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ABSTRACT 

 PLA biocomposites were prepared using three corncob fractions and a wood fi-

ber as reference. The composites were characterized by tensile testing, scanning elec-

tron (SEM) and polarization optical (POM) microscopy. Micromechanical deformation 

processes were followed by acoustic emission measurements. The different strength of 

the components was proved by direct measurements. Two consecutive micromechanical 

deformation processes were detected in composites containing the heavy fraction of 

corncob, which were assigned to the fracture of soft and hard particles, respectively. 

The fracture of soft particles does not result in the failure of the composites that is initi-

ated either by the fracture of hard particles or by matrix cracking. Very large particles 

debond easily from the matrix resulting in catastrophic failure at very low stresses. At 

sufficiently large shear stresses large particles break easily during compounding, thus 

reinforcement depending on interfacial adhesion was practically the same in all compo-

sites irrespectively of initial fiber characteristics. 

 

KEYWORDS: PLA/wood biocomposites, agricultural waste, fiber structure, local de-

formations, failure mechanism  

 

 

1. INTRODUCTION 

 Biodegradable and compostable materials are produced and used in increasing 

amounts in several areas of life. Biodegradable polymers can be applied in packaging 

and agriculture, but the application range of compostable materials, including PLA, is 

even wider, it extends from the electronic to the automotive industry, but it can be used 

also in construction (Ogawa & Obuchi 2010). Often large stiffness and strength is re-

quired from structural materials, thus PLA is often modified with inorganic fillers 

(Chang et al. 2003; Fukushima et al. 2010; Fukushima et al. 2009; Huda et al. 2007; 

Imre et al. 2012; Jiang et al. 2007; Kasuga et al. 2003; Kim et al. 2010; Li et al. 2009; Li 

et al. 2008; Lin et al. 2007; Luo et al. 2009; Marras et al. 2007; Molnár et al. 2009; 
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Murariu et al. 2008; Nakayama & Hayashi 2007; Rhim et al. 2009; Russias et al. 2006; 

Wang et al. 2010; Yuzay et al. 2010) and with fibers (Ahmed et al. 2011; Chen et al. 

2010; Haque et al. 2010; Huda et al. 2006b; Liu et al. 2012; Shen et al. 2009; Wan et al. 

2001). The combination of PLA with natural fibers is a convenient way to produce 

compostable material thus the study of the structure and properties of such composites 

is of large scientific and practical interest (Bax & Müssig 2008; Bledzki et al. 2009; 

Huda et al. 2006a; Huda et al. 2008; Huda et al. 2005; Mathew et al. 2005; Oksman et 

al. 2003; Petersson et al. 2007; Petinakis et al. 2009; Plackett et al. 2003; Suryanegara et 

al. 2009; Sykacek et al. 2009; Van de Velde & Kiekens 2002). 

 The properties of all heterogeneous materials are determined by component 

properties, composition, structure and interfacial interactions. Interfacial adhesion is a 

contradictory issue in PLA/natural fiber composites. Some sources claim the formation 

of strong interaction between the fiber and PLA, while others state that interfacial inter-

actions are weak in these materials. The controversy is demonstrated well also by the 

occasional contradiction within the same paper. Plackett (Plackett et al. 2003) for exam-

ple observed the increase of strength in PLA containing 40 wt% jute fabric compared to 

that of the neat matrix and explained it with good adhesion. On the other hand, he found 

voids around the fibers on SEM micrographs and concluded that adhesion must be im-

proved. Similarly, Huda et al. (Huda et al. 2006a) deduced from the analysis of stiffness 

that interfacial adhesion is weak, but based on SEM micrographs they reasoned that ad-

hesion must be strong, since no debonding was observed at the matrix/fiber interface 

and failure was caused by matrix fracture. However, the analysis of papers available for 

us show that based on their results most authors arrived to the conclusion that the inter-

action between PLA and lignocellulosic fibers is weak (Bax & Müssig 2008; Bledzki et 

al. 2009; Huda et al. 2006a; Huda et al. 2005; Mathew et al. 2005; Oksman et al. 2003; 

Petinakis et al. 2009; Plackett et al. 2003; Sykacek et al. 2009). 

