

Saurashtra University Re – Accredited Grade 'B' by NAAC (CGPA 2.93)

Kathiriya, Paresh J., 2010, "Synthesis, Spectral Studies and Therapeutic Activity of some Heterocyclic Compounds", thesis PhD, Saurashtra University

http://etheses.saurashtrauniversity.edu/id/eprint/507

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author.

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given.

Saurashtra University Theses Service http://etheses.saurashtrauniversity.edu repository@sauuni.ernet.in

© The Author

SYNTHESIS, SPECTRAL STUDIES AND THERAPEUTIC ACTIVITY

OF

SOME HETEROCYCLIC COMPOUNDS

A THESIS SUBMITTED TO SAURASHTRA UNIVERSITY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY IN THE FACULTY OF SCIENCE (CHEMISTRY) BY PARESH J. KATHIRIYA

UNDER THE GUIDANCE OF **Dr. D. M. PUROHIT**

SHREE M. & N. VIRANI SCIENCE COLLEGE DEPARTMENT OF CHEMISTRY KALAWAD ROAD, RAJKOT-360005 (GUJARAT) INDIA

2010

Dr. D. M. Purohit, Department of Chemistry, Shree M. & N. Virani Science College, Rajkot-360005 Gujarat(INDIA) **Dr. D. M. Purohit,** B-149, "Shandilya", Shastrinagar, Nana mova road, Rajkot-5 Gujarat(INDIA)

Statement under O. Ph. D. 7 of Saurashtra University

The work included in the thesis is my own work under the supervision of **Dr. D. M. Purohit** and leads to some contribution in chemistry subsidised by a number of reference.

Date : - -2010 Place : **Rajkot.**

Paresh J. Kathiriya

This is to certify that the present work submitted for the Ph.D. Degree of Saurashtra University by **Paresh J. Kathiriya** is his own work and leads to the advancement in knowledge of chemistry. The thesis has been prepared under my supervision.

Date : - -2010 Place : **Rajkot.**

> Dr. D. M. Purohit Shree M. & N. Virani Science College Department of Chemistry Kalawad Road, Rajkot-360005.

DEDICATED TO MY BELOVED PARENTS

ACKNOWLEDGEMENTS

"Shree Aai Khodiyar Maa"

Hats off to the Omnipresent, Omniscient and Almighty God, the glorious fountain and continuous source of inspirations ! I offer salutations to him and my head bows with rapturous dedication from within my heart, to the Omnipotent Lord

"Shree Aai Khodiyar Maa"

An endeavor such as a Ph.D. is impossible to accomplish without the generous help and support of my family, friends and colleagues. I would like to take this opportunity to thank those whom I was fortunate to know, work, and form friendship with over the past three years.

First I would like to express my deep appreciation and gratitude to my cotraveler and guide **Dr. D. M. Purohit** Lecturer, Department of Chemistry, Shree M. & N.Virani Science College, Rajkot. His dedication to science, unwavering demand for excellence from him has set up a high standard for his students to look up to and to follow. I appreciated the freedom he allowed, which permitted me to develop scientific thoughts and experimental skills independently, lofty research methodology and the motivation as well as them highly punctual, affectionate.

I also owe to, from the deepest corner of heart, deepest sense of gratitude and indebtedness to **Dr. V. N. Patolia** Head, Department of Chemistry, Kamani Science College, Amreli. I have been constantly benefited with them.

Who in this world can entirely and adequately thank the parents who have given us everything that we possess in this life ? The life it self is their gift to us, so I am at loss of words in which to own my most esteemed father late. **Shri Jasubhai** and my loving mother **Smt. Bhanuben**. I would be remised if I failed to express my special gratitude to my elder brother **Hiren & his wife Nidhi**. Through the stress and strain of this study, my wife **Archana** has encouraged me to reach my destination.

I am deeply indebted to the **Mr. Vipul P. Gohel** for his help suggestions, encouragement and kindness that made my research work success.

I feel great pleasure to acknowledge my deepest sense of indebtedness to **Mr. Dipak Bhagia**, **Mr. Prakash Bhatt, Chetan** and **Rohit** for her invaluable inspiration and moral support through the course of my research work.

I wish to thank **Dr. Vipul V. Bhuva**, **Dr. Jayesh V.Guna** and **Mr. Mahendra Savalia** for his most willing co-operation and comprehensive exchange of ideas during the course of my research work.

I offer my heart full gratitude to Jignesh **Lunagaria**, **Dr. Vijay Lunagariya**, my research colleagues for their support and much fruitful discussion at various stages. I am most thankful to all my families' member for their valuable co-operation and help during the course of my work.

I am thankful to Principal and Management of Shree M. & N. Virani Science College, Rajkot for their kind support and providing chemicals, research place and glassware's on time his co-operation in magnifying the presentation of my work in the form of thesis.

I gratefully acknowledge the most willing help and co-operation shown by **Department of Chemistry. Saurashtra University, Rajkot**. CIL Chandigadh for spectral studies.

Finally, I express my grateful acknowledgement to **Department of Chemistry, Shree M. & N. Virani Science College** for providing me the excellent laboratory facilities.

Paresh J. Kathiriya

SÝNTHESIS, SPECTRAL STUDIES AND THERAPEUTIC ACTIVITY OF SOME HETEROCYCLIC COMPOUNDS

CONTENTS

SYNTHESIS, SPECTRAL STUDIES AND THERAPEUTIC ACTIVITY OF SOME HETEROCYCLIC COMPOUNDS.

			Page No.		
SYNOPSIS			001		
Introduction			014		
Subject Introduction			016		
PART - I :	STUDIES ON CHAI	LCONES			
Introduction			022		
Section-I :	Synthesis and Antimicrobial activity of				
	2-{4'-[(3''-Aryl)-2''-F	2-{4'-[(3''-Aryl)-2''-Propene-1''-one]-phenylamino}-6-			
	[Bis(2'''-chloroethyl) amino]-4-methoxy-1,3,5-triazine.				
Introduction and spectral studies			029		
Experimental	1		036		
PART - II :	STUDIES ON ISOX	AZOLES			
Introduction			044		
Section-I :	Synthesis and Antim	icrobial activity of 2-{4'-[(5''-aryl)-			
	Isoxazole-3''-yl]-phenylamino}-6-[Bis(2'''-chloroethyl)				
	amino]-4-methoxy-1,	3,5-triazine.			
Introduction and spectral studies			049		
Experimental	1		055		
PART - III :	STUDIES ON PYRA	ZOLINES			
Introduction			059		
Section-I :	Synthesis and Antim	icrobial activity of 2-{4'-[(5''-Aryl)			
	4",5"-dihydro-1"-(H	[)-Pyrazol-3''-yl]-phenylamino}			
	-6-[Bis (2"'-chloroet	hyl) amino] – 4 - methoxy-1,3,5-triaz	ine.		
Introduction and spectral studies			065		
Experimental	1		071		

Section-II : Sy	Synthesis and Antimicrobial activity of 2-{4'-[(5"-aryl)-4", 5"-			
dil	dihydro 1''-acetyl Pyrazol-3''-yl]-phenylamino} – 6 - [Bis (2''-			
ch	chloroethyl) amino]-4-methoxy-1,3,5-triazine.			
Introduction and spectral studies				
Experimental		081		
Section-III: Sy	nthesis and Antimicrobial activity of 2-{4'-[(5''-Aryl)-			
4''	4",5"-dihydro-1"-Phenyl Pyrazole-3"-yl]-phenylamino}			
- 6	6 - [Bis (2''- chloroethyl) amino]– 4– methoxy -1,3,5-triazine	2.		
Introduction and	d spectral studies	085		
Experimental		091		
PART-IV: ST	TUDIES ON PYRIMIDINES			
Introduction		095		
Section-I: Syn	thesis and Antimicrobial activity of			
2-{4	l'-[(6''-Aryl)-2''-mercapto-3", 4"- dihydro			
-pyr	rimidine-4"-yl] -phenylamino}–6–			
[Bis	s (2"'-chloroethyl)amino]–4–methoxy-1,3,5-triazine.			
Introduction and	d spectral studies	102		
Experimental		108		
Section-II : Sy	nthesis and Antimicrobial activity of			
2-{	2-{4'-[(6''-Aryl)-2''-hydroxy-3'', 4'' - dihydro -			
ру	rimidine - 4'' - yl] - phenylamino} – 6 –			
[B	is (2"' - chloroethyl) amino] – 4 – methoxy - 1,3,5-triazine.			
Introduction and	d spectral studies	112		
Experimental		118		
Section-III : Sy	nthesis and Antimicrobial activity of			
2-{	{4'-[(6''-Aryl)-2''-amino-3'', 4'' – dihydro– pyrimidine			
- 4	" – yl] – phenylamino } – 6 -[Bis(2"'-chloroethyl) amino]			
-4-	-methoxy-1,3,5-triazine.			
Introduction and spectral studies				
Experimental				
PART-V : STUDIES ON CYANOPYRIDINES				
Introduction				

Section-I :	Synthesis and Antimicrobial activity of			
	2-{4'-[(6''-Aryl)-2''-amino-3''-cyanopyridine-4''-yl]			
	-phenylamino}-6-[Bis(2'''-chloroethyl) amino]			
	-4-methoxy-1,3,5- trizine.			
Introduction and spectral studies				
Experimenta	1		144	
Section-II :	Synthesis and Antimic	robial activity of		
	2-{4'-[(4''-Aryl)-3''-cya	ano-2''-methoxy-pyridine-6''-yl]		
	-phenylamino}-6-[Bis(2'''-chloroethyl) amino]			
	-4-methoxy-1,3,5-triaz	ine.		
Introduction	and spectral studies		148	
Experimenta	1		154	
Section-III :	Synthesis and Antimic	robial activity of		
	2-{4'-[(4''-Aryl)-3''-cya	ano-2''-ethoxypyridine-6''-yl]		
	-phenylamino}-6-[Bis(2'''-chloroethyl) amino]		
	-4-methoxy-1,3,5-triaz	ine.		
Introduction	and spectral studies		158	
Experimenta	1		164	
Section-IV :	Synthesis and Antimic	robial activity of		
	2-{4'-[(4''-Aryl)-3''-cyano-2''-hydroxypyridine-6''-yl]			
	-phenylamino } - 6 - []	Bis (2'''- chloroethyl) amino]		
	– 4 - methoxy-1,3,5-tri	azine.		
Introduction and spectral studies			168	
Experimenta	1		174	
рарт ул.	STUDIES ON CVNOI	DX7D A NIC		
PARI-VI:	STUDIES ON CYNUF	PYKANS	170	
Section L.			1/ð	
Section-1:	Synthesis and Antimic $2 \left(\frac{41}{2} \right) \left(\frac{21}{2} \right)$	robial activity of		
	$2-\{4-\lfloor (2-Amin0-4-A$	(H)-Pyran-3-carbonitrile)		
	- 6 - yı]-pnenylamino	=[Bis (2 - cmoroetnyi)amino]		
-4-metnoxy-1,3,5-triazine.				
	and spectral studies		104	
Experimenta	1		190	

PART-VII:	STUDIES ON QUIN	IOXALINES			
Introduction			194		
Section-I :	Synthesis and Antim	nicrobial activity of			
	[2"-Aryl-(quinoxaline	e)3-yl]-(methylenephenylamino)			
	-6-[Bis(2'''-chloroethy	yl)amino]-4-methoxy-1,3,5-triazine.			
Introduction	and spectral studies		199		
Experimenta]		205		
PART-VIII :	STUDIES ON BARE	BITONES			
Introduction			209		
Section-I :	Synthesis and Antim	nicrobial activity of			
	2-{4'-[(3"-Aryl)-2"-]	Propene-1''-one]-phenylamino}-6-			
	[Bis(2'''-chloroethyl]) amino]-4-methoxy-1,3,5-triazine.			
Introduction	and spectral studies		214		
Experimenta	1		220		
PART-IX :	STUDIES ON THIC	SEMICARBOXIMIDES			
Introduction			224		
Section-I :	Synthesis and Antim	nicrobial activity of			
	2-{4'-[(3"-Aryl)-2"-]	Propene-1''-thiosemicarboximes]	-		
	phenylamino}–6-[Bi	s(2'''-chloroethyl)amino]			
	-4-methoxy-1,3,5- tr	iazine.			
Introduction	and spectral studies		229		
Experimenta	1		235		
PART-X:	STUDIES ON TRIA	ZOLES			
Introduction			239		
Section-I :	Synthesis and Antim	icrobial activity of			
	2-{4'-[(3"-Aryl)-2"-]	Propene-1''-N-(1,2,4-triazole)amino]}			
	-6-[Bis (2"'- chloroe	thyl)amino]-4-methoxy-1,3,5-triazine	•		
Introduction	and spectral studies		243		
Experimenta	1		249		
REFERENC	ES		253-285		
List of Paper	s Publication		286		
List of Compounds Selected for Anti Cancer Activity NCI-USA287					

SYNOPSIS

SYNTHESIS, SPECTRAL STUDIES AND THERAPEUTIC ACTIVITY OF SOME HETEROCYCLIC COMPOUNDS.

The research work presented in the thesis with the title, "SYNTHESIS, SPECTRAL STUDIES AND THERAPEUTIC ACTIVITY OF SOME HETEROCYCLIC COMPOUNDS" has been described as under.

The aim of research is to be develop new bioactive entitles, especially with biological activities bearing heterocyclic ring system namely Bis (2-Chloroethyl) amine 1, 3, 5-triazine molecules. Numerous heterocyclic compounds like chalcones, isoxazoles, pyrazolines, pyrimidines, cyanopyridines, cyanopyrans, quinoxalines, barbitones and thiosemicarbazides, triazoles have been synthesized.

1, 3, 5-triazine and Bis (2-Chloroethyl) amine represent one of the most class of compounds possessing a wide spectrum of bactericidal, fungicidal, anticancer, antiviral, anti-inflammatory activities etc. With a view of to synthesize some new s-triazine, 2, 2-dichloro diethylamine derivatives which have been described as under.

PART - I : STUDIES ON CHALCONES

Chalcones are Phenyl styrylketones containing reactive keto ethylenic group (-CO-CH=CH-). Liturature serve reveals that chalcones derivatives possess antibacterial, antiviral, antifungal activities. Hence, it was thought worth while to synthesis chalcones derivatives of which have been described as under.

Section-I : Synthesis and Antimicrobial activity of 2-{4'-[(3''-Aryl)-2''-Propene-1''- one]-phenylamino}-6-[Bis(2'''-chloroethyl) amino]-4-methoxy-1,3,5-triazine.

The chalcones of Type-(I) have been synthesized by the condensation of 2-[(4'- acetyl) phenyl amino]-6-[Bis (2"-chloro ethyl)] amino-4-methoxy-1,3,5-triazine with aromatic aldehyde in presence of aqueous NaOH.

PART - II : STUDIES ON ISOXAZOLES

Isoxazole derivatives are the potent biological activities, these have been reported to be active as antidepressants, antibacterial, antifungal, antiviral, antiinflamatory, analgesics and Bis (2-chloroethyl) amine possess anticancer, anti-HIV activities. In order to achieving better potency to synthesize isoxazole derivatives which are described as under

Section-1 : Synthesis and Antimicrobial activity of 2-{4'-[(5"-aryl)-Isoxazole-3"yl]- phenylamino}-6-[Bis(2"'-chloroethyl) amino]-4-methoxy-1,3,5triazine.

Isoxazole of Type-(II)-have been syntesized by chemoselective cyclisation between chalcones of Type-(I) with hydroxyl amine hydrochloride.

PART - III : STUDIES ON PYRAZOLINES

Pyrazoline derivatives possess broad spectrum of pharmacological activities which are reflected by their use as analgesic, anticonvulsant, antimicrobial, antipyratics etc. The main moiety Bis (2-chloroethyl) amine, 1,3, 5-triazine nucleus have been reported to be active as antineoplastic agents with a view of above facts. Some new pyrazolines have been synthesized which have been described as under.

Section-I: Synthesis and Antimicrobial activity of 2-{4'-[(5"-Aryl) 4", 5"dihydro-1"-(H)-Pyrazol-3"-yl]-phenylamino} -6-[Bis (2"'-chloroethyl) amino] - 4 - methoxy-1,3,5 - triazine.

Pyrazoline derivatives of Type-(III) have been synthesized by the condensation of chalcones of Type-(I) with hydrazine hydrate.

Section-II : Synthesis and Antimicrobial activity of 2-{4'-[(5"-aryl)-4", 5"dihydro 1"-acetyl Pyrazol-3"-yl]-phenylamino} – 6 - [Bis (2"chloroethyl) amino]-4-methoxy-1,3,5-triazine.

Acetyl pyrazolines derivatives of Type (IV) have been synthesized by the condensation of chalcones of Type-(I) with hydrazine hydrate and glacial acetic acid.

Section-III: Synthesis and Antimicrobial activity of 2-{4'-[(5"-Aryl)-4", 5"dihydro-1"-Phenyl Pyrazole-3"-yl]-phenylamino} – 6 - [Bis (2"chloroethyl) amino] – 4 – methoxy - 1,3,5 - triazine.

Phenyl Pyrazoline derivatives of Type-(V) have been synthesized by the condesation of chalcones of Type-(I) with phenyl hydrazine.

PART-IV : STUDIES ON PYRIMIDINES

Pyrimidine nucleus possess remarkable pharmaceutical and biological activities. Pyrimidine derivatives are associated with various biological activities like antibacterial, antifungal, antitubercular, antimalarial, antitumor, antihypertensive etc. This valid observation led us to synthesize some new medicinally active compounds which have been described as under.

Section-I: Synthesis and Antimicrobial activity of 2-{4'-[(6''-Aryl)-2''mercapto-3", 4"- dihydro- pyrimidine-4"-yl] -phenylamino} – 6 -[Bis (2'''- chloroethyl) amino] – 4 – methoxy - 1,3,5 - triazine.

Pyrimidine derivatives of Type-(VI) have been synthesized by the reaction of chalcones of Type-(I) with thiourea in the presence of alcoholic potassium hydroxide.

Section-II : Synthesis and Antimicrobial activity of 2-{4'-[(6''-Aryl)-2''-hydroxy-3'', 4'' – dihydro – pyrimidine - 4'' - yl] - phenylamino} – 6 - [Bis (2''' - chloroethyl) amino] – 4 – methoxy - 1,3,5-triazine.

Pyrimidine derivatives of Type-(VII) have been synthesized by the reaction of chalcones of Type-(I) with urea.

Section-III : Synthesis and Antimicrobial activity of 2-{4'-[(6''-Aryl)-2''-amino-3'', 4'' - dihydro - pyrimidine - 4'' - yl] - phenylamino } - 6 -[Bis(2'''-chloroethyl) amino]-4-methoxy-1,3,5-triazine.

Primidine derivatives of Type-(VIII) have been synthesized by the reaction of chalocnes of Type-(I) with guanidine hydrochloride.

PART-V : STUDIES ON CYANOPYRIDINES

In recent years, much interest have been focused of cyano pyridine derivatives showed wide range of application in the field of pharmaceutical. Cyano pyridine derivative have been reported to be active as antibacterial, antimalarial, antihypertensive, antineoplastic, antifungal, anticonvulsant etc. Considering these facts we thought it is worth while to syntesize some new cyanopyridine derivatives in association with s-triazine nucleus in search of better potential drugs. Which have been describe as under. Section-I: Synthesis and Antimicrobial activity of 2-{4'-[(6''-Aryl)-2''-amino-3''-cyanopyridine-4''-yl]-phenylamino}-6-[Bis(2'''-chloroethyl) amino]-4-methoxy-1,3,5- trizine.

Pyridine derivatives of Type-(IX) have been synthesized by the reaction of the chalcones of Type-(I) with malono nitile in presence of ammonium acetate.

Section-II: Synthesis and Antimicrobial activity of 2-{4'-[(4"-Aryl)-3"-cyano-2"-methoxy-pyridine-6"-yl]-phenylamino}-6-[Bis(2"'-chloroethyl) amino]-4-methoxy-1,3,5-triazine.

Pyridine derivatives of Type-(X) have been synthesized by the reaction of the chalcones of Type-(I) with malono nitrile in presence of sodium methoxide.

Section-III : Synthesis and Antimicrobial activity of 2-{4'-[(4''-Aryl)-3''-cyano-2''-ethoxypyridine-6''-yl]-phenylamino}-6-[Bis(2'''-chloroethyl) amino]-4-methoxy-1,3,5-triazine.

Pyridine derivatives of Type-(XI) have been synthesized by the reaction of chalcones of Type-(I) with malonoitrile in presence of sodium ethoxide.

Section-IV : Synthesis and Antimicrobial activity of 2-{4'-[(4"-Aryl)-3"-cyano-2"-hydroxypyridin-6"-yl] - phenylamino } - 6 - [Bis (2"'chloroethyl) amino] - 4 - methoxy-1,3,5-triazine.

Pyridine derivatives of Type-(XII) have been synthesized by the reaction of the chalcones of Type-(I) with ehtyl cyano acetate in presence of ammonium acetate.

PART-VI : STUDIES ON CYANOPYRANS

Cyanpoyran derivatives have been reported to various pharmacological activities like antibacterial, antiviral, antifungal etc. In order to develop better pharmacologically important compounds, it was considered of interest to synthesize some new cyanopyran derivatives shown as under.

Section-I : Synthesis and Antimicrobial activity of 2-{4'-[(2''-Amino-4''-Aryl-4''-(H) – Pyran – 3 - carbonitrile) - 6'' - yl] - phenylamino} – 6 - [Bis (2''' -chloroethyl) amino]-4-methoxy-1,3,5-triazine.

Cyanopyran derivatives of Type-(XIII) have been synthesized by the reaction of chalcones of Type-(I) with malononitrile in pyridine.

PART-VII : STUDIES ON QUINOXALINES

Quinoxalines have been found to possess wide range of therapeutic activities and industrial importance. These significant biological properties have aroused considerable interest to design the compounds in which Bis (2-chloroethyl) amine, 1,3,5-triazine nucleus in incorporated with a view to getting compounds with better potential drug.

Synthesis of quinoxalines of Type-(XIV) have been undertaken by the cyclocondensation of dibromo derivatives of chalcones of Type (I) with o-phenylenediamine as under.

Section-I : Synthesis and Antimicrobial activity of [2"-Aryl-(quinoxaline)3-yl]-(methylene phenylamino)-6-[Bis(2"'-chloroethyl) amino]-4-methoxy - 1,3,5 - triazine.

Quinoxaline derivatives of Type-(XIV) have been synthesized by the reaction of chalcones of Type-(I) with bromine in glacial acetic acid and O-phenylene diamine.

PART-VIII : STUDIES ON BARBITONES

Barbituric acid derivatives are a wide spectrum of biological activites. Bis (2chloroethyl) amine, 1,3,5-triazine molecules possess diversified anticancer, anti-HIV, and other therapeutic activities, considering all the above facts, it was though that barbituric acid group could be introduced to moiety, which have been described as under.

Section-I : Synthesis and Antimicrobial activity of 2-{4'-[(3"-Aryl)-2"-Propene-1"- barbituric acid]-phenylamino}-6-[Bis(2"'-chloroethyl) amino]-4methoxy-1,3,5-triazine.

Barbituric acid derivatives of Type-(XV) have been synthesized by the reaction of chalcones fo Type-(I) with Barbituric acid in galcial acetic acid.

PART-IX : STUDIES ON THIOSEMICARBOXIMIDES

Thiosemicarboximes derivatives possess broad spectrum of therapeutic activity and antidiabetic, bactericidal, anticonvulsant, antipyretic etc, with a view of above facts to synthesize various thiosemicarboximes derivatives are represented as under.

Section-I : Synthesis and Antimicrobial activity of 2-{4'-[(3''-Aryl)-2''-Propene-1''- thiosemicarboximes] - phenylamino} – 6 - [Bis(2'''-chloroethyl) amino]-4-methoxy-1,3,5- triazine.

Thiosemicarboximes derivatives of Type-(XVI) have been syntheszied by the reaction of chalcones of Type-(I) with Thiosemicarbazide in alcohol.

PART-X : STUDIES ON TRIAZOLES

Triazole derivatives possess wide spectrum of biological activity considering above facts, it was thought that triazole group could be introduced to moiety which have been described as under.

Section-I: Synthesis and Antimicrobial activity of 2-{4'-[(3''-Aryl)-2''-Propene-1''-N-(1,2,4-triazole)amino]} – 6 - [Bis (2''' - chloroethyl) amino]-4methoxy - 1,3,5-triazine.

Triazole derivatives of Type-(XVII) have been synthesized by the reaction of chalcones of Type-(I) with 4-amino-1,2,4-triazole in alcohol.

The structure elucidation of the synthesized compounds have been done on the basis of elemental analysis, IR and ¹H NMR spectroscopy and further supported by mass spectroscopy. The purity of the synthesized compounds checked by TLC.

All the compounds have been also evaluated for their antibacterial activity towards Gram +ve and Gram -ve bacteria and also evaluated antifunal activity at a concentration of 50μ g/ml. The antimicrobial activity of the synthesized compounds have been compared with known standard drugs.

SYNTHESIS, SPECTRAL STUDIES

AND

THERAPEUTIC ACTIVITY

OF

SOME HETEROCYCLIC COMPOUNDS

SYNTHESIS, SPECTRAL STUDIES AND THERAPEUTIC ACTIVITY OF SOME HETEROCYCLIC COMPOUNDS

INTRODUCTION

Heterocyclic chemistry has been unparalled progress owing to their wide natural occurrence, specific chemical reactivity and broad spectrum utility.

Hetrocyclic compounds have great applicability in pharmaceutical, because they have specific chemical reactivity and provides false synthons in biosynthetic process.

Some heterocyclic compounds must ideally have a broad spectrum of activity with a rapid bactericidal action. We must always continue search new heterocyclic moleculer and identify its respective drugs activity. To take the care for synthesis new hetercyclic moleculer a lower toxicity, a partial or total absence of undesirable side effects, more neutritive value, improved stability, a decrease in production cost and check the qualitative or quantitative improvement in activity with standard drugs. Bis dichloro ethyl amine and s-triazene derivatives have been reported as a valuable medicine chemistry point of view e.g. anticancer, anthelmintic, antihistamine, Anti-HIV, antimalarial, antiviral, antifungal etc. s-triazine, substitutents serves as nucleus to a host of compound which are associated with wide spectrum of therapeutic activity.

Heterocyclic compounds have great biological significance properties.

- (1) They have a specific chemical reactivity.
- (2) They resemble essential metabolism and can also provide false synthons in biosynthetic process.
- (3) They fit receptors and block their normal working.
- (4) They provide convenient building blockers to which biologically active substituent's can be attached.

The interesting biological activities of heterocycles have stimulated considerable research work in recent years including to the synthetic utility.

Heterocyclic compounds can be synthesised by cyclization reactions (accompanied by elimination of small molecules) addition reactions; (adduct formation), ring transformation reactions or replacement involving groups. Formation of heterocycle from acylic compounds alters the reactivity.

AMIMS AND OBJECTIVES

Population of our country is skyrocketing number of diseases are uncoured e.g. cancer, Aids etc.

In the pharmaceutical field, there is a need for new and novel chemical inhibitors of biological functions. Our efforts are focused on the introduction of chemical diversity in the molecular frame work in order to synthesizing pharmacologically interesting heterocyclic compounds of widely different composition. During the course of research work looking to the applications of heterocyclic compounds, several entities, have been designed, generated and characterized using spectral studies. The aims and objectives of the work carried out are as under.

- (1) To synthesise pharmacologically active entities like chalcones, isoxazoles, pyrazolines, pyrimidines derivatives, cyanopyrans, quinoxalines, barbitonees, thiosemicarboximides triazoles bearing Bis-(2-chloro ethyl) amine and S-triazine moiety.
- (2) To characterize these products for structural elucidation using spectroscopic technique like IR, ¹H NMR and Mass spectral studies.
- (3) To check the purity of all compounds using thin layer chromatography.
- (4) To evaluate these new products for better drug potential against different strain of bacteria and fungi. Activity of synthesized compounds compared with known standard drugs.
- (5) Some compounds selected for anticancer activity.

The research work is presented as studies on Bis (2-chloro ethyl) amine and S-triazine molecules included in our moiety.

SUBJECT INTRODUCTION

Bis(2-chloro ethyl) amine :

Literacher surve reveals that Bis (2-chloro ethyl) amine derivatives shows antineoplastic activity which are described as under.

 (i) 4-[Bis (2-chloroethyl) amino] Benzene butanoic acid "chorambicil" was reported as a antineoplastic agent.

[Ref. US 304301 [Boroughs well come (24-1-1962)]

 (ii) 5-[Bis (2-chloroethyl) amino]-2, 4-(1H, 3H) pyrimidinedione "Uracil mustard" or "uramustine" was reported antineoplastic agent.

[Ref. US 2969364 (Upjohn) (24-1-1961)]

 (iii) 4-[Bis (2-chloroethyl) amino] - 2- amino propanoic acid "Melphalan" was reported antineoplastic agent.

[Ref. US : 3032585 (Nat. Res. De V. crop) (1-5-1962)]

(iv) "Nimustine" N-[(4-Amino 2-methyl-5-pyrimidinly) methyl)-N-(2-chloro ethyl)-N-nitroso urea was reported as a antineoplastic agent.

[Ref : US 4003901 Sankyo (18-1-1977)]

(v) T. P. Johnston et. al. have been synthesised "Lomustine" as a antineoplastic agent.

[Ref : J. Med. Chem. (JMCMAR) 9, 892 (1966)]

(vi) "Pipobroman", 1, 4-bis (3-bromo-1-oxo propyl) piperazine was reported as a antineoplastic agent.

Pipobroman

[Ref : DE 113878 (Abbott : Appl, 10-10-1960)

Bis (2-chloroethyl) amine derivatives procuring better therapeutic activity. Looking at their versatile therapeutic importance introduced this group in our moiety.

S-Triazine :

S-Triazine nucleus has been extensively explored for their applications in the field of medicine, agriculture and industrial chemisty. Although many substituted S-

triazine compounds like other hetero cyclic compounds are synthesised with their functional group present from cyclic compounds.

S-Trizine is a six membered heterocyclic ring having three nitrogen atom present at 1, 3, 5-position.

S-Triazine derivatives possoss wide range of biological activities like herbicidal, anticancer, antibacterial, antifungal etc., with a view of getting to introduced this molecules in our moiety.

(i) Shapiro et. al. have been reported N-Phenyl - 1, 3, 5-triazine-2, 4 diamine "Amanozine" as a diuretic drug.

Amanozine

[Ref : Shapiro, J. Am. Chem. Soc. 76, 93 (1954)]

(ii) A. E. Johnson reported 2, 6-di (isopropyl amine)-4-methoxy-S-triazine "Prometon" as a herbicidal.

[Ref : A. E. Johnson Am. J. Vet. Res. 33, 1433 (1972)

(iii) M. D. Incalci et al. have been synthesised 2, 4, 6-tris (dimethyl amino)-S-triazine. "Altretamine" and reported as a antineoplastic agent.

[Ref. M. D. In calci, Brit. J. Cancer, 41, 630 (1980).]

(iv) Eichler, staib have been synthesised 2, 4, 6-tris (methylolamino)-1,3,5triazine and reported it was a antineoplastic agent.

Tri methylol melamine

(v) Thurston et. al. have synthesised 2-chloro-4, 6-Bis (ethyl amino)-s-triazine"Simazine" and reported its herbicidal activity.

[Ref. Thurston, ibid. 73, 2981 (1951)]

(vi) Kniisli have been synthesised 2, 4-bis-(ethyl amino)-6-(methlythio)-s-triazine"simetryne" represent herbicidal activity.

[Ref. Kniisli, C.A., 57, 14226 (1962)]

(vii) Taft et. al. have been synthesised 4-maino-N-(4, 6-diethyl-1,3,5-triazin-2-yl) benzene sulfonamide "Sulfasymazine" and reported as a antibacterial.

[Ref : Taft et al. J. Med. Chem. 8, 784 (1965)]

Thus the important role displayed by Bis (2-chloro ethyl) amine; S-Triazine and its deivatives shows various therapeutic and biological activity prompted us to synthesis some chalcones, pyrazoles, cyanopyridines, isoxazoles, pyrimidines, cyano pyrans, quinoxalines, barbitones, triazoles derivatives bearing in Bis (2-chloro ethyl) amine-S-triazine moiety in order to active compounds having better biological activities as described in the following parts.

- PART I STUDIES ON CHALCONES
- PART II STUDIES ON ISOXAZOLES
- PART III STUDIES ON PYRAZOLINES
- PART IV STUDIES ON PYRIMIDINES
- PART V STUDIES ON CYANOPYRIDINES
- PART VI STUDIES ON CYANOPYRANS
- PART VII STUDIES ON QUINOXALINES
- PART VIII STUDIES ON BARBITONES
- PART IX STUDIES ON THIOSEMICARBOXIMIDES
- PART X STUDIES ON TRIAZOLES

PART – I

STUDIES ON CHALCONES

STUDIES ON CHALCONES

INTRODUCTION

The chemistry of chalcones (M) have generated intensive scientific studies through out the world specially interesting are their biological and industrial applications. Chalcones are coloured compounds because of the presence of the chromophore, auxochromes. They are known as benzalacetophenones or benzylidene acetophenones. S. V. Kostanecki and J. Tambor¹ have gave the name chalcone".

Chalcone are characterised by their possession of a structure in which two aromatic rings A and B are linked by an aliphatic three carbon chain.

The alternative names given to chlacones are pheny1 styry1 ketones, benzalacetophenones. β -pheny1 acry1phenone, γ -oxo- $\alpha - \gamma$ -dipheny1- α -propy1ene and α -pheny1- β -benzoethylene.

SYNTHTIC ASPECT :

A considerable variety of methods are available for the synthesis of chalcones. The most convenient method is one that involves the Claisen-Schmidt condensation of equimolar quantities of an ary1 methy1 ketones with ary1 a1dehyde in presence of alcoholic alkali.²

Several condensing agents used are alkali of different strength³⁻⁴, hydrogen chloride^{5,6}, Phosphorous oxychloride⁷, Piperidine⁸, anhydrous Aluminium choride⁹,

Boron trifluoride¹⁰, aqueous solution of borax¹¹, amino acid¹² and perchloric acid¹³ etc.

MECHANISM :

Chalcone formation proceeds through aldol type of condensation and the process is catalysed by the presence of alkali¹⁴, following steps of the reaction mechanism are as under.

The intermediate Aldol type of products formed readily undergoes dehydration even under mild condition, particularly when R and R' are aryl groups.

REACTIVITY OF CHALCONES :

The chalcone have been found to be useful for the synthesis of variety of heterocyclic compounds are as under.

- (a) Pyrazolines¹⁵ and its derivatives can be prepared by the condensation of chalcones with hydrazine hydrate and acetic acid.
- (b) Chalcones on condensation with malononitrile and ammonium acetate yields
 2-amino-3-cyano pyridines¹⁶.

- (c) Isoxazoles¹⁷ can be prepared by the treatment of chalcones with hydroxylamine hydrochloride and sodium acetate.
- (d) Chalcone on condensation with malononitrile in pyridine forms 2-amino 3cyanopyrans.¹⁸
- (e) Chalcones on treatment with urea in presence of alkali to affords 2-oxo Pyrimidines¹⁹.
- (f) Chalcones on reaction with thiourea in presence of alkali/acid yields 2-thio pyrimidines.²⁰
- (g) Chalcones on treatment with guanidine hydrochloride in presence of alkali to affords 2-amino pyrimidines.²¹
- (h) Chalcones reacts with P_2S_5 yielding 2-isothiazolines.²²
- (i) Chalcones with sodium nitrile in presence of glacial acetic acid in ethanol produces 2-(H)-pyrimidines.²³
- (j) Chalcones with monoethanolamine in ethanol gives, 1, 4-oxazipines.²⁴
- (k) Chalcones with 2-amino thiophenol in acetic acid produces 1, 5-thiazepines.²⁵
- (1) Chalcones on reaction with semicarbazide hydrochloride in ethanol affords lcaroxamide pyrazolines.²⁶
- (m) Chalcones on reaction with 2-aminopyrimidine in glacial acetic acid affords pyrido pyrimidines.²⁷
- (n) Oxiran²⁸ can be prepared by the reaction of chalcone with H_2O_2 in basic media.
- (o) Cyanopyridone²⁹ derivatives can be prepared by the condensation of Chalcone with ethyl cyanoacetate.
- (p) Chalcones gives imine derivatives with amine in presence of sulphuric acid as a catalyst.³⁰
(q) Chalcone on reaction with barbituric acid gave barbitone derivatives.³¹

THERAPEUTIC INTEREST :

Chalcones are potential bioactive in nature, some naturally occuring antibiotics and amino chalcones probably own their biological activity to the presence of α , β -unsturated carbonyl group.

- (a) Insecticidal^{32,33}
- (b) Antiulcer³⁴
- (c) Antiinflammatory 35,36
- (d) Bactericidal^{37,38}
- (e) Fungicidal^{39,40}
- (f) Antiviral⁴¹
- (g) Anthelmintics 42
- (h) Antiallergic 43
- (i) Carboxygenase inhibitor⁴⁴
- (j) Antitumor^{45,46}
- (k) Antimalarial⁴⁷
- (l) Anticancer⁴⁸
- (m) Antileishmanial⁴⁹

Moreover, synthesis and antibacterial activity of substituted chalcone derivatives have been reported by S. R. Modi et al.⁵⁰ and A. Attia⁵¹, V. R. Mudalir et al⁵² have prepared phenoxy chalcones and observed their insecticidal activity. Kammei et al⁵³. have been synthesised phenoxychalcones and observed their

insecticidal activity. R. De vincenzo et al⁵⁴. and Han et al.⁵⁵ have chalcone derviatives for their anti-inflammatory activity. Okuyana et al⁵⁶. have been reported chalcone derivatives reductase inhibitor activity. Antitumor and antifungal activity as reported by A. Tsotitus and co-worker⁵⁷. Antifeedant activity of chalcones have been observed by P. N. sharma and Sreenivasulu⁵⁸.

Ezio Bombardelli et al⁵⁹. have demonstrated that chalcone possess a valuable antiproliferation activity both on sensitive cancereous cell and on cell which are resistant to common chemotherapeutic drugs. S. Elichi et al. have been patented chalcones for their use for treatment of glaucoma⁶⁰. B. B. Kalashnikov et al.⁶¹ and S. Satoshi et al⁶² showed antifungal activity, P. Walavalker et al.⁶³ showed aldose reductase inhibitor. O. tory et al⁶⁴ evaluated anticancer activity. J. R. Dimmock. et al.⁶⁵ and T. M. Abdel, Rahman⁶⁶ evaluated antimicrobial activity.

Recently, Ni Liming et al.⁶⁷ have synhesised chalcones and screened for their antiinflammatory and cardiovascular activity. Kumar Srinivas et al⁶⁸. have synthesised chalcones as a antitumor agent. Ko Horng Huey et al⁶⁹. have prepared chalcones as antiinflammatory agent. Nakahara Kazuhiko et al⁷⁰. have synthesised chalcones as carcinogen inhibitors and antitubercular agents.

Lin Yah meei et al⁷¹ have synthesis chalcones derivatives. B. R. Das et al⁷². have found that chalcones possesses larvicidal properties. Kirm Min Young et al⁷³. have synthesised chalcones and tested for their matrixmetalloproteinase inhibitor activity.

Liu Mei et al⁷⁴. have been prepared chalcones and evaluated antimalarial activity. O. veronika et al⁷⁵ have synthesised chalcones and screened as cardiovascular agent.

Moreover, it has been found that chalcone derivatives possesses nitric oxide inhibitor^{76,77} and anti-HIV⁷⁸ activities.

Contribution in our laboratory :

D. M. Purohit et al⁷⁹ have been synthesised 2-(4'-chlorophenyl)-6-methyl-3-[1"aryl-2"-propene-1"-ones-3-yl]-imidazo (1, 2-a] pyridine and evaluated their antimicrobial activity.

Chalcones bearing a very good synthon, variety of novel heterocycles with good pharmacological profile can be designed. These valid observation led us to explore chalcones chemistry by synthesising several derivatives like isoxazoles, pyrazolines, pyrimidines, cyanopyrans etc bearing different heterocyclic ring systems for medicine value, in order to achieving better therapeutic agents, these study described as under.

SECTION-1 SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF 2-{4'-[(3''-ARYL)-2'''-PROPENE-1''-ONE]- PHENYLAMINO}-6-[BIS-(2''-CHLOROETHYL) AMINO] -4-METHOXY-1, 3, 5-TRIAZINE.

SECTION-I

SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF 2-{4'-[(3"-ARYL)-2"-PROPENE-1"-ONE]-PHENYLAMINO}-6-[BIS-(2"-CHLOROETHYL)AMINO]-4-METHOXY-1, 3, 5-TRIAZINE.

Recently much interest has been focused on the synthesis and biodynamic activities of chalcones and it is a good synton for various heterocyclic rings, with a view to obtained compounds having better therapeutic activity of 2-{4'[(3"-aryl)-2"propene-1"-one]-phenyl amino}-6-[Bis(2"-chloroethyl)amino]-4-methoxy-1, 3, 5triazine of type- (I) have been synthesised by the condensation of 2-[(4'-acetyl)phenyl amino]-6-[Bis-(2"-chloroethyl)amino]-4-methoxy-1,3,5-triazine with aromatic aldehyde in presence of aq. NaOH. 2-(4'-acetyl phenyl amino)-4,6-dichloro-S-triazine have been synthesis by the condensation of cyanyric chloride with 4-amino acetophenone at 0° c temp. in the presence of aq. NaOH. 2-(4'-acetyl phenylamino)-6chloro-4-methoxy-S-triazane have been synthesised by the condensation of 2-(4'acetyl phenyl amino)-4-6-dichloro-S-triazine with sodium methoxide at room temp. in methanol. The 2-[(4'-acetyl phenyl) amino]-6-[Bis-(2"-chloro ethyl)amino]-4methoxy-1,3,5-triazine have been synthesized by the condensation of 2-(4'-acetyl phenyl amino)-6-chloro-4-methoxy-S-triazine with 2,2'-dichloro diethyl amine hydrochloride in the presence of aq. NaOH and dioxane at 110° c temp.

The constitution of the synthesis products have been characterized by elemental analysis, IR, ¹HNMR and mass spectral study. The product were screened

for antimicrobial activity at a concentraion of 50 μ g/ml. The details have been cited in the part-I section-I, Page no. 39-41.

IR SPECTRAL STUDY OF 2-{4'-[3''-(4'''-METHOXY PHENYL)-2''-PROPENE-1''-ONE]-PHENYLAMINO-6-[BIS(2''-CHLOROETHYL)AMINO]-4-METHOXY-1,3,5-TRIAZINE

Туре	Vibration Mode	Frequency in cm ⁻¹		Ref.
		observed	reported	
Alkane	C-H Str.(Asym)	2923	2990-2850	422 - 423
	C-H Str.(asym)	2852	2880-2860	>>
	C-H Str.(Asym)	1436	1470-1435	>>
	C-H Str.(asym)	1371	1390-1360	>>
Aromatic	C-H Str.	3097	3090-3030	>>
	C-H i.p. def	1276	1300-1100	>>
	C-H o.o.p. def	821	832-800	>>
	C=C Str.	1517	1600-1450	>>
Ketone	C=O Str.	1677	1700-1640	>>
S-triazine	C-N Str.	1118	1220-1020	>>
	C=N Str.	1589	1630-1590	>>
Amine	N-H Str.	3311	3500-3310	>>
	N-H Bending	1649	1650-1550	>>
Vinyl	CH=CH	3045	3050-3000	"
Ether	C-O-C Str.(asym)	1245	1260-1220	>>
	C-O-C Str.(sym)	1037	1075-1020	"
Halide	C-Cl Str.	768	800-600	"

Instrument : SHIMADZU-FT-IR-8400, Spectrophotometer; frequency range : 4000-400cm⁻¹ (KBr disc)

NMR SPECTRAL STUDY OF 2-{4'-[3''-(4'''-METHOXY PHENYL)-2''-PROPENE-1''-ONE]-PHENYLAMINO]-6-[BIS-(2''-

CHLOROETHYL)AMINO] - 4 -METHOXY - 1, 3, 5-TRIAZINE.

