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Abstract. A new SEIR model with distributed infinite delay is derived when
the infectivity depends on the age of infection. The basic reproduction number
R0, which is a threshold quantity for the stability of equilibria, is calculated.
If R0 < 1, then the disease-free equilibrium is globally asymptotically stable
and this is the only equilibrium. On the contrary, if R0 > 1, then an endemic
equilibrium appears which is locally asymptotically stable. Applying a perma-
nence theorem for infinite dimensional systems, we obtain that the disease is
always present when R0 > 1.

1. Introduction. Most traditional compartmental models in mathematical epi-
demiology descend from the classical SIR model of Kermack and McKendrick, where
the population is divided into the classes of susceptible, infected, and recovered indi-
viduals. For some diseases, such as influenza and tubercolosis, on adequate contact
with an infectious individual, a susceptible becomes exposed for a while; that is, in-
fected but not yet infectious. Thus it is realistic to introduce a latent compartment,
leading to an SEIR-model. Such models have been widely discussed in the literature.
Local and global stability analyses of the disease-free and endemic equilibria have
been carried out using different assumptions and contact rates in [14],[15],[18],[19],
[20],[21],[22],[29], and [30]. Certain delayed effects have been also taken into account
in some models (see [6],[27], and [28]).

All of the models cited above assume the homogeneity of the infected class:
all individuals in that compartment share the same epidemiological parameters.
In reality, however, as time elapses and the disease develops within the host, its
infectivity might continuously change. The purpose of this paper is to incorporate

2000 Mathematics Subject Classification. Primary 34K60, 92D30.
Key words and phrases. mathematical epidemiology, infinite delay, SEIR model, stability,

permanence.
Supported in part by the Hungarian Foundation for Scientific Research, grant T 049516, Na-

tional Sciences and Engineering Research Council of Canada, and Mathematics for Information
Technology and Complex Systems.

389

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/11856082?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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Figure 1. Disease transmission (Q =
∫∞
0

k(a)i(t, a)da)

this feature into the SEIR model. Models keeping track of an individual’s infection-
age have existed for particular diseases, for instance tubercolosis [7], HIV/AIDS
[5],[26], Chagas disease [13], or pandemic influenza [1]. However, our general SEIR
model is formulated as a system of delay differential equations with infinite delay.

The paper is organized as follows. In section 2, taking into account the age
of infection as a parameter, we formulate a new SEIR model with distributed and
infinite delay. We identify the basic reproduction numberR0 as a threshold quantity
regarding the local asymptotic stability of the disease free equilibrium in section 3.
In section 4 we show that a stable endemic equilibrium exists if and only if R0 > 1.
Section 5 concerns the global stability of the disease-free equilibrium. In section 6
we show that the disease is endemic in the sense of permanence whenever R0 > 1.
Disregarding the demographic effects, we derive a final size relation in section 7.
Finally, sections 8 and 9 contain several examples and some discussions.

2. Model derivation. Assume that a given population may be divided into the
following categories: susceptibles (those who are capable of contracting the dis-
ease); exposed (those who are infected but not yet infectious); infectives (those who
are infected and capable of transmitting the disease); and recovered (those who
are permanently immune). Denote the number of individuals at time t in these
classes by S(t), E(t), I(t), R(t), respectively. Let i(t, a) represent the density of in-
fected individuals with respect to the age of infection a at the current time t, then
I(t) =

∫∞
0

i(t, a)da. We introduce the kernel function 0 ≤ k(a) ≤ 1 to express
the infectivity according to the age of infection a. In what follows, Λ denotes the
constant recruitment rate, β is the baseline transmission rate, d is the natural death
rate, δ is the disease-induced death rate, 1/µ is the average latency period and 1/r
is the average infectivity period. All these constants are assumed to be positive.
Then, using bilinear incidence in the force of infection corrected by the infectivity
factor due to the age of infection, we arrive at the following SEIR model:
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dS(t)
dt

= Λ− βS(t)
∫ ∞

0

k(a)i(t, a)da− dS(t),

dE(t)
dt

= βS(t)
∫ ∞

0

k(a)i(t, a)da− (µ + d)E(t),

dI(t)
dt

= µE(t)− (d + δ + r)I(t),

dR(t)
dt

= rI(t)− dR(t).