 In a previous work we prepared PLA composites using six lignocellulosic fibers 

with widely varying particle characteristics (Dora et al. 2012). The six fibers included 

four wood flours from different sources and with dissimilar pre-treatment, microcrystal-
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line cellulose and corn cob. We estimated interfacial adhesion with three independent 

methods and contrary to most claims published in the literature found that interfacial 

adhesion between PLA and natural fibers is rather strong. Both acoustic emission meas-

urements and microscopy indicated that the dominating micromechanical deformation 

process is the fracture of the fibers and close correlation was found between the initia-

tion stress of fiber fracture, reinforcement and the ultimate strength of the composites. 

Corn cob behaved differently from the rest of the reinforcements used, at least two con-

secutive deformation processes were detected during the loading of composites contain-

ing this filler. We could not find a plausible explanation for this behavior, but assumed 

that the dissimilar inherent structure of corn cob compared to other wood and cellulose 

samples gives rise to an additional deformation process besides fiber fracture. This latter 

can be debonding, fiber pull-out, but it can result also from the different strength and 

fracture of the various parts of the filler.  

 The study of a considerable number of published papers indicated that the struc-

ture of the reinforcement is rarely considered in polymer/lignocellulosic fiber compo-

sites, although it might influence deformation mechanism and overall properties. As a 

consequence, the goal of our work was to investigate this question more in detail. Three 

different corn cobs with dissimilar structure and properties were acquired and PLA 

composites were prepared in a wide composition range. A commercially available wood 

fiber was used as reference. Special attention was paid to micromechanical defor-

mations, reinforcement and the effect of fiber characteristics on the failure mechanism 

and properties of the composites. 

 

2. EXPERIMENTAL 

 The PLA used in the experiments was obtained from NatureWorks (USA). The 

selected grade (Ingeo 4032D, Mn = 88500 g/mol and Mw/Mn = 1.8) is recommended for 

extrusion. The polymer (<2% D isomer) has a density of 1.24 g/cm
3
, while its MFI is 

3.9 g/10 min at 190 °C and 2.16 kg load. Three corn cob fillers and a wood fiber 

(Filtracel EFC 1000, J. Rettenmaier & Söhne GmbH, Germany) were used as rein-
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forcements in the study. The particle characteristics and strength of the fibers will be 

discussed later in detail (see section 3.1). 

 Both poly(lactic acid) and the fibers were dried in a vacuum oven before compo-

site preparation (110 °C for 4 hours and 105 °C for 4 hours, respectively). The compo-

nents were homogenized using a Brabender W 50 EHT internal mixer at 180 C, 50 rpm 

for 10 min. Wood content changed in a relative wide range, composites contained 5, 10, 

15, 20, 30, 40, 50 and 60 vol% lignocellulosic fibers. The homogenized material was 

compression molded to 1 mm thick plates at 190 C using a Fontijne SRA 100 machine. 

All specimens were kept in a room with controlled temperature and humidity (23 °C 

and 50 %) for at least two weeks prior further testing. 

 Mechanical properties were characterized by the tensile testing of specimens cut 

from the 1 mm thick plates using an Instron 5566 apparatus. The measurements were 

done at 5 mm/min cross-head speed and 115 mm gauge length. Micromechanical de-

formation processes were followed by acoustic emission (AE) measurements. A 

Sensophone AED 40/4 apparatus was used to record and analyze acoustic signals during 

tensile tests. The particle characteristics of the fibers and the structure, as well as the de-

formation mechanism of the composites were studied by scanning electron microscopy, 

SEM (JEOL JSM-6380 LA). Micrographs were recorded on tensile fracture surfaces. 

Failure mechanism was studied also on model composites by polarization optical mi-

croscopy (POM). Thin (about 200 m) films were compression molded from the com-

posites, fractured by tensile testing and the broken halves were studied in the micro-

scope to determine failure mode and the role of the fiber in it. 

 

3. RESULTS AND DISCUSSION 

 The morphology of PLA/lignocellulosic composites can be relatively complicat-

ed. The polymer can crystallize, but the rate of crystallization is rather slow thus under 

the conditions of normal processing operations it remains mostly amorphous. Besides 

crystalline structure the possible formation of aggregates, especially at large fiber load-

ings, is also an important issue. The fiber might influence also interphase formation and 
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the mobility of the polymer molecules. We investigated these questions in previous 

studies in detail (Dora et al. 2012; Imre et al. 2012; Molnár et al. 2009). We found that 

crystallinity is negligible in PLA, while in PP/wood composites limited aggregation re-

sulted from the mere physical contact of the particles due to geometrical reasons 

(Dányádi et al. 2007). As a consequence we refrain from the detailed discussion of ma-

trix and composite structure and focus mostly on fiber structure, micromechanical de-

formations, and failure mechanism. Consequences for practice are discussed in the final 

section of the paper. 

