
Architecture of a Network Monitoring Element

Augusto Ciuffoletti1 and Michalis Polychronakis2

1 CNAF-INFN, Bologna, Italy
2 FORTH-ICS, Heraklio, Greece

Abstract. A Network Monitoring system is a vital component of a Grid;
however, its scalability is a challenge. We propose a network monitoring
approach that combines passive monitoring, a domain oriented overlay
network, and an attitude for demand driven monitoring sessions. In order
to keep into account the demand for extreme scalability, we introduce a
solution for two problems that are inherent to the proposed approach:
security and group membership maintenance.
Keywords: network monitoring, passive network monitoring,
on demand network monitoring, network monitoring element,
scalability issues, security issues

1 Introduction

Monitoring the network infrastructure of a Grid has a vital role in the man-
agement and the utilization of the Grid itself. The Global Grid Forum (GGF)
schema [7], splits this activity into three distinct phases: production, publication,
and utilization of measurements. Here we focus on the production and publi-
cation, with a special concern for scalability: for measurement production we
address the usage of passive network monitoring techniques, while for the pub-
lication activity we adopt a domain-oriented overlay network which reduces the
complexity of the task.

The challenge comes from the fact that a Grid oriented network monitor-
ing should address network routes, not single links, since this is the kind of
information needed to optimize distributed applications. Since each pair of Grid
Services should be individually monitored, this makes an O(n2) complexity for
many aspects of network monitoring: from the size of the database containing
the results, to the number of pings that probe the system.

We combined a number of ideas in order to limit the complexity of our
solution: i) monitoring shouldn’t address single Grid resources, but pools with
similar connectivity; ii) monitoring tools shouldn’t inject traffic, but observe
existing traffic; iii) monitoring activity should be tailored on application needs.
Only the integration of above ideas can effectively control the problem size, and,
in some sense, the first two open the way for the application of the third one.

We observe that a Grid topology is made of pools of resources reachable
through dedicated ingress points: the accessibility of such pools depends on
ingress points connectivity, and local administration avoids internal bottlenecks.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UnipiEprints

https://core.ac.uk/display/11828641?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Therefore the monitoring topology can be simplified by monitoring Network El-
ements between ingress points of distinct pools.

One Network Monitoring architecture, called GlueDomains [3], has been re-
cently designed and prototyped according to a two levels hierarchical overlay;
the purpose of such experiment was mainly the assessment of a number of design
principles. A Grid-wide deployment of GlueDomains was carried out during the
summer of 2006, as part of the Italian branch of the Large Hadron Collider Com-
puting Grid Project (LCG). Apart from the statistics collected (usual packet loss
and roundtrip time, together with an experimental one way jitter measurement
tool, published through the GridICE Grid Information Service [2]), the most rel-
evant results from the GlueDomains experiment concern the ease of deployment,
as well as the resilience, and stability of the architecture, which were assessed
during a one month trial. GlueDomains is included in the current release of the
Italian branch of LCG.

GlueDomains architecture centers around a number of specialized units host-
ing the agents in charge of monitoring the network. Such agents are able to au-
tonomously (re)configure their activity based on a dynamic description of the
network monitoring topology, available from a relational database. The moni-
toring activity was based on a domain partitioning of Grid resources: the target
of such monitoring is the Network Element, which abstracts the network infras-
tructure in charge of interconnecting two domains.

One relevant lesson learned from GlueDomains experience is the identification
of the role played by the agent that concentrates the network monitoring activity
for a domain. This role corresponds to a new resource in the Grid architecture,
which is mainly dedicated to network monitoring. In the architecture proposed in
this paper we call such agent a Network Monitoring (NM) Element: its activity
is organized into Network Monitoring Sessions.

Another cornerstone concept in our architecture is passive monitoring, which
is non-intrusive by nature. The internal architecture of NM Elements adopts
specific hardware and software solutions to address passive network monitoring.

