
Vol. XIII No 1 Junio (2005)
Matemáticas: 51–62

Matemáticas:

Enseñanza Universitaria

c©Escuela Regional de Matemáticas
Universidad del Valle - Colombia

Influence of periodic temperature and concentration on

unsteady free convective viscous incompressible flow and heat

transfer past a vertical plate in slip-flow regime

Pawan Kumar Sharma

Received Dec. 6, 2004 Accepted Apr. 12, 2005

Abstract
The effect of combined heat and mass transfer on unsteady free convective, viscous incom-
pressible flow past a vertical flat plate in slip-flow regime is studied. Assuming variable
suction at the plate, approximate solutions are obtained for velocity, skin-friction, temper-
ature, heat transfer and concentration. During the course of discussion, the effects of Gr
(Grashof number based on temperature), Gc (modified Grashof number based on concen-
tration difference), A (suction parameter) and ω (frequency parameter) for carbon dioxide
(Sc = 0.94) in air (Pr = 0.71) are presented and discussed graphically.

Keywords: Free convection, unsteady, incompressible fluid, slip-flow, heat and mass trans-
fer.
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1 Introduction

In recent years, the requirements of modern technology have stimulated in-
terest in fluid flow, which involve the interaction of several phenomena. The
process of heat and mass transfer in free convection flow have attracted the
attention of a number of scholars due to their application in many branches
of science and engineering, viz. in the early stages of melting adjacent to
a heated surface, in chemical engineering processes which are classified as
a mass transfer process, in a cooling device. The phenomenon of free con-
vection arises in the fluid when temperature changes cause density variation
leading to buoyancy forces acting on the fluid elements. This can be seen
in our everyday life in the atmospheric flow, which is driven by temperature
differences. There are many transport processes occurring in nature due to
temperature and chemical differences. The process of heat and mass trans-
fer is encountered in aeronautics, fluid fuel nuclear reactor, chemical process
industries and many engineering applications in which fluid is the working
medium. Now, free convective flow past vertical plate has been studied ex-
tensively by Ostrach [1], [2] and many others. These studies are confined to
steady flows only. Gebhart and Pera [3] studied the natural convection flow
from the combined buoyancy effects on thermal and mass diffusion. Also in
case of unsteady free convective flows Soundalgekar [4] studied the effects of
viscous dissipation on the flow past an infinite vertical porous plate. It was
assumed that the plate temperature oscillates in such a way that its amplitude
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is small. The free convective heat transfer on a vertical semi-infinite plate has
been investigated by Berezovsky et al. [5]. Soundalgekar and Wavre [6], [7]
studied the unsteady free convection flow past an infinite vertical plate and
mass transfer with constant/variable suction. Also the combined heat and
mass transfer in mixed convection along vertical and inclined plates has been
studied by Chen et al. [8]. Martynenko et al. [9] investigated the laminar
free convection from a vertical plate. Also, the free convection on a horizontal
plate in a saturated porous medium with prescribed heat transfer coefficient
is studied by Ramanaiah and Malarvizhi [10]. Das et al. [11] studied the
transient free convection flow past an infinite vertical plate with periodic
temperature variation, because the free convection is enhanced by superim-
posing oscillating temperature on the mean plate temperature. Hossain et al.
[12] studied the influence of fluctuating surface temperature and concentra-
tion on natural convection flow from a vertical flat plate. In many practical
applications the particle adjacent to a solid surface no longer takes the veloc-
ity of the surface. The particle at the surface has a finite tangential velocity.
It "slips" along the surface. The flow regime is called the slip flow regime and
this effect can not be neglected. Using this effect Sharma and Chaudhary
[13] studied the effect of variable suction on transient free convective viscous
incompressible flow past a vertical plate with periodic temperature variations
in slip-flow regime. Recently, Sharma and Sharma [14] studied influence of
variable suction on unsteady free convective flow from a vertical flat plate
and heat transfer in slip-flow regime. Therefore, the object of this paper is
to study the effects of combined heat and mass transfer on unsteady free
convective, viscous incompressible flow past a vertical flat plate in slip-flow
regime, when suction velocity oscillate in time about a constant mean.