The disease transmission diagram is depicted in Figure 1. The evolution of the
density is given by

( ∂

∂t
+

∂

∂a

)
i(t, a) = −(d + δ + r)i(t, a), (1)

subject to the following boundary condition

i(t, 0) = µE(t).

Solving (1) leads to

i(t, a) = i(t− a, 0)e−(d+δ+r)a = µE(t− a)e−(d+δ+r)a,

and we obtain the following deterministic model of delay differential equations:
dS(t)

dt
= Λ− βS(t)

∫ ∞

0

k(a)µE(t− a)e−(d+δ+r)ada− dS(t), (2)

dE(t)
dt

= βS(t)
∫ ∞

0

k(a)µE(t− a)e−(d+δ+r)ada− (µ + d)E(t), (3)

dI(t)
dt

= µE(t)− (d + δ + r)I(t), (4)

dR(t)
dt

= rI(t)− dR(t). (5)

Since our model contains terms with infinite delay, it is necessary to address the
question of well-posedness of system (2-5). To specify a solution for all future time
t ≥ 0, we need to know the history of the E-class on (−∞, 0]. From a biological
point of view, it may seem natural to choose the space BC of bounded continuous
functions on (−∞, 0]; however, this space may not be desirable for the qualitative
theory of functional-differential equations with unbounded delay. See [25], where
this issue has been discussed. Therefore, following the standard procedure, we
use the phase space UCg of fading memory type, see the definition below. Let
g : (−∞, 0] → [1,∞) be a continuous nonincreasing function with

(g1) g(0) = 1;
(g2) g(s + u)/g(s) → 1 uniformly on (−∞, 0] as u → 0−; and
(g3) g(s) →∞ as s → −∞. Then we can define

UCg : {φ : (−∞, 0] → R,φ/g is bounded and uniformly continuous on (−∞, 0]},
which is a Banach-space equipped with the norm

||φ|| = sup
s≤0

∣∣φ(s)
g(s)

∣∣.

It is well known (see [3], [10]) that standard uniqueness, continuation, and continu-
ous dependence theorems hold in the space UCg. Moreover, the bounded solutions
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corresponding to initial values from BC have precompact orbits in UCg. For the
general theory and applications, see [3], [8], [9], [10], [16], [17], [23] and references
thereof.

For our purposes the exponential fading memory is suitable with g(s) = exp(−∆s),
where 0 < ∆ < d + δ + r. It is easy to see that (g1), (g2) and (g3) hold with this
choice of g. Denote the space UCg with g(s) = exp(−∆s) by C∆. Then

∫ ∞

0

k(a)e−(d+δ+r)ag(−a)da =
∫ ∞

0

k(a)e(∆−d+δ+r)ada < ∞

is satisfied and our norm on C∆ becomes

||φ|| = sup
s≤0

∣∣φ(s)e∆s
∣∣.

Any φ ∈ C∆ can be estimated by φ(s) ≤ ||φ||e−∆s, s ≤ 0. For system (2-5),
R × C∆ × R2 serves as the phase space. Let Et denote the state of the solution
E(t) at time t; i.e. Et(s) = E(t + s), where s ≤ 0. We are interested only in the
nonnegative solutions, the corresponding cone of non-negative functions in C∆ is
denoted by Y ; i.e.

Y := {φ ∈ C∆ : φ(s) ≥ 0 for s ≤ 0}.
Therefore, the initial conditions to (2-5) take the form

S(0) = s0, E0 = φ, I(0) = i0, R(0) = r0, (6)

where s0, i0, r0 ∈ R+
0 and φ ∈ Y . It is straightforward to see that solutions with

such initial conditions remain non-negative.

Proposition 1. The system (2-5) is point dissipative; that is there exists an M > 0
such that for any solution of (2-5) with initial condition (6), there exists a T0 > 0
such that S(t) ≤ M , I(t) ≤ M , R(t) ≤ M and ||Et|| ≤ M for all t ≥ T .