 

3.1. Fiber structure and properties 

 The structure of corn cob is rather complex. As shown in Fig. 1 it consists of 

four components. The external parts are the beeswing (1) and the chaff (2) followed by 

a woody ring (3). The core of the cob is the pith (4), which has completely different 

properties from the rest. Corn cob is utilized for several purposes like cleaning of metal 

parts, surface polishing, as additive for cleaning material, pet litter, carrier for fodder, 

but also as reinforcing fiber, e.g. in extruded PVC insulating sheets. Before use corn cob 

is ground and separated to two fractions, a heavy and a light part. The heavy fraction 

contains hard while light fraction consist mostly of soft particles. The properties of the 

two fractions differ from each other. In order to study the effect of the various parts of 

corn cob on composite properties we obtained both the heavy and the light fraction from 

the producer. Moreover, since the particle size of the light fraction was much larger than 

that of the hard particles, at least it contained quite a few very large particles, we 

ground the light fraction to smaller particle size. Accordingly, four fillers were com-

pared in this study: the reference wood fiber, the heavy and light fractions of corn cob 

and the ground light fraction (abbreviated as gsoft in tables and text).  

 Since in earlier studies (Dora et al. 2012; Renner et al. 2010a; Renner et al. 

2009) we found that the particle characteristics of lignocellulosic fibers influence com-

posite properties significantly they were analyzed quite thoroughly. Particle characteris-

tics were determined quantitatively by laser light scattering. The particle size distribu-
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tion of the four fillers studied is presented in Fig. 2. The particle size of the light (soft) 

fraction is the largest as expected, while the ground light fraction (gsoft) contains the 

smallest particles. Particle size distributions differ considerably; the bimodal distribu-

tion of the ground light fraction indicates particles with dissimilar properties. We may 

assume that the separation of the heavy and light fractions was not perfect during the 

production of the fibers. Since lignocellulosic fibers are usually anisotropic, further 

characterization was done by the image analysis of SEM micrographs in order to obtain 

information also about length, diameter and aspect ratio. The results are compiled in 

Table 1. In earlier studies (Renner et al. 2010a; Renner et al. 2009) we found that aspect 

ratio is one of the most important characteristics determining composite properties, 

however, it is very similar for the three corn cob samples and only slightly larger for the 

wood flour used. 

 We may assume that the strength of the various components differ considerably 

from each other. We made an attempt to measure the inherent strength of the fibers. It 

was relatively easy to machine specimens from a pine plank, but the separation of the 

components of corn cob turned out to be impossible. We could cut specimens including 

all components from dry cobs and we carried out tensile measurements on them in two 

directions, along the length of the cob and perpendicularly to it. In order to assess the 

contribution of the components to overall strength we calculated tensile strength in three 

different ways. Assuming that the strength of components differs considerably from 

each other indeed, we divided tensile force with three different cross-sections: with that 

of the hard part (woody ring, 1 in Fig. 1) that is very thin, with a ring including the ex-

ternal sections (from 1 to 3), but omitting the pith (4), and with the entire cross-section 

of the specimen including all four sections. The results are collected in Table 2. We can 

see that the longitudinal strength of pine wood is more than one order of magnitude 

larger than the strength of corn cob that is not surprising. We can also conclude that the 

strength of this latter is practically independent of direction. Finally, the hard part is 

stronger than the pith, the strength of which, however, is in the same range as that of 

wood perpendicularly to the direction of the fibers. Accordingly we may assume that 
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soft and hard particles fracture differently at different external loads. We must also 

mention here that we tried testing corn cob specimens also by bending, but it turned out 

to be rather difficult since often radial cracks were initiated in the specimen. These 

cracks indicate that the failure of the particles must depend both on size and on the di-

rection of the load, i.e. on particle orientation in our case. 

