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Abstract

This short note intends to clarify about the applicability of the
Stochastic Simulation Algorithm proposed by Gillespie for the analysis
of systems of coupled biochemical reactions. The derivation of Gille-
spie’s results is revisited to pinpoint those steps at which, depending
on the validity of the assumptions adopted about the system to be
studied, approximations may be introduced. We discuss about the
ways the inaccuracies entailed by the approximations may propagate
and affect simulation results.



1 Introduction

In 1976, a paper by Daniel T. Gillespie [5] proposed a novel computational
approach to effectively analyze the time behavior of chemical/biochemical
systems. That paper provided an easy to implement algorithm for simu-
lating the evolution of a system together with a theoretical justification,
grounded on statistical mechanics, of its applicability. The success of Gille-
spie’s method for the study of biochemical systems dynamics is well demon-
strated by the plethora of studies, papers and computational tools based on
it that have appeared since the original publication.

The main reasons for this widespread acceptance stem from the sim-
plicity of the proposed algorithmic approach, which easily lends itself to
straightforward (though non necessarily optimized) implementations, and
from the clear link that is maintained with the intuitive descriptive lan-
guage of chemical reactions (which also suits biochemistry). In fact, Gille-
spie’s algorithm can be seen as a formalization of the common intuitive
understanding of how a chemical or a biochemical system described through
chemical reactions would evolve over time.

On the other hand, Gillespie also postulated that a very specific choice
about the probability distribution of the times at which reactions occur
leads indeed to an accurate picture of the system dynamics, and provided
theoretical justification for such a choice. This justification is valid under a
precise set of assumptions. Notably, for this set of assumptions to be valid,
the system does not necessarily need to approach the thermodynamic limit.
Therefore, the main Gillespie’s result still applies to systems composed of
few chemically interacting molecules.

Nonetheless, the assumptions on which Gillespie based his results may
not be trivially valid for many systems of interest in biology. In fact, these
assumptions should be whenever possible confirmed or rejected, and in any
case questioned and not taken a priori. In this respect, there is a myriad
of examples of studies assuming the general validity of such assumptions
without discussion.

This note does not aim at extending Gillespie’s results nor their appli-
cability, which have been already consistently described by Gillespie himself
in his papers [5, 6]. Rather, the objective is to focus on the way the assump-
tions made about the system imply the validity of the Gillespie’s approach
to stochastic modeling and simulation, as well as to reason on which ap-
proximations are introduced when such assumptions are not valid and to
discuss about the ways the inaccuracies entailed by the approximations may
propagate and affect the results. To this, the first two published papers of
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Gillespie [5, 6] are revisited, with the objective of extrapolating and putting
in a system modeling perspective the main results contained therein. The
adopted modeling perspective helps in elucidating the role of assumptions
and their consequences.

The rest of this document is organized as follows. In Section 2 we outline
the main contributions proposed by Gillespie and describe the importance of
the SSA as an effective computational tool for the simulation of biochemical
systems. Section 3 presents the set of hypotheses that Gillespie considered
for ensuring the validity of its stochastic modeling approach. In Section 4
we discuss on cases when such hypotheses are not trivially satisfied, and we
point out where approximations may be introduced. The potential impact of
those approximations is shortly considered in Section 5. Finally, conclusions
are provided in Section 6.

2 Gillespie’s results

The material presented in Gillespie’s paper of 1976 [5] and 1977 [6] provides
a very clear description of the theoretical basis upon which the stochastic
description of system dynamics is built and the stochastic simulation algo-
rithm (SSA, hereafter) is formulated. Further papers from Gillespie and
many other authors focused on the optimization of the SSA [4, 2], on its ap-
proximate versions [8] and on the relationships between the stochastic and
deterministic modeling approaches [7].

In fact, the results that can be identified in Gillespie’s first two papers
rely on a precise characterization of the stochastic behavior of chemical
systems in terms of the probability of the occurrence of a reaction. In
the following, the state of a chemical system is a vector whose components
represent the number of molecules of each chemical species, denoted by ~xs.
Obviously, {x}t, t ≥ 0 is a stochastic jump-process, which probabilistically
moves from one state to the other. At the basis of Gillespie’s approach is
the following assumption (which Gillespie calls the fundamental hypothesis):

Hypothesis 1. For every reaction j in the system, if ~x is the state of the
system at time t, t ≥ 0, the probability that the a reaction of type j occurs
in the next infinitesimal time interval t + ∆t can be expressed as aj(~x) ·∆t,
where aj(~x) does not have any explicit dependency on t.