A third concept that cuts down network monitoring complexity is an applica-
tion driven configuration: this is feasible in a Grid, where applications negotiate
computing resources with resource brokers, which can configure Network Moni-
toring Sessions on the fly, providing adequate credentials to NM Elements. The
relevant conclusion is that, if network monitoring activity is bound to applica-
tions, it will increase linearly with system throughput, not with the square of
system size.

A relevant aspect of an application driven approach is the interface that a
NM Element should offer to the outside. Currently brokers find resource char-
acteristics in the Grid Information System (GIS), automatically collected by
preconfigured network monitoring sessions. This attitude is inappropriate in an
application driven scenario for its limited scalability, and it would be prefer-
able to connect NM Elements to brokers through a publish-subscribe system.
Given that this aspect is still a research topic, we indicate a composite interface,



which decouples the input, consisting of monitoring requests, from the output,
consisting of observation records.

The scheme described above is based on some knowledge shared by all the
NM Elements, which can be assimilated to a group membership. Such common
knowledge consists of the certificates needed to enforce security, complemented
by the composition of Domains. Such data should be readily accessible by any
Grid component, although the throughput for access operations can be quite
asymmetric: frequent read queries should be performed promptly, while infre-
quent updates can be treated lazily. We address this problem by replicating this
directory on each NM Element, and using an epidemic algorithm in order to
maintain consistency of distinct network views.

2 Inside view of a Network Monitoring Element

The internal structure of a Network Monitoring Element is layered according
to the scheme in Figure 1. The upper layer is in charge of implementing the
interfaces to the outside, offering a Network Monitoring Service.

(proxy)

Network
Monitoring
Database Sensor

Monitoring
Network

Service
Monitoring
Network User Interface

GIS Interface

Information
Grid

Service

Network Monitoring Element

Certification
Authority

User
Application

Network Monitoring Element

Fig. 1. Interfaces between the NM Element and other Grid components.

The NM Service offers three distinct interfaces: one for user applications
(resource brokers included), another for the Grid Information Service (GIS),
and one that interacts with the Certification Authority. The User Application
Interface allows the submission of a request for a specific monitoring session:
the NM Service checks broker credentials and verifies local resources availability
before accepting a request. In response, the broker receives an acknowledgement.
The User Application Interface also provides users with access to the Network
Monitoring database. The GIS interface allows the publication of observations
coming from network monitoring sessions. We do not explore the architecture of
the GIS in this paper, but we note that it should enforce certain access limits:
for instance, the results of an on demand network monitoring activity should be
visible, as a general rule, only to trusted users. The GIS should be informed of
such limited access by the NM service which received the request.



The lower layer is composed of two distinct modules that do not interact with
each other. The Network Monitoring Sensor supports monitoring sessions: the
implementation of sessions is delegated to specialized modules that take their
configuration from the upper layer. The results of the monitoring activity are
delivered to the NM Service via dedicated one-way streams from the specific
session to the upper layer. We distinguish between preconfigured and on demand
sessions: the former are configured directly by the NM Service module using
the Grid topology described by the Network Monitoring Database, while the
latter are configured by an outside user application, through the NM Service.
The Network Monitoring Database describes the domain partition of the Grid, as
well as its components: for each element in the Grid (NM elements, Computing,
Storage etc.), the database holds a certificate (which contains a reference to a
domain) for the element, together with other relevant attributes.

2.1 The Passive Network Monitoring Component

The NM Sensor receives measurement requests from the NM Service: its interface
is summarized in Table 1, and Figure 2 describes its internal architecture.

The NM Service creates a new measurement session by sending a create
request, which specifies the type of the measurement and any measurement-
specific parameters, and returns a measurement identifier (mid). The creation of
a new measurement session does not imply that the measurement will immedi-
ately begin upon the receipt of the create request; this allows the NM Service to
activate or deactivate the measurement, also depending on resources availability
and timing requirements.

The measurements are carried out using specialized modules implemented on
top of MAPI [18], an API for building passive network monitoring applications.3

The basis of MAPI is the network flow abstraction, which is generally defined
as a sequence of packets that satisfy a given set of conditions. These conditions
range from simple header-based filters, to sophisticated protocol analysis and
content inspection functions.

