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Summary  

Ischemic stroke is confounded by conditions such as atherosclerosis, diabetes and infection, 

all of which alter peripheral inflammatory processes with concomitant impact on stroke 

outcome. The majority of the stroke patients are elderly, but the impact of interactions 

between aging and inflammation on stroke remains unknown. We thus investigated the 

influence of age on the outcome of stroke in animals predisposed to systemic chronic 

infection. Th1-polarized chronic systemic infection was induced in 18-22 month and 4-

month-old C57BL/6j mice by administration of T. muris (gut parasite). One month after 

infection, mice underwent permanent middle cerebral artery occlusion and infarct size, brain 

gliosis and brain and plasma cytokine profiles were analyzed. Chronic infection increased the 

infarct size in aged but not in young mice at 24 hours. Aged, ischemic mice showed altered 

plasma and brain cytokine responses while the lesion size correlated with plasma pre-stroke 

levels of RANTES. Moreover, the old, infected mice exhibited significantly increased 

neutrophil recruitment and up-regulation of both plasma interleukin-17α and tumor necrosis 

factor α levels. Neither age nor infection status alone or in combination altered the ischemia-

induced brain microgliosis. Our results show that chronic peripheral infection in aged animals 

renders the brain more vulnerable to ischemic insults, possibly by increasing the invasion of 

neutrophils and altering the inflammation status in the blood and brain. Understanding the 
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interactions between age and infections is crucial for developing a better therapeutic regimen 

for ischemic stroke and when modeling it as a disease of the elderly.  

 

Introduction 

Stroke is the second leading cause of death and long term disabilities worldwide. It typically 

occurs in the elderly and often in patients that are predisposed to comorbid conditions. 

Coexisting diseases such as atherosclerosis (Ross 1999), hypertension (Savoia & Schiffrin 

2006), diabetes (Dandona et al. 2004), and infections all involve peripheral inflammation, 

which  is likely to influence stroke outcome. Consequentially, up to a third of diagnosed 

stroke patients have had a preceding infection (Emsley & Hopkins 2008). 

 

Based on clinical data, pre-existing inflammation is a major contributory factor to the 

outcome of stroke. In general, stroke incidence is increased during the seasons with high 

occurrence of respiratory tract infections (Lanska & Hoffmann 1999). Infections, especially 

of bacterial origin, have been shown to increase the prevalence of brain infarctions in young 

and middle-aged patients (Syrjanen et al. 1988). Specifically, the risk of stroke has been 

shown to peak 3 days after respiratory or urinary tract bacterial infections (Smeeth et al. 

2004; Clayton et al. 2008). However, infectious pathogens other than bacteria have also been 

found to increase the susceptibility to stroke (Emsley & Hopkins 2008). Chronic 

inflammatory stimuli induced by parasite infections (Denes et al. 2010) and influenza 

(Muhammad et al. 2011) increase ischemic brain damage in mice, clearly demonstrating the 

destructive nature of peripheral inflammatory conditions. However, the impact of other 

confounding factors, such as age, on the susceptibility of infected individuals to ischemic 

brain damage still remains unclear. This is partially due to the fact that most preclinical 

studies use young, healthy rodents, even though aging is a non-modifiable risk factor for 
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stroke. It is thus still unclear whether aging exerts its effects via stimulation of excessive or 

dysregulated inflammatory responses. This hypothesis is supported by previous studies 

showing that aged animals have altered immune responses resulting from ischemic insult 

(Kharlamov et al. 2000; Popa-Wagner et al. 2007; Dinapoli et al. 2010; Sieber et al. 2011), 

intracerebral hemorrhage (Lee et al. 2009) or mechanical injury (Kyrkanides et al. 2001). 

However, mechanisms through which aging interacts with systemic inflammation to 

influence cerebrovascular pathologies remains unclear. Thus, our aim was to investigate the 

impact of age on ischemic stroke in animals subjected to chronic infection.  

 

Results 

Aging with chronic infection exacerbates ischaemic brain injury 

Chronic peripheral infection was modeled by Trichuris muris (T. muris) induced infection. 

T.Muris infection was achieved by administering parasite eggs by oral gavage to young (4-

months of age) and old (18-22 months of age) C57BL/6j background mice. This treatment 

has been shown to lead to a chronic, Th1-polarized immune response characterized by 

systemic up regulation of several pro-inflammatory cytokines with the peak at 4-5 weeks post 

infection (Denes et al. 2010). All animals underwent permanent middle cerebral artery 

occlusion (pMCAo) or sham operation one month after T. muris infection. At this time point 

all treated animals showed elevated plasma levels of RANTES and sufficient worm count in 

the cecum as published previously (Denes et al. 2010). The lesion size was imaged ex vivo by 

magnetic resonance imaging (MRI) at 24 hours post injury. Quantification of the MRI images 

revealed that infection itself did not aggravate the ischemic brain damage in young mice 

(young uninfected 3.64 +/2.25 mm2 and young infected 2.64 +/- 1.62 mm2). In contrast, old 

infected, mice exhibited dramatically larger (8.29 +/- 3.2 mm2) ischemic brain damage 

compared to young uninfected or infected mice (Fig. 1). Aging alone without infection did 
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not significantly influence the lesion volume. There were no significant differences in the 

physiological parameters between the groups. 