Proof. Consider an arbitrary nonnegative solution, where φ ∈ Y is the initial func-
tion for the E-class. For N(t) = S(t) + E(t) + I(t) + R(t), we have

dN(t)
dt

= Λ− dN(t)− δI(t) ≤ Λ− dN(t).

Since any nonnegative solution of n′(t) = Λ− dn(t) satisfies limt→∞ n(t) = Λ/d, by
a standard comparison argument we obtain

lim sup
t≥0

N(t) ≤ Λ
d

.

We conclude that for any ε > 0, there is a T > 0 such that the nonnegative solution
of (2-5) satisfies

S(t) ≤ Λ
d

+ ε,E(t) ≤ Λ
d

+ ε, I(t) ≤ Λ
d

+ ε, R(t) ≤ Λ
d

+ ε,

whenever t ≥ T . We still have to estimate ||Et||. Let K be the maximum of E(t)
on [0, T ]. For any t > T ,

||Et|| = sup
s≤0

Et(s)e∆s = sup
u≤t

E(u)e∆ue−∆t

≤max{e−∆t||φ||,Ke∆T e−∆t,
Λ
d

+ ε},
where the last estimation was obtained by separation to u ≤ 0, 0 ≤ u ≤ T and
T ≤ u ≤ t. Consequently, we can choose any M > Λ

d .
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3. Basic reproduction number and the disease-free equilibrium. Clearly
our model has a disease-free equilibrium P0 = (S0, 0, 0, 0) where S0 = Λ/d. To find
the basic reproduction number R0, we introduce a single exposed individual into a
totally susceptible population in the disease-free equilibrium at t = 0. The probabil-
ity of the presence of this individual in the E-class after time t is given by e−(µ+d)t,
so the expected number of generated secondary infections can be calculated by

R0 = βS0

∫ ∞

0

∫ ∞

0

k(a)µe−(d+δ+r)ae−(µ+d)tdadt,

which reduces to

R0 =
βS0µ

µ + d

∫ ∞

0

k(a)e−(d+δ+r)ada, (7)

after interchanging the integrals. Next we show that R0 determines the stability of
the disease-free equilibrium.

Theorem 3.1. The disease-free equilibrium is locally asymptotically stable if R0 <
1 and unstable if R0 > 1.

Proof. By Chapter 5 of [12] (in particular Corollary 5.3.5), it is sufficient to check
that each characteristic root has negative real part. Let V (t) = S(t)−S0. Lineariz-
ing the system about (V, E, I, R) = (0, 0, 0, 0) gives, using Λ = dS0,

dV (t)
dt

= −βS0µ

∫ ∞

0

k(a)E(t− a)e−(d+δ+r)ada− dV (t),

dE(t)
dt

= βS0µ

∫ ∞

0

k(a)E(t− a)e−(d+δ+r)ada− (µ + d)E(t),

dI(t)
dt

= µE(t)− (d + δ + r)I(t),

dR(t)
dt

= rI(t)− dR(t).

Substituting the Ansatz weλt, where w = (v0, l0, , i0, r0), leads to the relations

λeλtv0 = −βS0µ

∫ ∞

0

k(a)eλ(t−a)l0e
−(d+δ+r)ada− deλtv0,

λeλtl0 = βS0µ

∫ ∞

0

k(a)eλ(t−a)l0e
−(d+δ+r)ada− (µ + d)eλtl0,

λeλti0 = µeλtl0 − (d + δ + r)eλti0,

λeλtr0 = reλti0 − deλtr0.

Without loss of generality, we may assume l0 = 1. Simplifying by eλt, we obtain

v0 = −βS0µ

λ + d

∫ ∞

0

k(a)e−(λ+d+δ+r)ada,

i0 =
µ

λ + d + δ + r
,

r0 =
µr

(λ + d + δ + r)(λ + d)
,

where λ is a root of the characteristic function

h(λ) = βS0µ

∫ ∞

0

k(a)e−(λ+d+δ+r)ada− (λ + µ + d). (8)
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Clearly, h(λ) is a monotone decreasing continuous function for nonnegative real λ
and h(∞) = −∞ . We have

h(0) = βS0µ

∫ ∞

0

k(a)e−(d+δ+r)ada− (µ + d) = (µ + d)(R0 − 1).