The back-end of the NM Sensor consists of the basic components of MAPI,
namely the monitoring daemon mapid and the communication agent commd.
Packets are captured and processed by mapid: a user-level process with exclu-
sive access to the captured packets [18]. The monitoring modules are built as
separate applications on top of MAPI. MAPI internally handles all the commu-
nication between the modules and the monitoring daemon, making it completely
transparent.

The computed results of a measurement are pushed back to the NM Service
either on-the-fly, or upon the end of the measurement: the desired behavior is
passed in the create request.

In the rest of this section we describe the operation of the modules collecting
some relevant network metrics.

3 MAPI is available at http://mapi.uninett.no



Function Parameter Description

create Type Measurement type: traffic load, packet loss, or RTT

Arguments Measurement-specific parameters

Return value Measurement session identifier (mid) or error type

start Identifier The mid of the session to be started

Return value Acknowledgement or error type

stop Identifier The mid of the session to be stopped

Return value Acknowledgement or error type

close Identifier The mid of the session to be terminated

Return value Acknowledgement or error type

Table 1. API of the NM Sensor.

Monitoring
Interface

Captured Packets

Monitoring
Agent (mapid)

Communication
Agent (commd)

I/O Bus

NMS

Traffic Load
Module

MAPI stub

Packet Loss
Module

MAPI stub

RTT
Module

MAPI stub

Fig. 2. The architecture of the Network Monitoring Sensor.

The Network Traffic Load module provides traffic throughput metrics of vary-
ing levels of granularity by passively measuring the number of bytes transferred
through the monitored link. Besides aggregate throughput, fine-grained per-flow
measurements are available for observing the throughput achieved by specific
applications or hosts. MAPI supports generic BPF filters [14], as well as more
fine-grained filtering using pattern matching in the packet payloads through
string searching or regular expressions.

An estimation of the Packet Loss Ratio between two domains is measured
by two cooperating observation points, which keep track of packets of specific
flows that do not reach the destination within a timeout period. The packet loss
module needs traffic information from both ends. This is achieved by creating a
network flow in the local sensor, which keeps track of the outgoing packets with a
destination IP address that belongs to the remote domain, and a second network
flow at the destination domain, specified by the dstdomain parameter. The NM
Element of the other domain is instructed to create a second network flow, which
keeps track of the incoming packets with a source IP address that belongs to



the local domain. The packet loss ratio is then estimated by correlating the data
from the two network flows.

The Round-Trip Time is estimated using the time difference between the SYN
and ACK packets exchanged during the lifetime of existing TCP connections [12].
Each request specifies the destination domain for the end-to-end RTT measure-
ment using the dstdomain parameter. The module then creates a network flow
that captures the SYN and ACK packets of existing TCP connections between the
two domains, in the unidirectional flow from the local to the remote domain.
RTT is estimated from the time interval between the last-SYN and the first-ACK
that is sent from the local to the remote domain. The accuracy of the measure-
ment increases with its duration, since a longer duration allows for more TCP
connections to be tracked, which gives a better RTT estimation.

2.2 Outline of a secure group membership scheme

Security issues impose the use of certificates in order to identify the source
of configuration inputs to NM elements: this can be assimilated to the secure
management of a membership. An efficient and scalable certificates distribution
scheme is required [19], conceptually based on the NM Database, where cer-
tificates are stored. Access to this database must be secure and scalable, and
characterized by a small read access latency, a non bursty network overhead,
and a predictable write access latency.

In order to implement such characteristics, the database is replicated: an
(almost) complete replica of the whole database is kept at each NM Element.
The broadcast of update operations is performed using a number of circulating
tokens, each containing a stack of recently issued updates. The number of tokens
circulating in the system is tuned automatically, based on a feedback mechanism
that enables each NM Database Proxy to inject (or remove) a token when needed.