2 Formulation of the problem

An unsteady free convective flow of a viscous incompressible fluid past an
infinite vertical porous flat plate in slip-flow regime, with periodic temper-
ature and concentration when variable suction velocity distribution, V ∗ =
−V0

(

1 + εAetω∗t∗
)

, fluctuating with time is applied. We introduce a co-
ordinate system with wall lying vertically in x∗ − y∗ plane. The y∗-axis is
taken in vertically upward direction along the vertical porous plate and y*-
axis is taken normal to the plate. Since the plate is considered infinite in the
x*-direction, all physical quantities will be independent of x∗. Under these
assumptions, the physical variables are function of y∗ and t∗ only. Then ne-
glecting viscous dissipation and assuming variation of density in the body
force term (Boussinesq’s approximation) the problem is governed by the fol-
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lowing set of equations

∂u∗

∂t∗
+ V ∗∂u∗

∂y∗
= gβ (T ∗ − T ∗

∞) + gβ◦ (C∗ − C∗
∞) + ν

∂2u∗

∂y∗2
, (1)

∂T ∗

∂t∗
+ V ∗ ∂T ∗

∂y∗
=

κ

ρ Cp

∂2T ∗

∂y∗2
, (2)

∂C∗

∂t∗
+ V ∗ ∂C∗

∂y∗
= D

∂2C∗

∂y∗2
. (3)

The boundary conditions of the problem are

u∗ = L∗∂u∗

∂y∗
, T ∗ = T ∗

w + ε (T ∗
w − T ∗

∞) eiω∗t∗ , (4)

C∗ = C∗
w + ε (C∗

w − C∗
∞) eiω∗t∗ at y∗ = 0, (5)

u∗ → 0, T ∗ → T ∗
∞, C∗ → C∗

∞, as y∗ → ∞. (6)

We now introduce the following non-dimensional quantities into equations (1)
to (4)

y = y∗
V ∗

0

ν
, t = t∗

V ∗2
0

4ν
, u =

u∗

V ∗
0

, ω =
4νω∗

V ∗2
0

,

Θ =
T ∗ − T ∗

∞

T ∗
w − T ∗

∞

, C =
C∗ − C∗

∞

C∗
w − C∗

∞

,

Gr =
gβν (T ∗

w − T ∗
∞)

V ∗3
0

, (Grashof number),

Gc =
gβ◦ν (C∗

w − C∗
∞)

V ∗3
0

, (Modified Grashof number),

P r = µ
Cp

K
=

ν p Cp

K
, (Prandtl number),

Sc =
ν

D
, (Schmidt number),

h =
V ∗

0 L∗

ν
, (rarefaction parameter)

All physical variables are defined in nomenclature. The (∗) stands for dimen-
sional quantities. The subscript (∞) denotes the free stream condition. Then
equations (1) to (3) reduce to the following non-dimensional form

1

4

∂ u

∂ t
−

(

1 + εA ei ω t
) ∂ u

∂ y
= Gr Θ + Gc C +

∂2u

∂y2
, (7)

1

4

∂ Θ

∂ t
−

(

1 + εA ei ω t
) ∂ Θ

∂ y
=

1

Pr

∂2Θ

∂y2
, (8)

1

4

∂ C

∂ t
−

(

1 + εA ei ω t
) ∂ C

∂ y
=

1

Sc

∂2C

∂y2
. (9)
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The boundary conditions to the problem in the dimensionless form are

u = h ∂ u
∂ y , Θ = 1 + ε ei ω t, C = 1 + ε ei ω t, at y = 0,

u → 0, Θ → 0 C → 0, at y → ∞.
(10)

3 Solution of the problem

Assuming small amplitude oscillations (ε < < 1), we can represent the ve-
locity u, temperature Θ and concentration C near the plate as follows

u (y, t) = u0 (y) + ε u1 (y) ei ω t,
Θ (y, t) = Θ0 (y) + ε Θ1 (y) ei ω t,
C (y, t) = C0 (y) + εC1 (y) ei ω t.

