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General remarks 
 
 
1. 1H NMR spectra were recorded on Bruker avance II 400 MHz NMR spectrometer 

using TMS as an internal reference. 

 

2. Mass spectra were recorded on GC-MS QP-2010 spectrometer. 

 

3. IR spectra were recorded on Schimadzu FT-IR-8400 spectrometer. 

 

4. Elemental analysis was carried out on Vario EL III Carlo Erba 1108. 

 

5. Thin layer chromatography was performed on Silica Gel (Merck 60 F254). 

 

6. The chemicals used for the synthesis of compounds were purchased from 

Spectrochem, Merck, Thomas-baker and SD fine chemical. 

 

7. Melting Points were taken in open capillary and are uncorrected. 

 

8. All the structures are drawn according to ACS Document 1996 style. 
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Synopsis 
   
The work to be presented in thesis entitled “Studies on Some Heterocycles of 

Medicinal Interest” is classified into following Chapters.  

 

Chapter 1 General Introduction  

Chapter 2 Biological and medicinal significance of Pyrimidines and related 

heterocycles 

Chapter 3 Studies and biological evaluation of dihydropyrimidines 

Chapter 4 Synthesis and biological evaluation of 1,2,4-triazolo[1,5-a]pyrimidines 

 

 

 

Chapter 1 General Introduction  

 

Nowadays, the entire pharmaceutical industry is faced with the challenge of 

increasing productivity and innovation. The major hurdles are the increasing costs of 

research and development and a simultaneous stagnating number of new chemical 

entities (NCEs). 

Chapter 1 gives a brief introduction for the pressing need of New Chemical 

Entities (NCEs) for pharmaceutical industry. It also describes importance of bicyclic 

and tricyclic aromatic heterocycles in drug discovery. Concept of “privileged 

structures” is also explained in brief. Chapter 1 also describes aims and objectives of 

the proposed research work. 

 

Chapter 2 Biological and medicinal significance of pyrimidines and 

related heterocycles 

 

Pyrimidines have a long and distinguished history extending from the days of their 

discovery as important constituents of nucleic acids to their current use in the 

chemotherapy of AIDS and many other diseases like sarcoma, malaria, tuberculosis 

(TB), gonorrhea etc. 



Chapter 2 outlines the biological and medicinal significance of one of the most 

important heterocycles, the pyrimidine. An attempt has been made to cover most of 

the medicinally important compounds containing pyrimidine and its derivatives. 

 

Chapter 3 Studies and biological evaluation of dihydropyrimidines 

 

Pyrimidine represents one of the most active classes of compounds possessing a wide 

spectrum of biological activities viz. antiviral, anti-HIV, anticancer, diuretic, 

antitubercular, antihypertensive etc. In view of getting better therapeutic agents 

containing pyrimidines nucleus, it was thought worthwhile to synthesize some new 

pyrimidine derivatives. 

  

N
H

N

X

R1

R2

H3C

O

HN
N

When R1= H, X= O/S, R2= 4-OCH3, 4-CH3, 4-Cl etc.
When R1= CH3, X= O, R2= 4-OCH3, 4-CH3, 4-Cl etc.

CPV 101 TO 130

 
 

Due to various biological applications and with a view to further assess the 

pharmacological profile of this class of compounds, three novel series of 

dihydropyrimidines (CPV-101 to CPV-130) are synthesized in Chapter 3. The 

synthesis of dihydropyrimidines (CPV-101 to CPV-130) was achieved by the 

Biginelli reaction of acetoacetamide, urea derivatives and various aromatic aldehydes 

in the presence of catalytic amount of con.HCl. The products were characterized by 

various analytical techniques like FT-IR spectroscopy, Mass spectrometry, 1H NMR 

spectroscopy and elemental analyses. The newly synthesized compounds are 

subjected to various biological activities viz. antimicrobial, antimycobacterial, 

anticancer and antiviral. 

 



Chapter 4 Synthesis and biological evaluation of 1,2,4-triazolo[1,5-

a]pyrimidines 

 

The biological importance of 1,2,4-triazolo[1,5-a]pyrimidines is well documented. 

Over the decades, various derivatives of these heterocycles have shown utility against 

a large range of biological targets. They have demonstrated antimalarial and 

antibronchospasmic activity and shown activity as xanthine oxidase inhibitors, 

coronary vasodilators, leishmanicides, antibiotics, immunosuppressant, antitumor 

agents, antihypertensive agents, fungicides, phosphodiesterase inhibitors and 

adenosine A2a antagonists. 

 

Section A:  

 

In Section A of Chapter 4, synthesis of four new series of 1,2,4-triazolo [1,5-a] 

pyrimidines (CPV-201 to CPV-240) containing four acetoacetamide fragments has 

been undertaken. 

 

N
H

N

N

NN
H

O

H3C

  Where     R1= pyridin-2-yl, pyridin-3-yl, 4-Cl, 3-Cl 4-F
  R2= 4-OCH3, 4-CH3, 4-F, 4-Cl etc..

CPV 201 TO 240

R1

R2

 
 

Section B: 

 

In Section B, another four new series of 1,2,4-triazolo [1,5-a] pyrimidines (CPV-241 

to CPV-280) are synthesized by one pot condensation of different aldehydes, 

acetophenones and 1-H,1,2,4-triazol-3-amine. The structures of all the newly 

synthesized compounds are confirmed by various analytical techniques like FT-IR 

spectroscopy, Mass spectrometry, 1H NMR spectroscopy and elemental analyses. The 



newly synthesized compounds are subjected to various biological activities viz., 

antimicrobial, antimycobacterial, anticancer and antiviral. 

 

N
H

N

N

NR1

R2

Where   R1= 4-Br, 4-Cl, 4-OCH3, 4-NO2
              R2= 4-CH3, 4-F, 4-Cl, 3-Cl etc..

CPV 241 TO 280
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Chapter 1 
General Introduction 
 

 

 

1.1 Heterocycles in drug discovery 
Nowadays, the entire pharmaceutical industry is faced with the challenge of 

increasing productivity and innovation. The major hurdles are the increasing costs of 

research and development and a simultaneous stagnating number of new chemical 

entities (NCEs).  

The cause of this innovation deficit is definitively not the biology. Decoding 

of the human genomea has led to a wealth of drug targets. With more than 30,000 

human genesb, the assumption is that at least 1,000 are significantly involved in the 

emergence and course of disease. Furthermore, because each of these genes is linked 

to the function of between five and ten proteins, the conclusion is that there might be 

5,000–10,000 targets for new drugs [1]. Despite the successful introduction of protein 

therapeutics and the promise of gene therapy, major pharmaceutical companies are 

still focused on the discovery and development of low-molecular weight compounds. 

Hence, the challenge is to select the most drugable targets and to find the 

corresponding drug-like molecules, substances that not only interact with the target, 

but also have specific pharmacokinetic and toxicological properties, that allow them 

to be developed as a drug.  

 Medicinal chemistry as a scientific discipline has introduced several new 

techniques over the last few years in order to speed up the drug discovery process, 

such as combinatorial chemistry, microwave-assisted organic synthesis (MAOS) and 

                                                 
a The complete genetic information (either DNA or, in some viruses, RNA) of an organism, typically 
expressed in number of base pairs. 
b According to the official Guidelines for Human Gene Nomenclature, a gene is defined as "a DNA 
segment that contributes to phenotype/function. In the absence of demonstrated function a gene may be 
characterized by sequence, transcription or homology." 
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high-throughput purification [2]. Despite this steady increase in R & D, the number of 

NCEs reaching the market has actually decreased dramatically. 

 It seems clear that selecting appropriate molecules to synthesize is one of the 

most troublesome questions. It has been estimated that the number of possible 

molecules with a molecular weight of less than 500 Dalton is 10200, of which only 

1060 may possess drug-like properties. The proportion of these drug-like molecules 

synthesized to date has been estimated as one part in 1057, or roughly the ratio of the 

mass of one proton to the mass of the sun! The issue is therefore the selection of new 

molecules from this vast universe, which have the potential to be biologically active 

[3]. 

In order to start a new drug discovery project and to find biologically active 

compounds, different options are available. Hits can be obtained via a virtual 

screening approach or can be copied from scientific or patent literature. Very often, 

drug discovery projects start with a high-throughput screening campaign of 

commercially available compound libraries against the target of interest. It became 

clear in recent years that combinatorial libraries are not diverse enough. As the main 

interest of the laboratory of medicinal chemistry lays in the synthesis and biological 

evaluation of aromatic heterocycles, we performed a literature survey of 

commercially available combinatorial libraries. This search revealed that the number 

of available heterocycles is mainly limited to well-known nitrogen containing 

compounds, such as quinazolines (1), indoles (2) and benzimidazole (3). 

 

N

N N
H N

H

N

(1) Quinazoline (2) Indole (3) Benzimidazole

N

H
N

O

(4) 1,4-Benzodiazepine-2-one

O O
(5) Coumarine

N

N
(6) Quinoxaline

O

(7) Benzofuran

S

(8) Benzothiophene

Examples of privileged structures  
 

 These structural classes are considered to be privileged structures. The concept 

of “privileged structures” was first proposed by Evans B. E. et al. to describe selected 
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structural types that bind to multiple, unrelated classes of protein receptors and 

enzymes as high affinity ligands [4]. These privileged structures are typically rigid, 

polycyclic heteroatomic systems capable of orienting the various substituents in a 

well-defined three-dimensional space. Well-known examples of privileged 

substructures include benzodiazepines (4), coumarins (5), quinoxalines (6), 

benzofurans (7) and benzothiophenes (8) [5]. In order to improve the hit rate in High 

Throughput Screening (HTS) campaigns, privileged structures provide an ideal source 

of lead compounds. A single library based upon privileged substructures can lead to 

active compounds in variety of biological assays. Several research groups have 

utilized these structures in such a manner. For example, Nicolau et al. constructed a 

library based on the benzopyran (9) privileged scaffold [6], whereas Schultz et al. 

made use of the purine (10) scaffold [7]. 

 

O
(9) Benzopyran

N

N N
H

N

(10) Purine

Thr benzopyran and purine privileged scaffold  
 

1.2 Nomenclature of the fused ring system 
As the following chapters deal with the synthesis of bicyclic and tricyclic fused ring 

systems, its nomenclature is herewith shortly reviewed. The nomenclature follows the 

following rules: 

(1) The individual components are named without any application of fused ring 

system. 

(2) The parent component is represented in the fusion name by citing it last in the 

name. The parent component is the one with highest priority according to the 

following criteria: 

(a) A heterocyclic component containing the heteroatom occurring earliest in 

the order: N, F, Cl, Br, I, O, S, Se, Te, P, As, Sb, Bi, Si, Ge, Sn, Pb, B, Hg. 

(b) A component containing the larger ring 

(c) A component containing the greater number of heteroatoms. 

(d) A component containing the greater variety of heteroatoms. 
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(3) The attached component is then added as a prefix to the parent component. In 

the name of the prefix, the terminal 'e' is changed to 'o'. 

(4) The bonds of the parent component are indicated by a, b, c…starting with the 

bond normally occupying the 1,2 positions. The atoms of the attached 

component are numbered as usual, following the order of numbers in the 

original heterocycle. 

(5) The numbering of the final condensed heterocycle is carried out 

independently, starting at an atom adjacent to a bridged-head atom, whereby 

heteroatoms receive the smallest possible number. 

 

1.3 Objectives 

Our interest in the synthesis and biological evaluation of heterocycles like 

dihydropyrimidines (11) and 1,2,4-triazolo[1,5-a]pyrimidines (12) in commercial 

compound libraries, prompted us to elaborate this type of chemistry and to synthesize 

three different heterocyclic scaffolds. 

 

N

N N

N

(12) 1,2,4-triazolo[1,5-a]pyrimidine

N
H

N

(11) dihydropyrimidine  
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Chapter 2 
Biological and medicinal significance of 
pyrimidines and related heterocycles 
 
   
2.1 Biological significance 
Pyrimidines have a long and distinguished history extending from the days of their 

discovery as important constituents of nucleic acids to their current use in the 

chemotherapy of Acquired immunodeficiency syndrome (AIDS). 

  Alloxan (1) is known for its diabetogenic actiona in a number of animals [1]. 

Uracil (2), thymine (3) and cytosine (4) are the three important constituents of nucleic 

acids. 

 

HN

H
NO O

O
O

HN

H
NO

O

HN

H
NO

O

N

N
H

CH3 O

NH2

(1) Alloxan (2) Uracil (3) Thymine (4) Cytosine
 

 

The pyrimidine ring is found in vitamins like thiamine (5), riboflavin (6) and 

folic acid (7) [2]. Barbitone (8), the first barbiturate hypnotic, sedative and 

anticonvulsant are pyrimidine derivatives [1]. 

 

N N

NH2

CH2

CH3

S

N
H3C

HOH2CH2C

Cl

(5) Thiamine

N

N

N

NH
H3C

H3C O

O

HHO
HHO
HHO

H2C

CH2OH(6) Riboflavin
 

                                                 
a The substances or compounds which cause the disease diabetes are called diabetogenic and the 
mechanism action of such substances is called ‘diabetogenic action’.   
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C2H5

C2H5
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2.2 Medicinal significance 
During the last two decades, several pyrimidine derivatives have been developed as 

chemotherapeutic agents and have found wide clinical applications. 

 

2.2.1 Antineoplasticsb or anticancer agents 
There are a large number of pyrimidine-based antimetabolites. Usually, they are 

structurally related to the endogenous substratesc that they antagonized. The structural 

modification may be on the pyrimidine ring or on the pendant sugar groups. One of 

the early metabolites prepared was 5-fluorouracil (5-FU, 9a) [3, 4], a pyrimidine 

derivative. 5-Thiouracil (9b) also exhibits some useful antineoplastic activities [5]. 

 

N
H

NH

O

X

R

R1

(9a), X = O, R = F, R1 = H, 5-fluorouracil
(9b), X = O, R = SH, R1 = H, 5-thiouracil

(9a, b)

HN

N N

N

S

R1

R

(10)

NH

N

O

O

O
F

(14) TegafurR R1

N

N

NO2

CH3

 Mercaptopurine
 Azathioprine

Thioguanine

–H,

–NH2,
–H,–H,

–H,

(11)
(12)
(13)

 

                                                 
b Drugs that inhibit and combat the development of neoplasms (an abnormal mass of tissue due to the                   
abnormal proliferation of cells). 
c Endogenous substrates are those that originate from within an organism, tissue, or cell.  
d To oppose or to compete the metabolites. 
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The antineoplastic compounds [6] possessing the guanine nucleus (10) like 

azathioprine (11) [7], mercaptopurine (12) [8], thioguanine (13) [9], tegafur (14) [10], 

etc. were discovered after formulation of the antimetabolite theory by Woods et al. in 

1940. These drugs prevent the utilization of normal cellular metabolites [6]. 

There are many more in recent times, like mopidamol (15) [11], nimustine (16) 

[12], raltitrexed (17) [13], uramustine (18) [14] and trimetrixate (19) [15]. 1-β-D-

Arabinosylcytosine (Ara-C, 20) [16] is also an example of a pyrimidine antimetabolite 

in which the sugar is arabinose having a beta configuration. It is mainly used as an 

anticancer agent and also exhibits significant therapeutic effects in patients with 

herpes virus infections and herpes encephalitis. 

  

N

N
N

N

N

N OH

OH
N

HO

HO
N

N
H3C

NH2

HN
N

O

NO

Cl

(15) Mopidamol (16) Nimustine

N

H
N

NS
O

N
H

HOOC

HOOC

CH3

O

CH3

(17) Raltitrexed

NH

NH
N

Cl

Cl O

O

N

N

N NH2

CH3

H
NO

O

H3C
H3C

O
H3C

(18) Uramustine

(19) Trimetrexate glucuronate

N

NH2

ON

O

OH

HO

HO

(20) Ara-C

N

NH2

ON

O

FOH

F

HO

(21) Gemcitabine
 

 
Gemcitabine (21), a pyrimidine antimetabolite, shows excellent antitumour 

activity against murine solid tumours [17]. 
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2.2.2 Drugs for hyperthyroidisme 
2-Thiouracil (9c) and its alkyl analogue, thiobarbital (9e) are effective drugs against 

hyperthyroidism. Propylthiouracil (9d) is used as a drug for hyperthyroidism with 

minimum side effects [18]. 

 

N
H

NH

O
R

R2 X

R1

(9c), R = R1 = R2 = H, X = S; 2-thiouracil 
(9d), R = R1 = H, R2 = C3H7, X = S; propylthiouracil 
(9e), R = R1  = C2H5, R2 = O, X = S; thiobarbital

(9c–e)

 
 

2.2.3 Antifolatesf, antibacterialsg and antiprotozoalsh 
In 1948, Hitchings G. et al. made an important observation that a large number of 2,4-

diaminopyrimidines and some 2-amino-4-hydroxypyrimidines are antagonists of folic 

acid [19]. Since then, a large number of 2,4-diaminopyrimidines have been 

synthesized as antifolates. It was eventually proved that these pyrimidines are 

inhibitors of the enzyme dihydrofolate reductase (DHFR) [20, 21]. Notable amongst 

the 2,4-diaminopyrimidine drugs are pyrimethamine (22), a selective inhibitor of the 

DHFR of malarial plasmodia; trimethoprim (23), an antibacterial drug which 

selectively inhibits bacterial DHFR and most importantly, the very potent but non 

selective DHFR inhibitors, methotrexate (24a) and aminopterin (24b), both used in 

cancer chemotherapy [22]. 3’,5’-dichloromethotrexate (24c), which is less toxic and 

more readily metabolized than methotrexate, has recently been introduced for 

anticancer therapy [23]. Brodimoprim (25) is also found to be an effective 

antibacterial compound [24]. 

 

 

                                                 
e The term used for overactive tissue within the thyroid gland causing an overproduction of thyroid ho- 
rmones. 
f Antifolates are drugs which impair the function of folic acids. 
g The drugs having the capability of either to kill or to stop the growth of bacteria.    
h An antiprotozoal agent is a class of pharmaceuticals used in treatment of protozoan infection. 
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N

N

NH2

NH2

C2H5

Cl

N

N NH2H3CO
OCH3

H3CO

N

N N

N
NH2

H2N

CH2N
R

X

X

CONH CH
COOH

(CH2)2

COOH

(24a) R = CH3, X = H; Methotrexate
(24b) R = X = H; Aminopterin
(24c) R = CH3, X = Cl; 3',5'-dichloromethotrexate

(22) Pyrimethamine (23) Trimethoprim

(24)

N

N NH2Br
OCH3

H3CO

(25) Brodimoprim

NH2

NH2

 
 

2.2.4 Sulfa drugsi 
Pyrimidine derivatives of sulfa drugs, namely sulfadiazine, sulfamerazine and 

sulfadimidine are superior to many other sulfonamides and are used in some acute 

Urinary Tract Infection (UTIs) j, cerebrospinal meningitis and for patients allergic to 

penicillins [25]. Sulfonamide–trimethoprim combinations are used extensively for 

opportunistic infections in patients with AIDS [26]. Sulfadoxine (26a) [27], a short 

and intermediate acting sulfonamide with a half-life of 7–9 days is used for malarial 

prophylaxis. Sulfisomidine (26b) with a half-life of 7 h is used as a combination sulfa 

therapy in veterinary medicine [28]. Sulfadiazine (27a), sulfamerzine (27b) and 

sulfadimidine (27c) possess good water solubility and therefore carry minimum risk 

of kidney damage, which makes them safe even for patients with impaired renal 

functions. 

In 1959, sulfadimethoxine (27d) [29] was introduced with a half-life of 

approximately 40 h. The related 4-sulfonamidopyrimidine, sulfamethoxine (28) [29] 

having two methoxy groups at 5 and 6 positions, has by far the longest half-life of 

about 150 h. Methyldiazine (27e) [29] has a half-life of 65 h. Also, sulfamethoxy 

diazine (27f) [29] possesses good half-life. 

 

 

 

                                                 
i The synthetic antimicrobial agents that contain the sulfonamide group are called sulpha drugs. 
j A Urinary Tract Infection (UTI) is a bacterial infection that affects any part of the urinary tract. 
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NH2S
O

O
HNR

(26)

R

Sulfadoxine (26a)

N

N

CH3

N

N

OCH3
H3CO

Sulfisomidine (26b)

CH3

N

N

R1
R

R2
NH S

O

O
NH2

(27)

                                            R         R1       R2
Sulfadiazine (27a)              H        H          H
Sulfamerazine (27b)           H        CH3     H
Sulfadimidine (27c)            H        CH3     CH3
Sulfametoxydiazine (27f)   OCH3  H         H
Methyldiazine (27e)           CH3     H         H

N

N

OCH3

H3CO
NH S

O

O
NH2

(27d) Sulfadimethoxine

N

N

H3CO

H
N S NH2

OCH3

(28) Sulfamethoxine

O

O

 

 A new broad-spectrum sulfonamide, sulfamethomidine (29) [29] is relatively 

nontoxic and patients do not need extra fluid intake or alkalization. Sulfacytine (30) 

has been reported to be 3-10 times more potent than sulfaisoxazole and 

sulfisodimidine [29]. 

 

N

N

OCH3

CH3HN
O2S

NH2

N

N

OHN
O2S

NH2

C2H5

(29) Sulfamethomidine (30) Sulfacytine
 

 

2.2.5 Antiviralsk and anti-AIDSl 
Recently, pyrimidine derivatives have generated widespread interest due to their 

antiviral properties. 5-Iododeoxyuridine (IDU) (31) [30] is an antiviral agent of high 

selectivity. 

 

 
                                                 
k Antiviral drugs are a class of medication used specifically for treating viral infections. 
l The drugs which are used to treat the disease AIDS (acquired immunodeficiency syndrome). 
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NH

O

ON

O

HOH

HH
HH

HO

I
NH

O

ON

O

OH

HO

X

(31) 5-Iododeoxyuridine (32)

N

NN

N

NH2

O

OH

HO

HO

(33) Ara-A

NH

O

ON

O

N3

HO

H3C

(34) Retrovir
(32a) X = I, 5-iodo-2'-deoxyuridine
(32b) X = CF3, 5-trifluromethyl-2'-deoxyuridine

 
 

5-iodo-2’-deoxyuridine (IDU) (32a) has been extensively utilized for viral 

infections. 5-Trifluromethyl-2’-deoxyuridine (F3 TDR, 32b) has been found useful 

against infections resistant to IDU therapy [30]. Ara-A, 9-β-D-arabinofuranosyl 

adenine (33), a relatively new antiviral drug, is effective against herpes infections of 

eye, brain and skin. It is especially effective against IDU-resistant herpes virus [30]. 

Some purine nucleosides are equally noteworthy. Retrovir Azidothymidine 

(AZT-16, 34) is a potent inhibitor of the in vivo replication and cytopathic effects of 

human immunodeficiency virus (HIV) and has been recently approved for use against 

AIDS and severe AIDS related complex (ARC) [31]. At present, Acyclovir (35a) is 

the only remedy for genital herpes. The oral formulation of Acyclovir is effective 

against both first and second degree recurrence genital herpes with minimal side 

effects [32]. Ganciclovir (35b) [33] has shown good in vivo activity against Hepatitis 

C virus (HCV1&2). 
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HN

N N

N

O

H2N
R

(35)

(35a) Acyclovir

R

O
OH

(35b) Ganciclovir O
OH

OH

(35c) Famicivlovir
O

O

O

CH3

CH3O

(35d) Valaciclovir
O

O

O

NH2

CH3

CH3

(35e) Penciclovir OH

OH

N

N

NH2

R
O

(36)

(36a) Lamivudine

R

O
S OH

(36b) Cidofovir P O
OH

OH
OH

NH

O

ON

O

N3

HO

H3C

(37) Zidovudine

N

NH2

ON

O
HO

(38) Zalcitabine

NH

NN

N

O

O
HO

(39) Didanosine

NH

O

ON

O
HO

H3C

(40) Stavudine

NH

NN

N

NH

HO
NH2

(41) Abacavir
 

 

Several members of a series of acyclic nucleosides, which contain a fused 

pyrimidine ring (mainly purine), are found to be effective antivirals. Famiciclovir 

(35c) and valaciclovir (35d) are drugs used for several deoxyribonucleic acid (DNA) 

viruses, including Varicella-zoster virus and Epstein-Barr virus [34]. Penciclovir (35e) 

[35] is useful for topical treatment of recurrent herpes, Libialis. Cidofovir (36b) [35], 

an antimetabolite for deoxycytosine triphosphate is used for the treatment of 

cytomegalovirus (CMV) in AIDS patients. Lamivudine (36a) [35] is an effective anti-

AIDS drug when used in combination with zidovudine (37) [35]. Zidovudine [36] is 
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an analogue of thymidine in which the azido group is substituted at the 3-position of 

the dideoxyribose moiety. It is active against Ribonucleic acid (RNA) tumour viruses 

(retroviruses) that are the causative agents of AIDS and T-cell leukaemia. It is used in 

AIDS and AIDS-related complex (ARC) to control opportunistic infections by raising 

absolute CD4+ lymphocyte counts. Also, zalcitabine (38) [36] is another useful 

alternative drug to zidovudine. It is given in combination with zidovudine, when 

cluster of differentiation 4 (CD4+ cell) count falls below 300 cells/mm3. Didanosine 

(39) [37] is a purine dideoxynucleoside, which is an analogue of inosine. Didanosine 

inhibits HIV Drug Resistance Database (HIV RT) and exerts a virustatic effect on the 

retroviruses. Combined with zidovudine, antiretroviral activity of didanosine is 

increased. Stavudine (40) [37] is a pyrimidine nucleoside analogue that has significant 

activity against HIV-1 after intracellular conversion of the drug to a D4T-triphosphate. 

It is more effective than zidovudine or didenosine for treatment in patients for 

delaying the progression of HIV infection. It is recommended for patients with 

advanced HIV infection. Abacavir sulfate (41) [37] was approved in 1998 as a NRTI 

(Nucleoside Reverse Transcriptase Inhibitor) to be used in combination with other 

drugs for the treatment of HIV and AIDS. The major use of abacavir appears to be in 

combination with other Nucleoside reverse transcriptase inhibitor (NRTIs). 