If R0 > 1, then there exists a positive real root, and the disease-free equilibrium is
unstable. Suppose that λ = x + iy is a root of h(λ) with x > 0. Then |e−λa| < 1
for any a > 0, and

1 =
∣∣∣ βS0µ

λ + µ + d

∫ ∞

0

k(a)e−(λ+d+δ+r)ada
∣∣∣

≤ βS0µ

|λ + µ + d|
∫ ∞

0

k(a)|e−λa|e−(d+δ+r)ada < R0.

Therefore, if R0 < 1, then all roots have negative real part and the disease-free
equilibrium is locally asymptotically stable.

4. The endemic equilibrium.

Theorem 4.1. An endemic equilibrium exists if and only if R0 > 1. Moreover, the
endemic equilibrium, if exists, is unique and locally asymptotically stable.

Proof. An endemic equilibrium P ∗ = (S∗, E∗, I∗, R∗) must satisfy the algebraic
equations

dS∗ = Λ− βS∗µ
∫ ∞

0

k(a)E∗e−(d+δ+r)ada, (9)

(µ + d)E∗ = βS∗µ
∫ ∞

0

k(a)E∗e−(d+δ+r)ada, (10)

µE∗ = (d + δ + r)I∗, (11)
dR∗ = rI∗. (12)

Since E∗ 6= 0, (10) yields

S0/S∗ = R0, or S∗ =
Λ
R0d

. (13)

Simple calculations on (9) show that

Λ
R0

= Λ− (d + µ)E∗;

that is

E∗ =
Λ

d + µ

(
1− 1

R0

)
.

So, we conclude that E∗ > 0 if and only if R0 > 1. In this case the other two
coordinates of P ∗ are given by

I∗ =
Λµ

(d + µ)(d + δ + r)
(
1− 1

R0

)
,

R∗ =
Λµr

d(d + µ)(d + δ + r)
(
1− 1

R0

)
.
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Now we show the local asymptotic stability of the endemic equilibrium. Introduce
the new variables V (t) = S(t)− S∗, D(t) = E(t)−E∗, J(t) = I(t)− I∗ and Q(t) =
R(t)−R∗. Notice that

βµ

∫ ∞

0

k(a)E∗e−(d+δ+r)ada = R0 − 1.

Linearizing about the endemic equilibrium P ∗ = (S∗, E∗, I∗, R∗) gives the system

dV (t)
dt

= −V (t)(R0 − 1)− βS∗µ
∫ ∞

0

k(a)D(t− a)e−(d+δ+r)ada− dV (t),

dD(t)
dt

= V (t)(R0 − 1) + βS∗µ
∫ ∞

0

k(a)D(t− a)e−(d+δ+r)ada− (µ + d)D(t),

dJ(t)
dt

= µD(t)− (d + δ + r)J(t),

dQ(t)
dt

= rJ(t)− dQ(t).

Substituting the exponential Ansatz, after some elementary calculations, we can
derive the characteristic equation

h(λ) = (λ + µ + d− Sλ)(R0 − 1 + d + λ) + Sλ(R0 − 1) = 0,

where, for simplicity, we use the notation

Sλ = βS∗µ
∫ ∞

0

k(a)e−λae−(d+δ+r)ada.

Then S0 = µ + d and h(0) = (µ + d)(R0 − 1) > 0. Suppose that λ is a root of h(λ)
and Re λ ≥ 0, that implies |e−λa| ≤ 1 for any a ≥ 0. Now the inequalities

|Sλ| ≤ µ + d ≤ |λ + µ + d|
and

|d + λ| < |R0 − 1 + d + λ|
follow. But h(λ) = 0 is equivalent to

Sλ(d + λ) = (λ + µ + d)(R0 − 1 + d + λ),

a contradiction. Therefore, every root has negative real part and the endemic
equilibrium is locally asymptotically stable if R0 > 1.