Functions aj(~x) are called propensity functions. Then, Gillespie’s papers
present the two following major contributions:
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• the proof that, under a precise set of assumptions, the fundamental
hypothesis holds for chemical systems;

• the definition of the Stochastic Simulation Algorithm (SSA, hereafter),
to produce sample realizations of the stochastic processes {x}t under-
lying chemical systems for which the fundamental hypothesis is valid.

The first result proves the validity of the fundamental hypothesis of Gille-
spie by introducing a set of sufficient conditions at the physical molecular
level. These conditions, which will be reviewed in detail in the next section,
are easily verified when the interacting species form a gas, where reactant
molecules undergo many nonreactive collisions. Occasionally, a collision in-
volves two molecules that are able to react, and a reaction may take place.
Because of the particular state of a gas, the reaction products diffuse very
quickly and the system maintains homogeneity.

The fundamental hypothesis may also hold of reactions happening in
other types of systems, as it seems to be proved by the succesful validation
of many stochastic models of biochemical systems against experimental data.
However, Gillespie’s results only allow us taking it for granted for systems
that are well-mixed, under thermal equilibrium, and only for specific types of
chemical reactions, often termed elementary. In this context, an elementary
reaction is one that does not abstract any intermediate species. There are
only two types of elementary reactions, namely:

1. the monomolecular reaction, where a molecule of species A transforms
itself into a set of reaction product molecules;

2. the bimolecular reaction, where a molecule of species A and a molecule
of species B, where species B may be the same as species A, bind to
generate a new molecule.

Examples of reactions of type 1) reactions include the isomerization A →
B, and the split of a molecule into sub-molecules A → B + C. Examples of
type 2) reactions include complexation A+B → C, and, as a special case, the
dimerization A+A → A2. Any reaction that involves more than two reactant
molecules is not elementary. A simple statistical mechanics argument shows
that the likelihood of more than two molecules simultaneously colliding in
a reaction vessel is infinitesimal, and any reaction involving more than two
reactant molecules, such as A+B+C → D, must occur indeed as a sequence
of bimolecular reactions, for instance A + B → E, E + C → D.

The reason why it is so desirable that the fundamental hypothesis holds
of a chemical system is that it implies that, in every state of the system
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and for every reaction j the time to the next occurrence of reaction j is
a random variable following a negative exponential distribution. This al-
lows describing the evolution of the system over time from an initial state,
through a simple system of first order linear differential equations, known as
the Chemical Master Equation (CME, hereafter). In probability theory, the
CME describes the evolution of a Continuous-Time Markov Chain (CTMC,
hereafter), whose state space corresponds to the set of possible states of
the chemical system, and whose transitions correspond to the occurrence
of reactions. A rich set of exact analysis techniques and numerical solution
approaches for both transient (time-dependent) and steady-state analysis of
CTMC exists [3], which can be exploited to investigate the dynamic evolu-
tion of a biochemical system satisfying the fundamental hypothesis 1).

In fact, the second contribution offered by Gillespie, i.e. the SSA algo-
rithm, is a simulation scheme for generating realizations of the CTMC. The
SSA scheme has given rise to a family of computationally efficient algorithms
for simulating CTMCs that represent the evolution of a set of coupled bio-
chemical reactions. These algorithms [4, 6, 2] are much more efficient than
general event-driven simulation algorithms, which also apply to CTMCs.

The SSA is exact, in the sense that it generates only possible realizations
of a CTMCs with correct probability. The exactness we are talking about
here has in fact nothing to do with whether the fundamental hypothesis 1) is
valid or not for a biochemical system. Assuming that the hypothesis 1) holds
of a biochemical system described as a set of reactions, the SSA provides a
way to explore the dynamic evolution of the system, without requiring any
additional assumption and without introducing any further approximation.

For the sake of completeness, we have to mention that, as in any stochas-
tic simulation approach, the results SSA can provide are in the end approxi-
mate because the number of distinct realizations of a CTMC is infinite, and
the exact evaluation of the measures of interest would require including the
contribution of each of them. This is obviously infeasible, and thus only
approximations of the measures can be estimated. However, it is impor-
tant to remark that this is not a limit specific to the SSA algorithm, but
rather a common drawback of stochastic simulation, and that furthermore
the quality of the approximation can be improved at the expense of a higher
computation cost.