 

3.2. Micromechanical deformations 

 Because of the dissimilar elastic properties of the matrix polymer and the inclu-

sion, stress concentration develops around this latter in heterogeneous polymers. Local 

stress maxima initiate local deformation processes some of which are accompanied by 

acoustic events. Sound waves can be picked up by microphones and the analysis of the 

signals may yield valuable information about the deformation and failure of the materi-

al. The result of an acoustic measurement carried out on a PLA/corn cob composite is 

presented in Fig. 3a. The composite contained 15 vol% of the heavy fraction. Each 

small circle is an acoustic event, the amplitude of which can be deduced from the right 

hand axis of the graph. The corresponding stress vs. strain trace is also shown as refer-

ence. We can see that significant acoustic activity starts above a certain deformation and 

that amplitudes cover a wide range. A closer scrutiny also reveals that two group of sig-

nals can be distinguished along the deformation axis indicating two consecutive defor-

mation processes. The second process seems to start at around 0.9-1.0 % elongation. 

Further conclusion is difficult to deduce from individual signals, additional analysis is 

needed in order to extract more information from the results. The cumulative number of 

signals is plotted as a function of deformation in Fig. 3b together with the stress vs. 

strain trace. The two processes can be clearly distinguished in the trace. The first pro-

cess appears as a step, while the second starts at around 1.0 % elongation as deduced 

from the evaluation of individual signals above. Based on the two figures one can con-

clude that the second process starts at larger deformation thus at larger stresses. Also the 

amplitude of the signals seems to be somewhat larger in the second process indicating 

larger fracture energy. We may only speculate about the two processes at this point, 
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they may belong to the fracture of the different fractions assuming that separation was 

not perfect, but a completely different process, like debonding may also take place dur-

ing deformation. 

 The cumulative number of signal vs. elongation correlations are compared in 

Fig. 3c for the four fibers studied. The traces are quite different from each other. Acous-

tic activity starts at relatively large elongation in the PLA/wood composite and at a 

much smaller one in the other three composites. We may assume that the light fraction 

does not contain considerable amount of hard particles thus its acoustic activity is relat-

ed mainly to soft particles. The final section of the cumulative number of signal vs. 

elongation trace of the composite containing the hard particles and the trace obtained 

for the PLA/wood composite are quite similar. We showed earlier that traces of this 

shape indicate fiber fracture as the dominating deformation process. The first step de-

tected in these composites is more similar to the traces recorded for the composite con-

taining the light fraction. Accordingly we may assume at this stage that the two pro-

cesses occurring in composites prepared with the heavy fraction are related to the hard 

and soft particles, respectively, i.e. separation was not complete during production. The 

trace recorded on composites prepared with the gsoft fiber resembles traces obtained 

with the soft fraction, but it starts at larger elongation and the number of signals is 

smaller. We must consider here the fact that both debonding and particle fracture de-

pends also on the size of the particles and the size of gsoft particles is significantly 

smaller than that of the rest. Accordingly we may assume that the same process takes 

place in composites containing the soft and gsoft particles, but particle size also plays a 

role. 

 The initiation stress of individual processes can be deduced from the cumulative 

number of signal vs. elongation traces. The method of determination and the character-

istic stress values are shown in Fig. 3b. We assigned AE1 and AE2 to the two processes 

discussed above, the first being mainly related to the soft, while the second to the hard 

particles. 

 Characteristic stresses are plotted against fiber content in Fig. 3d. It is quite ob-



 10 

vious that two micromechanical processes take place during the deformation of the 

samples indeed and that they are initiated at significantly different stresses. One process 

dominates in PLA/wood composites and earlier studies indicated that this is related to 

the fracture of the fibers (Dora et al. 2012). One process occurs also in composites con-

taining the light fraction, but this starts at much smaller stresses, on the one hand, and it 

have not been identified yet, on the other. Both processes can be observed in the two 

other sets of composites. The second process can be detected only at small fiber con-

tents (5 and 10 vol%) in the gsoft composites, while it occurs also at much larger fiber 

contents in the PLA/heavy fraction materials. Only one process could be identified in 

these latter at large fiber content (40-60 vol%) and based on earlier experience and the 

shape of the cumulative number of signal vs. elongation traces we identified it as the se-

cond process, i.e. the one related to the hard particles. However, the position of these 

points clearly indicates that identification was wrong and acoustic activity is dominated 

by soft particles in these composites. We can safely conclude that hard and soft parti-

cles behave differently during deformation and that acoustic emission is a useful tool to 

detect the main processes occurring. Further information is needed, though, to identify 

the processes themselves, although we think that acoustic signals are emitted by the 

fracture of the particles, which occurs at different loads for hard and soft fibers. 