5. Global stability of the disease-free equilibrium.

Theorem 5.1. If R0 < 1, then all solutions converge to the disease-free equilibrium.

Proof. For any ε > 0, define

Rε =
βµ

µ + d

(Λ
d

+ ε
) ∫ ∞

0

k(a)e−(d+δ+r)ada.

Then clearly limε→0Rε = R0 and Rε < 1 if R0 < 1 and ε is sufficiently small.
In Proposition 1. we have shown that for any ε > 0 there is a T > 0 such that
S(t) ≤ Λ

d +ε whenever t > T . Thus, without loss of generality, we can suppose that
S(t) ≤ Λ

d + ε for all t ≥ 0. This yields that the exposed population E(t) is bounded
above by the solutions of the linear equation

dE(t)
dt

= β
(Λ

d
+ ε

) ∫ ∞

0

k(a)µE(t− a)e−(d+δ+r)ada− (µ + d)E(t).
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Now analogously to the proof of Theorem 3.1, from Rε < 1 we obtain that the
characteristic roots of this linear equation have negative real parts and the global
stability of the disease-free equilibrium follows from the standard comparison argu-
ment.

6. Permanence. Now we restrict our attention to the subsystem
dS(t)

dt
= Λ− βS(t)

∫ ∞

0

k(a)µE(t− a)e−(d+δ+r)ada− dS(t), (14)

dE(t)
dt

= βS(t)
∫ ∞

0

k(a)µE(t− a)e−(d+δ+r)ada− (µ + d)E(t). (15)

Denote by T (t), t ≥ 0 the family of solution operators corresponding to (14-15).
Because of the infinite delay, we can not expect that the solution operator ever
becomes completely continuous. However, we can apply a permanence theorem of
Hale and Waltman [11], which does not require the compactness of the solution
operators. Let X = R+

0 × Y , according to (14-15). We introduce some notations
and terminology: the positive orbit γ+(x) through x ∈ X is defined as γ+(x) =
∪t≥0{T (t)x}. The ω-limit set ω(x) of x consists of y ∈ X such that there is a
sequence tn → ∞ as n → ∞ with T (tn)x → y as n → ∞. The semigroup T (t)
is said to be asymptotically smooth, if for any bounded subset U of X, for which
T (t)U ⊂ U for any t ≥ 0, there exists a compact set M such that d(T (t)U,M) → 0
as t →∞. The following result is taken from [11, Theorem 4.2]:

Theorem. Suppose that we have the following:
(i) X0 is open and dense in X with X0 ∪X0 = X and X0 ∩X0 = ∅;
(ii) the solution operators T (t) satisfy

T (t) : X0 → X0, T (t) : X0 → X0;

(iii) T (t) is point dissipative in X;
(iv) γ+(U) is bounded in X if U is bounded in X;
(v) T (t) is asymptotically smooth;
(vi) A =

⋃
x∈Ab

ω(x) is isolated and has an acyclic covering N , where Ab is the
global attractor of T (t) restricted to X0 and N = ∪k

i=1Ni;
(vii) for each Ni ∈ N ,

W s(Ni) ∩X0 = ∅,
where W s refers to the stable set.
Then T (t) is a uniform repeller with respect to X0, i.e. there is an η > 0 such
that for any x ∈ X0, lim inft→∞ d(T (t)x,X0) ≥ η.

Theorem 6.1. If R0 > 1, then the disease is endemic; more precisely, there exists
an η > 0 such that

lim inf
t→∞

E(t) ≥ η.

Proof. Let
X0 = {(S, φ) : φ(θ) > 0 for some θ < 0}
X0 = {(S, φ) : φ(θ) = 0 for all θ ≤ 0, }.