 

Plasma levels of RANTES prior to ischemia correlate with infarct size. 

Plasma levels of “regulated and normal T cell expressed and secreted cytokine”, RANTES, 

also known as CCL5, were measured from blood samples drawn from saphenous vein 1 day 

prior to ischemia. Chronic infection by T. muris caused a significant elevation in plasma 

RANTES levels both in young and old mice implicating a development of Th1-polarized 

chronic infection (Denes et al. 2010) (Fig. 2A). To test the possible relationship between 

plasma RANTES levels and the lesion volume, pre-stroke p lasma RANTES levels were 

correlated with volume of brain infarction (Fig. 2B). Young ischemic mice did not show a 

significant correlation between these two parameters, however, the lesion size in old ischemic 

mice correlated statistically significant with plasma RANTES levels (r2 = 0.51 P=0 0.03; Fig. 

2B). 

 

Concentrations of plasma cytokines increase within hours after stroke 

Aging has been associated with dysregulation of the immune system which is then unable to 

fully respond to pathological insults (Plackett et al. 2004; Raynor et al. 2012). We thus 

evaluated how aging and chronic systemic infection influenced the concentrations of 

inflammatory cytokines and chemokines in both plasma and brain. Serial plasma samples 

were drawn from the saphenous vein of young and old, uninfected and infected ischemic 

mice at 1 and 4 hours after the induction of ischemia for analysis of a panel of cytokines 

(tumor necrosis factor-α (TNFα), RANTES, monocyte chemoattractant protein-1 (MCP-1), 
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KC (chemokine C-X-C motif ligand 1), interleukin-6 (IL-6), IL-1β, IL-1α, IL-17α, IL-10, 

interferon-γ (IFN-γ) and granulocyte colony stimulating factor-1 (G-CSF). Of the cytokines 

analyzed, only plasma levels of GCSF-1, KC and IL-6 were significantly increased at 4 h 

after stroke compared to 1 h post stroke in all ischemic study groups, but neither age nor 

preceding infection affected the plasma cytokine levels at this early time point (data not 

shown). 

 

Aging and infection did not alter gliosis in the brain after cerebral ischemia 

Brain microgliosis in the ischemic animals was assessed by immunohistochemical staining 

using ionized calcium-binding adapter molecule (Iba-1) antibody at 24 hours after ischemia. 

As expected, quantification of the immunoreactivity revealed a significant ischemia-induced 

up regulation of Iba-1 compared to the contralateral side (Fig. 3). However, there were no 

differences in the peri ischemic Iba-1 immunoreactivity between the treatment groups.  

 

Aging with predisposing chronic peripheral infection leads to massive influx of neutrophils 

into the ischemic brain  

Ischemia induced neutrophil infiltration into the ischemic cortex whereas the contralateral 

cortex remained devoid of any neutrophils. Quantification of the recruited neutrophils 

revealed that chronic peripheral infection had no effect on the neutrophil infiltration into the 

ischemic brain parenchyma in young mice (Fig. 4A, C, D). Aging itself did not increase 

neutrophil infiltration, as old uninfected ischemic mice had statistically similar levels of 

infiltrated neutrophils to young ischemic mice, irrespective of their infection status (Fig. 4A, 

E). However, predisposing chronic peripheral infection aggravated neutrophil infiltration 
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significantly in aged ischemic mice (Fig. 4A, F). The size of the infarction correlated 

(p<0.001) with neutrophil infiltration (Fig. 4B).  

 

Aged infected mice fail to up regulate G-CSF and MCP-1 in the peri-ischemic area as 

compared to aged uninfected mice  

Levels of Iba-1 immunoreactivity were similar between young and old ischemic mice, 

although total Iba-1 immunoreactivity is a relatively indefinite marker for inflammation 

because other cell types contribute to secretion of inflammatory mediators upon stroke. We 

therefore investigated the inflammatory profile of the brains of the infected, ischemic mice in 

more detail.  