The peer-to-peer protocol used for token circulation is made secure using the
same certificates that are stored in the database itself: upon receiving a token
from a neighbor, the NM Database Proxy authenticates it using the public key of
the sender retrieved from the local database. In the exceptional case that peer’s
certificate is not present in the local database, a copy is downloaded from the
neighbor.

The protocol is resilient to network and host failures, since it does not follow
a preplanned path (or overlay network): tokens wander randomly in the system.
Although mostly based on random decisions, the protocol promises an excellent
stability and predictability: this conclusion is justified by simulation results re-
ported in [5]. The load is evenly distributed in time and space, while the update
latency remains constant.

The interface offered by this module to the upper layer consists of the op-
erations outlined in Table 2, and extends the use of the DB to the storage of
rather static characteristics of the Network Monitoring topology (like domain
partitioning): the select function returns the desired data, while the update
returns an acknowledgement. They take as parameters an SQL-like query and
the id of the Element for which the NM Service issues the request.



Function Parameter Description

select SQL select query The SQL-like query that returns the desired data

Submitter The id of the Element which submitted the query

Return value A data structure containing selected data

update SQL update query The SQL-like query that modifies the database

Submitter The id of the Element which submitted the query

Return value A data structure containing the query id

check Query id The id of the query

Return value A data structure containing the status of the query

Table 2. API of the NM Database Module.

While the select function is clearly synchronous, the update function is
not: the acknowledgement reflects the fact that the request has been success-
fully queued, not necessarily performed. In order to check the (likely) completion
of a requested update, the interface offers the check function, which takes as
parameter the update id returned as an acknowledgement, and returns the cur-
rent status of the update request, derived from the internal queue. The returned
status contains a prediction of the completion time.

3 Related work

The network monitoring management has been addressed by a number authors:
solutions are differentiated in the way they cope with scalability and security.

NWS [22] is the ancestor of network monitoring services, and it shares the
same building blocks with the architecture introduced in this paper: sensors and
a directory for available monitoring functions. However, NWS did not consider
at all scalability and security issues. Therefore, despite its importance as a proof
of concept, its applicability is limited to small, protected networks.

TopoMon [9] can be regarded as an evolution of NWS, in a direction which
is somewhat complementary to the approach followed in our work. In fact,
TopoMon extends NWS with tools and support for managing link level topology,
a knowledge we explicitly exclude from our interests. Although we understand
that this information is relevant (for instance, in view of a reservation service
that cannot ignore the existence of shared links when allocating end to end
communication resources), we prefer to explore scalability and security issues,
which are not addressed by TopoMon, instead of insisting on tools for exploring
communication infrastructure.

The JAMM [20] sensor management system has been implemented at
LBNL for purposes which are close to ours, and is able to configure sensors
upon request from applications. An LDAP based directory service keeps records
of available sensors, and data from sensors flow to the user applications through
specialized gateways. The authors suggest to use encrypted communication in
order to ensure security.

The architecture we present in this paper addresses security and scalability
aspects in a different way. In JAMM, gateways are used to decouple producers



from users, in order to limit the fan out from the sensors. Our model is character-
ized by a more composite approach to scalability: a support for domain partition
is provided, which limits the size of the problem, directory management is ad-
dressed with explicit reference to its complexity, passive monitoring is explicitly
supported to contain communication footprint, and finally the solution of the
fan out problem is delegated to a GIS, without introducing a new solution to a
problem that must be necessarily solved elsewhere.

An interesting approach to the problem of retrieving monitoring data is of-
fered by Gigascope [8], a stream oriented database for storing captured network
data in a central repository for further analysis using an SQL-like query language.

A large scale project that focuses on a scalable, secure monitoring infras-
tructure is NIMI [1]. The architecture introduced in this paper shares several
aspects with such large scale prototype: mainly, the strict separation of concerns
regarding making measurements, requesting measurements, analyzing results,
configuring probes is reflected in the internal structure of our NME. In our
architecture, which is at the design stage, we introduce a decentralized global
view of the overall network monitoring system, which serves as a support also
to service discovery. Such aspect is not covered by NIMI, which bases the local
knowledge of each probe on the information received by Configuration Point of
Contacts, without introducing any form of coordination between them.