(11)

Substituting (9) in (5) to (7), equating the coefficients of harmonic and
non harmonic terms, neglecting the coefficients of ε2, we get

Θ“
0 + Pr Θ‘

0 = 0,

Θ“
1 + Pr Θ‘

1 − i ω Pr Θ1

4 = −A Pr Θ‘
0,

u“
0 + u‘

0 = −Gr Θ0 − Gc C0,

u“
1 + u‘

1 − i ω u1

4 = −Gr Θ1 − Gc C1 − A u‘
0,

C“
0 + Sc C ‘

0 = 0,

C“
1 + Sc C ‘

1 − i ω Sc C1

4 = −A Sc C ‘
0.

(12)

The corresponding boundary conditions reduce to

u0 = h ∂u0

∂y , u1 = h ∂u1

∂y ,

Θ0 = 1, Θ1 = 1, C0 = 1, C1 = 1, at y = 0,
u0 = 0, u1 = 0, Θ0 = 0,
Θ1 = 0, C0 = 0, C1 = 0, as y → ∞,

(13)

where primes denote differentiation with respect to ′y′. Solving the set of
equation (10) under the boundary conditions (11) we get

Θ0 (y) = e−Pr y, (14)

C0 (y) = e−Sc y, (15)

u0 (y) = B7 e−y − B5 e−Pr y − B6 e−Sc y, (16)

Θ1 (y) = B1 e−m1 y + B2 e−Pr y, (17)

C1 (y) = B3 e−m2 y + B4 e−Sc y, (18)

u1 (y) = B13 e−m3 y − B8 e−m1 y

−B10 e−Pr y − B11 e−Sc y − B12 e−y, (19)
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where

m1 =
Pr +

√
Pr2 + i ω Pr

2
, m2 =

Sc +
√

Sc2 + i ω Sc

2

m3 =
1 +

√
1 + i ω

2
, B1 = 1 − 4 A i Pr

ω
, B2 = 1 − B1,

B3 = 1 − 4 A i Sc

ω
, B4 = 1 − B3, B5 =

Gr

Pr2 − Pr
,

B6 =
Gc

Sc2 − Sc
, B7 =

B5 (hPr + 1) + B6 (hSc + 1)

h + 1
,

B8 =
Gr B1

(Pr − 1)
(

m1 + i ω
4

) , B9 =
Gc B3

(Sc − 1)
(

m2 + i ω
4

) ,

B10 =
Gr B2 + A B5 Pr

Pr2 − Pr − i ω
4

, B11 =
Gc B4 + A B6 Sc

Sc2 − Sc − i ω
4

,

B12 =
−4 A i B7

ω
,

B13 = (hm3 + 1)−1 [B8 (hm1 + 1) + B9 (hm2 + 1) +

B10 (hPr + 1) + B11 (hSc + 1) + B12 (h + 1)] .

The important characteristics of the problem are the skin-friction and rate
of heat transfer at the plate. From the velocity field, we can calculate the
skin-friction in main flow direction as:
Skin-friction: The dimensionless shearing stress on the surface of a body,
due to a fluid motion, is known as skin-friction and is defined by the Newton’s
law of viscosity.

τ = µ
∂ u∗

∂ y∗
. (20)

Substituting equations (14) and (17) into equations (9) we can calculate the
shearing stress component in dimensionless form as

τ =
τ

ρ V ∗ 2
0

=
∂ u

∂ y
|y=0 (21)

In terms of the amplitude and phase, the skin-friction can be written as:

τ = τm + ε |M | cos (ω t + Φ)

where tan Φ = Mi
Mr

,

M = Mr + i Mi = −B13 m3 + B8 m1 + B9 m2 + B10 Pr + B11 Sc + B12

and the Mean skin - friction τm is given by

τm = −B7 + B5 Pr + B6 Sc.
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Figure 1: The Velocity profiles of carbon dioxide (Sc = 0.94) in air (Pr = 0.71)for
ω = 10, ωt = 0, A = 5 and ε = 0.2.

