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Abstract

While the predictability of excess stock returns is statistically small, their sign and volatility exhibit a
substantially larger degree of dependence over time. We capitalize on this observation and consider prediction
of excess stock returns by decomposing the equity premium into a product of sign and absolute value
components and carefully modeling the marginal predictive densities of the two parts. Then we construct the
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analysis of US stock return data shows among other interesting findings that despite the large unconditional
correlation between the two multiplicative components they are conditionally very weakly dependent.
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1 Introduction and Motivation

It is now widely believed that excess stock returns exhibit a certain degree of predictability over

time (Cochrane, 2005). For instance, valuation (dividend-price and earnings-price) ratios (Fama

and French, 1988; Campbell and Shiller, 1988a,b) and yields on short- and long-term Treasury

and corporate bonds (Campbell, 1987; Hodrick, 1992) appear to possess statistically small but

economically meaningful predictive power at short horizons that can be exploited for timing the

market and active asset allocation (Campbell and Thompson, 2005).

Given the great practical importance of predictability of excess stock returns, there is a growing

recent literature in search of new variables with incremental predictive power such as share of equity

issues in total new equity and debt issues (Baker and Wurgler, 2000), consumption-wealth ratio

(Lettau and Ludvingson, 2001), relative valuations of high- and low-beta stocks (Polk, Thompson

and Vuolteenaho, 2006) etc. In this paper, we take an alternative approach to predicting excess

returns by modeling individual multiplicative components of excess stock returns and combining

the components’ information using copula methods to recover the conditional expectation of the

original variable of interest.

More specifically, suppose that we are interested in predicting excess stock returns based on

past data and let rt denote the excess return at period t. The return rt can be decomposed

(Christoffersen and Diebold, 2006) as

rt = c+ |rt − c| sign(rt − c),

where sign(.) is the sign function and c is an arbitrary constant that may be chosen by the researcher

(the leading case is c = 0). It is introduced for more generality because there may be more

predictability with non-zero thresholds than with a zero threshold (Chung and Hong, 2006; Linton

and Whang, 2005). Then, the conditional mean of rt is given by

Et−1 [rt] = c+ Et−1 [|rt − c| sign(rt − c)] ,

where Et−1 [.] denotes the expectation taken with respect to the available information up to time

t− 1.

Our aim is to model the joint distribution of |rt − c| and sign(rt − c) in order to obtain the

conditional expectation Et−1 [rt] . We expect this detour to be successful for the following reasons.

1



First, the models for |rt−c| and sign(rt−c) are likely to use different information variables than the

covariates in a typical predictive regression of stock returns. Volatility persistence and predictability

has been extensively studied and documented in the literature (see Andersen et al., 2006, for an up-

to-date comprehensive review on model-based and model-free volatility forecasting). Furthermore,

Christoffersen and Diebold (2006) and Christoffersen et al. (2006) argue that time variability in

the conditional second and higher-order moments of stock returns can generate sign predictability

even in the absence of conditional mean dependence.

Second, there is evidence on sign predictability and volatility predictability of much larger

degree than mean predictability. Christoffersen and Diebold (2006), Hong and Chung (2003) and

Linton and Whang (2005) find convincing evidence of sign predictability of US stock returns for

different threshold values and data frequencies. Christoffersen and Diebold (2006) reconcile the

standard finding of weak conditional mean predictability with possibly strong sign and volatility

dependence.

Third, the joint predictive density of |rt− c| and sign(rt− c) provides a more general inference

procedure than modeling directly the conditional expectation of rt as in the predictive regression

literature. For example, the joint modeling would allow the researcher to explore trading strategies

and evaluate their profitability (Gençay, 1998; Qi, 1999; Anatolyev and Gerko, 2005). Also, the

joint modeling of the multiplicative components can incorporate some important nonlinearities in

excess return dynamics that cannot be captured in the standard predictive regression setup.

Finally, we would like to stress that studying the dependence between the sign and absolute

value components over time and the bivariate modeling that we propose are also interesting in their

own right and can be used for various other purposes. For example, in our empirical analysis of US

stock return data we reach a conclusion that despite the large unconditional correlation between the

two multiplicative components, they are conditionally very weakly dependent or even independent.

The rest of the paper is organized as follows. Section 2 introduces our return decomposition and

discusses the marginal density specifications and the construction of the joint predictive density of

sign and volatility components. Section 3.2 summarizes some of the main findings in the literature

of predictability of excess returns using Campbell and Yogo’s (2006) data set. Sections 3.3 and

3.4 present the results from the joint modeling and provides some in-sample and out-of-sample

comparisons with the benchmark predictive regression. Section 4 concludes.

2



2 Methodological Framework

2.1 Decomposition

Consider the return decomposition

rt = c+ |rt − c| sign(rt − c). (1)

Christoffersen and Diebold (2006) analyze the case when c = 0 while Hong and Chung (2003) and

Linton and Whang (2005) use threshold values for c that are multiples of the standard deviation

of rt or quantiles of the marginal distribution of rt. The non-zero thresholds may reflect the

presence of transaction costs and capture possible different dynamics of small, large positive and

large negative returns (Chung and Hong, 2006). In a different context, Rydberg and Shephard

(2003) use a similar decomposition to model the dynamics of the trade-by-trade price movements.