Internal standard : TMS , Solvent : CDCl₃ Instrument : BRUKER Spectrometer (300 mhz)

Signal	Signal	Relative no. of	Multiplicity	Inference
No.	Position	protons		
	(ppm)			
1	3.62-3.86	6 H	Singlet	Ar-OCH ₃
2	7.01-7.03	4 H	D. Doublet	Ar-H _b
3	8.08-8.12	4 H	D. Doublet	Ar-H _c
4	4.79-4.80	4 H	Triplet	-CH ₂ -Cl
5	2.50-2.51	4 H	Triplet	-N-CH ₂ -
6	9.95	1 H	Singlet	$-NH_{f}$
7	4.80-4.83	2 H	Doublet	-CH=CHg-

Antimicrobial Activity:

Conclution :

Maximum antimicrobial activity :

	Antifungal activity Zone of inhibition in m.m.			
B. mega.	B. subtillis	E. coli.	P. fluorescens.	A. awamori.
R	R	R	R	R
4 Br. C_6H_4 -(21)	$3-OH C_6H_4-(19)$	C ₆ H ₅ -(18)	4-OH C_6H_4 -((21)	2-OH C_6H_4 -(22)
$4-NO_2 C_6 H_4 (21)$	$4-OCH_3C_6H_4(18)$	$4-OH C_6H_4-(20)$	$4-NO_2 C_6 H_4-(22)$	3-OH C ₆ H ₄ -(21)
	$4-N,N-(CH_3)_2C_6H_4(18)$	$4-Br C_6 H_4-(21)$		$4-OH C_6H_4-(23)$
		$4-NO_2 C_6 H_4-(20)$		$4-Br C_6H_4-(20)$

Comparable activity with known standard drugs

Ampicilin (50µg/ml.)	23	18	17	27	-
Chloramphenicol "	24	19	25	26	-
Norfloxacin "	24	19	25	26	-
Greseofulvin "	-	-	-	-	23

EXPERIMENTAL

SYNTHESIS OF 2-{4'-(3"-ARYL) -2"-PROPENE-1"-ONE]-PHENYL AMINO]-6-[BIS-(2"'-CHLOROETHYL)AMINO] - 4 -METHOXY - 1, 3, 5-TRIAZINE.

(A) Synthesis of 2-(4'-Acetyl phenyl amino)-4, 6-dichloro-1, 3, 5-triazine.

A mixture of 2, 4, 6-trichloro-s-triazine (1.845 gm, 0.01M), 4-amino acetophenone (1.35 g, 0.01M) in acetone (25 ml.). and aq. NaOH solution till solution basic. The reaction mixture was stirring at 0^{0} c temp. for 5 hrs. The content was poured into crushed ice, filtered and washed with water. The isolated product was crystallised from dioxane yield : 82% mp. 112°C.

(found : C : 46.61;, H : 2.79; N : 19.75; C₁₁H₈N₄OCl₂, required C: 46.64, H: 2.82; N : 19.79%)

(B) Synthesis of 2-(4'-Acetyl phenyl amino)-6-chloro - 4- methoxy-1, 3, 5traiazine.

A mixture of 2-(4'-acetyl phenyl amino) - 4, 6-dichloro-1,3,5 trizine (2.83 gm, 0.01 M); sodium methoxide (0.56 gm, 0.01 M) in methanol. The reaction mixture was strrring at room temp. for 7 hrs. The content was poured into crashed ice, filtered and wash with water. The isolated product was crystallised from dioxane. Yield : 86%, M.P. 178° c.

(found C: 51.65; H : 3.91; N : 20.09 $C_{12}H_{11}N_4O_2Cl$ required C : 51.70; H : 3.94; N : 20.10%)

(C) Synthesis of 2-(4'-Acetyl phenyl amino)-6-[Bis(2''-chloro ethyl)amino]-4methoxy-1,3,5-triazine.

A mixture of 2-(4'-acetyl phenyl amino)-6-chloro-4- methoxy-1,3,5-triazine (2.78g., 0.01 M.) 2,2'-di chloro diethyl amine hydrochloride (1.43 gm, 0.01M); dioxane (25 ml) and aq. NaOH. The reaction mixture was refluxed at 110° C for 6 hrs. The content was cooled and poured into crushed ice, filtered and washed with water. The isolated product was crystallised from dixoane. Yield 79% ; mp 249° C. (Found : C : 49.88, H : 4.91. N : 18.19 $C_{16}H_{19}N_5O_2Cl_2$ reqired C : 50.00; H : 4.94; N : 18.22%)

(D) Synthesis of 2-{4'-[3''-(4''''-Methoxy phenyl) -2''-propene - 1'' - one] phenyl amino}-6-[Bis(2'''-chloro ethyl) amino]-4-methoxy-1,3,5-triazine.

A mixture of 2-(4'-acetyl phenyl amino) - 6- [Bis (2" - chloro ethyl) amino]-4 - methoxy - 1, 3, 5-triazine (3.84 gm, 0.01M); 4-methoxy benzaldehyde (1.36 gm, 0.01M), methanol (25 ml.) add 40% NaOH solution till becomes basic medium. The reaction mixture was stirring 24 hrs. at room temp. The contents were poured into crushed ice, acidified filtered and crystallized from dioxane. Yield : 79%, M.P : 198°C. (Found: C : 57.31; H : 4.90; N : 13.91; $C_{24}H_{25}O_3N_5Cl_2$ C : 57.37; H : 4.98; N : 13.94%)

Simillarly other chalcones were prepared and their physical data are recorded in Table No. 1

 (E) Antimicrobial activity of 2-{4'-[(3"-Aryl) - 2" - Propene - 1"-one] phenylamino}-6-[Bis (2"'-chloroethyl) amino]-4-methoxy - 1, 3, 5 triazine. The antimicrobial testing was carried out as described in Part : I, Section : I, Page No. 39-41.

The zone of inhibition of the test solution are recorded in Table No. 2.

(F) Antimicrobail activity of 2-(4'-Acetyl phenyl)-6-[Bis(2''-chloroethyl)amino]4-methoxy-1,3,5-triazine.
Method : It was carried out using the cup-plate method which has been described as under.

Antibacterial activity :⁸⁰

The Purified products were screened for their antibacterial activity. The neutrient agarbroth prepared by the usual method, was inoculated specially with 0.5 ml for 24 hours, old subsclture of *B. megaterium Bacillus subtillis Escherichia coli, pseudonomus fluorescens,* in separate concial flasks at 40-50^oC and mixed well by gentle shaking. About 25 ml of the contents of the flask were poured and evenly spread in a petridish (13 cm in diameter) and allowed to set for 2 hrs. The cups (10 mm in diameter) were formed by the help of borer in a agar medium and filled with 0.10 ml (1.0 μ g/ml) solution of sample in dimethyl formamide.

The plates were incubated at 32° C for 24 hrs. and the control was also maintained with 0.1 ml of DMF in similar manner and the zone of inhibition of the bacterial growth are measured in mm, diameter are recorded in Table No. A.

Antifungal activity⁸¹

Aspergillus awamori was employed for testing fungicidal activity using cupplate method the cultures were maintained on subouraud's agar slants. Purified compounds were used for testing the fungicidal activity, sterlised subouraud's agar medium was inoculated with 72 hours old 0.5 ml suspension of fungal spores in a sterilised sepearate flask. About 25 ml of the inoculated medium was evntly spreaded in a petridish and allowed to set for 2 hrs. The cups (10 mm in a diameter) were punched in petridish and loded with 0.1 ml (1.0 mg/ml) of solution of a sample in DMF.

The plate were incubated at room temp. 37^{0} C for 48 hrs. After the completion of incubation period. The zone of inhibition or growth in the form of diameter in mm

was measured. Along the test solution in each petridish one cup was filled up with solvent acts as control. The zone of inhibition are recorded in Table No.A

ANTIMICROBIAL ACTIVITY

Product	:	2-[(4'-acetyl phenyl) amino]-6-[Bis(2'-chloro
		ethyl) amino]-4-methoxy-1,3,5 triazine
Method	:	Cup plate
Gram Positive Bacteria	:	Bacillus megaterium
		Bacillus subtillis
Gram Negative Bacteria	:	Escherichia Coli
		Psenudonomus Fluorescens
Fungi	:	Aspergilus awamori
Concentration	:	50 µg
Solvent	:	Dimethyl formamide
Standard Drugs	:	Ampicillin, chloramphenicol, Norfloxacin,
		Greseofulvin

The antibacterial activity was compared with standard drugs viz. ampicillin, chloramphenicol, norfloxacin and antifungal activity was compared with standard drug viz. greseofulvin. The Zones of inhibition were measured in mm. The Zones of inhibition that displayed by standard drugs are recorded in Part-I, Page No. 41.

TABLE NO. A : ANTIMICROBIAL ACTIVITY; ZONE OF INHIBITION FOR STANDARD DRUGS

Sr. No.	Standard Drugs	Antzone	tibacterial activity of inhibition in mm	Antifungal activity Zone of inhibition in mm.		
		B. mega.	B. mega. B. subtillis E. coli.			A. awamori
1	Ampicilin (50 µg)	23	18	17	27	-
2	Chloramphenicol (50 µg)	24	19	25	26	-
3	Norfloxacin (50 µg)	24	19	25	26	-
4	Greseofulvin (50 µg)	-	-	-	-	23

TABLE NO.:1PHYSICAL CONSTANT OF 2-{4'-[(3"-ARYL)-2"-PROPENE-1"-ONE] PHENYLAMINO}-6-[BIS(2"-CHLORO
ETHYL)-AMINO]-4- METHOXY-1, 3, 5-TRIAZINE

Sr.	R	Molecular	M.P.	Yield	% of N	% of Nitrogen	
No.		Formula	.с	%	Calcd	Found	
1.	C ₆ H ₅	C ₂₃ H ₂₃ Cl ₂ N ₅ O ₂	218	70	14.83	14.80	
2.	2-OH C ₆ H ₄	C ₂₃ H ₂₃ Cl ₂ N ₅ O ₃	224	82	14.34	14.31	
3.	$3-OH C_6 H_4^-$	C ₂₃ H ₂₃ Cl ₂ N ₅ O ₃	230	85	14.34	14.32	
4.	$4\text{-OH }C_5\text{H}_4^-$	C ₂₃ H ₂₃ Cl ₂ N ₅ O ₃	220	81	14.34	14.29	
5.	4-OCH ₃ C ₆ H ₄₋	C ₂₄ H ₂₅ Cl ₂ N ₅ O ₃	198	79	13.94	13.91	
6.	4-OH, 3-OCH ₃ C ₆ H ₃₋	C ₂₄ H ₂₅ Cl ₂ N ₅ O ₄	231	83	13.51	13.49	
7.	4-Br. C_6H_{4-}	$C_{23}H_{22}Br Cl_2N_5O_2$	172	86	12.70	12.69	
8.	3-NO ₂ C ₆ H ₄₋	C ₂₃ H ₂₂ Cl ₂ N ₆ O ₄	222	89	16.24	16.22	
9.	4-NO ₂ C ₆ H ₄₋	C ₂₃ H ₂₂ Cl ₂ N ₆ O ₄	175	81	16.24	16.21	
10	4-N, N-(CH ₃) ₂ C ₆ H ₄₋	C ₂₅ H ₂₈ Cl ₂ N ₆ O ₂	226	78	16.30	16.25	
11.	C ₄ H ₃ O (Furfuryl)	$C_{21}H_{21}Cl_2N_5O_3$	238	83	15.15	15.10	

TABLE NO. 2 : ANTIMICROBIAL ACTIVITY OF 2-{4'-[(3"-ARYL)-2"-PROPENE-1"-ONE] PHENYLAMINO}-6-[BIS(2"-
CHLORO ETHYL)-AMINO]-4- METHOXY-1, 3, 5-TRIAZINE

Sr.	R	Antibacterial activity				Antifungal activity
No.			Zone of inh	nibition in m	ım.	Zone of inhibition in mm.
		B. mega.	B. subtillis	E. coli.	P. fluorescens	A. awamori
1	C ₆ H ₅	16	13	18	19	17
2	2-OH C ₆ H ₄	17	15	17	18	22
3	3-OH C ₆ H ₄	19	19	16	19	21
4	4-OH C ₅ H ₄	20	17	20	21	23
5	$4\text{-OCH}_3 \text{ C}_6\text{H}_4$	15	18	18	17	16
6	4-OH, 3-OCH ₃ C ₆ H ₃	18	14	16	22	18
7	4-Br. C_5H_4	21	19	21	18	20
8	$3-NO_2 C_6 H_4$	17	16	18	19	17
9	$4-\mathrm{NO}_2\mathrm{C}_6\mathrm{H}_4$	21	17	20	22	19
10	4-NN-(CH ₃) ₂ C_6H_4	15	18	17	17	18
11	C ₄ H ₃ O (Furfuryl)	14	15	16	19	17

PART - II

STUDIES ON ISOX&ZOLES

STUDIES ON ISOXAZOLES

INTRODUCTION

Isoxazoles.(N) are a group of heterocyclic compounds containing two hereo atoms : oxygen and nitrogen.

In 1888 claisen first suggest in isoxazoles (N) for a product from the reaction of 1, 3 diketone with hydroxylamine⁸² subsequently a solid foundation for the chemistry of isoxazoles was laid down by claisen and his students. It was shown to possess typical properties of an aromatic system but under certain reaction conditions, particularly in reducing or basic media, it becomes very highly labile. The next important contribution to the chemistry of isoxazoles was made by Quelico in 1946 when he began to study the formation of isoxazoles from nitrile N-oxides and unsaturated compounds.⁸³

SYNTHETIC ASPECT :

Isoxazole may be prepared by the reaction between hydroxylamine and unsaturated compounds the reaction proceeds Via the formation of an oxime. Which possibly undergoes cylization.

Isoxazole can be prepared by various methods which are described as under. L. S. Crawley⁸⁴ prepared isoxazole from chalcones hydroxylamine hydrocloride and KOH in methanol.

THERAPEUTIC IMPORTANCE

Isoxazole possess wide therapeutic activites which are as under.

- (a) Antiinflammatory^{85,86,87,88}
- (b) Antivonvulsant^{89,90}
- (c) Muscle relaxant 91,92
- (d) Antipyretic⁹³
- (e) Anticholestemic⁹⁴
- (f) Antibacterial^{95,96,97}
- (g) Diabetic⁹⁸
- (h) Nematocidal⁹⁹
- (i) Fungicidal^{100,101}
- (j) Antiviral¹⁰²
- (k) Herbicidal^{103,104,105}
- (l) Anthelmintics¹⁰⁶
- (m) Antileukemia¹⁰⁷
- (n) Antitumor¹⁰⁸
- (o) Hypoglycemic¹⁰⁹
- (p) Analgesic¹¹⁰

B. Maggio et al¹¹¹ synthesised novel 3-(isoxazol-3-yl)-quinazolin-4-(3H)- one derivatives and tested for their analgesic and antiinflammatory activities, as well as for their actual toxicity and ulcerogenic effect. Some of them had a very low ulcerogenic effect.

C. B. Xue et al¹¹² reported the replacement of the benzamide in XUO57 (potent inhibitor) with an isoxazole carboxamide resulted in significant improvement in vitro potency. More importanty the analogue XXUO65 showed on excellent oral antiplatelet effect in dogs.

M. Masui et al.¹¹³ have prepared isoxazoles having pesticidal activity. Some excellent herbicidal results obtained by K. V. Reddy et al.¹¹⁴ Moreover isoxazoles found to possess remarkable anixolytic and antihypertensive effect, reported by J. Nyitrai et al.¹¹⁵, A. Mishra et. al.¹¹⁶ have synthesised and reported isoxazoles as useful agents for analgesic and antiinflammatory activities. T. D. Aicher et al.¹¹⁷ reported some isoxazole derivatives possessing hypoglycemic agents.

S.Ozkan et al.¹¹⁸ have prepared 3-(1-phenyl-1,2,3-triazol-4-yl) benziscreazoles (O) and studied their insecticidal acitvity.

M. Dauria¹¹⁹ studied photochemical behaviour of isoxazole derviatives. Y. N. Manohara et at.¹²⁰ ivestigated thermal decomposition kinetics of Co (II) and Ni (II) complexes of substituted isoxazole and their antibacterial activity. A. R. Parikh and co

worker¹²¹ have prepared isoxazole derivatives and documented antitubercular activity. Some isoxazoles are found to possess herbicidal¹²²⁻¹²⁴ Potential antiinflammatory^{125,126} and antimicrobial agents^{127,128} estrogen receptor modulators¹²⁹ and inhibior of P38 MAP kinose activities.¹³⁰

Contribution in our Laborartoy :

D. M. Purohit et al¹³¹ have been synthesised 2-(4'-chloro phenyl)-6-methyl-3-[3"-arylisoxazol-5"-yl)-imidazo[1,2,-a] pyridine

When an intension of the compounds possessing better therapeutic activity we have undertaken the synthesised of isoxazoles bearing Bis (2-chloro ethyl) amine, S-triazine molecules included in our moiety which have been described as under.

SECTION-I : SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF 2-{4'-[(5''-ARYL)-ISOXAZOLE-3''-YL]-PHENYLAMINO}-6-[BIS(2'''-CHLOROETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE.

SECTION : I

SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF 2-{4'-[(5"-ARYL) – ISOXAZOLE – 3" – YL] - PHENYLAMINO} – 6 - [BIS (2" -CHLOROETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Isoxazole derivatives reported to potent biological activities, taking into consideration of wide therapeutic activity of isoxazole derivatives. The synthesis of 2-{4'-[(5"-aryl)-isoxazole-3"-yl]-phenyl amino}-6-[Bis(2"'-chloro ethyl) amino]-4methoxy-1,3,5-triazine have been sythesised by the condensation of 2-{4'-[(3"aryl)2"-Propene-1"-one]-pheyl amino}-6-[Bis-(2"'-chloro ethyl) amino]-4- methoxy-1,3,5- triazine with hydroxyl amine hydrochloride.

The constitution of the products have been characterised by elemental analyses, IR, ¹H NMR and Mass spectral study. The product were screened for antimicrobial activity at a concentration of 50 μ g.

The details have been cited in the part : I, section : I, Page No. 39-41.

Туре	Vibration Mode	Freque	Ref.				
		observed	reported				
Alkane	C-H Str.(asym)	2956	2990-2850	422 - 423			
	C-H Str.(sym)	2875	2880-2860	>>			
	C-H def.(asym)	1421	1470-1435	>>			
	C-H def.(sym)	1363	1390-1360	>>			
Aromatic	C-H Str.	3060	3090-3030	>>			
	C-H i.p. def	1168	1300-1100	>>			
	C-H o.o.p. def	840	832-800	"			
	C=C Str.	1510	1600-1450	"			
S-triazine	C-N Str.	1120	1220-1020	"			
	C=N Str.	1602	1630-1590	"			
Amine	N-H Str.	3348	3500-3310	"			
	N-H Bending	1618	1650-1550	>>			
Ether	C-O-C Str.(asym)	1244	1260-1220	"			
	C-O-C Str.(sym)	1068	1075-1020	"			
Halide	C-Cl Str.	769	800-600	"			
Isoxazole	C-N Str.	1190	1230-1020	"			
	C=N Str.	1602	1650-1550	"			
	N-O Str.	840	850-810	"			
50							

Instrument : SHIMADZU-FT-IR-84	00, Spectrophoto meter frequenc	y range : $4000-400$ cm ⁻¹ (KBrdisc)

NMRSPECTRALSTUDYOF2-{5''-[(4''''-METHOXYPHENYL)-ISOXAZOLE-3''-YL]-PHENYLAMINO}-6-[BIS(2'''-CHLOROETHYL)AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Internal standard : TMS, Solvent : CDCl₃, Instrument : BRUKER spectrometer (300 MHz)

Signal	Signal	Relative no. of	Multiplicity	Inference
No.	Position	protons		
	(ppm)			
1	3.42-3.98	6 H	Singlet	Ar-OCH ₃
2	7.35-7.99	4 H	D Doublet	Ar-H _b
3	8.12-8.40	4 H	D Doublet	Ar-H _c
4	4.05-4.19	4 H	Triplet	-CH ₂ -Cl
5	2.82-2.84	4 H	Triplet	-N-CH ₂ -
6	10.19-10.28	1 H	Singlet	Ar-NH _f
7	8.12-8.16	1 H	Singlet	Ar-H _g
L	1	1	I	1
		51		

Antimicrobial Activity :

Conclution :

Maximum antimicrobial activity :

			Antifungal activity			
			Zone of inh	ubition in m.m.		Zone of inhibition in
						m.m.
		B. mega.	B. subtillis	E. coli.	P. fluorescens.	A. awamori.
		R	R	R	R	R
		$4-OH C_6H_4-(22)$	$3-OH C_6H_4 (20)$	$3-OH C_6H_4 (21)$	2-OH $C_6H_4(22)$	$4-OH C_6H_4 (22)$
		4-Br. C_6H_4 (22)	4-OH $C_6H_4(21)$	$4-OH C_6H_4 (22)$	$4-OH C_6H_4(21)$	4-OH $C_6H_4(21)$
			$4-NO_2 C_6 H_4 (22)$	40H, 30CH ₃ C ₆ H ₃	4-OCH ₃ C ₆ H ₄ (23)	$4-Br C_6 H_4 (23)$
				(20)		
				$4-NO_2 C_6 H_4 (21)$	$4-NO_2 C_6 H_4 (24)$	$4-NO_2 C_6 H_4 (20)$
	Com	parable activity with k	nown standard drugs			
Ampicilin	50 µg.	23	18	17	27	-
Chloramphenicol	"	24	19	25	26	-
Norfloxacin	"	24	19	25	26	-
Greseofulvin	"	-	-	-	-	23
						•

EXPERIMENTAL

SYNTHESIS OF 2-{4'-[(5"-ARYL)-ISOXAZOLE-3"-YL]-PHENYL AMINO}-6-[BIS(2"'-CHLOROETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE.

- (A) Synthesis of 2-(4'-Acetyl Phenyl amino)-4,6-dichloro-1,3,5-triazine.
 For synthesis sec Part-I, Section-I, Page no. 36-38.
- (B) Synthesis fo 2-(4'-Acetyl phenyl amino)-6-chloro-4-methoxy-1,3,5-triazine
 For synthesis see Part-I, Section-I, Page no. 36-38.
- (C) Synthesis of 2-(4'-Acetyl phenyl amino)-6-[Bis(2''- chloro ethyl) amino]-4methoxy-1,3,5-triazine.

For synthesis see Part-I, Section-I, Page no. : 36-38.

- (D) Synthesis of 2-{4'-[3''-(4-''''-Methoxy phenyl)-2''-propene-1''-one] phenyl amino}-6-[Bis (2'''- chloro ethyl) amino]-4-methoxy-1,3,5 trizine.
 For synthesis see Part-I, Section-I, Page no. 36-38.
- (E) Synthesis of 2-{4'-[5''-(4''''-Methoxy phenyl)-isoxazole-3''-yl]-phenyl amino}-6-[Bis (2'''-chloro ethyl) amino]-4-methoxy-1,3,5-triazine.
 A mixture of 2-{4'-[3''-(4''''-methoxy phenyl)-2''-propene-1''-one] phenyl amino}-6-[Bis(2'''-chloro ethyl) amino]-4-methoxy-1,3,5-triaizine. (5.02 gm, 0.01 M) hydroxy amine hydrochloride (0.69 gms., 0.01 M) and ethanol (20 ml). The reaction mixture was reflux at 120° C. for 6 hrs. The reaction mixture was cooled, poured into crushed ice, filtered, dried. The isolated products was

crystallised from methanol. Yield 73% ; mp. 118° C. (Found : C : 55.89; H :

4.61; N : 16.28, $C_{24}H_{24}O_3N_6Cl_2$, required : C : 55.92; H : 4.66, N : 16.31%)

Simillary other isoxazols were synthesised and their physical data recorded in Table no. 3

(F) Antimicrobial activity of 2-{4'-[5''-aryl)-isoxazole-3''-yl]-Phenyl amino}-6 [Bis-(2'''-chloro ethyl) amino]-4-methoxy-1,3,5-triazine.
 Antimicrobial testing was carried out as described in Part-I, Section-I, Page no. 39-41.

The zone of inhibition of the test solutions are recorded in Table no. 4

TABLE NO.: 3PHYSICALCONSTANTOF2-{4'-[(5''-ARYL)-ISOXAZOLE-3''-YL]-PHENYLAMINO}-6-[BIS(2''-
CHLOROETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Sr.	R	Molecular	M.P.	Yield	% of Nitrogen	
No.		Formula	°C	%	Calcd	Found
1.	C ₆ H ₅	C ₂₃ H ₂₂ Cl ₂ N ₆ O ₂	219	69	17.31	17.29
2.	2-OH C ₆ H ₄	C ₂₃ H ₂₂ Cl ₂ N ₆ O ₃	225	72	16.76	16.70
3.	3-OH C ₆ H ₄	$C_{23}H_{22}Cl_2N_6O_3$	265	75	16.76	16.17
4.	4-OH C ₆ H ₄	C ₂₃ H ₂₂ Cl ₂ N ₆ O ₃	198	77	16.76	16.70
5.	4-OCH ₃ C ₆ H ₄	C ₂₄ H ₂₄ Cl ₂ N ₆ O ₃	118	73	16.31	16.28
6.	4-OH, 3-OCH ₃ C ₆ H ₃	C ₂₄ H ₂₄ Cl ₂ N ₆ O ₄	210	82	15.81	15.79
7.	$4-Br C_6H_4$	$C_{23}H_{21}BrCl_2N_6O_2$	209	87	14.89	14.83
8.	$3-NO_2 C_6 H_4$	C ₂₃ H ₂₁ Cl ₂ N ₇ O ₄	264	81	18.49	18.47
9.	$4\text{-NO}_2 C_6 H_4$	C ₂₃ H ₂₁ Cl ₂ N ₇ O ₄	202	83	18.49	18.45
10	4-N,N-(CH ₃) ₂ C ₆ H ₃	C ₂₅ H ₂₇ Cl ₂ N ₇ O ₂	173	79	18.55	18.51
11.	C ₄ H ₃ O (Furfuryl)	C ₂₁ H ₂₀ Cl ₂ N ₆ O ₂	234	86	17.68	17.62
L		57	I	I	1	

TABLE NO. 4 : ANTIMICROBIAL ACTIVITY OF 2-{4'-[(5"-ARYL)-2"-ISOXAZOLE-3"-YL]PHENYLAMINO}-6-[BIS(2"-
CHLORO ETHYL)-AMINO]-4- METHOXY-1, 3, 5-TRIAZINE

Sr. No.	R		Antifungal activity Zone of inhibition in			
		B. mega.	B. subtillis	E. coli.	P. fluorescens	Mm. A. awamori
1	C ₆ H ₅ -	19	15	17	20	17
2	2-OH C ₆ H ₄ -	17	17	18	22	19
3	3-OH C ₆ H ₄ -	20	20	21	19	18
4	4-OH C ₆ H ₄ -	22	21	22	21	22
5	4-OCH ₃ C ₆ H ₄ -	18	19	19	23	21
6	4-OH, 3-OCH ₃ C ₆ H ₃ -	19	18	20	18	16
7	$4-Br C_6H_4-$	23	16	18	17	23
8	3-NO ₂ C ₆ H ₄ -	16	17	19	16	17
9	$4-NO_2 C_6 H_4-$	18	22	21	24	20
10	$4-N_{,}N-(CH_{3})_{2}C_{6}H_{3}-$	17	18	21	18	19
11	C ₄ H ₃ O (Furfuryl)	19	17	18	16	15

PART - III

STUDIES ON PYRAZOLINES

STUDIES ON PYRAZOLINES

INTRODUCTION

Amongst nitrogen containing five membered heterocycles, pyrazolines (Q) have proved to be the most useful frame work for biological activities, pyrazolines have attracted attention of medicinal chemistry for both with regard to hererocyclic chemistry and the pharmacological activities associated with them in 1967. Jarobe reviewed the chemistry of pyrazolines, which have been studied extensively for their¹³²⁻¹³³ and industrial applications.

SYNTHETIC ASPECT :

Different methods for the preparation of 2-pyrazoline derivatives documented in literature are as follows.

(1) 2-pyrazolines can be constructed by the cyclocondensantion of chalcones with hydrazine hydrate.¹³⁴

- (2) 2-Pyrazoline can also be prepared by the condensation of chalcone dibromide with hydrazines.¹³⁵
- (3) 2-Pyrazolines can be synthesised by the cycloaddition of diazomethane to substituted chalcone.¹³⁶

- (4) Dipolar cycloaddition of intrilimines of dimethyl fumarate fumaronitrile and the N-aryl maleimides yields the corresponding pyrazolines.¹³⁷
- (5) Epoxidation of chalcones have epoxy ketones which reacted with hydrazine and phenyl hydrazine to give pyrazolines.¹³⁸

Further more, B. Gyassi et al.¹³⁹ investigated the one pot synthesis of some pyrazolines in dry media under microwave irradiation. S. Paul et. al.¹⁴⁰ A. Dandia et. al.¹⁴¹ have also described the microwave synthesis of 2-pyrazolines.

MECHANISM :

The following mechanism seems to be operable for the condensation of chalcones with hydrazine hydrate.¹⁴²

Nucleophilic attack by hydrazine at the β -carbon of the $\alpha - \beta$ unsaturated carbonyl system forms species (II) in which the ve charge is mainly accomodated by the electro nagative oxygen atom.

Proton transfer from the nitrogen to -ve oxygen produces an intermediate enol which simultaniously ketonise to ketoamine (III). Another intramolecular nucleophilic attack
by the primary amino group of ketoamine on its carbonyl carbon followed by proton transfer from nitrogen to oxygen leads ultimately to amine (IV). The later with by hydroxy group and amino group on the carbon lose water moleculer to yield the pyrazolines.

THERAPEUTIC IMPORTANCE :

From the literature survey, it was reveled that 2-pyrazolines are better therapeutic agents,

- (a) Analgesic^{143,144}
- (b) Bactericidal^{145,146}
- (c) Cardiovascular¹⁴⁷
- (d) Diuretic¹⁴⁸
- (e) Fungicidal¹⁴⁹
- (f) Herbicidal¹⁵⁰
- (g) Hypoglycemic¹⁵¹
- (h) Insecticidial¹⁵²
- (i) Tranquilizer¹⁵³
- (j) Antiallergic¹⁵⁴
- (k) Anticonvalsant¹⁵⁵⁻¹⁵⁶
- (i) Antidiabetic¹⁵⁷
- (m) Antiimplantation¹⁵⁸
- (n) Antiinflamatory¹⁵⁹
- (o) Antitumor¹⁶⁰
- (p) Antineoplastic¹⁶¹
- (q) Antimicrobial¹⁶²

S. S. Sonarc et al.¹⁶³ have synthesized 3-(2-acetoxy-4-methoxy phenyl)- 5-(substituted phenyl)-pyrazolines(R) and tested their antimicrobial activity.

Moreover, T. M. Stivenson et al.¹⁶⁴ have also investigated N-substituted pyrazoline type insecticides. Katsuhori¹⁶⁵ have patented pyrazoline derivatives as herbicides and K. Johannes, et. al.¹⁶⁶ reported insecticides. Z. Moritaz and S. Hadol¹⁶⁷ to investigated a semiemperial molecular orbital study on the reaction of aminopyrazolinyl azo dye with singlet molecular oxygen.

M. K. Shivnanda and co-worker¹⁶⁸ have prepared pyrazolines and reported their antibacterial activity. B. Shivarama Holla et. al.¹⁶⁹⁻¹⁷⁰ have synthesised pyrazolines as antibacterial agent. S. P. Hiremath et al.¹⁷¹ have synthesised pyrazolines as analgesic, antiinflammatory and antimicrobial agent. V. Malhotra et. al.¹⁷² have synthesised new pyrazolines as a cardiovascular agent.

Ji-In Kim Almstead et. al.¹⁷³ have prepared pyrazolines as vascularization agent. Guniz kucukguzel et. al.¹⁷⁴ have synthesised pyrazolines as a antimicrobial and anticonvulsant agents.

T. Z. Gulhan and co-workers¹⁷⁵ have prepared pyrazolines as a hypogxycemic agent. S. Sharma et. al.¹⁷⁶ have synthesised pyrazolines and tested their

antiinflamatory activity. Ashok Kumar et. al.¹⁷⁷ have synthesised pyrazolines as anticonvulsant agent.

Contribution in our Laboratory :

D. M. Purohit et. al.¹³¹ have synthesised 2-(4'-chloro phenyl)-6-methyl-3-(3"aryl-4", 5"-dihydro-1"-H-pyrazole-5"-yl)-imidazo [1, 2-a] pyridine.

SECTION-I: SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF 2-{4'-(5"ARYL)4", 5"-DIHYDRO-1"-(H) PYRAZOL-3"-YL] PHENYL AMINO}-6-[BIS(2"'-CHLORO ETHYL)AMINO]-4-METHOXY-1,3,5-TRIAZINE.

SECTION-II: SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF 2-{4'-[(5''-ARYL)-4'', 5''-DIHYDRO-1''-ACETYL PYRAZOL-3''-YL]-PHENYLAMINO}-6-[BIS. (2'''-CHLORO ETHYL)AMINO]-4-METHOXY-1,3,5-TRIAZINE.

SECTION-III : SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF 2-{4'-[5''-ARYL]-4''-5''-DIHYDRO-1''-PHENYL PYRAZOL-3''-YL]-PHENYL AMINO}-6-[BIS. (2'''-CHLORO ETHYL) AMINO]-4- METHOXY-1,3, 5- TRIAZINE. Synthesis, spectral studies and therapeutic activity of some Heterocyclic compounds

SECTION:1

SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF 2-{4'-(5"-ARYL)4", 5"-DIHYDRO-1"-(H) PYRAZOL-3"-YL] PHENYL AMINO}-6-[BIS (2"'-CHLORO ETHYL)AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Pyrazoline derivatives possess broad spectrum of pharmacological activities which are reflacted by their use as analgesic, anticonvulsant, antimicrobial, antipyratics agents. Prompted by above facts 2-{4'-(5"-aryl)4", 5"-dihydro-1"-(H) pyrazol-3"-yl] phenyl amino}-6-[Bis (2"'-chloroethyl) amino]-4-methoxy- 1,3,5-triazine Type-(III) have been synthesised by the condensation of 2-{4'-[(3"-aryl)-2"-propene-1". one]-phenyl amino}-6-[Bis 2"'-chloroethyl) amino]-4-methoxy-1,3,5-trazine with hydrazine hydrate.

The constitution of the synthesized products were supported by IR, 1 H, NMR and Mass spectral study. The products were screened for their antimicrobial activity at a concentration of 50 µg.

The details have been cited in the Part : I, Section : I, Page No. 39-41.

IR SPECTRAL STUDY OF 2-{4'-(5''-(4""-METHOXYPHENYL)4'', 5''-DIHYDRO-1''-(H) PYRAZOL-3''-YL] PHENYL AMINO}-6-[BIS (2'''-CHLORO ETHYL)AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Туре	Vibration Mode	Frequency in cm ⁻¹		Ref.
		observed	reported	
Alkane	C-H Str.(asym)	2908	2990-2850	422 - 423
	C-H Str.(sym)	2877	2880-2860	"
	C-H def.(asym)	1458	1470-1435	"
	C-H def.(sym)	1361	1390-1360	>>
Aromatic	C-H Str.	3072	3090-3030	"
	C-H i.p. def	1294	1300-1100	>>
	C-H o.o.p. def	823	832-800	>>
	C=C Str.	1458	1600-1450	"
S-triazine	C-N Str.	1168	1220-1020	>>
	C=N Str.	1616	1630-1590	>>
Amine	N-H Str.	3373	3500-3310	>>
Ether	C-O-C Str.(asym)	1245	1260-1220	>>
	C-O-C Str.(sym)	1037	1075-1020	>>
Halide	C-Cl Str.	767	800-600	>>
Pyrazoline	C=O Str.	1662	1705-1650	"
	C=N Str.	1667	1650-1550	"
	CH-CH ₂ Str.	2366	2850-1790	"
	N-H Str.	3303	3520-3140	>>

Instrument : SHIMADZU-FT-IR-8400, Spectrophoto meter frequency range : 4000-400cm⁻¹ (KBrdisc)

NMR SPECTRAL STUDY OF 2-{4'-(5''-(4''''-METHOXYPHENYL)4'', 5''-DIHYDRO-1''-(H) PYRAZOL-3''-YL] PHENYL AMINO}-6-[BIS (2'''-CHLORO ETHYL)AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Internal standard : TMS, Solvent : CDCl₃, Instrument : DPX-200 Spectrometer (300 MHz)

Signal No.	Signal Position	Relative no. of protons	Multiplicity	Inference
	(ppm)			
1	3.83-3.92	6 H	Singlet	Ar-OCH ₃
2	7.20-7.22	4 H	D. Doublet	Ar-H _b
3	8.12-8.32	4 H	D. Doublet	Ar-H _c
4	4.02-4.06	4 H	Triplet	-CH ₂ -Cl
5	2.69-3.29	4 H	Triplet	-N-CH ₂ -
6	10.15	2 H	Singlet	Ar-NH _f
7	3.52-3.82	2 H	Singlet	$-CH_{2h}$
L	1			1
		67		

MASS SPECTRAL STUDY OF 2-{4'-(5''-(4""-METHOXYPHENYL)4", 5''-DIHYDRO-1''-(H) PYRAZOL-3''-YL] PHENYL AMINO}-6-[BIS (2'''-CHLORO ETHYL)AMINO]-4-METHOXY-1,3,5-TRIAZINE. (M.W. : 516)

Antimicrobial Activity :

Conclution :

Maximum antimicrobial activity :

		Antifungal activity Zone of inhibition in			
					m.m.
	B. mega.	A. awamori.			
	R	R	R	R	<i>R</i> .
	2-OH $C_6H_4(21)$	$3-OH C_6H_4 (18)$	3-OH C ₆ H ₄ (21)	2-OH $C_6H_4(21)$	$C_{6}H_{4}(21)$
	$4-OH C_6H_4 (23)$	$4-OH C_6H_4 (19)$	$4-OH C_6H_4 (20)$	$4-OH C_6H_4(23)$	$3-OH C_6H_4 (22)$
	$4-Br C_6 H_4 (22)$	4-OH 3-OCH ₃ C ₆ H ₃ (18)	4-Br. C_6H_4 (23)	4-OH, 3OCH ₃	$4-OCH_3 C_6H_4 (23)$
				$C_{6}H_{3}(22)$	
		4-N,N (CH ₃) ₂ C ₆ H ₄ (21)	$4-NO_2 C_6 H_4 (20)$	4-Br. $C_6H_4(22)$	4-Br. $C_6H_4(21)$
	Comparable activity w	vith known standard drugs			
Ampicilin (50 µg.)	23	18	17	27	-
Chloramphenicol "	24	19	25	26	-
Norfloxacin "	24	19	25	26	-
Greseofulvin "	-		-	-	23

EXPERIMENTAL

SYNTHESIS OF 2-{4'-(5"-ARYL)4", 5"-DIHYDRO-1"-(H) PYRAZOL-3"-YL] PHENYL AMINO}-6-[BIS (2"'-CHLORO ETHYL)AMINO]-4-METHOXY-1,3,5-TRIAZINE.

- (A) Synthesis of 2-(4'-Acetyl phenyl amino)-4, 6-dichloro-1,3,5-triazineFor synthesis see Part-I, Section-I, Page no. 36-38.
- (B) Synthesis of 2-(4'-Acetyl phenyl amino)-6- chloro-4-methoxy-1,3,5triazine.

For synthesis see Part-I, Section-I, Page no. 36-38.

(C) Synthesis of 2-(4'-Acetyl Phenyl amino)-6-[Bis-(2''-chloroethyl) amino]-4methoxy-1,3,5-triazine.

For synthesis see Part-I, Section-I, Page no. 36-38.

- (D) Synthesis of 2-{4'-[3''-(4'''-methoxy phenyl)- 2''-propene-1''-one] phenyl amino}-6-[Bis(2'''-chloro ethyl) amino]-4- methoxy-1,3,5-triazine.
 For synthesis see Part-I, Section-I, Pagen no. 36-38.
- (E) Synthesis of 2-{4'-[5-'''(4'''-methxoxy phenyl) 4'', 5''-dihydro-1''-(H) pyrazol 3''-yl] phyenyl amino}-6-[Bis (2'''-chloroethyl) amino]-4-methoxy-1,3,5- triazine.

A mixture of 2-{4'-[3"-(4""-methoxyphenyl)-2"-propene-1"-one] phenyl amino}-6-[Bis (2"'-chloroethyl) amino]-4-methxoxy-1,3,5-triazine (5.02 gm, 0.01 M) hydrazine hydrate (1.0 ml) in methanol (15 ml) was refluxed for 12 hrs. The product was poured into crushed ice filtered, washed with water and crystallised from dixoane yield : 82%, M.P. 280° C. (Found : C : 55.80, H : 5.21, N : 18.97, $C_{24}H_{27}O_2N_7Cl_2$; C : 55.81, H : 5.23, N : 18.99%) Simillarly other pyrazoleo derivatives have been synthesisded and their physical data are recorded in Table no. 5

(F) Antimicrobial activity of 2-{4'-[(5''-aryl) 4'', 5'' - dihydro-1''-(H)-pyrazol-3''-yl]-phenyl amino}-6-[Bis. (2'''-chloro ethyl) amino]-4-methoxy-1,3,5triazine

The antimicrobial testing was carried out as described in Part-I, Secton-I, Page no. 39-41.

The zone of inhibition of the test solution are recorded in Table no. 6.