In the following section we will detail on the conditions that Gillespie
introduced as sufficient to guarantee the validity of the fundamental hypoth-
esis 1), and on where each of them contributes to back it up.
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3 Sufficient conditions for the validity of the fun-

damental hypothesis

Gillespie took care of demonstrating that the fundamental hypothesis is
indeed satisfied by some non-trivial chemical systems. He did not define
directly the borders of their applicability, but rather identified the a set of
sufficient conditions that ensure the validity of his results.

Specifically, Gillespie introduced the following two hypotheses:

Hypothesis 2. The chemical system is under thermal equilibrium condi-
tions.

Hypothesis 3. The chemical system is such that, at any time t, the con-
centration of each species is homogeneous in the reaction vessel (i.e. does
not depend on space).

It is important to notice that the homogeneity described in hypothesis
3) is in fact achieved if non-reactive collisions are much more frequent than
reactive ones, which ensures diffusion processes proceed at much higher rate
than any reaction in the system. Another major hypothesis was introduced
for bimolecular reactions:

Hypothesis 4. In a bimolecular reaction, the time to the occurrence of the
reaction is largely determined by the time to the reactive collision, whereas
the time necessary for the chemical transformation of the colliding species
into the reaction products is negligible.

If a system satisfies hypotheses 2), 3) and 4) and its reactions are only
elementary ones, then we can rely on Gillespie’s results, which proves that
the fundamental hypothesis 1) is satisfied, the same as to say that the evo-
lution of the state of the system over time is described by a CTMC whose
transition rates from any state ~x are given by the propensity functions aj(~x),
for any j.

Gillespie actually computed the propensity functions aj(~x) for elemen-
tary reactions, assuming that the molecules are approximately spherical.
For instance, when this is true, functions aj(~x) for a bimolecular reaction
A + B → C turns out to be as follows:

aj(~x) = xAxBV −1πrAB

√

8kT

πm12

where xA and xB are the number of molecules of A and B in current state
of the system ~x, V is the volume of the reaction vessel, rAB is the distance
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between the geometrical centers of two reactant molecules A and B at which
the reaction happens, k is the Boltzmann’s constant, T is the absolute tem-
perature and mAB the reduced mass defined as mAB = mAmB/(mA +mB),
mA and mB being the mass of molecule A and B, respectively.

A similar form of the propensity function can be obtained for the dimer-
ization reaction, whereas for a monomolecular reaction A → B the propen-
sity reaction will be in the form aj(~x) = xAcj where cj is a constant.
However, if the spherical assumption is not justified, we can still assume
the fundamental hypothesis is applicable, solely the exact expression of the
propensity functions will have a different form.

From the material presented above it is possible to define a class of
systems for which it is possible to assume, without the necessity of any
further discussion, the validity of the fundamental hypothesis 1). For this
class of systems, we know that the SSA algorithm of Gillespie provides a
tool for the exact evaluation of system dynamics, still in the aforementioned
limits of stochastic simulation. However, this does not mean at all that the
fundamental hypothesis will be valid only for that class of systems. In fact,
the conditions described in Gillespie paper are sufficient and not necessary,
and there may be many other cases for which it holds. Still, it is important
to remark that whenever the sufficient conditions are not obviously satisfied,
the validity of the fundamental assumption should be questioned. In the next
section we will consider some examples, commonly seen in the computational
biology literature, for which such validity is, according to what we stated
above, to be discussed.

4 Cases when Gillespie’s hypothesis is to be veri-

fied

Biochemical systems can be seen as particular instances of chemical systems
where reacting molecules are heavy biological compounds such as proteins
and nucleic acids, obviously far from gaseous conditions. In the small volume
of a living cell the are normally no temperature gradients, which entitles us
considering hypothesis 2) applicable. Similarly, the diffusion processes in a
cell are also quite efficient. Even though each type of cell uses indeed various
mechanisms to regulate the concentration of molecules in different areas, it
is widely accepted to consider that in small volumes homogeneity is assured.
This observation would lead us to consider hypothesis 3) valid of biochemical
systems in limited volume areas, for instance within a compartment.