We check all the conditions of the permanence theorem. It is straightforward to see
that (i) and (ii) are satisfied. The point dissipativity has been proved in Proposition
1, so we have (iii). Let U be a bounded set of X, and B > 0 be such that for any
(σ, φ) ∈ U, σ < B and ||φ|| ≤ B. Let ψ(s) := Be∆s, s ≤ 0. This function
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dominates any other in U . Consider the solution S̄(t), Ē(t) with initial condition
S(0) = B, E0 = ψ. We claim that for any solution S(t), E(t) with initial data
from U , we have S(t) < S̄(t) and E(t) < Ē(t) for t ≥ 0. Indeed, suppose that t0
is the smallest t such that E(t) = Ē(t) and S(t) ≤ S̄(t) for all t ∈ [0, t0]. Then
E′(t0) > Ē′(t0) and

βS(t)
∫ ∞

0

k(a)µE(t− a)e−(d+δ+r)ada > βS̄(t)
∫ ∞

0

k(a)µĒ(t− a)e−(d+δ+r)ada,

a contradiction. Similarly, if t0 is the smallest t such that S(t) = S̄(t) and E(t) ≤
Ē(t) for all t ≤ t0, then S′(t0) > S̄′(t0) and∫ ∞

0

k(a)µE(t− a)e−(d+δ+r)ada >

∫ ∞

0

k(a)µĒ(t− a)e−(d+δ+r)ada,

contradiction again. Thus T (t) is monotone, and using the arguments of Proposition
1, we can show that S̄(t), Ē(t) are bounded and dominate every solution with initial
data from U . Hence, we obtain (iv).

Next we show that T (t) is asymptotically smooth (v). Let M > Λ/d and

M := {φ ∈ C∆ : sup
s≤0

φ(s)e
∆
2 s ≤ M}.

From Lemma 3.2 of [4], we know that M is compact in C∆. Consider an arbitrary
bounded set U ⊂ X, and let Et be the segment of a solution with E0 ∈ U . By
Proposition 1, there exists a T > 0 such that E(t) ≤ M for t ≥ T and E(T ) = M
or E(t) < M for all t > 0. In the first case, let K be the maximum of E(t) on [0, T ]
and define for t > T the function ψt(s) such that

ψt(s) :=

{
E(t + s)e−

∆
2 s if T − t ≤ s ≤ 0,

Me−
∆
2 s if s ≤ T − t.

Then, obviously ψt ∈M and

d(Et,M) ≤ d(Et, ψ
t) = sup

s≤0
|Et(s)− ψt(s)|e∆s.

Separating to the intervals [T − t, 0], [−t, T − t], (−∞,−t], we obtain

sup
T−t≤s≤0

|Et(s)− ψt(s)|e∆s = 0,

sup
−t≤s≤T−t

|Et(s)− ψt(s)|e∆s ≤ (Ke∆T + Me
∆
2 T )e−

∆
2 t,

and
sup
s≤−t

|Et(s)− ψt(s)|e∆s ≤ (||E0||+ M)e−∆t.

Summarizing, we get that
lim

t→∞
d(Et,M) = 0,

and T (t) is asymptotically smooth. The case E(t) < M for all t > 0 is easier and
can be treated analogously. Thus, we confirmed (v).

Regarding (vi), clearly A = {P0} (now P0 = (Λ/d, 0) ∈ X) and isolated. Hence
the covering is simply N = {P0}, which is acyclic (there is no orbit which connects
P0 to itself in X0).

It remains to show that W s(P0) ∩X0 = ∅. Suppose the contrary, that is there
exists a solution ut ∈ X0 such that

lim
t→∞

S(t) = S0, lim
t→∞

E(t) = 0.
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Now we take advantage of R0 > 1: there exists an ε > 0 such that

β(S0 − ε)
∫ ∞

0

k(a)µe−(d+δ+r)ada > µ + d.

There exists a t0 such that for t ≥ t0, S(t) > S0 − ε and

E′(t) ≥ β(S0 − ε)
∫ ∞

0

k(a)µE(t− a)e−(d+δ+r)ada− (µ + d)E(t).

There exists a t1 such that

β(S0 − ε)
∫ t1

0

k(a)µe−(d+δ+r)ada > µ + d.