24 h after stroke, cortical brain samples from ischemic young and old, uninfected and 

infected mice were dissected for the analysis of TNFα, RANTES, MCP-1, KC, IL-6, IL-1β, 

IL-1α, IL-17α, IL-10, IFN-γ and G-CSF. Cytometric bead array (CBA) analysis revealed that 

aging or infection alone did not alter the levels of the cytokines in the the contralateral, intact 

hemisphere (Fig. 5). Ischemia alone increased the peri ischemic levels of G-CSF, MCP-1, 

KC, and RANTES in both young ischemic uninfected and aged ischemic uninfected mice and 

IL-1α in aged ischemic uninfected mice when compared to the contralateral intact 

hemisphere (Fig. 5A-D). Moreover, ischemia-induced increases in cytokine levels were 

significantly greater in aged uninfected compared to young uninfected mice. Chronic 

infection induced a differential reduction of ischemia-induced brain cytokines in young and 

aged mice. In young mice with chronic infection ischemia failed to increase brain levels of 

IL-1β(Fig. 5D) and RANTES (Fig. 5E) but not G-CSF (Fig. 5A), MCP-1 (Fig. 5B) or KC 

(Fig. 5C), whilst in aged mice with chronic infection the ischemia-induced increase in the 

levels of G-CSF (Fig. 5A) and MCP-1 (Fig. 5B) but not KC (Fig. 5C), IL-1β (Fig. 5D) or 
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RANTES (Fig. 5E) were significantly attenuated. The effect of chronic infection on 

ischemia-induced levels of brain G-CSF, IL-1β and RANTES in young mice was modest and 

in the contralateral hemisphere the values were often below the detection limit. Chronic 

infection in aged mice reduced the ischemia-induced levels of brain KC by 30%, though this 

change failed to reach statistical significance.       

 

Aging and infection did not induce any alterations on the levels of plasma cytokines 1 or 4 

hours after stroke. Because infarct size and leukocyte infiltration were both increased 

specifically in the old mice predisposed to chronic infection, we measured the plasma levels 

of pro and anti-inflammatory cytokines 24 h after stroke. IL-17A, a pro-inflammatory 

cytokine which regulates expression or release of other pro-inflammatory cytokines such as 

TNFα and KC, was shown recently to contribute to neutrophil infiltration into the brain and 

ischemic injury after transient MCAo. From the cytokines analyzed, we found alterations in 

the levels of TNFα (Fig. 6A) and IL-17A (Fig. 6B). The preceding peripheral infection in 

young mice or aging alone did not increase the plasma TNFα or IL-1α levels. However, old 

infected mice exhibited significantly higher levels of TNFα compared to young uninfected or 

infected mice (Fig. 6A) and higher levels of IL-17A  compared to young infected mice (Fig. 

6B).    

 

Discussion 

Here we show for the first time that aging exacerbates ischemic brain injury in mice with 

chronic peripheral infection. We demonstrate that aged mice with chronic peripheral infection 

develop larger brain infarcts compared to their young counterparts and this increase is 
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associated with greater neutrophil recruitment and diminished ischemia-induced up 

regulation of G-CSF. We also found that pre-stroke concentrations of circulating RANTES 

anticipated the infarct size 24h after MCAo in aged animals. 

 

In this study we used T.muris infection as a well-characterized tool to achieve chronic 

peripheral inflammation which is an important part of the pathology in several co-morbid 

conditions such as diabetes (Dandona et al. 2004), atherosclerosis (Ross 1999), hypertension 

(Savoia & Schiffrin 2006) and infection itself, and known to contribute to poor outcome in 

stroke (Denes et al. 2010). The infection paradigm used in this study has been shown to 

induce Th1-polarized immune response and lead to increased infarct size in mice after 

MCAo, with concomitant increase in platelet aggregation, leukocyte infiltration and MMP-9 

activation (Denes et al. 2010). This type of infection paradigm was chosen not to mimic any 

specific type of infection but rather as a general model of Th1-polarized immune responses 

known to contribute to impaired outcome in brain ischemia. Indeed, the inflammatory 

component in common comorbidities, such as atherosclerosis, hypertension (Savoia & 

Schiffrin 2006) and diabetes (Haskins & Cooke 2011) is often Th1 shifted. However, 

intestinal parasite infections are relatively common throughout the world. 

 

Aging is a phenomenon associated with altered homeostasis and immune responses in the 

body (Weiskopf et al. 2009). Age has been shown to influence the outcome of stroke in the 

clinical setting (Nakayama et al. 1994). The behavioral outcome in aged animals has been 

reported to be impaired compared to young animals (Zhang et al. 2005; Popa-Wagner et al. 

2007; Petcu et al. 2008). The effect of age on the infarct size in preclinical studies has 

resulted in somewhat contradictory findings depending on the ischemia model used (Davis et 
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al. 1995; Kharlamov et al. 2000; Shapira et al. 2002; Rosen et al. 2005). In this current study 

the infarct size in aged mice was similar compared to young mice, a finding that is in 

agreement with a previously published study using a photothrombotic model of brain 

ischemia (Zhao et al. 2005). The effect of age on stroke outcome  may depend on the time or 

lack of reperfusion, specific site of infarction, species and strain and our study clearly shows 

that even under circumstances when aging alone has no significant impact on infarct size, 

preceding chronic infection markedly aggravates ischemic brain injury in aged mice. A 

deeper understanding of the interactions between aging and infection are particularly 

important as aging is associated with dysregulated inflammation. Also, chronic infections are 

more frequent in the elderly suggesting that infections may not be well tolerated by older 

people. Thus, mechanisms underlying the interactions of aging/infections to stroke outcome 

could offer the key to novel therapies.  