The potential usefulness of decomposition (1) is also stressed in Granger (1998) and Anatolyev and

Gerko (2005).

Suppose for now that the dynamics of rt is a function only of its past values and the object

of interest is the predictive density f(rt|Ft−1), where Ft−1 = σ(rs : s ≤ t − 1) is an increasing

sequence of sigma-fields (...Ft−3 ⊂ Ft−2 ⊂ Ft−1) generated by the history of the series to date t−1.

Later we will expand the sigma-field to include other information variables xt−1, xt−2, ..., such as

past values of dividend yield, interest rates etc. Part of our motivation to model the dynamics

of the sign and volatility components on the right-hand side of (1), instead of directly modeling

returns, is that rt, sign(rt − c) and |rt − c| may use different parts of the information set. In order

to emphasize the dependence of return components on different parts of the sigma-field, it may be

instructive to decompose the natural filtration Ft−1 (Rydberg and Shephard, 2003) into F sign(rt−c)
t−1

and F |rt−c|t−1 , where Ft−1 = F sign(rt−c),|rt−c|
t−1 . Note also that decomposition (1) allows for a time-

varying conditional mean which is consistent with the empirical findings in the recent literature on

predictability of excess stock returns.

2.2 Marginal distributions

Consider first the model specification for absolute returns. Since |rt − c| is a positively valued

variable, the dynamics of absolute returns is specified using the multiplicative error modeling
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(MEM) framework of Engle (2002)1

|rt − c| = exp(ψt)ηt,

where exp(ψt) ≡ Et−1 [|rt − c|] (or equivalently ψt ≡ lnEt−1 [|rt − c|]), and ηt is a positive multi-

plicative error with Et−1 [ηt] = 1 and conditional distribution D. The dynamic specification will be

placed on ψt in the spirit of the logarithmic autoregressive conditional duration (LACD) model of

Bauwens and Giot (2000). The main advantage of the logarithmic specification is that no parame-

ter restrictions are needed to enforce positivity of Et−1 [|rt − c|]. Possible candidates for D include

exponential, Weibull, Burr and Generalized Gamma distributions, and potentially free parameters

of D may be parameterized as functions of the past. In the empirical section, we use the constant

parameter Weibull distribution as it turns out that its flexibility is sufficient to provide adequate

description of the conditional density of absolute excess returns.

The conditional mean function is parameterized as

ψt = ωr + βrψt−1 + γr ln |rt−1 − c|+ ρrI [rt−j > c] + x′t−1δr. (2)

If only the first three terms on the right-hand side of (2) are included, the structure of the model

is a analogous to the LACD model of Bauwens and Giot (2000) and log GARCH model of Geweke

(1986) where the persistence of the process is measured by the parameter |γr + βr|. We also allow

for regime-specific mean volatility depending on whether rt−j > c or rt−j ≤ c.2 Finally, the inclusion

of x′t−1δr accounts for the possibility that (functions of) other variables in the information set at

time t − 1 may have an effect on volatility dynamics proxied by |rt − c|. In what follows, we refer

to model (2) as volatility model. The vector of unknown parameters (ς, ωr, βr, γr, ρr, δ
′
r)
′ can be

estimated by maximizing the log-likelihood function.

Now we turn our attention to the dynamic specification of the variable I [rt > c] , where I [.] is the

indicator function, which is linearly related to sign(rt−c). The conditional distribution of I [rt > c] ,

given past information, is necessarily Bernoulli B (pt) with the density fI[rt>c] (v) = pvt (1− pt)1−v,

where pt = Et−1 [I [rt > c]] denotes the conditional “probability of success” Prt−1(I [rt > c] = 1).
1The leading application of the MEM approach in the econometrics literature is that to durations between suc-

cessive transactions in a high frequency financial market (see, for example, Engle and Russel, 1998). There are other

occasional applications of the MEM approach. Engle (2002) illustrates the MEM methodology using exchange rate

realized volatilities. Chou (2005) models a high/low range of asset prices in the MEM framework. Engle and Gallo

(2006) analyze the dynamics of three volatility indexes using a multivariate version of the MEM.
2We also interacted ψt−1 and ln |rt−1 − c| terms with I [rt−j > c] but the estimated coefficients on these variables

were statistically insignificant.
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If the data are generated by rt = µt + σtεt, where µt = Et−1(rt), σ2
t = V art−1(rt) and

εt is a homoskedastic martingale difference with unit variance and distribution function Fε(.),

Christoffersen and Diebold (2006) show that

Et−1 [I [rt > c]] = 1− Fε
(
c− µt
σt

)
.

This expression implies that time-varying volatility will generate sign predictability so long as

c−µt 6= 0. Furthermore, Christoffersen et al. (2006) derive a Gram-Charlier expansion of Fε(.) and

show that Et−1 [I [rt > c]] depend on the third and fourth conditional cumulants of the standardized

errors εt. As a result, sign predictability would arise from time variability in second and higher-order

moments.

We use these insights and parameterize Et−1 [I [rt > c]] using the dynamic logit model

Et−1 [I [rt > c]] =
exp (θt)

1 + exp (θt)

with

θt = ωs + φsI [rt−1 > c] + x′t−1δs. (3)

Model (3) on the right side includes the lagged values of the indicator as well as some other variables

in xt−1. These may be macroeconomic predictors such as interest rates and various valuation ratios.