TABLE NO : 5 PHYSICAL CONSTANTS OF 2-{4'-(5"-ARYL)4", 5"-DIHYDRO-1"-(H) PYRAZOL-3"-YL] PHENYL AMINO}-6-[BIS (2"'-CHLORO ETHYL)AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Sr.	R	Molecular	M.P.	Yield	% of Ni	trogen
No.		Formula	.c	%	Calcd	Found
1.	C ₆ H ₅	C ₂₃ H ₂₅ Cl ₂ N ₇ O	207	70	20.16	20.11
2.	2-OH C ₆ H ₄	$C_{23}H_{25}Cl_2N_7O_2$	249	72	19.52	19.50
3.	3-OH C ₆ H ₄	$C_{23}H_{25}Cl_2N_7O_2$	225	75	19.52	19.51
4.	$4-OH C_6H_4$	$C_{23}H_{25}Cl_2N_7O_2$	198	79	19.52	19.48
5.	4-OCH ₃ C ₆ H ₄	$C_{24}H_{27}Cl_2N_7O_2$	280	82	18.99	18.97
6.	4-OH, 3-OCH ₃ C ₆ H ₃	C ₂₄ H ₂₇ Cl ₂ N ₇ O ₃	268	81	18.41	18.40
7.	$4-Br C_6 H_4$	C ₂₃ H ₂₄ Br Cl ₂ N ₇ O	205	69	17.34	17.32
8.	$3-NO_2 C_6H_4$	$C_{23}H_{24}Cl_2N_8O_3$	242	83	21.09	21.08
9.	$4-NO_2 C_6 H_4$	$C_{23}H_{24}Cl_2N_8O_3$	188	89	21.09	21.05
10	$4-N,N(CH_3)_2 C_6H_4$	C ₂₅ H ₃₀ Cl ₂ N ₈ O	216	71	21.16	21.12
11.	C ₄ H ₃ O (Furfuryl)	$C_{21}H_{23}Cl_2N_7O_2$	298(d)	77	20.58	20.57

TABLE NO : 6 ANTIMICROBIAL ACTIVITY OF 2-{4'-(5''-ARYL)4'', 5''-DIHYDRO-1''-(H) PYRAZOL-3''-YL] PHENYL AMINO}

6-[BIS (2"'-CHLORO ETHYL)AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Sr.			Antibacterial activity				
No.	R		Zone of inhibition in mm.				
						mm.	
		B. mega.	B. subtillis	E. coli.	P. fluorescens	A. awamori	
1	C ₆ H ₅	19	15	17	18	21	
2	2-OH C ₆ H ₄	21	14	19	21	19	
3	3-OH C ₆ H ₄	20	18	21	20	22	
4	4-OH C ₆ H ₄	23	19	20	23	20	
5	4-OCH ₃ C ₆ H ₄	18	16	22	19	23	
6	4-OH, 3-OCH ₃ C ₆ H ₃	17	18	18	22	18	
7	$4-Br C_6 H_4$	22	20	23	22	21	
8	$3-NO_2 C_6 H_4$	20	15	17	19	17	
9	$4-NO_2 C_6 H_4$	18	17	20	18	20	
10	4-N, N(CH ₃) ₂ C_6H_4	19	21	17	20	19	
11	C ₄ H ₃ O (Furfuryl)	17	16	18	19	20	
<u> </u>			<u>I</u>	I		1	

Synthesis, spectral studies and therapeutic activity of some Heterocyclic compounds

SECTION : II

SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF 2-{4'-[(5''-ARYL)-4'', 5''-DIHYDRO-1''-ACETYL PYRAZOL-3''-YL]-PHENYLAMINO}-6-[BIS. (2'''-CHLORO ETHYL)AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Acetyl pyrazoline dervatives procuring better therapeutic and antimicrobial activity looking at their better therapeutic importance and with an aim to getting better drug, it was considered worth while to synthesis some new pyrazoline. The synthesis of 2-{4'-[(5"-Aryl)-4", 5"-dihydro-1"-acetyl pyrazol-3"-yl]-phenyl amino}-6-[Bis(2"'-chloro ethyl) amino]-4-methoxy -1,3,5-triazine of Type (IV) have been synthesised by the cyclocondensation of chalcones of Type (I) with hydrazine hydrate and glacial acetic acid.

The constitution of the products have been characterised by elemental analyses IR, 1 H NMR and Mass spectral study. The products were screened for their antimicrobial activity at a concentration of 50 µg.

The details have been in the Part : I, Section I, Page No. 39-41.

IR SPECTRAL STUDY OF 2-{4'-[(5"-(4""-METHOXYPHENYL)-4", 5"-DIHYDRO-1"-ACETYL PYRAZOL-3"-YL]-PHENYLAMINO}-6-[BIS. (2"'-CHLORO ETHYL)AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Туре	Vibration Mode	Frequency in cm ⁻¹		Ref.
		observed	reported	
Alkane	C-H Str.(asym)	2856	2990-2850	422 - 423
	C-H Str.(sym)	2878	2880-2860	"
	C-H def.(asym)	1458	1470-1435	"
	C-H def.(sym)	1363	1390-1360	"
Aromatic	C-H Str.	3055	3090-3030	>>
	C-H i.p. def	1249	1300-1100	"
	C-H o.o.p. def	838	832-800	"
	C=C Str.	1458	1600-1450	>>
S-triazine	C-N Str.	1068	1220-1020	>>
	C=N Str.	1600	1630-1590	>>
Amine	N-H Str.	3452	3500-3310	"
	N-H Bending	1647	1650-1550	"
Ether	C-O-C Str.(asym)	1271	1260-1220	"
	C-O-C Str.(sym)	1033	1075-1020	"
Halide	C-Cl Str.	769	800-600	"
Pyrazoline	C=O Str.	1670	1705-1650	"
-	C=N Str.	1600	1650-1550	"
CH-CH ₂ Str.		1830	2850-1790	"
	I	1		L

Instrument : SHIMADZU-IR-8400, Spectrophoto meter frequency range : 4000-400 cm⁻¹ (KBrdisc)

NMR SPECTRAL STUDY OF 2-{4'[(5''-(4''''-METHOXYPHENYL)-4'', 5''-DIHYDRO-1''-ACETYL PYRAZOL-3''-YL]-PHENYLAMINO}-6-[BIS. (2'''-CHLORO ETHYL)AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Internal standard : TMS ; solvent : DMSO ; Instrument	: BRUKER Sepctrometer (300 MHz)
---	---------------------------------

Signal	Signal	Relative no. of	Multiplicity	Inference
No.	Position	protons		
	(ppm)			
1	3.60-3.64	6 H	Singlet	Ar-OCH ₃
2	7.44-7.72	4 H	D Doublet	Ar-H _b
3	7.85-9.90	4 H	D Doublet	Ar-H _c
4	4.57-4.60	4 H	Triplet	-CH ₂ -Cl
5	2.27-2.87	4 H	Triplet	-N-CH ₂ -
6	9.73	1 H	Singlet	Ar-NH _f
7	3.10-3.40	2 H	Singlet	$-CH_{2h}$
8	2.87	3 H	Singlet	-COCH ₃

Antimicrobial Activity :

Conclution :

Maximum antimicrobial activity :

		Antifungal activity					
		Zone of inhibition in m.m.					
		in m.m.					
	B. mega.	B. mega. B. subtillis E. coli. P. fluorescens.					
	R	R	R	R	R		
	4-OH C_6H_4 (22)	2-OH C_6H_4 (28)	$3-OH C_6H_4 (20)$	2-OH $C_6H_4(21)$	$3-OH C_6H_4(20)$		
	$4-OCH_3 C_6H_4 (21)$	$3-OH C_6H_4 (19)$	$4-OH C_6H_4 (23)$	$4-OH C_6H_4 (23)$	$4-OH C_6H_4(21)$		
	4-OCH ₃ , 3-OCH ₃	$4-OH C_6H_4(21)$	$4-OCH_3 C_6H_4 (22)$	4-OH, 3-OCH ₃ -C ₆ H ₃ (21)	4-Br C_6H_4 (22)		
	C ₆ H ₃ (23)	4-Br $C_6H_4(22)$	4-Br C_6H_4 (20)		-		
	4-Br C_6H_4 (22)	$4-NO_2 C_6 H_4 (21)$	-	C ₄ H ₃ O-(21)	-		
	4-N,N(CH ₃) ₂ C ₆ H ₄ (23)	C ₄ H ₃ O (20)					
С	Comparable activity with k	nown standard drugs					
Ampicilin (50 µg)	23	18	17	27	-		
Chloramphenicol "	24	19	25	26	-		
Norfloxacin "	24	19	25	26	-		
Greseofulvin "	-	-	-	-	23		

EXPERIMENTAL

SYNTHESIS AND ANTIMICROBIAL ACTIVITYOF 2-{4'-[(5"-ARYL)-4", 5"-DIHYDRO-1"-ACETYL PYRAZOL-3"-YL]-PHENYLAMINO}-6-[BIS. (2"'-CHLORO ETHYL)AMINO]-4-METHOXY-1,3,5-TRIAZINE.

- (A) Synthesis of 2-(4'-Acetylphenyl amino)-4, 5-dichloro-1,3,5-triazine.For synthesis Part-I, Section-I, Page no. 36-38.
- (B) **Synthesis of 2-(4'-Acetyl phenyl amino)-6-chloro-4-methoxy-1,3,5-triazine.** For synthesis Part-I, Section-I, Page no. 36-38.
- (C) Synthesis of 2-(4'-Acetyl phenyl amino)-6- [Bis (2''-chloro ethyl) amino]-4methoxy-1,3,5-triazine.
 For synthesis Part-I, Section-I, Page no. 36-38.
- (D) Syntesis of 2-{4'-[3''-(4''''-methoxyphenyl)-2''-propene-1''-one] phenyl amino}-6-[Bis (2'''-chloroethyl) amino]-4-methoxy 1,3,5-triazine.
 For synthesis, Part-I, SectionI, Page No. 36-38.
- (E) Synthesis of 2-{4'-[5''-(4''''-methoxyphenyl)-4'', 5''- dihydro-1''-(H)pyrazol-3''-yl]-phenylamino}-6-[Bis(2'''-chloro ethyl amino]-4-methoxy-1,3,5-triazine.

A mixture of 2-{4'-[3"-(4""methoxyphenyl)-2" propene-1"-one] phenyl amino-6-[Bis (2"'-chloroethyl) amino]-4-methoxy-1,3,5-triazine (5.02 gm, 0.01M); hydrazine hydrate (1.0 ml), glacial aceticacid (2.0 ml.)and methanol (20 ml) was refluxed for 12 hrs. The reaction mixture is poured into crushed ice, filtered, dried and crystallised from dioxane. Yield : 80%, M.P.: 168° C, (Found C : 55.90, H : 5.17; N : 17.54; $C_{29}H_{29}O_3Cl_2N_7$ required C : 55.91; H : 5.19, N : 17.56%) Similarly other acetyl pyrazoline have been synthesised and their physical constant are recorded in Table No.7)

(F) Antimicrobial activity of 2-{4'-[(5"-Aryl)-4", 5"- dihydro 1"-acetyl pyrazol-3"-yl]-phenyl amino}-6- [bis(2"'-chloro ethyl) amino]-4-methoxy-1,3,5- triazine.

The antimicrobial testing was carried out as described in Part : I, Section : , Page No. : 39-41.

The zone of inhibition of the test solution are recorded in Table No. : 8

TABLE NO : 7 PHYSICAL CONSTANTS OF 2-{4'-[(5''-ARYL)-4'', 5''-DIHYDRO-1''-ACETYL PYRAZOL-3''-YL]-PHENYLAMINO}-6-[BIS (2'''-CHLORO ETHYL)AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Sr.	R	Molecular	M.P.	Yield	% of N	itrogen
No.		Formula	.с	%	Calcd	Found
1.	C ₆ H ₅	C ₂₅ H ₂₇ Cl ₂ N ₇ O ₂	171	78	18.55	18.52
2.	2-OH C ₆ H ₄	C ₂₅ H ₂₇ Cl ₂ N ₇ O ₃	215	71	18.01	18.00
3.	3-OH C ₆ H ₄	C ₂₅ H ₂₇ Cl ₂ N ₇ O ₃	272	75	18.01	18.01
4.	4-OH C ₆ H ₄	C ₂₅ H ₂₇ Cl ₂ N ₇ O ₃	186	81	18.01	17.99
5.	4-OCH ₃ C ₆ H ₄	C ₂₆ H ₂₉ Cl ₂ N ₇ O ₃	168	80	17.56	17.54
6.	4-OH 3-OCH ₃ C ₆ H ₃	$C_{26}H_{29}Cl_2N_7O_4$	235	79	17.07	17.05
7.	4-Br C_6H_4	$C_{25}H_{26}BrCl_2N_7O_2$	227	82	16.14	16.12
8.	$3-NO_2 C_6H_4$	$C_{25}H_{26}Cl_2N_8O_4$	280	84	19.54	19.50
9.	$4-NO_2 C_6H_4$	$C_{25}H_{26}Cl_2N_8O_4$	256	87	19.54	19.51
10	4-N,N(CH ₃) ₂ C ₆ H ₄	C ₂₇ H ₃₂ Cl ₂ N ₈ O ₂	279	73	19.61	19.60
11.	C ₄ H ₃ O (furfuryl)	C ₂₃ H ₂₅ Cl ₂ N ₇ O ₃	194	77	18.91	18.89

TABLE NO : 8	ANTIMICROBIAL ACTIVITY	OF 2-{4'-[(5"-ARYL)-4",	5"-DIHYDRO-1"-ACETYL	PYRAZOL-3"-YL]-
	PHENYLAMINO}-6-[BIS(2"'-C	HLORO ETHYL)AMINO]-	4-METHOXY-1,3,5-TRIAZIN	E.

Sr.	Antibacterial activity					
No.		Zone of inhibition in m.m.				
					in m.m.	
	B. mega.	B. subtillis	E. coli.	P. fluorescens.	A. awamori.	
C ₆ H ₅	18	16	18	15	18	
2-OH C ₆ H ₄	19	18	17	21	17	
3-OH C ₆ H ₄	17	19	20	19	20	
4-OH C ₆ H ₄	22	21	23	23	21	
4-OCH ₃ C ₆ H ₄	21	17	22	20	16	
4-OH 3-OCH ₃ C ₆ H ₃	23	16	19	22	18	
4-Br C_6H_4	22	22	20	23	22	
3-NO2 C ₆ H ₄	16	18	18	19	16	
$4\text{-NO}_2 \text{ C}_6\text{H}_4$	19	21	19	20	19	
4-N,N(CH ₃) ₂ C ₆ H ₄	23	17	20	18	19	
C ₄ H ₃ O (furfuryl)	18	20	19	21	18	

Synthesis, spectral studies and therapeutic activity of some Heterocyclic compounds

SECTION-III

SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF 2-{4'-[(5"-ARYL)-4"-5"-DIHYDRO-1"-PHENYL PYRAZOL-3"-YL]-PHENYL AMINO}-6-[BIS. (2"'-CHLORO ETHYL) AMINO]-4- METHOXY-1,3, 5- TRIAZINE.

Phenyl pyrazoline derivatives showes good therapeutic activities, it was considered worth while to synthesis compounds bearing 2-{4'-[(5"-aryl)-4", 5"-dihydro-1"-phenyl pyrazol-3"-yl]-phenyl amino}-6-[Bis (2"'-chloroethyl) amino]-4-methoxy-1,3,5-triazine of Type-(v) have been synthesised by the condensation of 2-{4'-[(3"-aryl)-2"-propene-1"-one]-phenyl amino}-6-[Bis(2"'-chloroethyl) amino -4-methoxy - 1,3,5-triazine of Type-(I) with phenyl hydrazine.

The constitution of the products have been characterised by elemental analysis IR, 1 H NMR, Mass spectral study. The products were screened for their antimicrobial activity at a concentration of 50 μ g.

The details have been cited in the Part-I, Section-I, Page no. 39-41.

IR SPECTRAL STUDY OF 2-{4'-[5''-(4''''-METHOXYPHENYL]-4''-5''-DIHYDRO-1''-PHENYL PYRAZOL-3''-YL]-PHENYL AMINO}-6-[BIS (2'''-CHLORO ETHYL) AMINO]-4- METHOXY-1,3, 5- TRIAZINE.

Туре	Vibration Mode	Frequency in cm ⁻¹		Ref.
		observed	reported	
Alkane	C-H Str.(asym)	2808	2990-2850	422 - 423
	C-H Str.(sym)	2879	2880-2860	
	C-H def.(asym)	1436	1470-1435	"
	C-H def.(sym)	1361	1390-1360	"
Aromatic	C-H Str.	3056	3090-3030	
	C-H i.p. def	1168	1300-1100	"
	C-H o.o.p. def	823	832-800	
	C=C Str.	1458	1600-1450	"
S-triazine	C-N Str.	1037	1220-1020	
	C=N Str.	1600	1630-1590	77
Amine	N-H Str.	3396	3500-3310	"
	N-H Bending	1600	1650-1550	
Ether	C-O-C Str.(asym)	1251	1260-1220	>>
	C-O-C Str.(sym)	1068	1075-1020	
Halide	C-Cl Str.	769	800-600	"
Pyrazoline	C-N Str.	1068	1705-1650	
	C=N Str.	1601	1650-1550	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	CH-CH ₂ Str.	2345	2850-1790	"

Instrument : SHIMADZU-IR-8400, Spectrophoto meter frequency range : 4000-400 cm⁻¹ (KBrdisc)

NMR SPECTRAL STUDY OF 2-{4'-[5''-(4''''-METHOXYPHENYL]-4''-5''-DIHYDRO-1''-PHENYL PYRAZOL-3''-YL]-PHENYL AMINO}-6-[BIS (2'''-CHLORO ETHYL) AMINO]-4- METHOXY-1,3, 5- TRIAZINE.

Internal standard : TMS ; solvent : CDCl₃ ; Instrument : BRUKER spectrometer (300 MHz)

Signal	Signal	Relative no. of	Multiplicity	Inference
No.	Position	protons		
	(ppm)			
1	3.80-3.90	6 H	Singlet	Ar-OCH ₃
2	7.18-7.88	4 H	D. Doublet	Ar-H _b
3	7.97-8.25	4 H	D. Doublet	Ar-H _c
4	4.02-4.04	4 H	Triplet	-CH ₂ -Cl
5	2.67-3.27	4 H	Triplet	-N-CH ₂ -
6	10.13	1 H	Singlet	Ar-NH _f
7	7.97-8.12	5 H	Multiplate	ArH _g
8	3.50	2 H	Singlet	$-CH_{2h}$

Antimicrobial Activity :

Conclution :

Maximum antimicrobial activity :

		Antifungal activity					
	Zone of inhibition in m.m.						
	B. mega.	A. awamori.					
	R	R	R	R	R		
	4-OH $C_6H_4(21)$	$3-OH C_6H_4(18)$	4-OH $C_6H_4(21)$	3-OH $C_6H_4(22)$	$C_6H_4(23)$		
	4-OCH ₃	4-OH $C_6H_4(19)$	4-Br. $C_6H_4(22)$	4-OH $C_6H_4(23)$	4-OH $C_6H_4(24)$		
	$C_{6}H_{4}(20)$						
	4-Br. $C_6H_4(22)$	4-OH, 3-OCH ₃ C ₆ H ₄ (18)	$3-NO_2 C_6 H_4(20)$	4-Br $C_6H_4(24)$	$3-NO_2 C_6 H_4(21)$		
	$4-NO_2 C_6 H_4(21)$	$4-Br C_6 H_4(19)$	$4-NO_2 C_6 H_4(22)$	$4-NO_2 C_6 H_4(23)$	$4-NO_2 C_6 H_4(22)$		
		$4-NO_2 C_6 H_4(20)$		4-N,N (CH ₃) ₂ C ₆ H ₄ (21)			
C	comparable activity v	with known standard drugs					
Ampicilin 50 µg	23	18	17	27	-		
Chloramphenicol "	24	19	25	26	-		
Norfloxacin "	24	19	25	26	-		
Greseofulvin "	-	-	-	-	23		
	1	1	L	1			

EXPERIMENTAL

SYNTHESIS OF 2-{4'-[5''-ARYL]-4''-5''-DIHYDRO-1''-PHENYL PYRAZOL-3''-YL]-PHENYL AMINO}-6-[BIS (2'''-CHLORO ETHYL) AMINO]-4-METHOXY-1,3, 5- TRIAZINE.

- (A) Synthesis of 2-(4'-Acetyl pheyl amino)-4, 6-dichloro-1,3,5-triazine.For synthesis, see Part-I, Section-I, Page no. 36-38.
- (B) Synthesis of 2-(4'-Acetyl phenyl amino)-6-chloro-4-methoxy-1,3,5-triazine.For synthesis Part-I, Section-I, Page no. 36-38.
- (C) Synthesis of 2-(4'-Acetyl phenyl amino)-6-[Bis (2''-chloro ethyl) amino]-4methoxy-1,3,5-triazine
 For synthesis see Part-I, Section-I, Page no. 36-38.
- (D) Synthesis of 2-{4'-[3''-(4''''-Methoxy phenyl)-2''-propene-1''-one] phenyl amino}-6-[Bis(2'''-chloro ethyl) amino]-4-methoxy-1,3,5-trizine
 For synthesis, see Part-I, Section-I, Page no. 36-38.
- (E) Synthesis of 2-{4'-[5"-(4""-Methoxyphenyl)-4", 5"- dihydro-1"-phenyl pyrazole-3"-yl]-phenyl amino} -6- [Bis (2"'-chloro ethyl) amino]-4- methoxy-1,3,5- triazine.

A mixture of 2-{4'-[3"-(4""-methoxy phenyl)-2"-propene-1"-one] phenyl amino}-6-[Bis (2"'-chloro ethyl) amino]-4- methoxy-1,3,5-triazine (5.02 gm, 0.01M) phenyl hydrazine hydrate (1.0 ml) and methanol (20 ml) was refluxed for 12 hrs. The reaction mixture was poured into crushed ice, filtered, washed with water and crystallised from dioxane. Yield : 78%, M.P. : 183° C. (Found C : 60.79, H : 5.21, N : 16.54, $C_{30}H_{31}O_2N_7Cl_2$ required C : 60.81, H : 5.23; N : 16.55%)

Simillarly other phenylpyrazolines have been synthesised and their physical data are reocrded in Table No.9

(F) Antimicrobial activity of 2-{4'[(5"-aryl)-4", 5"- dihydro-1" phenyl pyrazole - 3" - yl]-phenyl amino}-6-[Bis. (2"'-chloro ethyl) amino]-4-methoxy- 1,3,5- trizine.

The antimicrobied testing was carried out as described in Part-I, Section-I, Page no. 39-41.

The zone of inhibition of the test solution are recorded in Table No. 10

TABLE NO : 9 PHYSICAL CONSTANTS OF 2-{4'-[(5''-ARYL)-4''-5''-DIHYDRO-1''-PHENYL PYRAZOL-3''-YL]-PHENYLAMINO}-6-[BIS (2'''-CHLORO ETHYL) AMINO]-4- METHOXY-1,3, 5- TRIAZINE.

Sr.	R	Molecular	M.P.	Yield	% of Nitrogen	
No.		Formula	°C	%	Calcd	Found
1.	C ₆ H ₅	$C_{29}H_{29}Cl_2N_7O$	218	78	17.43	17.41
2.	2-OH C ₆ H ₄	$C_{29}H_{29}Cl_2N_7O_2$	249	81	16.95	16.92
3.	3-OH C ₆ H ₄	$C_{29}H_{29}Cl_2N_7O_2$	258	76	16.95	16.91
4.	4-OH C ₆ H ₄	$C_{29}H_{29}Cl_2N_7O_2$	197	83	16.95	19.93
5.	4-OCH ₃ C ₆ H ₄	$C_{30}H_{31}Cl_2N_7O_2$	183	78	16.55	16.54
6.	4-OH, 3-OCH ₃ C ₆ H ₃	C ₃₀ H ₃₁ Cl ₂ N ₇ O ₃	205	79	16.11	16.09
7.	4-Br. C_6H_4	C ₂₉ H ₂₈ BrCl ₂ N ₇ O	210	84	15.29	15.23
8.	$3-NO_2 C_6 H_4$	C ₂₉ H ₂₈ Cl ₂ N ₈ O ₃	256	81	18.44	18.41
9.	$4-NO_2 C_6 H_4$	C ₂₉ H ₂₈ Cl ₂ N ₈ O ₃	211	78	18.44	18.42
10	$4-N_{N}-(CH_{3})_{2}C_{6}H_{4}$	$C_{31}H_{34}Cl_2N_8O$	278	85	18.50	18.48
11.	C ₄ H ₃ O (Furfuryl)	$C_{27}H_{27}Cl_2N_7O_2$	191	88	17.75	17.71

TABLE NO : 10 ANTIMICROBIAL ACTIVITY OF 2-{4'-[(5"-ARYL)-4"-5"-DIHYDRO-1"-PHENYL PYRAZOL-3"-YL]-PHENYLAMINO}-6-[BIS. (2"'-CHLORO ETHYL) AMINO]-4- METHOXY-1,3, 5- TRIAZINE.

Sr.	R	Antibacterial activity				Antifungal activity
No.		Zone of inhibition in mm.				Zone of inhibition in mm.
		B. mega.	B. subtillis	E. coli.	P. fluorescens	A. awamori
1	C ₆ H ₅	18	14	16	17	19
2	2-OH C ₆ H ₄	17	12	18	19	23
3	3-OH C ₆ H ₄	19	18	19	22	21
4	$4-OH C_6H_4$	21	19	21	23	24
5	4-OCH ₃ C ₆ H ₄	20	16	20	21	19
6	4-OH, 3-OCH ₃ C ₆ H ₃	16	18	19	20	17
7	4-Br. C_6H_4	22	19	22	24	19
8	$3-NO_2 C_6H_4$	18	17	20	21	21
9	$4-NO_2 C_6H_4$	21	20	22	23	22
10	4-N,N-(CH ₃) ₂ C ₆ H ₄	17	16	18	21	19
11	C ₄ H ₃ O (Furfuryl)	19	15	18	20	17

PART - IV

STUDIES ON PYRIMIDINES

STUDIES ON PYRIMIDINES

INTRODUCTION

Pyrimidine derivatives occur in natural products¹⁷⁹ like nucleic acid and vitamin-B have remarkable pharmaceutical importance because of their biological¹⁸⁰⁻¹⁸³ several analogs of nucleic acids have been used as compound that interfere with the synthesis and functioning of uncleic acids, and example is fluorouracil which has been used in cancer treatment. Pyrimidines are among those molecules that make life possible as being same of the building blocker of DNA and RNA.

Some pyrimidines of physiologically as well as pharmacologically importance are as under : e.g. cytosine, beclmeihrin(S), blasticidin(T).

Synthetic pyrimidine derivatives contribute much to the searchable literature of pyrimidine derivities, in huge libraries owing to their wide applicability in different fields.

SYNTHETIC ASPECT :

Different methods for the synthesis of pyrimidine have been cited in the literature.¹⁸⁴

1. F. Bigi and co-worker¹⁸⁵ have synthesised as shown below under solvent free condition.

REACTION MECHANISM :

The reaction of α , β -unsaturated system with urea to the formation of 4-oxopyrimidine by 1, 2 and 1, 4 michal addition.
THERAPEUTIC IMPORTANCE

Pyrimidine derivatives have proven to be of great importance in exhibiting and enhancing the biological activities such as.

- (a) Antitumor¹⁸⁶
- (b) Carcinostatic¹⁸⁷
- (c) antiinflammatory and anticonvulsant¹⁸⁸⁻¹⁸⁹
- (d) Antimalarial¹⁹⁰
- (e) Antithyroid¹⁹¹
- (f) Anthelmintic¹⁹²
- (g) Anti-HIV¹⁹³⁻¹⁹⁴
- (h) Antilishmenial¹⁹⁵
- (i) Antiviral¹⁹⁶
- (j) Antimicrobial¹⁹⁷
- (k) Herbicidal¹⁹⁸⁻²⁰⁴
- (l) Antagonists²⁰⁵⁻²⁰⁹

Moreover, L. V. Azarayan et al.²¹⁰ have synthesised pyrimidine diones as antitumor agent. V. P. Krivongov and co-worker²¹¹ have synthesised pyrimidinone derivatives possessing immunotropic and antiinflammatory activity. M. Refai and coworker²¹² have prepared some new pyrimidine derivatives showed moderate activity against the growth of *Bacillus substilis, staphylococus aureus* and *Aspergillus niger*. A. Kofies et. al.²¹³ have seggested that pyrimidinone (U)(V) as herbicidal and plant growth regulators.

K. Mogilaiash²¹⁴ have prepared spiro pyrimidinones as antibacterial.
 M. wilhelm²¹⁵ have synthesised pyrimidinones as herbicidal agents.

C. D. Timothy and co-worker²¹⁶ have suggested imidazolyl pyrimidinones as antiviral T. Nagamatsu et. al.²¹⁷ have prepared some new triazolo [3,4-c] pyrimidine as xanthin oxidase inhibitors. A. Roland et. al.²¹⁸ have prepared oxazolyl uracil as herbicidal and insecticidal. M. M. Yari and co-worker²¹⁹ have investigated the pyrimidinone derivatives which possess caclcium antagonist activity.

M. A. Bruce and co-worker²²⁰ prepared the dihydro pyrimidinones as NPY antagonist.

D. R. Sidler²²¹ have reported pyrimidinone derivatives, useful as an α -adrenergic receptor antagonist.

Mona Mahram and co-worker²²² have synthesied pyrimidine derivatives as potent antimicrobial and antitumor agents.

K. A. Gupta and co-worker²²³ have prepared 2,6-disubstituted pyrimidinones as CNS agent.

Pyrimidinone derivatives²²⁴⁻²²⁵ have found to be calcium channel blocker. M. M. Barbuliene et. al.²²⁶ have synthesised pyrimidione as antiinflammatary agent.

Recently. Amjad Ali et. al.²²⁷ have synthesised new fused pyrimidinones as antimicrobial agents. Abd El-Galil et. al.²²⁸ have synthesised pyrimidine as androgenic, anabolic and antiinflammatory agents. Martin Bolli et. al.²²⁹ have synthesised pyrimidines as endothelin receptor antagonists. G. Z. Hang et. al.²³⁰ have synthesised and screened for their leukocyte functions inhibitor activity. Yam amoto et al.²³¹ have synthesised pyrimidines and tested their hyderproliferative disorder activity. V. N. Patolia et al.²³² have been synthesised 2-{4'[6"(aryl)-2-"hydroxy,3",4"dihydro pyrimidine-4"-yl]-phenyl amino}-4,6-dimethoxy pyrimidines and screened their antimicrobial acivity.

The synthesis of pyrimidines derivatives described as under.

SECTION : I SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF 2-{4'-[(6''-ARYL-2''-MERCAPTO,3''-4''-DIHYDRO)-PYRIMIDINE-4''-YL]-PHENYLAMNIO}-6-[BIS(2'''-CHLOROETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE.

SECTION : II SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF 2-{4-[(6''-ARYL-2''-HYDROXY-3'',4''-DIHYDRO)-PYRIMIDNE-4''-YL]-PHENYLAMINO}-6-[BIS(2'''-CHLOROETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE.

SECTION: III SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF 2-{4'-[6''-ARYL-2''-AMINO-3'', 4''-DIHYDRO)-PYRIMIDINE-4''-YL]-PHENYLAMINO}-6-[BIS(2'''-CHLOROETHYL)AMINO]-4-METHOXY-1,3,5-TRIAZINE.

SECTION-I

SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF 2-{4'-[(6"-ARYL-2"-MERCAPTO-3",4"-DIHYDRO)-PYRIMIDINE-4"-YL]-PHENYL AMINO}-6-[BIS (2"'-CHLOROETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Pyrimidine nucleus possess remarkable pharmaceutical and biological activites. This valid observation lead us to synthesised 2-{4'-[(6"-aryl-2"-mercapto-3", 4"-dihydro)-pyrimidine-4"-yl]-phenyl amino}-6-[Bis (2"'-chloro ethyl) amino]-4-methoxy-1,3,5-triazine of Type-(VI) have been condensation by the reaction of chalcones of Type-(I) with thiourea in the presence of alcoholic potassium hydroxide.

The constitution of the products have been characterised by elemental analyses IR, 1 H NMR, Mass spectral study. The products were screened for antimicrobial activity at a concentration of 50 µg.

The details have been cited in the part : I, section : I, page no. 39-41.

IR SPECTRAL STUDY OF 2-{4'-[6''-(4''''-METHOXYPHENYL-2''-MERCAPTO-3'',4''-DIHYDRO)-PYRIMIDINE-4''-YL]-PHENYL AMINO}-6-[BIS (2'''-CHLOROETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Instrument : SHIMADZU-FT-IR-8400, Spectrophoto meter frequency range : 4000-400 cm⁻¹ (KBrdisc)

Туре	Vibration Mode	Freque	ncy in cm ⁻¹	Ref.
		observed	reported	
Alkane	C-H Str.(asym)	2905	2990-2850	422 - 423
	C-H Str.(sym)	2877	2880-2860	
	C-H def.(asym)	1458	1470-1435	22
	C-H def.(sym)	1357	1390-1360	"
Aromatic	C-H Str.	3031	3090-3030	
	C-H i.p. def	1170	1300-1100	>>
	C-H o.o.p. def	810	832-800	
	C=C Str.	1508	1600-1450	"
S-triazine	C-N Str.	1035	1220-1020	
	C=N Str.	1539	1630-1590	22
Amine	N-H Str.	3350	3500-3310	"
	N-H Bending	1539	1650-1550	
Ether	C-O-C Str.(asym)	1222	1260-1220	"
	C-O-C Str.(sym)	1068	1075-1020	
Halide	C-Cl Str.	769	800-600	"
Thio Pyrimidine	C=S Str.	1571	1590-1550	
		•		
	1	.03		

NMR SPECTRAL STUDY OF 2-{4'-[6''-(4''''-METHOXYPHENYL-2''-MERCAPTO-3'',4''-DIHYDRO)-PYRIMIDINE-4''-YL]-PHENYL AMINO}-6-[BIS (2'''-CHLOROETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Internal standard : TMS; solvent : CDCl₃ ; Instrument : BRUKER spectrometer (300 MHz)

Signal	Signal	Relative no. of	Multiplicity	Inference
No.	Position	protons		
	(ppm)			
1	3.54-3.72	6 H	Singlet	Ar-OCH ₃
2	7.52-7.78	4 H	D. Doublet	Ar-H _b
3	7.80-7.95	4 H	D. Doublet	Ar-H _c
4	4.65-4.68	4 H	Triplet	-CH ₂ -Cl
5	2.95-3.18	4 H	Triplet	-N-CH ₂ -
6	9.81	2 H	Singlet	Ar-NH _f
7	2.35	1 H	Singlet	ArSH _g
8	7.71-7.74	1 H	Singlet	-Ar _h

Antimicrobial Activity :

Conclution :

Maximum antimicrobial activity :

		Antifungal activity			
		Zone of inhibit	ition in m.m.		Zone of inhibition in
					m.m.
	B. mega.	B. subtillis	E. coli.	P. fluorescens.	A. awamori.
	R	R	R	R	R
	$3-OH C_6H_4 (23)$	$3-OH C_6H_4 (18)$	$4-OH C_6H_4 (24)$	$C_{6}H_{5}(23)$	$3-OH C_6H_4 (23)$
	$4-OH C_6H_4 (23)$	4-OH C_6H_4 (19)	4-OH, 3-OCH ₃	$3-OH C_6H_4 (24)$	$4-Br C_6 H_4 (21)$
	4-Br. C_6H_4 (22)	4-Br. C_6H_4 (20)	C ₆ H ₃ (22)	$4-OH C_6H_4 (24)$	$4-NO_2 C_6 H_4 (22)$
	$3-NO_2 C_6 H_4 (24)$	$4-NO_{2} C_{6}H_{4} (19)$	4-Br C_6H_4 (23)	4-Br. C_6H_4 (23)	
		C ₄ H ₃ O (20)	$4-NO_2 C_6 H_4 (21)$		
Сог	mparable activity with kr	nown standard drugs			
Ampicilin 50 µg	23	18	17	27	-
Chloramphenicol "	24	19	25	26	-
Norfloxacin "	24	19	25	26	-
Greseofulvin "	-	-	-	-	23
				-	•

EXPERIMENTAL

SYNTHESIS OF 2-{4'-[(6''-ARYL-2''-MERCAPTO-3'',4''-DIHYDRO)-PYRIMIDINE-4''-YL]-PHENYL AMINO}-6-[BIS (2'''-CHLOROETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE.

- (A) Synthesis of 2-(4'-Acetyl phenyl amino)-4, 6-dichloro 1, 3, 5-triazine.For synthesis Part-I, Section-I, Page no. 36-38.
- (B) Synthesis of 2-(4'-Acetyl phenyl amino)-6-chloro-4-methoxy-1,3,5-triazineFor syntesis Part-I, Section-I, Page no. 36-38.

(C) Synthesis of 2-(4'-Acetyl phenyl amino)-6-[Bis (2''-chloro ethyl) amino]-4methoxy-1,3,5-triazine.

For synthesis Part-I, Section-I, Pagen no. 36-38.

- (D) Synthesis of 2-{4'-[3''-(4''''-methoxy phenyl)-2''-propene-1''-one] phenyl amino}-6-[Bis (2'''-chloro ethyl) amino]-4- methoxy-1,3,5-triazine.
 For synthesis Part-I, Section-I Page no. 36-38.
- (E) Synthesis of 2-{4'-[6''-(4''''-methoxy phenyl)-2''-mercapto- 3'', 4''-dihydro-Pyrimidine-4''-yl]-phenyl amino}-6-[Bis (2'''-chloro ethyl) amino]-4-methoxy 1, 3, 5, triazine.

A mixture of 2-{4'-[3"-(4""-methoxy phenyl)-2"- propene-1"-one] phenyl amino}-6-[Bis (2"'-chloro ethyl) amino} -4- methoxy-1,3,5-triazine (5.02 gm,

0.01 M); and thiourea (0.66 gm, 0.01 M) was refluxed at 90° C for 13 hrs. in the presence of basic medium like alcoholic KOH and methanol. The reaction mixture was poured into crushed ice, filtered and dried. The product was isolated and crystallised from dioxane yield : 70%. m.p. : 171° C. (Found C : 53.54; H : 4.81; N : 17.45; C₂₅H₂₇O₂N₇Cl₂S required C: 55.57, H : 4.82, N : 17.49%)

Simillarely other compounds were prepared and their physical data are recorded in Table No. 11

 (F) Antimicrobial activity of 2-{4'-[(6''-aryl-2''-mercapto-3'', 4''-dihydro)pyrimidine-4''-yl]-phenyl amino}-6-[Bis. (2'''-chloro ethyl) amino]-4methoxy-1,3,5- triazine.

The antimicrobial testing was carried out as described in Part-I, Section-I, Page no. 39-41.

The zone of inhibition of the test solution are recorded in Table no. 12.

TABLE NO : 11 : PHYSICAL CONSTANTS OF 2-{4'-[(6''-ARYL-2''-MERCAPTO, 3''-4''-DIHYDRO)-PYRIMIDINE-4''-YL] PHENYL AMINO}-6-[BIS (2'''-CHLOROETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Sr.	R	Molecular	M.P.	Yield	% of Ni	itrogen
No.		Formula	.c	%	Calcd	Found
1.	C ₆ H ₅	C ₂₄ H ₂₅ Cl ₂ N ₇ OS	218	77	18.48	18.41
2.	2-OH C ₆ H ₄	$C_{24}H_{25}Cl_2N_7O_2S$	180	81	16.09	16.07
3.	3-OH C ₆ H ₄	$C_{24}H_{25}Cl_2N_7O_2S$	138	83	16.09	16.05
4.	4-OH C ₆ H ₄	$C_{24}H_{25}Cl_2N_7O_2S$	265	78	16.09	16.01
5.	4-OCH ₃ C ₆ H ₄	$C_{25}H_{27}Cl_2N_7O_2S$	171	70	17.49	17.45
6.	4-OH, 3-OCH ₃ C ₆ H ₃	$C_{25}H_{27}Cl_2N_7O_3S$	228	73	17.01	17.00
7.	$4-Br C_6H_4$	C ₂₄ H ₂₄ BrCl ₂ N ₇ OS	272	82	16.09	16.02
8.	$3-NO_2 C_6 H_4$	$C_{24}H_{24}Cl_2N_8O_3S$	236	85	19.47	19.42
9.	$4-NO_2 C_6 H_4$	$C_{24}H_{24}Cl_2N_8O_3S$	157	87	19.47	19.44
10.	$4-N_{,}N(CH_{3})_{2}C_{6}H_{4}$	C ₂₆ H ₂₃ Cl ₂ N ₈ OS	183	79	19.54	19.50
11.	C ₄ H ₃ O (Furfuryl)	$C_{22}H_{23}Cl_2N_7O_2S$	226	76	18.48	18.43

TABLE NO : 12 ANTIMICROBIAL ACTIVITY OF 2-{4'-[6''-(ARYL-2''-MERCAPTO-3''4''-DIHYDRO)PYRIMIDINE-4"-YL]-PHENYL AMINO}-6-[BIS (2'''-CHLORO ETHYL) AMINO]-4- METHOXY-1,3, 5- TRIAZINE.

Sr. No.			Antibacterial activity Zone of inhibition in mm.					
	R	B. mega.	B. subtillis	E. coli.	P. fluorescens	A. awamori		
1	C ₆ H ₅	21	14	18	23	17		
2	2-OH C ₆ H ₄	20	13	19	22	19		
3	3-OH C ₆ H ₄	23	18	20	24	23		
4	4-OH C ₆ H ₄	23	19	24	24	20		
5	4-OCH ₃ C ₆ H ₄	19	16	17	20	18		
6	4-OH, 3-OCH ₃ C ₆ H ₃	17	15	22	19	16		
7	$4-Br C_6 H_4$	22	20	23	23	21		
8	3-NO ₂ C ₆ H ₄	24	18	18	19	19		
9	$4-NO_2 C_6 H_4$	21	19	21	21	22		
10	4-N, N(CH ₃) ₂ C ₆ H ₄	20	18	20	19	18		
11	C ₄ H ₃ O (Furfuryl)	19	20	18	16	17		

Synthesis, spectral studies and therapeutic activity of some Heterocyclic compounds

SECTION : II

SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF 2-{4'-[(6"-ARYL)2"-HYDROXY-3",4"-DIHYDRO-PYRIMIDINE-4"-YL]-PHENYL AMINO}-6-[BIS (2"'-CHLOROETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Pyrimidine derviatives showed wide range of application in the field of pharmaceutical, it was considered worth while to synthesis compounds bearing S-triazine, Bis (2-chloro ethyl) amine nucleus linked to pyrimidine nucleus. 2-{4'-[(6"-aryl-2"-hydroxy-3", 4"-dihydro)-pyrimidine-4"-yl]-phenyl amino}-6-[Bis(2"'-chloro ethyl) amino]-4-methoxy -1,3,5-triazine of type(VII) have been synthesised by the condensation of 2-{4'-[(3"-aryl)-2"- propene-1"-one]-phenyl amino}-6-[Bis(2"'-chloro ethyl) amino]-4-methoxy-1,3,5-triazine of Type-(I) with urea in presence of catalytic amount of conc. HCl

The constituion of the products have been characterised by elemental analyses IR, ¹H NMR, Mass spectral study. The products were screened for antimicrobial activity at a concentration of 50 μ g.

The details have been cited in the part : I, Section I, Page NO. 39-41.