More discussion is required for hypothesis 4). In the simple reaction
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A+B → C, the time of the reaction can be considered negligible with respect
to the collision time only if it does not involves complex transformations,
such allosteric changes, of the two binding molecules. Whereas this may be
considered the case for simple molecules complexation, it may not be valid
in biochemistry, where reactants may be heavy structured molecules whose
binding may be just the first step of a conformational rearrangement.

In fact, the situation mentioned above is a particular example of the
difficulty that can be encountered in describing a biochemical system in
terms of elementary reactions. Quite often, there is an incomplete knowledge
of the full set of reactions, and mesoscopic or macroscopic transformations
are the only ones observable. For instance, when dealing with the set of
elementary reactions

A + E → AE (1)

AE → A + E (2)

AE → B + E (3)

the Michaelis-Menten abstraction in the form A + E → B + E is com-
monly used. This is because the only experimentally measurable process in
this accumulation of the reactions product B, whereas the speed of bind-
ing/unbinding of compound AE from/to reactant A and enzyme E is not
observable.

Now, Gillespie’s results tell us that the fundamental hypothesis is sat-
isfied for the biochemical system consisting of the full set of elementary
reactions in 1), refunbind) and 3). Therefore, we can easily conclude that
assuming the fundamental hypothesis holds of reactions A + E → B + E
is entailing an approximation. Indeed, if time to next occurrence of each
elementary reactions follows a negative exponential distribution (remember
this is the mathematical meaning of the fundamental hypothesis), the time
to the occurrence of the abstract reaction that represents the macroscopic
transformation will have a distribution that results from the composition
of those of the elementary reactions. Apart for the operations of multipli-
cation for a scalar and minimum, the class of negative exponential random
variables is not closed with respect to composition. For instance, the sum
and maximum of a set of negative exponential random variables is not a
negative exponential random variable. Thus, we can falsify the validity of
the fundamental hypothesis with a simple mathematical argument.

However, assuming the fundamental hypothesis holds of an abstract re-
action can be quite a good approximation. This is for instance the case for
reactions 1), refunbind) and 3). Specifically, it has been proved [8] that,
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if the enzyme E is quickly saturated by the substrate A, or alternatively
if the speeds of the binding reaction 1) and unbinding reaction 2) is much
higher than the one of the catalysis reaction 3), the fundamental hypothesis
can be considered valid and the propensity a(~x) of the abstract reaction
A + E → B + E can be expressed through the following Michaelis-Menten
equation:

a(~x) =
Vmax · xA

Km + xA

(4)

where xA is the number of molecules of the substrate species A in the state
~x, and Vmax and Km are two constants.

This approximation is an accurate description of the process through
which species B is produced only if the conditions stated above on the rates
and abundance of species are satisfied. If not, it is just an approximation
that can turn out in a dynamics differing from the one of the complete
system described by reactions 1), refunbind) and 3).

Still, it is important to observe that a propensity function described by
equation 4) still allows using the SSA algorithm to simulate the evolution
of the abstract system, and that the results of simulation will be exact,
with respect to the CTMC defined by the abstract reaction. This exactness
derives from the fact that the SSA does not introduce any new assumption
on the system. Rather, assumptions are introduced when the validity of the
fundamental hypothesis is postulated.

Consider now the process of gene transcription, which is commonly mod-
eled by a reaction of the type G + P → G + T + P , where G represents a
gene, P an RNA polymerase molecule, and T an mRNA transcript molecule.
Let us ask whether the fundamental hypothesis would hold of such a reac-
tion. If one considers the complexity of the transcription process, which
encompasses the sequential assembly of a long nucleotide sequence based on
the gene template scan, it is quite intuitive to understand that it is not an
elementary reaction. Assuming that the process of transcription requires
a time that can be represented by a random variable following a negative
exponential approximation may clearly be an approximation. Still, there
are many modeling studies that make this assumption without questioning
its accuracy.

The correctness of the assumption can be tested with mathematical ar-
guments, as it has been done for the Michaelis-Menten kinetics, or with
wet-lab experiments, which can estimate properties of the stochastic pro-
cess that represents the production of the transcripts molecules. Modeling
studies [10] indicate that the process of transcript production exhibits less
variability than a simple Poisson process, the one that one is entitled to
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assume if the transcription times followed a negative exponential distribu-
tion. However, [10] also shows that when the pausing that occurs in gene
transcription is frequent enough, the transcript production process tends to
become a Poisson process.