We include in particular RVt−1, BPVt−1, RSt−1, RKt−1, where RV, BPV , RS and RK denote the

realized variance, bipower variation, realized third and fourth moments of returns constructed from

daily data.3 We include both RV and BPV as proxies for the unobserved volatility process since the

former is an estimator of integrated variance plus a jump component while the latter is unaffected

by presence of jumps (Barndorff-Nielsen and Shephard, 2004, 2006). The unknown parameters in

(3) can be estimated by maximum likelihood.4

3We experimented with some flexible nonlinear specifications of θt in order to capture the possible interaction

between volatility and higher-order moments (Christoffersen et al., 2006) but the nonlinear terms did not deliver

incremental predictive power and are omitted from the final specification.
4de Jong and Woutersen (2005) provide conditions for the consistency and asymptotic normality of the parameters

estimates in dynamic binary choice models.
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2.3 Joint distribution using copulas

This section discusses the construction of the bivariate conditional distribution of Rt ≡ (|rt −

c|, 1 [rt > c])′. Up to now we have dealt with the marginals5(
|rt − c|
I [rt > c]

)
∼
(
D(ψt)
B(pt)

)
,

with marginal PDF/PMFs (
f|rt−c| (u)
fI[rt>c] (v)

)
=
(

fD(u|ψt)
pvt (1− pt)1−v

)
,

and marginal CDF/CMFs (
F|rt−c| (u)
FI[rt>c] (v)

)
=
(

FD(u|ψt)
1− pt (1− v)

)
.

Let fRt (u, v) denote the joint density of |rt − c| and I [rt > c] . We will use the copula theory

(for introduction to copulas, see Nelson, 1999) to generate the joint distribution from the specified

marginals

FRt (u, v) = C
(
F|rt−c| (u) , F1[rt>c] (v)

)
,

where C(w1, w2) is a copula. The unusual feature of the copula in our case is the continuity of one

marginal and discreteness of the other marginal. The typical case in bivariate modeling are two

continuous marginals (for example, Patton, 2006) and much more rarely two discrete marginals

(Cameron et al., 2004).

Because the first component is continuously distributed while the second component is a dis-

crete binary random variable, the joint density/mass function can be obtained as a partial derivative

with respect to the continuous entry and a finite difference with respect to the binary entry:

fRt (u, v) =
∂FRt (u, v)

∂w1
− ∂FRt (u, v − 1)

∂w1
.

Theorem. The joint density/mass function fRt (u, v) can be represented as

fRt (u, v) = fD(u|ψt)%t
(
FD(u|ψt)

)v (
1− %t

(
FD(u|ψt)

))1−v
, (4)

where

%t (z) =
∂C (z, 1)
∂w1

− ∂C (z, 1− pt)
∂w1

.

5For brevity we use the terms “marginal distribution”, “joint distribution” and the like, although a more correct

terminology would be “conditional marginal distribution”, “conditional joint distribution”, etc., where the qualifier

“conditional” refers to conditioning on the past.
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Proof. Differentiation of FRt (u, v) yields

fRt (u, v) = f|rt−c| (u)

[
∂C
(
FD(u|ψt), F1[rt>c] (v)

)
∂w1

−
∂C
(
FD(u|ψt), F1[rt>c] (v − 1)

)
∂w1

]
.

Denote by ∆t(v) the expression in the square brackets. In particular, when v = 0,

∆t(0) =
∂C
(
FD(u|ψt), 1− pt

)
∂w1

−
∂C
(
FD(u|ψt), 0

)
∂w1

and when v = 1,

∆t(1) =
∂C
(
FD(u|ψt), 1

)
∂w1

−
∂C
(
FD(u|ψt), 1− pt

)
∂w1

.

We will now show that these two components sum up to one: ∆t(0) + ∆t(1) = 1. Indeed,

∆t(0) + ∆t(1) =
[
∂C (w1, 1)

∂w1
− ∂C (w1, 0)

∂w1

]
w1=FD(u|ψt)

=
[∫ 1

0

∂2C (w1, w2)
∂w1∂w2

dw2

]
w1=FD(u|ψt)

= [c (w1)]w1=FD(u|ψt) ,

where c (w1) is the marginal density of the copula with respect to the first argument. Because

FD(u|ψt) is distributed uniformly on [0, 1] , we get c
(
FD(u|ψt)

)
= 1.

It trivially holds that ∆t(v) = ∆t(1)v∆t(0)1−v, ∆t(1) = %t
(
FD(u|ψt)

)
. From the result just

proved it follows that ∆t(0) = 1− %t
(
FD(u|ψt)

)
. Combining all results yields the final conclusion.

The representation (4) for the joint density/mass function has the form of a product of the

marginal density of |rt − c| and the Bernoulli density of I [rt > c]. The “success probability” pa-

rameter %t
(
FD(u|ψt)

)
does not, in general, equal to pt (equality holds in the case of independence

between |rt − c| and I [rt > c]), the “success probability” parameter of the marginal distribution;

it depends not only on pt, but also on FD(u|ψt), inducing dependence between the marginals of

|rt− c| and I [rt > c]. Interestingly, the form of representation (4) does not depend on the marginal

distribution of |rt − c|, although the joint density/mass function itself does.

Below we present two examples of copulas that will be used in the empirical section.