 

Cerebral inflammation is elevated with aging (Sieber et al. 2011) and aged animals have been 

reported to show an increase in pro-inflammatory mediators after ischemia (Dinapoli et al. 

2010), intracerebral hemorrhage (Lee et al. 2009) or mechanical injury (Kyrkanides et al. 

2001). In the current study, the brain peri-infarct levels of MCP-1, KC, IL-1α and RANTES 

were elevated after brain ischemia in aged mice compared to their young counterparts. 

Stroke-induced responses seem to be model dependent, as one study has shown the aging 

brain to mount attenuated levels of pro-inflammatory cytokines upon transient MCAo (Sieber 

et al. 2011). Even though we observed an increase in several pro-inflammatory mediators in 

aged brain upon stroke, brain microgliosis was not altered between the treatment groups. 

However, glial cells are not the only mediators of inflammation in ischemic brain, as 

endothelial cells, pericytes and neurons participate in the stroke induced cytokine production 

(reviewed by del Zoppo (del Zoppo 2010)) and MCP-1, KC and IL-1α can be produced by 
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various different cell types including endothelial cells, neurons and astrocytes (Cushing et al. 

1990; Standiford et al. 1991; Che et al. 2001). Moreover, immunohistological characteristics 

of microglial activation are certainly inaccurate markers with little information on exact 

status of the activity of these cells.  

 

Our study showed that old infected mice developed the largest infarcts upon pMCAo and this 

particular group displayed decreased levels of ischemia-induced increase in MCP-1 and G-

CSF in the peri-ischemic area, indicating the development of a dysregulated inflammatory 

response in aged, infected animals. G-CSF is a glycoprotein originally found to be involved 

in the proliferation, survival and maturation of granulocytes but later shown to confer 

neuroprotection against ischemic insult by directly binding its corresponding receptor to 

neurons (Schabitz et al. 2003). G-CSF and its receptor have been shown to be induced upon 

brain ischemia in the peri-ischemic area (Schneider et al. 2005) and G-CSF has been 

suggested to serve as a defense mechanism against ischemic cell death by multiple 

mechanisms (Sugiyama et al. 2011) (Solaroglu et al. 2009). Even though the AXIS-2 clinical 

trial for G-CSF treatment failed to show efficacy in humans, the mechanisms by which G-

CSF could mediate neuroprotection in elderly patients with co-morbidities with elevated 

systemic inflammatory burden have not been modeled in preclinical studies. Although many 

of the beneficial effects of G-CSF in brain ischemia models may require a follow-up time 

longer than 24 h, it is possible that the inability to properly increase G-CSF-mediated 

pathways in aged infected ischemic mouse brain is one of the reasons for the aggravated 

ischemic damage observed in our stroke model. Our study shows that aging, together with 

peripheral infection leads to increased neutrophil recruitment into the ischemic brain. 

Neutrophils are likely mediators of increased neuronal damage as several studies have 

highlighted their destructive functions including secretion of matrix metalloproteinases 
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degrading BBB integrity, inflammation, edema formation and hemorrhagic transformation 

(McColl et al. 2007; Buck et al. 2008; Murikinati et al. 2010). IL-17A has been recently 

shown to induce neutrophil infiltration into the ischemic brain parenchyma (Gelderblom et al. 

2012). Since neutrophils may mediate ischemic brain injury specifically in the cortex (Beray-

Berthat et al. 2003) we hypothesize that increased neutrophil invasion is one of the factors 

contributing to greater ischemic brain damage, which evolved into the cortex in our stroke 

model.  

 

IL-17A is a proinflammatory cytokine and is secreted by γδ T cells in the ischemic brain. 

Peripheral neutralization of IL-17A has been shown to provide protection against ischemic 

damage (Gelderblom et al. 2012) and elevated levels of IL-17 expressing blood mononuclear 

cells have been observed in human stroke patients (Kostulas et al. 1999). γδ T cells have been 

shown to infiltrate into the ischemic brain parenchyma at later stages of the injury and the 

levels of brain IL-17A levels after ischemia are increased at 3 days post stroke (Li et al. 2005; 

Shichita et al. 2009). Even though the presence of brain γδ T cells nor the levels of brain IL-

17A were not analyzed in this study it may be that the levels of plasma IL-17A at the early 24 

h time point in the current study reflect on increased activation of γδ T cells in the periphery. 

