table 13. Estimation of Cox proportional hazard model, exit from non-poverty, incl. changes

Table 13. Estimation of	Cox propo	ttional naz	cluster ID,	cluster ID,	non-poven	cluster	cluster ID,
			strata on	strata on		ID, strata	strata on
	cluster ID	cluster ID	urban	period	cluster ID	on urban	period
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Hazard	Hazard	Hazard	Hazard	Hazard	Hazard	Hazard
family size number of needs in family	rate	rate	rate	rate 0.04	rate	rate	rate 0.014
family size, number of people in family	-0.031	-0.041	-0.042	-0.04	-0.015	-0.016	-0.014
ahanga in family size	[0.028]	[0.028]	[0.028] -0.083	[0.028] -0.087	[0.028] -0.093	[0.028] -0.087	[0.028] -0.092
change in family size	-0.112	-0.088					
# of 1-ide <7 in blood	[0.100]	[0.089]	[0.089]	[0.088]	[0.089]	[0.089]	[0.088]
# of kids <7 yrs in hh:demcat=1	0.199 [0.049]***	0.189	0.19	0.188 [0.049]***	0.164 [0.049]***	0.165	0.164
# aflida 7 10 amain lab damas==2		[0.048]***	[0.049]***			[0.049]**	[0.049]***
# of kids 7-18 yrs in hh demcat=2	0.237	0.218	0.219	0.222	0.2	0.201	0.203
IIII baadad baradalk Camala	[0.036]***	[0.036]***	[0.036]***	[0.036]***	[0.036]***	[0.036]**	[0.036]***
HH headed by adult female	0.049	0.1	0.1	0.097	0.077	0.077	0.074
TITT best death and and another	[0.066]	[0.065]	[0.065]	[0.066]	[0.065]	[0.065]	[0.066]
HH headed by retired male	-0.523	-0.61	-0.613	-0.614	-0.668	-0.671	-0.672
HHI I I II	[0.109]***	[0.110]***	[0.110]***	[0.110]***	[0.110]***	[0.110]**	[0.111]***
HH headed by retired female	-0.205	-0.225	-0.226	-0.227	-0.333	-0.335	-0.334
alone of all the in LE	[0.109]*	[0.109]**	[0.109]**	[0.110]**	[0.111]***	[0.111]**	[0.112]***
share of adults in LF	0.593	0.076	0.067	0.102	0.019	0.011	0.045
denote in denoting P	[0.504]	[0.517]	[0.518]	[0.521]	[0.523]	[0.525]	[0.527]
change in share in LF	-0.277	0.002	-0.003	-0.012	0.038	0.034	0.025
alone of the life in	[0.623]	[0.596]	[0.594]	[0.587]	[0.619]	[0.616]	[0.609]
share of adults with job	-0.745	-0.218	-0.207	-0.252	-0.136	-0.125	-0.17
1 1 1 11 11	[0.501]	[0.514]	[0.515]	[0.518]	[0.520]	[0.521]	[0.523]
change in share with job	0.315	0.07	0.07	0.082	0.013	0.011	0.024
1 C 1 L 1 DIC	[0.612]	[0.584]	[0.582]	[0.574]	[0.606]	[0.604]	[0.596]
share of adults unemployed BLS	-0.499	-0.006	0.003	-0.034	0.06	0.069	0.033
i i apra i i	[0.520]	[0.532]	[0.534]	[0.536]	[0.538]	[0.539]	[0.541]
change in share of BLS unemployed	0.217	-0.067	-0.064	-0.059	-0.104	-0.103	-0.097
1 0 1 1 11 11	[0.632]	[0.604]	[0.602]	[0.594]	[0.626]	[0.624]	[0.617]
share of adults with bad health	0.383	0.267	0.266	0.272	0.258	0.257	0.263
1	[0.082]***	[0.081]***	[0.081]***	[0.082]***	[0.082]***	[0.082]**	[0.083]***
change in share in bad health	0.013	0.094	0.095	0.092	0.095	0.096	0.093
1 6 1 1	[0.095]	[0.093]	[0.093]	[0.093]	[0.094]	[0.094]	[0.093]
share of adults-pensioners	-0.144	-0.255	-0.25	-0.251	-0.243	-0.238	-0.24
	[0.088]*	[0.089]***	[0.089]***	[0.090]***	[0.089]***	[0.089]**	[0.089]***
change in share of pensioners	0.07	-0.037	0.099	0.092	-0.027	0.084	0.077
1 0 11 11	[0.127]	[0.127]	[0.083]	[0.127]	[0.084]	[0.084]	[0.084]
share of adults in public sector	0.279	0.151	0.15	0.155	0.123	0.123	0.127
1 1 1 1 1 1 1	[0.067]***	[0.068]**	[0.068]**	[0.068]**	[0.067]*	[0.067]	[0.068]*
change in share in public sector	-0.119	0.101	-0.038	-0.04	0.085	-0.029	-0.03
-1	[0.088]	[0.083]	[0.127]	[0.083]	[0.127]	[0.127]	[0.127]
share of adults with university degree	-0.549	-0.546	-0.544	-0.546			
share of adults with secondary school	[0.077]***	[0.078]***	[0.078]***	[0.079]***			
only	0.105	0.113	0.113	0.116			
omy	[0.074]	[0.073]	[0.073]	[0.073]			
family involved in subsistence farming	-0.052	-0.058	-0.06	-0.057	-0.049	-0.051	-0.048
ranning involved in subsistence ranning	[0.057]	[0.056]	[0.056]	[0.056]	[0.056]	[0.056]	[0.056]
1- urban 0- rural or pgt	-0.376	-0.398	[0.030]	-0.399	-0.408	[0.030]	-0.409
1- diban b- idiai bi pgt	[0.042]***	[0.042]***		[0.042]***	[0.042]***		[0.043]***
Moscow&St.Petersburg	-1.057	-0.874	-0.88	-0.883	-0.893	-0.899	-0.902
Woodowast. Cersonig	[0.124]***	[0.123]***	[0.122]***	[0.123]***	[0.122]***	[0.122]**	[0.123]***
decline =0 growth=1	[0.121]	-1.044	-1.042	[0.123]	-1.038	-1.036	[0.123]
accinic o promin i		[0.050]***	[0.050]***		[0.050]***	[0.050]**	
maximum level of education in family		[0.050]	[0.020]		-0.154	-0.153	-0.152
maximum level of education in family					[0.025]***	[0.025]**	[0.025]***
Observations	20664	20664	20664	20664	20664	20664	20664
Log Pseudo-Likelihood	-17651	-17432	-15979	-16312	-17445	-15991	-16324
Rank test of proportional hazard ass.	0.202	0.113	0.120	0.295	0.198	0.213	0.420
rank test of proportional nazara ass.	0.202	0.113	0.120	0.273	0.170	0.213	0.720

Robust standard errors in brackets

^{*} significant at 10%; ** significant at 5%; *** significant at 1%