 

2.2.6 Antibioticsm 
There are few examples of pyrimidine antibiotics. The simplest of all is bacimethrin 

(5-hydroxymethyl-2-methoxypyrimidin-4-amine) (42), which is active against several 

staphylococcal infections [38]. Gourgetin (43), a cytosine derivative is active against 

mycobacteria as well as several Gram-positive and Gram-negative bacteria [39]. 

There are more derivatives of cytosine, namely amicetin (44) and plicacetin (45), 

which exhibit activity against acid fast and Gram-positive bacteria as well as some 

other organisms [38]. Puromycin (46) has a wide spectrum of antitrypanosomal 

activity. Aminoglycoside antibiotics phleomycin (47a), bleomycin (47b) and related 

families are wide-spectrum antibiotics containing the pyrimidine ring.  

 

 

 

                                                 
m An antibiotic is a substance or compound  that kills bacteria or inhibits their growth.                           



 
Chapter 2                                                                              Significance of pyrimidines  
   

   15

 

N

N

NH2

HO

CH3

(42) Bacimethrin

N
H

N

OH2N

COOH

NHCOCH2 C
H

NH2
(CH2)2

CH3

N-CH=NNH2

(43) Gourgetin

O
N

OH
HO

HO

NO

H
N

O

OCH3

(44) Amicetin

O
H3C

N

HO OH
H3C

H3C
O

CH3

N

N
O

HN
O

NH2

N

NN

N

N

O

OHNH

HO

H3C CH3

CO
H
C
NH2

H2
C OCH3

(46) Puromycin(45) Plicacetin

N
N

H2N
O

N

H

H2NOC
NH

H

Fe N

H
N

N

O
CH3H2N

O

HN
CH3

HO CH3

NH
O

HO
CH3

NH

N
S

S

N NH(CH2)3SH(CH3)2X

O

O
NH2

O
HO

HO

OH
O

O

O
OH

OH OH

O

N
N

H2N
O

N

H

H2NOC
NH

H

Fe N

H
N

N

O
CH3H2N

O

HN
CH3

HO CH3

NH
O

HO
CH3

NH

N
S

S

N NH(CH2)3SH(CH3)2X

O

O
NH2

O
HO

HO

OH
O

O

O
OH

OH OH

O

(47b) Bleomycin
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Another antibiotic tubercidine (48) is reported to exhibit antitumour properties 

[39]. In addition, they have antineoplastic activity. Bleomycin is already in clinical 

use against certain tumours like Hodgkin’s lymphoma and disseminated testicular 

cancer [40]. 

 

2.2.7 Antifungalsn 
Pyrimidines also exhibit antifungal properties. Flucytosine (49) [41] is a fluorinated 

pyrimidine used as nucleosidal antifungal agent for the treatment of serious systemic 

infections caused by susceptible strains of candida and Cryptococcus [42]. Hexetidine 

(50) [43] is mainly used for the treatment of aphthous ulceration. 

 

N

H
N

F

O

NH2

(49) Flucytosine

N

N
H2N

CH3

CH3

CH3

CH3

CH3

(50) Hexetidine
 

 

2.2.8 Anthelminticso 
These drugs have the ability of ridding the body of parasitic worms. Pyrantel pamoate 

(51) is a depolarizing neuromuscular blocking agent that causes spastic paralysis in 

helminthes and is employed in the treatment of infestations caused by pinworms and 

roundworms [44]. 

 

N

N
SCH3

(51) Pyrantel pamoate  
 

 
                                                 
n An antifungal drug is a medication used to treat fungal infections such as athlete's foot, ringworm, ca-
didiasis (thrush), serious systemic infections such as cryptococcal meningitis and others. 
o Anthelmintics or antihelminthics are drugs that expel parasitic worms (helminths) from the body, by 
either stunning or killing them. They may also be called vermifuges (stunning) or vermicides (killing). 
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2.2.9 Antitubercular drugsp 
 

N

NH

NH2

H
N

NH

O

H2N
O

N
H

CH2R
H
N

O

N
H

NH2
NH2

O

O
H
N CH3

O

(52) Capreomycin
 

 

Capreomycin (52) produced by Streptomyces capreolus is a second-line bacteriostatic 

antituberculin drug containing pyrimidine [45, 46]. 

 

HN

N
H

OHHN

NH
O

HN
CHNHCONH2

O

CH2OH
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O
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H2NOC
O

N
H

ONH2
H2N NH

O

(53) Viomycin
 

 

Viomycin (53) is more tuberculostatic than p-aminosalicyclic acid. It is 

effective in the treatment of experimental tuberculosis. 

 

 

 

 

 

 
                                                 
p Antitubercular drugs are the antibiotics used in prevention and treatment of tuberculosis caused by the 
bacteria mycobacterium tuberculosis. 
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2.2.10 CNS active agents 
2.2.10.1 Sedativeq/hypnotic/antiepileptic agents 

 

N

N

O
R1

O
R

O

R2

(54)

R2R R1

Allobarbital-H -H

-H -H

-H -CH3

-H -H

Pentobarbital-H -H

R R1

-H -H

-H -H

-H -CH3

-H -H

Br

R2

N

N

O
R1

O
R

O

R2

(54)

R2R R1

Aprobarbital

Hexobarbital

-H, -H,

-H, -H,

-H, -CH3,

Cyclobarbital-H, -H,

-H, -H,

R R1

 Propallylonal

Phenobarbital

 Secbutabarbital

-H, -H,

-H, -H,

-H, -CH3,

 Secobarbital-H, -H,

Br

R2

(54a)

(54b)

(54c)

(54d)

(54e)

(54f)

(54g)

(54h)

(54i)

(54f)

(54g)

(54h)

(54i)

 

Agents of the anxiolytic, sedative and hypnotic group include a wide variety of 

barbiturates (54a–i) used as sedative and hypnotics and are classified as drugs having 

short, intermediate and long duration of action [47, 48]. Allobarbital (54a), 

aprobarbital (54b), pentobarbital (54e), phenobarbital (54g) and secobarbital (54i) are 

frequently used clinically as hypnotic barbiturates [49]. Hexobarbital (54c), 

cyclobarbital (54d) and propallylonal (54f) are some of the current drugs in the 

market used as sedative hypnotics [50]. Barbiturates as sedative hypnotics have a long 

and fascinating history. In fact Eli Lilly [51] patented secbutabarbital (54h) in 1932, 

while barbitone (8), the first of the barbiturates [1] was introduced in 1903. 

 

 

 

 

 

 

                                                 
q A sedative is a substance that induces sedation by reducing irritability or excitement.  
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2.2.10.2 Anxiolyticr agents 

Few of the pyrimidine derivatives are also used as anxiolytics. Most important of 

these is buspirone (55), indicated in the management of anxiety disorders 

accompanied with or without depression. It lacks sedative, anticonvulsant and muscle-

relaxant effects and most importantly abuse potential [52]. Buspirone lacks affinity to 

benzodiazepine receptors, but binds avidly to one subclass of serotonin receptors, the 

5-HT1A subtype [53, 54]. Ritanserin (56), a 5HT2 antagonist with anxiolytic activity is 

a pyrimidine derivative [55]. A simple pyrimidine derivative, mezilamine (57) is 

classified as an antipsychotic agent [56]. Risoperidone (58) is an antipsychotic drug, 

which is a structural hybrid of butyrophenone and can be used as anxiolytic, 

antidepressant and antiparkinsonian drug [57]. 
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2.2.10.3 Pyrimidine anaestheticss 

 

H
NO S

O

HN

NHN N

H
N

NH2

HO OH

O

O

H2N

(59) Thimylal (60) Saxitoxin
 

                                                 
r An anxiolytic (also antipanic or antianxiety agent) is a drug used for the treatment of symptoms of 
anxiety. 
s An anesthetic (or anaesthetic) is a drug that causes anesthesia—reversible loss of sensation. 
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Thimylal (59) is a short acting general anaesthetic drug, which is also a pyrimidine 

analogue [58, 59]. 

Saxitoxin (60) [58] is a naturally occurring pyrimidine containing anaesthetic 

agent, but is too toxic to be of clinical use. Saxitoxin is isolated from some marine 

dinoflagellates. 

 

2.2.10.4 Diureticst and uricosuricsu 

Several xanthine derivatives (61) containing fused pyrimidine ring systems like 

caffeine (61a) [60], etamiphylline (61b) [61], lomiphylline (61c) [62], etophylline 

(61d) [63], theophylline (61e) [60] and theodrendaline (61f) [64] are known to 

promote a weak diuresis by stimulation of cardiac function and by a direct action on 

the nephron, acting as adenosine receptor antagonists [60]. 
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There are a few examples of diuretics which contain a pyrimidine ring. 

Noteworthy are quinethazine (62a), metolazone (62b) [65] and triamterene (63) [66]. 

 

 

 

 

                                                 
t A diuretic is any drug that elevates the rate of urination and thus provides a means of forced diuresis. 
u Uricosuric medications (drugs) are substances that increase the excretion of uric acid in the urine, thus 
reducing the concentration of uric acid in blood plasma. 
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 (63) Triamterene(62)
(62a) R = C2H5, R1 = H; Quinethazine (62b) R = CH3, R1 = 2-CH3C6H4; Metolazone

 
 

2.2.11 Cardiac agents 
2.2.11.1 Antihypertensivesv 

Several pyrimidine ring-containing drugs have exhibited antihypertensive activity. 

Prazosin (64a), a quinozoline derivative, is a selective α1-adrenergic antagonist [67, 

68]. Its related analogues bunazosin (64b) [69], terazosin (64c) [70] and trimazosin 

(64d) [71] are potent antihypertensive agents.  

Another quinazoline derivative, ketanserin (65) [72] having a similar effect is 

an antagonist of both a1-adrenergic and serotonin-S2 receptors. Its mechanism of 

action however is still controversial. A triaminopyrimidine derivative, minoxidil (66), 

whose mechanism of action and therapeutic action are similar to Prazosin, has been 

introduced in therapy for its side effects, in the treatment of alopecia, male baldness 

[73]. Besides these, some more pyrimidine derivatives given below were found to be 

antihypertensives [74, 75]. 
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v The antihypertensives are a class of drugs that are used to treat hypertension (high blood pressure). 
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Alfuzocin (67) [74], a prazosin analogue and an α1-adrenoceptor antagonist as 

well as urapidil (68) [75] are used especially in urinary obstruction caused by benign 

prostate hyperplasia. 

 

2.2.11.2 Vasodilatorsw 

A series of xanthine derivatives are used as peripheral and cerebral vasodilators. 

Especially, pentifylline (69a) and pentoxifylline (69b) are used in cardiovascular 

disorders [76]. Other derivatives like xantinol nicotinate (70b) [77], a vasodilator with 

general properties like nicotinic acid used in cerebral and peripheral vascular 

disorders and pimefylline (70a) and pyridofylline (70c) [78] are noteworthy. A new 

dopamine receptor stimulant, pirebidil (71) [79] is reported to have produced 

significant improvement in Activity of Daily Living (ADL) in patients suffering from 

Parkinson’s syndrome. 
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w The term vasodilation refers to the widening of blood vessels, resulting from relaxation of smooth 
muscle cells within the vessel walls, and the drugs to which are used in phenomena are called 
vasodilators. 
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2.2.11.3 Cardiotonicsx/bronchodialators 

Several xanthine derivatives viz., theophylline (61e), aminophylline (72a) [80] and 

proxyphylline (72b) [80] exhibit good bronchodilator activity. 
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2.2.12 Antihistaminicy pyrimidines 
Theophylline (73) is ten times more potent than either astemizole or terfenadine in its 

affinity for H1-histamine binding site and appears to be devoid of Central nervous 

system (CNS) activity [81]. Another pyrimidine containing antihistaminic drug, 

temelastine (73a) is comparable to mepyramine [82]. Radiolabelled studies have 

indicated that it does not penetrate the CNS appreciably. Icotidine (73b), a structural 

analogue of temelastine lacks CNS activity and is a dual antagonist of both H1 and H2 

receptors [83]. 
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x Agents that have a strengthening effect on the heart or that can increase cardiac output. 
y A histamine antagonist is an agent that inhibits action of histamine or the drug which is used to treat 
the allergy is called antihistaminic agent. 
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Pemirolast (74) [84], a new oral nonbronchodilator antihistaminic agent is also 

a pyrimidine derivative. It has demonstrated sufficient antihistaminic activity to 

warrant its use in severe asthma. Another compound, piprinhydrinate (75) [85] is also 

a pyrimidine derivative. 

 

2.2.13 Analgesicsz and NSAIDaa drugs 
Acetiamine (76a) [86], bentiamine (76b) [86] and fursultiamine (76c) [87] are new 

lipid-soluble forms of thiamine (vitamin B1) having therapeutic use in beriberi, 

polyneuritis, encephalopathy, pain, malnutrition and alcoholism and especially in the 

treatment of long-standing insulin-dependent diabetes mellitus. Fursultamine has been 

reported to inhibit the arachadonic acid cascade-line activation and reverse the 

increase in Coronary Blood Flow (CBF). 
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Afloqualone (77) [88] has been evaluated as a successful anti-inflammatory 

agent with lower back pain patients. Epirizole (78) [89], another NSAID, is suggested 

to be a COX-2 inhibitor. Ademetionine (79) [90] is primarily used in conjunction to 

glucosamine and chondroitin therapy. Octotiamine (80) [91], a vitamin B1 derivative 

also exhibits anti-inflammatory activity. Proquazone (81) [92], a condensed 

                                                 
z An analgesic (also known as a painkiller) is any member of the group of drugs used to relieve pain. 
aa Nonsteroidal anti-inflammatory drugs, usually abbreviated to NSAIDs or NAIDs, are drugs with ana- 
lgesic and antipyretic effects and which have, in higher doses, anti-inflammatory effects (reducing 
inflammation). 
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pyrimidin-2-one derivative has been reported to exhibit good Nonsteroidal anti-

inflammatory drugs (NSAID) potential. 

 

N

N

O
H3C

H2N

F

(77) Afloqualone

N

NH3C

O
CH3

N
N

CH3

O
H3C

(78) Epirizole

N

NN

N

NH2

O

OHOH

S
CH3

H2N

COO

(79) Ademetionine

NH2

CH3

N
HO

CH3

S CHO
S

S
O

CH3

O
H3C

O

(80) Octotiamine

N

N O

CH3H3C

H3C

(81) Proquazone
 

 

2.2.14 Metabolic electrolytes 
Orotic acid (82) [93], a simple pyrimidine derivative and its mineral forms are used in 

metabolic therapy, especially for cardiovascular patients to prevent heart failure in 

cardiomyopathy. Oroate is needed as a key intermediate in biosynthesis of pyrimidine 

nucleotides, which are building blocks for DNA and RNA required for the final 

protein synthesis. 
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2.3 Conclusion 
Pyrimidines occupy a distinct and unique place in our life. This heterocyclic moiety 

has great biological and medicinal significance. A large array of pyrimidine drugs 

possesses a variety of medicinal properties. These properties include anticancer, 

antibacterial, antiprotozoal, antimicrobial, antiviral, antihypertensive, antihistaminic, 

anti-inflammatory, analgesic and CNS-active to metabolic adjuvant. 

 Keeping in mind various biomedical applications and with a view to further 

assess the pharmacological profile of bi/tricyclic aromatic heterocycles related to 

pyrimidines, two different heterocyclic scaffolds related to pyrimidines 1,2,3,4 

tetrahydropyrimidines and 1,2,4-triazolo[1,5-a]pyrimidines have been synthesized in 

the framework of this doctoral thesis. 
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Chapter 3 

Synthesis and biological evaluation of 
dihydropyrimidines 
 
3.1 Introduction 
Biginelli P. reported the synthesis of functionalized 3,4-dihydropyrimidin-2(1H)-ones 

(DHPMs) via three-component condensation reaction of an aromatic aldehydes, urea 

and ethyl acetoacetate (Scheme 3.1). In the past decade, this multicomponent reaction 

has experienced a remarkable revival, mainly due to the interesting pharmacological 

properties associated with this dihydropyrimidine scaffold.  
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 The classical three-component Biginelli condensation is usually carried out in 

alcoholic solution containing a few drops of concentrated hydrochloric or sulfuric 

acid as catalyst, although other systems such as tetrahydrofuran/hydrochloric acid 

(THF/HCl), dioxane/hydrochloric acid or acetic acid/hydrochloric acid has also been 

employed. Multicomponent reactions (MCRs) occupy an outstanding position in 

organic and medicinal chemistry for their high degree of atom economy, applications 

in combinatorial chemistry and diversity-oriented synthesis [1].  

 The venerable Biginelli reaction, one pot cyclocondensation of aldehyde, 1,3-

ketoester and urea or thiourea, is inarguably one of the most useful MCRs [2]. 

Polyfunctionalized dihydropyrimidines (DHPMs) represent a heterocyclic system of  
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remarkable pharmacological activity. 

4-Aryl-1,4-dihydropyridines of the nifedipine type are the most studied class 

of organic calcium channel modulators and, since their introduction into clinical 

medicine in 1975 have become almost indispensable for the treatment of 

cardiovascular diseases such as hypertension, cardiac arrhythmias or angina. In recent 

years research interest has also focused on aza-analogs such as dihydropyrimidines 

which shows similar pharmacological profile to this type of classical dihydropyridines 

calcium channel modulators [3]. 

 

3.1.1 Mechanistic Studies 

The mechanism of the Biginelli reaction has been the subject of some debate over the 

past decades. Early work by Folkers K. et al. suggested that bisureide i.e., the primary 

bimolecular condensation product of benzaldehydes and urea is the first intermediate 

in this reaction [4]. In 1973 Sweet F. et al. proposed that a carbenium ion, produced 

by an acid-catalyzed aldol reaction of benzaldehyde with ethyl acetoacetate, is the key 

intermediate and is formed in the first and limiting step of the Biginelli reaction [5]. 

 Kappe O. et al. reinvestigated the mechanism in 1997 using 1H and 13C NMR 

spectroscopy and have established that the first step in this reaction involves the acid-

catalyzed formation of an N-acyliminium ion intermediate from the aldehydes and 

urea component (Scheme 3.2). Interception of the iminium ion by ethyl acetoacetate, 

possibly through its enol tautomer, produces an open-chain ureide which subsequently 

cyclize to dihydropyrimidine. Although the highly reactive N-acyliminium ion species 

could not be isolated or directly observed, further evidence for the proposed 

mechanism was obtained by isolation of intermediates, employing sterically bulky [6] 

or electron-deficient acetoacetates [7] respectively. The relative stereochemistry in 

hexahydropyrimidine was established by an X-ray analysis.  
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3.1.2 Atwal alternative synthetic route 

Apart from the traditional Biginelli condensation, there are only few other synthetic 

methods available that lead to DHPMs. Since most of these protocols lack the 

experimental and conceptual simplicity of the Biginelli one-pot, one-step procedure, 

none of these have any significance today or can compete with the original Biginelli 

MCR approach.  

One noticeable exception is the so-called “Atwal modification” of the 

Biginelli reaction [8]. Here, arylidene is first condensed with a suitable protected urea 

or thiourea derivative under almost neutral conditions. Deprotection of the resulting 

1,4-dihydropyrimidine with hydrochloric acid (HCl) or trifluoro acetic acid 

(TFA)/ethane thiol (EtSH) leads to the desired DHPMs. Although this method 

requires prior synthesis of enones (arylidenes), its reliability and broad applicability 

make it an attractive alternative to the traditional one step Biginelli condensation. 

Another novel approach to DHPMs has been described by Shutalev et al. is 

outlined below (Scheme 3.3) [9]. This synthesis is based on the condensation of 

readily available R-tosyl-substituted thiourea with the (in situ prepared) enolates of 

acetoacetates or 1,3-dicarbonyl compounds. The resulting hexahydropyrimidines need 

not to be isolated and can be converted directly into DHPMs. This method works 

particularly well for aliphatic aldehydes and thiourea and produces high overall yields 

of the desired target compounds. 
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3.1.3 Pharmacological Profile 
The interest in synthesis of dihydropyrimidines - Biginelli compounds stems from 

their close structural relationship [10] to clinically important 1,4-dihydropyridine 

calcium channel modulators of the type nifedipine etc. and also because of interesting 

biological properties of several marine alkaloids [11-13] based upon 

dihydropyrimidine viz. crambine, batzelladine and ptilomycelin A.  Derivatization of 

the dihydropyrimidines especially [14] at C4 has led to the recognition of several lead 

compounds that show a very similar pharmacological profile [15-17] to 1,4-

dihydropyridine based drugs. 

 C. crambe is a bright red marine sponge, that is the most wide spread in the 

northwestern meditettanean [18]. Extract of C. crambe have been known to be 

ichthyotoxic and shown various pharmacological activities. A variety of structurally 

intricate guanidine alkaloids are present in marine sources [19]. Diverse biological 

activities are associated with many of these alkaloids, likely reflecting the multiple 

ways that a guanidinium cation can participate in noncovalent interactions.  

 Among the most notable marine alkaloids of these are the crambescidin [20] 

and batzelladine [21] alkaloids, which have been isolated primarily from sponges 

belonging to the orders Poecilosclerida and Axinellida. Diverse biological activities 

have been reported for these secondary metabolites, including cytotoxicity towards 

several cancer cell lines, antifungal and antiviral activities and inhibition of HIV-1 

fusion. The novel structures of these marine alkaloids have inspired the development 
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of many strategies or assembling polycyclic guanidines that contain the octahydro-

5,6,6a-triazaacenaphthalene and hexahydro-5,6,6a-triazaacenaphthalene moieties co- 

mmon to the crambescidin and batzelladine alkaloids [22, 23]. 
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More recently, appropriately functionalized DHPMs have emerged as, e.g., 

orally active antihypertensive agents [24-26] or α1a adrenoceptor-selective antagonists 

[27].  
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 Simple DHPM monastrol as a novel cell-permeable molecule that blocks 

normal bipolar spindle assembly in mammalian cells and therefore causes cell cycle 

arrest [28]. 
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Kappe O. et al. reported N-substituted 3,4-dihydropyrimidinones entities 

shows very good activity as a calcium channel blockers [29]. 

 

N
H

SMe

F3C CF3

O

O

N

F
i-PrO2C

N
H

N

F
F

OEt

O

H2N N
H

N

CO2Me

O

DHPM calcium channel blockers and biologically active DHPM lead compounds

 

Demarest K. et al. reported that calcitonin, a 32 amino acid polypeptide 

hormone secreted by the thyroid and thymus glands, plays an important role in 
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inhibiting bone resorption through the mediation of osteoclasts. By inhibiting bone 

resorption and promoting renal calcium excretion, calcitonin has therapeutic 

applications in a variety of clinical disorders, including hypercalcemia associated with 

Paget’s disease [30] and osteoporosis [31, 32]. 

A multiplex mimetic cell based assay was designed for high-throughput 

screening. In an effort to differentiate activity amongst similar G-protein coupled 

receptors, 6 cell lines-calcitonin receptor-2 (CTR-2; clone #33), Glucogen-like 

peptide 1 (GLP1-7; clone #7), Gastric inhibitory polypeptide (GIP-1; clone #1), 

parathyroid hormone receptor 1 and calcitonin gene related peptide-1 (CGRP1-7; 

clone 7) were cloned onto the human embryonic kidney (HEK 293) cell line and 

plated together in one assay well. 

The following compounds are examples of an active series of 1,4-

dihydropyrimidines that stimulated cyclic adenosine monophosphate (cAMP) 

accumulation in HEK 293 cells expressing the CTR-2 ligand [33]. 
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 Research interest in multifunctionalized DHPMs of privileged heterocyclic 

core associated with several pharmacological properties. Small molecules targeting 

the mitotic machinery [34]. Notably, 4-aryldihydropyrimidinone heterocycles 

attached to an aminopropyl-4-piperidine moiety via a C5 amide linkage have proven 

to be excellent templates for selective α1a receptor subtype antagonists to warrant 
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further consideration for the treatment of Benign prostatic hyperplasia (BPH) [35]. In 

the synthesis of these DHPM-5-carboxamides, amide bond formation between the 

requisite amines and the corresponding DHPM acids was performed using standard 

solution phase amide coupling chemistry involving carbodiimide coupling reagents 

[35, 36]. 
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Some dihydropyrimidines (V), (III) and (IV) were weaker in blocking 

atrioventricular conduction in anesthetized open-chest dogs and less toxic than the 

dihydropyridines [37]. 
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Christopher B. et al. synthesized 3,4-dihydropyrimidinone analogues  as a 

fatty acid transporter (FATP4). Among these some of the compounds hit by high 

through put screening and optimized FATP4 inhibitors. Blocking the absorption of 

fats (triglycerides) by administration of an anti-absorptive agent is of interest for the 

treatment of obesity [38].  
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 Ingested dietary triglycerides are hydrolyzed by gastric and pancreatic lipases 

and the resulting fatty acids are taken up by enterocytes lining the small intestine 

where they are re-esterified to triglycerides and then transported into the blood. The 

lipase inhibitor orlistat (pills used to lose weight: trade name-XenicalTM), blocks fat 

absorption by inhibiting the hydrolysis of dietary fat to fatty acids [39] with 

administration leading to a concomitant decrease in body weight and improvement of 

blood lipid profiles. A family of proteins, termed fatty acid transport proteins (FATPs), 

that mediate the uptake of fatty acids into cells has been described [40, 41]. Earlier 

studies [42-45] provided evidence that fatty acid transport protein 4 (FATP4) 

mediates the transport of fatty acids from the gut into enterocytes both in vitro and in 

vivo.  

We therefore reasoned that inhibitors of FATP4 might be expected to have 

benefits similar to orlistat. Since FATP4 inhibition would result in the accumulation 

of free fatty acids rather than triglycerides, we would also expect a different, possibly 

improved, side-effect profile compared to orlistat. The FATP family of proteins is 

most closely related in sequence to the ATP-utilizing acyl-CoA synthetase enzymes 

[46-49]. 