 

3.3. Properties and reinforcement 

 If the characteristics of the fractions differ significantly and they initiate differ-

ent micromechanical deformation processes, indeed, we expect that composite proper-

ties will be also quite dissimilar. The composition dependence of modulus is presented 

in Fig. 4a. The difference in the stiffness of the four series is negligible, but this is not 

very surprising. Stiffness is determined at very small, practically zero deformation, and 

it depends mainly on the volume fraction of the reinforcement. Particle characteristics 

and interfacial adhesion influence it only very slightly, especially since all fibers have 

relatively small aspect ratio and the samples were prepared the same way, thus orienta-

tion, if any, is also the same. 
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 Much larger differences are expected in composite strength that is plotted 

against fiber content in Fig. 4b. Although the effect of the fibers differs somewhat in-

deed, the differences are smaller than expected and not very easy to explain. Tensile 

strength decreases with increasing fiber content in accordance with previous experience 

and published papers. Weak interaction was deduced from this decrease in the literature, 

but in fact comparison to the theoretical minimum [see broken line (Pukánszky 1990)] 

indicates considerable reinforcement. Reinforcement is the results of relatively strong 

interaction. Three of the fibers (wood, heavy and gsoft fraction) have very similar effect 

on composite strength that is quite surprising since soft particle behavior dominated 

acoustic activity in the latter. This behavior contradicts previous experience showing 

close correlation between acoustic activity and tensile strength in various composites 

(Imre et al. 2012; Renner et al. 2010a; Renner et al. 2010b). The composition depend-

ence of the tensile strength of the composites containing the light fraction is even more 

difficult to explain. At small fiber contents composite strength is below the theoretical 

minimum calculated from the effective load-bearing cross-section of the matrix assum-

ing zero interaction of the components. Such changes in composite properties can occur 

only if matrix properties are modified and/or the deformation mechanism changes. We 

have not found any effect of the fibers on matrix properties (crystallization, plasticiza-

tion) thus we must assume that in PLA/soft fraction composites failure mechanism is 

different at small filler loadings from that occurring in the rest of the materials including 

those prepared with the other three fibers. Even more surprising is the fact that at larger 

fiber contents composite strength runs parallel with the rest of the composites and does 

not decrease with the same rate as at small fiber loadings. Further information is needed 

to reveal the reason of this behavior. 

 The extent of reinforcement can be estimated quantitatively with the help of 

simple models. The dependence of tensile strength on filler content can be expressed as 

(Pukánszky 1990) 

 

   (1)  



  exp 

 2.5  1

 1
    0 Bn

TT



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where T and T0 are the true tensile strength (T =  and  = L/L0) of the composite 

and the matrix, respectively, n is a parameter expressing the strain hardening tendency 

of the matrix,  is the volume fraction of the fiber and B is related to its relative load-

bearing capacity, i.e. to the extent of reinforcement, which depends, among other fac-

tors, also on interfacial adhesion. The theoretical minimum of strength in Fig. 8 was 

calculated by assuming B = 0. We can write Eq. 1 in linear form 

 

   (2) 

 

and the plot of the natural logarithm of reduced tensile strength against fiber content 

should result in a linear correlation, the slope of which is proportional to the load-

bearing capacity of the fiber, i.e. reinforcement.  

 The strength of the composites is plotted against filler content in the form indi-

cated by Eq. 2 in Fig. 4c. We obtain straight lines indeed three of which run very close 

together, as expected (compare to Fig. 4b). Also the slope of the lines related to the ex-

tent of reinforcement is very similar in each case, which is more surprising. Even more 

unexpected is the fact that the line obtained for the PLA/light fraction composites runs 

basically parallel to the other three indicating the same extent of reinforcement. The dis-

similar intersection shows the modification of matrix properties and/or changing failure 

mechanism. Reinforcement, i.e. B parameters, is listed in Table 3 for the four series of 

composites. The table confirms our qualitative evaluation showing very similar rein-

forcements. Obviously, in spite of the different micromechanical deformation processes 

taking place consecutively and/or simultaneously in PLA/corn cob composites, rein-

forcement and composite properties are determined by the same factors in all compo-

sites irrespectively of the type of the fiber used. Further considerations are needed to re-

veal the reason for the observed behavior. 
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3.4. Discussion and practical consequences 

 Several of the results presented above apparently contradict each other and pre-

vious experience. Acoustic activity and characteristic stresses were shown to be related 

strongly earlier (Dora et al. 2012; Renner et al. 2010a; Renner et al. 2009). In this case, 

however, composite strength and especially reinforcement seem to be independent of 

acoustic activity or the characteristics of the fibers. Strengths, which are smaller than 

the theoretical value, also need explanation, especially since reinforcement is the same 

in PLA/light fraction composites as in the others. We hoped that microscopy might of-

fer additional evidence for the dominating deformation and failure mechanism and re-

solve these contradictions. 