For t ≥ t∗ := max{t0, t1},

E′(t) ≥ β(S0 − ε)
∫ t∗

0

k(a)µE(t− a)e−(d+δ+r)ada− (µ + d)E(t).

If E(t) → 0, as t →∞, then by a standard comparison argument and the nonneg-
ativity, the solution n(t) of

n′(t) = β(S0 − ε)
∫ t∗

0

k(a)µn(t− a)e−(d+δ+r)ada− (µ + d)n(t)

with initial data n0 = E0, has to converge to 0 as well. By the mean value theorem
for integrals we know that for any t there is a ξt such that

∫ t∗

0

k(a)n(t− a)e−(d+δ+r)ada = n(ξt)
∫ t∗

0

k(a)e−(d+δ+r)ada

and t− t∗ ≤ ξt ≤ t. Define

V (t) := n(t) + (µ + d)
∫ t

ξt

n(s)ds.

Differentiating with respect to time gives

dV

dt
=

(
β(S0 − ε)

∫ t∗

0

k(a)µe−(d+δ+r)ada− (µ + d)
)
n(ξt) ≥ 0.

Therefore, V (t) goes to infinity or approaches a positive limit as t → ∞. On the
other hand, by the definition of V , limt→∞ n(t) = 0 implies limt→∞ V (t) = 0, a
contradiction. Thus W s(P0) ∩ X0 = ∅ and we can apply Theorem 4.2 of [11] to
obtain that

lim inf
t→∞

||Et|| ≥ η,

and by similar estimates as in the proof of Proposition 1, we get

lim inf
t→∞

E(t) > η.

Finally, we can use a standard comparison argument to obtain

lim inf
t→∞

I(t) > ηµ/(d + δ + r).
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7. Final size relation. It is interesting to check, whether the standard final size
relation

ln s∞ = R0(s∞ − 1) (16)

holds for the epidemiological model, where s∞ is the portion of susceptibles who
have not been infected during the whole course of the epidemics. The generality of
final size relations has been studied in detail in [2] and [24]. If the disease runs on
a short course, demographic changes might be ignored; hence Λ = 0 and d = 0 are
assumed. Our model reduces to

dS(t)
dt

= −βS(t)
∫ ∞

0

k(a)µE(t− a)e−(δ+r)ada, (17)

dE(t)
dt

= βS(t)
∫ ∞

0

k(a)µE(t− a)e−(δ+r)ada− µE(t), (18)

dI(t)
dt

= µE(t)− (δ + r)I(t), (19)

dR(t)
dt

= rI(t), (20)

and the reproduction number becomes

R0 = βS0

∫ ∞

0

k(a)e−(+δ+r)ada.

We have
d

dt
(S(t) + E(t)) = −µE(t), (21)

and
d

dt
(S(t) + E(t) + I(t) + R(t)) = −δI(t);

therefore E(∞) = I(∞) = 0. Integrating (17) and (21) from 0 to ∞, we obtain

S(∞) = S0 exp(−β

∫ ∞

0

∫ ∞

0

k(a)µE(t− a)e−(δ+r)adadt),

S(∞)− S0 − E0 = −µ

∫ ∞

0

E(s)ds.

Assuming E0 << 1, E(u) << 1 for u < 0 and interchanging the integrals, we obtain
the final size relation

S(∞) = S0 exp(−β(S0 − S(∞))
∫ ∞

0

k(a)e−(δ+r)ada),

which is, for s∞ = S(∞)
S0

, the relation

s∞ = exp
[
(s∞ − 1)R0

]
,

equivalent with the well-known “classical” final size relation (16).

8. Some examples.
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8.1. Constant infectivity. If k(a) = 1 for all a ≥ 0, then
∫ ∞

0

k(a)µE(t− a)e−(d+δ+r)ada =
∫ ∞

0

i(t, a)da = I(t),

and our model (2)-(5) reduces to the standard SEIR-model

dS(t)
dt

= Λ− βS(t)I(t)− dS(t),

dE(t)
dt

= βS(t)I(t)− (µ + d)E(t),

dI(t)
dt

= µE(t)− (d + δ + r)I(t),

dR(t)
dt

= rI(t)− dR(t),

with
R0 =

βΛµ

d(µ + d)(d + δ + r)
.