Frank copula. The Frank copula is

C(w1, w2) = − 1
α

log
(

1 +
(e−αw1 − 1) (e−αw2 − 1)

e−α − 1

)
,
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where α ∈ [−∞,+∞] indexes dependence between entries. The joint density/mass function is given

in (4) with

%t (z) =
1

1− 1−e−α(1−pt)

1−eαpt eα(1−z)
.

Note that α→ 0 implies independence between the marginals and %t → pt.

Clayton copula. The Clayton copula is

C(w1, w2) = (wα1 + wα2 − 1)
1
α ,

where α < 0 indexes dependence between entries. The joint density/mass is as (4) with

%t (z) = 1−
(

1 +
(1− pt)α − 1

zα

) 1
α
−1

.

Note that α→ 0 implies independence between the marginals and %t → pt.

2.4 Conditional mean prediction

In many cases, the interest lies in the mean prediction of returns that can be expressed as

Et−1 [rt] = c+ Et−1 [|rt − c| sign(rt − c)]

= c+ Et−1 [|rt − c| (2I [rt > c]− 1)]

= c+ 2Et−1 [|rt − c|I [rt > c]]− Et−1 [|rt − c|] .

Hence, the prediction of returns at time t is given by

r̂t = c+ 2ξ̂t − ψ̂t, (5)

where ψt is the conditional mean of |rt − c|, ξt is the conditional expected cross-product of |rt − c|

and I [rt > c] , and ψ̂t and ξ̂t are feasible analogs of ψt and ξt.

If |rt − c| and I(rt > c) happen to be conditionally independent, then

ξt = Et−1 [|rt − c|]Et−1 [I(rt > c)] = ψtpt,

so

Et−1 [rt] = c+ (2pt − 1)ψt,

and the returns can be predicted by

r̂t = c+ (2p̂t − 1) ψ̂t,
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where p̂t denotes the predicted value of pt.

In the general case of conditional dependence, we can compute the conditional distributions

f1[rt>c]||rt−c| (v|u) =
fRt (u, v)
f|rt−c| (v)

= %t
(
FD(u|ψt)

)v (
1− %t

(
FD(u|ψt)

))1−v
.

The conditional expectation function (of I [rt > c] given |rt − c|) is

Et−1 [I [rt > c] ||rt − c|] = %t
(
FD(u|ψt)

)
,

and the expectation of the cross-product is given by

ξt = Et−1 [|rt − c|I [rt > c]] =
∫ +∞

0
ufD(u|ψt)%t

(
FD(u|ψt)

)
du. (6)

In general, the integral (6) cannot be computed analytically in most cases (even in the simple

case when fD(u|ψt) is exponential), but can be easily evaluated numerically, keeping in mind that

the domain of integration is infinite. Note that the change of variables z = FD(u|ψt) yields

ξt =
∫ 1

0
QD(z)%t(z)dz, (7)

where QD(z) is a quantile function of the distribution D. Hence, the returns can be predicted by

(5), where ξ̂t is obtained by numerically evaluating integral (7) with a fitted quantile function and

fitted function %t(z). In the empirical section, we apply the Gauss–Chebyshev quadrature formulas

(Judd, 1998, section 7.2) to evaluate (7).

3 Empirical Analysis

3.1 Data

In our empirical study, we use Campbell and Yogo’s (2006) data set that covers the period 1927–

2002 at annual, quarterly and monthly frequency.6 The excess stock returns are constructed from

NYSE/AMEX value-weighted index data and T-bill rates from the Center for Research in Security

Prices (CRSP) database. The risk-free return at monthly, quarterly and annual frequency is proxied

by one-month rate, three-month rate and the return from rolling over three-month rate every

quarter, respectively. The CRSP data are combined with S&P500 data and Moody’s Aaa corporate

bond yield data to obtain the predictor variables dividend-price ratio, earnings-price ratio and yield

spread. The dividend-price and earnings-price ratios are included in the regression models in logs.
6We would like to thank Moto Yogo for making the data available on his website.
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The realized measures of second and higher-order moments of stock returns are constructed

from daily data on NYSE/AMEX value-weighted index from CRSP. Let m be the number of daily

observations per period (month, quarter, year) and rt,j denote the demeaned daily log stock return

for day j in period t. Then, the realized variance RVt (Andersen and Bollerslev, 1998; Andersen

et al., 2001), bipower variation BPVt (Barndorff-Nielsen and Shephard, 2004, 2006), realized third

moment RSt and realized fourth moment RKt for period t are computed as

RVt =
m∑
s=1

r2
t,s

BPVt =
π

2
m

m− 1

m−1∑
s=1

|rt,s| |rt,s+1|

RSt =
m∑
s=1

r3
t,s

RKt =
m∑
s=1

r4
t,s.

Finally, following Campbell and Yogo (2006), we consider the subsample 1952–2002 for which

the data, especially the interest rate variables after the Federal Reserve-Treasury Accord in 1951,

are more reliable. This also roughly corresponds to the period that is most extensively studied in

the empirical studies on predictability of stock returns.