IR SPECTRAL STUDY OF 2-{4'-[6''-(4''''-METHOXYPHENYL)-2''-HYDROXY-3'',4''-DIHYDRO)-PYRIMIDINE-4''-YL]-PHENYL AMINO}-6-[BIS (2'''-CHLOROETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Туре	Vibration Mode	Freque	ency in cm ⁻¹	Ref.
		observed	Reported	
Alkane	C-H Str.(asym)	2835	2990-2850	422 - 423
	C-H Str.(sym)	2880	2880-2860	
	C-H def.(asym)	1458	1470-1435	77
	C-H def.(sym)	1363	1390-1360	"
Aromatic	C-H Str.	3036	3090-3030	
	C-H i.p. def	1168	1300-1100	>>
	C-H o.o.p. def	823	832-800	
	C=C Str.	1458	1600-1450	"
S-triazine	C-N Str.	1122	1220-1020	
	C=N Str.	1595	1630-1590	,,
Amine	N-H Str.	3368	3500-3310	"
	N-H Bending	1635	1650-1550	
Ether	C-O-C Str.(asym)	1222	1260-1220	"
	C-O-C Str.(sym)	1068	1075-1020	
Halide	C-Cl Str.	769	800-600	>>
Oxy Pyrimidine	C=O Str.	1654	1650-1550	

Instrument : SHIMADZU-FT-IR-8400, Spectrophotometer; frequency range : 4000-400 cm⁻¹ (KBrdisc)

NMR SPECTRAL STUDY OF 2-{4'-[6''-(4''''-METHOXYPHENYL)-2''-HYDROXY-3'',4''-DIHYDRO)-PYRIMIDINE-4''-YL]-PHENYL AMINO}-6-[BIS (2'''-CHLOROETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE

Internal standard : TMS; solvent : DMSO; Instrument : DPX-200 spectrometer (300 MHz)

Signal	Signal Position	Relative no. of	Multiplicity	Inference
No.	(ppm)	protons		
1	3.82-3.92	6 H	Singlet	Ar-OCH ₃
2	7.22-7.99	4 H	D Doublet	Ar-H _b
3	8.03-8.32	4 H	D Doublet	Ar-H _c
4	4.02-4.06	4 H	Triplet	-CH ₂ -Cl
5	2.69	4 H	Triplet	-N-CH ₂ -
6	10.06-10.15	2 H	Singlet	Ar-NH _f
7	9.64	1 H	Singlet	Ar-OH _g
8	7.99	1 H	Singlet	-Ar _h

MASS SPECTRAL STUDY OF 2-{4'-[6''-(4''''-METHOXYPHENYL)-2''-HYDROXY-3'',4''-DIHYDRO)-PYRIMIDNE-4''-YL]-PHENYL AMINO}-6-[BIS (2'''-CHLOROETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE. (M.W. : 544)

Antimicrobial Activity :

Conclution :

Maximum antimicrobial activity :

		Antifungal activity Zone of inhibition in			
	B. mega.	B. subtillis	E. coli.	P. fluorescens.	M.M. A. awamori.
	2-OH C ₆ H ₄ (23)	K 3-OH C ₆ H ₄ (18)	$\frac{K}{C_6H_5(18)}$	K 3-OH C ₆ H ₄ (23)	$\frac{R}{2-OH C_6H_4(20)}$
	4-OH C ₆ H ₄ (24)	4-OH $C_6H_4(19)$	3-OH C ₆ H ₄ (19)	4-OH $C_6H_4(23)$	4-OH $C_6H_4(22)$
	4-Br $C_6H_4(22)$	$4-OCH_3 C_6H_4(18)$	4-OH $C_6H_4(22)$	4-Br $C_6H_4(22)$	$3-NO_2 C_6 H_4(21)$
	$4-NO_2 C_6 H_4(23)$	$4-NO_2 C_6 H_4(19)$	$3-NO_2 C_6 H_4(20)$	$4-NO_2 C_6H_4(24)$	
		$4-N_{N}(CH_{3})_{2}C_{6}H_{4}(20)$			
Con Ampicilin 50 µg	parable activity with	known standard drugs	17	27	-
Chloramphenicol "	24	19	25	26	-
Norfloxacin "	24	19	25	26	-
Greseofulvin "	-	-	-	-	23

EXPRIMENTAL

SYNTHESIS OF 2-{4'-[(6''-ARYL-2''-HYDROXY-3'',4''-DIHYDRO)-PYRIMIDINE-4''-YL]-PHENYL AMINO}-6-[BIS (2'''-CHLOROETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE

- (A) Synthesis of 2-(4'-Acetyl phenyl amino)-4, 6-dichloro-1,3,5-triazine.For synthesis see Part-I, Section-I, Page no. 36-38.
- (B) Synthesis of 2-(4'-Acetyl phenyl amino)-6- chloro-4-methoxy-1,3,5triazine.

For synthesis see Part-I, Section-I, Page no. 36-38.

(C) Synthesis of 2-(4'-Acetyl phenyl amino)-6-[Bis. (2"chloro ethyl) amino]-4methoxy-1,3,5-triazine.

For syntheis see Part-I, Section-I, Page no. 36-38.

- (D) Synthesis of 2-{4'-[3'' -(4'''-Methoxy phenyl)-2''-propene-1''-one]phenyl amino}-6-[Bis(2'''-chloro ethyl) amino]-4-methoxy-1,3,5-riazine.
 For synthesis see Part-I, Section-I, Page no. 36-38.
- (E) Synthesis of 2-{4'-[6''-(4''''-Methoxy phenyl)-2''-hydroxy-3'', 4''-dihydro)pyrimidine-4''-yl]-phenyl amino}-6-[Bis.(2'''-chloroethyl) amino]-4methoxy-1,3,5- triazine.

A mixture of 2-{4'-[3"-(4"'-methoxy phenyl)-2"-Propene-1"-one] phenyl amino}-6-[Bis(2"'-chloro ethyl) amino]-4-methoxy-1,3,5-triazine (5.02 gm, 0.01 M) and urea (0.60 g, 0.01 M) was refluxed at 90° C. for 12 hrs. in presence of acid catalyst like HCl in methanol the reaction mixture was poured into crushed ice, filtered and dried the product was isolated, crystallised from dioxane. Yield : 78%. M.P. 110° C. (Found : C : 55.11; H : 4.95; N : 17.99; C₂₅H₂₇O₃N₇Cl₂ required C : 55.14; H : 4.96; N : 18.01%)

Similarly other pyrimidine derivatives have been synthesised and their physical data are recorded in Table no. 13.

 (F) Antimicrobial activity of 2-{4'[(6"-Aryl-2"-hydroxy, 3", 4"-dihydro)-Pyrimidine - 4"-yl] phenyl amino}-6-[Bis.(2"-chloro ethyl) amino]-4methoxy-1,3,5 triazine.

The antimicrobial testing was carried out as described in Part-I, Section-I, Page no. 39-41.

The zone of inhibition of the test solutions are recorded in Table no. 14.

TABLE NO : 13 : PHYSICAL CONSTANTS OF 2-{4'-[(6''-ARYL-2''-HYDROXY-3'',4''-DIHYDRO)-PYRIMIDINE-4''-YL]-PHENYL AMINO}-6-[BIS (2'''-CHLOROETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE

Sr.	R	Molecular	M.P.	Yield	% of Ni	trogen
No.		Formula	.c	%	Calcd	Found
1.	C ₆ H ₅	$C_{24}H_{25}Cl_2N_7O_2$	180	81	19.06	19.03
2.	2-OH C ₆ H ₄	$C_{24}H_{25}Cl_2N_7O_3$	228	79	18.48	18.41
3.	3-OH C ₆ H ₄	$C_{24}H_{25}Cl_2N_7O_3$	262	83	18.48	18.43
4.	4-OH C ₆ H ₄	$C_{24}H_{25}Cl_2N_7O_3$	280	85	18.48	18.47
5.	4-OCH ₃ C ₆ H ₄	C ₂₅ H ₂₇ Cl ₂ N ₇ O ₃	110	78	18.01	17.99
6.	4-OH, 3-OCH ₃ C ₆ H ₄	$C_{25}H_{27}Cl_2N_7O_4$	192	76	17.49	17.43
7.	4-Br. C_6H_4	$C_{24}H_{24}BrCl_2N_7O_2$	224	79	16.53	16.51
8.	3-NO ₂ C ₆ H ₄	$C_{24}H_{24}Cl_2N_8O_4$	265	81	20.03	20.01
9.	$4-NO_2 C_6H_4$	$C_{24}H_{24}Cl_2N_8O_4$	249	84	20.03	20.02
10	$4-N_{,N}(CH_{3})_{2}C_{6}H_{4}$	$C_{26}H_{30}Cl_2N_8O_2$	213	79	20.10	20.08
11.	C ₄ H ₃ O (Furfuryl)	C ₂₂ H ₂₃ Cl ₂ N ₇ O ₃	211	83	19.44	19.41

TABLE NO : 14 : ANTIMICROBIAL ACTIVITY OF 2-{4'-[(6''-ARYL-2''-HYDROXY-3'',4''-DIHYDRO)-PYRIMIDNE-4''-YL] PHENYL AMINO}-6-[BIS (2'''-CHLOROETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE

Sr.			Antibacterial activity				
No.			Zone of inhibition in mm.				
						mm.	
	R	B. mega.	B. subtillis	E. coli.	P. fluorescens	A. awamori	
1	C ₆ H ₅	20	12	18	15	19	
2	2-OH C ₆ H ₄	23	14	17	19	20	
3	3-OH C ₆ H ₄	21	18	19	23	19	
4	4-OH C ₆ H ₄	24	19	22	23	22	
5	4-OCH ₃ C ₆ H ₄	19	18	16	20	18	
6	4-OH, 3-OCH ₃ C ₆ H ₄	17	16	15	18	17	
7	4-Br. C ₆ H ₄	22	15	17	22	19	
8	3-NO ₂ C ₆ H ₄	18	17	20	21	21	
9	$4-NO_2 C_6 H_4$	23	19	16	24	20	
10	4-N ₁ N(CH ₃) ₂ C ₆ H ₄	19	20	17	16	16	
11	C ₄ H ₃ O (Furfuryl)	17	16	14	21	18	

SECTION : III

SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF 2-{4'-[6"-ARYL-2"-AMINO-3",4"-DIHYDRO)-PYRIMIDINE-4"-YL]-PHENYLAMINO}-6-[BIS(2'''-CHLORO ETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Looking to the interesting pharmacological and agricultral activity of pyrimidine ring system it was considered worth while to synthesis compound being Bis (2-chloro ethyl) amine and S-triazine nucleus linked to the pyrimidime nucleus 2-{4'-[6"-Aryl-2"-amino-3", 4"-dihydro)-pyrimidine-4"-yl] phenyl amino]-6-[Bis(2"'-chloroethyl) amino]-4- methoxy-1,3,5-triazine of Type (VIII) have been synthesised by the condensation of 2-{4'-[(3"-aryl)--2"-propene - 1" - one]- phenyl amino}-6-[Bis (2"'-chloroethyl) amino-4-methoxy-1,3,5-triazine of Type (I) with guanidine hydrochloride in the presence of alcoholic potassium hydroxide.

The constitution of the products have been characterised by elemental analysis IR, 1 H NMR, Mass spectral study. The products were screened for antimicrobial acivity at a concentration of 50 µg.

The details have been cited in the Part : I, Section : I, Page No. 39-41.

IR SPECTRAL STUDY OF 2-{4'-[6''-(4''''-METHOXYPHENYL)-2''-AMINO-3'', 4''-DIHYDRO)-PYRIMIDINE-4''-YL]-PHENYL AMINO}-6-[BIS(2'''-CHLORO ETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Туре	Vibration Mode	Freque	ency in cm ⁻¹	Ref.
		observed	Reported	
Alkane	C-H Str.(asym)	2925	2990-2850	422 - 423
	C-H Str.(sym)	2876	2880-2860	
	C-H def.(asym)	1460	1470-1435	"
	C-H def.(sym)	1355	1390-1360	"
Aromatic	C-H Str.	3081	3090-3030	
	C-H i.p. def	1180	1300-1100	"
	C-H o.o.p. def	806	832-800	
	C=C Str.	1473	1600-1450	"
S-triazine	C-N Str.	1141	1220-1020	
	C=N Str.	1589	1630-1590	33
Amine	N-H Str.	3407	3500-3310	"
	N-H Bending	1589	1650-1550	
Ether	C-O-C Str.(asym)	1247	1260-1220	"
	C-O-C Str.(sym)	1068	1075-1020	
Halide	C-Cl Str.	767	800-600	"
Amino Pyrimidine	N-H Str.	3350	3350-3250	
	C=N Str.	1616	1612-1550	77
	C-N Str.	1116	1220-1020	
	1	I	1	1

Instrument : SHIMADZU-FT-IR-8400, Spectrophotometer; frequency range : 4000-400 cm⁻¹ (KBrdisc)

NMR SPECTRAL STUDY OF 2-{4'-[6''- [4''''-METHOXYPHENYL)-2''-AMINO-3'', 4''-DIHYDRO)-PYRIMIDINE-4''-YL]-PHENYL AMINO}-6-[BIS(2'''-CHLORO ETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Internal standard : TMS; solvent : DMSO : Instrument : DPX-200 spectrometer (300 MHz)

Signal	Signal Position	Relative no. of	Multiplicity	Inference
No.	(ppm)	protons		
1	3.50-3.69	6 H	Singlet	Ar-OCH ₃
2	7.49-7.90	4 H	D. Doublet	Ar-H _b
3	7.92-9.27	4 H	D. Doublet	Ar-H _c
4	4.62-4.65	4 H	Triplet	-CH ₂ -Cl
5	2.32-2.92	4 H	Triplet	-N-CH ₂ -
6	9.69	2 H	Singlet	Ar-NH _f
7	9.78	2 H	Singlet	Ar-NH _{2 g}
8	7.49-7.52	1 H	Singlet	-Ar _h

MASS SPECTRAL STUDY OF 2-{4'-[6''- (4''''-METHOXYPHENYL)-2''-AMINO-3'', 4''-DIHYDRO)-PYRIMIDINE-4''-YL]-PHENYL AMINO}-6-[BIS(2'''-CHLORO ETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE. (M.W. : 543)

Antimicrobial Activity :

Conclution :

Maximum antimicrobial activity :

		Antifungal activity Zone of inhibition in m.m. <i>A. awamori.</i>			
	B. mega.				
	R	R	R	R	R
	4-OH C ₆ H ₄ -(24)	3-OH C ₆ H ₄ -(19)	3-OH C ₆ H ₄ -(21)	2-OH C ₆ H ₄ -(24)	4-OCH ₃ C ₆ H ₄ -(20)
	$4-NO_2C_6H_4-(23)$	4-OH C_6H_4 -(20)	4-OCH ₃ C ₆ H ₄ -(20)	4-OH C ₆ H ₄ -(23)	$4-Br C_6H_4-(22)$
	4-N,N (CH ₃) ₂	$4-NO_2 C_6 H_4-(22)$	4-Br C_6H_4 -(22)	$4-NO_2 C_6 H_4-(22)$	$4-NO_2 C_6 H_4-(21)$
	C ₆ H ₄ -(21)		4-N,N(CH ₃) ₂ C ₆ H ₄ - (23)	$\begin{array}{ccc} 4-N,N(CH_3)_2 & C_6H_4-\\ (23) & \end{array}$	4-N,N (CH ₃) ₂ C ₆ H ₄ -(20)
					$C_4H_3O(22)$
		Comparable activ	ity with known standard	drugs	
Ampicilin 50 µg.	23	18	17	27	-
Chloramphenicol "	24	19	25	26	-
Norfloxacin "	24	19	25	26	-
Greseofulvin "	-	-	-	-	23
			127		

EXPERIMENTAL

SYNTHESIS OF 2-{4'-[(6''-ARYL-2''-AMINO-3'', 4''-DIHYDRO)-PYRIMIDINE-4''-YL]-PHENYL AMINO}-6-[BIS(2'''-CHLORO ETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE.

- (A) Syntesis of 2-(4'-Acetyl phenyl amino)-4,6'-dichloro-1,3,5-triazine.For synthesis, see Part-I, Section-I, Page no. 36-38.
- (B) Synthesis of 2-(4"-Acetyl phenyl amino)-6-chloro-4-methoxy-1,3,5triazine.

For synthesis, See Part-I, Section-I, Page No. 36-38.

(C) Synthesis of 2-(4'-Acetyl phenyl amino)-6-[Bis(2''- chloro ethyl) amino]-4methoxy-1,3,5-triazine.

For synthesis, see Part-I, Section-I, Page no. 36-38.

- (D) Synthesis of 2-{4'-(3''-(4'''-Methoxy phenyl)-2''-propene-1''-one] phenyl amino}-6-[Bis(2'''-chloro ethyl) amino]-4-methoxy-1,3,5-triazine.
 For synthesis, See Part-I, Section-I, Page no. 36-38.
- (E) Synthesis of 2-{4'-[6''-(4''''-Methoxy phenyl)-2''-amino-3'',4'', dihydro-pyrimidine-4''-yl]-phenyl amino}-6-[Bis(2'''-chloro ethyl) amino]-4-methoxy-1,3,5-triazine.

A mixture of 2-{4'-[3"-(4"'-methoxyphenyl)-2"-propene-1"-one]phenyl amino}-6-[Bis. (2"'-chloroethyl) amino]-4- methoxy-1,3,5-triazine (5.02 gm., 0.01 M) and guanidine hydrochloride (0.95 g, 0.01M) was refluxed at 110° C for 12 hrs. in presence of alcoholic KOH in methanol. The reaction mixture was poured into crushed ice filtered, dried and crystallised from dioxne. Yield : 80%. M.P. : 153° C (Found : C : 55.21; H : 5.13; N : 20.61; $C_{25}H_{28}O_2N_8Cl_2$, required C: 55.24; H : 5.15; N : 20.62%).

Similarly other pyrimidines were synthesised and their physical data are recorded in Table no. 15

 (F) Antimicrobial activity of 2-{4'-[(6"-aryl - 2"-amino-3", 4"-dihydro)pyrimidine-4"-yl]-phenyl amino}-6-[Bis-(2"'-chloroethyl) amino]-4methoxy-1,3, 5,-triazine.

Antimicrobial testing was carried out as described in part : I, section : I, Page no. 39-41.

The zone of inhibition of the test solutions are recordeds in Table No. 16

TABLE NO : 15 : PHYSICAL CONSTANTS OF 2-{4'-[(6''-ARYL-2''-AMINO-3'', 4''-DIHYDRO)-PYRIMIDINE-4''-YL]-PHENYL AMINO}-6-[BIS(2'''-CHLORO ETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Sr.	R	Molecular	M.P.	Yield	% of Nitrogen	
No.		Formula	.c	%	Calcd	Found
1.	C ₆ H ₅	$C_{24}H_{26}C_{12}N_8O$	189	78	21.82	21.80
2.	2-OH C ₆ H ₄	$C_{24}H_{26}Cl_2N_9O_2$	180	81	21.16	21.14
3.	3-OH C ₆ H ₄	$C_{24}H_{26}Cl_2N_8O_2$	212	69	21.16	21.15
4.	4-OH C ₆ H ₄	$C_{24}H_{26}Cl_2N_8O_2$	239	73	21.16	21.13
5.	4-OCH ₃ C ₆ H ₄	$C_{25}H_{28}Cl_2N_8O_2$	153	80	20.62	20.61
6.	4-OH, 3-OCH ₃ C ₆ H ₃	$C_{25}H_{28}Cl_2N_8O_3$	149	72	20.03	20.01
7.	4-Br. C_6H_4	C ₂₄ H ₂₅ BrCl ₂ N ₈ O	264	79	18.92	18.99
8.	$3-NO_2 C_6 H_4$	$C_{24}H_{25}Cl_2N_9O_3$	253	81	22.57	22.56
9.	$4-NO_2 C_6 H_4$	$C_{24}H_{25}Cl_2N_9O_3$	211	83	22.57	22.55
10	$4-N_1N(CH_3)_2C_6H_4$	$C_{26}H_{31}Cl_2N_9O$	236	78	22.65	22.62
11.	C ₄ H ₃ O (Furfurl)	$C_{22}H_{24}Cl_2N_8O_2$	197	77	22.26	22.21

TABLE NO : 16 :ANTIMICROBIAL ACTIVITY OF 2-{4'-[(6''-ARYL-2''-AMINO-3'', 4''-DIHYDRO)-PYRIMIDINE-4''-YL] PHENYL AMINO}-6-[BIS(2'''-CHLORO ETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Sr.	R	Antibacterial activity			Antifungal activity		
No.		Zone of inhibition in mm.			Zone of inhibition in mm.		
		B. mega.	B. subtillis	E. coli.	P. fluorescens	A. awamori	
1	C ₆ H ₅	20	12	18	21	15	
2	2-OH C ₆ H ₄	22	14	17	24	14	
3	3-OH C ₆ H ₄	18	19	21	20	18	
4	4-OH C ₆ H ₄	24	20	19	23	19	
5	4-OCH ₃ C ₆ H ₄	18	15	20	18	20	
6	4-OH, 3-OCH ₃ C ₆ H ₃	17	17	16	17	17	
7	4-Br. C_6H_4	19	16	22	19	22	
8	$3-NO_2 C_6H_4$	20	18	19	16	18	
9	$4-\mathrm{NO}_2\mathrm{C}_6\mathrm{H}_4$	23	22	18	22	21	
10	4-N,N(CH ₃) ₂ C ₆ H ₄	21	18	23	23	20	
11	C ₄ H ₃ O (Furfuryl)	16	17	19	16	22	

PART - V

STUDIES ON CYANOPYRIDINES

STUDIES ON CYANOPYRIDINES

INTRODUCTION

Pyridine and its derivatives represent one of the most active class of compounds possessing a wide spectrum of biological activities in the field of medicine, agriculture and industrial chemistry. Pyridine-3-carboxamide occurs as a component of the structure of the important coenzymes NADP +, one of the B_{12} complex of vitamins, occurs in red blood corpuscles and participates in biochemical redox reaction. Pyridoxol (Vitimin B_6) (I) Occurs in yeast and wheatgerm is an important food additive.

The availability of 3-cyanopyridine, nicotinamide and nicotinic acid make possible their use as synthetic intermediates.

Most derivatives are prepared by manipulation of pyridine and its simple homologues in a manner similar to chemistry of the benzenoid chemistry. However the simple pyridine compounds are prepared by the cyclisation of aliphatic raw material.

SYNTHETIC ASPECTS

Preparation of 3-cyanopyridines have been cited in literature ²³³⁻²³⁷ with different methods. The well known method is :
1. A.Samour and co-workers²³⁸ have prepared substituted cyanopyridines by the condensation of chalcones with malononitrile in presence of ammonium acetate.

MECHANISM

The mechanism for the condensation of chalcones with malononitrile is shown as under.

The reaction proceeds through conjugated addition of active methylene compounds to the α,β unsaturated system. The α,β -unsturated compound is known as acceptors and active methylene compound are known as following therapeutic activity.

THERAPEUTIC IMPORTANCE

Cyanopyridines possess wide therapeutic activities listed as under.

- 1. Antihypertensive 239
- 2. Antisoriasis²⁴⁰
- 3. Antiepileptic²⁴¹
- 4. Anticonvulsant²⁴²
- 5. Antifungal²⁴³
- 6. Antibacterial²⁴⁴
- 7. Herbicidal²⁴⁵
- 8. Antiinflammatory 246
- 9. Anti HIV^{247}

S. S. Verma et al.²⁴⁸ have synthesised 2-amino-3-cyano-2, 6-disubstituted pyridines and studied their biological activities. The insecticidal activity of cyanopyridines has been investigated by Y. Sosaki²⁴⁹, I. Teu and coworkers²⁵⁰ have shown cyanopyridines as agrochemical fungicides. M. Hussans and co-workers²⁵¹ have prepared 3-cyanopyridines and reported their pharmacological activity. S. Guru evaluated²⁵² cyanopyridine derivatives (III) have been documented for their multiple biological activities.

F. Manna and co-workers²⁵³ have reported the antiinflammatory activity of 3cyanopyridines. Some new 3-cyanopyridine derivatives have been found to show anticancer and anti HIV activity.²⁵⁴ A. R. Parikh et al.²⁵⁵⁻²⁵⁶ have prepared some new cyanopyridines and studied their antimicrobial activity.

U. D. Pyachenko and co-workers²⁵⁷ have synthesised some cyanopyridine derivatives (IV) which are useful in the treatment of retroviral diseases.

Cyanopyridine derivatives (V) showing significant biological activity are described²⁵⁸.

H. H. Parekh et al.²⁵⁹ have prepared new cyanopyridines and all products have been evaluated for their in vitro growth inhibitory activity against different microbes.
T. B. Lowinger et al.²⁶⁰ have prepared some new cyanopyridines and postulated them as vitro and cellular activities.

Moreover, H. Hiroki et al.²⁶¹ synthesised 2-acylamino-3, 5-dicyanopyridine derivatives useful as calcium channel opening drugs. Antimicrobial activity of cyanopyridine derivatives have reported by M. M. Komal²⁶², E. B. Villhauer et al.²⁶³ have prepared novel cyanopyridines which has been found to be bioactive dipeptidyl peptidase inhibitors.

The synthesis of cyanopyridines is of current interest owing to their bi dynamic occurence in biologically active derivatives. Hence, considerable attention has been focused on the study of efficient and pharmaceutically important cyanopyridines bearing Bis (2-chloroethyl) amine and s-triazine molecules included in our moiety which are described as under. SECTION : I SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF 2-{4'-[(6''-ARYL)-2''-AMINO-3''-CYANOPYRIDINE-4''-YL]-PHENYLAMINO}-6-[BIS-(2'''-CHLOROETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE

SECTION : II SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF 2-{4'-[(4''-ARYL)-3''-CYANO-2''-METHOXY-PYRIDINE-6''-YL]-PHENYL AMINO}-6-[BIS(2'''-CHLOROETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE.

- SECTION : III SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF 2-{4'-[(4''-ARYL)-3''-CYANO-2''-ETHOXY PYRIDINE -6''-YL]-PHENYL AMiNO}-6-[BIS-(2'''-CHLOROETHYL) AMINO]-4-METHOXY - 1, 3, 5-TRIAZINE.
- SECTION : IV SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF 2-{4'-[(4''-ARYL)-3''-CYANO-2''-HYDROXY PYRIDINE-6''-YL]-PHENYL AMINO}-6-[BIS-(2'''-CHLOROETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE

Synthesis, spectral studies and therapeutic activity of some Heterocyclic compounds

SECTION : I

SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF 2-{4'-[(6''-ARYL-2''-AMINO-3''-CYANOPYRIDINE-4''-YL]-PHENYLAMINO}-6-[BIS-(2'''-CHLOROETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE

Pyridine nucleus plays in important role in medicine agriculture and industrial chemistry. To further assess the potential of such a classes of compounds, cyano pyridine derivative of 2-{4'-[(6"-Aryl-2"-amino-3"-cyano pyridine-4"-yl] phenyl amino}-6-[Bis(2"-chloroehtyl) amino]-4-methoxy-1,3,5-triazine of Type(IX) have been synthesised by the condensation of 2-{4'-[(3"-aryl)-2"-propene-1"-one]-phenyl amino}-6-[Bis (2"'-chloroethyl) amino]-4-methoxy-1,3,5-triazine, chalcones of Type(I) with malononitirle in presence of ammonium acetate.

The constitution of the products have been characterised by elemental analyses IR, ¹H NMR, Mass spectral study. The products were screened for antimicrobial activity at a concentration of 50 μ g.

The details have been cited in the part : I, section : I, Page no. 39-41.

IR SPECTRAL STUDY OF 2-{4'-[6''-(4''''-METHOXYPHENYL)-2''-AMINO-3''-CYANOPYRIDINE-4''-YL]-PHENYLAMINO}-6-[BIS-(2'''-CHLOROETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE

Туре	Vibration Mode	Freque	ncy in cm ⁻¹	Ref.
		observed	reported	
Alkane	C-H Str.(asym)	2890	2990-2850	422 - 423
	C-H Str.(sym)	2873	2880-2860	
	C-H def.(asym)	1440	1470-1435	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	C-H def.(sym)	1375	1390-1360	"
Aromatic	C-H Str.	3041	3090-3030	
	C-H i.p. def	1274	1300-1100	"
	C-H o.o.p. def	842	832-800	
	C=C Str.	1517	1600-1450	"
S-triazine	C-N Str.	1170	1220-1020	
	C=N Str.	1623	1630-1590	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Amine	N-H Str.	3460	3500-3310	"
	N-H Bending	1604	1650-1550	
Ether	C-O-C Str.(asym)	1274	1260-1220	>>
	C-O-C Str.(sym)	1076	1075-1020	
Halide	C-Cl Str.	771	800-600	"
Pyridine Nitrile	N-H Str. (-NH ₂)	3350	3350-3250	
	C=N Str.	1604	1612-1550	,,
	C-N Str.	1087	1220-1020	

Instrument : SHIMADZU-FT-IR-8400, Spectrophotometer, frequency range : 4000-400 cm⁻¹ (KBrdisc)

NMR SPECTRAL STUDY OF 2-{4'-[6''-(4''''-METHOXYPHENYL)-2''-AMINO-3''-CYANOPYRIDINE-4''-YL]-PHENYLAMINO}-6-[BIS-(2'''-CHLOROETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE

Internal standard : TMS; solvent : DMSO : Instrument : DPX-200 spectrometer (300 MHz)

Signal	Signal Position	Relative no. of	Multiplicity	Inference
No.	(ppm)	protons		
1	3.66-3.86	6 H	Singlet	Ar-OCH ₃
2	7.66-7.86	4 H	D. Doublet	Ar-H _b
3	8.10-8.53	4 H	D. Doublet	Ar-H _c
4	4.79-4.81	4 H	Triplet	-CH ₂ -Cl
5	2.50-2.89	4 H	Triplet	-N-CH ₂ -
6	9.45	1 H	Singlet	Ar-NH _f
7	9.87-9.96	2 H	Singlet	Ar-NH _{2 g}
8	7.01-7.03	1 H	Singlet	-Ar _h

Antimicrobial Activity :

Conclution :

Maximum antimicrobial activity :

			Antibacter	ial activity		Antifungal activity
			Zone of inhib	ition in m.m.		Zone of inhibition in m.m.
		B. mega.	B. subtillis	E. coli.	P. fluorescens.	A. awamori.
		R	R	R	R	R
		4-OH $C_6H_4(21)$	$3-OH C_6H_4(18)$	4-OH $C_6H_4(21)$	$3-OH C_6H_4 (20)$	$C_{6}H_{5}(20)$
		4-Br. C_6H_4 (22)	$4-OH C_6H_4 (20)$	4-Br. C_6H_4 (20)	4-OH $C_6H_4(22)$	$4-OH C_6H_4 (23)$
		$4-NO_2 C_6 H_4 (21)$	4-Br. C_6H_4 (18)	$4-NO_2 C_6 H_4 (22)$	$4-NO_2 C_6 H_4 (21)$	$3-NO_2 C_6 H_4 (21)$
			$3-NO_2 C_6 H_4 (19)$		4-N,N(CH ₃) ₂	$4-NO_2 C_6 H_4 (22)$
					$C_6H_4(20)$	
	Com	parable activity with ki	nown standard drugs			
Ampicilin	50 µg	23	18	17	27	-
Chloramphenico	1 "	24	19	25	26	-
Norfloxacin	11	24	19	25	26	-
Greseofulvin	"	-	-	-	-	23

EXPERIMENTAL

SYNTHESIS OF 2-{4'-[(6''-ARYL)-2''-AMINO-3''-CYANOPYRIDINE-4''-YL]-PHENYLAMINO}-6-[BIS-(2'''-CHLOROETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE

- (A) Synthesis of 2-(4'-Acetyl phenyl amino)-4, 6-dichloro-1,3,5-triazineFor synthesis, Part-I, Section-I, Page no. 36-38.
- (B) Synthesis of 2-(4'-Acetyl phenyl amino)-6-chloro-4-methoxy-1,3,5triazine.
 For synthesis Part-I, Section-I, Page no. 36-38.

(C) Synthesis of 2-(4'-Acetyl phenyl amino)-6-[Bis (2''-chloro ethyl) amino]-4-

For synthesis Part-I, Section-I, Page no. 36-38.

methoxy-1,3,5-triazine.

- (D) Synthesis of 2-{4'-[3''(4'''-Methoxy phenyl)-2''-propene-1''-one]- phenyl amino}-6-[Bis. (2'''-chloro ethyl) amino]-4-methoxy-1,3,5-triazine.
 For synthesis Part-1, Section-I, Page No. 36-38.
- (E) Synthesis of 2-{4'-[(6"-(4""-Methoxy phenyl)-2"-amino 3"-cyano pyridine-4"-yl]-phenyl amino}-6-[Bis (2"-chloroethyl) amino]-4-methoxy-1,3,5-triazine.

A mixture of 2-{4'-[3"(4""-methoxy phenyl)-2"-propene-1"-one] phenyl amino}-6-[Bis(2"'-chloro ethyl) amino]-4-methoxy-1,3,5-triazine (5.02 gm, 0.01 M); malononitrile (0.66 g, 0.01M) and ammonium acetate (0.77 gm, 0.01 M) and dioxane (25 ml.) The reaction mixture was refluxed 10 hrs. at 120° C., The reaction mixture was poured into crushed ice, filtered, dried, crystallised from dioxane, yield : 70%. M.P. : 228° C. (Found : C : 57.31; H : 4.59; N : 19.81; $C_{27}H_{26}O_2N_8Cl_2$ required C : 57.34; H : 4.60; N : 19.82%)

Simillarly other compounds were synthesised and their physical data are recorded in Table No. 17.

 (F) Antimicrobial activity of 2-{4'-(6''-Aryl) - 2''-amino-3''-cyano pyridine-4''-yl]-Phenyl amino}-6-[Bis. (2'''-chloro ethyl) amino]-4- methoxy-1,3,5triazine.

The antimicrobial testing was carried out as described in Part-I, Section-I, Page No. 39-41.

The zone of inhibition of the test solutions are recorded in Table No. 18.

TABLE NO : 17 : PHYSICAL CONSTANTS OF 2-{4'-[(6''-ARYL)-2''-AMINO-3''-CYANOPYRIDINE-4''-YL]-PHENYLAMINO}-6

[BIS-(2"'-CHLOROETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE

Sr.	R	Molecular	M.P.	Yield	% of Ni	trogen
No.		Formula	.с	%	Calcd	Found
1.	C ₆ H ₅	C ₂₆ H ₂₄ Cl ₂ N ₈ O	199	76	20.93	20.91
2.	2-OH C ₆ H ₄	C ₂₆ H ₂₉ Cl ₂ N ₈ O ₂	215	69	18.24	18.21
3.	3-OH C ₆ H ₄	$C_{26}H_{24}Cl_2N_8O_2$	139	72	18.24	18.20
4.	4-OH C ₆ H ₄	$C_{26}H_{24}Cl_2N_8O_2$	206	82	18.24	18.19
5.	4-OCH ₃ C ₆ H ₄	$C_{27}H_{26}Cl_2N_8O_2$	228	70	19.82	19.81
6.	4-OH, 3-OCH ₃ C ₆ H ₃	$C_{27}H_{26}Cl_2N_8O_3$	236	73	19.27	19.23
7.	4-Br. C_6H_4	$C_{26}H_{23}Br Cl_2N_8O$	219	67	18.24	18.22
8.	$3-NO_2 C_6H_4$	$C_{26}H_{23}Cl_2N_9O_3$	207	71	21.72	21.70
9.	$4-NO_2 C_6H_4$	$C_{26}H_{23}Cl_2N_9O_3$	206	79	21.72	21.72
10	4-N,N(CH ₃) ₂ C ₆ H ₄	C ₂₈ H ₂₉ Cl ₂ N ₉ O	225	85	21.79	21.75
11.	C ₄ H ₃ O (Fufuryl)	$C_{24}H_{22}Cl_2N_8O_2$	186	87	21.33	21.28

TABLE NO : 18 : ANTIMICROBIAL ACTIVITY OF 2-{4'-[(6''-ARYL)-2''-AMINO-3''-CYANOPYRIDINE-4''-YL] PHENYLAMINO}-6-[BIS-(2'''-CHLOROETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE

Sr.	R		Antibacterial activity			
No.			Zone of inhi	bition in mm		Zone of inhibition in mm.
		B. mega.	B. subtillis	E. coli.	P. fluorescens	A. awamori
1	C ₆ H ₅	15	14	16	18	20
2	2-OH C ₆ H ₄	14	16	15	19	18
3	3-OH C ₆ H ₄	17	18	19	20	19
4	4-OH C ₆ H ₄	21	20	21	22	23
5	4-OCH ₃ C ₆ H ₄	19	17	16	17	19
6	4-OH, 3-OCH ₃ C ₆ H ₃	18	15	15	16	18
7	$4-Br. C_6H_4$	22	18	20	15	13
8	$3-NO_2 C_6 H_4$	20	19	18	18	21
9	$4-\mathrm{NO}_2\mathrm{C}_6\mathrm{H}_4$	21	17	22	21	22
10	4-N,N(CH ₃) ₂ C ₆ H ₄	18	15	17	20	16
11	C ₄ H ₃ O (Fufuryl)	16	14	19	16	15

Synthesis, spectral studies and therapeutic activity of some Heterocyclic compounds

SECTION - II

SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF 2-{4'-[(4''-ARYL)-3''-CYANO-2''-METHOXY-PYRIDINE-6''-YL]-PHENYL AMINO}-6-[BIS(2'''-CHLOROETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE.

In recent years, much interest have been foucused of cyanopyridine derivatives showed wide range of application in the field of pharmaceutical. In view of getting 2-{4'-[(4"-Aryl)-3"-cyano-2"-methoxy-pyridine-6"yl]phenylamino}-6-[Bis(2"'-chloro ethyl) amino]-4-methoxy-1,3,5-triazine of Type(X) have been synthesised by the condensation of 2-{4'-[(3"-aryl)-2"-propene-1"-one]-phenyl amino}-6-[Bis (2"'-chloroethyl) amino]-4-methoxy-1,3,5-triazine with malono nitrile in the presence of sodium methoxide.

The constitution of the products have been characterised by elemental analysis IR, ¹H NMR, Mass spectral study. The products were screened for antimicrobial activity at a concentration of 50 μ g.

The details have been cited in the part : I, Section : I, Page no. 39-41.

IR SPECTRAL STUDY OF 2-{4'-[4''-(4''''-METHOXYPHENYL)-3''-CYANO-2''-METHOXY)-PYRIDINE-6''-YL]-PHENYLAMINO}-6-[BIS(2'''-CHLOROETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Туре	Vibration Mode	Freque	ency in cm ⁻¹	Ref.
		observed	Reported	
Alkane	C-H Str.(asym)	2910	2990-2850	422 - 423
	C-H Str.(sym)	2876	2880-2860	
	C-H def.(asym)	1458	1470-1435	22
	C-H def.(sym)	1363	1390-1360	"
Aromatic	C-H Str.	3024	3090-3030	
	C-H i.p. def	1298	1300-1100	>>
	C-H o.o.p. def	837	832-800	
	C=C Str.	1458	1600-1450	"
S-triazine	C-N Str.	1215	1220-1020	
	C=N Str.	1593	1630-1590	22
Amine	N-H Str.	3413	3500-3310	"
	N-H Bending	1635	1650-1550	
Ether	C-O-C Str.(asym)	1244	1260-1220	>>
	C-O-C Str.(sym)	1045	1075-1020	
Halide	C-Cl Str.	792	800-600	>>
Pyridine Nitrile	C=N Str.	2216	2240-2120	
	C-N Str.	1581	1650-1520	,,

Instrument : SHIMADZU-FT-IR-8	400, Spectrophoto meter	frequency range : 4000-400 cm	⁻¹ (KBrdisc)
-------------------------------	-------------------------	-------------------------------	-------------------------

NMR SPECTRAL STUDY OF 2-{4'-[4''-(4''''-METHOXYPHENYL)-3''-CYANO-2''-METHOXY)-PYRIDINE-6''-YL]-PHENYLAMINO}-6-[BIS(2'''-CHLOROETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Internal standard : TMS; solvent : CDCl₃; Instrument : BRUKER spectrometer (300 MHz)

Signal	Signal Position	Relative no. of	Multiplicity	Inference
No.	(ppm)	protons		
1	3.76-3.96	9 H	Singlet	Ar-OCH ₃
2	7.41-7.84	4 H	D. Doublet	Ar-H _b
3	7.93-8.24	4 H	D. Doublet	Ar-H _c
4	4.00-4.96	4 H	Triplet	-CH ₂ -Cl
5	2.63-3.23	4 H	Triplet	-N-CH ₂ -
6	10.09	1 H	Singlet	Ar-NH _f
7	7.97	1 H	Singlet	Ar-NH _{2 g}

Antimicrobial Activity :

Conclution :

Maximum antimicrobial activity :

		Antifungal activity Zone of inhibition in					
	B. mega.	B. mega. B. subtillis E. coli. P. fluorescens.					
	R	R	R	R	R		
	4-OH, 3-OCH ₃	4-OH $C_6H_4(17)$	4-Br. $C_6H_4(21)$	$3-OH C_6H_4(20)$	$3-OH C_6H_4(23)$		
	C ₆ H ₃ (20)	4-Br. $C_6H_4(19)$	$4-NO_2 C_6H_4(20)$	4-OH $C_6H_4(21)$	4-OH $C_6H_4(21)$		
	$4-NO_2 C_6 H_4(19)$	$4-NO_2 C_6 H_4(20)$		4-Br. $C_6H_4(22)$	$4-NO_2 C_6H_4(20)$		
	C ₄ H ₃ O (19)			$4-NO_2 C_6 H_4(20)$			
Com	parable activity with l	known standard drug	S				
Ampicilin 50 µg	23	18	17	27	-		
Chloramphenicol "	24	19	25	26	-		
Norfloxacin "	24	19	25	26	-		
Greseofulvin "	-	-	-	-	23		

EXPERIMENTAL

SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF 2-{4'-[(4''-ARYL)-3''-CYANO-2''-METHOXY)-PYRIDINE-6''-YL]-PHENYL AMINO}-6-[BIS(2'''-CHLOROETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE.

- (A) Synthesis of 2-(4'-Acetylphenyl amino)-4, 6-dichloro-1,3,5-triazine.For synthesis Part-I, Section-I, Page no. 36-38.
- (B) Synthesis of 2-(4'-Acetylphenyl amino) -6-chloro-4-methoxy-1,3,5-triazine.
 For synthesis Part-I, Section-I, Page no. 36-38.

(C) Synthesis of 2-(4'-Acetyl phenyl amino)-6-[Bis- (2''-chloroethyl) amino]-4methoxy-1,3,5-triazine.

For synthesis Part-I, Section-I, Page No. 36-38.

(D) Synthesis of 2-{4'-[3''-(4''''-Methoxyphenyl)-2''-propene-1''-one]phenyl amino}-6-[Bis. (2'''-chloro ethyl) amino]-4-methoxy-1,3,5-triazine.
 For synthesis Part-I, Section-I, Page no. 36-38.

(E) Synthesis of 2-{4'-[4''-(4''''-Methoxyphenyl)-3''-cyano-2''-methoxy-pyridine-6''-yl]-phenyl amino}-6-[Bis. (2'''-chloro ethyl) amino]-4-methoxy-1,3,5-triazine.

A mixture of 2-{4'-[3"-(4""-methoxyphenyl)-2"-propene-1"-one]phenyl amino}-6-[Bis(2""-chloro ethyl)-amino]-4-methoxy-1,3,5,- triazine (5.02 gm,

0.01M) methanol (25 ml) malono nitrile (0.66 gm, 0.01 M); sodium methoxide, (0.44 g., 0.01M) The reaction mixture was refluxed 10 hrs. at 170° C. in dioxane. The product was poured into crushed ice, filtered and dried, crystallised from dioxane, yield : 78%, M.P. : 188° C. (Found : C : 5780; H : 4.69; N : 16.81; C₂₈H₂₇O₃N₇Cl₂ required C : 57.83; H : 4.71; N : 16.89%)

Similarly other compounds were synthesised and their physical data are recorded in Table no. 19.

 (F) Antimicrobial activity of 2-{4'[(4"-Aryl-3"-cyano-2", methoxy)-pyridine-6"-yl]-phenyl amino}-6-[Bis. (2"'-chloro ethyl) amino]-4- methoxy-1,3,5triazine.

The antimicrobial testing was carried out as described in Part-I, Section-I, Page no. 39-41.

The Zone of inhibition of the test solution are recorded in Table no. 20.