Indeed, the amount of infiltrating T-cells have been shown to dramatically increase at 5 d 

post injury in the same pMCAO model as used in the current study (Zhou et al. 2013). TNFα 

on the other hand is well characterized proinflammatory cytokine contributing to the ischemic 

damage (Hallenbeck 2002) and TNFα levels in plasma have been shown to be increased not 

only in preclinical stroke models but also in ischemic patients (Sotgiu et al. 2006; Yousuf et 

al. 2013). The observed increase in the levels of plasma IL-17A and TNFα in the current 

study thus have clinical relevance. 
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Chronic peripheral infection by T.muris has been reported to increase neuronal damage in 

young mice after transient middle cerebral artery occlusion (tMCAo) (Denes et al. 2010) and 

the effect was shown to be mediated by systemic increase in plasma RANTES levels. In that 

particular study, this led to delayed resolution of brain inflammation (48h post stroke) as 

analyzed by leukocyte recruitment, platelet aggregation and matrix metalloproteinase 

activation in the ischemic brain parenchyma. It appears that in the permanent pMCAo model, 

chronic peripheral inflammation exerts detrimental effects on ischemic brain injury only in 

combination with an additional comorbidity, aging, which is likely to occur clinically in 

patients presenting with multiple comorbidities. Interactions between comorbidities in stroke 

patients might also explain the lack of translation of various potential treatments from animal 

research to the clinic. Nevertheless, the fact that systemic infection in young mice subjected 

to transient ischemia exacerbated neuronal death (Denes et al. 2010) whereas in young mice 

subjected to permanent ischemia, infection itself had no effect on the lesion volume. Age-

induced changes were required to see a similar effect in our study and it highlights the impact 

of the ischemia model on the outcome of stroke. Transient MCAo (tMCAo) used in the study 

of Dênes et al (Denes et al. 2010) includes reperfusion associated injury contributing to 

neuronal damage whereas pMCAo lacks this additional pathology. Indeed, these two 

ischemia models capture different neuroinflammatory profiles as both the amount of 

neutrophil infiltration and expression of pro-inflammatory cytokines has been shown to be 

higher in pMCAo model compared to tMCAo (Zhou et al. 2013). Since spontaneous 

reperfusion occurs in less than half of the stroke patients with very little influence on clinical 

improvement (Bowler et al. 1998), the results presented here, together with the previous data 

(Denes et al. 2010), indicate the importance of the use of pathologically diverse animal 

models, especially with several comorbidities more closely resembling human stroke in 

preclinical studies. 
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Taken together, this study demonstrates for the first time that aging aggravates neuronal 

damage in mice with chronic peripheral infection. Increased neuronal death was associated 

with exaggerated infiltration of neutrophils in the ischemic brain parenchyma and diminished 

increase in stroke-induced levels of G-CSF in the peri-ischemic area. As majority of stroke 

patients are elderly with various predisposing conditions with an inflammatory component, 

these results have a clinical importance and raise the demand for using more clinically 

relevant animal models in preclinical stroke research. 

 

Experimental procedures 

Animals  

All animal experiments were conducted according to the national regulations of the use of 

laboratory animals and were approved by the National Animal Experiment Board of Finland 

and followed the Council of Europe Legislation and Regulation for Animal Protection. The 

mice were housed under a 12-hour light-dark cycle and allowed free access to standard rodent 

chow and water. A total of 50, 18-22-month-old (referred to as “old”) and 62 4-month-old 

C57BL/6j (“young”) background male mice were used in this study. A total of 6 mice died 

during the surgery. There was no difference in the mortality amongst the study groups. 

 

Randomization and blinding 

Animals were randomized into treatment groups using GraphPad Quick Calcs software for 

random numbers. All data were analyzed blinded to the treatment groups.    
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Trichuris muris infection  

T. muris infection was introduced by oral gavage of ten infective T. muris eggs in 50 µl 

volume of phosphate buffered saline (PBS). This treatment has been shown to lead to a 

chronic, Th1-polarized immune response that peaks at 4-5 weeks post infection (Denes et al. 

2010). Uninfected mice received only vehicle (PBS). The mice of both age groups (young 

and old) were divided into two subgroups which received either T. muris parasite infection 

(infected mice) or vehicle control (uninfected mice). Thirty-five days later, at the time when 

chronic Th1-polarised immune response peaks (Denes et al. 2010) , the mice underwent 

pMCAo or sham surgery. The infection induced by T. muris did not cause any adverse effects 

or mortality.   

 

Permanent focal cerebral ischemia 

pMCAo was introduced as described earlier (Koistinaho et al. 2002). Briefly, the mice were 

anesthetized by 5 % isoflurane (in 70% N2O/30% O2) and the surgical anesthesia was 

maintained by 1.8% isoflurane. The temperature of the mice was maintained at 37+/-0.5 °C 

using a homeothermic control system connected to a heating blanket and a rectal probe 

(PanLab, Harvard apparatus, Spain). The temporal bone of the mice was exposed and 

approximately a 1-mm hole was drilled on the site of the middle cerebral artery (MCA). 