Moreover, Merck and Co. developed a compound which is very active as non- 

nucleoside inhibitors of human hepatitis B virus for reduction of HBV DNA in human 

hepatoma HepG 2.2.15 cells with low cytotoxicity in uninfected cells. This compound 
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inhibited both viral DNA and viral cores in HepG 2.2.15 cells and HBV transfected 

cell lines, whereas it did not affect the activity of endopolymerase and had no effect 

on other DNA and RNA viruses. In vivo, in a transgenic mouse model, oral doses of 

3-100 mg/kg b.i.d. (twice a day) or t.i.d. (three times a day) for 28 days dose [50]. 
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3.1.4 Improved reaction conditions 
Previous reported protocols normally required prolonged reaction times and high 

temperature with moderate yields, so there has been considerable interest to explore 

mild, rapid and higher yielding protocol. The toxicity and volatile nature of many 

organic solvents, particularly chlorinated hydrocarbons that are widely used in huge 

amounts for organic reactions have posed a serious threat to the environment. Thus, 

so many improved protocols have been designed for preparing these types of entities 

has been developed to improve and modify this reaction by several catalysts. Catalytic 

reaction has received tremendous attention in recent times in the area of green 

synthesis. However, it has been observed that the solvent and lewis acids employed 

are not always ecofriendly and because of this severe environmental pollution often 

results during the process of waste disposal. This prompted us to initiate a systematic 

investigation to look into the feasibility of a reaction under modified experimental 

conditions towards development of real green methodology for useful molecules. 

Different catalysts have been employed for these types of reaction are: 

Ferric chloride (FeCl3)/tetraethyl orthosilicate [51], triflates [52, 53], metal bromide 

[54, 55], polyoxometalate [56], strontium (II) nitrate [57], cerium (III) chloride [58], 

lithium trifluoromethanesulfonate or lithium triflate (LiOTf) [59], lanthanide triflates-

Ln(OTf)3 [60], heteropolyacids [61-65], ion exchange resins, polymer based solid 
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acid [66, 67], L-proline [68, 69], chiral phosphoric acid [70], trimethylsilyl chloride 

(TMSCl) [71], zirconium tetrachloride ZrCl4 [72], dowex [73], Boron trifluoride-

etharate (BF3-etharate) [74], BF3-etharate/cuprous chloride (CuCl) [74], vanadium 

trichloride (VCl3) [75], lithium perchlorate (LiClO4) [76], stannous chloride 

(SnCl2.2H2O) [122a], AlCl3/KI [122b], CoCl2/MnCl2 [122c], AlCl3/AlBr3 [122d], 

P2O5 [123], Bismuth oxide perchlorate (BiOClO4.xH2O) [124], CaCl2 [125a], 1,3-

Dibromo-5,4-dimethylhydantoin  [125b], Zinc tetrafluoroborate [125c]. 

Numerous modifications on Lewis acid adsorbed on mineral inorganic solid 

supports, silica, different clays are also reported and discloses a simple modification 

of the Biginelli DHPM synthesis. Excellent yields enhanced reaction rates, 

compatibility with various functional groups, environmentally friendly procedure, 

timesaving process, low cost and easy availability of the catalyst are some of the 

salient features of this reaction. This procedure will offer an easy access to substituted 

dihydropyrimidin-2(1H)-ones and thiones with different substitution patterns in high 

to excellent yields. 

 

3.1.5 Ionic Liquids 

Zuliang L. et al. used cheap and reusable task-specific ionic liquids that bear an 

alkanesulfonic acid group in an acyclic trialkylammonium cation were found to be 

effective catalysts for synthesizing 3,4-dihydropyrimidine-2-(1H)-ones via the one-

pot three-component Biginelli reaction. The satisfactory results were obtained with 

good yields, short reaction time and simplicity in the experimental procedure. The 

catalysts could be recycled and reused six times without noticeably decrease in the 

catalytic activity [77]. 
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Bazureau J. P. et al. reported new N-3 functionalized 3,4-dihydropyrimidine-

2(1H)-ones with 1,2,4-oxadiazole group as amide isostere were synthesized in six 

steps by ionic liquid-phase organic synthesis (IoLIPOS) methodology from Ionic 

Liquid Phase (ILP) bound acetoacetate. The 3,4-dihydropyrimidine-2(1H)-one (3,4-

DHPM) core was prepared in the first step by one-pot three-component Biginelli 

condensation followed by N-alkylation with chloroacetonitrile. Then the nitrile group 

appended on the 3,4-dihydropyrimidine heterocycle was quantitatively transformed 

into amidoxime. Addition of aliphatic carboxylic anhydride or aromatic carboxylic 

acid to the amidoxime produced the expected 1,2,4-oxadiazole via the O-

acylamidoxime intermediate grafted on the ILP bound 3,4-dihydropyrimidines using 

two convergent methods. After cleavage by transesterification under mild conditions, 

the target compounds were obtained in good overall yields. The structures and the 

purities of the reaction intermediates in each step were verified easily by routine 

spectroscopic analysis [78]. 

 

3.1.6 Preparation of ionic liquid phases bound 3,4-dihydro 
pyrimidine -2(1H)-ones 

 
Scheme 3.4. Reagents and reaction conditions: (i) chloroethanol (1 equiv), mw, 180 
0C, 60 W, 10 min; (ii) potassium hexafluorophosphate (KPF6) (1 equiv), cyano 

methane (MeCN), 25 0C, 18 h; (iii) tert-butyl acetoacetate (2.6 equiv), μω, 170 0C, 

150 W, 10 min; (iv) 100 0C, hydrochloric acid (HCl) cat., 60 min 
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 Zlotin S. G. et al. reported  the synthesis of dihydropyrimidinones  by 

condensation of aromatic (heteroaromatic) aldehydes with 1,3-dicarbonyl compounds 

under the 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) ionic liquid-

piperidinium acetate catalytic system (0.2 equiv. of each component) in the absence of 

a solvent affords, depending on the structures of the reagents, 2-arylidene derivatives 

of methyl acetoacetate and acetylacetone, diethyl 2,4-bis(trifluoroacetyl)-3-

phenylpentanedioate or dimethyl 2-aryl-4-hydroxy-6-oxocyclohexane-1,3-dicarboxy- 

lates. The reactions of the resulting 2-arylidene derivatives with O-methylisourea in 

the [Bmim][BF4] ionic liquid produced methyl 2-methoxy-4-methyl-6-

aryldihydropyrimidine-5-carboxylates and 1-(2-methoxy-4-methyl-6-phenyl dihydro-

pyrimidin-5-yl)ethanone (mixtures of 3,6- and 1,6-dihydro isomers), which were 

transformed into the corresponding 3,4-dihydropyrimidin-2(1H)-one derivatives [79]. 

Jingxing D. et al. used novel ionic liquid, 3-carboxymethyl-1-

methylimidazolium bisulfate (CmimHSO4) used as a recyclable catalyst for the 

Biginelli reaction under solvent-free conditions [80]. Bazureau J. P. et al. reported 

ionic liquid phase bound acetoacetate for the synthesis of 3,4-dihydropyrimidine-

2(1H)-ones [81]. These compounds can also be synthesized in high yields in the 

presence of catalytic amounts of room temperature ionic liquids such as 1-n-butyl-3-

methylimidazolium tetrafluoroborate (BmimBF4) or 1-n-butyl-3-methylimidazolium 

hexafluorophosphate (BmimPF6) [82]. It has been also reported that not only 

trialkylammonium halides [83] but also very inexpensive and easily available 

ammonium chloride [84]. Gholap et al. reported the synthesis of DHPMs by using N-

Butylimidazolium tetrafluoroborate ([Nbim]BF4) [85]. Jain et al. used [bmim]BF4 

immobilized Cu (II) as a catalyst in synthesis of DHPMs [86]. Hua-Zheng Y. et al. 

reported non-toxic room temperature ionic liquid l-n-butyl-3-methylimidazolium 

saccharinate (BmimSac) [87]. 

In recent years, task-specific room-temperature ionic liquids (TSILs) have 

emerged as a powerful alternative to conventional molecular organic solvents or 

catalysts due to their particular properties, such as undetectable vapor pressure, wide 

liquid range, as well as the ease of recovery and reuse The TSILs have also been used 

as catalysts for Biginelli reaction [88-97].  

However, TSILs with imidazole as the cation are relatively expensive, which 

hinders their industrial applications. Furthermore, typical ionic liquids consist of 
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halogen containing anions such as [PF6]−, [BF4]−, [CF3SO3]− and [(CF3SO2)2N]−, 

which in some regard limit their “greenness” [98-100]. Therefore, it is necessary to 

synthesize less expensive and halogen-free TSILs. 

Shaabani A. et al. [101] used room-temperature ionic liquid 1,1,3,3-

tetramethylguanidinium trifluoroacetate as catalyst. 

 

3.1.7 Building blocks and diversity 
Out of the three building blocks in the Biginelli reaction it is the aldehyde component, 

which can be varied to the largest extent. In general, the reaction works best with 

aromatic aldehydes. These can be substituted in the o-, m- or p- position with either 

electron-withdrawing or electron-donating groups. Good yields are usually obtained 

with m- or p- substituted aromatic aldehydes carrying electron-withdrawing 

substituents. For o-substituted benzaldehydes having bulky substituents, yields can be 

significantly lower.  

 Heterocyclic aldehydes derived from furan, thiophene and pyridine rings also 

generally furnish acceptable yields of DHPM products [102]. Aliphatic aldehydes 

typically provide only moderate yields in the Biginelli reaction unless special reaction 

conditions are employed, i.e. Lewis acid catalysts/solvent free methods or using the 

aldehydes in protected form [103]. The C4 unsubstituted DHPM can be prepared in a 

similar manner employing suitable formaldehyde synthons [103]. Of particular 

interest are reactions where the aldehyde component is derived from a carbohydrate. 

In such transformations, DHPMs having a sugar-like moiety in position 4 (C-

nucleoside analogs) are obtained [104]. In a few cases, bisaldehydes have been used 

as synthons in Biginelli reactions [105].  

Traditionally, simple alkyl acetoacetates are employed as methine-acidic 

carbonyl building blocks, but other types of 3-oxoalkanoic esters or thioesters can 

also be used successfully. With methyl 4-chloroacetoacetate, for example, the 

corresponding 6-chloromethyl-substituted DHPMs which can serve as valuable 

templates for further synthetic transformations are obtained [106]. Benzoylacetic 

esters react analogously, but yields are usually significantly lower and the overall 

condensation process is more sluggish [102]. Primary, secondary and tertiary 

acetoacetamides can be used in place of esters to produce pyrimidine-5-carboxamide 

[102]. In addition, β-diketones serve as viable substrates in Biginelli reactions. 
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Condensations can also be achieved employing cyclic β-diketones such as 

cyclohexane-1,3-dione [107] and other cyclic β-dicarbonyl compounds [108]. 

If a C6-unsubstituted DHPM derivative needs to be synthesized, the 

corresponding 3-oxopropanoic ester derivative in which the aldehyde functional 

group is masked as an acetal can be employed [109]. Apart from ester-derived 

methine-acidic carbonyl compounds, nitroacetone also serves as a good building 

block, leading to 5-nitro-substituted DHPM derivatives in generally high yields [110]. 

The urea is the component in the Biginelli reaction that faces the most restrictions in 

terms of allowed structural diversity [111]. Therefore, most of the published examples 

involve urea itself as building block. However, simple monosubstituted alkyl ureas 

generally react equally well, in a regiospecific manner, to provide good yields of N1-

substituted DHPMs. Thiourea and substituted thioureas follow the same general rules 

as ureas, although longer reaction times are required to achieve good conversions.  

 Yields are typically lower when compared to the corresponding urea 

derivatives. In some instances, it is also possible to react protected urea or thiourea 

(isourea) or guandidine under weak basic conditions with the aldehyde and methine-

acidic carbonyl component (or with a precondensed Knoevenagel type enone) to yield 

the corresponding protected DHPMs [112, 113]. 

 

3.1.7.1   Aldehyde and protected aldehyde building blocks used in the     
Biginelli reaction 
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 This latter method, using precondensed enones of type 5 has been frequently 

referred to as the “Atwal modification” of the Biginelli reaction [102, 103, 113].    

Given the diversity in building block selection that is tolerated in the Biginelli 

reaction it is evident that a large number of DHPM derivatives of the general structure 

can be synthesized by combination of a relatively small number of (commercially av-  

ailable or proprietary) individual building blocks. 

 

3.1.7.2 Methine-acidic carbonyl building blocks used in the 
Biginelli reaction 
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Employing different  aldehydes (point of diversity at C4 position), different methine-

acidic carbonyl derivatives (points of diversity at 5 and 6 position) and thiourea 

analogs (points of diversity at 2 position) in a Biginelli or Atwal type condensation 

would lead to a library of 1,000 DHPM compounds, with a total of five diversity 

points around the dihydropyrimidine core [114]. It is therefore not surprising that a 

literature search for the general DHPM structure in the Chemical Abstracts Registry 

database led to well over 10,000 hits [114].  

It is interesting to note however, that only a small fraction of these compounds 

has been published in the chemical literature (<1,000) [114]. On the other hand, more 

than half the 10,000 structures of type are commercially available, typically from 

companies specializing in chemical library generation. 
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3.1.7.3 Urea type building blocks used in the Biginelli reaction 
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Kidwai M. et al. have been proposed an ecologically benign method for the synthesis 

of benzopyranopyrimidines by reactions of 4-hydroxycoumarin (instead of 1,3 dike-

tones or β-ketoesters) with aldehydes and urea and thiourea in the absence of solvent 

under microwave irradiation (Scheme 3.5) [115]. 
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3.1.8 Solid phase synthesis 
The generation of combinatorial libraries of heterocyclic compounds by solid phase 

synthesis is of great interest for accelerating lead discovery and lead optimization in 

pharmaceutical research. Multicomponent reactions (MCRs) leading to heterocycles 

are particularly useful for the creation of diverse chemical libraries, since the 

combination of n≥3 small molecular weight building blocks in a single operation 

leads to high combinatorial efficacy. Therefore, solid phase modifications of MCRs 

are rapidly becoming the cornerstone of combinatorial synthesis of small-molecule 

libraries. One such MCR that has attracted considerable attention in recent years is the 

Biginelli reaction, which involves the one pot cyclocondensation of a β-ketoester with 

an aryl aldehyde and a urea derivative. The resulting 4-aryl-3,4-dihydropyrimidin- 
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2(1H)-ones. Kappe O. et al. reported the 4-aryl-3,4-dihydropyrimidines using Resin- 

bound isothiourea building blocks and multidirectional resin cleavages. Solid phase 

organic synthesis remains one of the cornerstones of combinatorial chemistry, since 

this technique allows the chemist to take full advantage of the powerful principles (i.e. 

split and mix synthesis) offered by combinatorial technologies.  

 For a multicomponent reaction such as the Biginelli condensation, various 

solid-phase strategies can be envisaged and in fact a number of different approaches 

have been disclosed in recent years, utilizing different resin-bound building blocks 

and linker combinations. Given the regioselectivity encountered in using N-

substituted urea building blocks in the Biginelli condensation, a solid phase 

modification where the urea component is linked to the solid support via the amide 

nitrogen is an obvious choice. 

 The first actual solid-phase modification of the Biginelli condensation was 

reported by Wipf P. et al. in 1995 [116]. In this sequence, γ-aminobutyric acid-

derived urea was attached to Wang resin using standard procedures. The resulting 

polymer-bound urea was condensed with excess β-ketoesters and aromatic aldehydes 

in tetrahydrofuran (THF) at 55 0C in the presence of a catalytic amount of 

hydrochloric acid (HCl) to afford the corresponding immobilized DHPMs (Scheme 

3.6). 
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In an interesting variation of this protocol, the Biginelli reaction was also 

adapted to fluorous-phase conditions by the Wipf P. et al. [116, 117]. In fluorous 

synthesis, an organic molecule is rendered soluble in fluorocarbon solvents by 

attachment of a suitable fluorocarbon group (“fluorous tag”). Fluorocarbon solvents 

are usually immiscible with organic solutions and fluorous molecules partition out of 

an organic phase and into a fluorous phase by standard liquid-liquid extraction.  
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At the desired stage of the synthesis, the fluorous label is cleaved and the 

product is rendered “organic” again [118]. In the fluorous Biginelli reaction, the 

fluorous urea derivative was prepared by attachment of a suitable fluorous tag to 

hydroxyethylurea. The fluorous urea was then condensed with 10 equivalents each of 

the corresponding acetoacetates and aldehydes in tetrahydrofuran (THF)-

benzotrifluoride (BTF) containing hydrochloric acid (HCl). After extraction of the 

fluorous DHPMs with fluorous solvent (perfluorohexanes, fluorocarbon: FC-72), 

desilylation with tetrabutylammonium fluoride (TBAF) followed by extractive 

purification provided the “organic” Biginelli products DHPMs in good overall yields.  

Considering the simple experimental techniques used in this fluorous 

chemistry, automation should be feasible, thus allowing the preparation of DHPM 

libraries (Scheme 3.7) [118]. 
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Kappe O.  et al. reported the procedure in which urea component is linked to 

the solid (or fluorous) support via the amide nitrogen, which invariably leads to the 

formation of N1-functionalized, so far pharmacologically active, DHPMs. 
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 Kappe O.  et al. has developed an alternative protocol, where the acetoacetate 

building block is linked to the solid support. Thus, Biginelli condensation of Wang-

bound acetoacetate with excess aldehydes and urea/thiourea in NMP (N-methyl 
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pyrollidine/HCl provided the desired DHPMs on solid support. Subsequent cleavage 

with 50 % trifluoro acetic acid (TFA) furnished the free carboxylic acids in high over 

all yield (Scheme 3.8) 

 

O

O

OMe

Ar

O H

NH2

XH2N

1. NMP, H+

2. TFA, CH2Cl2 HO

O

N
H

Me

N
H

X

Ar

P

Scheme 3.8  
 

 In addition to solid-phase adaptions of the traditional three-component 

Biginelli condensation, solid-phase variations of the “Atwal modification” of the 

Biginelli reaction (see above) have also been reported. Kappe C. O. et al. have 

disclosed the synthesis of a 648-membered combinatorial library of 1,4-

dihydropyrimidines. Towards this end, polymer-bound acetoacetate was subjected to 

Knoevenagel condensation with aromatic aldehydes, followed by condensation with 

isothioureas. The resulting polymer-bound 1,4-dihydropyrimidines were cleaved from 

the resin with 50 % trifluoro acetic acid (TFA) to produce carboxylic acid (Scheme 

3.9) [119]. 
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 In an effort to increase the molecular diversity in solid phase syntheses of 

DHPM scaffolds, a novel and versatile solid-phase approach was adopted where an 

isourea building block is attached to the solid support [120]. 

 In the key step, polymer-bound (Wang) isothiourea (B) is condensed with 

enones in N-methylpyrrolidone (NMP) in the presence of base. Thepolymer-bound 
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dihydropyrimidine can then be directly cleaved from the resin (C→E) by employing 

different cleavage strategies. Therefore, three types of DHPMs E (X = O, S and NH) 

can be obtained by applying the appropriate cleaving conditions (A), (B) or (C). On 

the other hand, an additional element of diversity can be introduced onto the 

pyrimidine nucleus by regioselective N3-acylation of the polymer-bound intermediate 

(C) with suitable electrophiles (e.g., acyl chlorides, R3COCl). By applying different 

cleaving strategies to (D), the corresponding N3-functionalized DHPMs (F) were 

obtained in moderate to high overall yields. This solid-phase approach is therefore 

particularly attractive for the preparation of pharmacologically active N3-acylated 

analogues such as DHPMs and should be useful for the generation of targeted 

libraries of this heterocyclic scaffold. 

 

3.1.8.1    Diversity in solid phase DHPM synthesis 
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Schober A. developed synthetic protocol based on immobilized β-ketoamides 

to increase the diversity of DHPM derivatives by varying the substituents in position 

4 in a simple manner. Depending on the building blocks for the three-component 

reaction, the immobilization strategies were chosen. At least three different strategies 

for the preparation of DHPM derivatives on solid support were described in recent 

literature. The first one makes use of immobilized urea or thiourea moieties. The 

second uses an immobilized β-ketoester and the third one uses an S-linked 

isothiouronium salt, Biginelli protocols depending on immobilized aldehydes were 

not found (Scheme 3.10) [121]. 

 

3.1.8.2    DHPM synthesis with immobilized ketoesters 
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3.1.8.3    DHPM synthesis with immobilized β-ketoamides using 
Atwal’s route 
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3.1.8.4    N-acyliminium ion, the essential reaction intermediate 
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Scheme 3.13
 

 

Thus by employing any of the solid-phase synthesis methods described above, 

libraries of DHPMs can be generated in a relatively straightforward fashion. Biginelli 

products are therefore contained in many commercially available small molecule 

libraries or compound collections and have undoubtedly been subjected to many high-

throughput screening (HTS) processes. However, all of these products would still be 

racemic and therefore screening will not address possible enantioselective effects on 

molecular activity. 
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3.2 Current work  
The chemistry of pyrimidines and its derivatives has been studied for over a century 

due to their diverse biological activities. The 1,2,3,4-tetrahydropyrimidine ring system 

is of special biological interest because it has numerous pharmacological and 

medicinal applications viz, antitumour, antiviral, antimalarial, antitubarcular etc.  

Keeping in mind various biomedical applications and with a view to further 

assess, the pharmacological profile of these class of compounds, three novel series of 

1,2,3,4-tetrahydropyrimidine (CPV-101 to CPV-130) are synthesized. The synthesis 

of these thirty compounds was achieved by the Biginelli reaction of acetoacetanilide, 

urea derivatives and corresponding aldehydes. The reaction is catalysed by 

concentrated hydrochloric acid (HCl). The products were characterized by various 

analytical techniques like FT-IR spectroscopy, mass spectrometry, 1H NMR 

spectroscopy and elemental analysis. The newly synthesized compounds were 

subjected to various biological activities viz., antimicrobial, antimycobacterial. 
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3.3 Reaction scheme 
 

N
N
H

C
O
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CHO

HN
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H+

N
H

N

X

R1

R2

H3C
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HN
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CPV 101 TO 130

       MeOH
Reflux 8-10 hrs

 
 

Code R1        X R2 M.F. M.W. M.P. ºC Yield % Rf1 Rf2 
CPV-101 H       O H C17H16N4O2 308 160-162 66 0.42 0.66 
CPV-102 H       O 4-CH3 C18H18N4O2 322 191-193 64 0.50 0.69 
CPV-103 H       O 4-OCH3 C18H18N4O3 338 221-223 63 0.49 0.73 
CPV-104 H       O 4-Cl C17H15ClN4O2 342 199-201 76 0.46 0.68 
CPV-105 H       O 4-F C17H15FN4O2 326 198-200 80 0.54 0.75 
CPV-106 H       O 4-NO2 C17H15N5O4 353 183-185 69 0.50 0.70 
CPV-107 H       O 3-NO2 C17H15N5O4 353 192-194 65 0.53 0.72 
CPV-108 H       O 2-NO2 C17H15N5O4 353 226-228 79 0.50 0.65 
CPV-109 H       O 3-Cl C17H15ClN4O2 342 153-155 58 0.55 0.67 
CPV-110 H       O 2-Cl C17H15ClN4O2 342 223-225 62 0.48 0.77 
CPV-111 H        S H C17H16N4OS 324 167-169 64 0.50 0.61 
CPV-112 H        S  4-CH3 C18H18N4OS 338 231-233 74 0.58 0.67 
CPV-113 H        S 4-OCH3 C18H18N4O2S 354 181-183 70 0.41 0.74 
CPV-114 H        S 4-Cl C17H15ClN4OS 358 216-218 72 0.56 0.66 
CPV-115 H        S 4-F C17H15FN4OS 342 209-211 77 0.53 0.60 
CPV-116 H        S 4-NO2 C17H15N5O3S 369 236-238 65 0.50 0.58 
CPV-117 H        S 3-NO2 C17H15N5O3S 369 229-231 63 0.54 0.61 
CPV-118 H        S 2-NO2 C17H15N5O3S 369 234-236 68 0.57 0.64 
CPV-119 H        S 3-Cl C17H15ClN4OS 358 188-190 62 0.48 0.57 
CPV-120 H        S 2-Cl C17H15ClN4OS 358 238-240 59 0.58 0.70 
CPV-121 CH3   O H C18H18N4O2 322 244-246 78 0.49 0.55 
CPV-122 CH3   O 4-CH3 C19H20N4O2 336 212-214 69 0.55 0.66 
CPV-123 CH3   O   4-OCH3 C19H20N4O3 352 235-237 70 0.54 0.65 
CPV-124 CH3   O 4-Cl C18H17ClN4O2 356 271-273 66 0.52 0.60 
CPV-125 CH3   O  4-F C18H17FN4O2 340 261-263 66 0.48 0.53 
CPV-126 CH3   O 4-NO2 C18H17N5O4 367 265-267 71 0.54 0.67 
CPV-127 CH3   O 3-NO2 C18H17N5O4 367 223-225 59 0.58 0.69 
CPV-128 CH3   O 2-NO2 C18H17N5O4 367 218-220 74 0.51 0.64 
CPV-129 CH3   O 3-Cl C18H17ClN4O2 356 261-263 63 0.49 0.57 
CPV-130 CH3   O 2-Cl C18H17ClN4O2 356 221-223 72 0.51 0.63 
         

TLC Solvent system Rf1: Hexane: Ethyl acetate – 6:4,  
TLC Solvent system Rf2: Chloroform: Methanol – 9:1.  
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3.4 Plausible Reaction Mechanism 
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3.5 Experimental 
 

3.5.1 Materials and Methods 

Melting points were determined in open capillary tubes and are uncorrected. 

Formation of the compounds was routinely checked by TLC on silica gel-G plates of 

0.5 mm thickness and spots were located by iodine. IR spectra were recorded 

Shimadzu FT-IR-8400 instrument using KBr pellet method. Mass spectra were 

recorded on Shimadzu GC-MS-QP-2010 model using Direct Injection Probe 

technique. 1H NMR was determined in DMSO-d6 solution on a Bruker Ac 400 MHz 

spectrometer. Elemental analysis of the all the synthesized compounds was carried out 

on Elemental Vario EL III Carlo Erba 1108 model and the results are in agreements 

with the structures assigned. 