We employ passive monitoring as a technology that fits our scalability re-
quirements: likewise, this approach is a cornerstone of the CoMo project [11].
One purpose of this project is to allow users to query network data gathered
from multiple administrative domains in a secure and reliable way, without in-
terfering with resource availability. The white paper which is available does not
address the organization of a registry of available sensors, which is needed to
address a large, domain structured network.

Sprint’s passive monitoring system [10] also collects data from different mon-
itoring points into a central repository for analysis. The authors observe that
the amount of data collected becomes rapidly unmanageable: in our design, this
drawback is resolved with the introduction of a domain oriented overlay network,
and by offering an interface for on demand monitoring.

Arlos et al. [6] propose a distributed passive measurement infrastructure that
supports various monitoring equipment within the same administrative domain.

An approach that makes use of passive monitoring is often based on packet
analysis libraries, which extract the desired pieces of information from the mon-
itored traffic. The most widely used library for this purpose is libpcap [16],
which provides a portable API for user-level packet capture. The libpcap inter-
face supports a filtering mechanism based on the BSD Packet Filter [15], which
allows for selective packet capture based on packet header fields. CoralReef pro-
vides a set of tools and supports functions for capturing and analyzing network
traces [13]. Nprobe [17] is a monitoring tool for network protocol analysis. It
is based on commodity hardware, and speeds up network monitoring tasks using
filters implemented in a programmable network interface.



The passive monitoring components of our system are based on MAPI [18],
which shares some functionality with the above monitoring systems, but at the
same time provides a more expressive programming interface with significantly
extended functionality and, in many cases, increased monitoring performance.
Additionally, the distributed version of MAPI [21] enables distributed network
monitoring applications through a flexible interface that allows the manipulation
of many remote monitoring sensors from a single application.

The overall approach described in this paper is derived from the GlueDo-
mains [4] prototype, which has been successfully deployed and used in the Grid
infrastructure of the Italian National Nuclear Physics Institute (INFN). How-
ever, the existence of a centralized repository for configuration data, together
with an extended use of active monitoring techniques, limits the scalability of
the GlueDomains prototype to approximately 50 domains, which is reasonable
only for a small-scale grid.

4 Conclusions

In this paper we outline the internal architecture and the interface of a net-
work monitoring service, specifically addressing security and scalability issues.
The basic building block is the Network Monitoring Element, a specialized Grid
component. A Grid contains several instances of this component, which is respon-
sible for monitoring Network Elements between Network Monitoring Domains.
A Network Monitoring Element carries out its monitoring activity using passive
monitoring, virtually without network overhead. Its activity is described by a
number of Network Monitoring Sessions. We exclude manual intervention for
its configuration, which should be carried out automatically, either using pre-
configured sessions, or preferably according to requests from resource brokers.

References

1. A. Adams, J. Mahdavi, M. Mathis, and V. Paxson. Creating a scalable architecture
for internet measurement. In Proceedings of INET98, Geneva, July.

2. C. Aiftimiei, S. Andreozzi, G. Cuscela, N. D. Bortoli, G. Donvito, S. Fantinel,
E. Fattibene, G. Misurelli, A. Pierro, G. Rubini, and G. Tortone. GridICE: Re-
quirements, architecture and experience of a monitoring tool for grid systems. In
Proceedings of the International Conference on Computing in High Energy and
Nuclear Physics (CHEP2006), Mumbai - India, February 2006.

3. S. Andreozzi, A. Ciuffoletti, A. Ghiselli, and C. Vistoli. Monitoring the connectivity
of a grid. In 2nd Workshop on Middleware for Grid Computing, pages 47–51,
Toronto, Canada 2004.

4. S. Andreozzi, A. Ciuffoletti, A. Ghiselli, and C. Vistoli. Gluedomains: Organization
and accessibility of network monitoring data in a grid. Technical Report TR-05-15,
Universit di Pisa, Largo Pontecorvo - Pisa -ITALY, May 2005.