Saline was applied during the drilling to prevent heat injury. The dura was carefully removed 

to expose the MCA. The MCA was gently lifted up and coagulated by using a 

thermocoagulator (Aron Medical Instruments) at the level of the inferior cerebral vein. The 

occlusion of MCA was confirmed by cutting the artery, after which the temporalis muscle 

was lifted back and the wound closed by stitches. Sham-operated mice underwent an identical 

surgical procedure except for coagulation of MCA. All mice were allowed to recover in a 
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heated recovery chamber for 30 minutes after which they were returned into individual cages. 

The mice were sacrificed 24 hours post-ischemia. 

 

Physiological parameters 

Physiological parameters were measured immediately after the onset of ischemia from blood 

samples drawn from the saphenous vein. The partial pressure of carbon dioxide and oxygen 

and pH were measured using iSTAT analyzer (Abbott, Abbott Park, IL). Blood glucose levels 

were measured using Freestyle blood glucose monitoring device (Abbott, Alameda, CA).  

 

Magnetic resonance imaging 

Lesion size of the ischemic animals was assessed ex vivo by MRI with brains submerged in 

4% paraformaldehyde (PFA) in 10 mm NMR-tube. Twenty-four hours post-ischemia the 

mice were anesthetized with 250 mg / kg of Avertin (2,2,2 Tribromoethanol in tertiary amyl 

alcohol) and transcardically perfused with heparinized (2500 IU / l) saline. The brains were 

dissected out and placed in 50 ml tubes containing 4% PFA in 0.1M phosphate buffer. Ex 

vivo MRI was done using a vertical 9.4 T magnet (Oxford Instruments PLC, Abingdon, UK), 

interfaced to a Varian DirectDrive console (Varian Inc, Palo Alto, CA). A quadrature volume 

RF-coil (diameter 20mm, Rapid Biomedical GmbH, Rimpar, Germany) was used for 

transmission and reception. T2-weighted multi-slice images were taken with double spin-

echo sequence with adiabatic refocusing pulses (TR = 2.5 s, TE = 40 ms, matrix size = 

256*128, field of view = 19.2 mm * 19.2 mm, slice thickness 0.8 mm, gap 0 mm). A total of 

15 consecutive slices were imaged throughout the brain. The total lesion volume was outlined 

manually on T2-weighted signal intensity from all images with a visible infarction using an 
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in-house written program in Matlab R2007b (Math-Works, Natick, MA) and the lesion 

volume was calculated by multiplying the number of pixels with pixel size and slice 

thickness. The analysis was done blinded to the study groups. The total infarction volume 

was measured from the total of 38 mice in the following study groups: young uninfected (n = 

8), young infected (n = 10), old uninfected (n = 10) and old infected mice (n = 10). 

 

Immunohistochemistry 

Twenty-four hours post ischemia the mice were anesthetized by 250 mg / kg of Avertin and 

perfused transcardically with heparinized (2500 IU / L) saline. The brains were dissected out 

and postfixed by 4% paraformaldehyde in 0.1M phosphate buffer for 24 hours followed by 

cryoprotection in 30% sucrose for 2 days. The brains were then snap-frozen on liquid 

nitrogen and 20-µm-thick coronal cryosections were cut throughout the lesion starting at the 

beginning of the lesion area using a cryostat (Leica Microsystems GmH, Germany). For each 

staining a set of 6 sections at 400 µm intervals spanning through the lesion area was stained. 

For the detection of microglia and neutrophils sections were incubated with Iba-1 (ionized 

calcium-binding adapter molecule 1, 1:250 dilution, Wako, Wako Chemicals GmbH, 

Germany) and anti-neutrophil (1:5000 dilution, Serotec, Kidlington, UK) antibodies, 

respectively. After overnight incubation with primary antibodies, the sections were incubated 

with appropriate biotinylated IgG H+L secondary antibodies (1:200, Vector Laboratories, 

Burlingame, CA, USA) followed by Vectastain ABC peroxidase system (Vector) and 

development by Ni-enhanced 3,3’-diaminobenzidine.   