 A SEM micrograph taken from the fracture surface of a PLA/hard fraction com-

posite created during tensile testing is shown in Fig. 5a. We can see the fracture of a 

corn cob particle, but also some debonding. Particle fracture dominates in the micro-

graphs taken from most composites including those prepared with the ground soft filler 

(Fig. 5b). Fiber fracture is sometimes accompanied by debonding, fiber pull-out or the 

local yielding of the matrix. The domination of fiber fracture both in PLA/wood and 

PLA/corn cob composites is confirmed also by polarization optical microscopy (Fig. 5c 

and d). The micrographs taken from thin, fractured films clearly show that cracks pass 

through both wood (Fig. 5c) and corn cob (Fig. 5d) particles. In view of these results it 

is rather surprising that reinforcement is completely independent of the type of fiber 

used, since both direct measurements (see Table 2) and acoustic activity (Fig. 3c) shows 

that soft particles break at much smaller stresses than hard ones.  

 The contradiction can be resolved if we consider the results presented in Fig. 6. 

The tensile strength of the composites is plotted against characteristic stresses derived 

from acoustic emission measurements in the figure. A very close correlation exists be-

tween the characteristic stress of the second process, i.e. the fracture of hard particles, 

but practically none between strength and AE1. This clearly proves that the fracture of 

soft particles yields acoustic signals, but does not result in the fracture of the composite, 

while the fracture of hard particles leads to the failure of the composite. Obviously 
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large, soft particles can break without initiating catastrophic failure in the PLA compo-

site. 

 The final question needing explanation is the small strength of PLA/light frac-

tion composites and their relatively large reinforcing effect. Strengths, which are small-

er than the theoretical value, can be explained with the large size of some of the soft 

particles. This is demonstrated amply by the SEM micrograph presented in Fig. 7. A 

very large particle occupying approximately half of the cross-section of the sample and 

oriented perpendicularly to the direction of the load initiated fracture at very small load. 

Apparently the particle debonded from the matrix on its entire surface leading to imme-

diate failure. The presence of such particles explains the small strength, but not the ab-

sence of this phenomenon at larger fiber contents and the strong reinforcement. We 

must consider here the small strength of soft particles. The viscosity of the melt increas-

es with increasing fiber content quite considerably. This results in relatively large shear 

stresses developing in the melt during homogenization and larger load on the particles. 

We tried to model this by calculating the work used for the homogenization of the com-

posites during mixing; the obtained values are plotted against fiber content in Fig. 8. 

Above a certain load the fibers fracture and fiber attrition results in changing actual par-

ticle size distribution (see also Fig. 5b), larger strength and reinforcement. Accordingly, 

fiber characteristics, interfacial adhesion, aspect ratio and orientation must be very simi-

lar in all composites thus explaining the similarity in the extent of reinforcement.  

 

4. CONCLUSIONS 

 Corn cob is used as reinforcement in industrial practice. Its structure is complex 

and its constituents have dissimilar properties. The different strength of the components 

was proved by direct measurements and also by the acoustic activity of the PLA com-

posites prepared from the different fractions. Two consecutive micromechanical defor-

mation processes were detected in composites containing the heavy fraction of corn cob 

which were assigned to the fracture of soft and hard particles. The occurrence of the 

two processes indicates that the separation of the components is not perfect in the indus-
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trial technology used. The fracture of soft particles does not result in the failure of the 

composites that is initiated either by the fracture of hard particles or by matrix cracking. 