TABLE NO : 19 : PHYSICAL CONSTANTS OF 2-{4'-[(4''-ARYL)-3''-CYANO-2''-METHOXY-PYRIDINE-6''-YL]-PHENYL AMINO}-6-[BIS(2'''-CHLOROETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Sr.	R	Molecular	M.P.	Yield	% of Ni	trogen
No.		Formula	.c	%	Calcd	Found
1.	C ₆ H ₅	C ₂₇ H ₂₅ Cl ₂ N ₇ O ₂	201	64	17.81	17.80
2.	2-OH C ₆ H ₄	C ₂₇ H ₂₅ Cl ₂ N ₇ O ₃	212	68	17.31	17.30
3.	3-OH C ₆ H ₄	C ₂₇ H ₂₅ Cl ₂ N ₇ O ₃	179	72	17.31	17.29
4.	4-OH C ₆ H ₄	C ₂₇ H ₂₅ Cl ₂ N ₇ O ₃	153	75	17.31	17.27
5.	4-OCH ₃ C ₆ H ₄	C ₂₈ H ₂₇ Cl ₂ N ₇ O ₃	188	78	16.89	16.81
6.	4-OH, 3-OCH ₃ C ₆ H ₃	C ₂₈ H ₂₇ Cl ₂ N ₇ O ₄	176	80	16.44	16.42
7.	4-Br. C_6H_4	$C_{27}H_{24}BrCl_2N_7O_2$	205	85	15.58	15.53
8.	$3-NO_2 C_6H_4$	C ₂₇ H ₂₄ Cl ₂ N ₈ O ₄	164	79	18.82	18.81
9.	$4-NO_2 C_6 H_4$	C ₂₇ H ₂₄ Cl ₂ N ₈ O ₄	179	78	18.82	18.80
10	$4-N_{,}N(CH_{3})_{2}C_{6}H_{4}$	$C_{29}H_{30}Cl_2N_8O_2$	171	81	18.88	18.83
11.	C ₄ H ₃ O (Furfuryl)	C ₂₅ H ₂₃ Cl ₂ N ₇ O ₃	119	85	18.14	18.09

TABLE NO : 20 : ANTIMICROBIAL ACTIVITY OF 2-{4'-[(4''-ARYL)-3''-CYANO-2''-METHOXY-PYRIDINE-6''-YL]-PHENYL AMINO}-6-[BIS(2'''-CHLOROETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Sr.	R	Antibacterial activity				Antifungal activity
No.			Zone of inhibit	ion in mm.		Zone of inhibition in
						mm.
		B. mega	B. subtillis	E. coli.	P. fluorescens	A. awamori
1	C ₆ H ₅	13	12	14	16	17
2	2-OH C ₆ H ₄	14	13	16	19	19
3	3-OH C ₆ H ₄	17	14	18	20	23
4	4-OH C ₆ H ₄	18	17	18	21	21
5	4-OCH ₃ C ₆ H ₄	15	13	16	17	18
6	4-OH, 3-OCH ₃ C ₆ H ₃	20	14	14	15	15
7	4-Br. C_6H_4	16	19	21	22	16
8	3-NO ₂ C ₆ H ₄	17	18	18	18	17
9	$4-\mathrm{NO}_2\mathrm{C}_6\mathrm{H}_4$	19	20	20	20	20
10	4-N,N(CH ₃) ₂ C ₆ H ₄	15	18	16	17	14
11	C ₄ H ₃ O (Furfuryl)	19	17	17	19	18

SECTION : III

SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF 2-{4'-[(4''-ARYL)-3''-CYANO-2''-ETHOXY PYRIDINE -6''-YL]-PHENYL AMINO}-6-[BIS(2'''-CHLOROETHYL) AMINO]-4-METHOXY - 1, 3, 5-TRIAZINE.

Pyridine derivatives have been reported to have various pharmacological activities like antibacterial, antiviral, antifungal etc. With a view of getting better therapeutic activity 2-{4'-[(4"-aryl)-3"-cyano-2"-ethoxy-pyridine-6"-yl]-phenyl amino}-6-[Bis (2"-chloroethyl) amino]-4-methoxy-1,3,5-triazine of Type-(XI) have been synthesised by the condensation of 2-{4'-[(3"-aryl)-2"-propene-1"-one]-phenyl amino}-6-[Bis (2"'-chloro ethyl) amino]-4-methoxy-1,3,5-triazine chalcones of Type(I) with malononitrile in the presence of sodium ethoxide.

The constitution of the products have been characterised by elemental analysis IR, 1 H NMR, Mass spectral study. The products were screened for antimicrobial activity at a concentration of 50 µg.

The details have been cited in the Part P I, Section : I, Page No. 39-41.

IR SPECTRAL STUDY OF 2-{4'-[4''- (4'''-METHOXYPHENYL)-3''-CYANO-2''-ETHOXY PYRIDINE -6''-YL]-PHENYL AMINO}-6-[BIS(2'''-CHLOROETHYL) AMINO]-4-METHOXY - 1, 3, 5-TRIAZINE.

Туре	Vibration Mode	Freque	ncy in cm ⁻¹	Ref.
		observed	reported	
Alkane	C-H Str.(asym)	2947	2990-2850	422 - 423
	C-H Str.(sym)	2875	2880-2860	
	C-H def.(asym)	1458	1470-1435	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	C-H def.(sym)	1363	1390-1360	22
Aromatic	C-H Str.	3024	3090-3030	
	C-H i.p. def	1149	1300-1100	"
	C-H o.o.p. def	837	832-800	
	C=C Str.	1458	1600-1450	"
S-triazine	C-N Str.	1215	1220-1020	
	C=N Str.	1593	1630-1590	77
Amine	N-H Str.	3411	3500-3310	"
	N-H Bending	1577	1650-1550	
Ether	C-O-C Str.(asym)	1215	1260-1220	>>
	C-O-C Str.(sym)	1047	1075-1020	
Halide	C-Cl Str.	792	800-600	"
Pyridine Nitrile	C=N Str.	2216	2240-2120	
	C-N Str.	1577	1650-1520	<i>"</i>

Instrument : SHIMADZU-FT-IR-8400, St	pectrophoto meter frequency	$v range : 4000-400 cm^{-1} (KBrdisc)$
		(indice)

159

NMR SPECTRAL STUDY OF 2-{4'-[4''- (4''''-METHOXYPHENYL)-3''-CYANO-2''-ETHOXY PYRIDINE -6''-YL]-PHENYL AMINO}-6-[BIS(2'''-CHLOROETHYL) AMINO]-4-METHOXY - 1, 3, 5-TRIAZINE.

Internal standard : TMS; solvent : CDCl₃; Instrument : BRUKER spectrometer (300 MHz)

Signal	Signal Position	Relative no. of	Multiplicity	Inference	
No.	(ppm)	protons			
1	3.77-3.90	6 H	Singlet	Ar-OCH ₃	
2	7.15-7.17	4 H	D. Doublet	Ar-H _b	
3	7.67-7.89	4 H	D. Doublet	Ar-H _c	
4	4.03-4.05	4 H	Triplet	-CH ₂ -Cl	
5	2.33-2.54	4 H	Triplet	-N-CH ₂ -	
6	9.85	1 H	Singlet	Ar-NH _f	
7	3.30	2 H	Quartate	-OCH _{2 g}	
8	2.33	3 H	Triplet	$-CH_2-CH_{3h}$	

Antimicrobial Activity :

Conclution :

Maximum antimicrobial activity :

		Antifungal activity Zone of inhibition in m.m.			
	B. mega.	B. subtillis	E. coli.	P. fluorescens.	A. awamori.
	R	R	R	R	R
	$3-OH C_6H_4(22)$	2-OH $C_6H_4(17)$	3-OH C ₆ H ₄ (21)	$3-OH C_6H_4(23)$	$C_{6}H_{5}(20)$
		$3-OH C_6H_4 (19)$	4-OH C_6H_4 (22)	4-OH $C_6H_4(24)$	4-OH C_6H_4 (21)
		$4-OH C_6H_4 (20)$	$3-NO_2 C_6 H_4 (21)$	$3-NO_2 C_6 H_4 (23)$	$4-NO_2 C_6 H_4 (23)$
		4-Br C_6H_4 (18)	$4-NO_2 C_6 H_4 (23)$	$4-NO_2 C_6 H_4 (22)$	
		$4-NO_2 C_6 H_4 (19)$			
Com	parable activity wit	h known standard drugs			
Ampicilin 50 µg	23	18	17	27	-
Chloramphenicol "	24	19	25	26	-
Norfloxacin "	24	19	25	26	-
Greseofulvin "	-	-	-	-	23

EXPERIMENTAL

SYNTHESIS OF 2-{4'[(4''-ARYL)-3''-CYANO-2''-ETHOXY PYRIDINE -6''-YL]-PHENYL AMINO}-6-[BIS(2'''-CHLOROETHYL) AMINO]-4-METHOXY - 1, 3, 5-TRIAZINE.

- (A) Synthesis of 2-(4'-Acetyl phenyl amino) 4, 6-dichloro-1,3,5-triazine.For synthesis Part-I, Section-I, Page no. 36-38.
- (B) Synthesis of 2-(4'-Acetyl phenyl amino)-6-chloro-4-methoxy-1,3,5triazine.

For synthesis Part-I, Section-I, Page no. 36-38.

(C) Synthesis of 2-(4'- Acetyl Phenyl amino)-6-[Bis(2''-chloro ethyl) amino]-4methoxy-1,3,5-triazine.

For synthesis Part-I, Section-I, Page no. 36-38.

- (D) Synthesis of 2-{4'-[3''-(4'''-Methoxyphenyl)-2''-propene-1''-one] phenyl amino}-6-[Bis. (2'''-chloroethyl) amino]-4-methoxy-1,3,5-triazine.
 For synthesis Part-I, Section-I, Page no. 36-38.
- (E) Synthesis of 2-{4'-[4''-(4'''-Methoxy phenyl)-3''-cyano-2''-ethoxy-pyridine-6''-yl]-phenyl amino}-6- [Bis (2'''-chloro ethyl) amino]-4-methoxy-1,3,5-triaine.

A mixture of 2- $\{4'[3''-(4'''-methoxyphenyl)-2''-Propene-1''-one]$ phenyl amino}-6-[Bis.(2'''-chloro ethyl) amino]-4- methoxy-1,3,5-triazine (5.02 gm, 0.01M) and malnonitrile (0.66 gm, 0.01M); sodium ethoxide (0.68 gm, 0.01M) and ethanol (15 ml) : The reaction mixture was refuxed for 12 hrs. at 100° C temp. The reaction mixture was poured into crushed ice, filtered, dried and crystallised from ethanol. Yield : 65%, M.P.: 248° C. (Found : C : 58.55; H; 4.85; N : 16.48; C₂₉H₂₉O₃N₇Cl₂ required C : 58.58; H : 4.88; N : 16.49%).

Similarly other compounds were synthesised and their physical data recorded in Table no. 21.

 (F) Antimicrobial activity of 2-{4'-[4" -(Aryl)-3"-cyano-2"-ethoxypyridine-6"-yl]-phenyl amino}-6-[Bis. (2"'- chloro ethyl) amino]-4- methoxy-1, 3, 5triazine.

The antimicrobial testing was carried out as described in Part-I, Section-I, Page No. 39-41.

The zone of inhibition of the test solution are recorded in Table no. 22.

TABLE NO : 21 : PHYSICAL CONSTANTS OF 2-{4'-[(4''-ARYL)-3''-CYANO-2''-ETHOXY PYRIDINE -6''-YL]-PHENYL AMINO}-6-[BIS(2'''-CHLOROETHYL) AMINO]-4-METHOXY - 1, 3, 5-TRIAZINE.

Sr.	R	Molecular	M.P.	Yield	% of Nitrogen	
No.		Formula	.c	%	Calcd	Found
1.	C ₆ H ₅	C ₂₈ H ₂₇ Cl ₂ N ₇ O ₂	215	27	17.37	17.31
2.	2-OH C ₆ H ₄	C ₂₈ H ₂₇ Cl ₂ N ₇ O ₃	193	52	16.89	16.82
3.	3-OH C ₆ H ₄	C ₂₈ H ₂₇ Cl ₂ N ₇ O ₃	252	60	16.89	16.85
4.	4-OH C ₆ H ₄	C ₂₈ H ₂₇ Cl ₂ N ₇ O ₃	279	62	16.89	16.88
5.	4-OCH ₃ C ₆ H ₄	$C_{29}H_{29}Cl_2N_7O_2$	248	65	16.49	16.48
6.	4-OH, 3-OCH ₃ C ₆ H ₃	$C_{29}H_{29}Cl_2N_7O_4$	195	58	16.06	16.05
7.	4-Br. C_6H_4	$C_{29}H_{26}BrCl_2N_7O_2$	180	70	15.24	15.21
8.	$3-NO_2 C_6H_4$	$C_{28}H_{26}Cl_2N_8O_4$	279	73	18.39	18.38
9.	$4-NO_2 C_6 H_4$	$C_{28}H_{26}Cl_2N_8O_4$	183	75	18.39	18.32
10	$4-N_{N}N(CH_{3})_{2}C_{6}H_{4}$	$C_{30}H_{32}Cl_2N_8O_2$	218	57	18.44	18.41
11.	C ₄ H ₃ O (Furfuryl)	$C_{26}H_{25}Cl_2N_7O_3$	187	58	17.68	17.66

TABLE NO : 22 : ANTIMICROBIAL ACTIVITY OF 2-{4'-[(4''-ARYL)-3"-CYANO-2''-ETHOXY-PYRIDINE-6"-YL]-PHENYL AMINO}-6-[BIS(2'''-CHLORO ETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Sr.	R		Antibacterial activity			
No.			Zone of inhibition in mm.			
						mm.
		B. mega.	B. subtillis	E. coli.	P. fluorescens	A. awamori
1	C ₆ H ₅	18	17	17	20	20
2	2-OH C ₆ H ₄	13	17	20	21	16
3	3-OH C ₆ H ₄	22	19	21	23	18
4	$4-OH C_6H_4$	19	20	22	24	21
5	4-OCH ₃ C ₆ H ₄	19	15	17	18	17
6	4-OH, 3-OCH ₃ C ₆ H ₃	15	16	18	17	19
7	4-Br. C_6H_4	14	18	19	19	18
8	$3-NO_2 C_6H_4$	16	17	21	23	20
9	$4-\mathrm{NO}_2\mathrm{C}_6\mathrm{H}_4$	18	19	23	22	23
10	4-N,N(CH ₃) ₂ C ₆ H ₄	16	12	18	16	17
11	C ₄ H ₃ O (Furfuryl)	14	13	18	19	18

SECTION : IV

SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF 2-{4'-[(4"-ARYL)-3"-CYANO-2", HYDROXY-PYRIMIDINE-6"-YL]-PHENYL AMINO}-6-[BIS(2"'-CHLORO ETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Pyridine derivatives have been found to possess wide range of therapeutic activities and industrial importance with a view of getting 2-{4'-[(4"-aryl)- 3"-cyano-2"-hydroxy pyridine-6"-yl] phenyl amino}-6-[Bis (2"'-chloroethyl) amino] -4- methoxy-1,3,5-triazine of Type-(XII) have been synthesised by the condensation of 2- {4'-[(3"-aryl)-2"-propene-1"-one]-phenyl amino}-6- [Bis (2"'- chloroethyl) amino]-4- methoxy-1,3,5-triazine with ethyl cyano acetate in the presence of ammonium acetate.

The constitution of the synthesised products have been characterised by elemental analysis IR, ¹H NMR, Mass spectral study. The products were screened for their antimicrobial activity at a concentration of 50 μ g

The details have been cited in the part : I, Section : I, Page no. 39-41.

IR SPECTRAL STUDY OF 2-{4'-[4''-(4''''METHOXY PHENYL)-3"-CYANO-2"-HYDROXY-PYRIDINE-6"YL] PHENYL AMINO}-6-[BIS(2'''-CHLORO ETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Туре	Vibration Mode	Frequency in cm ⁻¹		Ref.
		observed	reported	
Alkane	C-H Str.(asym)	2903	2990-2850	422 - 423
	C-H Str.(sym)	2873	2880-2860	
	C-H def.(asym)	1452	1470-1435	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	C-H def.(sym)	1363	1390-1360	"
Aromatic	C-H Str.	3090	3090-3030	
	C-H i.p. def	1215	1300-1100	"
	C-H o.o.p. def	823	832-800	
	C=C Str.	1452	1600-1450	"
S-triazine	C-N Str.	1081	1220-1020	
	C=N Str.	1593	1630-1590	77
Amine	N-H Str.	3311	3500-3310	"
	N-H Bending	1635	1650-1550	
Ether	C-O-C Str.(asym)	1245	1260-1220	>>
	C-O-C Str.(sym)	1047	1075-1020	
Halide	C-Cl Str.	792	800-600	"
Pyridine Nitrile	C=N Str.	2240	2240-2120	
	C-N Str.	1577	1650-1520	

Instrument : SHIMADZU-FT-IR-8400, Spectrophoto meter frequency range : 4000-400 cm⁻¹ (KBrdisc)

169
NMR SPECTRAL STUDY OF 2-{4'-[4''-(4''''-METHOXY PHENYL)-3"-CYANO-2"-HYDROXY-PYRIDINE-6"YL]-PHENYL AMINO}-6-[BIS(2'''-CHLORO ETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Internal standard : TMS; solvent : DMSO ; Instrument : BRUKER spectrometer (300 MHz)

Signal	Signal Position	Relative no. of	Multiplicity	Inference
No.	(ppm)	protons		
1	3.82-3.92	6 H	Singlet	Ar-OCH ₃
2	7.20-7.90	4 H	D. Doublet	Ar-H _b
3	7.99-8.32	4 H	D. Doublet	Ar-H _c
4	4.99-5.02	4 H	Triplet	-CH ₂ -Cl
5	2.69-3.29	4 H	Triplet	-N-CH ₂ -
6	10.15	1 H	Singlet	$Ar-NH_{f}$
7	9.64	1 H	Singlet	Ar-OH _g
8	7.99-8.03	1 H	Singlet	Ar-OH _i

Antimicrobial Activity :

Conclution :

Maximum antimicrobial activity :

	Antibacterial activity			Antifungal activit	y	
		Zone of inhibition in n	n.m.	Zone of inhibition in m.m.		
	B. mega.	B. subtillis	E. coli.	P. fluorescens.	A. awamori.	
	R	R	R	R	R	
	$4-OH C_6H_4 (20)$	$4-OH C_6H_4 (19)$	3-OH C ₆ H ₄ (19)	$4-OH C_6H_4 (23)$	C ₆ H ₅ (20)	
	4-Br. C_6H_4 (23)	$3-NO_2 C_6 H_4 (20)$	4-OH $C_6H_4(22)$	4-Br. C_6H_4 (23)	4-OH C ₆ H ₄ (21)	
		$4-NO_2 C_6 H_4 (21)$	4-OH, 3-OCH ₃		$4-Br C_6 H_4 (23)$	
			$C_{6}H_{4}(19)$		$4-NO_2 C_6 H_4 (22)$	
			$4-NO_2 C_6 H_4 (21)$			
		Comparable activity with	n known standard drugs			
Ampicilin 50 µg.	23	18	17	27	-	
Chloramphenicol "	24	19	25	26	-	
Norfloxacin "	24	19	25	26	-	
Greseofulvin "	-	-	-	-	23	

EXPERIMENTAL

SYNTHESIS OF 2-{4'-[(4''-ARYL)-3''-CYANO-2''-HYDROXY-PYRIDIN-6''-YL]PHENYL AMINO}-6-[BIS(2'''-CHLORO ETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE.

- (A) Synthesis of 2-(4'-Acetyl phenyl amino)-4, 6-dichloro-1,3,5-triazineFor synthesis see Part-I, Section-I, Page no. 36-38.
- (B) Synthesis of 2-(4'-Acetyl phenyl amino)-6-chloro-4-methoxy-1,3,5triazine.

For synthesis, see Part-I, Section-I, Page no. 36-38.

(C) Synthesis of 2-(4'-Acetyl Phenyl amino)-6-[Bis (2''-chloro ethyl) amino]-4methoxy-1,3,5-triazine.

For synthesis, see Part-I, Section-I, Page no. 36-38.

- (D) Synthesis of 2-{4'-[3''-(4'''-Methoxy phenyl)-2''-propene-1''-one]phenyl amino}-6-[Bis (2'''-chloro ethylamino]-4- methoxy-1,3,5-triazine
 For synthesis, see Part-I, Section I, Page no. 36-38.
- (E) Synthesis of 2-{4'-[4''-(4'''-Methoxy phenyl)-3''-cyano-2''-hydroxy) pyridine-6''-yl]-phenyl amino}-6-[Bis (2'''-chloroethyl) amino]-4-methoxy-1,3,5-triazine

A mixture of 2-{4'-[3"-(4""-methoxyphenyl) -2"-propene-1"-one]phenyl amino}-6-[Bis. (2"'-chloro ethyl) amino]-4-methoxy-1,3,5-triazine (5.02 gm,

0.01 M); ethyl cyano acetate (1.13 ml; 0.01M) and methanol (10 ml). The reaction mixtrue was refluxed for 10 hrs. at 100° C in presence of ammonium acetate. The reaction mixture was poured into crushed ice, filtered, dried and crystallised from dioxame, Yield : 65%, M.P. : 191° C. (Found : C : 57.21; H : 4.39; N : 17.30; $C_{27}H_{25}O_3N_7Cl_2$, required C : 57.24; H : 4.41; N : 17.31%)

Similarly other compounds were synthesised and their physical data are recorded in Table no. 23.

 (F) Antimicrobial activity of 2-{4'-[(4"-Aryl)-3"-cyano -2"-hydroxypyridine-6"-yl]-phenyl amino}-6- [Bis(2"'-chloro ethyl) amino]-4-methoxy-1,3,5triazine.

The antimicrboial testing was carried out as described in Part-I, Section-I, Page NO. 39-41.

The zone of inhibition of the test solution are recorded in Table no. 24.

TABLE No : 23 : PHYSICAL CONSTANTS OF 2-{4'-[(4''-ARYL)-3"-CYANO -2''-HYDROXYPYRIDINE-6''-YL] -PHENYL

AMINO}-6-[BIS(2'''-CHLORO ETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Sr.	R	Molecular	M.P.	Yield	% of Ni	trogen
No.		Formula	.c	%	Calcd	Found
1.	C ₆ H ₅	$C_{26}H_{23}Cl_2N_7O_2$	235	63	18.28	18.28
2.	2-OH C ₆ H ₄	C ₂₆ H ₂₃ Cl ₂ N ₇ O ₃	230	51	17.75	17.70
3.	3-OH C ₆ H ₄	C ₂₆ H ₂₃ Cl ₂ N ₇ O ₃	228	57	17.75	17.71
4.	4-OH C ₆ H ₄	C ₂₆ H ₂₃ Cl ₂ N ₇ O ₃	238	65	17.75	17.72
5.	4-OCH ₃ C ₆ H ₄	C ₂₇ H ₂₅ Cl ₂ N ₇ O ₃	191	65	17.31	17.30
6.	4-OH, 3-OCH ₃ C ₆ H ₃	C ₂₇ H ₂₅ Cl ₂ N ₇ O ₄	232	68	16.83	16.82
7.	4-Br. C_6H_4	C ₂₆ H ₂₂ BrCl ₂ N ₇ O ₂	192	63	15.93	15.91
8.	$3-NO_2 C_6H_4$	$C_{26}H_{22}Cl_2N_8O_4$	202	71	19.27	19.26
9.	$4-NO_2 C_6 H_4$	$C_{26}H_{22}Cl_2N_8O_4$	118	53	19.27	19.25
10	$4-N_{,N}(CH_{3})_{2}C_{6}H_{4}$	C ₂₈ H ₂₈ Cl ₂ N ₈ O ₂	143	59	19.34	19.31
11.	C ₄ H ₃ O (Furfuryl)	$C_{24}H_{21}Cl_2N_7O_3$	235	64	18.83	18.82

TABLE NO : 24 : ANTIMICROBIAL ACTIVITY OF 2-{4'-[(4''-ARYL)-3''-CYANO-2''''-HYDROXY PYRIDIN-6''YL]- AMINO}-6 [BIS(2'''-CHLORO ETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Sr.	R		Antibacterial activity				
No.			Zone of inhibition in mm.				
		B. mega.	B. subtillis	E. coli.	P. fluorescens	A. awamori	
1	C ₆ H ₅	13	16	14	16	20	
2	2-OH C ₆ H ₄	17	17	15	19	18	
3	3-OH C ₆ H ₄	19	16	19	18	17	
4	$4-OH C_6H_4$	20	19	22	23	21	
5	4-OCH ₃ C ₆ H ₄	18	15	18	20	19	
6	4-OH, 3-OCH ₃ C ₆ H ₃	17	14	19	21	16	
7	4-Br. C_6H_4	23	16	15	23	23	
8	$3-NO_2 C_6H_4$	17	20	17	20	19	
9	$4-NO_2 C_6H_4$	19	21	21	19	22	
10	4-N,N(CH ₃) ₂ C ₆ H ₄	14	14	15	16	18	
11	C ₄ H ₃ O (Furfuryl)	17	12	18	15	19	

P&RT - VI

STUDIES ON CYANOPYRANS

STUDIES ON CYANOPYRANS

INTRODUCTION

Pyran derivatives are associated with wide range of applications in various fields like pharmaceutical, dyes, insecticides and sweet smelling substance. Pyran ring system also occurs in nature abundantly such as in large number of natural coloured compounds, in Vitamin E, incloves, in poisons, in certain alkaloids and other substances.

Pyran are six member doubly unsaturated compounds containing one oxygen atom in the ring. The double bonds may be conjugated known as α -or 1, 2-pyran or it may be isolated known as γ -or 1, 4-pyran.

1,2-dihydropyran

1,4-dihydropyran

SYNTHETIC ASPECT

Various methods for the preparation of pyran derivatives have been cited in the literature²⁶⁴⁻²⁷³

1. Reaction between α , β -unsaturated carbonyl system with malononitrile led to correspnding 2-amino-3-cyano-4H-pyran²⁷⁴

2. A. Z. Elssar et al.²⁷⁵ prepared 3-cyano-pyran derivatives by the reaction of α - cyano chalcone derivative with C₂H₅COCH₂COOCH₃ in basic medium.

REACTION MECHANISM

The reaction mechanism for the formation of pyran derivatives proceeds through Micheal addition of active methylene group of malononitrile to the β -carbon atom of chalcone described as under.

THERAPEUTIC IMPORTANCE

Polysubstituted pyran derivatives are biologically interesting class of compounds²⁸¹⁻²⁸² They are associated with various pharmaceutical properties like.

- 1. Anticancer²⁸³
- 2. Antiinvasive²⁸⁴
- 3. Anti-HIV^{285,286}
- 4. Antiallergic²⁸⁷
- 5. Antifungal^{288,289}
- $6. \qquad \text{Cytotoxic}^{290}$
- 7. Antitumor²⁹¹
- 8. Antiviral²⁹²
- 9. Antipyratic²⁹³
- 10. Analgesic²⁹⁴

M. A. AI-Haiza and co-workers²⁹⁵ prepared some cyanopyran derivatives (I) and tested their antibacterial and antifungal activities. A. V. Samet²⁹⁶ et al. synthesized 2-amino-5-azolyl-3-cyano-4H-pyrans (II) and evaluated for biological activity. A. Z. Elassar et al.²⁹⁷ reported that cyanopyran exhibited in vitro antifungal and antibacterial activities.

Moreover, R. M. Shaker.²⁹⁸ have prepared some coumarin ring containing 2amino-3-cyanopyran (III) derivatives and studied their antimicrobial activity. Y. D. Kulkarni and co-workers²⁹⁹ synthesized some pyran derivatives as CNS active agents. A. A. Hassainien et al.³⁰⁰ prepared 2-amino-3-cyano-7, 7-dimethyl-4-substituted phenyl-5-oxo-4,5,6,8-tetrahydropyran and tested for their biological activities.

Further more, A. Krauze et al.³⁰¹ synthesized 5-(4-pyridyl) derivatives of 2amino-4H-pyran (IV) for antimicrobial activity. S. Fowzia, Al-Saleh³⁰² and coworkers synthesized some new cyanopyran derivatives and reported as antimicrobial agents. Some pyran derivatives have been pantented for their use as gastric acid secretion inhibitors³⁰³ inhibitors of cell proliferation³⁰⁴ antihypertensive³⁰⁵ antitumor³⁰⁶ antagonists³⁰⁷⁻³⁰⁸ and antiviral agents³⁰⁹

H. S. Joshi et al.³¹⁰ and co-workers recently have synthesized some new cyano pyran (V) derivatives as anticancer and antimicrobial agents.

Thus with an effort to capitalize the biological potential of the heterocyclic system and to synthesize interesting compounds having better biological potential, the titled compounds have been investigated which have been described as under.

SECTION : I : SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF 2-{4'-[(2''- AMINO-4''-ARYL-4''-(H)-PYRAN-3-(CARBONITRILE)-6''-YL]-PHENYLAMINO}-6-[BIS (2'''-CHLOROETHYL)-AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Synthesis, spectral studies and therapeutic activity of some Heterocyclic compounds

SECTION : I

SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF 2-{4'-[(2"- AMINO-4"-ARYL-4"-(H)-PYRAN-3-(CARBONITRILE)-6"-YL]-PHENYLAMINO}-6-[BIS (2"'-CHLOROETHYL)-AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Cyanopyran derivatives have been reported to have various pharmalogical activities like antibacterial, antiviral, antifungal etc. In order to develop better medicinally important componds. It was considered of interest to synthesised some cyanopyran derivatives shown as under. Cyanopyran derivatives of 2-{4'[(2"-amino-4"-(H)-pyran-3-carbonitrile)-6"-yl]-phenyl amino}-6-[Bis(2"'-chloro ethyl) amino]-4-methoxy-1,3,5-triazine of Type (XIII) have been synthesised by the reaction of chalcones of Type (I) with malononitrile in pyridine.

The constitution of the products have been characterised by elemental analysis IR, ¹H NMR, Mass spectral study. The products were screened for antimicrobial activity at concentration of 50 μ g.

The details have been cited in the Part : I, Section I, Page No. 39-41.

IR SPECTRAL STUDY OF 2-{4'-[2"- AMINO-4"-(4""-METHOXYPHENYL) -4"-(H)-PYRAN-3-(CARBONITRILE-6"-YL]-PHENYLAMINO}-6-[BIS(2"'-CHLOROETHYL)-AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Туре	Vibration Mode	Freque	ncy in cm ⁻¹	Ref.			
		observed	reported				
Alkane	C-H Str.(asym)	2948	2990-2850	422 - 423			
	C-H Str.(sym)	2889	2880-2860				
	C-H def.(asym)	1458	1470-1435	22			
	C-H def.(sym)	1355	1390-1360	"			
Aromatic	C-H Str.	3055	3090-3030				
	C-H i.p. def	1164	1300-1100	"			
	C-H o.o.p. def	823	832-800				
	C=C Str.	1458	1600-1450	"			
S-triazine	C-N Str.	1068	1220-1020				
	C=N Str.	1593	1630-1590	22			
Amine	N-H Str.	3405	3500-3310	"			
	N-H Bending	1649	1650-1550				
Ether	C-O-C Str.(asym)	1245	1260-1220	"			
	C-O-C Str.(sym)	1068	1075-1020				
Halide	C-Cl Str.	769	800-600	"			
Pyran Nitrile	N=N Str.	3272	3350-3250				
	C=N Str.	2190	2240-2120	37			
	C-N Str.	1589	1650-1520				
105							

Instrument : SHIMADZU-FT-IR-8400, Spectrophotometer frequency; range : 4000-400 cm⁻¹ (KBrdisc)

NMR SPECTRAL STUDY OF 2-{4'-[(2"- AMINO- 4" - (4"" - METHOXYPHENYL) - 4" - (H) – PYRAN – 3 - (CARBONITRILE - 6" – YL] -PHENYLAMINO}-6-[BIS-(2"'-CHLOROETHYL)-AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Internal standard : TMS; solvent : DMSO ; Instrument : BRUKER spectrometer (300 MHz)

Signal	Signal Position	Relative no. of	Multiplicity	Inference
No.	(ppm)	protons		
1	3.33-3.37	6 H	Singlet	Ar-OCH ₃
2	7.17-7.63	4 H	D. Doublet	Ar-H _b
3	8.04-8.96	4 H	D. Doublet	Ar-H _c
4	4.30-4.35	4 H	Triplet	-CH ₂ -Cl
5	2.40-2.87	4 H	Triplet	-N-CH ₂ -
6	8.96	1 H	Singlet	Ar-NH _f
7	9.38-9.47	2 H	Singlet	Ar-NH _{2 g}
8	6.52-6.54	1 H	Singlet	Ar-H _i
	1	1		I

Antimicrobial Activity :

Conclution :

Maximum antimicrobial activity :

E. coli. $E. coli.$ R 0 3-OH C ₆ H ₄ (20) 3) 4-OH C ₆ H ₄ (21) 0) 4-NO ₂ C ₆ H ₄ (22)	P. fluorescens. R 3-OH C ₆ H ₄ (23) 4-OH C ₆ H ₄ (24)	Zone of inhibition in m.m. <i>A. awamori.</i> <i>R</i> 4-OH C ₆ H ₄ (21)
$E. coli. R 3-OH C_6H_4(20) 3) 4-OH C_6H_4(21) 4-NO2 C_6H_4(22)$	P. fluorescens. R 3-OH C ₆ H ₄ (23) 4-OH C ₆ H ₄ (24)	A. awamori. R 4-OH C ₆ H ₄ (21)
$\begin{array}{c c} R \\ \hline & 3 \text{-OH } C_6 H_4(20) \\ \hline & 3 \text{-OH } C_6 H_4(21) \\ \hline & 0 \text{-} 4 \text{-} NO_2 C_6 H_4(22) \\ \hline \end{array}$	R 3-OH C ₆ H ₄ (23) 4-OH C ₆ H ₄ (24)	R 4-OH C ₆ H ₄ (21)
$\begin{array}{c c} 3 - OH C_6 H_4(20) \\ \hline 3 - OH C_6 H_4(21) \\ \hline 0 - 4 - NO_2 C_6 H_4(22) \\ \hline \end{array}$	3-OH C ₆ H ₄ (23) 4-OH C ₆ H ₄ (24)	$4-OH C_6H_4(21)$
$\begin{array}{c} \text{(3)} & 4 \text{-OH } C_6 H_4(21) \\ \text{(3)} & 4 \text{-NO}_2 C_6 H_4(22) \end{array}$	4-OH C ₆ H ₄ (24)	
)) $4-NO_2 C_6 H_4(22)$		4-Br $C_6H_4(22)$
,	4-Br $C_6H_4(22)$	
	C ₄ H ₃ O(23)	
vity with known standar	rd drugs	
17	27	
25	26	-
25	26	-
-	-	23
188		
	vity with known standar	vity with known standard drugs 17 27 25 26 25 26 - - 188

EXPERIMENTAL

SYNTHESIS OF 2-{4'-[(2''- AMINO-4''-ARYL-4''-(H)-PYRAN-3-CARBO NITRILE)-6''-YL]-PHENYLAMINO}-6-[BIS (2'''-CHLOROETHYL)-AMINO]-4-METHOXY-1,3,5-TRIAZINE.

- (A) Synthesis of 2-(4'-Acetyl phenyl amino)-4, 6-dichloro-1,3,5-traizine.For synthesis, see Part-I, Section-I, Page no. 36-38.
- (B) Synthesis of 2-(4'-Acetyl phenyl amino)-6-chloro-4-methoxy-1,3,5-trazine.For synthesis, see Part-I, Section-I, Page no. 36-38.

(C) Synthesis of 2-(4'-Acetyl phenyl amino-6-[Bis(2''-chloro ethyl) amino]-4methoxy-1,3,5-triazine.

For synthesis, see Part-I, Section-I, Page no. 36-38.

(D) Synthesis of 2-{4'-[3''-(4''''-Methoxy phenyl)-2''-propene-1''-one] phenyl amino}-6-[Bis(2'''-chloro ethyl) amino]-4- methoxy-1,3,5-triazine.
 For synthesis, see Part-I, Section-1, Page no. 36-38.

(E) Synthesis of 2-{4'-[2''-Amino-4''-(4''''-methoxy phenyl)-4''-(H)-pyran-3-carbonitrile-6''-yl]-phenyl amino}-6-[Bis - (2'''-chloro ethyl) amino]-4-methoxy-1,3,5 - triazine.

A mixture of 2-{4'-[3"-(4""-methoxy phenyl)-2"- propene-1"-one] phenyl amino}-6-[Bis- (2"'-chloroethyl) amino]-4-methoxy-1,3,5- triazine (5.02 gm,

0.01M) and malonontirile (0.66 gm, 0.01 M) in Pyridine (10 ml). The reaction mixture was reluxed for 12 hrs. at 120° C. The reaction mixture was poured into crushed ice, filtered, dried and crystallised from dixoane, yield : 67%, M. P. : 101° C. (Found : C : 57.01; H : 4.72; N : 17.21; C₂₇H₂₇O₃N₇Cl₂ required C : 57.04; H : 4.75; N : 17.25%)

Similarly other compounds were synthesised and their physical data are recorded in Table no. 25.

(F) Antimicrobial activity of 2-{4'-[(2"-Amino-4"-aryl-4"-(H)-pyran-3-carbo nitrile)-6"-yl]-phenyl amino}-6-[Bis (2"'-chloro ethyl) amino]-4-methoxy-1,3,5-triazine.

The antimicrobial testing was carried out as described in Part-I, Section-I, Page No. 39-41.

The zone of inhibition of the test solution are recorded in Table no. 26.

TABLE NO : 25 : PHYSICAL CONSTANTS OF 2-{4'-[(2"- AMINO-4"-ARYL-4"-(H)-PYRAN-3-CARBONITRILE)-6"-YL]-PHENYLAMINO}-6-[BIS (2"'-CHLOROETHYL)-AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Sr.	R	Molecular	M.P.	Yield	% of N	itrogen
No.		Formula	.c	%	Calcd	Found
1.	C ₆ H ₅	$C_{26}H_{25}Cl_2N_7O_2$	157	58	18.21	18.20
2.	2-OH C ₆ H ₄	C ₂₆ H ₂₅ Cl ₂ N ₇ O ₃	198	62	17.68	17.66
3.	3-OH C ₆ H ₄	$C_{26}H_{25}Cl_2N_7O_3$	205	65	17.68	17.67
4.	4-OH C ₆ H ₄	C ₂₆ H ₂₅ Cl ₂ N ₇ O ₃	192	70	17.68	17.52
5.	4-OCH ₃ C ₆ H ₄	C ₂₇ H ₂₇ Cl ₂ N ₇ O ₃	101	97	17.25	17.21
6.	4-OH, 3-OCH ₃ C ₆ H ₃	$C_{27}H_{27}Cl_2N_7O_4$	117	68	16.78	16.75
7.	4-Br. C_6H_4	$C_{26}H_{24}BrCl_2N_7O_2$	205	81	15.88	15.83
8.	$3-NO_2 C_6 H_4$	$C_{26}H_{24}Cl_2N_8O_4$	215	83	19.21	19.19
9.	$4-NO_2 C_6 H_4$	$C_{26}H_{24}Cl_2N_8O_4$	229	79	19.21	19.18
10	$4-N_{,}N(CH_{3})_{2}C_{6}H_{4}$	$C_{28}H_{30}Cl_2N_8O_2$	112	73	19.27	19.23
11.	C ₄ H ₃ O (Furfuryl)	$C_{24}H_{23}Cl_2N_7O_3$	145	83	18.56	18.53

TABLE NO : 26 : ANTIMICROBIAL ACTIVITY OF 2-{4'-[(2''- AMINO-4''-ARYL-4''-(H)-PYRAN-3-CARBONITRILE)-6''-YL] PHENYLAMINO}-6-[BIS (2'''-CHLOROETHYL)-AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Sr.	R	Ant	Antibacterial activity		Antifungal activity	
No.		Zone	Zone of inhibition in mm.			oition in mm.
		B. mega.	B. subtillis	E. coli.	P. fluorescens	A. awamori
1	C ₆ H ₅	21	14	17	20	17
2	2-OH C ₆ H ₄	18	13	15	21	18
3	3-OH C ₆ H ₄	19	16	20	23	19
4	4-OH C ₆ H ₄	20	18	21	24	21
5	4-OCH ₃ C ₆ H ₄	11	14	19	18	18
6	4-OH, 3-OCH ₃ C ₆ H ₃	17	16	17	17	17
7	4-Br. C_6H_4	15	15	18	22	22
8	$3-NO_2 C_6H_4$	16	18	19	17	15
9	$4-\mathrm{NO}_2\mathrm{C}_6\mathrm{H}_4$	21	20	22	19	16
10	4-N,N(CH ₃) ₂ C ₆ H ₄	15	12	18	18	16
11	C ₄ H ₃ O (Furfuryl)	12	13	17	23	18

PART - VII

STUDIES ON QUINOXALINES

STUDIES ON QUINOXALINES

INTRODUCTION

The quinoxaline or benzopyrazine (I) are the product formed by spontaneous condensation of o-phenylene diamine with 1, 2-dicarbonyl compounds.

This reaction was discovered by Korner³¹¹ and by Hinsberg³¹² independently. Since quinoxalino are also obtained when $\alpha - \beta$ -dihalo ketones condensed with o-phenyliene diamine. The structure of these cyclic base are obvious from the mode of formatiora and analytical data. The ring structure was further confirmed by Gabriel. who demonstrated experimentally the relationship between the quinoxaline and the pyrazines by oxidizing quinoxaline to pyrazine-2, 3-dicarboxylic acid.

SYNTHETIC ASPECT

Different methods are available in literature³¹³⁻³¹⁶ for the preparation of quinoxalines. The popular methods are :

M. L. Keshtov and co-worker³¹⁷ have been prepared dimer type quinoxaline derivatives (II).

195

(2) Quinoxaline derivative³¹⁸ (III) are prepared by reaction of Nitrobenzene with NH₂OR in presence of Cu catalyst and reaction of nitroanilines and presence of hydrogenation catalyst.

(3) S K. Kanungo et. al.³¹⁹ have prepared 1, 3-Dimethylpyrrolo quinoxaline-2ones from chloroacetic acid and o-phenylene diamine.

THERAPEUTIC IMPORTANCE

Quinoxaline derivatives have been found to possess wide range of terapeutic activities.

- 1. Inhibition of Candida albicans³²⁰
- 2. CNS depressant $^{321-322}$
- 3. Antitubercular³²³
- 4. Antiulcer³²⁴⁻³²⁵
- 5. Analgesic³²⁶
- 6. Anxiolytic³²⁷
- 7. Antihypertensive 328
- 8. Antitumor³²⁹
- 9. Cardiovascular³³⁰
- 10. Herbicidal³³¹
- 11. Antifungal³³²

1-(Aminoalkyl)-3-quinoxaline-2-one derivatives were prepared as neuroprotective agents by K. Ehrenberger and F. Dominik³³³. A new series of sulphonamido quinoxaline were synthesised and assessed for various biological activity³³⁴, antibiotics action of some novel quinoxaline derivative were studied by T. V. Alfreson³³⁵ and co-workers.

V.Gabriella and co-workers³³⁶ have formulated some new quinoxaline. derivative (IV) as in vitro anticancer activity.

Recently, serveral co-workers have been prepared quinoxaline derivatives by different methods which possess AMPA receptor antagonist and antihistaminic ³³⁷⁻³³⁹, antagonist³⁴⁰⁻³⁴¹, human dopamine D4 receptor³⁴², antibacterial³⁴³, antimicrobial³⁴⁴⁻³⁴⁶, anticancer³⁴⁷, and antitumor³⁴⁸ activities.

More recently, B. Konig et al.³⁴⁹ have synthesised quinoxaline derivatives which has activation of PPARa and PPAR gamma reduces triacyglycerol G. Sarodirick, T. G. Linker et al.³⁵⁰ have prepared quinoxaline. derivatives having bactericidal, algecide, fungicide activity for agriculture use. Quinoxaline derivative used PDGE receptor and LCK tyrosine kinase inhibitors.

In order to achieve better therapeutic agent, the preparation of quinoxaline derivatives has been taken as under.

SECION : I : SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF [2"-ARYL(QUINOXALINE)-3-YL]-(METHYLENE PHENYL AMINO)-6-[BIS(2"'-CHLOROETHYL)AMINO]-4-METHOXY-1,3,5-TRIAZINE.

SECTION : I

SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF [2"-ARYL(QUINOXALINE)-3-YL]-(METHYLENE PHENYL AMINO)-6-[BIS-(2"'-CHLORO ETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Quinoxalines have been found to possess wide range of therapeutic activities and industrial importance. In view of getting [2"-aryl-(quinoxaline)-3-yl]-(methylene phenyl amino)-6-[Bis(2"'-chloroethyl-amino]-4-methoxy-1,3,5-triazine of Type-(XIV) have been synthesised by the condensation of 2-{4'-[(3"-aryl)-2"-propene-1"-one]phenylamino}-6-[Bis(2"'- chloroethyl amino]-4-methoxy-1,3,5-triazine. of Type-(I) with bromine in glacial actetic acid and o-phenylenediamine.

The constitution of the products have been charactrised by elemental analysis IR, ¹H NMR, Mass spectral study. The products were screened for antimicrobial activity at a concentration of 50 μ g.