Immunoreactivity was imaged at 10x magnification, using an AX70 microscope (Olympus, 

NY, USA) with an attached digital camera (Color View 12 or F-View, Soft Imaging System, 
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Germany) running Analysis Software (Soft Imaging System). All immunoreactivites were 

quantified using ImagePro Plus Software (Media Cybernetics, Silver Spring, MD, USA) 

blinded to the study groups. Iba-1 immunoreactivity was quantified from a precise peri-

ischemic area, defined as a 720 µm x 530 µm cortical region immediately adjacent to the 

dorsal border of the ischemic lesion spanning across 6 consecutive coronal sections taken at 

400 µm intervals starting at the anterior part of the lesion. Corresponding cortical area of the 

contralateral healthy hemisphere was imaged to reveal the ischemia-induced up regulation of 

Iba-1. Neutrophils were similarly quantified from 720 µm x 530 µm area at the lesion site 

from 6 consequtive sections taken at 400 µm intervals. Since the contralateral hemisphere 

was devoid of any neutrophils, the contralateral side was excluded from neutrophil 

quantification. Iba-1 immunoreactivities were quantified from a total of 36 ischemic mice in 

following treatment groups: young uninfected (n = 8), young infected (n = 10), old uninfected 

(n = 8) and old infected mice (n = 10). Neutrophil immunoreactivity was quantified from 

total of 37 ischemic mice in following groups: young uninfected (n = 8), young infected (n = 

10), old uninfected (n = 9) and old infected mice (n = 10).  

 

Cytokine measurement 

An array of cytokines, RANTES, MCP-1, KC, IL-6 , IL-1β, IL-1α, IL-17α, IL-10, IFN-γ and 

G-CSF were measured from plasma samples taken 1 or 4 h after ischemia as well as from 

freshly frozen brain samples dissected at 24 h post ischemia. Since plasma RANTES levels 

have been shown to correlate with the successful Th1 polarized infection status in mice 

(Denes et al. 2010), plasma RANTES levels were measured at 1 day prior to onset of 

ischemia. Plasma was separated from serial blood samples drawn from the saphenous vein 

using 1:10 volume of sodium citrate (3.8 %) as an anticoagulant. Plasma was obtained after 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

centrifugation of the samples at 1500 g for 10 minutes. At 24 h post ischemia the mice were 

anesthetized with Avertin and transcardially perfused with heparinized (2500 IU / L) saline as 

described above. The brains were dissected under a dissection microscope into cortical brain 

samples of the lesion area, peri-ischemic area and the corresponding contralateral side. At the 

time of tissue dissection the cortical lesion area was clearly visible as a white, roundish area, 

evidently consisting of dead tissue. Peri-ischemic area was defined as a 1 mm wide area 

immediately surrounding the lesion. Contralateral tissues were defined as approximate 

corresponding cortical area on the contralateral cortex. The samples were immediately snap 

frozen in liquid nitrogen and stored at -70 oC for analysis. Brain samples were homogenized 

in lysis buffer at 4 oC as described earlier (Denes et al. 2010). Protein concentrations were 

calculated using a BCA assay (Pierce/Thermo Fisher Scientific country). Levels of cytokines 

in the plasma and brain homogenates were measured by using a cytometric bead array (CBA, 

BD Pharmingen country) according to the manufacturer’s instructions. Also, after analyzing 

the brain cytokines at the end time point of 24 h, additional analysis of selected cytokines 

(IL-2, IL-4, IL-6, IL-10, IL-17A, INF-γ and TNFα) from plasma was carried out by using 

CBA flex sets (BD Pharmingen). Samples in which the read out was below the detection limit 

were omitted from the analysis.  

 

Statistical analysis and exclusion criteria 

Statistical analysis was done by GraphPad Prism running one-way ANOVA with Bonferroni 

posthoc test or by SPSS 19 (IBM SPSS Inc. IL) using the linear mixed model followed by 

Sidak post hoc correction when appropriate. Original values were converted to logarithmic 

scale in order to improve model assumptions (normality of residuals and homoscedasticity) 

when appropriate. Exclusion criteria were pre-determined; animals with bleeding during the 
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surgery were excluded from the study. As a result, all together 6 mice (1 young sham 

infected, 1 young ischemic uninfected, 2 young ischemic infected and 2 old ischemic 

infected) died during the surgery or had to be terminated due to bleeding as a result of a 

technical error. Statistical outliers as analyzed by Grubb’s tests using GraphPad Prism 

QuickCalcs were excluded from the data set. The data is presented as mean +/- SD. 
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Figure legends 

Figure 1. Infection aggravated neuron loss in aged mice. Quantification of MRI images 

taken at 24 hours post stroke revealed that infection had no effect on the lesion size in young 

mice, however, aged mice with systemic T.muris infection suffered from significantly larger 

neuronal death compared to young infected and uninfected mice (A). Lesion size 

quantification from MRI images was done from total of 38 animals; young uninfected (n = 
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8), young infected (n = 10), old uninfected (n = 10) and old infected mice (n = 10). Individual 

values are plotted as a scatter blot. * indicates p < 0.05 and ** indicates p < 0.01 (one-way 

ANOVA with Bonferroni posthoc test). Figures B – E represent typical example ex vivo 

T2W1 images of the young uninfected (B), young infected (C), old uninfected (D) and old 

infected (E) mice. 