From the temperature field we can calculate the heat transfer at the plate
in dimensionless form as:
Heat Transfer: In the dynamics of viscous fluid one is not much interested to
know all the details of the velocity and temperature fields but would certainly
like to know quantity of heat exchange between the body and the fluid. Since
at the boundary the heat exchanged between the fluid and the body is only
due to conduction, according to Fourier’s law, we have

q∗w = −κ
∂ T ∗

∂ y∗
|y∗=0 (22)

where y∗ is the direction of the normal to the surface of the body. Substituting
equations (12) and (15) into (9), we can calculate the dimensionless coefficient
of heat transfer as follows

q =
q∗w ν

κV ∗
0 (T ∗

w − T ∗
∞)

= −∂ Θ

∂ y
|y=0 (23)

In terms of the amplitude and phase the rate of heat transfer can be written
as:

q = Pr + |N | cos (ω t + ϕ)

where

N = Nr + iNi = B1 m1 + B2 Pr, and tan ϕ =
Ni

Nr
.

4 Discussion

The convection flows driven by a combination of diffusion effects are very im-
portant in many applications. The foregoing formulations may be analyzed
to indicate the nature of the interaction of the various contributions to buoy-
ancy. Here we restricted our discussion to the aiding or favorable case only,
for fluids with Prandtl number Pr = 0.71 which represent air at 20 oC at 1
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atmosphere. The value of the Schmidt number, Sc is chosen to represent the
presence of species Carbon dioxide (Sc = 0.94). The values of Gr and Gc
are selected arbitrarily. We take Gr > 0, which correspond to the cooling of
the plate by free convection currents. The velocity profiles in air for carbon
dioxide are presented in Fig. (1-3). It is observed from the figures that

Figure 2: The velocity profiles of carbon dioxide (Sc = 0.94) in air (Pr = 0.71) for
Gr = 2, Gc = 2, ωt = 0, ω = 10 and ε = 0.2.

velocity increases rapidly near the plate and then decreases exponentially far
away from the plate. The increase in Gr or Gc leads to an increase in veloc-
ity. The values of velocity are greater for ω t = 0 than that of ω t = π

2 when
Gr = Gc = 5, while reverse effect is observed when Gr = Gc = 2 or Gr = 5,
Gc = 2. It is also observed from the figures that the velocity increases with
the increase of suction parameter A and rarefaction parameter h both. Fur-
ther we find that when Gc, h and ω t are constant, the velocity of carbon
dioxide for air increases due to more cooling of the plate by free convection
currents. The mean skin-friction of carbon dioxide for air is shown in Fig.4.

It is evident from this figure that the mean skin-friction decreases with
increasing rarefaction parameter. The mean skin-friction increases due to the

Figure 3: The velocity profiles of carbon dioxide (Sc = 0.94) in air (Pr = 0.71) for
A = 5, h = 0.4, ω = 10 and ε = 0.2.
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A Gr= 2, Gc=2 Gr= 2, Gc=2 Gr= 5, Gc=2 Gr= 2, Gc=5
h=0 h=0.4 h=0.4 h=0.4

0 -0.9525 -1.5939 -1.6190 -1.5683
0.2 -0.7058 -1.1822 -1.1960 -1.1676
0.4 -0.5634 -0.9383 -0.9514 -0.9242
0.6 -0.4708 -0.7770 -0.7919 -0.7607
0.8 -0.4056 -0.6623 -0.6798 -0.6432
1.0 -0.3573 -0.5767 -0.5966 -0.5549

Table 1: The phase of skin-friction (tan Φ) for carbon dioxide (Sc = 0.94), ω = 10
and Pr = 0.71.

increase in Gr or Gc both. Hence it may be concluded that the mean skin-
friction increases with more cooling of the plate by free convection currents.
The amplitude |M | of the skin-friction for CO2 in air is shown in Fig.5. It is
observed from this figure that amplitude increases with increasing A (suction
parameter), while reverse effect is observed for h (rarefaction parameter). An
increase in Gr or Gc leads to an increase in amplitude of skin-friction in air
for CO2. The numerical values of phase of skin-friction are presented in Table
1. It is observed that the phase of skin-friction increases with increasing A,
while reverse effect is observed for h. The phase of skin-friction decreases
with the increase of Gr, while the reverse effect is observed for Gc for the
same value of rarefaction parameter h.