 

3.5.2 Synthesis of N-(pyridin-3-yl)-3-oxo-butanamide 

Synthesis of N-(pyridin-3-yl)-3-oxo-butanamide was achieved using previously 

published methods [45]. 

 

3.5.3 General procedure for the synthesis of 1,2,3,4-tetrahydro-6-methyl-2-oxo-4-

aryl-N-(pyridin-3-yl)pyrimidine-5-carboxamides (CPV 101-110) 

 

A mixture of N-(pyridin-3-yl)-3-oxo-butanamide (0.01 mol), appropriate aromatic 

aldehyde (0.01 mol), urea (0.015 mol) and catalytical amount of concentrated 

hydrochloric acid in ethanol (30 ml) was heated under reflux condition for 8 to10 hrs. 

The reaction mixture was kept at room temperature for 24 hrs. The product obtained 

was isolated and recrystallized from ethanol. 

 

3.5.3.1 1,2,3,4-tetrahydro-6-methyl-2-oxo-4-phenyl-N-(pyridin-3-yl)pyrimidine-5-

carboxamide (CPV-101) Yield: 66%; mp 160-162 ºC; 

IR (cm-1): 3331 (N-H stretching of primary amide), 

3294 (N-H stretching of pyrimidine ring), 3059 (C-H 

symmetrical stretching of CH3 group), 3024 (C-H 
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amide), 1631 and 1525 (C=C stretching of aromatic ring), 1593 (N-H deformation of 

pyrimidine ring), 1460 (C-H asymmetrical deformation of CH3 group), 1342 (C-H 

symmetrical deformation of CH3 group), 1323 (C-N-C stretching of pyrimidine ring), 

1282 (C-N stretching of pyrimidine ring), 1234 (C-H in plane deformation of 

aromatic ring), 759 and 713 (C-H out of plane deformation of mono substituted  

benzene ring); 1H NMR (DMSO-d6) δ ppm: 2.25 (s, 3H, Ha), 5.43 (s, 1H, Hb), 7.21-

7.36 (m, 6H, Hcc’-f), 7.67 (s, 1H, Hg), 7.95-7.97 (d, 1H, Hh, J = 8.0 Hz), 8.20-8.21 (d, 

1H, Hi, J = 4.0 Hz), 8.69 (s, 1H, Hk), 9.76 (s, 1H, Hl): m/z 308; Anal. Calcd. for 

C17H16N4O2: C, 66.22; H, 5.23; N, 18.17; O, 10.38. Found: C, 66.15; H, 5.20; N, 

18.11; O, 10.30%. 

 

3.5.3.2 1,2,3,4-tetrahydro-6-methyl-2-oxo-N-(pyridin-3-yl)-4-p-tolylpyrimidine-5-

carboxamide (CPV-102) Yield: 64%; mp 191-193 ºC; 

MS: m/z 322; Anal. Calcd.  for C18H18N4O2: C, 67.07; 

H, 5.63; N, 17.38; O, 9.93. Found: C, 67.02; H, 5.59; 

N, 17.31, O, 9.90%. 

 

 

 

3.5.3.3      1,2,3,4-tetrahydro-4-(4-methoxyphenyl)-6-methyl-2-oxo-N-(pyridin-3-yl) 

pyrimidine-5-carboxamide (CPV-103) Yield: 63%; 

mp 221-223 ºC; IR (cm-1): 3498 (N-H stretching of 

primary amide), 3230 (N-H stretching of pyrimidine 

ring), 3115 (C-H symmetrical stretching of CH3    

group), 2937 (C-H asymmetrical stretching of CH3 

group), 1712 (C=O stretching of amide), 1641 (N-H 

deformation of pyrimidine ring), 1525 and 1483 (C=C stretching of aromatic ring), 

1435 (C-H asymmetrical deformation of CH3 group), 1408 (C-N-C stretching of 

pyrimidine ring), 1340 (C-H symmetrical deformation of CH3 group), 1276 (C-N 

stretching of pyrimidine ring), 1240 (C-O-C asymmetrical stretching of  ether linkage), 

1174 (C-H in plane deformation of aromatic ring), 1062 (C-O-C symmetrical 

stretching of  ether linkage), 866 (C-H out of plane deformation of 1,4-disubstitution); 
1H NMR (DMSO-d6) δ ppm: 2.11 (s, 3H, Ha), 3.73 (s, 3H, Hb), 5.44 (s, 1H, Hc), 6.82-6.84 (d, 
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2H, Hdd’, J = 8.0 Hz), 7.18-7.25 (m, 3H, He-g), 7.49 (s, 1H, Hh), 7.99-8.00 (d, 2H, Hii’, J = 4.0 

Hz), 8.17-8.18 (d, 1H, Hj, J = 4.0 Hz), 8.70 (s, 2H, Hkj), 9.60 (s, 1H, Hl); MS: m/z 338; Anal. 

Calcd. for C18H18N4O3: C, 63.89; H, 5.36; N, 16.56; O, 14.19. Found: C, 63.81; H, 5.30; N, 

16.50; O, 14.11%. 

 

3.5.3.4        4-(4-chlorophenyl)-1,2,3,4-tetrahydro-6-methyl-2-oxo-N-(pyridin-3-yl) 

pyrimidine-5-carboxamide (CPV-104) Yield: 76%; 

mp 199-201 ºC; MS: m/z 342; Anal. Calcd. for 

C17H15ClN4O2: C, 59.57; H, 4.41; N, 16.34; O, 9.34. 

Found: C, 59.51; H, 4.35; N, 16.27; O, 9.25%. 

 

 

 

3.5.3.5        4-(4-fluorophenyl)-1,2,3,4-tetrahydro-6-methyl-2-oxo-N-(pyridin-3-yl) 

pyrimidine-5-carboxamide (CPV-105) Yield: 80%; 

mp 198-200 ºC; MS: m/z 326; Anal. Calcd. for 

C17H15FN4O2: C, 62.57; H, 4.63; N, 17.17; O, 9.81. 

Found: C, 62.50; H, 4.57; N, 17.10; O, 9.75%. 

 

 

 

3.5.3.6        1,2,3,4-tetrahydro-6-methyl-4-(4-nitrophenyl)-2-oxo-N-(pyridin-3-yl) 

pyrimidine-5-carboxamide (CPV-106) Yield: 69%; 

mp 183-185 ºC; IR (cm-1): 3298 (N-H stretching of 

primary amide), 3234 (N-H stretching of pyrimidine 

ring), 3026 (C-H symmetrical stretching of CH3    

group), 2829 (C-H asymmetrical stretching of CH3 

group), 1689 (C=O stretching of amide), 1600 and 

1471 (C=C stretching of aromatic ring), 1583 (C-NO2 symmetrical stretching), 1521 

(N-H deformation of pyrimidine ring), 1423 (C-N stretching of pyrimidine ring), 1390 

(C-H asymmetrical deformation of CH3 group), 1348 (C-N-C stretching of pyrimidine 

ring), 1309 (C-H symmetrical deformation of CH3 group), 1244 (C-H in plane 

deformation of aromatic ring), 798 (C-H out of plane deformation of 1,4-
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disubstitution); 1H NMR (DMSO-d6) δ ppm: 2.19 (s, 3H, Ha), 5.63 (s, 1H, Hb), 7.18-

7.22 (m, 1H, Hc), 7.49 (s, 1H, Hd), 7.59-7.61 (d, 2H, Hee’, J = 8.0 Hz), 8.01-8.03 (d, 

1H, Hf, J = 8.0 Hz), 8.14-8.16 (d, 2H, Hgg’, J = 8.0 Hz), 8.23-8.24 (d, 1H, Hh, J = 4.0 

Hz), 8.71-8.73 (d, 2H, Hii’, J = 8.0 Hz), 9.60 (s, 1H, Hj); MS: m/z 353; Anal. Calcd. 

for C17H15N5O4: C, 57.79; H, 4.28; N, 19.82; O, 18.11. Found: C, 57.69; H, 4.20; N, 

19.76; O, 18.04%. 

 

3.5.3.7 1,2,3,4-tetrahydro-6-methyl-4-(3-nitrophenyl)-2-oxo-N-(pyridin-3-yl) 

pyrimidine-5-carboxamide (CPV-107) Yield: 65%; 

mp 192-194 ºC; MS: m/z 353; Anal. Calcd. for 

C17H15N5O4: C, 57.79; H, 4.28; N, 19.82; O, 18.11. 

Found: C, 57.71; H, 4.22; N, 19.78; O, 18.04%. 

 

 

 

3.5.3.8  1,2,3,4-tetrahydro-6-methyl-4-(2-nitrophenyl)-2-oxo-N-(pyridin-3-yl) 

pyrimidine-5-carboxamide (CPV-108) Yield: 79%; 

mp 226-228 ºC; MS: m/z 353; Anal. Calcd. for 

C17H15N5O4: C, 57.79; H, 4.28; N, 19.82; O, 18.11. 

Found: C, 57.70; H, 4.23; N, 19.75; O, 18.00%. 

 

 

 

3.5.3.9 4-(3-chlorophenyl)-1,2,3,4-tetrahydro-6-methyl-2-oxo-N-(pyridin-3-yl) 

pyrimidine-5-carboxamide (CPV-109) Yield: 58%; 

mp 153-155 ºC; MS: m/z 342; Anal. Calcd. for 

C17H15ClN4O2: C, 59.57; H, 4.41; N, 16.34; O, 9.34. 

Found: C, 59.50; H, 4.36; N, 16.25; O, 9.20%. 
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 3.5.3.10 4-(2-chlorophenyl)-1,2,3,4-tetrahydro-6-methyl-2-oxo-N-(pyridin-3-

yl)pyrimidine-5-carboxamide (CPV-110) Yield: 

62%; mp 223-225 ºC; MS: m/z 342; Anal. Calcd. for 

C17H15ClN4O2: C, 59.57; H, 4.41; N, 16.34; O, 9.34. 

Found: C, 59.51; H, 4.30; N, 16.25; O, 9.21%. 

 

 

3.5.4 General procedure for the synthesis of 1,2,3,4-tetrahydro-6-methyl-4-aryl-N-

(pyridin-3-yl)-2-thioxopyrimidine-5-carboxamides (CPV 111-120) 

 

A mixture of N-(pyridin-3-yl)-3-oxo-butanamide (0.01 mol), appropriate aromatic 

aldehyde (0.01 mol), thiourea (0.015 mol) and catalytical amount of concentrated 

hydrochloric acid in ethanol (30 ml) was heated under reflux condition for 8 to10 hrs. 

The reaction mixture was kept at room temperature for 24 hrs. The product obtained 

was isolated and recrystallized from ethanol. 

 

3.5.4.1    1,2,3,4-tetrahydro-6-methyl-4-phenyl-N-(pyridin-3-yl)-2-thioxopyrimidine-

5-carboxamide (CPV-111)  Yield: 64%; mp 167-169 

ºC; IR (cm-1): 3290 (N-H stretching of primary  amide), 

3192 (N-H stretching of pyrimidine ring), 3099 (C-H 

symmetrical stretching of CH3 group), 2874 (C-H 

asymmetrical stretching of CH3 group), 1662 (C=O 

stretching of amide), 1589 (N-H deformation of 

pyrimidine ring), 1523 and 1471 (C=C stretching of aromatic ring), 1433 (C-H 

asymmetrical deformation of CH3 group), 1338 (C-N-C stretching of pyrimidine ring), 

1290 (C-H symmetrical deformation of CH3 group), 1242 (C-N stretching of 

pyrimidine ring), 1201 (C=S stretching), 1031 (C-H in plane deformation of aromatic 

ring), 758 and 721 (C-H out of plane deformation of mono substituted benzene ring); 
1H NMR (DMSO-d6) δ ppm: 2.50 (s, 3H, Ha), 5.43 (s, 1H, Hb), 7.24-7.38 (m, 6H, 

Hcc’-f), 7.96-7.98 (d, 1H, Hg, J = 8.0 Hz), 8.22-8.24 (d, 1H, Hh, J = 8.0  Hz), 8.70 (s, 

1H, Hi,), 9.53 (s, 1H, Hj), 9.94 (s, 1H, Hk), 10.08 (s, 1H, Hl); MS: m/z 324; Anal. 

Calcd. for C17H16N4OS: C, 62.94; H, 4.97; N, 17.27; O, 4.93; S, 9.88. Found: C, 62.85; 

H, 4.91; N, 17.20; O, 4.83; S, 9.80%.  
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3.5.4.2   1,2,3,4-tetrahydro-6-methyl-N-(pyridin-3-yl)-2-thioxo-4-p-tolylpyrimidine-  

5-carboxamide (CPV-112) Yield: 74%; mp 231-233 

ºC; IR (cm-1): 3271 (N-H stretching of secondary 

amide), 3036 (C-H symmetrical stretching of CH3 

group), 2924 (C-H asymmetrical stretching of CH3 

group), 1708 (C=O stretching of amide), 1629 (N-H 

deformation of pyrimidine ring), 1591 and 1512 

(C=C stretching of aromatic ring), 1408 (C-H asymmetrical deformation of CH3 

group), 1338 (C-H symmetrical deformation of CH3 group), 1263 (C-N-C stretching 

of pyrimidine ring), 1236 (C-N stretching of pyrimidine ring), 1149 (C=S stretching); 
1H NMR (DMSO-d6) δ ppm: 2.11 (s, 3H, Ha), 2.53-2.55 (s, 3H, Hb), 5.46-5.47 (s, 1H, 

Hc), 7.19-7.23 (m, 1H, Hd), 7.31 (s, 4H, He-f’), 7.62 (s, 1H, Hg), 7.97-8.00 (m, 1H, Hh),  

8.18-8.20 (m, 1H, Hi), 8.70-8.71 (d, 1H, Hj, J = 4.0 Hz), 8.80 (s, 1H, Hk), 9.68 (s, 1H, 

Hl); MS: m/z 338; Anal. Calcd. for C18H18N4OS: C, 63.88; H, 5.36; N, 16.56; O, 4.73; S, 

9.47. Found: C, 63.80; H, 5.28; N, 16.50; O, 4.68; S, 9.40%. 

 

3.5.4.3      1,2,3,4-tetrahydro-4-(4-methoxyphenyl)-6-methyl-N-(pyridin-3-yl)-2-thioxo 

pyrimidine-5-carboxamide (CPV-113) Yield: 70%; 

mp 181-183 ºC; IR (cm-1): 3363 (N-H stretching of 

primary amide), 3319 (N-H stretching of pyrimidine 

ring), 3099 (C-H symmetrical stretching of CH3    

group), 2966 (C-H asymmetrical stretching of CH3 

group), 1672 (C=O stretching of amide), 1566 (N-H 

deformation of pyrimidine ring), 1516 and 1481 (C=C stretching of aromatic ring), 

1415 (C-H asymmetrical deformation of CH3 group), 1388 (C-H symmetrical 

deformation of CH3 group), 1340 (C-N-C stretching of pyrimidine ring), 1280 (C-N 

stretching of pyrimidine ring), 1197 (C-O-C asymmetrical stretching of  ether linkage), 

1187 (C=S stretching), 1033 (C-O-C symmetrical stretching of  ether linkage), 954 

(C-H in plane deformation of aromatic ring), 804 (C-H out of plane deformation of 

1,4-disubstitution); 1H NMR (DMSO-d6) δ ppm: 2.15 (s, 3H, Ha), 3.74 (s, 1H, Hb), 

5.45 (s, 1H, Hc), 6.83-6.85 (d, 2H, Hdd’, J = 8.0 Hz), 7.19-7.25 (m, 3H, He-f), 7.99-8.01 

(d, 1H, Hg, J = 8.0 Hz), 8.20-8.22 (d, 1H, Hh, J = 8.0 Hz), 8.70-8.71 (d, 1H, Hi, J = 

4.0 Hz), 9.35 (s, 1H, Hj), 9.74 (s, 1H, Hk), 9.88 (s, 1H, Hl); MS: m/z 354; Anal. Calcd. 
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for C18H18N4O2S: C, 61.00; H, 5.12; N, 15.81; O, 9.03; S, 9.05. Found: C, 60.00; H, 

5.05; N, 15.73; O, 8.95; S, 9.00%. 

 

3.5.4.4  4-(4-chlorophenyl)-1,2,3,4-tetrahydro-6-methyl-N-(pyridin-3-yl)-2-thioxo          

pyrimidine-5-carboxamide (CPV-114) Yield: 72%; 

mp 216-218 ºC; MS: m/z 358; Anal. Calcd. for 

C17H15ClN4OS: C, 56.90; H, 4.21; N, 15.61; O, 4.46; 

S, 8.94. Found: C, 56.79; H, 4.15; N, 15.55; O, 4.40; 

S, 8.88%. 

 

 

3.5.4.5 4-(4-fluorophenyl)-1,2,3,4-tetrahydro-6-methyl-N-(pyridin-3-yl)-2-thioxo 

pyrimidine-5-carboxamide (CPV-115) Yield: 77%; 

mp 209-211 ºC; MS: m/z 342; Anal. Calcd. for 

C17H15FN4OS: C, 59.63; H, 4.42; N, 16.36; O, 4.67; 

S, 9.37. Found: C, 59.57; H, 4.36; N, 16.28; O, 4.62; 

S, 9.30%. 

 

 

3.5.4.6       1,2,3,4-tetrahydro-6-methyl-4-(4-nitrophenyl)-N-(pyridin-3-yl)-2-thioxo            

pyrimidine-5-carboxamide (CPV-116) Yield: 65%; 

mp 236-238 ºC; MS: m/z 369; Anal. Calcd. for 

C17H15N5O3S: C, 55.27; H, 4.09; N, 18.96; O, 12.99; 

S, 8.68. Found: C, 55.20; H, 4.00; N, 18.90; O, 12.90; 

S, 8.60%. 

 

 

3.5.4.7 1,2,3,4-tetrahydro-6-methyl-4-(3-nitrophenyl)-N-(pyridin-3-yl)-2-thioxo 

pyrimidine-5-carboxamide (CPV-117) Yield: 63%; 

mp 229-231 ºC; MS: m/z 369; Anal. Calcd. for 

C17H15N5O3S: C, 55.27; H, 4.09; N, 18.96; O, 12.99; 

S, 8.68. Found: C, 55.19; H, 3.98; N, 18.88; O, 12.91; 

S, 8.59%. 
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3.5.4.8 1,2,3,4-tetrahydro-6-methyl-4-(2-nitrophenyl)-N-(pyridin-3-yl)-2-thioxo 

pyrimidine-5-carboxamide (CPV-118) Yield: 68%; 

mp 234-236 ºC; MS: m/z 369; Anal. Calcd. for 

C17H15N5O3S: C, 55.27; H, 4.09; N, 18.96; O, 12.99; 

S, 8.68. Found: C, 55.17; H, 3.96; N, 18.89; O, 12.91; 

S, 8.58%. 

 

 

3.5.4.9 4-(3-chlorophenyl)-1,2,3,4-tetrahydro-6-methyl-N-(pyridin-3-yl)-2-thioxo    

pyrimidine-5-carboxamide (CPV-119) Yield: 62%; 

mp 188-190 ºC; MS: m/z 358; Anal. Calcd. for 

C17H15ClN4OS: C, 56.90; H, 4.21; N, 15.61; O, 4.46; 

S, 8.94. Found: C, 56.81; H, 4.16; N, 15.54; O, 4.41; 

S, 8.88%. 

 

 

3.5.4.10  4-(2-chlorophenyl)-1,2,3,4-tetrahydro-6-methyl-N-(pyridin-3-yl)-2-thioxo 

pyrimidine-5-carboxamide (CPV-120) Yield: 59%; 

mp 238-240 ºC; MS: m/z 359; Anal. Calcd. for 

C17H15ClN4OS: C, 56.90; H, 4.21; N, 15.61; O, 4.46; 

S, 8.94. Found: C, 56.82; H, 4.14; N, 15.54; O, 4.39; 

S, 8.85%. 

 

 

3.5.5 General procedure for the synthesis of 1,2,3,6-tetrahydro-1,4-dimethyl-2-oxo-

6-aryl-N-(pyridin-3-yl)pyrimidine-5-carboxamide (CPV 121-130) 

 

A mixture of N-(pyridin-3-yl)-3-oxo-butanamide (0.01 mol), appropriate aromatic 

aldehyde (0.01 mol), N-methyl urea (0.015 mol) and catalytical amount of 

concentrated hydrochloric acid in ethanol (30 ml) was heated under reflux condition 

for 8 to10 hrs. The reaction mixture was kept at room temperature for 24 hrs. The 

product obtained was isolated and recrystallized from ethanol. 
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3.5.5.1     1,2,3,6-tetrahydro-1,4-dimethyl-2-oxo-6-phenyl-N-(pyridin-3-yl)pyrimidine- 

5-carboxamide (CPV-121)  Yield: 78%; mp 244-246 

ºC; IR (cm-1): 3527 (N-H stretching of primary amide), 

3427 (N-H stretching of pyrimidine ring), 3009 (C-H 

symmetrical stretching of CH3    group), 2924 (C-H 

asymmetrical stretching of CH3 group), 1693 (C=O 

stretching of amide), 1629 (N-H deformation of 

pyrimidine ring), 1471 and 1456 (C=C stretching of aromatic ring), 1421 (C-H 

asymmetrical deformation of CH3 group), 1356 (C-N-C stretching of pyrimidine ring), 

1334 (C-H symmetrical deformation of CH3 group), 1263 (C-N stretching of 

pyrimidine ring), 1220 (C-H in plane deformation of aromatic ring), 746 and 705 (C-

H out of plane deformation of mono substituted benzene ring); 1H NMR (DMSO-d6) δ 

ppm: 3.16 (s, 3H, Ha), 3.32 (s, 3H, Hb), 5.41 (s, 1H, Hc), 7.20-7.30 (m, 6H, Hd-g), 

7.67-7.68 (d, 1H, Hh, J = 4.0 Hz), 8.02-8.05 (m, 1H, Hi), 8.21-8.22 (m, 1H, Hj), 8.73-

8.74 (d, 1H, Hk, J = 4.0 Hz), 9.91 (s, 1H, Hl); MS: m/z 322; Anal. Calcd. for 

C18H18N4O2: C, 67.07; H, 5.63; N, 17.38; O, 9.93. Found: C, C, 67.00; H, 5.59; N, 

17.30; O, 9.88%. 

 

3.5.5.2 1,2,3,6-tetrahydro-1,4-dimethyl-2-oxo-N-(pyridin-3-yl)-6-p-tolylpyrimidine-              

5-carboxamide (CPV-122) Yield: 69%; mp 212-214 

ºC; IR (cm-1): 3435 (N-H stretching of primary amide), 

3275 (N-H stretching of pyrimidine ring), 3045 (C-H 

symmetrical stretching of CH3    group), 2937 (C-H 

asymmetrical stretching of CH3 group), 1693 (C=O 

stretching of amide), 1629 (N-H deformation of 

pyrimidine ring), 1585 and 1471 (C=C stretching of aromatic ring), 1417 (C-H 

asymmetrical deformation of CH3 group), 1354 (C-H symmetrical deformation of CH3 

group), 1332 (C-N-C stretching of pyrimidine ring), 1261 (C-N stretching of 

pyrimidine ring), 1186 (C-H in plane deformation of aromatic ring), 898 (C-H out of 

plane deformation of 1,4-disubstitution); 1H NMR (DMSO-d6) δ ppm: 2.17-2.24 (d, 

6H, Haa’), 3.08 (s, 3H, Hb), 5.27 (s, 1H, Hc), 7.12 (m, 4H, Hdd’-ee’), 7.28-7.32 (m, 1H, 

Hf), 7.76-7.77 (d, 1H, Hg, J = 4.0 Hz), 7.98-8.00 (d, 1H, Hh, J = 8.0 Hz), 8.22-8.24 (d, 

1H, Hi, J = 8.0 Hz), 8.72 (s, 1H, Hj), 10.01 (s, 1H, Hk); MS: m/z 336; Anal. Calcd. for  
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C19H20N4O2: C, 67.84; H, 5.99; N, 16.66; O, 9.51. Found: C, 67.78; H, 5.90; N, 16.60;  

O, 9.44%. 

 

3.5.5.3 1,2,3,6-tetraydro-6-(4-methoxyphenyl)-1,4-dimethyl-2-oxo-N-(pyridin-3-yl) 

pyrimidine-5-carboxamide (CPV-123) Yield: 70%; 

mp 235-237 ºC; MS: m/z 352; Anal. Calcd. for 

C19H20N4O3: C, 64.76; H, 5.72; N, 15.90; O, 13.62. 

Found: C, 64.70; H, 5.65; N, 15.80; O, 13.55%. 

 

 

 

3.5.5.4  6-(4-chlorophenyl)-1,2,3,6-tetrahydro-1,4-dimethyl-2-oxo-N-(pyridin-3-yl) 

pyrimidine-5-carboxamide (CPV-124) Yield: 66%; 

mp 271-273 ºC; MS: m/z 356; Anal. Calcd. for 

C18H17ClN4O2: C, 60.59; H, 4.80; N, 15.70; O, 8.97. 

Found: C, 60.50; H, 4.73; N, 15.63; O, 8.91%. 

 

 

 

3.5.5.5 6-(4-fluorophenyl)-1,2,3,6-tetrahydro-1,4-dimethyl-2-oxo-N-(pyridin-3-yl) 

pyrimidine-5-carboxamide (CPV-125) Yield: 66%; 

mp 261-263 ºC; MS: m/z 340; Anal. Calcd. For 

C18H17FN4O2: C, 63.52; H, 5.03; N, 16.46; O, 9.40. 

Found: C, 63.47; H, 4.95; N, 16.40; O, 9.33%. 