 

Figure 2. T.muris infection increased the pre-ischemic plasma levels of RANTES in 

both young and old mice (A). * indicates p < 0.05 and ** indicates p < 0.01 (one-way 

ANOVA with Bonferroni posthoc test). Plasma RANTES levels were plotted against the 

lesion size (B). The levels of RANTES in plasma showed significant correlation with the 

lesion volume in aged mice (r2 = 0.51 P=0 0.03) but not in young mice (r2 = 0.24 P 0.15). 

 

Figure 3. Infection did not affect ischemia induced microgliosis. As expected, ischemia 

induced a significant increase in Iba-1 (A) immunoreactivity in the peri ischemic area. 

However, there were no differences in the extent of ischemia induced Iba-1 between the 

treatment groups. Figures B – E depict typical examples of Iba-1 immunoreactivity in the 

peri-ischemic area of young uninfected (B) and infected (C) and aged uninfected (D) and 

infected mice (E), respectively. Iba-1 immunoreactivity was quantified from total 37 

ischemic mice in following treatment groups: young uninfected (n = 8), young infected (n = 

10), old uninfected (n = 8) and old infected mice (n = 10). Scale bar = 100 µm. Results are 

presented as mean +/- SD. ** indicates p < 0.01 (linear mixed model followed by Sidak post 

hoc correction). 
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Figure 4. Aged mice with systemic infection showed increased neutrophil infiltration 

into the ischemic brain parenchyma. Ischemia caused neutrophil infiltration at the lesion 

site. Systemic infection induced by T.muris did not increase ischemia induced neutrophil 

infiltration in young mice (A). Age alone had no additive effect in the neutrophil infiltration 

as aged mice displayed neutrophil infiltration to similar extent compared to young mice 

however, aged mice with systemic infection showed significantly more neutrophils in the 

ischemic brain parenchyma (A). The extent of neutrophil infiltration showed significant 

correlation with the lesion volume (r2 = 0.33, p < 0.001; B). Figures C-F depict representative 

images of neutrophil infiltration in the ischemic brain parenchyma in young uninfected (C), 

infected (D) and aged uninfected (E) and infected (F) mice. Neutrophil immunoreactivity was 

quantified from total of 38 ischemic mice in following groups: young uninfected (n = 8), 

young infected (n = 10), old uninfected (n = 9) and old infected mice (n = 10).  Scale bar = 

100 µm. Results are shown as mean +/- SEM. * indicates p < 0.05 (one-way ANOVA with 

Bonferroni posthoc test). 

 

Figure 5. Aged infected mice fail to up regulate MCP-1 and G-CSF in the peri ischemic 

area. The brain cytokine profile was measured at 24 hours post ischemia. Aging or infection 

alone did not alter the levels of the cytokines as measured from the contralateral intact 

hemisphere (A – E)). Ischemia alone increased the peri ischemic levels of G-CSF (A) MCP-1 

(B), KC (C), and RANTES (E) in both young and aged mice when compared to the 

contralateral intact hemisphere. Old mice exhibited significantly higher ischemia-induced 

increase in the levels of G-CSF (A), MCP-1 (B), KC (C), IL-1α (D) and RANTES (E) and 

aged mice with predisposing chronic infection failed to up regulate G-CSF and MCP-1 to 

similar degree compared to aged uninfected mice (A, B). Results are shown as mean +/- 

SEM. * indicates p < 0.05 and ** indicates p < 0.01 (linear mixed model followed by Sidak 
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post hoc correction). The n-number in each group: KC n = 8 - 10 in all groups; MCP-1, n = 

10 in all groups; RANTES n = 10 in all groups; G-CSF young uninfected contra (n = 6) and 

ipsi (n = 9), young infected contra (n = 7) and ipsi (n = 10), old uninfected contra (n = 10) 

and ipsi (n = 10) and old infected mice contra (n = 7) and ipsi (n = 10). For IL-1α young 

uninfected contra (n = 6) and ipsi (n = 7), young infected contra (n = 2) and ipsi (n = 8), old 

uninfected contra (n = 5) and ipsi (n = 9) and old infected mice contra (n = 4) and ipsi (n = 

10). 

 

Figure 6. Aged infected mice show increased plasma levels of TNF and IL-17A. Plasma 

levels of TNFα and IL-17α at 24 hours post stroke were not altered upon infection in young 

animals nor by aging alone. However, old infected mice exhibited significantly higher levels 

of TNF compared to young uninfected and infected mice (A) and higher levels of IL-17A 

compared to young infected mice (B). Results are shown as mean +/- SEM. * indicates p < 

0.05 and *** indicates p < 0.001 (one-way ANOVA with Bonferroni posthoc test). For both 

cytokines n = 8 – 10 in each group. 
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