5. S. Andreozzi, D.Antoniades, A.Ciuffoletti, A.Ghiselli, E.P.Markatos,
M.Polychronakis, and P.Trimintzios. Issues about the integration of passive
and active monitoring for grid networks. In CoreGRID Integration Workshop
2005, november 2005.



6. P. Arlos, M. Fiedler, and A. A. Nilsson. A distributed passive measurement in-
frastructure. In Proceedings of the 6th International Passive and Active Network
Measurement Workshop (PAM’05), pages 215–227, 2005.

7. R. Aydt, D. Gunter, W. Smith, M. Swany, V. Taylor, B. Tierney, and R. Wolski.
A grid monitoring architecture. Recommendation GWD-I (Rev. 16, jan. 2002),
Global Grid Forum, 2000.

8. C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk. Gigascope: a stream
database for network applications. In Proceedings of the ACM SIGMOD interna-
tional conference on Management of data, 2003.

9. M. den Burger, T. Kielmann, and H. E. Bal. TOPOMON: A monitoring tool for
grid network topology. In International Conference on Computational Science (2),
pages 558–567, 2002.

10. C. Fraleigh, C. Diot, B. Lyles, S. Moon, P. Owezarski, D. Papagiannaki, and F. To-
bagi. Design and Deployment of a Passive Monitoring Infrastructure. In Proceed-
ings of the Passive and Active Measurement Workshop, Apr. 2001.

11. G. Iannaccone, C. Diot, D. McAuley, A. Moore, I. Pratt, and L. Rizzo. The CoMo
white paper. Technical Report IRC-TR-04-17, Intel Research, 2004.

12. H. Jiang and C. Dovrolis. Passive estimation of tcp round-trip times. SIGCOMM
Comput. Commun. Rev., 32(3):75–88, 2002.

13. K. Keys, D. Moore, R. Koga, E. Lagache, M. Tesch, and K. Claffy. The architecture
of CoralReef: an Internet traffic monitoring software suite. In Proceedings of the
2nd International Passive and Active Network Measurement Workshop, Apr. 2001.

14. S. McCanne and V. Jacobson. The BSD packet filter: A new architecture for user-
level packet capture. In Proceedings of the USENIX Winter Conference, January
1993.

15. S. McCanne and V. Jacobson. The BSD Packet Filter: A New Architecture for
User-level Packet Capture. In Proceedings of the Winter 1993 USENIX Conference,
pages 259–270, January 1993.

16. S. McCanne, C. Leres, and V. Jacobson. libpcap. Lawrence Berkeley Laboratory,
Berkeley, CA. (software available from http://www.tcpdump.org/).

17. A. Moore, J. Hall, E. Harris, C. Kreibich, and I. Pratt. Architecture of a net-
work monitor. In Proceedings of the 4th International Passive and Active Network
Measurement Workshop, April 2003.

18. M. Polychronakis, K. G. Anagnostakis, E. P. Markatos, and A. Øslebø. Design of
an application programming interface for IP network monitoring. In Proceedings
of the 9th IEEE/IFIP Network Operations and Management Symposium (NOMS),
pages 483–496, April 2004.

19. A. S. Tanenbaum. Computer Networks, chapter 8.5. Prentice Hall, 4th edition,
2003.

20. B. Tierney, B. Crowley, D. Gunter, J. Lee, and M. Thompson. A monitoring sensor
management system for grid environments. Cluster Computing, 4(1):19–28, Mar.
2001.

21. P. Trimintzios, M. Polychronakis, A. Papadogiannakis, M. Foukarakis, E. P.
Markatos, and A. Øslebø. DiMAPI: An application programming interface for
distributed network monitoring. In Proceedings of the 10th IEEE/IFIP Network
Operations and Management Symposium (NOMS), April 2006.

22. R. Wolski. Dinamically forecasting network performance using the network weather
service. Technical Report TR-CS96-494, University of California at San Diego,
January 1998.