3.2 Predictive regressions for excess returns

In this section, we present some empirical evidence on conditional mean predictability of excess

stock returns. It is now well known that if the predictor variables are highly persistent, which is the

case with all four predictors that we consider, the coefficients in the predictive regression is biased

(Stambaugh, 1999) and their limiting distribution is non-standard (Elliott and Stock, 1994) if the

innovations of the predictor variable are correlated with returns. For example, Campbell and Yogo

(2006) report that this correlation is in the range [−0.69,−0.99] for dividend-price and earnings-

price ratios at different frequencies while the innovations of the three-month T-bill rate and the

long-short interest rate spread are only weakly correlated with returns (correlation coefficient of

−0.07 for monthly observations). A number of recent papers propose inference procedures that

take these data characteristics into account when evaluating the predictive power of the different

regressors (Campbell and Yogo, 2006; Cavanagh et al., 1994; Jansson and Moreira, 2006; Lewellen,

2004; Torous, Valkanov and Yan, 2004; among others).
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*** Table 1 ***

Table 1 reports some regression statistics when all the predictors are included in the regression.

As argued above, the distribution theory for the t-statistics of the dividend-price and earnings-

price ratio is non-standard whereas the t-statistics for the interest rates variables can be roughly

compared to the standard normal critical values. The results in Table 1 suggest some predictability

at monthly and quarterly frequency for the subsample 1952–2002. Even though the values of the

R2 coefficients are statistically small, Campbell and Thompson (2005) argue that they can still be

economically meaningful when compared to the squared Sharpe ratio.

In summary, using the predictor variables in Campbell and Yogo’s (2006) dataset, we find some

evidence of in-sample predictability of excess returns at monthly and quarterly frequency in the

1952–2002 period.

3.3 Decomposition-based model for excess returns

The sample log-likelihood function to be maximized is given by

T∑
t=1

I [rt > c] ln %t (1− exp (−ξt)) + (1− I [rt > c]) ln (1− %t (1− exp (−ξt)))

+
T∑
t=1

ln(ς)− ln |rt − c| − ξt + ln ξt,

where ξt =
(
|rt − c|Γ

(
1 + ς−1

)
/ exp(ψt)

)ς and Γ (.) is the gamma function. This likelihood is based

on Weibull-distributed absolute returns with shape parameter ς > 0 (the exponential distribution

can be obtained as special case when ς = 1). The results from the return decomposition (1) are for

the case c = 0. The estimates reported below for the logit and volatility specifications are obtained

using the Frank copula.

*** Table 2 ***

Table 2 presents the estimation results from the dynamic logit model for the indicator variable.

Several observations regarding the estimated logit model are in order. First, the persistence in the

indicator variable over time is relatively weak once we control for other factors such as macroeco-

nomic predictors and realized high-order moments of returns. The estimated signs of the interest

rate variables are consistent across the different frequencies. The coefficient on the 3-month T-bill

indicates that the stock prices are likely to fall if the interest rate goes up. Also, the combined effect

11



of the two realized volatility measures, RV and BPV , on the direction of the market is negative

with the exception of the subsample 1952–2002. The realized measures of the higher moments of

returns appear to have a statistically significant effect on the direction of excess returns at quarterly

frequency but not at the other frequencies.

*** Table 3 ***

Table 3 reports the results from the volatility model (2). The adequacy of the Weibull specifica-

tion is tested using the excess dispersion and Pearson’s goodness-of-fit tests. The excess dispersion

test is adapted to the use of Weibull distribution

ED =
√
T

(η̂t − 1)2 − σ̂2
η√(

(η̂t − 1)2 − σ̂2
η

)2 ,
where σ̂2

η = Γ
(
1 + 2ς̂−1

)
/Γ
(
1 + ς̂−1

)2 − 1 is an estimate of the variance of Weibull-distributed

ηt, hats denote estimated values, and bars denote sample averages. The Pearson goodness-of-fit

test (e.g., Kendall and Stuart, 1973, chapter 30) compares the multinomial distribution induced

by standardized residuals and that implied by the normalized Weibull density. We set the number

of equiprobable classes to 20, so the null distribution of the Pearson statistic is bounded between

χ2(18) and χ2(19) because of the presence of an additional shape parameter (Kendall and Stuart,

1973, sect. 30.11–30.19), under the null of correct distributional specification.

The high persistence in absolute returns is evident from the results at quarterly and monthly

frequency. The nonlinear term also suggests that positive returns correspond to low-volatility

periods and negative returns tend to occur in high volatility periods where the difference in the

average volatility of the two regimes is statistically significant at monthly frequency. For the 1927–

2002 sample, higher interest rates and earnings-price ratio appear to reduce volatility while higher

dividend-price ratio tends to have the opposite effect. Interestingly, the effect of these predictors

is reversed for the most recent subsample 1952–2002.

Table 3 also shows the statistically significant departure of ς from 1 implying exponentiality

of the density. On the other hand, further generalization of the density is not required because

neither the excess dispersion nor Pearson tests reject the null of Weibull density.

*** Figures 1 and 2 ***

In order to visualize the outcome of our estimation procedure, we plot the predicted probabili-
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ties form the dynamic logit model and the actual and predicted absolute returns from the volatility

model in Figures 1 and 2. The predicted probabilities inherit the high persistence of volatility

dynamics and are clearly inversely related to volatility movements: negative predicted returns tend

to be associated with periods of high volatility and positive returns are predicted when volatility is

low. The predicted absolute returns appear to follow closely the dynamics of stock return volatility.

Now we turn to modeling the joint distribution of sign and absolute returns using the Frank

and Clayton copulas, where dependence is imposed through the copula parameter α. The result for

the two copulas are reported in Table 4.