 

 

 

3.5.5.6 1,2,3,6-tetrahydro-1,4-dimethyl-6-(4-nitrophenyl)-2-oxo-N-(pyridin-3-yl) 

pyrimidine-5-carboxamide (CPV-126) Yield: 71%; 

mp 265-267 ºC; IR (cm-1): 3477 (N-H stretching of 

primary amide), 3217 (N-H stretching of pyrimidine 

ring), 3103 (C-H symmetrical stretching of CH3    

group), 2937 (C-H asymmetrical stretching of CH3 
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group), 1697 (C=O stretching of amide), 1626 (N-H deformation of pyrimidine ring), 

1519 (C=C stretching of aromatic ring), 1481 (C-H asymmetrical deformation of CH3 

group), 1419 (C-NO2 symmetrical stretching), 1386 (C-H symmetrical deformation of 

CH3 group), 1348 (C-N-C stretching of pyrimidine ring), 1265 (C-N stretching of 

pyrimidine ring), 1220 (C-H in plane deformation of aromatic ring), 804 (C-H out of 

plane deformation of 1,4-disubstitution); 1H NMR (DMSO-d6) δ ppm: 2.26 (s, 3H, 

Ha), 3.17 (s, 3H, Hb), 5.50 (s, 1H, Hc), 7.21-7.24 (m, 1H, Hd), 7.55-7.57 (d, 2H, Hee’, J 

= 8.0 Hz), 7.90-7.92 (d, 1H, Hf, J = 8.0 Hz), 8.03-8.05 (d, 1H, Hg, J = 8.0 Hz), 8.14-

8.16 (d, 2H, Hhh’, J = 8.0 Hz), 8.23-8.24 (d, 1H, Hi, J = 4.0 Hz), 8.74 (s, 1H, Hj), 9.98 

(s, 1H, Hk); MS: m/z 367; Anal. Calcd. For C18H17N5O4: C, 58.85; H, 4.66; N, 19.06; 

O, 17.42. Found: C, 58.80; H, 4.60; N, 18.98; O, 17.35%. 

 

3.5.5.7 1,2,3,6-tetrahydro-1,4-dimethyl-6-(3-nitrophenyl)-2-oxo-N-(pyridin-3-yl) 

pyrimidine-5-carboxamide (CPV-127) Yield: 59%; 

mp 223-225 ºC); MS: m/z 367; Anal. Calcd. For 

C18H17N5O4: C, 58.85; H, 4.66; N, 19.06; O, 17.42. 

Found: C, 58.78; H, 4.57; N, 18.97; O, 17.33%. 

 

 

 

3.5.5.8 1,2,3,6-tetrahydro-1,4-dimethyl-6-(2-nitrophenyl)-2-oxo-N-(pyridin-3-yl) 

pyrimidine-5-carboxamide (CPV-128) Yield: 74%; 

mp  218-220 ºC; MS: m/z 367; Anal. Calcd. For 

C18H17N5O4: C, 58.85; H, 4.66; N, 19.06; O, 17.42. 

Found: C, 58.75; H, 4.59; N, 18.97; O, 17.34%. 

 

 

 

3.5.5.9 6-(3-chlorophenyl)-1,2,3,6-tetrahydro-1,4-dimethyl-2-oxo-N-(pyridin-3-yl)      

pyrimidine-5-carboxamide (CPV-129) Yield: 63%; 

mp 261-263 ºC; MS: m/z 356; Anal. Calcd. for 

C18H17ClN4O2: C, 60.59; H, 4.80; N, 15.70; O, 8.97. 

Found: C, 60.51; H, 4.74; N, 15.63; O, 8.90%. 
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3.5.5.10    6-(2-chlorophenyl)-1,2,3,6-tetrahydro-1,4-dimethyl-2-oxo-N-(pyridin-3-yl) 

pyrimidine-5-carboxamide (CPV-130) Yield: 72%; 

mp 221-223 ºC; MS: m/z 356; Anal. Calcd. for 

C18H17ClN4O2: C, 60.59; H, 4.80; N, 15.70; O, 8.97. 

Found: C, 60.49; H, 4.75; N, 15.65; O, 8.91%. 
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3.6 Spectral discussion 

3.6.1 Mass spectral study 
Mass spectra were recorded on Shimadzu GC-MS-QP-2010 model using Direct 

Injection Probe technique. Systematic fragmentation pattern was observed in mass 

spectral analysis. Molecular ion peak was observed in agreement with molecular 

weight of respective compound. Mass fragmentation pattern for a representative 

compound of each series is depicted below. 

 

3.6.1.1 Mass fragmentation pattern for CPV-101 
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3.6.1.2 Mass fragmentation pattern for CPV-111 
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3.6.1.3 Mass fragmentation pattern for CPV-121 
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3.6.2 IR spectral study 
IR spectra were recorded on Shimadzu FT-IR-8400 model using KBr pellet method. 

Various functional groups present in molecule were identified by characteristic 

frequency obtained for them. For compounds CPV-101 to 130, confirmatory band for 

amidic linkage of acetoacetanilide fragment was found in the range of 3215-3530 cm-1 

and pyrimidine nucleus (C-N-C stretching, C-N stretching) were found in the range of 

1320-1410 cm-1 and 1260-1425 cm-1 respectively. Another characteristic carbonyl 

stretching band of pyrimidine was observed at 1662-1712 cm-1 suggesting formation 

of desired products CPV-101 to 130.     

  

3.6.3 1H NMR spectral study 
1H NMR spectra were recorded in DMSO-d6 solution on a Bruker Ac 400 MHz 

spectrometer using TMS as an internal standard. Number of protons and their 

chemical shifts were found to support the structure of the synthesized compounds. 

For CPV-101 to 130, characteristic singlets were observed for methyl group of 

acetoacetanilide fragment at 2.11-3.16 δ ppm. Another characteristic methine proton 

peak was observed at 5.27-5.63 δ ppm which further confirmed the cyclisation. The 

aromatic ring protons were observed at 6.82-8.70 δ ppm and J value were found to be 

in accordance with substitution pattern.  
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IR spectrum of CPV-101 

 

 

Mass spectrum of CPV-101 
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1H NMR spectrum of CPV-101 

 

 

Expanded 1H NMR spectrum of CPV-101 
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IR spectrum of CPV-103 

 

 

Mass spectrum of CPV-103 
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1H NMR spectrum of CPV-103 

 

 

Expanded 1H NMR spectrum of CPV-103 
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IR spectrum of CPV-106 

 

 

Mass spectrum of CPV-106 
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1H NMR spectrum of CPV-106 

 

 

Expanded 1H NMR spectrum of CPV-106 
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IR spectrum of CPV-111 

 

 

Mass spectrum of CPV-111 
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1H NMR spectrum of CPV-111 

 

 

Expanded 1H NMR spectrum of CPV-111 
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IR spectrum of CPV-112 

 

 

Mass spectrum of CPV-112 
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1H NMR spectrum of CPV-112 

 

 

Expanded 1H NMR spectrum of CPV-112 
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IR spectrum of CPV-113 

 

 

Mass spectrum of CPV-113 
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1H NMR spectrum of CPV-113 

 

 

Expanded 1H NMR spectrum of CPV-113 
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IR spectrum of CPV-121 

 

 

Mass spectrum of CPV-121 
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1H NMR spectrum of CPV-121 

 

 

Expanded 1H NMR spectrum of CPV-121 
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IR spectrum of CPV-122 

 

 

Mass spectrum of CPV-122 
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1H NMR spectrum of CPV-122 

 

 

Expanded 1H NMR spectrum of CPV-122 
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IR spectrum of CPV-126 

 

 

Mass spectrum of CPV-126 
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1H NMR spectrum of CPV-126 

 

 

Expanded 1H NMR spectrum of CPV-126 
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3.7 Biological evaluation 

3.7.1 Antimicrobial evaluation 
All of the synthesized compounds (CPV-101 to 130) were tested for their antibacterial 

and antifungal activity (MIC) in vitro by broth dilution method [126-128] with two 

Gram-positive bacteria Staphylococcus aureus MTCC-96, Streptococcus pyogenes 

MTCC 443, two Gram-negative bacteria Escherichia coli MTCC 442, Pseudomonas 

aeruginosa MTCC 441 and three fungal strains Candida albicans MTCC 227, 

Aspergillus Niger MTCC 282, Aspergillus clavatus MTCC 1323 taking gentamycin, 

ampicillin, chloramphenicol, ciprofloxacin, norfloxacin, nystatin and greseofulvin as 

standard drugs. The standard strains were procured from the Microbial Type Culture 

Collection (MTCC), Institute of Microbial Technology, Chandigarh, India.  

 The minimal inhibitory concentration (MIC) values for all the newly 

synthesized compounds, defined as the lowest concentration of the compound 

preventing the visible growth, were determined by using micro dilution broth method 

according to NCCLS standards [126].  

 

Minimal Inhibition Concentration [MIC]:- 
The main advantage of the ‘Broth Dilution Method’ for MIC determination lies in the 

fact that it can readily be converted to determine the MIC as well. 

 
1. Serial dilutions were prepared in primary and secondary screening. 

2. The control tube containing no antibiotic is immediately subcultured (before 

inoculation) by spreading a loopful evenly over a quarter of plate of medium 

suitable for the growth of the test organism and put for incubation at 37 0C 

overnight.  

3. The MIC of the control organism is read to check the accuracy of the drug 

concentrations.  

4. The lowest concentration inhibiting growth of the organism is recorded as the 

MIC.  

5. The amount of growth from the control tube before incubation (which 

represents the original inoculums) is compared.  
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Methods used for primary and secondary screening: - 
Each synthesized drug was diluted obtaining 2000 μg mL-1 concentration, as a stock 

solution. Inoculum size for test strain was adjusted to 108
 cfu (colony forming unit) 

per milliliter by comparing the turbidity. 

Primary screen: - In primary screening 1000 μg mL-1, 500 μg mL-1 and 250 μg mL-1 

concentrations of the synthesized drugs were taken. The active synthesized drugs 

found in this primary screening were further tested in a second set of dilution against 

all microorganisms.  

Secondary screen: - The drugs found active in primary screening were similarly 

diluted to obtain 200 μg mL-1, 100 μg mL-1, 50 μg mL-1, 25 μg mL-1, 12.5 μg mL-1 

and 6.250 μg mL-1 concentrations.  

 
Reading Result: - The highest dilution showing at least 99 % inhibition zone is taken 

as MIC. The result of this is much affected by the size of the inoculums. The test 

mixture should contain 108 organism/mL.           

                 
The results obtained from antimicrobial susceptibility testing are depicted in Table 1. 
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Table-1:-   In vitro Antimicrobial Screening Results for CPV-101 to 130 
Code Minimal inhibition concentration (µg mL-1 ) 

Gram-positive Gram-negative Fungal species 
S.a. S. p. E.c. P.a. C. a. A. n. A.c. 

CPV-101 150 200 250 250 1000 500 500 
CPV-102 100 250 200 200 500 >1000 >1000 
CPV-103 150 150 62.5 100 >1000 >1000 >1000 
CPV-104 250 250 100 100 1000 500 1000 
CPV-105 200 200 100 100 >1000 >1000 >1000 
CPV-106 500 500 62.5 200 >1000 1000 1000 
CPV-107 250 500 250 250 500 1000 1000 
CPV-108 500 500 200 200 1000 500 1000 
CPV-109 100 62.5 250 250 >1000 500 1000 
CPV-110 100 500 62.5 250 500 >1000 1000 
CPV-111 200 500 250 250 >1000 >1000 >1000 
CPV-112 200 250 200 100 500 1000 1000 
CPV-113 250 500 250 500 >1000 1000 1000 
CPV-114 250 250 100 250 500 1000 500 
CPV-115 200 200 100 100 500 >1000 1000 
CPV-116 250 500 62.5 200 >1000 500 >1000 
CPV-117 200 100 250 62.5 500 500 >1000 
CPV-118 500 500 200 250 500 1000 500 
CPV-119 100 62.5 100 250 500 1000 >1000 
CPV-120 200 250 100 250 >1000 >1000 >1000 
CPV-121 500 500 500 200 >1000 >1000 >1000 
CPV-122 500 500 250 250 >1000 >1000 >1000 
CPV-123 200 250 250 150 500 >1000 500 
CPV-124 250 250 100 100 >1000 >1000 >1000 
CPV-125 200 200 500 500 >1000 >1000 >1000 
CPV-126 500 500 250 500 >1000 >1000 >1000 
CPV-127 200 200 100 150 1000 1000 250 
CPV-128 250 500 62.5 250 500 1000 >1000 
CPV-129 500 500 100 250 1000 1000 250 
CPV-130 200 200 100 250 1000 1000 >1000 
Gentamycin 0.25 0.5 0.05 1 - - - 
Ampicillin 250 100 100 100 - - - 
Chloramphenicol 50 50 50 50 - - - 
Iprofloxacin 50 50 25 25 - - - 
Norfloxacin 10 10 10 10 - - - 
Nystatin - - - - 100 100 100 
Greseofulvin - - - - 500 100 100 

 

 

 

 

 

 

 

 



 

Chapter 3                                                                                        Dihydropyrimidines 

       95

3.7.2 Antimycobacterial, anticancer and antiviral evaluation 
Antimycobacterial, anticancer and antiviral screening of all the newly synthesized 

compounds CPV-101 to CPV-130 is currently under investigation and results are 

awaited.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 3                                                                                        Dihydropyrimidines 

       96

3.8 References and notes  
[1] (a) Ramo´n, D. J.; Yus, M. Angew. Chem., Int. Ed. 2005, 44, 1602. (b) 

Ramachary, D. B.; Barbas, C. F., III. Chem. Eur. J. 2004, 10, 5323. (c) 

Denmark, S. E.; Fan, Y. J. Am. Chem. Soc. 2003, 125, 7825. (d) Andreana, P. 

R.; Liu, C. C.; Schreiber, S. L. Org. Lett. 2004, 6, 4231. (e) Cozzi, P. G.; 

Rivalta, E. Angew. Chem., Int. Ed. 2005, 44, 3600. (f) 

[2] (a) Biginelli, P. Gazz. Chim. Ital. 1893, 23, 360. (b) Kappe, C. O. Acc. Chem. 

Res. 2000, 33, 879. (c) Lusch, M. J.; Tallarico, J. A. Org. Lett. 2004, 6, 3237. 

[3] Janis, R. A.; Silver, P. J.; Triggle, D. J. Adv.Drug.Res. 1987, 16, 309. 

[4] Folkers, K.; Johnson, T. B. J. Am. Chem. Soc. 1933, 55, 3781-3791. 

[5] Sweet, F.; Fissekis, J. D. J. Am. Chem. Soc. 1973, 95, 8741. 

[6] Hu, E. H.; Sidler, D. R.; Dolling, U. H. J. Org. Chem. 1998, 63, 3454-3457. 

[7] Kappe, C. O.; Falsone, F.; Fabian, W. M. F.; Belaj, F. Heterocycles 1999, 51, 

77-84. 

[8] Atwal, K. S.; O’Reilly, B. C.; Gougoutas, J. Z.; Malley, M. F. Heterocycles 

1987, 26, 1189- 1192. 

[9] Shutalev, A. D.; Kishko, E. A.; Sivova, N. V.; Kuznetsov, A. Yu. Molecules 

1998, 3, 100-106. 

[10] Atwal, K. S.; Swanson, B. N.; Unger, S. E.; Floyd, D. M.; Moreland, S.; 

Hedberg, A.; O’Reilly, B. C. J.Med. Chem., 1991, 341, 806. 

[11] Patil, A. D.; Kumar, N. V.; Kokke, W. C.; Bean, M. F.; Freyer, A. J.; 

Debrosse, C.; Mai, S.;   Trunch, A.; Faulkner, D. J.; Carte, B.; Breen, A. L.; 

Hertzberg, R. P.; Johnson, R. K.; Westley, J. W.; Potts, B. C. J. Org. Chem. 

1995, 60, 1182. 

[12] Sinder, B. B.; Shi, Z. J Org. Chem., 1993, 58, 3828 

[13] Overman, L. E.; Rabinowitz, M. H.; Renhowe, P. A. J. Am. Chem. Soc., 1995, 

117, 2675 

[14] Kappe, C. O.; Fabian, M. F. Tetrahedron, 1997, 53(8), 2803. 

[15] Hurst, E. W.; Hull, R. J. Med. Pharm. Chem., 1961, 3, 215. 

[16] Rovnyak, G. C.; Atwal, K. S.; Hedberg, A.; Kimball, S. D.; Moreland, S.; 

Gougoutas, J. Z.; O’Reilly, B. C.; Schwartz, J.; Malley, M. F. J. Med. Chem., 

1981, 46, 3433. 



 

Chapter 3                                                                                        Dihydropyrimidines 

       97

[17] Cho, H.; Ueda, M.; Shima, K.; Mizuno, A.; Hayashimatsu, M.; Ohnaka, Y.; 

Hamaguchi, M.; Aisaka, K.; Hidaka, T.; Kawai, M.; Takeda, M.; Ishihara, T.; 

Funahashi, K.; Satoh, F; Morita, M.; Noguchi, T. J.Med. Chem., 1989, 32, 

2399. 

[18] Becerro, M. A.; Uriz, M. J.; Turon, X. Mar. Biol. 1994, 121, 301-307. 

[19] Berlinck, R. G. S. Nat. Prod. Rep. 2002, 19, 617. 

[20] (a) Kashman, Y.; Hirsh, S.; McConnell, O. J.; Ohtani, I.; Kusumi, T.; 

Kakisawa, H. J. Am. Chem. Soc. 1989, 111, 8925. (b) Jares-Erijman, E. A.; 

Sakai, R.; Rinehart, K. L. J. Org. Chem. 1991, 56, 5712. 

[21] (a) Patil, A. D.; Kumar, N. V.; Kokke, W. C.; Bean, M. F.; Freyer, A. J.; De 

Brosse, C.; Mai, S.; Truneh, A.; Faulkner, D. J.; Carte, B.; Breen, A. L.; 

Hertzberg, R. P. Johnson, R. K.; Westley, J. W.; Potts, B. C. M. J.Org. Chem. 

1995, 60, 1182. (b) Patil, A. D.; Freyer, A. J.; Taylor, P. B.; Carte, B.; Zuber, 

G.; Johnson, R. K.; Faulkner, D. J. J. Org. Chem. 1997, 62, 1814. 

[22] (a) Nagasawa, K.; Georgeiva, A.; Koshino, H.; Nakata, T.; Kita, T.; 

Hashimoto, Y. Org. Lett. 2002, 4, 177. (b) Ishiwata, T.; Hino, T.; Koshino, H.; 

Hashimoto, Y.; Nakata, T.; Nagasawa, K. Org. Lett. 2002, 4, 2921. (c) 

Nagasawa, K.; Ishiwata, Y.; Hasimoto, Y.; Nakata, T. Tetrahedron Lett. 2002, 

43, 6383. (d) Moore, C. G.; Murphy, P. J.; Williams, H. L.; McGown, A. T.; 

Smith, N. K. Tetrahedron Lett. 2003, 44, 251. 

[23] (a) Coffey, D. S.; McDonald, A. I.; Overman, L. E.; Rabinowitz, M. H.; 

Renhowe, P A. J. Am. Chem. Soc. 2000, 122, 4893. (b) Coffey, D. S.; 

Overman, L. E.; Stappenbeck, F. J. Am. Chem. Soc. 2000, 122, 4094. 

[24] Atwal, K. S.; Swanson, B. N.; Unger, S. E.; Floyd, D. M.; Moreland, S.; 

Hedberg, A.; O’Reilly, B. C. J. Med. Chem. 1991, 34, 806-811. 

[25] Rovnyak, G. C.; Atwal, K. S.; Hedberg, A.; Kimball, S. D.; Moreland, S.; 

Gougoutas, J. Z.; O’Reilly, B. C.; Schwartz, J.; Malley, M. F. J. Med. Chem. 

1992, 35, 3254-3263. 

[26] Grover, G. J.; Dzwonczyk, S.; McMullen, D. M.; Normandin, D. E.; Parham, 

C. S.; Sleph, P. G.; Moreland, S. J. Cardiovasc. Pharmacol. 1995, 26, 289-

294. 



 

Chapter 3                                                                                        Dihydropyrimidines 

       98

[27] Barrow, J. C.; Nantermet, P. G.; Selnick, H. G.; Glass, K. L.; Rittle, K. E.; 

Gilbert, K. F.; Steele, T. G.; Homnick, C, F.; Freidinger, R. M. J. Med. Chem. 

2000, 43, 2703-2718. 

[28] Haggarty, S. J.; Mayer, T. U.; Miyamoto, D. T.; Fathi, R.; King, R. W.; 

Mitchison, T. J.; Schreiber, S. L. Chem. Biol. 2000, 7, 275-286. 

[29] Kappe, C. O. Eur. J. Med. Chem. 2000, 35, 1043–1052.  

[30] (a) Galante, L.; Joplin, G. F.; MacIntyre, I. Clin. Sci. 1973, 44, 605. (b) 

Williams, C. P.; Meachim, G.; Taylor, W. H. J. Clin. Pathol. 1978, 31, 1212. 

[31] Silverman, S. L. Am. J. Med. Sci. 1997, 313, 13. 

[32] Torres, M. M.; Raya, P. M. Drugs Today 2000, 36, 1. 

[33] Matthews, J. M.; Liotta, F.; Hageman, W.; Rivero, R. A.; Wstover, L.; Yang, 

M.; Xu, J.; Demarest, K. Bio.org. Med. Chem. Lett. 2004, 1155-1159. 

[34] (a) Mayer, T. U.; Kapoor, T. M.; Haggarty, S. J.; King, R. W.; Schreiber, S. 

L.; Mitchison, T. J. Science 1999, 286, 971; (b) Haggarty, S. J.; Mayer, T. U.; 

Miyamoto, D. T.; Fathi, R.; King, R. W.; Mitchison, T. J.; Schreiber, S. L. 

Chem. Biol. 2000, 7, 275; (c) Maliga, Z.; Kapoor, T. M.; Mitchison, T. J. 

Chem. Biol. 2002, 9, 989. 

[35] (a) Lagu, B.; Tian, D.; Chiu, G.; Nagarathnam, D.; Fang, J.; Shen, Q.; Forray, 

C.; Ransom, R.; Chang, R. S. L.; Vyas, K. P.; Zhang, K.; Gluchowski, C. 

Bioorg. Med. Chem. Lett. 2000, 10 (2) 175-178; (b) Barrow, J. C.; Nantermet, 

P. G.; Selnick, H. G.; Glass, K. L.; Rittle, K. E.; Gilbert, K. F.; Steele, T. G.; 

Homnick, C. F.; Freidinger, T. W.; Ransom, R. W.; Kling, P.; Reiss, D.; 

Broten, T. P.; Schorn, T. W.; Chang, R. S. L.; O’Malley, S. S.; Olah, T. V.; 

Ellis, J. D.; Barrish, A.; Kassahun, K.; Leppert, P.; Nagarathnam, D.; Forray, 

C. J. Med. Chem. 2000, 43, 2703. 

[36] Zhang, L.; Rana, T. M. J. Comb. Chem. 2004, 6, 457. 

[37] Atwal, K. S.; Swanson, B. N.; Unger, S. E.; Floyd, D. M.; Moreland, S.; 

Hedberg, A.; O’ Relly, B. C. J. Med. Chem. 1991, 34, 806. 

[38] (a) Christopher, B.; Bing G.; James B. bio. Org.Med. Chem. Lett. 2006, 16, 

3504-3509. (b) Thomson, A. B. R.; De Pover, A.; Keelan, M.; JarockaCyrta, 

C.; Clandinin, M. Y.  Methods Enzymol. 1997, 286, 3. 

[39] Ballinger, A.; Peikin, S. R. Eur. J. Pharmacol. 2002, 440, 109. 

[40] Schaffer, J. E.; Lodish, H. Cell 1994, 79, 427. 



 

Chapter 3                                                                                        Dihydropyrimidines 

       99

[41] Hirsch, D.; Stahl, A.; Lodish, H. F. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 

8625. 

[42] (a) Abumrad, N.; Coburn, C.; Ibrahimi, A. Biochim. Biophys. Acta 1999, 

1441, 4; (b) Hatch, G. M. J. Lipid Res. 2002, 43, 1380; (c) Schaffer, J. E. Am. 

J. Physiol. Endocrinol. Metab. 2002, 282, E239. 

[43] Stahl, A.; Hirsch, D. J.; Gimeno, R. E.; Punreddy, S.; Ge, P.; Watson, N.; 

Patel, S.; Kotler, M.; Raimondi, A.; Tartaglia, L. A.; Lodish, H. F. Mol. Cells 

1999, 4, 299. 

[44] Gimeno, R. E.; Hirsch, D. J.; Punreddy, S.; Sun, Y.; Ortegon, A. M.; Wu, H.; 

Daniels, T.; Stricker-Krongrad, A.; Lodish, H. F.; Stahl, A. J. Biol. Chem. 

2003, 278, 49512. 

[45] Stuhlsatz-Krouper, S. M.; Bennett, N. E.; Schaffer, J. E. J. Biol. Chem. 1998, 

273, 28642. 

[46] Coe, N. R.; Smith, A. J.; Frohnert, B. I.; Watkins, P. A.; Bernlohr J. Biol. 

Chem. 1999, 274, 36300. 

[47] Hall, A. M.; Smith, A. J.; Bernlohr, D. A. J. Biol. Chem. 2003, 278, 43008. 

[48] Abumrad, N.; Harmon, C.; Ibrahimi, A. J. Lipid Res. 1998, 39, 2309. 

[49] Herrmann, T.; Buchkremer, F.; Gosch, I.; Hall, A. M.; Bernlohr, D. A.; 

Stremmel, W. Gene 2001, 270, 31. 

[50] Drug Data report, 1998, 10, 200. 

[51] Cepanec, I.; Litvic, I.; Bartolincic, A.; Lovric, M. Tetrahedron 2005, 61, 4275. 

[52] Lu, J.; Bai, Y. Synthesis 2002, 47, 466. 

[53] Adapa, S. R.; Anan, M.M.; Varala, R. Synlett 2003, 67. 

[54] Hojatollah, S.; Guo, Q. Synth. Commun. 2004, 34, 171. 

[55] Martins, M. A. P., Teixeira, M. V. M., Cunico, W. Scapin, R. E., Mayer, 

Pereira, C.M.P., Zanatta, N., Bonacorso, H. G. C., Peppe, Y. F. Yuan, 

Tetrahedron Lett. 2004, 45, 8991. 