Once more, we remark that, once the fundamental hypothesis is assumed
to hold for the reaction G + P → G + T + P , the SSA algorithm can be
applied, and that the quality of the results it provides are only determined
by the accuracy of the approximation entailed by the fundamental hypoth-
esis. In the following section we discuss about the expected effects of the
approximations introduced when applying the SSA.

5 Impact of approximations

Postulating the validity of the fundamental hypothesis 1) when the same
is not applicable can lead to an approximation whose effects are hardly
predictable. Indeed, assuming that a random variable follows the negative
exponential distribution implies a precise choice of the variance for the pro-
cess it models. Specifically, if λ is the parameter of a negative exponential
distribution, this means that the average value is λ−1 and the variance λ−2,
that is the only one parameter of the distribution determines both, and no
choice is left on the amount of variability to be modeled.

A commonly used measure of the amount of variability of a random
variable is the coefficient of variation, defined as the ratio between standard
deviation (the square root of the variance) and expected value of the variable.
The coefficient of variation of a negative exponential random variable is
exactly 1. This implies a certain amount of stochastic fluctuation around the
average value for a set of values sampled from the distribution. In a biological
system, stochastic fluctuations plays an important role, as they determine
the probability with which different portions of the state space of the system
are accessible from a given state, and ultimately the reachability of certain
equilibrium conditions or limit cycles. Thus, a modeling choice based on
Gillespie’s fundamental hypothesis may result in a simulated dynamics that
does not match the real one of the system being modeled.

Examples of such discrepancies are occasionally found in the literature.
For instance, the paper [1] compares the results obtained through the SSA
for various abstractions of the same biochemical system, clearly showing
that assuming the fundamental hypothesis is valid for all of them leads to
inconsistent predictions.

A slightly different though related perspective on the matter is found
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in [9], where the authors show that a deterministic characterization of a
set of reactions in terms of ODEs leads to wrong results, whereas the SSA
algorithm can better predict the dynamic evolution of the biochemical sys-
tem. This paper is interesting because it demonstrates the importance of
selecting the proper amount of stochastic fluctuation for properly describ-
ing the dynamics of a system. Specifically, [9] shows that the total absence
of stochastic fluctuations turns out in a wrong simulated evolution as the
model cannot reach the part of the state space that is eventually occupied
by the modeled system.

To the best of our knowledge, there is not a general theory to predict
a priori the effect that different choices of random variable distributions
have on stochastic model results. As a matter of fact, when there is no
information on whether the fundamental hypothesis is satisfied or not for a
set of reactions, validation of model results is the only means available to
determine a posteriori the quality of a model. The results obtained through
the SSA, which are exact for the input model, must be compared with
the observed behavior of the real system. A positive validation indicates
that the modeling hypothesis made on the structure and on the stochastic
characterization of the system are indeed valid.

6 Conclusions

This report discusses the exactness of the Stochastic Simulation Algorithm
proposed by Gillespie for the simulation of biochemical systems composed
on a set of coupled reactions. It reviews the hypothesis under which the
exactness of the simulation results has been demonstrated, and points out
where approximations and inaccuracies can be introduced.

The key point that determines the accuracy of SSA results is found in
the adequacy of the fundamental hypothesis of Gillespie for the system to
be studied, which implies that the stochastic process considered to represent
the dynamic evolution of the system is a Continuous-Time Markov Chain.
Indeed, depending on the specific phenomena considered and on the level of
abstraction at which the system is to be modeled, assuming that all reaction
times are random variables distributed according to the negative exponential
law may be inadequate and introduce approximations.

On the other hand, the SSA is always exact with respect to the CTMC
model that is provided to it as an input, as it does not introduce any more
hypothesis on the system. Whatever discussion about the prerequisites of
applicability of Gillespie’s methods is to be moved outside the algorithm
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itself, and placed at the level of the stochastic characterization of reaction
times. When the available knowledge does not allow a precise characteri-
zation of the reaction times, a first cut modeling choice that matches the
average values, such as the one based on the negative exponential distri-
butions, may be a valid modeling option. This same choice can be made
because of the computational advantages offered by the application of the
SSA. At any rate, it is the responsibility of the modeler to make it clear
when this choice is an approximation, and to conduct a careful validation of
model results to ascertain its adequacy in capturing the interesting behaviors
of the modeled system.
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