8.2. Exponential kernel function. If the infectivity exponentially decays as time
elapses since infection, then k(a) = e−qa for some q > 0. Then the basic reproduc-
tion number becomes

R0 =
βΛµ

d(µ + d)(d + δ + r + q)
.

Then, with respect to the parameter q, we can say that the disease is always present
and the endemic equilibrium is locally asymptotically stable if

βΛµ

d(µ + d)
− (d + δ + r) > q,

and there is no endemic equilibrium and the disease free equilibrium is globally
asymptotically stable if

βΛµ

d(µ + d)
− (d + δ + r) < q.

8.3. Linear increasing kernel function. Suppose that the kernel function is
given by

k(a) =

{
ca if a ≤ 1/c

1 otherwise.

In this case, by partial integration, we have
∫ ∞

0

k(a)e−(d+δ+r)ada =
∫ 1/c

0

cae−(d+δ+r)ada +
∫ ∞

1/c

e−(d+δ+r)ada

=
c− (c + d + δ + r)e−

d+δ+r
c

(d + δ + r)2
+

e−
d+δ+r

c

d + δ + r

=
c− ce−

d+δ+r
c

(d + δ + r)2

and the basic reproduction number is

R0 =
βΛµ(c− ce−

d+δ+r
c )

d(µ + d)(d + δ + r)2
.

Therefore, we can formulate threshold conditions in terms of c.
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9. Discussion. The novelty of our model is that we allow varying infectivity of
the infected individuals as a function of the age of infection. This assumption leads
to a system of differential equations with distributed infinite delay. We have shown
that several standard theorems in mathematical epidemiology can be extended to
this kind of SEIR model, and the basic reproduction R0 has been calculated. If
R0 < 1, the disease-free equilibrium is globally asymptotically stable, and this is the
only equilibrium. On the contrary, if R0 > 1, then an endemic equilibrium appears
which is locally asymptotically stable. Applying a permanence theorem for infinite
dimensional systems, we obtain that the disease is always present when R0 > 1.
In the future, it would be interesting to prove the global stability of the endemic
equilibrium. Besides, we have shown that the standard final size relation holds
when the course of the disease is short and the demographic changes are ignored.
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[9] J. R. Haddock, T. Krisztin & J. Terjéki. Comparison theorems and convergence properties
for functional- differential equations with infinite delay. Acta Sci. Math. (Szeged) 52(1988),
399–414.

[10] J. K. Hale & J. Kato. Phase space for retarded equations with infinite delay. Funkcial. Ekvac.
21(1978), 11–41.

[11] J. K. Hale & P. Waltman. Persistence in infinite-dimensional systems. SIAM J. Math. Anal.
20(1989), 388–395.

[12] Y. Hino, S. Murakami & T. Naito. Functional-differential equations with infinite delay. Lecture
Notes in Mathematics, Vol. 1473, Springer-Verlag, 1991.

[13] H. Inaba & H. Sekine. A mathematical model for Chagas disease with infection-age-dependent
infectivity Math. Biosci. 190(2004), 39–69.

[14] A. Korobeinikov. Lyapunov functions and global properties for SEIR and SEIS epidemic
models. Math. Med. Biol. 21(2004), 75–83.

[15] A. Korobeinikov & P. K. Maini. A Lyapunov function and global properties for SIR and SEIR
epidemiological models with nonlinear incidence. Math. Biosci. Eng. 1(2004), 57–60.

[16] T. Krisztin. On the convergence of solutions of functional-differential equations with infinite
delay. J. Math. Anal. Appl. 109(1985), 509–521.

[17] Y. Kuang, H.L. Smith. Global stability for infinite delay Lotka-Volterra type systems. J.
Differential Equations 103(1993), 221–246.

[18] G. Li & Z. Jin. Global stability of a SEIR epidemic model with infectious force in latent,
infected and immune period. Chaos Solitons Fractals 25(2005), 1177–1184.
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