The details have been cited in the Part : I, Section I, Page No. 39-41.

IR SPECTRAL STUDY OF [2''-(4''''-METHOXYPHENYL) (QUINOXALINE)-3YL]-(METHYLENE PHENYL AMINO)-6-[BIS(2'''-CHLORO ETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Туре	Vibration Mode	Freque	Frequency in cm ⁻¹	
		observed	reported	
Alkane	C-H Str.(sym)	2900	2990-2850	422 - 423
	C-H Str.(sym)	2881	2880-2860	
	C-H def.(sym)	1450	1470-1435	"
	C-H def.(sym)	1369	1390-1360	"
	-CH ₂ Str.	1450	1485-1445	
Aromatic	C-H Str.	3058	3090-3030	>>
	C-H i.p. def	1265	1300-1100	
	C-H o.o.p. def	800	832-800	"
	C=C Str.	1487	1600-1450	
S-triazine	C-N Str.	1070	1220-1020	,,,
	C=N Str.	1598	1630-1590	"
Amine	N-H Str.	3315	3500-3310	
	N-H Bending	1558	1650-1550	"
Ether	C-O-C Str.(asym)	1265	1260-1220	
	C-O-C Str.(sym)	1070	1075-1020	>>
Halide	C-Cl Str.	800	800-600	
Quinoxalines	C=N Str.	1608	1630-1590	
	C-N Str.	1089	1220-1020	
		200		1

Instrument : SHIMADZU-FT-8400, Spectrophoto meter frequency range : 4000-400 cm⁻¹ (KBrdisc)

Internal standard : TMS; solvent : DMSO ; Instrument : DMSO spectrometer (300 MHz)

Signal	Signal Position	Relative no. of	Multiplicity	Inference
No.	(ppm)	protons		
1	3.60-4.00	6 H	Singlet	Ar-OCH ₃
2	7.94-7.98	4 H	D. Doublet	Ar-H _b
3	8.07-8.40	4 H	D. Doublet	Ar-H _c
4	4.10-4.14	4 H	Triplet	-CH ₂ -Cl
5	2.77	4 H	Triplet	-N-CH ₂ -
6	10.23	1 H	Singlet	Ar-NH _f
7	3.37	2 H	Singlet	Ar-H _g
8	7.28-8.07	4 H	Multiplate	$Ar-H_i$

Antimicrobial Activity :

Conclution :

Maximum antimicrobial activity :

Antibacterial activity Zone of inhibition in m.m.			Antifungal activity Zone of inhibition in m.m.		
B. mega. B. subtillis E. co		E. coli.	P. fluorescens.	A. awamori.	
R	R	R	R	R	
2-OH C_6H_4 (24)	$C_{6}H_{5}(19)$	$3-OH C_6H_4(21)$	4-OH C_6H_4 (22)	4-OH, 3OCH ₃ C ₆ H ₄ (20)	
$4-OH C_6H_4 (23)$	4-OH $C_6H_4(21)$	4-Br C_6H_4 (20)	$4-OCH_3 C_6H_4 (23)$	$4-NO_2C_6H_4(23)$	
$4-NO_2 C_6 H_4 (21)$	$3NO_2 C_6 H_4 (19)$	4-N,N (CH ₃) ₂	$4-NO_2 C_6 H_4 (21)$		
	$4-NO_2 C_6 H_4 (21)$	$C_{6}H_{4}(22)$			

Comparable activity with known standard drugs

Ampicilin	50 µg	23	18	17	27	-
Chloramphenicol	"	24	19	25	26	-
Norfloxacin	"	24	19	25	26	-
Greseofulvin	۵۵	-	-	-	-	23

EXPERIMENTAL

SYNTHESIS OF [2"-ARYL(QUINOXALINE)-3YL]-(METHYLENE PHENYL AMINO)-6-[BIS(2"'-CHLORO ETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE.

(A) Synthesis of 2-(4'-Acetylphenyl amino)-4, 6-dichloro-1,3,5-triazie.For synthesis, see Part-I, Section-I, Page No. 36-38.

(B) Synthesis of 2-(4'-Acetyl phenyl amino)-6-chloro-4-methoxy-1,3,5-triazine.
 For synthesis, see Part-I, Section-I, Page no. 36-38.

(C) Synthesis of 2-(4'-Acetyl phenyl amino)-6-[Bis (2''-chloro ethyl) amino]-4methoxy-1,3,5-triazine.

For Synthesis, see Part-I, Section-I, Page no. 36-38.

(D) Synthesis of 2-{4'-[3''-(4''''-Methoxy phenyl)-2''- propene-1''-one] phenyl amino}-6-[Bis(2'''-chloroethyl) amino]-4-methoxy-1,3,5-triazine.
 For synthesis, see Part-I, Section-I, Page No. 36-38.

(E) Synthesis of 2-{4'-[3''-(4'''-Methoxy phenyl)-2'', 3''-dibromo-1''-one] phenyl amino}-6-[Bis (2'''-chloro ethyl) amino]-4-methoxy-1,3,5-triazine. A chalcones of Type (I) 0.01 M was dissoved in acetic acid (30 ml) a bromine in acetic acid (1 ml) 10% was slowly added to it. The reaction mixture was stirred for 2 hrs. It was poured into water and crystallized from methanol. Yellow needles obtained.
(F) Synthesis of [2"-(4""-Methoxy phenyl)-(quinoxaline)-3-yl]-(methylene phyenyl amino)-6-[Bis(2"'-chloro ethyl) amino]-4-methoxy-1,3,5-triazine.

A mixture of 2-{4'-[3"-(4""-methoxy phenyl)2", 3"- dibromo-1"-one] phenyl amino}-6-[Bis(2"'-chloroethyl) amino]-4-methoxy-1,3,5-triazine (6.60 gm, 0.01 M) and o-phenylene diamine (1.08 gm, 0.01 M) taken in methanol (25 ml). A few drops of conc. H₂SO₄ was added. The reaction mixture was heated at 90° C. for 1 hr. in water bath. The reaction mixture poured into crushed ice, filtered, dried and crystallised from dioxane. Yield : 69%, M. P. 239° C (Found C : 61.00; H : 4.89; N : 16.58; C₃₀H₂₉O₂N₇Cl₂ required C : 61.01; H : 4.91; N : 16.60%).

Similarly other compounds were prepared and their physical data recorded intable no.27

(F) Antimicrobial activity of [2"-Aryl (quinoxaline)-3-yl]-(methylene phenyl amino)-6-[Bis(2"'-chloroethyl) amino]-4- methoxy-1,3,5-triazine.

The antimicrobial testing was carried out as described in Part-I, Section-I, Page no. 39-41.

The zone of inhibition of the test solutions are recorded in Table no. 28.

TABLE NO : 27 : PHYSICAL CONSTANTS OF [2"-ARYL(QUINOXAINE)-3YL]-(METHYLENE PHENYL AMINO)-6-[BIS(2"-CHLORO ETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Sr.	R	Molecular	M.P.	Yield	% of Ni	trogen
No.		Formula	.c	%	Calcd	Found
1.	C ₆ H ₅	C ₂₉₄ H ₂₇ Cl ₂ N ₇ O	199	80	17.49	17.45
2.	2-OH C ₆ H ₄	C ₂₉ H ₂₇ Cl ₂ N ₇ O ₂	204	76	17.01	17.01
3.	3-OH C ₆ H ₄	C ₂₉ H ₂₇ Cl ₂ N ₇ O ₂	175	73	17.01	16.99
4.	4-OH C ₆ H ₄	$C_{29}H_{27}Cl_2N_7O_2$	181	75	17.01	17.00
5.	4-OCH ₃ C ₆ H ₄	$C_{30}H_{29}Cl_2N_7O_2$	239	69	16.60	16.58
6.	4-OH, 3-OCH ₃ C ₆ H ₃	$C_{30}H_{29}Cl_2N_7O_3$	203	79	16.17	16.12
7.	4-Br. C_6H_4	$C_{29}H_{26}BrCl_2N_7O$	212	73	15.33	15.31
8.	3-NO ₂ C ₆ H ₄	$C_{29}H_{26}Cl_2N_8O_3$	159	78	18.51	18.49
9.	$4-NO_2 C_6 H_4$	$C_{29}H_{26}Cl_2N_8O_3$	173	81	18.51	18.45
10	$4-N_{,N}(CH_{3})_{2}C_{6}H_{4}$	$C_{31}H_{32}Cl_2N_8O$	198	70	18.57	18.56
11.	C ₄ H ₃ O (Furfuryl)	C ₂₇ H ₂₅ Cl ₂ N ₇ O ₂	179	78	17.81	17.80

TABLE NO : 28 : ANTIMICROBIAL ACTIVITY OF [2"-ARYL(QUINOXALINE)-3YL]-(METHYLENE PHENYL AMINO)-6 [BIS(2"'-CHLORO ETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Sr.	R		Antibacterial activity			Antifungal activity
No.			Zone of inhi	bition in m	n.	Zone of inhibition in mm.
		B. mega.	B. subtillis	E. coli.	P. fluorescens	A. awamori
1	C ₆ H ₅	15	19	16	20	15
2	2-OH C ₆ H ₄	24	18	17	18	17
3	3-OH C ₆ H ₄	20	17	21	19	16
4	$4-\text{OH }C_6\text{H}_4$	23	20	18	22	18
5	4-OCH ₃ C ₆ H ₄	12	16	17	23	19
6	4-OH, 3-OCH ₃ C ₆ H ₃	17	15	16	18	17
7	$4\text{-Br. }C_6H_4$	16	14	20	17	20
8	$3-NO_2 C_6H_4$	15	19	18	19	18
9	$4-\mathrm{NO}_2\mathrm{C}_6\mathrm{H}_4$	21	21	19	21	23
10	$4-N_{N}N(CH_{3})_{2}C_{6}H_{4}$	20	17	22	15	18
11	C ₄ H ₃ O (Furfuryl)	18	15	15	17	19

PART - VIII

STUDIES ON BARBITONES

STUDIES ON BARBITONES

INTRODUCTION

The emerging role of barbitones in pharmaceutical chemistry as well as in biochemistry stimulated temendous interest in the synthesis of barbitones of therapetic interest. Most important is the effect of barbiturates on the central nervous system. Barbituric acid derivatives constitute an important class of compounds possessing diverse type of biological properties including hypnotic, sedative, anticonvulsant, cardiovascular etc.

Barbituric acid derivatives are perhaps the most widely used pyrimidines in medicine. Veronal (I) and Luminol (II) possess hypnotic activities, while pentothiol (III) is used as an anaesthetic.

SYNTHETIC ASPECT

Different methods for the synthesis of barbitones have been described in literature³⁵¹⁻³⁵⁵

1. M. R. Mahmoud et al.³⁵⁶ have synthesized barbituric acid derivatives from chalcones.

Cao-Yun et al.³⁵⁷ have prepared barbituric acid derivatives by the reaction of different aldehydes with barbituric acid in basic media.

3. R. K. Roy et al.³⁵⁸ have synthesised barbituric acid derivatives by the reaction of urea derivatives with malonic acid.

THERAPEUTIC IMPORTANCE :

At present time great interet is being taken in barbituric acid derivative because of its biological activity and their relation with nucleic acids, viz uracil, thymine and cytosine.

Some barbiturates showing cardiovascular³⁵⁹⁻³⁶⁰ antiinflammatory³⁶¹ and pesticidal³⁶² activities have been reported. D. Peters et al³⁶³ they have synthesised some uracil derivatives and screened for antiviral activity. R. Raymond et al³⁶⁴ synthesised some barbiturates (IV) which showed anticancer activity.

Several co-workers have synthesised barbitone derivatives and reported their antagonist³⁶⁵, antitumor³⁶⁶, anticonvulsant³⁶⁷ and metalloproteinas inhibitor³⁶⁸ activities. Abdel-Hamide and co-workers³⁶⁹ have prepared barbituric acid derivatives (V) having anticonvulsant activity. A. N. Shivanyuk at al.³⁷⁰ have demonstrated

barbitone derivatives as porphyrin melamine calixarene receptor. Wolf-Gange et al.³⁷¹ have reported 5-(3-benzylthiazolidine-2-ylidene)- 1, 3-dimethyl hexahydro pyrimidine-2,4, 6-trione having agricultural activity. Some barbituric acid derivatives used as herbicides and insecticides have been demonstrated.³⁷²

M. T. Omar³⁷³ has synthesised barbitone derivatives showing antimicrobial activity. Sakai et al.³⁷⁴ have synthesised some new barbitones which were assessed for bone and cartilage disease. F. Grams and G. Zimmermantv³⁷⁵ have prepared barbitones as metalloprotease inhibitors. Some barbitone derivatives have been studied for their antitumor activity³⁷⁶.

Moreover, isotylidene barbiturates (VI) showing antibacterial activity have been synthesised³⁷⁷. D. Geppert and co-workers³⁷⁸ have prepared new pyrimidine-2,4,6-triones (VII) as metalloproteinase inhibitors.

Keeping in view the important biological activities possessed by barbituric acid derivatives, we have tried to synthesise some new barbitones having better biological activities. SECTION : I SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF 2-{4'-[(3"-ARYL)-2"-PROPENE-1"-BARBITURIC ACID]-PHENYLAMINO} - 6 - [BIS (2"'-CHLOROETHYL)-AMINO]-4-METHOXY-1,3,5-TRIAZINE. Synthesis, spectral studies and therapeutic activity of some Heterocyclic compounds

SECTION : I

SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF 2-{4'-[(3''-ARYL)-2''-PROPENE-1''-BARBITURIC ACID]-PHENYLAMINO}-6-[BIS (2'''-CHLOROETHYL)-AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Barbituric acid derivatives are wide spectrum of biological activities. Bis (2chloroethyl) amine, 1,3,5-triazine molecules possess diversified anticancer, anti-HIV and other therapeutic activity with a view of 2-{4'-[(3"-Aryl)-2"-propene-1"-barbituric acid]-phenyl amino}-6-[Bis(2"'-chloroethyl) amino]-4-methoxy-1,3,5- triazine of Type (XV) have been synthesised by the reaction of 2-{4'-[(3"-aryl)-2"-propene-1"one]-phenyl amino}-6-[Bis(2"'- chloroethyl) amino]-4-methoxy-1,3,5- triazine of Type-(I) with barbituric acid in glacial acetic acid.

The constitution of the products have been characterised by elemental analysis IR, ¹H NMR, and Mass spectral study. The products were screened for antimicrobial activity at a concentration of 50 μ g.

The details have been cited in the Part : I, Section : I, Page no. 39-41.

IR SPECTRAL STUDY OF 2-{4'-[(3''-4''''-METHOXYPYENYL)-2''-PROPENE-1''-BARBITURIC ACID]-PHENYLAMINO}-6-[BIS (2'''-CHLOROETHYL)-AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Туре	Vibration Mode	Freque	Frequency in cm ⁻¹	
		observed	reported	
Alkane	C-H Str.(asym)	2948	2990-2850	422 - 423
	C-H Str.(sym)	2872	2880-2860	
	C-H def.(asym)	1458	1470-1435	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	C-H def.(sym)	1373	1390-1360	"
	C-H Bending	1458	1470-1440	
Aromatic	C-H Str.	3095	3090-3030	"
	C-H i.p. def	1224	1300-1100	
	C-H o.o.p. def	823	832-800	"
	C=C Str.	1508	1600-1450	
S-triazine	C-N Str.	1124	1220-1020	77
	C=N Str.	1598	1630-1590	"
Amine	N-H Str.	3374	3500-3310	
	N-H Bending	1571	1650-1550	"
Ether	C-O-C Str.(asym)	1214	1260-1220	
	C-O-C Str.(sym)	1068	1075-1020	"
Halide	C-Cl Str.	767	800-600	
Barbitones	N-H Str.	3348	3350-3250	
	C=O Str.	1670	1750-1610	"
	C=C Str.	1544	1600-1450	

Instrument : SHIMADZU-FT-8400, Spectrophoto meter frequency range : 4000-400 cm⁻¹ (KBrdisc)

NMR SPECTRAL STUDY OF 2-{4'-[3''-(4''''-METHOXYPHENYL) -2''-PROPENE-1''-BARBITURICACID]-PHENYLAMINO}-6-[BIS(2'''-CHLOROETHYL)-AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Internal standard : TMS; solvent : DMSO ; Instrument : DPX-200 spectrometer (300 MHz)

Signal	Signal Position	Relative no. of	Multiplicity	Inference
No.	(ppm)	protons		
1	3.70-4.00	6 H	Singlet	Ar-OCH ₃
2	7.35-7.37	4 H	D. Doublet	Ar-H _b
3	8.00-8.28	4 H	D. Doublet	Ar-H _c
4	4.05-4.20	4 H	Triplet	-CH ₂ -Cl
5	2.84	4 H	Triplet	-N-CH ₂ -
6	9.79-10.30	3 H	Singlet	Ar-NH _f
7	5.13-5.18	2 H	Doublet	-CH=CH _g

Antimicrobial Activity :

Conclution :

Maximum antimicrobial activity :

	Antifungal activity Zone of inhibition in			
				m.m.
B. mega.	B. subtillis	E. coli.	P. fluorescens.	A. awamori.
R	R	R	R	R
2-OH $C_6H_4(21)$	$4-OH C_6H_4(18)$	2-OH $C_6H_4(22)$	4-OH $C_6H_4(21)$	C ₆ H ₅ (21)
$3-OH C_6H_4(23)$	$4-OCH_3 C_6H_4(19)$	$3-OH C_6H_4(25)$	4-OH, 3OCH ₃ ,	4-OH $C_6H_4(22)$
4-Br $C_6H_4(22)$	$4-NO_2 C_6H_4(18)$	$4-OCH_3 C_6H_4(21)$	$C_6H_3(22)$	$3-NO_2 C_6 H_4(22)$
		4-N,N(CH ₃) ₂		
		$C_6H_4(23)$		
Co	omparable activity v	vith known standard	d drugs	

Ampicilin 50 µg	23	18	17	27	-
ChlorAmphenicol "	24	19	25	26	-
Norfloxacin "	24	19	25	26	-
Greseofulvin "	-	-	-	-	23

EXPERIMENTAL

SYNTHESIS OF 2-{4'-[(3''-ARYL)-2''-PROPENE-1''-BARBITURIC ACID]-PHENYLAMINO}-6-[BIS (2'''-CHLOROETHYL)-AMINO]-4-METHOXY-1,3,5-TRIAZINE.

- (A) Synthesis of 2-(4'-Acetyl phenyl amino)-4, 6-dichloro-1,3,5-triazine.For synthesis, see Part-I, Section-I, Page no. 36-38.
- (B) Synthesis of 2-(4'-Acetyl phenyl amino)-6-chloro-4-methoxy-1,3, 5triazine.

For synthesis, see Part-I, Section-I, Page no. 36-38.

(C) Synthesis of 2-(4'-Acetyl phenyl amino)-6-[Bis(2''chloro ethyl) amino]-4methoxy-1,3,5-triazine.

For synthesis, see Part-I, Section-I, Pagen no. 36-38.

- (D) Synthesis of 2-{4'-[3''-(4'''-Methoxyphenyl)-2''-propene-1''-one] phenyl amino}-6-Bis(2'''-chloro ethyl) amino]-4-methoxy-1,3,5-triazine.
 For systhesis, see Part-I, Section-I, Page no. 36-38.
- (E) Synthesis of 2-{4'-[3''-(4''''-Methoxy phenyl)-2''-propene-1''-barbituric acid]-phenyl amino}-6-[Bis-(2'''-chloro ethyl) amino]-4-methoxy-1,3,5-triazine.

A mixture of 2-{4'-[3"-(4""-methoxyphenyl)2"-propene-1"-one] phenyl amino}-6-[Bis(2"'-choroethyl) amino]-4-methoxy-1,3,5-triazine (5.02 gm, 0.01M); barbituric acid (1.28 gm, 0.01M) and gla. aceticacid in methanol, the reaction mixture was refluxed 12 hrs. at 100° C. temp. The content was poured into crushed ice, filtered, dried and crystallised from dioxane. Yield : 75%, M. P. 165 C (Found : C 54.89; H : 4.40; N : 16.00, $C_{28}H_{27}O_5N_7Cl_2$ required C:54.90; H:4.41; N:16.01 %)

similaraly other compound were synthesised and their physical data recorded in Table no. 29.

(F) Antimicrobial activity of 2-{4'-[(3"-aryl)-3"-propene-1"-barbituricacid]phenyl amino}-6-[Bis (2"-chloro ethyl-amino]-4- methoxy-1,3,5- triazine.

The antimicrobial testing was carried out as described in Part : I, Section : I, Page No. 39-41.

The zone of inhibition of the test solution are recorded in Table No. 30.

TABLE NO : 29 : PHYSICAL CONSTANTS OF 2-{4'-[(3"-ARYL)-2"-PROPENE-1"-BARBITURIC ACID]-PHENYLAMNI}-6-[BIS (2"'-CHLOROETHYL)-AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Sr.	R	Molecular	M.P.	Yield	% of]	Nitrogen
No.		Formula	.с	%	Calcd	Found
1	2	3	4	5	6	7
1.	C ₆ H ₅	$C_{27}H_{25}Cl_2N_7O_4$	201	58	16.83	16.80
2.	2-OH C ₆ H ₄	C ₂₇ H ₂₅ Cl ₂ N ₇ O ₅	238	60	16.38	16.35
3.	3-OH C ₆ H ₄	C ₂₇ H ₂₅ Cl ₂ N ₇ O ₅	265	65	16.38	16.32
4.	4-OH C ₆ H ₄	C ₂₇ H ₂₅ Cl ₂ N ₇ O ₅	222	70	16.38	16.30
5.	4-OCH ₃ C ₆ H ₄	C ₂₈ H ₂₇ Cl ₂ N ₇ O ₅	165	75	16.01	16.00
6.	4-OH, 3-OCH ₃ C ₆ H ₃	C ₂₈ H ₂₇ Cl ₂ N ₇ O ₆	201	72	15.60	15.55
7.	4-Br. C_6H_4	$C_{27}H_{24}BrCl_2N_7O_4$	125	76	14.83	15.81
8.	$3-NO_2 C_6H_4$	$C_{27}H_{24}Cl_2N_8O_6$	165	58	17.86	17.83
9.	$4-\mathrm{NO}_2\mathrm{C}_6\mathrm{H}_4$	$C_{27}H_{24}Cl_2N_8O_6$	117	81	17.86	17.82
10	4-N,N(CH ₃) ₂ C ₆ H ₄	$C_{29}H_{30}Cl_2N_8O_4$	192	69	17.91	17.89
11.	C ₄ H ₃ O (Furfuryl)	C ₂₅ H ₂₃ Cl ₂ N ₇ O ₅	185	73	17.13	17.09

TABLE NO : 30 : ANTIMICROBIAL ACTIVITY OF 2-{4'-[(3"-ARYL)-2"-PROPENE-1"-BARBITURIC ACID]-PHENYLAMNI}-6 [BIS (2"'-CHLOROETHYL)-AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Sr.	R	Ant	Antibacterial activity		Antifungal activity	
No.		Zone	of inhibition in mn	1.	Zone of inhibition in mm.	
		B. mega	B. subtillis	E. coli.	P. fluorescens	A. awamori
1	C ₆ H ₅	20	12	19	18	21
2	2-OH C ₆ H ₄	21	14	22	17	18
3	3-OH C ₆ H ₄	23	15	25	16	19
4	$4-OH C_6H_4$	18	18	20	21	22
5	4-OCH ₃ C ₆ H ₄	17	19	21	19	16
6	4-OH, 3-OCH ₃ C ₆ H ₃	15	15	16	22	15
7	4-Br. C_6H_4	22	15	18	15	14
8	$3-\mathrm{NO}_2\mathrm{C}_6\mathrm{H}_4$	18	14	17	14	22
9	$4-NO_2 C_6 H_4$	19	18	19	19	18
10	4-N,N(CH ₃) ₂ C ₆ H ₄	16	13	23	20	19
11	C ₄ H ₃ O (Furfuryl)	15	12	18	18	20

PART-IX

STUDIES

ON

THIOSEMICARBOXIMIDES

STUDIES ON THIOSEMICARBOXIMIDES

INTRODUCTION

Thiosemicarbazone derivatives are of special importance because of their versatile biological and pharmacological activities. Thiosemicarbazone derivatives have found applications in drug development for the treatment of central nervous system disorders, of bacterial infections, as well as analgesic and antiallergic agent. They are potent intermediates for the synthesis of pharmaceutical and bioactive materials.

The clinically active drug methisazone and related compounds have shown activity against DNA viruses, principally the orthopoxviruses, both in vitro and in vivo.

SYNTHETIC ASPECT

Nowadays reaction between thiosemicarbazide with ketones or aldehydes have attracted a great attention, because of their interesting nature of resulting compounds for their applications and biological activities.

Different methods are used for the synthesis of thiosemicarbazones which are described in literature³⁷⁹⁻³⁸².

 A. B. Tomchin³⁸³ has synthesised thiosemicarbazones by the recyclisation of 2-amino-5-(2-aminoaroyl)-1,3,4-thiadiazoles.

2. Y. Perumal and co-workers³⁸⁴ have prepared thiosemicarbazones by the condensation of 6-chlorobenzothiazolyI-2-thiosemicarbazide with aldehydes or ketones.

THERAPEUTIC IMPORTANCE :

Thiosemicarbazones exhibit a wide variety of biological activities which are listed as under.

- 1. Antibacterial³⁸⁵
- 2. Anthelmintic³⁸⁶
- 3. Antifungal³⁸⁷
- 4. Anticonvulsant³⁸⁸
- 5. Antirheumatics³⁸⁹
- 6. Antiherpes³⁹⁰
- 7. Antimalarial³⁹¹
- 8. Antitumor³⁹²⁻³⁹³
- 9. $anticancer^{394}$

Antimicrobial activity of thiosemicarbazone derivatives have been reported ³⁹⁵⁻³⁹⁶, T. Siatra et al.³⁹⁷ have synthesised some new thiosemicarbazones from 3-acetyl indole and reported its effect on DNA synthesis and cell proliferation. 5-chloro

salicyaldehydic thiosemicarbazone derivatives have been documented by Z. Quianawin et al.³⁹⁸

N-substituted thiosemicarbazones showing antitumor activity have been reported³⁹⁹. D. Wang et al.⁴⁰⁰ patented thiosemicarbazones useful as sodium channel blockers. K. I. Zabella⁴⁰¹ has prepared thiosemicarbazones (I) from 1, 3-cyclic diamino and reported as anticancer agent. O. V. Fedorova et at.⁴⁰² synthesised some thiosemicarbazones (II) having potent in vitro tuberculostatic activity.

Some 3-aminopyrimidine 2-carboxaldehyde thiosemicarbazone derivatives are reported as novel prodrug forms of ribonucleotide reductase inhibitors 3-AP and 3-AMP by Li Jun et al.⁴⁰⁷

Some new thiosemicarbazone derivatives have been studied for their anticancer activity⁴⁰⁴ D. Sharma et al.⁴⁰⁵ have synthesised thiophene 2-carboxaldehyde thiosemicarbazones and evaluated their antimicrobial and antiviral activity. S.P.R. Rodiriguez and co-workers⁴⁰⁶ have synthesised 4-substituted thiosemicarbazones and reported its antiproliferartive activity. Thiosemicarbazone derivatives as potent antiviral agents have been investigated G. E. Iniama et al.⁴⁰⁷

Moreover, Jin Shuhui and co-workers⁴⁰⁸ thiosemicarbazones and prepared thiosemicarbazones and reported them for antifungal activity. Thiosemicarbazones

(III) showing significant antimicrobial activity are described⁴⁰⁹. Nilgun K. ⁴¹⁰ have synthesised some thiosemicarbazones (IV) bearing indol nucleus and evaluated their cytotoxicity.

Due to the physiological and biological activities of thiosemicarbazones, it was contemplated to synthesis some new thiosemicarbazones with a hope that these compounds may have better pharmacological activities.

SECTION - I : SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF 2-{4'-[(3"ARYL)-2"-PROPENE-1"-THIOSEMICARBOXIMIDE] -PHENYL AMINO}-6-[BIS(2"'-CHLORO ETHYL) AMINO] – 4 - METHOXY-1,3,5-TRIAZINE.

Synthesis, spectral studies and therapeutic activity of some Heterocyclic compounds

SECTION : I

SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF 2-{4'-[(3''-ARYL)-2''-PROPENE-1''-THIOSEMICARBOXIMIDE]-PHENYL AMINO}-6-[BIS(2'''-CHLORO ETHYL) AMINO]-4- METHOXY-1,3,5-TRIAZINE.

Thiosemicarboximaides derivatives possess broad spectrum of therapeutic activity e.g. antidiabectic, antimicrobial, anticonvulsant, antipyretic etc., with a view of above facts 2-{4'-[(3"-aryl)-2"-propene-1"-thiosemicarboximides]-phenyl amino}-6-[Bis(2"'-chloro ethyl) amino]-4-methoxy-1,3,5-triazine of Type. (XVI) have been synthesised by the reaction of 2-{4'-[(3"-aryl)-2"-propene-1"-one]-phenyl amino}-6-[Bis(2"'-chloro ethyl) amino]-4- methoxy-1,3,5-triazine, chalcones of Type (I) with thiosemicarbazide in alcohol.

The constitution of the products have been characterised by elemental analysis IR, ¹H NMR, and Mass spectral study. The products were screened for antimicrobial activity at a concentration of 50 μ g.

The details have been cited in the part : I, Section : I, Page no. 39-41.

IR SPECTRAL STUDY OF 2-{4'-[(3''-(4''''-METHOXYPHENYL)-2''-PROPENE-1''-THIOSEMICARBOXIMIDE]-PHENYL AMINO}-6-[BIS(2'''-CHLORO ETHYL) AMINO]-4- METHOXY-1,3,5-TRIAZINE.

Instrument : SHIMADZU-FT-IR-8400, Spectrophoto meter frequency range : 4000-400 cm⁻¹ (KBrdisc)

Туре	Vibration Mode	Freque	ency in cm ⁻¹	Ref.
		observed	Reported	
Alkane	C-H Str.(asym)	2929	2990-2850	422 - 423
	C-H Str.(sym)	2878	2880-2860	
	C-H def.(asym)	1465	1470-1435	"
	C-H def.(sym)	1361	1390-1360	"
Aromatic	C-H Str.	3073	3090-3030	
	C-H i.p. def	1170	1300-1100	"
	C-H o.o.p. def	840	832-800	
	C=C Str.	1475	1600-1450	"
S-triazine	C-N Str.	1029	1220-1020	
	C=N Str.	1623	1630-1590	"
Amine	N-H Str.	3447	3500-3310	"
	N-H Bending	1623	1650-1550	
Ether	C-O-C Str.(asym)	1249	1260-1220	>>
	C-O-C Str.(sym)	1029	1075-1020	
Halide	C-Cl Str.	773	800-600	>>
Thiosemi	C=N Str.	1647	1650-1630	
	C-N Str.	1361	1380-1332	77
	C=S Str.	1575	1590-1550	

NMR SPECTRAL STUDY OF 2-{4'-[(3''-(4''''-METHOXYPHENYL)-2''-PROPENE-1''-THIOSEMICARBOXIMIDE]-PHENYL AMINO}-6-[BIS(2'''-CHLORO ETHYL) AMINO]-4- METHOXY-1,3,5-TRIAZINE.

Signal	Signal Position	Relative no. of	Multiplicity	Inference
No.	(ppm)	protons		
1	3.95-3.98	6 H	Singlet	Ar-OCH ₃
2	7.23-7.71	4 H	D. Doublet	Ar-H _b
3	8.60	4 H	D. Doublet	Ar-H _c
4	3.96-3.98	4 H	Triplet	-CH ₂ -Cl
5	2.25-2.84	4 H	Triplet	-N-CH ₂ -
6	8.60	1 H	Singlet	$Ar-NH_{f}$
7	3.98	2 H	Doublet	-CH=CH g
8	9.02	1 H	Singlet	-N-NH $_{\rm h}$
9	9.11	2 H	Singlet	$-NH_{2i}$
L	I	1		

Internal standard : TMS; solvent : DMSO ; Instrument : BRUKER spectrometer (300 MHz)

Antimicrobial Activity :

Conclution :

Maximum antimicrobial activity :

	Antibacterial activity					
		Zone of inhibiti	on in m.m.		Zone of inhibition in m.m.	
	B. mega.	B. subtillis	E. coli.	P. fluorescens.	A. awamori.	
	R	R	R	R	R	
	4-OH $C_6H_4(22)$	4-OH $C_6H_4(20)$	$3-OH C_6H_4(23)$	C ₆ H ₅ (21)	3-OH C ₆ H ₄ (22)	
	$4-NO_2 C_6 H_4(26)$	$3-NO_2 C_6H_4(23)$	4-OH $C_6H_4(20)$	$4-OH C_6H_4(20)$	$4-NO_2 C_6 H_4(24)$	
			4-Br $C_6H_4(22)$	4-Br $C_6H_4(22)$	4-N,N (CH ₃) ₂ C ₆ H ₄ (23)	
	Con	nparable activity with	h known standard o	lrugs		
Ampicilin 50 µg.	23	18	17	27	-	
ChlorAmphenicol "	24	19	25	26	-	
Norfloxacin "	24	19	25	26	-	
Greseofulvin "	-	-	-	-	23	

EXPERIMENTAL

SYNTHESIS OF 2 - { 4' - $[(3''-ARYL) - 2'' - PROPENE - 1'' - THIOSEMICARBOXIMIDE] - PHENYL AMINO} - 6 - [BIS (2''' - CHLORO ETHYL) AMINO] - 4 - METHOXY - 1, 3, 5 - TRIAZINE.$

- (A) Synthesis of 2-(4'-Acetyl phenyl amino)-4, 6-dichloro-1,3,5-triazine.For synthesis, see Part : I, Section-I, Page no. 36-38.
- (B) Synthesis of 2-(4'-Acetyl phenyl amino)-6-chloro-4-methoxy-1.3,5triazine.

For synthesis, see Part-I, Section-I, Page no. 36-38.

(C) Synthesis of 2-(4'-Acetyl phenyl amino)-6-[Bis(2''-chloro ethyl) amino]-4methoxy-1,3,5-triazine.

For synthesis see Part-I, Section-I, Page no. 36-38.

- (D) Synthesis of 2-{4'-[3''-(4''''-Methoxyphenyl)-2''-propene-1''-one]phenyl amino}-6- [Bis. (2'''-chloro ethyl) amino]-4-methoxy-1,3,5-triazine.
 For synthesis See Part-I, Section-I, Page no. 36-38.
- (E) Synthesis of 2-{4'-[3''-(4''''-Methoxy phenyl)-2''-propene-1''thiosemicarboximide]- phenyl amino}-6-[Bis(2'''-chloro ethyl) amino]-4methoxy-1,3,5- triazine.

A mixture of 2-{4'-[3"-(4""-Methoxy phenyl)-2"-propene-1"-one]phenyl amino}-6-[Bis(2"'-chloroethyl) amino]-4-methoxy-1,3,5, triazine (5.02 gm, 0.01 M); thioseimicarbazide (0.91 gm, 0.01 M) and alcoholic KOH, the reaction mixture was refluxed for 10 hrs. at 100° C. temp. The reaction mixture poured into crushed ice, filtered,dried, and crystallised from dioxane, yield : 76%, M.P. : 143° C. (Found : C : 52.70;, H : 4.83; N : 19.43; $C_{25}H_{28}O_2N_8Cl_2S$ required C : 52.17; H : 4.86; N : 19.47%)

Similarly other compounds were prepared and their physical data recorded in Table no.31.

 (F) Antimicrobial activity of 2-{4'-[(3"-aryl)-2"-propene-1"thiosemicarboximide]-phenyl amino}-6-[Bis. (2"'-chloro ethyl)- amino]-4methoxy-1,3,5-triazine,

The antimicrobial testing was carried out as described in Part : I, Section : I, Page no. 39-41.

The zone of inhibition of the test solution are recorded in Table No. 32.

TABLE NO : 31 : PHYSICAL CONSTANTS OF 2-{4'-[(3"-ARYL)-2"-PROPENE-1"-THIOSEMICARBOXIMIDES]-PHENYL AMINO}-6-[BIS(2"'-CHLORO ETHYL) AMINO]-4- METHOXY-1,3,5-TRIAZINE.

Sr.	R	Molecular	M.P.	Yield	% of Ni	trogen
No.		Formula	.c	%	Calcd	Found
1.	C ₆ H ₅	C ₂₄ H ₂₆ Cl ₂ N ₈ O S	191	58	20.54	20.51
2.	2-OH C ₆ H ₄	$C_{24}H_{26}Cl_2N_8O_2$ S	201	70	19.96	19.90
3.	3-OH C ₆ H ₄	$C_{24}H_{26}Cl_2N_2O_2$ S	229	69	19.96	19.92
4.	4-OH C ₆ H ₄	$C_{24}H_{26}Cl_2N_8O_2$ S	178	81	19.96	19.94
5.	4-OCH ₃ C ₆ H ₄	$C_{25}H_{28}Cl_2N_8O_2$ S	143	76	19.47	19.43
6.	4-OH, 3-OCH ₃ C ₆ H ₃	C ₂₅ H ₂₈ Cl ₂ N ₈ O ₃ S	157	77	18.94	18.89
7.	4-Br. C_6H_4	C ₂₄ H ₂₅ BrCl ₂ N ₈ O S	111	82	17.95	17.90
8.	$3-NO_2 C_6 H_4$	$C_{24}H_{25}Cl_2N_9O_3$ S	135	68	21.35	21.31
9.	$4-NO_2 C_6 H_4$	C ₂₄ H ₂₅ Cl ₂ N ₉ O ₃ S	218	65	21.35	21.32
10	$4-N_{,}N(CH_{3})_{2}C_{6}H_{4}$	C ₂₆ H ₃₁ Cl ₂ N ₉ O S	203	71	21.42	21.41
11.	C ₄ H ₃ O (Furfuryl)	$C_{22}H_{24}Cl_2N_8O_2 S$	115	75	20.93	20.98

TABLE NO : 32 : ANTIMICROBIAL ACTIVITY OF 2-{4'-[(3''-ARYL)-2''-PROPENE-1''-THIOSEMICARBOXIMIDE]-PHENYL AMINO}-6-[BIS(2'''-CHLORO ETHYL) AMINO]-4- METHOXY-1,3,5-TRIAZINE.

			Antibacterial activity			
	Zone of inhibition in mm.				Zone of inhibition in mm.	
	B. mega.	B. subtillis	E. coli.	P. fluorescens	A. awamori	
C ₆ H ₅	15	17	14	21	19	
2-OH C ₆ H ₄	17	19	17	17	20	
3-OH C ₆ H ₄	18	14	23	19	22	
$4\text{-OH C}_6\text{H}_4$	22	20	20	24	21	
4-OCH ₃ C ₆ H ₄	18	12	18	19	19	
4-OH, 3-OCH ₃ C ₆ H ₃	15	15	17	18	17	
4-Br. C ₆ H ₄	17	17	22	17	14	
3-NO ₂ C ₆ H ₄	19	23	18	15	17	
$4-NO_2 C_6H_4$	26	14	17	22	24	
4-N,N(CH ₃) ₂ C ₆ H ₄	15	15	15	16	23	
C ₄ H ₃ O (Furfuryl)	13	17	14	15	16	
	$C_{6}H_{5}$ 2-OH C ₆ H ₄ 3-OH C ₆ H ₄ 4-OH C ₆ H ₄ 4-OH C ₆ H ₄ 4-OCH ₃ C ₆ H ₄ 4-OCH ₃ C ₆ H ₄ 4-OH, 3-OCH ₃ C ₆ H ₃ 4-Br. C ₆ H ₄ 3-NO ₂ C ₆ H ₄ 4-NO ₂ C ₆ H ₄ 4-NO ₂ C ₆ H ₄ 4-N,N(CH ₃) ₂ C ₆ H ₄ C ₄ H ₃ O (Furfuryl)	B. mega. C_6H_5 152-OH C_6H_4 173-OH C_6H_4 184-OH C_6H_4 224-OCH_3 C_6H_4 184-OH, 3-OCH_3 C_6H_3 154-Br. C_6H_4 173-NO_2 C_6H_4 194-NO_2 C_6H_4 154-N,N(CH_3)_2 C_6H_4 15C_4H_3O (Furfuryl)13	B. mega.B. subtillis C_6H_5 15172-OH C_6H_4 17193-OH C_6H_4 18144-OH C_6H_4 22204-OCH_3 C_6H_4 18124-OH, 3-OCH_3 C_6H_3 15154-Br. C_6H_4 17173-NO_2 C_6H_4 19234-NO_2 C_6H_4 26144-N,N(CH_3)_2 C_6H_4 1515131717	B. mega.B. subtillisE. coli. C_6H_5 1517142-OH C_6H_4 1719173-OH C_6H_4 1814234-OH C_6H_4 2220204-OCH_3 C_6H_4 1812184-OH, 3-OCH_3 C_6H_3 1515174-Br. C_6H_4 1717223-NO_2 C_6H_4 1923184-NO_2 C_6H_4 2614174-N, N(CH_3)_2 C_6H_4 151515C_4H_3O (Furfuryl)131714	B. mega.B. subtillisE. coli.P. fluorescens C_6H_5 151714212-OH C_6H_4 171917173-OH C_6H_4 181423194-OH C_6H_4 222020244-OH C_6H_4 181218194-OH, 3-OCH_3 C_6H_3 151517184-Br. C_6H_4 171722173-NO_2 C_6H_4 192318154-NO_2 C_6H_4 261417224-N,N(CH_3)_2 C_6H_4 15151513171415	

PART - X

STUDIES ON TRIAZOLES

STUDIES ON TRIAZOLES

INTRODUCTION

Triazole derviatives are of special importance because of their versatile biological and pharacological activities. Triazole derivatives have been found plant growth regulator, herbicide, fungicide, analgesic and antiallergic agent. They are potent intermediates for the synthesis of pharmaceutical and bioactive materials.

The clinically active drug Fluconazole⁴¹¹ represent under :

SYNTHETIC ASPECT :

Nowadays reaction between triazole with on their substituent to produce new biologically acitve compounds.

 B. Buttler⁴¹² have been synthesised 1-{[2-(2"-dicholrophenyl)-4-propyl-1,3dioxo-2-yl] methyl]-1H-1,3,4-triazole "Propiconazole". as a antifungal agents.

2. Wiley et al.⁴¹³ have been reported 1-ter. butyl -2-(p-chloro benzyl)-2-(1,3,4triazol-1-yl)-ethanol as a plant growth regulartor.

3. S. V. Overton et al^{.414} have been reported 1-(biphenyl-4-yl oxy)-3,3-dimethyl-1-(1H-1,3,4-triazle-1-yl)-butan-2-ol "Bitertanol" as agricultural fungicide.

THERAPEUTIC IMPORTANCE :

Thriazole exhibit a wide range variety of biological acitvitiews which are listed as under.

- 1. Fungicide⁴¹⁵⁻⁴¹⁶
- 2. Antideprassant⁴¹⁷
- 3. Coronary vasodilator⁴¹⁸
- 4. Sedative, hypnofic⁴¹⁹
- 5. anti viral⁴²⁰
- 6. antiallergic⁴²¹

Due to the physiological and biological activities of possessed by triazoles derivatives, we have tried to synthesis some new triazoles having better biological activities.
SECTION - I : SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF 2-{4'-[(3''-ARYL)-2''-PROPENE-1'' - N - (1,2,4 -TRIAZOLE) AMINO]} - 6 - [BIS(2'''-CHLORO ETHYL) AMINO] - 4 - METHOXY - 1, 3, 5-TRIAZINE.

SECTION - I

SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF 2-{4'-[(3"-ARYL)-2"-PROPENE-1"-N-(1,2,4-TRIAZOLE) AMINO]}-6-[BIS(2"'-CHLORO ETHYL) AMINO]-4-METHOXY-1, 3, 5-TRIAZINE.