[56] Fazaeli, R. S., Tangestaninejad, H. Aliyan, M. Moghadam, Appl. Catal. A: 

Gen. 2006, 309, 44. 

[57] Liu, C.; Wang, J.; Li, Y. J. Mol. Catal A: Chem. 2006, 258, 367. 

[58] Bose, D. S.; Fatima, L.; Mereyala, H. B. J. Org. Chem. 2003, 68, 587. 

[59] Lusch, M. J.; Tallarico, J. A. Org. Lett. 2004, 6, 3237. 

[60] Huang Y. J., Yang F.Y., Zhu, C. J. J. Am. Chem. Soc. 2005, 127, 16386. 



 

Chapter 3                                                                                        Dihydropyrimidines 

       100

[61] Rafiee, E.; Jafari, H. Biol. Med. Chem. Lett. 2006, 16, 2463. 

[62] Amini, M. M.; Shaabani, A.; Bazgir, A. Catal. Commun. 2006, 7, 843. 

[63] Maradur, P. S.; Gokavi, G. S. Catal. Commun. 2007, 8, 279. 

[64] Heravi, M. M.; Bakhtiari, K. Bamoharam, F. F. Catal. Commun. 2006, 7, 373. 

[65] Rafiee, E.; Shahbazi, F. J. Mol. Catal. A: Chem. 2006, 250, 57. 

[66] Joseph, J. K.; Jain, S. L.; Sain, B. J. Mol. Catal. A: Chem. 2006, 247, 99. 

[67] Palaniappan, S., John, A., J. Mol. Catal. A: Chem. 2005, 233, 9. 

[68] Gohain, M., Prajapati, D., Sandhu, J. S., Synlett 2004, 235. 

[69] Mabry, J.; Ganem, B. Tetrahedron Lett. 2006, 47, 55. 

[70] Chen, X. H.; Xu, X. Y.; Liu, H.; Cun, L. F.; Gong, L. Z. J. Am. Chem. Soc. 

2006, 128, 14802. 

[71] Zhu, Y. L.; Huang, S. L.; Wan, J. P.; Yan, L.; Pan, Y. J.; Wu, A. Org. Lett. 

2006, 8, 2599. 

[72] Reddy, C. V.; Mahesh, M.; Raju, P.V.K.; Babu, T.R.; Reddy, V. V. N. 

Tetrahedron Lett. 2002, 43, 2657. 

[73] Singh, K.; Arora, D.; Singh, S. Tetrahedron.Lett. 2006, 47, 4205-4207. 

[74] Hu, E. H.; Sidler, D. R.; Dolling, U. H. J. Org. Chem. 1998, 63, 3454. 

[75] Salitha, G.; Reddy, G. S. K.; Reddy, K. B.; J. S. Yadav, Tetrahedron Lett. 

2003, 44, 6497. 

[76] Yadav, J. S.; Reddy, B. V. S.; Srinivas, R.; Venugopal, C.; Ramalingam, T. 

Synthesis 2001, 1341. 

[77] Dong, F.; Jun, L.; Xinli, Z.; Zhiwen, Y.; Zuliang, L. J. Mol. Catal. A: Chem. 

2006, 247, 99. 

[78] Legeay, J. C.; Vanden Eynde, J. J.; Bazureau, J. P. Tetrahedron Lett. 2007, 47, 

1063. 

[79] Putilova E. S.; Troitskii N. A.; Zlotin S. G. Russ. Chem. bull. 2005, 54, 1233-

1238. 

[80] Renwei Z.; Xiaoxia W.; Hui X.; Jingxing D. Synth. Commu. 2006, 36, 1503-

1513. 

[81] Legeay,
 
J. C.;  Vanden Eynde, J. J.; Toupet, L.;, Bazureau, J. P. Arkivoc  2007, 

3, 13-28. 

[82] Peng J., Deng Y., Tetrahedron Lett. 2001, 42, 5917-5919. 



 

Chapter 3                                                                                        Dihydropyrimidines 

       101

[83] Rosi Reddy K., Venkateshwar Reddy C., Mahesh M., Raju P. V. K., 

Narayana Reddy V. V., Tetrahedron Lett. 2003, 44, 8173-8175. 

[84] Shaabani A., Bazgir A., Teimouri F., Tetrahedron Lett. 2003, 44, 857-859. 

[85] Gholap, A. R.; Venkatesan, K.; Thomas, D.; Lahoti, R. J.; Srinivasan, K. V. 

Green. Chem. 2004, 6, 147. 

[86] Jain, S. L.; Joseph, J. K.; Sain, B. catalysis letters. 2007, 115, 52-55. 

[87] Ming, L.; Wei-Si, G.; Li-Rong, W.; Ya-Feng, L.; Hua-Zheng, Y. J. mol. 

catal., A Chem. 2006, 258, 133-138.  

[88] Wasserscheid P., W. Keim, Angew. Chem. Int. Ed. Engl. 2000, 39, 3772. 

[89] Wilkes J. S., J. Mol. Catal. A: Chem. 2004, 214, l1. 

[90] Smith M. B., March J., March’s Advanced Organic Chemistry, Wiley-

Interscience, New York, 2001, Chapter 8. 

[91] Andrade C. K. Z., Alves L. M., Curr. Org. Chem. 2005, 9, 195. 

[92] Macfarlane D. R., Pringle J. M., Johansson K. M., Forsyth S. A., Forsyth M., 

Chem. Commun. 2006, 1905. 

[93] Cole A. C., Jensen J. L., Ntai I., Tran T., Weaver K. J., Forbes D. C., Davis J. 

H., Jr., J. Am. Chem. Soc. 2002, 124, 5962. 

[94] H. Wu, F. Yang, P. Cui, J. Tang, M. He, Tetrahedron Lett. 2004, 45, 4963. 

[95] Xing H., Wang T., Zhou Z., Dai Y., Ind. Eng. Chem. Res.  2005, 44, 4147. 

[96] Atef A., Jean P. B., Org. Process Res. Dev. 2005, 5, 743. 

[97] Zhang F., Qian D., Luo S., Liu B., Du X., Xu Z., J. Chem. Res. 2004, 11, 773. 

[98] Wasserscheid P., Hal R., Osmann A. B¨., Green Chem. 2002, 4, 400. 

[99] Fraga-Dubreuil J., Bourahla K., Rahmouni M., Bazureau J. P., Hamelin J., J. 

Catal. Commun. 2002, 3, 185. 

[100] Garcia M. T., Gathergood N., Scammells P. J., Green Chem. 2005, 7, 9. 

[101] Shaabani A., Rahmati A., Catal. Lett. 2005, 100, 177. 

[102] Kappe C. O., Tetrahedron 1993, 49, 6937- 6963. 

[103] Singh K., Singh J., Deb P. K., Singh H., Tetrahedron 1999, 55, 12873-2880. 

[104] (a) Dondoni A., Massi A., Sabbatini S., Tetrahedron Lett. 2001, 42, 4495-

4497; (b) Dondoni A., Massi A., Sabbatini S., Bertolasi V., J. Org. Chem. 

2002, 67, 6939-6944. 

[105] Stadler A., Kappe C. O., J. Comb. Chem. 2001, 3, 624-630. 



 

Chapter 3                                                                                        Dihydropyrimidines 

       102

[106] R. Pe. rez, T. Beryozkina, O. I. Zbruyev, W. Haas, C. O. Kappe, J. Comb. 

Chem. 2002, 4, 501-510. 

[107] Mayer K. K., Dove S., Pongratz H., Ertan M., Wiegrebe W., Heterocycles 

1998, 48, 1169-1183. 

[108] Brahmbhatt D. I., Raolji G. B., Pandya S. U., Shashi U., Pandya U. R., Ind. J. 

Chem. B. 1999, 35, 317-324. 

[109] Barrow J. C., Nantermet P. G., Selnick H. G., Glass K. L., Rittle K. E., 

Gilbert K. F., Barrish, Kassahun K., Leppert P., Nagarathnam D., Forray C., J. 

Med. Chem. 2000, 43, 2703-2718. 

[110] Remenikov G. Y., Khim. Geterotsikl. Soedin. 1997, 1587-1602. 

[111] Vanden Eynde J. J., Audiart N., Canonne V., Michel S., Van Haverbeke Y., 

Kappe C. O., Heterocycles 1997, 45, 1967-1978. 

[112] Vanden Eynde J. J., Hecq N., Kataeva O., Kappe C. O., Tetrahedron 2001, 57,       

1785-1791. 

[113] Atwal K. S., Rovnyak G. C., Reilly B. C. O., Schwartz J., J. Org. Chem. 1989, 

54, 5898-5907. 

[114] Kappe C. O., Stadler A., Org. React. 2004. 

[115] Kidwai, M.; Saxena, S.; Mohan, S. Rus. J .Org. Chem., 2006, 42, 51-55. 

[116] Wipf, P.; Cunnigham, A. Tetrahedron Lett. 1995, 36, 7819-7822. 

[117] Studer, A.; Hadida, S.; Ferritto, R.; Kim, S.; Jeger, P.; Wipf, P.; Curran, D. P. 

Science 1997, 275, 823-826. 

[118] Studer, A.; Jeger, P.; Wipf, P.; Curran, D. P. J. Org. Chem. 1997, 62, 2917-

2924. 

[119] Kappe, C. O. ACC. Chem. Res. 2000, 33, 879-888. 

[120] Kappe, C. O. Bioorg. Med. Chem. Lett. 2000, 10, 49-51. 

[121] Gross, G. A.; Wurziger, H.; Schober, A. J. Comb. Chem. 2004, 6, 457-459. 

[122] (a) Kumar S., Saini A. & Sandhu J. S., Indian J. Chem., 43B, 1485 (2004). (b) 

ibid, 44B, 762 (2005). (c) ibid, 45B, 684 (2006). (d) ibid, 46B, 1690 (2007). 

[123] Deshmukh M. B., Anbhule V., Prashant S. D., Jadhev A. R., Mali S. S., 

Jagtap and Deshmukh A., Indian J. Chem., 46B, 1545 (2007). 

[124] Reddy Y. T. and Reddy, P. N., Indian J. Chem., 44B, 1304 (2005). 



 

Chapter 3                                                                                        Dihydropyrimidines 

       103

[125] (a) Misra, A. K., Geetanjali A. & Madhusudan, Indian J. Chem., 43B, 2018 

(2004). (b) Alibek, M. A., Zaghaghi, Z., Chemical papers 63 (1), 97 (2009). 

(c) Kundu, S. K., Majee A., & Hajra A. Indian J. Chem., 48B, 408 (2009). 

[126] National Committee for Clinical and Laboratory Standards, Method for 

Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow 

Aerobically Approved Standard, fourth ed. NCCLS, Villanova, Italy, 1997, 

Document M 100-S7. S100-S157. 

[127] Isenberg, D. H. Essential Procedure for Clinical Microbiology, American 

Society for Microbiology, Washington, 1998. 

[128] Zgoda, J. R.; Porter, J. R. Pharm. Biol. 2001, 39, 221.  

 



 
Chapter 4                                                                       1,2,4-triazolo[1,5-a]pyrimidines 
     

   104

 
 Chapter 4 
 
 Synthesis and biological evaluation of 
 1,2,4-triazolo[1,5-a]pyrimidines 
 
4.1 Introduction 
The condensation of a ring of 1,2,4-triazole and another one of pyrimidine gives rise 

to the formation of bicyclic heterocycles known as 1,2,4-triazolopyrimidines. Four 

different possibilities exist for the relative orientation of both rings, so four different 

isomeric families of compounds are defined: 1,2,4-triazolo[1,5-a]pyrimidine (1), 

1,2,4-triazolo[1,5-c]pyrimidine (2), 1,2,4-triazolo[4,3-a]pyrimidine (3) and 1,2,4-

triazolo[4,3-c]pyrimidine (4). 

 

N

N N

N

NN N

N

N

N
N

N

NN
N

N

1

2

34

5

6
7 8

1

2

3

3 3

4

4 4

5

5 5

6

6 6

7

7 7

8

8 81 1

2 2

(1) 1,2,4-triazolo[1,5-a]pyrimidine (2) 1,2,4-triazolo[1,5-c]pyrimidine

(3) 1,2,4-triazolo[4,3-a]pyrimidine (4) 1,2,4-triazolo[4,3-c]pyrimidine  
 

Among these isomeric families of compounds, 1,2,4-triazolo[1,5-a]pyrimidine 

derivatives are  thermodynamically more stable and, thus, the most studied ones [1], a 

few of them being commercially available. Revisions surveying the synthesis, 

reactivity, spectroscopic characterization and crystallographic studies of 1,2,4-

triazolo[1,5-c]pyrimidines [2], 1,2,4-triazolo[4,3-a]pyrimidines [3] and 1,2,4-triazolo 

[4,3-c]pyrimidines [4] have also been published. 
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 From the standpoint of biological activity, fused heteroaromatic systems are 

often of much greater interest than the constituent monocyclic compounds. Recently, 

1,2,4-triazolo[1,5-a]pyrimidines have aroused increasing attention from the chemical 

and biological view points, due to their diverse pharmacological activities, such as 

antitumor potency [5, 6], inhibition of KDR kinase [7], antifungal effect [8] and 

macrophage activation [9]. They have proved to be promising anticancer agents with 

dual mechanisms of tubulin polymerization promotion [5, 6] as well as cyclin 

dependent kinases 2 inhibition [10]. Some examples of published derivatives of 1,2,4-

triazolo[1,5-a]pyrimidine with their biological activities are as following. 

N

N

N

N

NH2

O

(5) Activity: A2A adenosine receptor antagonists [11]

R

N

N

N

N

CH3

H3C
NH S

O
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CH3

(6) Activity: latent leishmanicidal activity [12]

N

N

N

N

HN

Cl

CH3

F3C H

F

FOHN
CH3

(7) Activity: Anticancer acticity [13]

N

N

N

N
S

CH3

H3C
O

NN

SCH3CH2(CH3)CH
(8) Activity: antifungal activity [14]

N

N

N

N

CH3

H3C

O
N

Et

Et

OHO

(10) Activity: Acetohydroxyacid synthase 
                       inhibitor [16]

N

N

N

N
SO2NH

F

F
O

H3C

(9) Activity: Hepatitis C virus polymerase inhibitor [15]

N

N

N

N

NH

O

HN

Me2NO2S

H2N

(11) Activity: CDK2 inhibitors [17]

N

N

N

N

PhO2S

CH3

(12) Activity: Anti-inflammatory [18]

N

N

N

N

HN

H3C

CF3

S
O

N

(13) Activity: Antiproliferative activity [19]

N

N

N

N

NEt2

(14) Trapidil: Antiischemic and cardiatonic
                       agent [20]
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4.2 Reported synthetic strategies 

4.2.1 Amino-1,2,4-triazole and 1,3-bifunctional synthons 
4.2.1.1 Principle and Conditions 

By far the most triazolo[1,5-a]pyrimidine synthesis are condensations of 

dinucleophilic 5-amino-1,2,4-triazoles with 1,3-bifunctional synthons as shown in the 

formation of triazolo[1,5-a]pyrimidine (15) (Scheme 4.1) [21-24]. New synthetic 

conditions recently described involve melting under microwave irradiation, a reaction 

that is environmental friendly and gives higher yields than conventional heating in 

solvent [25]. Furthermore, certain lithium 1,3-diketonates have proven to be better 

synthons than the corresponding diketones [26].  

 

COOEt

OH3C
+

NHN

NH2N N
H

N

N

N

O

H3C

(15)
Scheme 4.1

 
 

 Previous mechanistic conclusions have been confirmed by isolating stable 

intermediate 5-amino-1,2,4-triazole derivatives such as enamine (16) (Scheme 4.2) on 

reacting 5-amino-1,2,4-triazoles with 3-ketovinyl ethers [27], 3-ketoenamines [28], 3-

ketoaldehydes [29], enamine-2-carboxylic esters [30] or ethoxymethylene malonates 

[31].  

 

OEt
+

NHN

NH2N N
H

HN
CO

N

N

Ar

(16)

Scheme 4.2

Ar

O
EtOOC

EtOH
EtOOC

CH3CN /KF

N

N

N

N

Ar
EtOOC

 

That means, the overall reaction starts with the interaction of the amino-1,2,4-

triazole amino group and the enolic (or analogous) functionality of the three-carbon 

synthon. In the two-step examples, just mentioned, the first step proceeds under 

milder conditions (sometimes just in ethanol at room temperature), but the final 



 
Chapter 4                                                                       1,2,4-triazolo[1,5-a]pyrimidines 
     

   107

cyclization (or the one-step reaction, if the intermediate is not trapped) requires 

stronger means (e.g., polyphosphoric acid or boiling acetic acid). Under extreme 

conditions, triazolylamide (17) was subject to flash vacuum pyrolysis between 300 

and 450 ºC to give about 50% triazolo[1,5-a]pyrimidine (18) (Scheme 4.3) [32]. 

Libraries of fused 3-aminopyrimidin-4-ones (19) and other compounds were just 

recently prepared by the solid-phase and by the solution-phase parallel synthesis [33]. 

The latter method turned out to be advantageous with respect to yield and purity. 

 

COOEt

COOEt
+

NHN

NH2N N
H

HN
COOEt

N

N

O N
H

N

N

N

O

O

(17) (18)

COOEt

NMe2

AcHN NHN

NH2N
+ 1. AcOH

2. HCl
N

N

N
H

N

O
H2N

HCl

(19)
Scheme 4.3

 
 

4.2.1.2 Use of Modified 5-Amino-1,2,4-triazoles 

Scheme 4.4 shows two parallel paths of pyrimidine ring annulation: the conventional 

method, route A and a route B using a reactive amino-1,2,4-triazole derivative [34]. 

Amidine (22), formed from 5-amino-1,2,4-triazole and DMF dimethylacetal, can be 

regarded as the result of incorporating one carbon of the three-carbon synthon (20) 

into the 5-amino-1,2,4-triazole molecule; condensation with a reactive two-carbon 

component leads to target triazolo[1,5-a]pyrimidine (21).  

 

NC

NMe2

O

Ph

+
NHN

NH2N
A

BNC
O

Ph
+ NHN

NN

NMe2 N

N

N

NNC
Ph

(20)

(21)

(22) Scheme 4.4
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Path B also serves in confirming the structure of product (21). Similar 

syntheses of 7-aryl and 7-heterocyclyl triazolo[1,5-a]pyrimidines have been described 

[35-37], for example, that of an antipyrine derivative [38]. 

 

4.2.1.3 The diversity of 1,3-bifunctional synthons  

Examples of triazolo[1,5-a]pyrimidine synthesis published in the relevant period are 

listed in Table 1, arranged according to the bifunctional synthons used and to the 

substituents entering the positions 5 and 7. Triazolo[1,5-a]pyrimidines are included in 

reviews dealing with heterocyclic synthesis by the use of enamines [39], enamine-2-

carboxylic esters [40] and ketene mercaptals [41]. 

 

N

N N

N

1

2

34
5

6
7 8

 
 

Table 1. Syntheses of triazolo[1,5-a]pyrimidines from 1,3-bifunctional synthons and 5-amino-1,2,4-
triazoles 
Bifunctional  
Synthons 

R-5b R-7b Bifunctional  
Synthons 

R-5b R-7b 

1,3-Dialdehyde [42] H H Enamine-2-carboxylate [59] H OH 
2-Formylacetal [43] H H Acetylenedicarboxylate [60] CO2Me OH 
1,3-Diacetal [44] H H 3-Ketocarboxylate [61] R OH 
2-Formylvinyl ether [45] H H 3-Alkoxyacrylate [62] OH R 
2-Formylvinylchloride [46] H R Alkoxyalkylene malonate [63] R OH 
3-Iminiovinylchloride [47] H R 2-Chloroacrylate [64]  OH R 
2-Formylenamine [48] H R Malonic ester [65] OH OH 
3-Iminioenamine [49] H R Malonyl chloride [66] OH OH 
3-Ketoaldehyde [50] R H 2-Acylketene mercaptal [67] SR R’ 
3-Ketoacetal [51] R H 2-Cyanoketene mercaptal [68] SR NH2 
3-Ketovinyl ether [52] H R Alkoxyalkylene cyanoacetate [69] R NH2 
3-Ketovinyl sulfone [53]c  R H Alkoxyalkylene malonitrile [70] R NH2 
3-Ketoenamine [54] H R 2-Formylnitrile [71] H NH2 
1,3-Diketone [55] R R’ 2-Cyanoenamine [72] H NH2 
3-Ketoalkyne [56] Rd H Malonitrile [73] NH2 NH2 
2-Formylcarboxylate [57] R OH 2-Thiocarbamylcarboxylate [74] NHR OH 
2-Alkoxycarbonylacetal [58] OH H    
aor tautomeric form. 
bSubstituents on C-5 and C-7, respectively; R and R’ mean (possibly substituted) alkyl, aryl, 
heterocyclyl and H; OH means hydroxy or tautomeric oxo form. 
cAnd regioisomeric 7-R compound. 
dDeoxyaltrose derivative relating C-glycosides [75]. 
 
 In recent years, 3-ketoenamines have growing interest as building blocks for 

7-aryl triazolo[1,5-a]pyrimidines (Scheme 4.4, Path A) [76, 77]. They also serve to 

synthesize 7-heterocyclyl triazolo[1,5-a]pyrimidines [78, 79]. In addition to usual N, 
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N-dimethyl compounds also analogues having a free amino group can be used as in 

the synthesis of 7-trifluoromethyl derivatives [80]. Enaminones can be formed in situ, 

for instance, from dimedone and DMF dimethylacetal [81]. 

 In the course of the cyclization of the stable tetrafluorobenzoyl derivative (23) 

(Scheme 4.5) fluorine at the o-position is involved in the reaction and is replaced to 

give trifluorobenzo triazolo[1,5-a]pyrimidine (24) [82]. Acetonyl is introduced as 

substituent into the 7-position by the use of triketone heptan-2,4,6-trione [83]. 

  

F
F

F

F
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+
NHN

NH2N

F
F

F

F
CO

NHN

NN
H

DBU
F

F
F

N
H

N

N

N

O

(23) (24)

CNNC

NC CN
+

NHN

NH2N
N

N

N

N

CN
NC

H2N
(25)

COOEtAc

PhHN S
+

NHN

NH2N
N
H

N

N

N

O

(27)
PhHN

Scheme 4.5
(26)

 
 

The electron acceptor tetracyanoethylene on interaction with amino-1,2,4-

triazole first forms a charge transfer complex that after loss of hydrocyanic acid is 

transformed into dicyano triazolo[1,5-a]pyrimidine (25) [84]. Fusion of 1,4-

naphthoquinone or indenone onto triazolo[1,5-a]pyrimidine can in a similar way be 

performed by the use of 2,3-dicyano-1,4-naphthoquinone or dicyanomethylene 

indane-1,3-dione, respectively. Another indeno triazolo[1,5-a]pyrimidine is accessible 

from triketone 2-acetylindane-1,3-dione [85]. On the other hand, acetoacetic ester 

(26) with 5-amino-1,2,4-triazole suffers ester group cleavage to form anilino 

triazolo[1,5-a]pyrimidine (27) [86]. 
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4.2.2 Other pyrimidine ring synthesis 
The annulation of pyrimidine onto the triazole ring can be accomplished by the use of 

heterocyclic precursors that can be regarded as masked 1,3-bifunctional reagents. This 

way, triacetic acid lactone (27) (Scheme 4.6) reacts as a masked 1,3-diketone and 

transforms 5-amino-1,2,4-triazole to triazolo[1,5-a]pyrimidine (28) together with ring 

isomer (29) and decarboxylation product (30) [87]. Oxazolones play a similar part 

[88-90]. Thus, enol ether (31) behaves as a masked 3-ethoxyacrylate and yields, 

through intermediate (32), benzamido triazolo1,5-a]pyrimidine (33) that, under 

harsher conditions, directly forms from compound [30]. 

 

Scheme 4.6
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N
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4.2.3 2-Hydrazinopyrimidines and one-carbon synthons 
A second common triazolo[1,5-a]pyrimidine synthesis consists in the condensation of 

a C1-synthon with a 2-hydrazinopyrimidine derivative (e.g., 34, Scheme 4.7). A 

triazolo[4,3-a]-pyrimidine (35) initially forms that often can be isolated [91]. Harsher 

conditions allow it to isomerize to the target triazolo[1,5-a]pyrimidine (36) by 

Dimroth rearrangement.  
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4.2.4 Other triazole ring synthesis 
Most cyclization of 2,3-diaminopyrimidones (37) [92] or corresponding quinazolones 

proceed with the participation of carboxylic acids or their derivatives (esters, 

anhydrides, chlorides, or orthoesters) as shown in Scheme 4.8. Noncyclized or 

saturated intermediates (38, 39) can frequently be found during synthesis of 

triazolo[1,5-a]pyrimidines. 
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4.3 Current work 
The biological importance of 1,2,4-triazolo[1,5-a]pyrimidines is well documented. 

Over the years, various substituted derivatives of these heterocycles have shown 

utility against a range of biological targets. For example, they have demonstrated 

activity against malaria and bronchospasm and shown activity as coronary 

vasodilators, antihypertensive agents, leishmanicides, antibiotics, adenosine A2a 

antagonists, immunosuppressants, antitumor agents, fungicides, xanthine oxidase 

inhibitors and phosphodiesterase inhibitors.  

 

SECTION: - A 
In section A, synthesis of 1,2,4-triazolo[1,5-a]pyrimidines is based on the Biginelli 

like cyclocondensation of aromatic aldehydes and acetoacetic acid derivatives with 

aminoazoles containing a guanidine fragment. There are literary data about the 

synthesis of triazolopyrimidines by treatment of 5-amino-1,2,4-triazole or 5-

aminotetrazole with aldehydes and ethyl acetoacetate or cyclic -diketones [93]. The 

cyclocondensations were realized by heating of the starting materials in ethanol with 

catalytic amounts of hydrochloric acid under reflux conditions [93a-c] or using DMF 

as solvent [93d-e]. The use of acetoacetamides in these or similar reactions has not 

been described. 
Recognizing these facts, we have synthesised four new series of 1,2,4-

triazolo[1,5-a]pyrimidines (CPV-201 to CPV-240) containing an acetoacetamide 

fragment.  