*** Table 4 ***

Table 4 shows that α is not significantly different from zero with numerical values close to

zero that imply near-independence at all frequencies. The signs of parameter estimates are also

consistent across the data frequencies.

The insignificance of the dependence parameter is compatible with the figures on the uncondi-

tional correlation of the raw variables |rt − c| and I(rt > c), and the conditional correlation of the

standardized variables ψ−1
t |rt − c| and p−1

t 1 [rt > c] , reported in Table 5.

*** Table 5 ***

We see from Table 5 that the conditional correlations are close to zero, while the unconditional

ones are large. The bigger value for annual data corresponds to higher copula estimates of |α|.

*** Table 6 ***

Finally, we computed the squared correlation coefficient between the actual and fitted excess

returns from our model at different frequencies and report this pseudo-R2 goodness-of-fit measure

in Table 6. A rough comparison with the R2 from the predictive regression in Table 1 indicates a

similar in-sample performance of the two models. However, an inspection of the fitted returns of

the two models reveals some interesting differences.

*** Figures 3 and 4 ***

Figures 3 and 4 plot the monthly fitted returns from our model and the predictive regression

over the whole sample 1927–2002 and the subsample period 1952–2002. We see that our model is

able to predict large volatility movements which is not the case for the predictive regression model.
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Moreover, there are substantial differences in the predicted returns around the Great Depression

period and towards the end of the sample.

3.4 Out-of-sample forecasting results

While there is some consensus in the finance literature on a certain degree of in-sample predictability

of excess returns (Cochrane, 2005), the evidence on out-of-sample predictability is mixed. Goyal

and Welch (2003, 2006) find that the commonly used predictive regressions would not help an

investor to profitably time the market. Campbell and Thompson (2005), however, show that the

out-of-sample predictive performance of the models is improved after imposing restrictions on the

sign of the estimated coefficients and the equity premium forecast.

In our out-of-sample experiments, we compare the one-step ahead forecasting performance

of the decomposition-based model proposed in this paper, conditional predictive regression and

unconditional mean model. The forecast are computed from monthly observations for the subsample

1952–2002 using a rolling sample scheme with fixed sample size R = 360. The results are reported

using an out-of-sample coefficient of predictive performance OS computed as

OS = 1−
∑T

j=T−R+1 ∂ (rj − r̂j)∑T
j=T−R+1 ∂ (rj − rj)

,

where ∂ (u) = u2 if it is based on squared errors and ∂ (u) = |u| if it is based on absolute errors, r̂j is

the one-step forecast of rj from the conditional predictive model and rj denotes the unconditional

mean of rj computed from the last R observations in the rolling scheme. If the value of OS is equal

to zero, the conditional models and the unconditional mean predict equally well the next period

excess return; if OS < 0, the unconditional mean performs better; and if OS > 0, the conditional

model dominates.

*** Table 7 ***

Table 7 presents the results from the out-of-sample forecast evaluation. We refer in Table 7

to the forecasting model that does not impose any restrictions on the forecasts as unrestricted

forecast. As in Campbell and Thompson (2005), we consider a forecasting procedure that rules out

negative values for the equity premium by setting the forecast to zero if the next period predicted

excess return is negative (restricted forecast in Table 7).

The upper left corner of Table 7 presents the results from the predictive regression of excess
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returns. As in Goyal and Welch (2003, 2006) and Campbell and Thompson (2005), we find that the

unconditional model based on the historical mean performs better out-of-sample than the model

that uses conditional information and, in some cases, the difference in the relative forecasting

performance is up to 5%. When the non-negativity restriction on the equity premium forecast is

imposed, the unconditional forecast no longer dominates the conditional prediction. In summary,

using the predictor variables in Campbell and Yogo’s (2006) dataset, we find some evidence of

improved out-of-sample predictability after imposing a non-negativity constraint on the equity

premium forecast.

The results from our model described in Section 2 are reported in the second panel of Table

7. We present separately the results under conditional independence and conditional dependence.

In all cases, our model dominates the unconditional mean forecast with forecast gains of 1.1-2.7%.

Although these forecast gains do not seem statistically large, Campbell and Thompson (2005) argue

that a 1% increase in the out-of-sample statistic OS implies economically large increases in portfolio

returns. This forecasting superiority over the unconditional mean forecast is even further reinforced

by the fact that our model is overly parameterized compared to the benchmark model. Restricting

the equity premium forecast to positive values and imposing conditional independence do not seem

to have a large effect on the forecasts.