Triazole derivatives possess wide spectrum of therapeutic activity such as antifungal, anticonvalusant, antibacterial etc. In view of getting 2-{4'-[(3"-aryl)-2"-propene-1"-N-(1,2,4-triazole) amino]}-6-[Bis(2"'-chloro ethyl)] amino-4-methoxy-1,2,4-triazine of Type (XVII) have been synthesised by the reaction of 2-{4'-[(3"-aryl)-2"-propene-1"-one]-phenyl amino}-6-[Bis(2"'-chloroethyl)] amino -4- methoxy-1,3,5 - triazine with 4-amino -1,2,4 - triazole in alcohol.

The constitution of the products have been chaoracterised by elemental analysis. IR, ¹H NMR, and Mass spectral study. The products were screended for antimicrobial activity at a concentration of 50 μ g.

The details have been cited in the Part-I, Section-I, Page no. 39-41.

IR SPECTRAL STUDY OF 2-{4'-[3''-(4''''-METHOXYPHENYL) -2''-PROPENE-1''-N-(1,2,4-TRIAZOLE) AMINO]}-6-[BIS(2'''-CHLORO ETHYL) AMINO]-4-METHOXY-1, 3, 5-TRIAZINE.

Туре	Vibration Mode	Freque	Ref.		
		observed	reported		
Alkane	C-H Str.(asym)	2947	2990-2850	422 - 423	
	C-H Str.(sym)	2889	2880-2860		
	C-H def.(asym)	1444	1470-1435	"	
	C-H def.(sym)	1363	1390-1360	"	
Aromatic	C-H Str.	3024	3090-3030		
	C-H i.p. def	1101	1300-1100	>>	
	C-H o.o.p. def	830	832-800		
	C=C Str.	1450	1600-1450	"	
S-triazine	C-N Str.	1149	1220-1020		
	C=N Str.	1581	1630-1590	77	
Amine	N-H Str.	3413	3500-3310	"	
	N-H Bending	1550	1650-1550		
Ether	C-O-C Str.(asym)	1215	1260-1220	>>	
	C-O-C Str.(sym)	1047	1075-1020		
Halide	C-Cl Str.	792	800-600	"	
Triazole	C-N Str.	1676	1690-1640		
	N-N Str.	1581	1630-1575	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	C=N Str.	1598	1630-1593	"	
	C-N Bending	1298	1340-1250		
244					

Instrument : SHIMADZU-FT-8400, Spectrophoto meter frequency range : 4000-400 cm⁻¹ (KBrdisc)

NMR SPECTRAL STUDY OF 2-{4'-[3''-(4''''-METHOXYPHENYL) -2''-PROPENE-1''-N-(1,2,4-TRIAZOLE) AMINO]}-6-[BIS(2'''-CHLORO ETHYL) AMINO]-4-METHOXY-1, 3, 5-TRIAZINE.

Internal standard : TMS; solvent : DMSO; Instrument : DPX-200 spectrometer (300 MHz)

Signal	Signal Position	Relative no. of	Multiplicity	Inference
No.	(ppm)	protons		
1	3.71-3.86	6 H	Singlet	Ar-OCH ₃
2	7.66-7.79	4 H	D. Doublet	Ar-H _b
3	7.99-8.12	4 H	D. Doublet	Ar-H _c
4	4.79-4.84	4 H	Triplet	-CH ₂ -Cl
5	2.50-2.89	4 H	Triplet	-N-CH ₂ -
6	9.87-9.96	1 H	Singlet	Ar-NH _f
7	4.81-4.84	2 H	Doublet	-CH=CH g
8	7.01-7.03	2 H	Singlet	Ar-H _h

Antimicrobial Activity :

Conclution :

Maximum antimicrobial activity :

		Antibacterial activity Zone of inhibition in m.m.				
	B. mega. R	B. subtillis R	E. coli. R	P. fluorescens. R	A. awamori. R	
	$3-OH C_6H_4 (20)$	$4-OH C_6H_4 (20)$	$3-OH C_6H_4(23)$	4-OH C_6H_4 (23)	C ₆ H ₅ (20)	
	$4-OCH_3 C_6H_4 (19)$	$4-NO_2 C_6 H_4 (21)$	$4-OH C_6H_4(22)$	$4-NO_2 C_6 H_4 (21)$	3-OH C ₆ H ₄ (21)	
	4-OH, 3-OCH ₃		4-OH, 3-OCH ₃		3-NO ₂ C ₆ H ₄ (21)	
	C ₆ H ₄ (19)		C ₆ H ₄ (18)		$C_4H_3O(22)$	
	$3-NO_2 C_6 H_4 (23)$	3-NO ₂ C ₆ H ₄ (23)				
	$4-NO_2 C_6 H_4 (24)$					
Ampicilin 50 μg	C	comparable activity v	vith known standard	l drugs 27	-	
Ampicilin 50 μg Chloramphenicol "	23 24	Comparable activity v 18 19	vith known standard 17 25	l drugs 27 26	-	
Ampicilin 50 μg Chloramphenicol " Norfloxacin "	23 24 24 24	comparable activity v 18 19 19	vith known standard 17 25 25	27 26 26		

EXPERIMENTAL

SYNTHESIS OF 2-{4'-[(3"-ARYL)-2"-PROPENE-1"-N-(1,2,4-TRIAZOLE) AMINO]}-6-[BIS(2"'-CHLORO ETHYL) AMINO]-4-METHOXY-1, 3, 5-TRIAZINE.

- (A) Synthesis of 2-(4'-Acetyl phenyl amino)-4, 6-dichloro-1,2,5-triazineFor synthesis, see Part-I, Section-I, Page no. 36-38.
- (B) Synthesis of 2-(4'-Acetyl phenyl amino)-6-chloro-4-methoxy-1,3,5-triazineFor synthesis, see Part-I, Section-I, Page no. 36-38.

(C) Synthesis of 2-(4'-Acetyl phenyl amino)-6-[Bis(2''-chloro ethyl) amino]-4methoxy-1,3,5-triazine.

For synthesis, see Part-I, Section-I, Page no. 36-38.

- (D) Synthesis of 2-{4'-[3''-(4'''-methoxy phenyl)-2''-propene-1''-one) phenyl amino}-6-[Bis(2'''-chloroethyl) amino]-4-methoxy-1,3,5-triazine.
 For synthesis, see Part-I, Section-I, Page no. 36-38.
- (E) Synthesis of 2-{4'-[3''(4''''-Methoxy phenyl)-2''-propene-1-N-(1,2,4-triazole) amino]}-6-[Bis(2'''-chloroethyl) amino]-4-methoxy-1,3,5-triazine.

A mixture of 2-{4'-[3"-(4""-methoxy phenyl)-2"-propene-1"-one] phenyl amino}-6-[Bis(2"'-chloro ethyl) amino]-4-methoxy-1,3,5-triazine(5.02 gm,

0.01 M); 1-amino-1,3,4-triazole (0.76 gm; 0.01 M) and alcoholic KOH, the reaction mixture was refluxed fo 10 hrs. at 100° C. temp. The reaction mixture poured into crushed ice, filtered,dried and crystallised from dioxane, Yield : 79% ; M.P. 185° C. (Found : C : 54.90; H : 4.73; N : 22.15, $C_{26}H_{27}O_2N_9Cl_2$ required C : 54.92; H : 4.75; N : 22.18%).

Similarly other compounds were prepared and their physical data recorded in Table no. 33

(F) Antimicrobial activity of 2-{4'-[3"-aryl)-2"-propene-1"-N-(1,2,4-triazole) amino]}-6-[Bis (2"'-chloro ethyl) amino]-4- methoxy-1,3,5-triazine.

The antimicrobial testing was carried out as described in Part-I, Section-I, Page no. 39-41.

The zone of inhibition of the test solutions are recorded in Table no. 34.

TABLE NO : 33 : PHYSICAL CONSTANTS OF 2-{4'-[(3"-ARYL)-2"-PROPENE-1"-N-(1,2,4-TRIAZOLE) AMINO]}-6-[BIS(2"-CHLORO ETHYL) AMINO]-4-METHOXY-1, 3, 5-TRIAZINE.

Sr.	R	Molecular	M.P.	Yield	% of Nitrogen	
No.		Formula	.c	%	Calcd	Found
1.	C ₆ H ₅	C ₂₅ H ₂₅ Cl ₂ N ₉ O	238	57	23.41	23.39
2.	2-OH C ₆ H ₄	C ₂₅ H ₂₅ Cl ₂ N ₉ O ₂	232	62	22.74	22.71
3.	3-OH C ₆ H ₄	C ₂₅ H ₂₅ Cl ₂ N ₉ O ₂	215	65	22.74	22.72
4.	4-OH C ₆ H ₄	C ₂₅ H ₂₅ Cl ₂ N ₉ O ₂	223	72	22.74	22.69
5.	4-OCH ₃ C ₆ H ₄	$C_{26}H_{27}Cl_2N_9O_2$	185	79	22.18	22.15
6.	4-OH, 3-OCH ₃ C ₆ H ₃	$C_{26}H_{27}Cl_2N_9O_3$	222	74	21.57	21.53
7.	4-Br. C_6H_4	C ₂₅ H ₂₄ BrCl ₂ N ₉ O	120	80	20.42	20.41
8.	$3-NO_2 C_6 H_4$	$C_{25}H_{24}Cl_2N_{10}O_3$	182	83	24.01	24.00
9.	$4-NO_2 C_6 H_4$	$C_{25}H_{24}Cl_2N_{10}O_3$	193	69	24.01	23.99
10	$4-N_{,}N(CH_{3})_{2}C_{6}H_{4}$	C ₂₇ H ₃₀ Cl ₂ N ₁₀ O	169	72	24.09	24.05
11.	C ₄ H ₃ O (Furfuryl)	C ₂₃ H ₂₃ Cl ₂ N ₉ O ₂	242	95	23.86	23.81

TABLE NO : 34 : ANTIMICROBIAL ACTIVITY OF 2-{4'' [3''-ARYL)-2''-PROPENE-1''-N-(1, 2, 4 - TRIAZOLE) AMINO}-6-[BIS(2'''-CHLORO ETHYL) AMINO]-4-METHOXY-1,3,5-TRIAZINE.

Sr.	R	Antibacterial activity			Antifungal activity	
No.			Zone of inl	Zone of inhibition in mm.		
		B. mega.	B. subtillis	E. coli.	P. fluorescens	A. awamori
1	C ₆ H ₅	16	17	14	19	20
2	2-OH C ₆ H ₄	15	19	17	20	17
3	3-OH C ₆ H ₄	20	14	23	18	21
4	$4-OH C_6H_4$	18	20	22	23	19
5	4-OCH ₃ C ₆ H ₄	19	12	13	20	19
6	4-OH, 3-OCH ₃ C ₆ H ₃	19	15	18	18	16
7	4-Br. C_6H_4	16	14	17	17	14
8	$3-NO_2 C_6H_4$	23	17	15	19	21
9	$4-\mathrm{NO}_2\mathrm{C}_6\mathrm{H}_4$	24	21	14	21	16
10	$4-N_{N}(CH_{3})_{2}C_{6}H_{4}$	15	15	19	18	17
11	C ₄ H ₃ O (Furfuryl)	13	17	18	17	22

Synthesis, spectral studies and therapeutic activity of some Heterocyclic compounds

REFERENCES

- S. V. Kostanecki and J. Tambor; Chem. Ber., **32**, 1921 (1899).
- K. Kazauki, K Htayama, S. Yokomor and T. Soki; Chem. Abstr., 85 5913 (1976).
- H. Rupe and D. Wasserzug;
 Chem. Ber., 34 3527 (1901).
- T. Szell
 chem. Ber., 92 1672 (1959); Chem. Abstr., 53, 21913 (1959).
- R. B. Lyle and L. P. Paradis;
 J. American Chem. Soc., 77 6667 (1955); Chem. Abstr., 50 10057 (1956)
- 6. S. A. Hermes;Chem. Abstr., **70** 96422h (1969).
- A. A. Rawal and N. M. Shah;
 Indian J. Chem., **21B** 234 (1962).
- P. L. Cheng, P. Fournari and J. Tirouflet;
 Bull. Soc. Chim., France. 102248 (1963); Chem. Abstr., 60, 1683 (1964).
- 9. C. Kurodo and T. Matsukuma;

Sci. Papers Inst. Phys. Chem. Res. (Tokyo), 18, 51, (1932) Chem. Abstr., 26, 2442 (1932).

10. D. S. Bresolow and C. R. Houser;

J. American Chem. Soc., 62, 2385 (1940); Chem. Abstr., 34. 7875 (1940)

11. G. V Jadav and V. G. Kulkarni;

Curr. Sci. (1944)

12. L. Reichel;

Naturwissens Chalen 32, 215 (1944); Chem. Abstr., 10, 2441 (1946).

13. V. M. Vlasov;

Izu. Sib. Otd, Akad. Nauk SSSR Ser. Khim Nauk. 2, 96 (1972); Chem. Abstr., 76, 140411d (1972).

14. P. L. Nayak and N. K. Rout;

J. Indian Chem. Soc., 52, 801 (1975).

15. M. A. El. Hashan, M. El-kady, M. A. Saiyed, A. A. Elsawy;

Egypt. J. Chem., **26(6)**, 715-21 (1985). (Eng); chem. Abstr., **105**, 208684 (1986).

16. A. Sammour, Y. Akhnookh and H. Jahine;

U.A.R.J. Chem., 13(4), 421-37 (1970); Chem. Abstr., 77, 1013489 (1972).

17. L. S. Crawley and W. J. Fanshawe;

J. Heterocycl. Chem., 14, 531 (1977).

- A. Chan Seng H., Brimble Margaret;
 Aus. J. Chem., 1998; Chem. Abstr., 129, 16105f (1998).
- 19. A. Khalafallah;

Asian J. Chem., 8(4), 951-96 (1996).

20. D. J. Brown;

Synthetic Heterocyclic Compounds, 16 (1985).

- 21. E. C. Taylor and R. W. Morrison;J. Org. Chem., **32**, 2379 (1967).
- 22. Ms. B. S. Hastak and B. J. Ghiya;Indian J. Heterocycl. Chem., 2 133-135 (1992).
- 23. P. A. Mehta and H. B. Naik;
 Oriental J. Chem., 14(1), 159-60 (1998); Asian J. Chem., 10(4), 1017-8 (1998).
- E. A. Mohamed, R. M. Abdel Rahman, A. A. Sayed and M. M. Ismil;Indian J. Chem. Soc., 69, 82 (1992).
- 25. K. P. Jadhav. D. B. Ingle;Indian J. Chem., 22B, 180 (1983).
- 26. P. S. Utale, P. B. Raghuvanshi, A. G. Doshi.

254

Asian J. Chem., **10(3)**, 597-99 (1998).

- 27. S. W. Pfeidere and H, Mosthafa;Synthetic Org. Chem., **B90**, 738 (1957).
- 28. Rasaki Abayomi Osisany, James Olabisi Oluwadiya;

J. Heterocycl. Chem., 15, 947 (1989).

29. K. Folkers, S. A. Harris;

J. Am. Chem. Soc., 61, 1245 (1939).

- M. R. Mahmoud, E.F.E. Awatef, M. S. Abd-EL-Halim, A. M. Radwan;
 India J. Heterocyclic. Chem., 4, 131-36 (1994).
- A. Y. Deshmuch, P. B. Raghuwanshi, A. G. Doshi;
 Oriental J. Chem., 18(1), 101-104 (2002).
- 32. Nissan Chemical Industries Ltd.

Japan Kokai To Jckyo Koho Japan 58, 08, 035 (1983); Chem. Abstr., **98**, 178947a (1983).

33. Re. Seele et. al.;

Eur. Pat. Appl EP, 337, 198 (Cl CO7D 249/08) (1989); Chem. Abstr., **113**, 178990s (1990).

34. Tashio Pharmaceutical Co. Ltd.;

Japan, Kokai Tokkyo Koho JP, 59, 12, 094 (81, 12, 094) (Cl A 61 K 31/215); Chem. Abstr., **101.** 54722J (1984).

35. J. Serre, J. Rey and J. P. Tarayre;

Fr. Demande 2, 377.201 (Cl A 61U37/48); Chem. Abstr., 91, 9494a (1979).,

36. A. E. Vanstone, G. K. Maile and L. K. Maile and L. K. Nalbantogly;

Ger. Offen. DE 3, 537, 207 (Cl. CO7C 65/40) (1986); Chem. Abstr., **106**, 149778f (1987).

37. K. Bowden, P. A. Dal and C. K. Shah;

J. Chem. Res. Synop., 12, 2801 (1990); Chem. Abstr., 114, 160570m (1991).

38. Y. Inamori et. al.;

Chem. Pharm. Bull, 39(6), 1604 (1991); Chem. Abstr., 115, 105547c (1991).

- 39. V M. Gaurav and D. B. Ingle;
 Indian J. Chem., 25B, 868 (1986); Chem. Abstr, 107, 39321h (1987).
- 40. A. K. Pedersen and G. A. Fitz Gerald;
 J. Pharm. Sci., 74(2), 188 (1985); Chem. Abstr, 103, 87592m (1985).
- 41. D. Binder, C. R. Noe, W. Holzer and B. Rosenwirth;
 Arch. Pharm. 318(1), 48(1985); Chem. Abstr, 102, 149025u (1985).
- 42. M. R. Bell;
 US Appl, 637, 931 (1984); Chem. Abstr, 113, 211828t (1990).
- 43. E. T. Ogansyan et. al.;
 Khim. Farm. Zh., 25(8), 18(1991); Chem. Abstr, 115, 24797n (1991).
- 44. S. Satoshi, N. Yasunori, U. Hiroki;
 J. Med. Chem., 1993, 3904-9 (Eng.) Chem. Abstr, 120, 133956] (1994)
- 45. Y. Satomi;
 - Ind. J. Cancer **55(3)**, 506 (1993); Chem. Abstr, **120**, 208071 (1994).
- 46. R. J. Auto et. al.;
 J. Clin Biochem. Nutr., 17(2) 73(1994); Chem. Abstr., 123, 122487x (1995).
- 47. Li. Rongshi, Chem. Xiawa., Gong Baogung. Qominguez, Jos, N. Et. al.; J. Med. Chem., **38** (**26**), 5031-7 (1995); Chem. Abstr., **124**, 232f (1996).
- 48. G. Zongru, H.Rui;

Faming Zbuanli Shenquang Gonky Shuominh Shu CN 1, 113, 909; Chem abstr., **125**, 10376r (1996)

49. F. S. Nielsen, S. B. Chirstensen;

J. Med. Chem., 41, 4819-4832 (1998)

50. S. R. Modi and H. B. Naik;

Orient J. Chem., 10(1), 85-6 (1994); Chem. Abstr., 112, 81186c (1995).

51. Attia A., Abdetsulan

O. J. Abo-Ahalia; Egupt. J. Chem., 1995; Chem. Abstr., 125, 10570z (1996).

52. V. R. Mudaliar and V. Joshi;

Ind. J. of Chem., 34(B), 456 (1995).

- 53. Kammei, Hideo, Koide, Tatsurou; Hashimato yoko, Kojima, Takashi, Hasegawa, makoto; Chem. Abstr., **126**, 258666v (1997).
- R. De Vincenzo, G. Seambla G., Panici. R. Benedess, F. O. Remelletti, Anticancer Drug. Res., 10(6), 481-90 (1995) chem. Abstr., 124, 247r (1996). 55. Han, Rui, Guo, Zong, Ru; Chem. Abstr., 128, 110862b (1998).
- 55. Han, Raui Guo, Zong, Tu;

Chem. Abstr., 128, 11086b (1998)

- 56. Okuyana torn; Okada Yoshihito, Shibata Shoji et. al., Jpn Kokai Tokkyo Koho JP, 11 349, 521 (1999); Chem. Abstr., **132**, 22752t (2000).
- 57. A. Tsotitus, K. Theodara et. al.

PCT Int. Appl. WO 99, 54 278 (1999); chem. Abstr., 131, 28260e (1999).

58. P. N. Sharma, b. Sreenivasulu;

J. Indian Chem. Soc., 1997; Chem. Abstr., 128, 88799n (1998).

59. Ezio Bombardelli, V. Piero;

PCT Int. Appl. WO 98, 58, 913; Chem. Abstr., **130**, 98382r (1999) 12199d (2000). 423-. B. B. Kalashnikov I. R. Kalashnikov;

60. S. Elichi, K. Koji;

PCT Int. Appl. WO 99, 61, 403; Chem. Abstr., 132, 12199d (2000).

61. B. B. Kalashnikov I. P. Kalashnikov;

Russ. J. Gen.Chem., 1998; Chem. Abstr., 130, 296596n (1999).

62. S. Satoshi, N. yasunori, V. Hiroki;

J. Med. Chem., (1993), 3904-09 (Eng.); Chem. Abstr., 120, 133956J (1994).

63. P. B. Walavalker, S. Pednekar;

J. Heterocycl. Chem., 1999; Chem. Abstr., 131, 257517p (1999).

- 64. O. Tory, O. Yoshihito, S. Shoji;Jpn. Kokai Toceyo Koho JP 11, 349, 521; Chem. Abstr., 132 22752t (2000).
- 65. J. R. Dimmock, M. Elisk;

U.S. US 6, 017, 933; Chem. Abstr., 132, 107880n (2000).

66. T. M. Abdel V. Rahman;

Bull. Chim. Farm. 1998; Chem. Abstr., 132, 93276b (2000).

- Ni Liming, Worsencrott K. J., Weingarten M. D., Meng C. Q., Sikorski J. A.; U.S. US WO 02, 41336 (2002) Chem. Abstr., 139, 85160 (2003).
- Kumar Srinivas K., Hager E., Pettit C., Gurulingappa H., Davidson N. E., Khan S. R.; J. Med.Chem., 46(14) 2813-15 (2003); Chem. Abstr., 139, 117464 (2003).
- 69. Ko Horng-Huey, Taso Loli, Yo Kun-Lung, Cheng-Tsung J. P. Wang, C. N. Lin Bioorg & Med. Chem., **11(1)**, 105-111 (2003) Chem. Abstr., **139**, 30144 (2003).
- 70. Nakahara Kazuhiko, G. Torakoontiwakon, M. Kameyama,

Ono Hiroshi, Yoshida mitsuru; Jpn. Kokai Tokkyo Koho JP 03 040829 (2003); Chem.Abstr. **138**, 158753 (2003).

- Lin Yuh-meei, Zhou Yasheen, M. T. Flavin, L. M. Zhou, W. Nie., F. C. Cheng; Bioorg & Med. Chem., 0181 2795-2802 (2002); Chem. Abstr. 138, 66146 (2003).
- 72. B. R. Das, D. N. Chowdhary, K.Ghosh, G. K. Das

Environ and Ecolo 20(3), 649-55 (2002). Chem. Abstr. 139, 129387 (2003).

73. Kirm Min-Young. B. Y. Park, K. M. Kirn, N. D. Sung, P. K. Myung;

PCT Int. Appl. WO 02 KR 2031 (A61K031-03) (2002); Chem. Abstr. 138, 368613 (2003).

74. Liu Mei, Wilairat Prpon, Go Mei-Lin;

J. Med. Chem., 45(8), 1735(2002); Chem. Abstr., 139, 94746 (2003).

75. Opletalova Veronika, L. Jahodar, D. Jun, L. Opletal;

Ceska a Slovenska Farmacie, **52** (1), 12-19 (2003); Chem. Abstr. **138**, 265043 (2003).

76. Rojas Javier, M. Paya, J. N. Dominguez, F. M. Luisa;

Bio org & Med. Chem., Letters, **12(15)**, 1951-54 (2002); Chem. Abstr. **138**, 39068 (2003).

Rojas Javier, J. N. Dominguez J. E. Charris, Lobo Gricela, Paya M., Ferrandiz M. L., Eur. J. Med. Chem., **37(8)**, 699-705 (2002); Chem. Abstr. **138**, 122472 (2003).

78. N. N. Mateeva, R. N. Kode, K. K. Redda;

Heterocycl. Chem., 39(6), 1251-58 (2002); Chem.Abstr. 138, 401568 (2003).

- 79. V. V. Bhuva; V. N. Patolia, A.U. Patel, D. M. Purohit; Organic Chemistry An Indian Journal Vo. 5 (1), 104-108 (2009).
- 80. A. L. Barry;

"The Antimicrobial Suceptibility test, principle and practices (ELBS-4th Edition) 180-193 (1976).

81. F. Simocini; R. R. Rengone and C. Calann.

Farmaco D. Part., 23(10), 559-70 19680; Chem Abstr. 59, 109851d (1968)

82. L. Claisen and O. Lowmann;

Chem. Ber. 21, 1149 (1988).

83. A. Quelico;

Chem. Heterocycl. Compd. 17, 1 (1962).

84. L. S. Crawley and W. J. Fanshawe;

J. Heterocycl. Chem., 14, 531 (1977).

85. Vamanouchi Pharm. Co. Ltd.;

Jpn. Kokai koho JP 58, 148, 858 (1982) (C107D 207/333) (1983) Appl 82/30045 (1982); Chem. Abstr, **100**, 34538 (1984).

86. P. T. Gallagher, T. A. Hicka and G. W. Mullier (Lilly Ind. Ltd.);

Eur. Pat. EP 2, 57, 882 (1988); Chem. Abstr, 108, 6499k (1988).

87. A. Ando and R. W. Stevens;

PCT Int. Appl. WO 94, 12, 481 (Cl. C07 D 261/04); Chem, Abstr, **122**, 56037x (1995).

88. W. Wells, A. Michele, H. Tood;

Chem. Abstr, **136**, 340680] (2002).

89. T. Tochiro, K. Shriji, I. Shinji, M. Hiroshi, S. Akira And V. Hiroshi;

Ger. Offen. DE 3, 237, 149 (Cl. C07 A 261/14); (1983); Chem. Abstr, **99**, 88188 (1984).

90. T. U. Quazi;

Pak. J. Sci. Ind. Res., 27, 326 (1984); Chem. Abstr, 103, 12339m (1985).

91. Nippon Chemphar Co. Ltd.;

Jpn. Kokai Tokkyo koho JP **58,** 46, 077 (83, 46, 077) (Cl. C07 A 261/14) (1983); Chem. Abstr, **99,** 17574 (1984).

92. T. Taate, K. Natira and H. Fukhola;

Chem. Pharm. Bull 35(9), 37769 (1987); Chem. Abstr, 108, 186621e (1988).

93. B. Victor J. Safir and Sidney R.

(American Cyanamid Co.) Brit. **1**, 178064 (Cl C07D) (1970); Chem. Abstr., **72**, 79017d (1970).

94. R. Maior, B. Eisele, P Mutler and H. Grube;

Ger, Offen. DE. 3621372 (1988); Chem. Abstr., 108, 67456p (1988).

95. S. Suzuki, K. Ueno and K. Mori; Yakugaku Kenkya,

Chem. Abstr., 57, 16754 (1962).

96. G. P. Reddy. E. Rajendra and A. K. Murty;

Indian J. Hetrocycl. 3, 233 (1994); Chem. Abstr., 122, 105724e (1995).

- 97. B. Victor, J. Safir, R. Sidney; American Cyanamide (O). Brit., **1**, 178064 (C107D) (1970); Chem. Abstr., **72**, 79017D (1970).
- 98. K. Hass Duane, B. Carr John;

U.S. 3,879,532 (C1242-272 A 61k) (1975); Chem. Abstr. 83, 108626n (1975).

99. D. J. David, D.B.Allon and E.A Frederick;

Ger. Offen. 2, 723688 (CE A 01 N9/28) 22 DCT, 1977; Chem. Abstr. 88, 132015k (1978).

- M.D. Mackie, H.S.Anthony. W.J.R Howe. S.P. John and W.S. Marry; Brit; UK Pat. Appl. GB 2, 265, 371 (Cl. C07 D 261/06); Chem. Abstr, 120, 1641532 (1994).
- 101. M.Moriyusu, H. Yushi;

PCT. Int. Appl. WO 97 43, 148 (Cl. 07, 25/50 20 NOv. 1997. JPA 96/ 117, 370 13 May 1996,66 pp Japan, *Chem. Abstr.* **128** 14605z (1998).

102. G.D Diana and C.P Michel;

S. African ZA 81 03, 105 (1981); Chem Abstr, 98, 16671 (1983).

103.	C.P Alfred, C. David, Herman, D. Nancy, B. Daniel;
	PCT. Int. Appl. WO 9522, 9103 (1995); US Appl, 202, 394, 42 pp (1994); Chem. Abstr., 124 , 3055m (1996).
104.	A.K. Banerjee et al.;
	Arzneim Forsch., 44, 863 (1994); Chem. Abstr., 122, 160522n(1995).
105.	H.Katsumasa, N. Shigehide, H, Kenji;
	Chem. Abstr., 136, 340672J (2002).
106.	S. Rung and D.Dus.,
	Pharmazie 49, 727 (1994); Chem. Abstr., 122, 55934H (1995).
107.	M. Scobie and M.D Threadojill,
	J.Org. Chem., 59, 7008 (1994); Chem Abstr., 122, 10090f (1995).
108.	R. Jain, D. D. Agarwal and Damodharan;
	J. Ind. Chem, Sco. 72, 825-827 (1995).
109.	Inai, Masatoshi, Tanaka, Akie, Goto, Kyoto;
	JPN-Kokai Tokkyo Koho JP 07, 215, 952 (95,215,952) (1995) JP. Appl. 93 1304 921, 19 PP (1993); Chem. Abstr., 124 , 86995(s) (1996).
110.	Inai, Masatoshi, Tanaka, Akie, Goto, Kyoto;
	JPN-Kokai Tokkyo Koho JP 07, 215, 952 (95, 215, 952) (1995) JR Appl, 93 1304 921, 19 PP (1993); Chem. Abstr., 124 , 86995 (s) (1996).
111.	B. Maggio. G. Daidone, D. Raffa, F. Piescia, VMC Cutuli;
	Archiu Der Pharmazic, 332 (2) , 50-54 (1999).
112.	C. B. X.ue, J. Roderick, S. Mousa, R. E. Olason, W. F. Degrade;
	Bio-organic and Medicinal Chemistry Letters, 8 (24), 3499-3504 (1998).
113.	M. Masui, H, Yasushi;
	Chem. Abstr., 128 , 13256z (1998)
114.	K. V. Reddy, S.G. Rao, A. V. Subba;
	Indian J. Chem, 37B (7), 677-699 (1988); Chem. Abstr., 129 , 260397p (1996)
115.	J. Nyitrai, N. Joseph, S. Gyala et al.;

Chem. Abstr, **128**, 294778h (1998).

- 116. A. Mishra, J. K. Sanmati, J. Asthana;
 Orient J. Chem., 14 (1), 151-152 (1998); Chem. Abstr., 128, 216538m (1998).
- 117. T.D. Aicher, B. Balkam, R A. Bell, L.J. Brand et al.;
 J. Med. Chem. 41 (23), 4556-4566 (1998); Chem. Abstr., 129, 3434296 (1998)
- 118. S. Ozkan, D. Kadir, A. Okay, A, Ahmet;Heterocycl. Commun. 1999; Chem. Abstr., 131, 5221f (1999).
- 119. M. Dauria;Hererocycles, 50(2), 1115-1136 (1999).
- 120. Y.N. Manohara, P.V. Nayak, S. Mohan;Asian J. Chem., 11 (1), 253-256 (1999).
- 121. A. H Bhatt, H.H. Parekh & A.R Parikh; Heterocyclic Commun. Vol, **4**, 4 (1998).
- 122. De Mesmaker, A. Schaetzer, J. Kunzwalter;
 PCT Int. Appl No., 9, 51, 583 (1999); Chem. Abstr., 131, 271872g (1999).
- 123. A. Hiroyuki, S. Takahiro, A. Toshio;PCT Int, Appi. WO 99 64, 404; Chem. Abstr., 132, 12313m (2000).
- 124. K. Masami;U.S. US 6 100, 421; Chem. Abstr., 133, 15050H (2000).
- 125. M. Muro; S. Enzo et al.;
 Farmaco 54 (7), 452-460 (1999); Chem. Abstr., 131, 299393a (1999).
- 126. D.A. Jacod, M. A. Jhn, C.L. Stanley:
 PCT Int. Appi. WO 00 00, 477; Chem. Abstr., 132, 64256q (2000).
- 127. S.K Gudadhe, S.D. Patii, U.S. Jamode;
 Orient J. Chem., 15 (1), 133-136 (1999); Chem. Abstr., 132, 222481r (2000)
- 128. Hui-Xin Ping, Zhang Lin-Mei; Zhang Ziyi;

Indian J. See B. Org. Chem. Inci Med. Chem. 1999; Chem. Abstr., **132**, 207803c (2000).

129. V.D. Huebner, Lin Xiaodong, James lan, C. Liya, M, Desai;

PCT Int. Appl WO 00 08, 001(1978).

- 130. Gachanta A. Modzelewska S.R., Fengl Khans, Hang P., Mol Pharmacol April 24, (2000).
- 131. V.V Bhuva, V.N. Patolia, A.U. Patel, D.M. Purohit, Organic Chemistry AN. An IndianJour **5** (1), 104-108 (2009).
- 132. J. Elguero; In Comprehensive Heterocyclic Chemistry eds., A.R. Katritzky and C. W. res., **Vol.5**, 404(1997).
- 133. R.S. Theobald ; Rodd's Chemistry of Carbon Compounds, Ed. M. F Ansell,
 Vol. IV. Part C, Ch 16, 2nd Edition, (Elsevier Science Publishers B. V,
 Amsterdam) 59 (1998).
- 134. A.M Fahmy, M. Hassan. A.A. Khalf, R A.hmed;
 Reu. Roum. Chim. 33 (7), 755-61 (1988); Chem. Abstr., 111, 77898 (1989).
- 135. A.K. Padya, K. Jaggi, V. Lakshminarayana, C.S. Pande;J. Indian Chem. Soc., **75** (2), 104-105 (1998).
- V. Gohanmukkala, A. Subbaraju. R. Naykula and D. Parmeswara;
 Indian J. of Heterocyclic Chem., 4, 87-92 (1994).
- 137. M. Hassaneen Hamdi, A.E. Hamad, A.H. Hiyam;
 Sultur Lett. 8 (5), 27582 (1989); Chem. Abstr, 111, 576611 (1989).
- 138. M.A. El. Hashsh: M. El-Kaby: M.A Saiyed: A.A Elsawy;
 Egypt J. Chem., 27(6), 715-21 (1985); Chem. Abstr., 105, 20868u (1986).
- 139. B. Gyassi, K. Bourin, M. Lamiri, M. Soufiaoui;
 New Journal of Chemistry; 22(12), 1545-1548 (1998)
- 140. S. Paul, R. Gupta;Indian J. Chem., **37(B)**, 1279-1282 (1998).
- 141. A Dandia, H. Taneja, C. S. Sharma;Indian J. Heterocyclic Chem., (1999); Chem. Abstr., 132, 265161d (2000).

142.	A. K. Reda, A. A. Khalaf, M. T. Zimaltu, A. M. Khalil, A. M. Kaddah and H. A. A. l. Rifuie; J. Indian Chem. Soc. 68 , 47-51 (1991).
143.	Delay Francois (Fermenich S. A.) Patent Schrift (Switz)
144.	Aysel G. Seret D., Gultaze C., Kevser E., Kamil V.;
	Ear. J. Med. Chem., 35 , 359-64 (2000).
145.	P. Desaea; A. Nunrich; M.Capderny and G. Devaux;
	Ear. J, Med. Chem., 25, 285 (1990).
146.	Kalluraya Blakrishna, R. Chimabalkar, G. Rai, R. Gururaja, S. Shenoy;
	J. Indian Coun.Chemi., 18(2) , 39-42 (2001); Chem. Abstr., 138 , 238061 (2003).
147.	Y. Hiroyuti, O. Mocoto et al.;
	Eur. Pat. Appl. Ep 295695 (Cl C07D 401/6) (1988); Chem. Abstr., 111, 23510 (1989)
148.	K. Zalgislaw and A. Seffan;
	Acta. Pol. Pharm., 36(6) , 645 (1979); Chem. Abstr., 93 , 204525e (1980).
149.	S. S. Nayal, C. P. Singh;
	Asian J. Chem. 11, 1, 207-212 (1999).
150.	K. Wellinga, H. H. Eussen Jacobus;
	Eur. Pat. Ep 269 141 (Cl C07D 231/06) (1988); Chem. Abstr., 110 , 8204 (1989).
151.	K. Trena and Zolzislaw;
	Acta. Pol. Pharm., 36(3) , 227 (1979); Chem. Abstr., 93 , 4650r (1980).
152.	D. Bhaskar Reddy, T. Senshuma, B. Seehaiha & M. V. Ramma Reddy; Indian J. Chem., 30(B) , 46 (1991).
153.	B. Hans, R. Rolf and R. Rudolf;
	US. Pat., 3 , 822, 283 (1974); Chem. Abstr., 81 , 105494r (1974).
154.	B. Roman;
	Pharmazie, 45 , 214 (1990).
155.	Z. Brozozowsk E. Pormarnacka;

Acta. Pol. Pharm., 37(4), 1378, 80 (1980); Chem. Abstr., 25, 80807 (1981).

- 156. Archana Shrivastava V. K.; Chandra Ramesh Kumar Ashok;
 Indian J. Chem., 41(1) -75 (2002); Chem. Abstr., 138, 271582 (2003).
- 157. H. G. Garg and P. P. Singh;J. Chem. Soc., 2, 1141 (1936).
- 158. D. B. Reddy, T. Senshuna and M. V. Ramma Reddy;Indian J. Chem., **30(B)**, 46 (1991)
- 159. Ashok kumar, R. S. Verma and B. P. Jagu;J. Ind. Chem. Soc., 67, 120 (1990).
- 160. W. I. Ronald, A. Adriano;Chem. Abstr., **126**, 181346f (1997).
- 161. H. M. Mokhtar, H. M. Faidailah;Pharmazie, 42, 482 (1987).
- 162. Panda J. Srinivas S. V., Rao M. E.,

J. Indian Chem. Soc., **79(9)**, 770-1 (2002); Chem. Abstr., **138**, 153499n (2003).

163. S. S. Sonarc, Asian J. Chem., 10(3), 591-593 (1998); Chem. Abstr., 129, 633, 54317J (1998).
164. T. M. Stivenson, D. W. Piotrowski, M.A.H. Fahmy, R. L. Lowe, K. L. Monaco; Chem. Abstr., 130, Mar Part-1, 29 AGRO (1999).
165. T. Katsushori, A. Hiroyuki, K. Masumij; PCT Int. Appl. WO 98, 56, 760; Chem. Abstr., 130, 66492w (1999).
166. K. Johannes, J. Fuchs, R. Erdelen;

U.S. US 5, 525, 622 (Cl 514-403; AON 43/56) Jun. 1996 DE Appl. 4, 128, 564 Aug. 1991; 574; Chem. Abstr., **125** 1427199 (1996)

167. Z Mortiaz, S, Hadol;

Dyes arid Pigment, **41**, 1-2, 1-10 (1999).

- 168. M. K. Shivananda, P. M. Akberali, B. Holla, Shivarama, M. Shenoy, Shalini; Indian J. Chem. **3B** (6), 440-447 (Eng.); Chem. Abstr., **134**, 86195n (2000).
- 169. B. Shivrama Holla, M. K. Shivananda, P. M. Akabar Ali, M. Shalini Shenoy; Chem.Abstr. 27198(1996)
- 170. B. Shivarama Holla, M. K. Shivanda, B. Veerendra;Ind. J. Hetrocydic Chem., 12, 135-138 (2002).
- 171. S. P. Hiremath K. Rudresh and A. r. Saundane;Indian J. Chem., 41(B), 394-399 (2002).
- 172. V. Malhotra, S. Pathak, R. Nath, D.Mukherjee, K.Shanker;
 Indian J. Chem., 41B, 1310-13 (2002), Chem. Abstr., 137, 370021J (2002).
- 173. Almstead Ji-In Kim, D. R. Jones;

PCT Int. Appl. WO 02 89, 799 (Cl. A 61K31/4439) (2002); Chem. Abstr., **137**, 370086J (2002).

- 174. Guniz Kucukguzel, Sevin Rollas, Habibe Erdeniz, muammer Kiraz, A Cevdet Ekinci, Aylin Vidin; Eur. J. Med. Chem., **35**, 761-77 (2000).
- 175. T. Z. Gulhan, Pierre Chevallet, S. K. Fatma, Kevser Erol;Eur. J. Med. Chem., 35, 635-41 (2000).

Lui: 9. 1000. Chom., 00, 000 11 (2000).

176. Shalabh Sharma, Virendra Kishor Shrivastava, Ashok Kumar;

Eur. J. Med. Chem., 37, 689-97 (2002).

177. V. K. Archana Srivastava, Kumar Ashok;

Arzneimittel. Forschung, **52(11)**, 787-91 (2002); Chem. Abstr., **138**, 353758 (2003).

- 178. V. V. Bhuva, V. N. Patolia, A. V. Patel, D. M. Purohit, Organic Chemistry An Indian Journal, **5(1)-92-95** (2001).
- 179. R. R. Willams and J. K. Cline;

J. Amer. Chem. Soc., 58, 1504 (1936).

- 180. C. Reidling, R. Dwarczak, W. M. f. Fabrian & K. N. Jun.;Dye & Pigment 24, 185 (1994)
- 181. G. E. Hardtman, H. Otto;

U. S. Pat. 366369; Chem. Abstr., 77, 52313 (1992)

182. D. J. Brown;

The pyrimidines Suppl. II edited by A. Weiss-berger & C. E. Tayloo, The Chemistry of Heterocycl. Compds., (1985).

183. D. J. Brown;

Pyrimidines, Edited by A. R. Kartrizky & C. W. Ress, Comprehensive Hete. Chem., Vol. **111**, 57, (1984).

184. Y. S. Sadanandam, M. M. Shetty, P. V. Diwan;

J. Med. Chem., 27, 8792 (1992)

185. F. Bigi; C. Silvia; F. Betting, M. Raimando; S. Giovanni;

Tetrahedron Lett., 40(17), 3465-3468 (1999).

- C. C. Heidelberger, N. C. Chaudhari, P. Dannberg, D. Mooren, L. Grieshbach,
 R. Duchinsky, R. I. Schnitzer, E. Pleven; Scheiner (1957), Nature 179, 663.
- 187. F. French;

Proc. Am. Ass. Cancer Res., 3, 319 (1962).

188. W. Hepworth, T.W. Thompson;

Chem. Abstr., 69, 7724 (1968).

189. G. E. Hardtmann;

U. S. 3, 663, 698 (cl. 424-251; 1972) Appl. 779, 200; Chem. Abstr., 77, (1972)

190. N. Tokutake;

Brit. Pat. 146936B; Chem. Abstr., 87, 102370 (1977).

- 191. D. S. Matteson, M. S. Bleenbaum, R. A. Bechtold, R. J. Willsek;J. Org. Chem., 43, 950 (1978).
- 192. M. Akhtar, Shamin, M. Seth, A. Baduri;

(Div. Med. Chem. Centre Drug) Res. Ints. Lucknow India; Chem. Abstr., **108**, 150408b (1988).