 

SECTION: - B 
In this section B, we have synthesised another four new series of 5-substituted 4,7-

dihydro-1,2,4-triazolo[1,5-a]pyrimidines (CPV-241 to CPV-280). The reaction is one 

pot cyclocondensation of aromatic aldehyde, corresponding acetophenone and 5-

amino-1,2,4-triazole using glacial acetic acid as a solvent.   

The structures of all the newly synthesized compounds (CPV-201 to CPV-280) 

were elucidated by various analytical techniques like FT-IR spectroscopy, mass 

spectrometry, 1H NMR spectroscopy and elemental analysis. The newly synthesized 

compounds were subjected to various biological activities viz., antimicrobial, 

antimycobacterial, anticancer and antiviral. 
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SECTION: - A  

4.4 Reaction Scheme 

NH

OCH3

O

+

R1
a

Reagents and conditions: (a) DMF, Reflux, 12-15 Minutes

HO

R2

HN N

NH2N
N
H

N

N

N

H3C

N
H

OR1

R2

CPV 201 TO 240
 

 
Code R1 R2 M.F. M.W. M.P. ºC Yield % Rf1 Rf2 

CPV-201 pyridin-2-yl H C18H16N6O 332 189-191 76 0.54 0.72 
CPV-202 pyridin-2-yl 4-CH3 C19H18N6O 346 179-181 74 0.53 0.69 
CPV-203 pyridin-2-yl 4-OCH3 C19H18N6O2 362 222-224 85 0.50 0.64 
CPV-204 pyridin-2-yl 4-Cl C18H15ClN6O 366 215-217 78 0.53 0.68 
CPV-205 pyridin-2-yl 4-F C18H15FN6O 350 261-263 66 0.50 0.66 
CPV-206 pyridin-2-yl 4-NO2 C18H15N7O3 377 226-228 75 0.42 0.74 
CPV-207 pyridin-2-yl 3-NO2 C18H15N7O3 377 231-233 68 0.51 0.79 
CPV-208 pyridin-2-yl 2-NO2 C18H15N7O3 377 225-227 73 0.50 0.63 
CPV-209 pyridin-2-yl 3-Cl C18H15ClN6O 366 212-214 81 0.43 0.62 
CPV-210 pyridin-2-yl 2-Cl C18H15ClN6O 366 199-201 71 0.59 0.75 
CPV-211 pyridin-3-yl H C18H16N6O 332 256-258 75 0.52 0.68 
CPV-212 pyridin-3-yl 4-CH3 C19H18N6O 346 202-204 80 0.56 0.65 
CPV-213 pyridin-3-yl 4-OCH3 C19H18N6O2 362 257-259 77 0.49 0.66 
CPV-214 pyridin-3-yl 4-Cl C18H15ClN6O 366 213-215 74 0.61 0.73 
CPV-215 pyridin-3-yl 4-F C18H15FN6O 350 227-229 70 0.53 0.66 
CPV-216 pyridin-3-yl 4-NO2 C18H15N7O3 377 242-244 67 0.55 0.61 
CPV-217 pyridin-3-yl 3- NO2 C18H15N7O3 377 203-205 77 0.53 0.75 
CPV-218 pyridin-3-yl 2-NO2 C18H15N7O3 377 199-201 72 0.64 0.78 
CPV-219 pyridin-3-yl 3-Cl C18H15ClN6O 366 207-209 68 0.45 0.63 
CPV-220 pyridin-3-yl 2-Cl C18H15ClN6O 366 217-219 77 0.60 0.74 
CPV-221 4-Cl H C19H16ClN5O 365 211-213 65 0.42 0.56 
CPV-222 4-Cl 4-CH3 C20H18ClN5O 379 233-235 70 0.52 0.62 
CPV-223 4-Cl 4-OCH3 C20H18ClN5O2 395 241-243 83 0.50 0.69 
CPV-224 4-Cl 4-Cl C19H15Cl2N5O 400 235-237 78 0.57 0.75 
CPV-225 4-Cl 4-F C19H15ClFN5O 383 248-250 70 0.50 0.58 
CPV-226 4-Cl 4-NO2 C19H15ClN6O3 410 236-238 65 0.43 0.54 
CPV-227 4-Cl 3-NO2 C19H15ClN6O3 410 239-241 64 0.51 0.66 
CPV-228 4-Cl 2-NO2 C19H15ClN6O3 410 218-220 72 0.52 0.65 
CPV-229 4-Cl 3-Cl C19H15Cl2N5O 400 255-257 67 0.56 0.60 
CPV-230 4-Cl 2-Cl C19H15Cl2N5O 400 220-222 63 0.45 0.63 
CPV-231 3-Cl,4-F H C19H15ClFN5O 383 222-224 75 0.55 0.59 
CPV-232 3-Cl,4-F 4-CH3 C20H17 ClFN5O 397 229-231 76 0.44 0.64 
CPV-233 3-Cl,4-F 4-OCH3 C20H17 ClFN5O2 413 291-293 70 0.47 0.60 
CPV-234 3-Cl,4-F 4-Cl C19H14Cl2FN5O 418 255-257 82 0.49 0.67 
CPV-235 3-Cl,4-F 4-F C19H14ClF2N5O 401 276-278 81 0.57 0.69 
CPV-236 3-Cl,4-F 4-NO2 C19H14Cl FN6O3 428 215-217 76 0.52 0.65 
CPV-237 3-Cl,4-F 3-NO2 C19H14Cl FN6O3 428 256-258 72 0.48 0.56 
CPV-238 3-Cl,4-F 2-NO2 C19H14Cl FN6O3 428 275-277 78 0.46 0.59 
CPV-239 3-Cl,4-F 3-Cl C19H14Cl2FN5O 418 242-244 68 0.50 0.70 
CPV-240 3-Cl,4-F 2-Cl C19H14Cl2FN5O 418 256-258 72 0.59 0.64 

TLC Solvent system Rf1: Hexane: Ethyl acetate – 6:4; TLC Solvent system Rf2: Chloroform: Methanol - 9:1. 



 
Chapter 4                                                                       1,2,4-triazolo[1,5-a]pyrimidines 
     

   114

4.5 Plausible Reaction Mechanism 
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4.6 Experimental 
4.6.1 Materials and Methods 

Melting points were determined in open capillary tubes and are uncorrected. 

Formation of the compounds was routinely checked by TLC on silica gel-G plates of 

0.5 mm thickness and spots were located by iodine. IR spectra were recorded 

Shimadzu FT-IR-8400 instrument using KBr pellet method. Mass spectra were 

recorded on Shimadzu GC-MS-QP-2010 model using Direct Injection Probe 

technique. 1H NMR was determined in DMSO-d6 solution on a Bruker Ac 400 MHz 

spectrometer. Elemental analysis of the all the synthesized compounds was carried out 

on Elemental Vario EL III Carlo Erba 1108 model and the results are in agreement 

with the structures assigned. 

 

4.6.2 Synthesis of N-(aryl)-3-oxobutanamides 

 

Synthesis of N-(aryl)-3-oxobutanamides was achieved using previously published 

methods [97]. 

 

4.6.3 General procedure for the synthesis of 4,7-dihydro-5-methyl-7-aryl-N-

(pyridin-2-yl)-[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxamides (CPV 201-210) 

A mixture of the aminoazole (0.01 mol), 3-oxo-N-(pyridin-2-yl)butanamide (0.01 mol) 

and an appropriate aromatic aldehyde (0.01 mol) was refluxed in 0.4 mL of dimethyl 

formamide (DMF) for 12 to 15 min. After cooling, methanol (~10 mL) was added. 

The reaction mixture was allowed to stand overnight and then filtered to give the solid 

triazolopyrimidine products CPV 201-210, which were crystallized from ethanol and 

subsequently dried in air. 

 

4.6.3.1       4,7-dihydro-5-methyl-7-phenyl-N-(pyridin-2-yl)-[1,2,4]triazolo[1,5-a]             

pyrimidine-6-carboxamide (CPV-201) Yield: 76%; 

mp 189-191 ºC; MS: m/z 332; Anal. Calcd. for 

C18H16N6O: C, 65.05; H, 4.85; N, 25.29; O, 4.81. 

Found: C, 64.99; H, 4.79; N, 25.22; O, 4.78%. 
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4.6.3.2       4,7-dihydro-5-methyl-N-(pyridin-2-yl)-7-p-tolyl-[1,2,4]triazolo[1,5-a] 

pyrimidine-6-carboxamide (CPV-202) Yield: 74%; 

mp 179-181 ºC; MS: m/z 346; Anal. Calcd. for 

C19H18N6O: C, 65.88; H, 5.24; N, 24.26; O, 4.62. 

Found: C, 65.80; H, 5.19; N, 24.17; O, 4.56%. 

 
 
 

 

4.6.3.3    4,7-dihydro-7-(4-methoxyphenyl)-5-methyl-N-(pyridin-2-yl)[1,2,4]triazolo  

[1,5-a]pyrimidine-6-carboxamide (CPV-203) Yield: 

85%; mp 222-224 ºC; IR (cm-1): 3379 (N-H 

stretching of secondary amine), 3059 (C-H stretching 

of aromatic ring), 3012 (C-H symmetrical stretching  

of CH3 group), 2895 (C-H asymmetrical stretching 

of CH3 group), 1676 (C=O stretching of amide), 

1645 (C=N stretching of triazole ring), 1552 (N-H deformation of pyrimidine ring), 

1514 and 1458 (C=C stretching of aromatic ring), 1429 (C-H asymmetrical 

deformation of CH3 group), 1329 (C-H symmetrical deformation of CH3 group), 1301 

(C-N stretching), 1145 (C-O-C asymmetrical stretching of ether linkage), 1064 (C-O-

C symmetrical stretching of ether linkage), 1031 (C-H in plane deformation of 

aromatic ring), 840 (C-H out of plane deformation of 1,4-disubstitution); 1H NMR 

(DMSO-d6) δ ppm: 2.30 (s, 3H, Ha), 3.72 (s, 3H, Hb), 6.55 (s, 1H, Hc), 6.79-6.81 (d, 

2H, Hdd’, J = 8.0 Hz), 6.96-6.99 (m, 1H, He), 7.28-7.30 (d, 2H, Hff’, J = 8.0 Hz), 7.49 

(s, 1H, Hg), 7.58-7.63 (m, 1H, Hh), 7.96-7.98 (d, 1H, Hi, J = 8.0 Hz), 8.22-8.24 (m, 

1H, Hj), 9.78 (s, 1H, Hk), 10.11 (s, 1H, Hl); MS: m/z 362; Anal. Calcd. for 

C19H18N6O2: C, 62.97; H, 5.01; N, 23.19; O, 8.83. Found: C, 62.90; H, 4.95; N, 23.10; 

O, 8.76%. 
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4.6.3.4 7-(4-chlorophenyl)-4,7-dihydro-5-methyl-N-(pyridin-2-yl)-[1,2,4]triazolo 

[1,5-a]pyrimidine-6-carboxamide (CPV-204) Yield: 

78%; mp 215-217 ºC; IR (cm-1): 3456 (N-H 

stretching of secondary amine), 3093 (C-H stretching 

of aromatic ring), 3012 (C-H symmetrical stretching 

of CH3 group), 2922 (C-H asymmetrical stretching 

of CH3 group), 1670 (C=O stretching of amide), 

1591 (C=N stretching of triazole ring), 1573 (N-H deformation of pyrimidine ring), 

1516 and 1492 (C=C stretching of aromatic ring), 1431 (C-H asymmetrical 

deformation of CH3 group), 1334 (C-H symmetrical deformation of CH3 group), 1300 

(C-N stretching), 1087 (C-H in plane deformation of aromatic ring), 831 (C-H out of 

plane deformation of 1,4-disubstitution), 771 (C-Cl stretching); 1H NMR (DMSO-d6) 

δ ppm: 2.31 (s, 3H, Ha), 6.61 (s, 1H, Hb), 6.97-7.00 (m, 1H, Hc), 7.24-7.26 (d, 2H, 

Hdd’, J = 8.0 Hz), 7.31-7.33 (d, 2H, Hee’, J = 8.0 Hz), 7.52 (s, 1H, Hf), 7.59-7.64 (m, 

1H, Hg), 7.96-7.98 (d, 1H, Hh, J = 8.0 Hz), 8.24-8.25 (d, 1H, Hi, J = 4.0 Hz), 9.85 (s, 

1H, Hj), 10.20 (s, 1H, Hk); MS: m/z 366; Anal. Calcd. for C18H15ClN6O: C, 58.94; H, 

4.12; N, 22.91; O, 4.36. Found: C, 58.87; H, 4.05; N, 22.85; O, 4.30%. 

 

4.6.3.5      7-(4-fluorophenyl)-4,7-dihydro-5-methyl-N-(pyridin-2-yl)[1,2,4]triazolo 

[1,5-a]pyrimidine-6-carboxamide (CPV-205) Yield: 

66%; mp 261-263 ºC; MS: m/z 350; Anal. Calcd. for 

C18H15FN6O: C, 61.71; H, 4.32; N, 23.99; O, 4.57. 

Found: C, 61.63; H, 4.26; N, 23.89; O, 4.53%. 

 

 

 

4.6.3.6 4,7-dihydro-5-methyl-7-(4-nitrophenyl)-N-(pyridin-2-yl)-[1,2,4]triazolo 

[1,5-a]pyrimidine-6-carboxamide (CPV-206) Yield: 

75%; mp 226-228 ºC; IR (cm-1): 3273 (N-H 

stretching of secondary amine), 3095 (C-H stretching 

of aromatic ring), 3020 (C-H symmetrical stretching 

of CH3 group), 2916 (C-H asymmetrical stretching 

of CH3 group), 1670 (C=O stretching of amide), 
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1622 (N-H deformation of pyrimidine ring), 1593 (C=N stretching of triazole ring), 

1521 (C-NO2 stretching), 1473 (C=C stretching of aromatic ring), 1431 (C-H 

asymmetrical deformation of CH3 group), 1346 (C-H symmetrical deformation of 

CH3 group), 1315 (C-N stretching), 1240 (C-H in plane deformation of aromatic ring), 

823 (C-H out of plane deformation of 1,4-disubstitution); 1H NMR (DMSO-d6) δ 

ppm: 2.31 (s, 3H, Ha), 6.75 (s, 1H, Hb), 6.97-7.00 (m, 1H, Hc), 7.53-7.63 (m, 4H, Hd-

f), 7.90-7.97 (m, 1H, Hg), 8.12-8.14 (d, 2H, Hhh’, J = 8.0 Hz), 8.24-8.25 (d, 1H, Hi, J = 

4.0 Hz), 10.10 (s, 1H, Hj), 10.33 (s, 1H, Hk); MS: m/z 377; Anal. Calcd. for 

C18H15N7O3: C, 57.29; H, 4.01; N, 25.98; O, 12.72. Found: C, 57.20; H, 3.94; N, 

25.93; O, 12.66%. 

 

4.6.3.7    4,7-dihydro-5-methyl-7-(3-nitrophenyl)-N-(pyridin-2-yl)-[1,2,4]triazolo 

[1,5-a]pyrimidine-6-carboxamide (CPV-207) Yield: 

68%; mp 231-233 ºC; MS: m/z 377; Anal. Calcd. for 

C18H15N7O3: C, 57.29; H, 4.01; N, 25.98; O, 12.72. 

Found: C, 57.22; H, 3.91; N, 25.91; O, 12.62%. 

 

 

 

4.6.3.8    4,7-dihydro-5-methyl-7-(2-nitrophenyl)-N-(pyridin-2-yl)-[1,2,4]triazolo 

[1,5-a]pyrimidine-6-carboxamide (CPV-208) Yield: 

73%; mp 225-227 ºC; MS: m/z 377; Anal. Calcd. for 

C18H15N7O3: C, 57.29; H, 4.01; N, 25.98; O, 12.72. 

Found: C, 57.26; H, 3.96; N, 25.92; O, 12.67%. 

 

 

 

4.6.3.9    7-(3-chlorophenyl)-4,7-dihydro-5-methyl-N-(pyridin-2-yl)-[1,2,4]triazolo 

[1,5-a]pyrimidine-6-carboxamide (CPV-209) Yield: 

81%; mp 212-214 ºC; MS: m/z 366; Anal. Calcd. for 

C18H15ClN6O: C, 58.94; H, 4.12; N, 22.91; O, 4.36. 

Found: C, 58.89; H, 4.05; N, 22.83; O, 4.32%. 
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4.6.3.10 7-(2-chlorophenyl)-4,7-dihydro-5-methyl-N-(pyridin-2-yl)-[1,2,4]triazo 

lo[1,5-a]pyrimidine-6-carboxamide (CPV-210) 

Yield: 71%; mp 199-201 ºC; MS: m/z 366; Anal. 

Calcd. for C18H15ClN6O: C, 58.94; H, 4.12; N, 22.91; 

O, 4.36. Found: C, 58.85; H, 4.07; N, 22.85; O, 

4.30%. 

 

 

4.6.4 General procedure for the synthesis of 4,7-dihydro-5-methyl-7-aryl-N-

(pyridin-3-yl)-[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxamides (CPV 211-220) 

 

A mixture of the 5-amino-1,2,4-triazole (0.01 mol), 3-oxo-N-(pyridin-3-

yl)butanamide (0.01 mol) and an appropriate aromatic aldehyde (0.01 mol) was 

refluxed in 0.4 mL of dimethyl formamide (DMF) for 12 to 15 min. After cooling, 

methanol (~10 mL) was added. The reaction mixture was allowed to stand overnight 

and then filtered to give the solid triazolopyrimidine products CPV 211-220, which 

were crystallized from ethanol and subsequently dried in air. 

 

4.6.4.1 4,7-dihydro-5-methyl-7-phenyl-N-(pyridin-3-yl)-[1,2,4]triazolo[1,5- 

a]pyrimidine-6-carboxamide (CPV-211) Yield: 75%; 

mp 256-258 ºC; MS: m/z 332; Anal. Calcd. for 

C18H16N6O: C, 65.05; H, 4.85; N, 25.29; O, 4.81. 

Found: C, 64.99; H, 4.80; N, 25.20; O, 4.75%. 
 

 

 

4.6.4.2    4,7-dihydro-5-methyl-N-(pyridin-3-yl)-7-p-tolyl-[1,2,4]triazolo[1,5-a] 

pyrimidine-6-carboxamide (CPV-212) Yield: 80%; 

mp 202-204 ºC; MS: m/z 346; Anal. Calcd. for 

C19H18N6O: C, 65.88; H, 5.24; N, 24.26; O, 4.62. 

Found: C, 65.92; H, 5.18; N, 24.20; O, 4.55%. 
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4.6.4.3    4,7-dihydro-7-(4-methoxyphenyl)-5-methyl-N-(pyridin-3-yl)[1,2,4]triazolo  

[1,5-a]pyrimidine-6-carboxamide (CPV-213) Yield: 

77%; mp 257-259 ºC; IR (cm-1): 3159 (N-H 

stretching of secondary amine), 3099 (C-H stretching 

of aromatic ring), 3041 (C-H symmetrical stretching 

of CH3 group), 2897 (C-H asymmetrical stretching 

of CH3 group), 1664 (C=O stretching of amide), 

1593 (C=N stretching of triazole ring), 1533 (N-H deformation of pyrimidine ring), 

1512 and 1481  (C=C stretching of aromatic ring), 1417 (C-H asymmetrical 

deformation of CH3 group), 1329 (C-H symmetrical deformation of CH3 group), 1284 

(C-N stretching), 1149 (C-O-C asymmetrical stretching of ether linkage), 1093 (C-O-

C symmetrical stretching of ether linkage), 1035 (C-H in plane deformation of 

aromatic ring), 833 (C-H out of plane deformation of 1,4-disubstitution); 1H NMR 

(DMSO-d6) δ ppm: 2.24 (s, 3H, Ha), 3.71 (s, 3H, Hb), 6.56 (s, 1H, Hc), 6.80-6.82 (d, 

2H, Hdd’, J = 8.0 Hz), 7.19-7.22 (m, 3H, He-f), 7.52 (s, 1H, Hg), 7.95-7.97 (d, 1H, Hh, J 

= 8.0 Hz), 8.19-8.20 (d, 1H, Hi, J = 4.0 Hz), 8.68 (s, 1H, Hj), 9.80 (s, 1H, Hk), 10.17 (s, 

1H, Hl); MS: m/z 362; Anal. Calcd. for C19H18N6O2: C, 62.97; H, 5.01; N, 23.19; O, 

8.83. Found: C, 62.90; H, 4.95; N, 23.10; O, 8.79%. 

 

4.6.4.4    7-(4-chlorophenyl)-4,7-dihydro-5-methyl-N-(pyridin-3-yl)-[1,2,4]triazolo 

 [1,5-a]pyrimidine-6-carboxamide (CPV-214) Yield: 

74%; mp 213-215 ºC; IR (cm-1): 3103 (N-H 

stretching of secondary amine), 3032 (C-H stretching 

of aromatic ring), 3005 (C-H symmetrical stretching 

of CH3 group), 2974 (C-H asymmetrical stretching 

of CH3 group), 1662 (C=O stretching of amide), 

1595 (C=N stretching of triazole ring), 1550 (N-H deformation of pyrimidine ring), 

1535 and 1489 (C=C stretching of aromatic ring), 1419 (C-H asymmetrical 

deformation of CH3 group), 1390 (C-H symmetrical deformation of CH3 group), 1329 

(C-N stretching), 1089 (C-H in plane deformation of aromatic ring), 837 (C-H out of 

plane deformation of 1,4-disubstitution), 771 (C-Cl stretching); 1H NMR (DMSO-d6) 

δ ppm: 2.23 (s, 3H, Ha), 6.60 (s, 1H, Hb), 7.21-7.27 (m, 3H, Hc-d), 7.31-7.33 (d, 2H, 

Hee’, J = 8.0 Hz), 7.58 (s, 1H, Hf), 7.93-7.95 (d, 1H, Hg, J = 8.0 Hz), 8.18-8.21 (m, 
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1H, Hh), 8.66-8.67 (d, 1H, Hi, J = 4.0 Hz), 9.88 (s, 1H, Hj), 10.32 (s, 1H, Hk); MS: m/z 

366; Anal. Calcd. for C18H15ClN6O: C, 58.94; H, 4.12; N, 22.91; O, 4.36. Found: C, 

58.89; H, 4.08; N, 22.88; O, 4.30%. 

 

4.6.4.5 7-(4-fluorophenyl)-4,7-dihydro-5-methyl-N-(pyridin-3-yl)-[1,2,4]triazolo 

[1,5-a]pyrimidine-6-carboxamide (CPV-215) Yield: 

70%; mp 227-229 ºC; MS: m/z 350; Anal. Calcd. for 

C18H15FN6O: C, 61.71; H, 4.32; N, 23.99; O, 4.57. 

Found: C, 61.66; H, 4.28; N, 23.90; O, 4.51%. 

 

 

 

4.6.4.6    4,7-dihydro-5-methyl-7-(4-nitrophenyl)-N-(pyridin-3-yl)-[1,2,4]triazolo 

[1,5-a]pyrimidine-6-carboxamide (CPV-216) Yield: 

67%; mp 242-244 ºC; IR (cm-1): 3205 (N-H 

stretching of secondary amine), 3101 (C-H stretching 

of aromatic ring), 3028 (C-H symmetrical stretching 

of CH3 group), 2902 (C-H asymmetrical stretching 

of CH3 group), 1662 (C=O stretching of amide), 

1587 (C=N stretching of triazole ring), 1533 (N-H deformation of pyrimidine ring), 

1518 and 1479 (C=C stretching of aromatic ring), 1423 (C-H asymmetrical 

deformation of CH3 group), 1384 (C-H symmetrical deformation of CH3 group), 1350 

(C-NO2 stretching), 1292 (C-N stretching), 1105 (C-H in plane deformation of 

aromatic ring), 831 (C-H out of plane deformation of 1,4-disubstitution); 1H NMR 

(DMSO-d6) δ ppm: 2.29 (s, 3H, Ha), 6.77 (s, 1H, Hb), 7.18-7.22 (m, 1H, Hc), 7.50-

7.52 (d, 2H, Hdd’, J = 8.0 Hz), 7.56 (s, 1H, He), 7.95-7.97 (d, 2H, Hff’, J = 8.0 Hz), 

8.14-8.16 (d, 2H, Hgg’, J = 8.0 Hz), 8.21-8.24 (m, 1H, Hh), 8.67 (s, 1H, Hi), 9.85 (s, 

1H, Hj); MS: m/z 377; Anal. Calcd. for C18H15N7O3: C, 57.29; H, 4.01; N, 25.98; O, 

12.72. Found: C, 57.20; H, 3.96; N, 25.92; O, 12.66%. 
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4.6.4.7 4,7-dihydro-5-methyl-7-(3-nitrophenyl)-N-(pyridin-3-yl)-[1,2,4]triazolo 

[1,5-a]pyrimidine-6-carboxamide (CPV-217) Yield: 

77%; mp 203-205 ºC; MS: m/z 377; Anal. Calcd. for 

C18H15N7O3: C, 57.29; H, 4.01; N, 25.98; O, 12.72. 

Found: C, 57.18; H, 3.97; N, 25.94; O, 12.65%. 

 

 

 

4.6.4.8 4,7-dihydro-5-methyl-7-(2-nitrophenyl)-N-(pyridin-3-yl)-[1,2,4]triazolo 

[1,5-a]pyrimidine-6-carboxamide (CPV-218) Yield: 

72%; mp 199-201 ºC; MS: m/z 377; Anal. Calcd. for 

C18H15N7O3: C, 57.29; H, 4.01; N, 25.98; O, 12.72. 

Found: C, 57.22; H, 3.94; N, 25.92; O, 12.68%. 