To gain some intuition about the source of the forecasting improvements, we consider two nested

versions of our model: one that contains only the own dynamics of the indicator variable and the

absolute returns (pure dynamic model) and a model that includes only macroeconomic predictors

and realized measures without any autoregressive structure (pure structural model). Interestingly,

the forecasting gains of the full model appear to have been generated by the information contained

in the predictors and not in the dynamic behavior of the sign and volatility components.7 In fact,

the forecasts from the pure structural model dominate the forecasts from the full model with up

to 3% improvements over the unconditional mean forecasts.
7The poor forecasting performance of the pure dynamic model appears to be due to poor probability predictability

that arises from the weak persistence in the indicator variable mentioned above.
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4 Conclusion

This paper proposes a new method for analyzing the dynamics of excess returns by modeling

the joint distribution of their sign and volatility multiplicative components using copulas. Our

framework attempts to capitalize on the stronger degree of directional and volatility predictability

and judiciously exploit possible nonlinearities and different information sets in dynamics of the

two parts. Furthermore, the paper develops copula modeling with one discrete and one continu-

ous marginal, which is new to the literature, and discusses computation of the conditional mean

predictor under conditional dependence of the two components

Our empirical analysis of US excess stock returns at monthly, quarterly and annual frequencies

delivers some interesting findings. While the in-sample fits of our model and the standard predictive

regression are of similar magnitude, there are some substantial differences in fitted returns from

these methods during the Great Depression period and late 1990s. Furthermore, the predicted

probabilities and absolute returns from the fitted marginals of the two multiplicative components

of returns can be used for directional and volatility forecasting. Our estimation results reveal that

these two components exhibit substantial unconditional correlation but an almost zero conditional

correlation that is reflected in a conditional near-independence in the copula specification. We also

report some economically significant forecasting gains from our procedure out of sample that appear

to arise from efficiently incorporating the information contained in the macroeconomic predictors

and realized volatility and higher-order moments of returns.
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Table 1. Estimation results from predictive regression of excess returns.

t(dp) t(ep) t(ir3) t(irs) R2

Whole sample 1927–2002

Annual 0.14 0.76 −0.85 0.53 0.1036
Quarterly −0.92 1.71 −1.20 −0.05 0.0346
Monthly −1.02 1.64 −1.24 0.34 0.0124

Subsample 1952–2002

Annual 1.44 −0.73 −1.39 1.46 0.2108
Quarterly 2.01 −1.22 −1.66 2.33 0.0819
Monthly 2.19 −1.44 −1.71 2.91 0.0413

Notes: t(z) denotes the t-statistic for the coefficient on variable z, and dp, ep, ir3 and irs stand for

dividend-price ratio, earnings-price ratio, three-month T-bill rate and long-short yield spread. The

t-statistics are computed using Newey–West HAC standard errors with automatic bandwidth.
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Table 2. Estimation results from the dynamic logit model for return indicators

ωs φs δs(ir3) δs(irs) δs(RV ) δs(BPV ) δs(RS) δs(RK)

Annual data 1927–2002

coeff 1.37 −0.68 −8.34 23.8 2.21 −2.77 −0.02 0.01
s.e. 1.19 0.78 8.46 22.3 1.69 2.24 0.09 0.01
t-stat 1.15 −0.87 −0.99 1.07 1.31 −1.23 −0.22 0.59

Quarterly data 1927–2002

coeff 0.74 0.12 −5.74 8.19 −1.45 0.95 −0.29 0.02
s.e. 0.40 0.26 4.22 10.9 1.42 1.43 0.13 0.01
t-stat 1.82 0.47 −1.36 0.75 −1.02 0.66 −2.17 2.08

Monthly data 1927–2002

coeff 0.43 0.19 −5.56 6.18 −0.69 0.31 0.00 0.00
s.e. 0.21 0.14 2.35 5.74 0.70 0.66 0.04 0.00
t-stat 2.03 1.33 −2.37 1.08 −0.97 0.47 0.00 0.21

Monthly data 1952–2002

coeff 0.30 0.18 −8.09 9.92 4.70 −3.49 −0.30 −0.09
s.e. 0.27 0.17 3.28 6.41 2.50 2.42 0.41 0.07
t-stat 1.11 1.04 −2.46 1.55 1.88 −1.44 −0.73 −1.25

Notes: The model is estimated on the basis of the logit equation Et−1 [I [rt > c]] = exp (θt) /(1 +

exp (θt)), where θt is determined by (3).
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Table 3. Estimation results from the volatility model.

ωr βr γr ρr δr(dp) δr(ep) δr(ir3) δr(irs) ς ED PT

Annual data 1927–2002

coeff 4.97 −0.21 0.13 −0.44 −12.31 57.39 −5.50 −9.42 1.66 −0.39 11.89
s.e. 1.30 0.19 0.07 0.14 64.76 59.12 2.37 6.33 0.17
t-stat 3.81 −1.12 1.97 −3.09 −0.19 0.97 −2.32 −1.49 9.85

Quarterly data 1927–2002

coeff 0.09 0.89 0.09 −0.14 9.66 −14.51 −0.05 −0.38 1.26 0.09 13.63
s.e. 0.21 0.09 0.03 0.08 6.35 6.82 0.38 0.95 0.06
t-stat 0.42 9.38 2.67 −1.82 1.52 −2.13 −0.14 −0.41 21.3

Monthly data 1927–2002

coeff 0.24 0.89 0.06 −0.13 3.35 −1.88 −0.19 −0.28 1.21 −0.01 29.45
s.e. 0.07 0.03 0.01 0.03 2.24 2.39 0.13 0.37 0.04
t-stat 3.39 36.2 5.96 −4.34 1.49 −0.78 −1.48 −0.77 31.7

Monthly data 1952–2002

coeff −0.52 0.81 0.03 −0.17 −8.62 7.14 0.36 −0.69 1.27 −0.08 20.61
s.e. 0.26 0.08 0.01 0.06 7.97 7.90 0.35 0.70 0.05
t-stat −2.03 10.4 2.65 −2.85 −1.08 0.90 1.01 −0.98 23.6

Notes: The model is estimated on the basis of the MEM equation |rt − c| = exp(ψt)ηt, where ψt

follows (2), and ηt is distributed as normalized Weibull with shape parameter ς. ED and PT denote

the excess dispersion and Pearson tests. The Pearson test compares the discretized empirical and

Weibull distribution using 20 cells. Under the correct distributional specification, the distribution

of Pearson statistic is bounded between χ2(18) and χ2(19) whose 95% critical values are 28.87 and

30.14, and the excess dispersion statistic is distributed as standard normal with a (right-sided) 5%

critical value of 1.645.
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Table 4. Estimates of the dependence parameter.