The temperature profiles are presented in Fig.6. From this figure it is ob-
served that it decreases with increasing the suction parameter while increases
with the increase of frequency of fluctuation ω. This figures further shows
that the values of temperature are greater in vicinity of the plate and de-
creases exponentially far away from the plate. The amplitude |N | and phase
tanϕ of rate of heat transfer are presented in Table 2. This table shows that
both increases with increasing frequency ω. The amplitude increases with
increasing suction parameter A while, reverse effect is observed for phase of

Figure 4: The mean skin-friction of carbon dioxide (Sc = 0.94) for (air) Pr = 0.71.
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Figure 5: The amplitude of skin-friction of carbon dioxide (Sc = 0.94) in air
(Pr=0.71) for ω = 10.

Figure 6: The temperature profiles for (air) Pr = 0.71 and ε = 0.2.

heat transfer.
The concentration profile of carbon dioxide is presented in Fig.7. The con-

centration increases with increasing A, the suction parameter. It is also ob-
served that the concentration increases with increasing distance in the vicinity
of the plate and thereafter decreases exponentially far away from the plate.
It is also found that concentration decreases with the increase of ωt for the
same value of suction parameter A.

5 Conclusions

1. The velocity increases with increasing Gr and Gc both. Also, velocity
increases with the increase of h and A both.

2. The mean skin-friction increases with increasing either Gr or Gc, while
reverse phenomena is observed for h.

3. The amplitude |M | of skin-friction increases with increasing Gr and Gc
both.
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A ω = 5 ω = 10 ω = 5 ω = 10
|N | |N | tan ϕ tan ϕ

0 1.2370 1.6120 0.5800 0.6831
0.2 1.2794 1.6358 0.5083 0.6321
0.4 1.3255 1.6616 0.4449 0.5847
0.6 1.3748 1.6893 0.3886 0.5406
0.8 1.4272 1.7188 0.3380 0.4995
1.0 1.4821 1.7501 0.2925 0.4611

Table 2: The amplitude and phase of rate of heat transfer.

Figure 7: The concentration profile of carbon dioxide (Sc = 0.94) for ω = 10 and
ε = 0.2.

4. The temperature and concentration both are increases near the plate
and decreases exponentially far away from the plate.

5. The amplitude |N | of rate of heat transfer increases due to the increase
in A and ω both.

6. The phase of rate of heat transfer decreases with increasing A. Also, the
rate of heat transfer increases with the increase of for the same value of
suction parameter A.
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Nomenclature:

ε =amplitude ( << 1 ), g =gravity,
β =coefficient of thermal expansion, Gc =modified Grashof number,
β◦ =coefficient of thermal expansion Gr =Grashof number,

with concentration, h =rarefaction parameter,
ω =dimensionless frequency, L∗ =constant,
Θ =dimensionless temperature, |M |=amplitude of skin-friction,
µ =viscosity, |N | = amplitude of rate of heat
ν =kinematics viscosity, transfer,
α =thermal diffusivity, q =rate of heat transfer,
ω∗ = frequency, Pr =Prandtl number,
κ =thermal conductivity, q∗w =heat flux at the wall,
ρ =density, Sc =Schmidt number,
τ =dimensionless shearing stress, t =dimensionless time,
τ∗ =shearing stress, T ∗ =temperature,
A =suction parameter, T ∗

∞ =temperature of fluid in
C =dimensionless species free stream,

concentration of CO2 T ∗
w =temperature of wall,

C∗ =species concentration of CO2, t∗ =time,
Cp =specific heat at constant u =dimensionless velocity

pressure, component,
C∗
∞ =species concentration of CO2 u∗ =velocity component,

in free stream, V =suction velocity,
C∗

w =concentration at the wall, D =molecular diffusivity of
the species.
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