Very large particles debond easily from the matrix resulting in catastrophic failure at 

very low stresses. At sufficiently large shear stresses large soft particles break easily 

during compounding thus, as a consequence of fiber attrition, reinforcement depending 

on interfacial adhesion was practically the same in all composites irrespectively of ini-

tial fiber characteristics.  
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Table 1 Particle characteristics of the studied lignocellulosic fibers 

 

Fiber Size, D[4,3] 

(μm) 

Length 

(μm) 

Diameter 

 (μm) 

Aspect ratio Surface area 

(m
2
/g) 

Wood 213.1 363.4 63.9 6.8 2.00 

Hard 143.4 108.1 55.7 2.3 0.86 

Soft 517.3 135.5 45.9 3.6 0.89 

Gsoft 71.9 52.0 24.1 2.5 1.56 

 

Table 2 Comparison of the strength of wood and various parts of corn cob in two 

directions 

 

Component Strength (MPa) in direction 

Longitudinal Transverse 

Wood (pine) 81.6  17.7 3.8  0.8 

Corn cob, total cross-section 4.0  0.3 2.7  0.5 

Corn cob, ring 5.0  0.3 5.4  0.9 

Corn cob, hard 21.2  1.4 13.5  2.2 
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Table 3 Reinforcing effect of the studied lignocellulosic fibers in PLA 

 

Fiber Matrix strength
a
 

(MPa) 

Parameter B R
2b

 

Wood 53.10 2.29 0.9968 

Hard 56.79 1.92 0.9933 

Soft 38.64 1.93 0.9823 

Gsoft 49.13 2.34 0.9972 

 

a
calculated from the intersection of the lnrel vs.  lines (measured value 57.9 MPa) 

b
determination coefficient showing the goodness of the linear fit 

 

CAPTIONS 

Fig. 1 Structural components of corn cob: 1) beeswing, 2) chaff, 3) woody ring, 

4) pith. 

Fig. 2 Particle size distribution of the studied lignocellulosic fibers. 

Fig. 3 Results of the acoustic emission measurements: a) Evolution of acoustic 

signals during the tensile testing of a PLA/wood composite (15 vol% 

heavy fraction); (o) individual acoustic signals,  stress vs. strain 

trace. b) Cumulative number of signals vs. elongation trace of the com-

posite of Fig. 3a. The corresponding stress vs. strain trace is plotted as 

reference. Determination of characteristic stresses. c) Comparison of the 

cumulative number of signal traces for all the PLA/lignocellulosic fiber 

composites studied; 15 vol% fiber content. d) Composition dependence 

of the characteristic stresses derived from acoustic emission measure-

ments; effect of fiber type. Symbols: () wood, () hard, () soft, () 

gsoft; empty symbol AE1, full symbol AE2. 
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Fig. 4 Mechanical properties, reinforcement: a) Stiffness of 

PLA/lignocellulosic fiber composites plotted against fiber content. Sym-

bols: () wood, () hard, () soft, () gsoft. b) Effect of the type and 

amount of reinforcement on the tensile strength of PLA/lignocellulosic 

fiber composites. Symbols: () wood, () hard, () soft, () gsoft, -----

- theoretical minimum of strength (B = 0 in Eq. 1). c) Reduced tensile 

strength of PLA/lignocellulosic fiber composites plotted against fiber 

content according to Eq. 2. Symbols: () wood, () hard, () soft, () 

gsoft. 

Fig. 5 Microscopy: a-b) SEM micrographs taken from the fracture surface of a 

PLA/lignocellulosic fiber composites at 20 vol% fiber content. Fracture 

surface was created by failure in the tensile test. a) hard, b) ground soft 

particles. c-d) Fiber fracture in PLA model composites, POM micro-

graphs. c) wood, d) light fraction. The composites contained 5 vol% fi-

ber. 

Fig. 6 Correlation between the characteristic stresses of the two micromechani-

cal deformation processes detected by acoustic emission and the ultimate 

tensile strength of the composites. Symbols: () wood, () hard, () 

soft, () gsoft; empty symbol AE1, full symbol AE2. 

Fig. 7 Debonding of a very large soft particle and the catastrophic failure of the 

composite. The SEM micrograph was taken from fracture surface created 

in tensile testing. Fiber content: 20 vol%. 

Fig. 8 Composition dependence of relative (related to neat PLA) work of com-

pounding put into the homogenization of the composites. Three parallel 

series prepared with light particles. 
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FIGURES 

 

Faludi, Fig. 1 
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Faludi, Fig. 2 
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Faludi, Fig. 3 
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Faludi, Fig. 4 
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Faludi, Fig. 5 
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Faludi, Fig. 6 
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Faludi, Fig. 7 
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Faludi, Fig. 8 
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