Frank copula Clayton copula

coeff s.e. t-stat coeff s.e. t-stat

Annual data 1927–2002

0.976 1.208 0.809 −0.144 0.216 −0.668

Quarterly data 1927–2002

0.213 0.479 0.445 −0.112 0.087 −1.281

Monthly data 1927–2002

0.070 0.245 0.285 −0.030 0.043 −0.693

Monthly data 1952–2002

0.285 0.296 0.964 −0.089 0.055 −1.625

Notes: Shown are estimates of dependence parameter α in copula specifications.

Table 5. Unconditional and conditional correlations.

Unconditional Conditional

Annual data 1927–2002 0.801 −0.133
Quarterly data 1927–2002 0.699 −0.029
Monthly data 1927–2002 0.704 −0.043
Monthly data 1952–2002 0.768 −0.011

Notes: “Unconditional correlation” refers to the sample correlation coefficients between |rt− c| and

1 [rt > c] . “Conditional correlation” refers to the sample correlation coefficients between ψ−1
t |rt−c|

and p−1
t 1 [rt > c] estimated from the decomposition-based model with the Frank copula.

Table 6. In-sample goodness-of-fit measures.

pseudo-R2

Annual data 1927–2002 0.1663
Quarterly data 1927–2002 0.0151
Monthly data 1927–2002 0.0034
Monthly data 1952–2002 0.0418

Notes: pseudo-R2 denotes squared correlation coefficients between excess returns and their in-

sample predictions.
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Table 7. Out-of sample OS statistic (in %) for the monthly subsample 1952–2002.

No decomposition Ignoring dependence Using dependence

Copula Frank Clayton Frank Clayton

Linear model

Unrestricted forecast
(
−4.91
−4.18

)
Restricted forecast

(
1.37
0.62

)
Full parametric model

Unrestricted forecast
(

1.49
2.71

) (
1.26
2.48

) (
1.42
1.64

) (
1.26
1.46

)
Restricted forecast

(
1.08
2.13

) (
0.86
1.90

) (
1.76
1.27

) (
1.57
1.08

)
Pure dynamic model

Unrestricted forecast
(

0.03
−0.28

) (
0.03
−0.27

) (
−1.55
−1.95

) (
−1.42
−1.88

)
Restricted forecast

(
0.35
−0.09

) (
0.34
−0.09

) (
−0.16
−0.92

) (
−0.07
−0.87

)
Pure structural model

Unrestricted forecast
(

2.34
3.01

) (
2.25
2.96

) (
1.68
1.77

) (
1.85
1.94

)
Restricted forecast

(
1.51
2.40

) (
1.41
2.35

) (
1.76
1.37

) (
1.76
1.46

)
Notes: The rolling scheme uses a sample of fixed size R = 360. Restricted forecast sets the forecast

of equity premium to zero if it is negative. The top figure in a cell is OS based of squared prediction

errors, the lower figure shows OS based on absolute values of prediction errors. “Linear model”

and “No decomposition” refer to the linear predictive regression of excess returns as in Table

1. “Full parametric model” refers to the decomposition-based model that includes all predictors

corresponding to Tables 2 and 3. “Pure dynamic model” refers to a smaller decomposition-based

model where only a constant, ψt−1, ln |rt−1 − c| and I(rt−j > c) are included in equation (2) for

absolute returns and only a constant and I(rt−1 > c) are included in equation (3) for indicators.

“Pure structural model” refers to a decomposition-based model where instead only a constant,

dp, ep, ir3 and irs are included in equation (2) for absolute returns and only a constant, ir3,

irs, RV, BPV, RS and RK are included in equation (3) for indicators. “Ignoring dependence”

means that the decomposition-based model is estimated but predictions are constructed under the

presumption of conditional independence between signs and absolute returns. “Using dependence”

means that the decomposition-based model is estimated and fully used in constructing predictions

by (5), including numerical integration.
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Figure 1. Predicted probabilities from the dynamic logit model, monthly data 1927—2002.

.1

.2

.3

.4

.5

.6

.7

Jan 30 Jan 40 Jan 50 Jan 60 Jan 70 Jan 80 Jan 90 Jan 00

Predicted probabilities

Figure 2. Actual and predicted absolute returns from the volatility model, monthly data

1927—2002.

0

5

10

15

20

25

30

35

Jan 30 Jan 40 Jan 50 Jan 60 Jan 70 Jan 80 Jan 90 Jan 00

Actual absolute returns Predicted absolute returns



Figure 3. Predicted returns from the predictive regression and from decomposition-based

model, monthly data 1927—2002.
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Figure 4. Predicted returns from the predictive regression and from decomposition-based

model, monthly data 1952—2002.
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