193. J. A. Martin, D. J. Bushnell, Duncan;

J. Med. Chem., **33**, 2145 (1990).

194.	K. A. Watanable, K. Hurado, J. Zeidle;
	J. Med. Chem., 33 , 2145 (1990)
195.	V. J. Ram, N. Haque, P. Y. Guru;
	Eur. J. Med. Chem., 27, 851 (1992).
196.	Liu, Xunyong, Xu, Lijun; Shandong;
	Yike Daxue Xuebou, 31(2) , 176-9 (1993).
197.	M. T. Omer, H. H. Fahmy, H. S. Mohamad;
	Egypt J. Pharm. Sci., 37(1-6), 609-620 (1996).
198.	A. Rolad, D. M. Wilhelm Dolinger Markus Sentel Hans. Joachim;
	Ger. Offen De 4, 439, 332 (Cl. C07D 403/10) 1996; Chem. Abstr., 125 , 86635v (1996).
199.	M. Olaf, H. Gerhard, H. Elisabeth, K. Ralf;
	PCT Int. Appl. WO 97, 35, 845 (Cl. CO7D 239/54) 1997; Chem. Abstr., 127 , 318975c (1997)
200.	A. Roland, B. M. Wilhelm. D. Markus;
	Ger. Offen. DE 19, 528, 186 (Cl. CO7D 239/54); Chem. Abstr., 126, 186101s (1997).
201.	M. Wilhelm, A. Roland, D. Markus;
	PCT Int. Appl. WO 98 54, 155 (Cl. CO7D 239/54) 1998; Chem. Astr., 130. 38393w (1999).
202.	A. Roland, D. Mark Wilhelm, D. Markus;
	PCT Int. Appl. WO 98 55, 462 (Cl. CO7D 239/54); Chem. Abstr., 130 , 38397g (1999).
203.	A. Roland, D, Markus, M. Wilhelm, I. Myers;
	PCT Int. Appl. WO 99 38, 851 (Cl. C07D 239/54) 1999; Chem. Abstr., 131 , 130003n (1999).
204.	W. R. John, M. M. Christopher, R. r. Anthony, C. M. Vernie;
	PCT Int. Appl. WO 99 14, 216 (Cl. CO7D 403/10) 1996; Chem. Abstr., 130 , 252370e (1999).
205.	Nagarathnam, Dhanapalam; Wong Wai C; Maio Shou Wu,

PCT Int. Appl. WO 97 17, 969 (Cl. A61K 31/505); Chem. Abstr., **127,** 65783t (1997)

206. W. C. Wong, L. bharat, R. Mohammad, G. Charles;

PCT Int. Appl. WO 98, 51, 311 (Cl. A61K 31/505) Chem. Abstr., **130**, 25077w (1999).

207. M. A. Patane, M. g. Bock, H. G. Selnick;

PCT Int. Appl. WO 98 57, 641, (Cl. A61K 31/445) 1998; Chem. Abstr., **130**, 81519x (1999).

208. M. A. Patane, M. G. Bock, H. G. Selnick;

PCT Int. Appl. WO 98 54, 641 (Cl. A61K 31/445) 1998; Chem. Abstr., **160**, 81520x (1999).

209. K. Nicholas, M. Premji, T. Stephen;

PCt Int. Appl. WO 98 54, 180 (Cl. CO7D 417/06) 1998; Chem. Abstr., **130**, 38394 (1999).

- 210. L. V. Azarayan, S. A. Avetisyan, A.A. Chachoyan, N. S. Buyukyan; Khim. Farm. Zh., **31(6)** 8-10 (1997); Chem. Abstr., **127**, 262648d (1997).
- V. P. Krivongov, G. A. Tolstiko, Ju. I. Murinov, F. A. Zarudil; Khim. Farm. Zh., **31**(6), 23-27 (1997); Chem. Abstr., **127**, 262649e (1997).
- 212. M. Refai, M. T. Omer, M. M. Kamel, N. S. Ismail;

Egypt. J. Pharm. Sci, **37** (**1-6**), 241-249 (1996); Chem. Abstr., **126**, 251088z (1997).

213. A. Kofies, H. Wonpyo, J. E. Semple;

U. S. US 5 602, 077 (Cl. 504-243, CO7D 239/553); Chem. Abstr., **126**, 1999577s (1997).

214. K. Mogilaiah and S.Baburo;

Indian J. Chem., **37(B)**, 139 (1998).

215. M. Wilhelm, A. Roland, D. Markus;

PCT Int. Appl. WO 97, 45, 418 (Cl. CO7D 239/54); Chem. Abstr., **128**, 48237w (1998).

216. C. D. Timothy, M. Healthrl, J. Juanc, J. P. Powers;

PCT Int. Appl. WO 99 41, 253 (Cl. CO7D 403/04); Chem. Abstr., **131**, 10013 (1999)

217. T. Nagamatsu;

Japan Kokai Tokkyo JP 11 246, 560 [99, 246, 560], (CI. CO7D 487/14) 1999; Chem. Abstr., **131**, 199707n (1999).

218. A. Roland, D. Markus, W. Ingo;

Ger. Ofen DE 19, 854, 082 (Cl. CO7D 417/04) (1999); Chem. Abstr., **131**, 2721883m (1999).

219. M. M. Yari, S. S. Durac, M. Erfan, Batu O, Erol K.,

Farmaco, 54(6), 359-363 (1999); Chem. Abstr., 131, 228701p (1999).

220. M. A. Bruce, G. S. Poindexter, G. Johnson;

U. S. US 5 889, 016 (Cl. 514-274 A 61K 31/505) 1999; Chem. Abstr, **130**, 237586m (1999).

- D. R. Sidler, R. D. Larson, M. Chartrain, N. Lkemato, C. M. Roberge; PCT Int. Appl. WO 99, 07, 695 (Cl. CO7D 401/00) (1999); Chem. Abstr., 130, 182478v (1999).
- 222. A Mona Mohran, El-Sherbey, A. Magda, El-Obaid, M. A. Abdul-Rahman, Badria Farid; J. Pharm. Sci, **12**(1), 39-44 (1998); Abstr., **129**, 58397w (1998).
- 223. K. A. Gupta, A. K. Saxena P. C., Jain P. R. Dua, C. R. Prasad, Anand Nitya; Indian J. Chem., **22B**, 789-94 (1983); Chem.Abstr, **100**, 103282f (1984)
- Hu Chun, Ding Licheng, Xing Guying, Xin Uatian, Warg Shengfu; Zhongguo Yaown Haaxue Zazhil, 11, 255-58 (2001). Chem. Abstr., 137, 169475a (2002).
- 225. Baldev Kumar, Balbir Karu, Jatinder Kaur.

I. J. Chem. Vol. 41B, 1526-30 (2002).

226. M. M. Barbuline, E. Undenatite, P. Gaidelis, V. P. Vainila.

Polish J. Chem., 76(4), 557-63 (2002); Chem. Abstr. 137, 154892b (2002).

227. Amjad Ali, E. t. Ganle, Ken Ellsworth, Georgiana Harris, Ronald Painter, Lynn L. Silver, and Katherine Young;

J. Med. Chem., 46(10), 1824-30 (2003).

228. Abd El-Gahil, E. Arr and M. M. Abdulla;

Indian J. Heterocycl. Chem., 12, 129-34 (2002).

- 229. Martin Bolli, Christoph Boss., Fischli Walter, Clozel Martine, Welles Thomas; Chem. Abstr., **137**, 93766q (2002).
- 230. G. Z. Hang, Z. J. Liu., Shimojk:, B. T. Zhu, Cancer Res; 65(2) 38793 (2005)
- 231. Yamamoto; yakuguku zasshi; **125(1)** 73-120 (2005)
- 232. J. G. Dobaria, R. K. Kanparia, D. M. Purohit and V. N. Patolia, J. of Institution of Chemists (India) **80(4)** 97-99-(2008).
- 233. Ibrahim. Ahmed, Mohmad Kamal;

J. Indian Chemical Soc., 66, 393-397 (1989)

234. Jairo Quirogy, Alvarado Mario;

J. Heterocycl. Chem. (1998).

235. V. P. Dayochenko

Russ. J. Org. Chem., **34(4)**, 554-556 (1998); Chem. Abstr., **130**, 223222c (1999).

236. Okazoe Takashi;

PCT Int. Appl. WO 00 06, 547; Chem. Abstr., 132, 321784y (2000).

237. Kanded Ez-H-Din M.,

Chin. Pharm, J. (1999) : Chem. Abstr., 132, 321784z; (2000)

- 238. A. Samour, V. Akhnookh and H. Jahine, (Pac. Sci. Ain Sharm Univ. Cairy UAK) J. Chem. 1970 **13(4)**, 421-37 (Eng.) : Chem. Abstr., **77**. 10134g (1972).
- 239. V. Scott and E. Joseph;

Jap. Pat., 2, 803, 592 (1979); Cham. Abstr., 92, 4721b (1980).

240. V, Scott and E. Joseph;

Jap. Pat., 7, 998. 338 (1979); Chem. Abstr., 92, 8242f (1980).

241. W. Von Behenburag, J. Engel. J. Heese and K. Thiale;

Ger Offen, D. E., 3, 337, 593 (CIC 07D 213/72) 1984; Chem. Abstr., **101**, 130595n (1984)

242. M. R. Pavia, C. P. Taylor, F. M. Hershenon and S. J. Labbeslale;J. Med. Chem., **30**, 1210 (1987).

243. Omar M. T., Fatima. Hamad, Gl-Deem, Shehab;

J. Pharma Sci. 37(1-6), 233-240 (1996); Chem abstr., 126, 251105c (1997),

- Dyahenku V. D., Krivokolysko S. G., Neslecou V. N.I Litvnov Chem. Helsroeycl. Compd., 33 (12), 1430-1437 (1998); Chem. Abstr., 112, 230617t (1998).
- 245. Nebel, Krut, Brunner, H-Geary. S, Rolf;

PCT Int. Appl. WO 98 21 199; Chem. Abstr., 129, 27898t (1998).

246. A. Abdallah Nevine E.A., Zamimagdi :

Acta Phama (Zagreb) 1999; Chem. Abstr., 132, 1372S7n (2000).

247. Al-Omran, Fatima. Elassar, Abdel. EI-Khiair Abdel-A.;

PCT Inl. Appl. WO 04, 29, 679 (Cl C07D 408/09); Chem. Abstr., **136**, 309834q (2002).

248. S. S. Varma, R. Taneja, L. Prakash, A. L. Mittal;

J. Ind. Chem., Soc. 65, 798 (1988)

249. Y. Sosaki, J. Takuro, M. Ooishi, M. Sekine and S. Imaki;

Jpn. Kokal Takkyo Koho J. P., 06, 315.390 (1994); Chem. Abstr, **122**, 131184y (1995).

- Ijmde Teu. Kusunoki, Masayuki Takuro. Maechara Shinya, Kutsume Saiikhi;
 Jpn. Kokai Tokkyo Koho JP 09.95,489 (1997) Chem. Abstr., 127, 17690y (1997).
- 251. M. Hussans, H.A.E., Eman, H.A.A. Maghruby;

J. Serb. Chem Soc., 62 (7) 541-549 (1997); Chem., 127, 638p 19069v (1997).

252. Guru s. Gadginamath, Ashok s. Shya Digeri and Rajesh R. Kavali;

Indian J. Chem., **37B.** 1137c (1998).

253. Manna Fedele, Chimenti Franco. Bolasco Adriana Bruna, Filippeli Walter, Filppelli Amelia, Gansliardi, Luigi;

Eur. J. Med. Chem., **34(3).** 245-254 (1999); Chem. Abstr., **130**, 352178s (1999).

254. Hammamma Abou. Elfatoon G., El-Hafeaz N. A., M.Wandall, Z. Naturforsch B.; Chem. Sci., (2000).

255.	Ranjan C. Khunt, N. J. Datta. F. M.Bharmal. G. P. Mankand and A. R. Parikh; Indian J. Chem. 10 97 (2000).
256.	Akhil Bhatt, H. H. Parekh, K., Parikh and A. R. Parikh;
	Indian J. Chem., 40B , 57 (2001)
257.	U. D. Pyachenko, S.V.Roman
	Visnik Kharkius Kogo. Natsioriol nogo. Uni 495-59-64 (Russ) Chem. Abstr., 136(21) , 325448x (2002).
258.	F.M. EI-Taweel, M. A. Sofan;
	Egyption J. Med. Chem., 36(2) , 539-534 (2002); Cdhem. Abstr., 137 .63154w (2002).
259.	A. V. Dobaria, J. R. Patel, H. H. Parekh;
	J. Indian Chem. Soc, 79 , 772-773, (2002).
260.	Lowingar Timothy B., Murata Toshiki, Umeda Masaomi Sakakibare;
	PCT Int. Appl. WO 02 24, 679 (Cl. C07D 401/04); Cham Abstr., 136 , 279345m (2002).
261.	Haruda Hiroki. Moritano Ayako, Takuwa Tomofumi, Hirano Yuruke :
	Jpn. Kolai Tokkyo Koho. JP 03, 183, 254 (2003) Chem. Abstr., 139 , 69158p (2003).
262.	Mona M. Kamal, Manal M. Hussein;
	Indian J. Chem. 42(B) . 2136-2141, (2003)
263.	B. Villhauer Edwin, A. Brinkman John, B. Naderi Goli, F. Burkey Bryan, E. Hugher Thomas ; J. Med. Chem, Abstr, 46 (13), 2774-2789 (2003).
264.	M. Augustin and P. Jeschke; J. Prakt. Chem. (1987); Chem. Abstr., 111 , 7246d (1989).
265.	Piao Minz Zhu and Imatake Kimiaki; Tetrahedron Lett., 38(30) , 5301-62 (1997); Chem. Abstr., 127 , 190659h (1997).
266.	R. Selim Mohmed; AI-Azhar Bull. Sci (1997); Chem.Abstr., 130 , 110131d (1999).
267.	A. Chang Seng, H. Brrimble Margaret; Aust. J. Chem. (1998); Chem. Abstr., 129, 16015f (1998).

268.	Hallet Michaei R., Painter James E., Quayle Peter et al., Tetrahedron Lett. (1990); Chem. Abstr., 129 , 16033f (1998).
269.	El-Sayed Ahmed Mohammad, Mohmed Mournir Abbas Ali et al.;
	Gaaz. Chima ital. (1997); Chem. Abstr., 129 , 4604c (1998).
270.	A. A. Hassanie, M. D.Zahran, M. S. A. El-Gaby et al.;
	J. Indian Chem. Soc. (1999); Chem. Austr. 131, 2142491 (1999).
271.	M.Shesto Palov Anotoly, Niazimbetova Zukhira et al., Heterocycles (1999); Chem. Abstr., 131 , 44172m (1999).
272.	P. Hsung Richard., A. Zificask Craig, Wei Lin-Li et al.;
	J. Org. Chem. (1999); Chem.Abstr., 132, 49557f (2000).
273.	G. G. Kiokol, S. g. Kalovokolysko, D. V. Chenko et al.; Chem. Heterocyclic Compd, (N. Y.) (1999) Chem. Abstr., 133 , 434771 (2000).
274.	S. S. Emorsy, O. M. Habib and M. A. Matwally, An. Quim., 83(7-8), 711-13 (1993); Chem. Austr., 121 , 108724V (1994).
275.	A. Z. Elssar and A. Abdelzaher; Pharmazie, 53(4) , 223-27 (1998); Chem. Abstr., 129 , 4562q (1998).
276.	Abdel-Ghany, H. M. Moustafa and A. Khodairy; Synth. Commun., 28(18) 3431-41 (1998); Chem. Abstr., 129 , 260306w (1998).
277.	Barbero Asuncion, Garcia Carios, Gonalez et al.; Synthesis, (6), 628-30 (1997); Chem. Abstr., 127 , 176325q (1997).
278.	M. G. Assay, M. M. Hassanien And S. A. Zaki; Pol. J. Chem., 69(3) , 371-75 (1995); Chem. Abstr., 123 , 32875p (1995)
279.	De Lera Angel R., Torrada Alicia, Rey Jose and Lopez Sussana;
	Tetrahedron Lett., 38(42) , 742-44 (1997); Chem. Abstr., 128 , 13179b (1998).
280.	A. M. Hussein, I. S. Abdel Hafez and M. H. Elnagdi. Journal of the Chinese Chemical Society, 47 , 347-350, (2000).
281.	M. Mittelbach, V. Wagner and C. Kattky; Ann., 889 (1987).
282.	M. H. EI-Moghayer, M. A. Kalifa, M. K. Ibrahim and M. H. EI-Nagadi; Monicch. Chem., 53 , 133 (1982)
283.	Elagemey Abdel Ghani A., Sawleim Salah Z. et al., Collect. Czech. Chem. Commun., 53(7) , 1534-38(1988); Chem. Abstr. 110 , 154095m (1989).
1	

- 284. Shaker R. M.; Pharmazie, **51(3)**, 516 (1996); Chem. Abstr., **125**, 10762p (1996).
- 285. Xiowei Zhang, Becky Hinkle, Lisa Ballantyne et al.; J. Heterocyclic Chem., 34, 1061 (1997).
- 286. Tomich Paul Kostam Bohanon Micheal Turner, Steven Ronald et al;Eur. Pat. Appl. EP 807, 629; Chem. Abstr., 128, 34684c (1998).
- 287. D. B. Shinde and M. S. Sionmagare; Indian J. Chem., **30B** 450 (1991).
- 288. Macritchie Jacquline Anne, O'Mahony Mary Josephine et. al.;

PCT Int. Appl. WO 98, 27,080; Chem. Abstr., 129, 81666d (1998).

- 289. Gulgan Ayhan Kilcigil and Rabmiye Ertan; J. Heterocyclic Chem., **35**, 1485 (1998).
- 290. Raza Fimbelo Judih, Bandouin Geneviere, Tillequin Francois et al.; Chem. Pharma. Bull. (1998); Chem. Abstr., **128**, 180394p (1998).
- 291. Wang Wuri, Li Tiechao, Mibbual Robert, Yares J. et. al.; Bio. Org. Med. Chem. (1998); Chem. Abstr., **129**, 202833s (1998).
- 292. Kossakowski Jerzy, Zawadowski Teoderand Saski Slawomir; Acta. Pol. Pharm. (1998); Chem. Abstr., **129**, 230614a (1998).
- 293. Hodu EI-Diwani, Hend El-Sharawi, Sawsan S. Mahmoud and Toshi Miyasui; Indian J. Chem. **34(B)**, 2731 (1995).
- 294. Puidgellivol Pere and Godry Elisa; Spain Patent ES 511, 501.
- 295. M. A. AI-Haiza, M. S. Mostafa and M. Y. EI-Kady; Molecule, 8, 275-286 (2003).
- 296. A. V. Samet, A. M. Shestopalov et al., Izv. Akad. Nauk. Ser. Khim., 8,2050-55 (1996); Chem. Abstr., 129, 16039n (1998).
- 297. A. Z. Elssar and Abdelzaher; Pharmazie, **53(4)**, 223-27 (1998);

Chem. Abstr., **129**, 4562q (1998).

- 298. R. M. Shaker, Pharmazie, **51(3)** (1996); Chem. Abstr., **125**, 10762p (1996).
- 299. Y. D. Kulkarni, D. Srivastava, Bishnoi Ana and P. R. Dua.J. Indian Chem. Soc., 73, 45, (1996).
- 300. A. A. Hassanien, An. A. Zahran, M. S. A. El-Gaby et al.,

J. Indian Chem. Soc., 76, 350-54 (1999).

- 301. A. Krauze, G. Duburs, Chemistry of Heterocyclic Compounds 2002, **38(2)**, 251-252; Chem. Abstr., **137**, 352873j (137).
- 302. G. Fowzia. Al-Saleh and Ezzat-M. Kandeal; Indian J. Heterocycl. Chem., **3**, 273-76 (1994).
- 303. Lang Hans Jochem, Gerlach V we, Brendel Jo Chim et. al. ;

Eur. Pat. Appl. EP 807, 629, 629; Chem.Abstr., 128, 34684C (1998).

304. Dell Colin Peter and Williams Andrew Carwyn;

Eur. Pat. Appl EP 599, 514; Chem. Abstr.; 122, 108765j (1994)

- 305. Milky Jehan Jehan A. A. and Sharaf Hammonda H.; Indian J. Chem., Sec. B Org. Chem. Incl. Med.Chem. (1998); Chem. Abstr., **129**, 95421g (1998).
- 306. Akama Tsutomu, Veno Kimihisha; Synthesis (1997); Chem. Abstr., **128**, 14002e (1998).
- 307. Fujimoto Katsumi, Mikoshiba Ishamu, Tanaka Natsuki et al.;

Jpn. Kokai Tokkyo Koho JP 09 301, 915; Chem. Abstr., 128, 13147q (1998).

308. Jacobson Kenneth A., Jiang Ji-Long, Kirn-Young et al.,

PCT Int. Appl. WO 97 27, 177 (1996); 309.Chem. Abstr., **127**, 190G5y (1997).

309. Jo Jae Chon, Park Sung Dae, Lim Hyan Sul-. in et al.;

PCT Int. Appl. WO 98 25, 916; Chem. Abstr., **129**, 81667 q (1998).

- K. H. Popat, V. V. Kachhadia, K. S. Nirnavat and H. S. Johsi;
 Indian J. Chem., 81, 1-3 (2004).
- 311. Korner : Ber., **17.** ref. 593. (1884).
- 312. Hinsberg; Ber. 40, 4830. (1907.)
- 313. O. S, Mouslafa. M.Z.A. Badr

Mansour Sci. Bull. A. Chem. 1997; Chem. Abstr., **128**, 102066e (1998).

314. Lu Fangming. Zhang Zheng Fang, Zhang Chunxia, Lin Yuthing; H Uaxue Shiji 2000.

315.	App Harald. Mimohan Gerald M., Tang Pengcho, Gazir Ajiv, Levitzki
	Alexander; US. US 5, 792, 771. US Appl. 386, 021; Chem. Abstr. 129,
	17562y (1998)

- 316. Nasielski Hinkens. Rayrnonde, Leveque Pierre, Caslelel Faniel. Nasieiki Jackeus; Heterocycles 1987.
- 317. M. L. Keshtor, A. L. Rusanov, N. M. Belomoina, A. K. Mikitaev, Russ. Chem. Bull., 197; Chem. Abstr., 128, 127988v (1998).
- 318. Seko Shinzo :

Jpn. Kokai Tokkyo Khoho JP 00. 109, 768 (2000); Chem.Abstr., **132**, 26520Sa (2000).

319. S. K. Kanungo, De B. Samata A.;

J. Inst. Chem., (1999), Chem. Abstr., 18, 7148v (2000).

320. J. Metzner; E. Lippmann, F. G. Weber;

Pharmazie 1981. 36(5). 368-70 (Ger.) : Chem. Abstr., 95, 55520m (1981).

321. M. C. Almanni; G. Pirisino; F. Savelli; F. Sparator; P. Mana et al.;

Farmaco Ed. Sci., 1981. **36(5)**, 1450-3.(Russ) : Chem. Abstr., **108**, 146999e (1988).

322. Hansan Holger;

Euf. Pat. Appl. EP. 344. 943; Chem. Abstr, 112, 216962 (1990).

323. T. V. Kartseva; O. N. Oleahko; L. I. Lazareva and co-workers;

Khim-Farm. Zh 1987.21 (2), 1450-3 (Russ); Chem. Abstr., 108, 1469996e (1988).

324. Takahashi Tashihiro. Hagihara Kochiro et al.,

Eur. Pat. Appl. EP. 334-346; Chem. Abstr., 112, 216958x (1990).

- 325. Tokohashi Tashihiro. Hagihara Koichiro et al.,Eur. Pat. Appl. EP. 338, 346 : Chem. Abstr., 112, 216958X (1990).
- 326. M. Satto; A. Peana; M. C. Alamanni M. C. et al.,
 Farmaco Ed. Set. 41(1), 54-8 (1986); Chem. Abstr., 104, 10960J (1986).
- 327. Hansen Holger Claus, Watjen Frank;

Eur. Pat. Appl. EP. 347. 094; Chem. Abstr., 87, 682862 (1977).
Synthesis, spectral studies and therapeutic activity of some Heterocyclic compounds

328.	Sparotor Ann. Biodo Canu, Catenna Boido, Vito Sparatore Fbio;
	Farmaco 44 (10), 945-50 (1989); Chem. Abstr., 112, 15126w (1990)
329.	Yaso Masao, Suzuki Yukio. Shibala Kensuke, Hayashi Elichi :
	Japan. Kokai Tokkyo Koho Jp. 62, 186, 671; Chem. Abstr, 108, 1675012 (1988).
330.	Foery Werner. Nyffeler Andreas, Gerber Hans-Rudolf, Martin Henry;
	Eur. Pat. Appl. Ep. 190. 105; Chem. Abstr. 105, 166904j (1986)
331.	Enomato-Masayuki, Nagaho Hideyashi, Sakaki Masuharu, Sato Makato;
	Jpn. Kokai Tokkyo Koho J. 04. 193. 876; Chem. Abstr. 117, 228449y (1992).
332.	A. Carter Geoffrey . Clark Terence, James Carolyn S., R. S.Loeffler;
	Thomas Pestic Sci. 14(2), 135-44 (1983); Chem. Abstr. 99, 100826m (1983),
333.	Ehrenberger Klaus. Fexlix Dominik;
	Eur. Pat. Appl. EP. 512, 689; Chem. Abstr. 119, 109008k (1993).
334.	Mohmed Y. A., AI-Azbar;
	Bull. Sci. 2(1). 1-12 (1991); Chem. Abstr. 119, 28101b (1993).
335.	T. V. Alfreson, W. C. Lam, A. M.Maki, M. J. Waring;
	Appl. Magn. Reson. 2(2). 159-78 (1991); Chem. Abstr. 117, 1970f (1993).
336.	Vitale Gabrella, Corona Paola. Loriya Mario, Paglietti Giriseppe;
	Farmaco. 52(2), 150-153 (1998).
337.	Nikam Sham S.;
	PCT Int. Appl. WO 97. 46,539; Chem. Abstr. 128, 61527k (1998).
338.	Sakamoto Shuichi. Ohnian Junga, Shishikura Zyn Ichi, Okada Masamtchi, Sasanata Masao; PCT Int. Appl. WO 97. 46, 555; Chem. Abstr, 128 , 61528m (1998).
339.	Huth Andrew. Ottow Eckhard, Schumaner Ingrid. Krueger Martin; Ger. Often. DE. 19. 728, 326 : Chem. Abstr. 130, 81529g (1999).
340.	Lubisch Wilfried. Behl Berthold. Hoffmann Hans Peter, Szaubo Laszol; Ger Often. DE 19.624, 808; Chem. Abstr. 128, 102101n (1998).
341.	Takada Susumu, Chornei Nobuo, Kihara Tsuyoshi;

PCT Int. Appl. WO. 99, 62, 667; Chem. Abstr, 132, 22977v (2000).

- 342. Bourrain Sylvei. Collins lan, Neduveilil Joseph G.;Bioorg. Med. Chem. 1998 : Chem. Abstr. 130, 81487e (1999).
- 343. P. A. Metha; H. B. Naik;Orinet J. Chem. 1998; Chem. Abstr., 130. 81489u (1999).
- 344. P. S. Otale, P.B. Raghuwanshi, A. G. Doshi;Orient J. Chem. 1999; Chem. Abstr. 132, 93074 (2000).
- 345. S. A. El-Hawash, N. S. Habib, N. H.Fanaki :Pharmazine 199; Chem. Abstr. 132, 1252584a (2000).
- 346. Mataszczak Barbara. Mercitor kur :

Heterocycles 1997, **45**(2), 2449-2462 : Chem. Abstr. **128**, 230350e (1998).

- 347. Vitale Gabriella, Corono Paola. Loriya Mario. Paglietli Giuseppe : Farmaco 1998; Chem. Abstr., **130**, 311 768r (1999).
- 348. S. A. Ahmed, M. D. Silverman, H. Marohe et al., Rheum Apr. : 29, **60**(5); 1282-1293 (2009).
- 349. B. Konig, A. Koch, J. Spielmann et al., Eur. J. Pharmacol, Jan 20, (2009)
- 350. G. Sarodrick, T. Linker, M. Heydenreich et al. J. org. Chem., **74(3)** : 1282-7 Beb; (2009).
- 351. A.R. Grey and J. B. Dickey;Org. Syn. Coll. 2, 60 (1943).
- 352. C.B. Reese and S.R: James; Tetrahedron Letters, 2915 (1975)
- 353. Gill G. Bryon, Hidris Muhammad S.;

Tetrahedron, 49, 219-34 (1993); Chem. Abstr, 118, 191669n (1993).

354. Gursu Esin, Vlusoy Nuray;

Acta. Pharma, **38** (**4**), 107-9 (1996); Chem. Abstr., **126**, 59802m (1997).

355. Ogus Funda, Dogsn Lilnur;

Spectrosc, Lett., 31 (2), 469-82 (1993); Chem. Abstr., 129, 16097e (1998).

356.	M.R. Mahmoud, AwatefE. F Ebrahim, M.S. Abd EI-Halm, A.M. Radwan;
	Indian J. Heterocyclic Chem., 4 , 131 36 (1954).
357.	Cao-Yun Weu, Chai Xian Dong Jiang Yup-Shan et al;
	GaodenQ Xuexiao Huaxue Xuebao, 16(2) , 225-29 (1995); Chem. Abstr., 123 , 3302lu (1995).
358.	R.K Roy Chowdhury, S. Mehrotra, S, Srivamava, RK. Srivastava;
	Indian J. Heterocycic Chem 12 , 221-24 (2003).
359.	Y.K. Gupta, K. P. Bhargava, K. Shanker, J, C. Agarwal;
	Indian. J. Chem., 20B , 714 (1981).
360.	J.C. Agrawal, Y.K. Gupta, R.Kumar, C. Nath, K.R Bhargava and K. Shanker; Indian J. Chem., 22B , 995 (1981).
361.	Y. Furukawa;
	European Potent Appl. EP 88, 413 (1983): Chem. Abstr.; 100, 22688u (1983).
362.	Z.H, Khalil, A.I.M Koroiem and R.M. Abu-El-Hameed;
	J. Chem. Technol, Biotechnol., 36, 473 (1986).
363.	D. Peters A.B. Horn field and S. Gromowitz;
	J. Helerocydic Chem., 27, 2165 (1990).
364.	Raymond R. Diane L., Dan-Chang Wei, Wang;
	J. Heterocydie Chem., 30 , 1399 (1993).
365.	R. F. Burns;
	J. Heterocyclic Chem., 33 , 1025 (1996).
366.	A.G. Manukyan, R.G. Malik. B.T. Guri b-dzhanyan;
	Khim-Pharm., Zh., 19, 685 (1995); Chem. Abstr., 104, 207622s (1996);
367.	Wyzlic I. M., Tjarks W, Soloway A. H., Perkins D.J., Burgos M.;Inorg Chem., 35(16) , 4541-47 (1996); Chem Abstr., 125 , 168582a (1996).
368.	Bosies Elmar, Eswein Angeiika, Grams Frank, Krellohans Willi;
	Ger, Offen. DE 19, 548, 624 (Ci. C07D 401/04 (1997); Chem. Abstr., 127 , 1217x (1997).
1	

369. Abdel-Hamide S.G., El-Hakim A.E., El-Helby A.A	369.	Abdel-Hamide S.G., El-Hakim A.E., El-Helby A.A.;
---	------	--

Al-Azhar J. Pharm. Sci., **17**, 35-40 (1996): Chem. Abstr., **126**, 225269q (1997).

370. A. N. Shivanyuk, D. M. Rudkevich, D.N. Rcinhoudt;

Tetrahedron Letters, **37(52)**, 9341-44 (1996); Chem, Abstr., **126**, 144028H (1996).

371. Wholf-Gang, Henefeld and Helge Hurms:

Indian J.Heterocyclic Chem., **34,** 509 (1997).

- 372. Andre Rolcind, Dollinger Markus and Erdelen Christopher; Ger. Ojjen DE 19, 715, 017 (Cl. C07D 401/12) (1998); Chem. Abstr., **129**, 302655d (1998).
- 373 M.T. Omar;

Egypt J. Pharma. Sci. 38, 281-89 (1997); Chem. Abstr., 131, 257514k (1999).

374. Sakai, Kunikazu, Satoh, Yusuke;

PCT Int. Appi. WO 99, 50, 252 (Cl. C07D 239/62): Chem. Abstr., **131**, 243286a (1999).

375. Grams Frank, Zimmermann Gerd;

PCT Int. Appl WO 98, 58, 915 (Cl. C07D 239/00) (1999) Chem. Abstr., **130**, 95559d (1999).

- 376. Oliua Ambrogio, De Cillis Gianpiro, Grams Frank, Livi valeria, Menta Ernesto; PCT, Int. Appi. Wo 98, 58, 925 (Cl. C07D 401/12); Chem. Abstr., 130, 9560x (1995).
- 377. R.J Pardasani, S.K Jain, S.K. Yadac, I. Sharrna;

Indian J. Heterocyclic Chem., 12, 179-80 (2002).

- 378. Geppert Degmar, Grams Frank, Krell Hans-Willi, Leinert Herbert, Menta Ernesto; PCT Int. Appl WO 02. 79, 170 (Cl. C07D 239/62) (2002); Chem. Abstr., **137**, 294967e, (2002).
- 379. Hung Taishng, xiaman Daxye xyebao; ziram Kexuebn, 33 (G), 827-31 (1994); Chem Abstr; **123** 9277m (1995).
- 380. A.U. Ersher, A. V. Gribanov, V.A. Gindin;

Russ. J. Org. Chem. **33(10)**, 1490-93 (1997); Chem. Abstr, **129**, 202913t (1998).

- 381. H. Hunter, Duncan, J. Cam. Chem. (1976)
- 382. J. S. Casas, E. E. Castellano, M. S. Gracia Tasende; Z. A. Sanche Polyhedrom, 17 (13-14), 22 49-56 (1998); Chem. Abstr., **129**, 15 15678n (1998).
- 383. A. B. Tomchin, Russ. J. Org. Chem., 33(4), 567-68 (1997) Chem. Abstr. 128, 192597t (1998).
- 384. Y Perumal, Dharmarajan Sriram, Logantha Ramamoorthy, Sathiyanesan Sathishkumar, James Stables : Eur. J. Med. Chem. **37**, 231-236 (2002).
- 385. E. T. Dickson, J. R. Scovill, D. L.Kayman, A. S.Dobek, E. C. Trumoht; Antimi crobial agents, Chemother, **18**, 27 (1980).
- 386. K. Rao, K. Srinivasa Rastogi, D. R. Sridhar., M. C.Jain ;
 Indian J. Chem. 26B, 596-98 (1987); Chem. Abstr., 108, 150395v (1998).
- 387. Kalyancuoglu M, Rollas S., Yegneoulu Y. et al.;Pharmazie, 47(10), 796-97 (1992).
- 388. Cesur Nersin, Cesur Zafar and Guersoy Aysel;

Arch-Pharm., 35(9), 623-24 (1992); Chem. Abstr., 118, 6327j (1993).

389. Missbach Martin;

PCT Int. Appl. WO 14, 686 (Cl. C07D 27/06) (1995); Chem. Abstr., **123**, 169641d (1995).

- 390. Zhong Mehg, Liu Luosheng, Wen Xiao Xia, Ling Pei Xhe;
 Huaxi Yaocue Zazhi, 12(2), 85-86 (1997); Chem. Abstr., 127, 65635w (1997.)
- 391. J. F. Bartoseivch, T. S. Friffin, C. J. Manson, J. R. Scovill;J. Med. Chem., 22, 855 (1997).
- 392. B. Kanvechi, C. B. Johnoson, C. Cellik and H. Yukesek;
 Acta Pol. Pharm., 54(4), 307-12 (1997); Chem. Abstr., 128, 396 (1998).
- 393. E. Silva Maria Joselic, Alves Antonio Jose, D O Nasimento Silence C;
 Formaco, 53(3), 241-43 (1998); Chem. Abstr, 129, 109012p (1998).
- 394. Hu Wei-Xiao Sun Nan, Young Zhong Yu;

Goodeng Xuexiao Huaxue Xuebao **22(12)**, 2014-17 (2001); Chem. Abstr., **136**, 294802b (2002).

- 395. K. Kalyan Couglu, S. Rollas, Y. Yegenogly Pharmazie, 47(10), 796-97 (1992).
- 396. A. M. Abdel-Halim, Fekria S. Sayed, R. M. Abdel-Aziz, H. S. El-Dein; Indian J. Heterocyclic Chem. **3**, 201-204 (1994).
- 397. T. A. Siatra, C. Sambari, H. Tomou;
 Eur. J. Med. Chem., 30(2), 107-14 (1995); Chem. Abstr, 123, 11798u (1995).
- 398. Quianawin Zhao, Wan Xinba, Loi Cuiyibang, Wang Defeng;Chem. Abstr., 129, 336521a (1998).
- 399. E, Silva Maria Joselic, Alves Antonio Jose, Silence C.;
 Farmaco, 53(3), 241-243 (1998); Chem.Abstr, 129, 109012p (1998).
- 400. Wang Deteng. Wan Xinbo, Liu Cuiyibang, Zhao Qauianqin;
 Huxai Yaoque Zohi 13(2), 75-76 (1998); Chem. Abstr., 129, 33621a (1998).
- 401. Krezel Izabella;

Acta Pol. Pharma. 55(2), 125-28 (1998).

- 402. O. V. Fedorova, G. G. Mordovskoi, G. L. Rusinov;
 Khim-farr. Zh. 32(2), 11-12 (1998); Chem. Abstr., 129, 81555s (1998).
- 403. Li Jun, Niu Chuhan-sheng, Li Xiuyan, Doyle Terrenes V.

U. S. US 5, 767, 134 (Cl. 514-533 A 61k 31/34), (1998); Chem. Abstr, **129**, 677109 g (1998)

404. Magalhaes Nereide, Stela Santos, Alves Antonio Jose, Alencar et al.;

Reu. Cienc, Farm. 19(1), 49-66 (1998); Chem., Abstr., 130, 223025t (1999).

405. D. Sharma, B. Narasiman, Pradeepkumar, V. Judge;

Euro J. of medicinal Chemistry 44, issue 6 P. 2339-2764 (Jan. 2009)

- 406. S. P. Rodriguez M. A. Qrtiz, F. Rodriguez Ero J. or medicinal Chemistry 44, Issue 6 P 2434-2446 (Jan. 2009)
- 407. G. E. Iniama. O. E. Offiong, E N-for; A. A. Ayi global J. of pure and applied science **14(4)** 2008 PP 411-416.
- 408. Jin Shuhui, Chen Li, Zhang Zhenye, Liang Xiaomei;

Synthesis, spectral studies and therapeutic activity of some Heterocyclic compounds

	Nongyaoxue Xnibao 1(3), 88-90 (1999); Chem. Abstr., 135, 92383 J
409.	A. Rajasekaran and S. Murugesan;
	J. Indian Chem. Soc. 79(6) , 544-45 (2002); Chem. Abstr., 137 , 369945g (2002).
410.	Nilgun Karali;
	Eur. J. Med. Chem., 37 , 909-18 (2002).
411.	Axekleemann and Jurgen Engel Phormacecutical Surstances 4th Ed. 875, New York (2001).
412.	B. Buttler.
	J. Agr. Food Chem., 31, 762 (1983)
413.	Willey et. al.
	J. Org. Chem. 35, 1420 (1970)
414.	S. V. Overton et. al.
	J. Korticulture Sci. 63, 183 (1988)
415.	H. Buchenauer, pestic Sci. 9, 507 (1978)
416.	M. Gasztonyi, Pestic, Sci. 12, 433 (1981)
417.	B. Silvestrini, E.Quadri
	Eur. J. Pharmacol. 12 , 231 (1970)
418.	E. Tenor, R. Ludwin g
	Pharmazie. 26, 534 (1971)
419.	G. Kominai
	J. Chromatog 417 , 216 (1987)
420.	C. B. Hall et. al.
	N. Engl. J. Med. 308 , 1443 (1983)
421.	A. Ebihara et. al.
	Arzneimittel - Forsch 37 , 1388 (1987)
422.	V. M. Parikh "Absorption spectroscopy of organic molecules", Addition-Wisley Pub. Co. Londan 243, 258(1978).
	284

423. A. R. Kartizky and R. Alans Jones; J. Chem. Soc., 2942(1960). Introduction of Infra red and Raman Spectroscopy by Norman, B. Colthp, Lowrence H. daly and Stephan E. Wiberluy Academic Press (1975).

List of Papers Publication :

(1) Synthesis and Antimicrobial activity of 2-{4'-[(3''-Aryl)-2''-Propene-1''one]-phenylamino}-6-[Bis(2'''-chloroethyl)amino]-4-methoxy-1,3,5-triazine.

P. J. Kathiriya, V. N. Patolia and D. M. Purohit*

Shree M. & N. Virani Science College, Kalawad Road, Rajkot-5, Gujarat(INDIA)

Chalcones are Phenyl styrylketones containing reactive keto ethylenic group (-CO-CH=CH-). Liturature serve reveals that chalcones derivatives possess antibacterial, antiviral, antifungal activities. Hence, it was thought worth while to synthesis chalcones (4a-4k) derivatives. The constitution of the products delinated by IR, ¹H NMR, Mass spectral studies and TLC. The products are evaluated their antimicrobial activity against Gram +ve bacteria, Gram –ve bacteria and fungi.

(An Indian Journal : Organic Chemistry)

(2) Synthesis and Antimicrobial activity of 2-{4'-[(5''-Aryl)-isoxazole-3''-yl]phenylamino}-6-[Bis(2'''-chloroethyl)amino]-4-methoxy-1,3,5-triazine.

P. J. Kathiriya, V. N. Patolia and D. M. Purohit*

Shree M. & N. Virani Science College, Kalawad Road, Rajkot-5, Gujarat(INDIA)

Isoxazole derivatives are the potent biological activities, these have been reported to be active as antidepressants, antibacterial, antifungal, antiviral, antiinflamatory, analgesics and Bis (2-chloroethyl) amine possess anticancer, anti-HIV activities. In order to achieving better potency to synthesize isoxazoles (4a-4k) derivatives. The constitution of the products delinated by IR, ¹H NMR, Mass spectral studies and TLC. The products are evaluated their antimicrobial activity against Gram +ve bacteria, Gram –ve bacteria and fungi.

(Indian Journal of Heterocylclic Chemistry)

(3) Synthesis and Antimicrobial activity of 2-{4'-[(5''-Aryl) 4'', 5''-dihydro-1''-(H)/acetyl-Pyrazol-3''-yl]-phenylamino} –6-[Bis (2'''-chloroethyl) amino] – 4 - methoxy-1,3,5 - triazine.

P. J. Kathiriya, V. N. Patolia and D. M. Purohit*

Shree M. & N. Virani Science College, Kalawad Road, Rajkot-5, Gujarat(INDIA)

Pyrazoline derivatives possess broad spectrum of pharmacological activities which are reflected by their use as analgesic, anticonvulsant, antimicrobial, antipyratics etc. The main moiety Bis (2-chloroethyl) amine, 1,3, 5-triazine nucleus have been reported to be active as antineoplastic agents with a view of above facts. Some new pyrazolines (4a-4k), (5a-5k) have been synthesized. The constitution of the products delinated by IR, ¹H NMR, Mass spectral studies and TLC. The products are evaluated their antimicrobial activity against Gram +ve bacteria, Gram –ve bacteria and fungi.

(4) Synthesis and Antimicrobial activity of 2-{4'-[(5"-Aryl)-4", 5"- dihydro-1"-Phenyl Pyrazole-3"-yl]-phenylamino} - 6 - [Bis (2"- chloroethyl) amino] - 4 - methoxy - 1,3,5 - triazine.

P. J. Kathiriya, V. N. Patolia and D. M. Purohit*

Shree M. & N. Virani Science College, Kalawad Road, Rajkot-5, Gujarat(INDIA)

Pyrazoline derivatives possess broad spectrum of pharmacological activities which are reflected by their use as analgesic, anticonvulsant, antimicrobial, antipyratics etc. The main moiety Bis (2-chloroethyl) amine, 1,3, 5-triazine nucleus have been reported to be active as antineoplastic agents with a view of above facts, some new pyrazolines (4a-4k), have been synthesized. The constitution of the products delinated by IR, ¹H NMR, Mass spectral studies and TLC. The products are evaluated their antimicrobial activity against Gram +ve bacteria, Gram –ve bacteria and fungi.

(Indian Journal of Heterocyclic Chemistry)

287