 

 

 

4.6.4.9 7-(3-chlorophenyl)-4,7-dihydro-5-methyl-N-(pyridin-3-yl)-[1,2,4]triazolo 

[1,5-a]pyrimidine-6-carboxamide (CPV-219) Yield: 

68%; mp 207-209 ºC; MS: m/z 366; Anal. Calcd. for 

C18H15ClN6O: C, 58.94; H, 4.12; N, 22.91; O, 4.36. 

Found: C, 58.88; H, 4.02; N, 22.88; O, 4.29%. 

 

 

 

4.6.4.10    7-(2-chlorophenyl)-4,7-dihydro-5-methyl-N-(pyridin-3-yl)-[1,2,4]triazolo 

[1,5-a]pyrimidine-6-carboxamide (CPV-220) Yield: 

77%; mp 217-219 ºC; MS: m/z 366; Anal. Calcd. for 

C18H15ClN6O: C, 58.94; H, 4.12; N, 22.91; O, 4.36. 

Found: C, 58.87; H, 4.05; N, 22.85; O, 4.30%. 
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4.6.5 General procedure for the synthesis of N-(4-chlorophenyl)-4,7-dihydro-5-

methyl-7-aryl-[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxamide (CPV 221-230) 

 

A mixture of the 5-amino-1,2,4-triazole (0.01 mol), N-(4-chlorophenyl)-3-

oxobutanamide (0.01 mol) and an appropriate aromatic aldehyde (0.01 mol) was 

refluxed in 0.4 mL of dimethyl formamide (DMF) for 12 to 15 min. After cooling, 

methanol (~10 mL) was added. The reaction mixture was allowed to stand overnight 

and then filtered to give the solid triazolopyrimidine products CPV 221-230, which 

were crystallized from ethanol and subsequently dried in air. 

 

4.6.5.1          N-(4-chlorophenyl)-4,7-dihydro-5-methyl-7-phenyl-[1,2,4]triazolo[1,5-a] 

pyrimidine-6-carboxamide (CPV-221) Yield: 65%; 

mp 211-213 ºC; MS: m/z 365; Anal. Calcd. for 

C19H16ClN5O: C, 62.38; H, 4.41; N, 19.14; O, 4.37; 

Found: C, 62.30; H, 4.34; N, 19.10; O, 4.30%. 

 

 

 

4.6.5.2 N-(4-chlorophenyl)-4,7-dihydro-5-methyl-7-p-tolyl-[1,2,4]triazolo[1,5-a] 

pyrimidine-6-carboxamide (CPV-222) Yield: 70%; 

mp 233-235 ºC; MS: m/z 379; Anal. Calcd. for 

C20H18ClN5O: C, 63.24; H, 4.78; N, 18.44; O, 4.21; 

Found: C, 63.19; H, 4.69; N, 18.39; O, 4.16%. 

 

 

 

4.6.5.3 N-(4-chlorophenyl)-4,7-dihydro-7-(4-methoxyphenyl)-5-methyl-[1,2,4] 

triazolo[1,5-a]pyrimidine-6-carboxamide (CPV-

223) Yield: 83%; mp 241-243 ºC; IR (cm-1): 3261 

(N-H stretching of secondary amine), 3097 (C-H 

stretching of aromatic ring), 3028 (C-H symmetrical 

stretching of CH3 group), 2966 (C-H asymmetrical 

stretching of CH3 group), 1666 (C=O stretching of 
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amide), 1595 (C=N stretching of triazole ring), 1556 (N-H deformation of pyrimidine 

ring), 1512 and 1460 (C=C stretching of aromatic ring), 1394 (C-H asymmetrical 

deformation of CH3 group), 1352 (C-H symmetrical deformation of CH3 group), 1327 

(C-N stretching), 1153 (C-H in plane deformation of aromatic ring), 1091 (C-O-C 

asymmetrical stretching of ether linkage), 1031 (C-O-C symmetrical stretching of 

ether linkage), 831 (C-H out of plane deformation of 1,4-disubstitution), 786 (C-Cl 

stretching); 1H NMR (DMSO-d6) δ ppm: 2.17 (s, 3H, Ha), 3.68 (s, 3H, Hb), 6.49 (s, 

1H, Hc), 6.83-6.85 (d, 2H, Hdd’, J = 8.0 Hz), 7.13-7.15 (d, 2H, Hee’, J = 8.0 Hz ), 7.29-

7.31 (d, 2H, Hff’, J = 8.0 Hz), 7.54-7.56 (d, 2H, Hgg’, J = 8.0 Hz), 7.60-7.62 (s, 1H, 

Hh), 9.83 (s, 1H, Hi), 10.22 (s, 1H, Hj): MS: m/z 395; Anal. Calcd. for C20H18ClN5O2: 

C, 60.68; H, 4.58; N, 17.69; O, 8.08. Found: C, 60.62; H, 4.50; N, 17.61; O, 8.00%. 

 

4.6.5.4      N,7-bis(4-chlorophenyl)-4,7-dihydro-5-methyl-[1,2,4]triazolo[1,5-

a]pyrimidine-6-carboxamide (CPV-224) Yield: 

78%; mp 235-237 ºC; IR (cm-1): 3265 (N-H 

stretching of secondary amine), 3101 (C-H stretching 

of aromatic ring), 3026 (C-H symmetrical stretching 

of CH3 group), 2895 (C-H asymmetrical stretching 

of CH3 group), 1664 (C=O stretching of amide), 

1591 (C=N stretching of triazole ring), 1554 (N-H deformation of pyrimidine ring), 

1514 and 1492 (C=C stretching of aromatic ring), 1396 (C-H asymmetrical 

deformation of CH3 group), 1325 (C-H symmetrical deformation of CH3 group), 1247 

(C-N stretching), 1089 (C-H in plane deformation of aromatic ring), 825 (C-H out of 

plane deformation of 1,4-disubstitution), 781 (C-Cl stretching); 1H NMR (DMSO-d6) 

δ ppm: 2.17 (s, 3H, Ha), 6.55 (s, 1H, Hb), 7.22-7.24 (d, 2H, Hcc’, J = 8.0 Hz), 7.30-

7.32 (d, 2H, Hdd’, J = 8.0 Hz), 7.37-7.39 (d, 2H, Hee’, J = 8.0 Hz), 7.53-7.55 (d, 2H, 

Hff’, J = 8.0 Hz), 7.67 (s, 1H, Hg), 9.89 (s, 1H, Hh), 10.36 (s, 1H, Hi); MS: m/z 400; 

Anal. Calcd. for C19H15Cl2N5O: C, 57.01; H, 3.78; N, 17.50; O, 4.00. Found: C, 56.94; 

H, 3.72; N, 17.45; O, 3.96%. 
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4.6.5.5  N-(4-chlorophenyl)-7-(4-fluorophenyl)-4,7-dihydro-5-methyl-[1,2,4] 

triazolo[1,5-a]pyrimidine-6carboxamide (CPV-225) 

Yield: 70%; mp 248-250 ºC; MS: m/z 383; Anal. 

Calcd. for C19H15ClFN5O: C, 59.46; H, 3.94; N, 

18.25; O, 4.17. Found: C, 59.37; H, 3.91; N, 18.20; 

O, 4.11%. 

 

 

4.6.5.6       N-(4-chlorophenyl)-4,7-dihydro-5-methyl-7-(4-nitrophenyl)-[1,2,4] 

triazolo[1,5-a]pyrimidine-6-carboxamide  (CPV-226) 

Yield: 65%; mp 236-238 ºC; IR (cm-1): 3257 (N-H 

stretching of secondary amine), 3095 (C-H stretching 

of aromatic ring), 2982 (C-H symmetrical stretching 

of CH3 group), 2872 (C-H asymmetrical stretching 

of CH3 group), 1666 (C=O stretching of amide), 

1622 (N-H deformation of pyrimidine ring), 1595 (C=N stretching of triazole ring), 

1521 and 1494 (C=C stretching of aromatic ring), 1396 (C-H asymmetrical 

deformation of CH3 group), 1348 (C-H symmetrical deformation of CH3 group), 1325 

(C-NO2 stretching), 1244 (C-N stretching), 1190 (C-H in plane deformation of 

aromatic ring), 819 (C-H out of plane deformation of 1,4-disubstitution), 740 (C-Cl 

stretching); 1H NMR (DMSO-d6) δ ppm: 2.18 (s, 3H, Ha), 6.68 (s, 1H, Hb), 7.29-7.31 

(d, 2H, Hcc’, J = 8.0 Hz), 7.46-7.48 (d, 2H, Hdd’, J = 8.0 Hz), 7.52-7.54 (d, 2H, Hee’, J 

= 8.0 Hz), 7.70 (s, 1H, Hf), 8.17-8.19 (d, 2H, Hgg’, J = 8.0 Hz), 9.92 (s, 1H, Hh), 10.47 

(s, 1H, Hi); MS: m/z 410; Anal. Calcd. for C19H15ClN6O3: C, 55.55; H, 3.68; N, 20.46; 

O, 11.68. Found: C, 55.49; H, 3.62; N, 20.40; O, 11.61%. 

 

4.6.5.7 N-(4-chlorophenyl)-4,7-dihydro-5-methyl-7-(3-nitrophenyl)-[1,2,4] 

triazolo[1,5-a]pyrimidine-6-carboxamide (CPV-227) 

Yield: 64%; mp 239-241 ºC; MS: m/z 410; Anal. 

Calcd. for C19H15ClN6O3: C, 55.55; H, 3.68; Cl, 8.63; 

N, 20.46; O, 11.68. Found: C, 55.47; H, 3.60; N, 

20.37; O, 11.61%. 
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4.6.5.8 N-(4-chlorophenyl)-4,7-dihydro-5-methyl-7-(2-nitrophenyl)-[1,2,4] 

triazolo[1,5-a]pyrimidine-6-carboxamide (CPV-228) 

Yield: 72%; mp 218-220 ºC; MS: m/z 410; Anal. 

Calcd. for C19H15ClN6O3: C, 55.55; H, 3.68; N, 

20.46; O, 11.68. Found: C, 55.45; H, 3.60; N, 20.39; 

O, 11.63%. 

 

 

4.6.5.9      7-(3-chlorophenyl)-N-(4-chlorophenyl)-4,7-dihydro-5-methyl-[1,2,4] 

triazolo[1,5-a]pyrimidine-6-carboxamide (CPV-229) 

Yield: 67%; mp 255-257 ºC; MS: m/z 400; Anal. 

Calcd. for C19H15Cl2N5O: C, 57.01; H, 3.78; N, 

17.50; O, 4.00. Found: C, 56.93; H, 3.73; N, 17.44; 

O, 3.92%. 

 

 

4.6.5.10 7-(2-chlorophenyl)-N-(4-chlorophenyl)-4,7-dihydro-5-methyl-[1,2,4] 

triazolo[1,5-a]pyrimidine-6-carboxamide (CPV-230)  

Yield: 63%; mp 220-222 ºC; MS: m/z 400; Anal. 

Calcd. for C19H15Cl2N5O: C, 57.01; H, 3.78; N, 

17.50; O, 4.00. Found: C, 56.95; H, 3.70; N, 17.44; 

O, 3.90%. 

 

 

4.6.6    General procedure for the synthesis of N-(3-chloro-4-fluorophenyl)-4,7-

dihydro-5-methyl-7-aryyl-[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxamides (CPV 231-

240) 

A mixture of the 5-amino-1,2,4-triazole (0.01 mol), N-(2-flourophenyl)-3-oxobuta 

namide (0.01 mol) and an appropriate aromatic aldehyde (0.01 mol) was refluxed in 

0.4 mL of dimethyl formamide (DMF) for 12 to 15 min. After cooling, methanol (~10 

mL) was added. The reaction mixture was allowed to stand overnight and then filtered 

to give the solid triazolopyrimidine products CPV 231-240, which were crystallized 

from ethanol and subsequently dried in air. 
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4.6.6.1 N-(3-chloro-4-fluorophenyl)-4,7-dihydro-5-methyl-7-phenyl-[1,2,4]triazolo 

[1,5-a]pyrimidine-6-carboxamide (CPV-231) Yield: 

65%; mp 222-224 ºC; MS: m/z 383; Anal. Calcd. for 

C19H15ClFN5O: C, 59.46; H, 3.94; N, 18.25; O, 4.17. 

Found: C, 59.40; H, 3.89; N, 18.20; O, 4.10%. 

 

 

 

4.6.6.2 N-(3-chloro-4-fluorophenyl)-4,7-dihydro-5-methyl-7-p-tolyl-[1,2,4]triazolo 

[1,5-a]pyrimidine-6-carboxamide (CPV-232) Yield: 

76%; mp 229-231 ºC; MS: m/z 397; Anal. Calcd. for 

C20H17ClFN5O: C, 60.38; H, 4.31; N, 17.60; O, 4.02. 

Found: C, 60.30; H, 4.24; N, 17.50; O, 3.92%. 

 

 

 

4.6.6.3 N-(3-chloro-4-fluorophenyl)-4,7-dihydro-7-(4-methoxyphenyl)-5-methyl 

[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxamide 

(CPV-233) Yield: 70%; mp 291-293 ºC; IR (cm-1): 

3281 (N-H stretching of secondary amine), 3093 (C-

H stretching of aromatic ring), 3009 (C-H 

symmetrical stretching of CH3 group), 2972 (C-H 

asymmetrical stretching of CH3 group), 1662 (C=O 

stretching of amide), 1591 (C=N stretching of triazole ring), 1558 (N-H deformation 

of pyrimidine ring), 1541 and 1518 (C=C stretching of aromatic ring), 1438 (C-H 

asymmetrical deformation of CH3 group), 1388 (C-H symmetrical deformation of 

CH3 group), 1251 (C-N stretching), 1213 (C-O-C asymmetrical stretching of ether 

linkage), 1149 (C-H in plane deformation of aromatic ring), 1058 (C-O-C 

symmetrical stretching of ether linkage), 1030 (C-F stretching), 829 (C-H out of plane 

deformation of 1,2,4-trisubstitution), 731 (C-Cl stretching); 1H NMR (DMSO-d6) δ 

ppm: 2.24 (s, 3H, Ha), 3.72 (s, 3H, Hb), 6.55 (s, 1H, Hc), 6.79-6.81 (d, 2H, Hdd’, J = 

8.0 Hz), 7.05-7.09 (t, 1H, He), 7.19-7.21 (d, 2H, Hff’, J = 8.0 Hz), 7.39-7.43 (m, 1H, 

Hg), 7.51 (s, 1H, Hh), 7.79-7.82 (m, 1H, Hi), 9.70 (s, 1H, Hj), 10.10 (s, 1H, Hk); MS: 
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m/z 413; Anal. Calcd. for C20H17 ClFN5O2: C, 58.05; H, 4.14; N, 16.92; O, 7.73. 

Found: C, 58.00; H, 4.09; N, 16.85; O, 7.67%. 

 

4.6.6.4 N-(3-chloro-4-fluorophenyl)-7-(4-chlorophenyl)-4,7-dihydro-5-methyl- 

[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxamide 

(CPV-234) Yield: 82%; mp 255-257 ºC; IR (cm-1): 

3267 (N-H stretching of secondary amine), 3097 (C-

H stretching of aromatic ring), 3026 (C-H 

symmetrical stretching of CH3 group), 2943 (C-H 

asymmetrical stretching of CH3 group), 1658 (C=O 

stretching of amide), 1593 (C=N stretching of triazole ring), 1633 (N-H deformation 

of pyrimidine ring), 1554 and 1502 (C=C stretching of aromatic ring), 1388 (C-H 

asymmetrical deformation of CH3 group), 1313 (C-H symmetrical deformation of 

CH3 group), 1261 (C-N stretching), 1234 (C-H in plane deformation of aromatic ring), 

1089 (C-F stretching), 871 (C-H out of plane deformation of 1,2,4-trisubstitution), 

686 (C-Cl stretching); 1H NMR (DMSO-d6) δ ppm: 2.23 (s, 3H, Ha), 6.59 (s, 1H, Hb), 

7.09-7.14 (t, 1H, Hc), 7.23-7.31 (dd, 4H, Hdd’-ee’, J = 8.0 Hz), 7.40-7.44 (m, 1H, Hf), 

7.54 (s, 1H, Hg), 7.80-7.82 (dd, 1H, Hh, J = 8.0 Hz), 9.80 (s, 1H, Hi), 10.26 (s, 1H, 

Hj); MS: m/z 418; Anal. Calcd. for C19H14Cl2FN5O: C, 54.56; H, 3.37; N, 16.74; O, 

3.83. Found: C, 54.50; H, 3.31; N, 16.68; O, 3.77%. 

 

4.6.6.5 N-(3-chloro-4-fluorophenyl)-7-(4-fluorophenyl)-4,7-dihydro-5-methyl-  

[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxamide 

(CPV-235) Yield: 81%; mp 276-278 ºC; MS: m/z 

401; Anal. Calcd. for C19H14ClF2N5O: C, 56.80; H, 

3.51; N, 17.43; O, 3.98. Found: C, 56.70; H, 3.44; N, 

17.35; O, 3.92%. 

 

 

N
H

N

N

N

O

N
H
H3C

Cl

F

Cl

a

b

c
d d'

e e'
f

gh

i

j

N
H

N

N

N

O

N
H
H3C

F

F

Cl

 



 
Chapter 4                                                                       1,2,4-triazolo[1,5-a]pyrimidines 
     

   129

4.6.6.6 N-(3-chloro-4-fluorophenyl)-4,7-dihydro-5-methyl-7-(4-nitrophenyl)- 

[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxamide 

(CPV-236) Yield: 76%; mp 215-217 ºC; IR (cm-1): 

3234 (N-H stretching of secondary amine), 3099 (C-

H stretching of aromatic ring), 3026 (C-H 

symmetrical stretching of CH3 group), 2941 (C-H 

asymmetrical stretching of CH3 group), 1664 (C=O 

stretching of amide), 1597 (C=N stretching of triazole ring), 1525 (N-H deformation 

of pyrimidine ring), 1504 and 1448 (C=C stretching of aromatic ring), 1427 (C-H 

asymmetrical deformation of CH3 group), 1388 (C-H symmetrical deformation of 

CH3 group), 1348 (C-N stretching), 1323 (C-NO2 stretching), 1244 (C-H in plane 

deformation of aromatic ring), 1153 (C-F stretching), 866 (C-H out of plane 

deformation of 1,2,4-trisubstitution), 783 (C-Cl stretching); 1H NMR (DMSO-d6) δ 

ppm: 2.24 (s, 3H, Ha), 6.71 (s, 1H, Hb), 7.12-7.17 (t, 1H, Hc), 7.40-7.43 (m, 1H, Hd), 

7.48-7.50 (d, 2H, Hee’, J = 8.0 Hz), 7.59 (s, 1H, Hf), 7.79-7.81 (dd, 1H, Hg, J = 8.0 

Hz), 8.15-8.17 (d, 2H, Hhh’, J = 8.0 Hz), 9.88 (s, 1H, Hi), 10.42 (s, 1H, Hj); MS: m/z 

428; Anal. Calcd. for C19H14Cl FN6O3: C, 53.22; H, 3.29; N, 19.60; O, 11.19. Found: 

C, 53.16; H, 3.22; N, 19.56; O, 11.15%. 

 

4.6.6.7 N-(3-chloro-4-fluorophenyl)-4,7-dihydro-5-methyl-7-(3-nitrophenyl)- 

[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxamide 

(CPV-237) Yield: 72%; mp 256-258 ºC; MS: m/z 

428; Anal. Calcd. for C19H14Cl FN6O3: C, 53.22; H, 

3.29; N, 19.60; O, 11.19. Found: C, 53.14; H, 3.24; 

N, 19.56; O, 11.10%. 

 

 

4.6.6.8 N-(3-chloro-4-fluorophenyl)-4,7-dihydro-5-methyl-7-(2-nitrophenyl)- 

[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxamide 

(CPV-238) Yield: 78%; mp 275-277 ºC; MS: m/z 

428; Anal. Calcd. for C19H14Cl FN6O3: C, 53.22; H, 

3.29; N, 19.60; O, 11.19. Found: C, 53.15; H, 3.24; 

N, 19.56; O, 11.08%. 
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4.6.6.9 N-(3-chloro-4-fluorophenyl)-7-(3-chlorophenyl)-4,7-dihydro-5-methyl- 

[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxamide 

(CPV-239) Yield: 68%; mp 242-244 ºC; MS: m/z 

418; Anal. Calcd. for C19H14Cl2FN5O: C, 54.56; H, 

3.37; N, 16.74; O, 3.83. Found: C, 54.51; H, 3.30; N, 

16.69; O, 3.77%. 

 

 

4.6.6.10 N-(3-chloro-4-fluorophenyl)-7-(2-chlorophenyl)-4,7-dihydro-5-methyl- 

[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxamide 

(CPV-240) Yield: 72%; mp 256-258 ºC; MS: m/z 

418; Anal. Calcd. for C19H14Cl2FN5O: C, 54.56; H, 

3.37; N, 16.74; O, 3.83. Found: C, 54.50; H, 3.32; N, 

16.67; O, 3.75%. 
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4.7 Spectral discussion 

4.7.1 Mass spectral study 
Mass spectra were recorded on Shimadzu GC-MS-QP-2010 model using Direct 

Injection Probe technique. Systematic fragmentation pattern was observed in mass 

spectral analysis. Molecular ion peak was observed in agreement with molecular 

weight of respective compound. Mass fragmentation pattern for a representative 

compound of each series is depicted below. 

 

4.7.1.1 Mass fragmentation pattern for CPV-203 
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4.7.1.2 Mass fragmentation pattern for CPV-214  

HN

N

N

N

O

N
H

N

H3C

Cl

m/z = 284

m/z = 85

O

N
H

N

Cl

m/z = 273

O

N
H

N

Cl

m/z = 161

m/z = 109

N
H

N

N

N

O

N
H

N

H3C

m/z = 120

m/z = 135

N
H

N

N

N

O

H3C

m/z = 237
N
H

N

N

N

O

N
H

N

H3C

Cl

m/z = 366

+

+

+

+

+

+

+

+

 
 

 

 

 

 

 

 

 

 

 

 

 



 
Chapter 4                                                                       1,2,4-triazolo[1,5-a]pyrimidines 
     

   133

4.7.1.3 Mass fragmentation pattern for CPV-224 
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4.7.1.4 Mass fragmentation pattern for CPV-234 
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4.7.2 IR spectral study 
IR spectra were recorded on Shimadzu FT-IR-8400 model using KBr pellet method. 

Various functional groups present in molecule were identified by characteristic 

frequency obtained for them. For triazolopyrimidines CPV-201 to 240, confirmatory 

bands for secondary amine and amidic carbonyl groups were observed at 3103-3456 

cm-1 and 1658-1676 cm-1 respectively. Another characteristic C=N stretching band of 

triazole ring was observed at 1587-1645 cm-1, which suggested formation of desired 

products CPV-201 to 240.   

 

4.7.3 1H NMR spectral study 
1H NMR spectra were recorded in DMSO-d6 solution on a Bruker Ac 400 MHz 

spectrometer using TMS as an internal standard. Number of protons and their 

chemical shifts were found to support the structure of the synthesized compounds. 
1H NMR spectra confirmed the structures of triazolopyrimidines CPV-201 to 

240 on the basis of following signals: a singlet for the methine proton of pyrimidine 

ring at 6.49-6.77 δ ppm, a singlet for the methine proton of triazole ring at 7.49-7.70 δ 

ppm and singlets for amino and amide group protons at 8.67-10.10 and 9.85-10.47 δ 

ppm, respectively. The aromatic ring protons and J value were found to be in 

accordance with substitution pattern.  
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IR spectrum of CPV-203                

 
Mass spectrum of CPV-203 
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1H NMR spectrum of CPV-203 

 
 

Expanded 1H NMR spectrum of CPV-203 
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IR spectrum of CPV-204 

 
 

Mass spectrum of CPV-204 
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1H NMR spectrum of CPV-204 

 
 

Expanded 1H NMR spectrum of CPV-204 
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IR spectrum of CPV-206 

 
 

Mass spectrum of CPV-206 
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1H NMR spectrum of CPV-206 

 

 

Expanded 1H NMR spectrum of CPV-206 

 



 
Chapter 4                                                                       1,2,4-triazolo[1,5-a]pyrimidines 
     

   142

IR spectrum of CPV-213 

 
 

Mass spectrum of CPV-213 
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1H NMR spectrum of CPV-213 

 
 

Expanded 1H NMR spectrum of CPV-213 
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IR spectrum of CPV-214 

 
 

Mass spectrum of CPV-214 
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1H NMR spectrum of CPV-214 

 
 

Expanded 1H NMR spectrum of CPV-214 
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IR spectrum of CPV-216 

 
 

Mass spectrum of CPV-216 
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1H NMR spectrum of CPV-216 

 
 

Expanded 1H NMR spectrum of CPV-216 
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IR spectrum of CPV-223 

 
 

Mass spectrum of CPV-223 
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1H NMR spectrum of CPV-223 

 
 

Expanded 1H NMR spectrum of CPV-223 
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IR spectrum of CPV-224 

 
 

Mass spectrum of CPV-224 
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1H NMR spectrum of CPV-224 

 
 

Expanded 1H NMR spectrum of CPV-224 
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IR spectrum of CPV-226 

 
 

Mass spectrum of CPV-226 
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1H NMR spectrum of CPV-226 

 
 

Expanded 1H NMR spectrum of CPV-226 
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IR spectrum of CPV-233 

 
 

Mass spectrum of CPV-233 
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1H NMR spectrum of CPV-233 

 
 

Expanded 1H NMR spectrum of CPV-233 
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IR spectrum of CPV-234 

 
 

Mass spectrum of CPV-234 
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1H NMR spectrum of CPV-234 

 
 

Expanded 1H NMR spectrum of CPV-234 
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IR spectrum of CPV-236 

 
 

Mass spectrum of CPV-236 
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1H NMR spectrum of CPV-236 

 
 

Expanded 1H NMR spectrum of CPV-236 
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4.8 Biological evaluation 

4.8.1 Antimicrobial evaluation 
All of the synthesized compounds (CPV-201 to 240) were tested for their antibacterial 

and antifungal activity (MIC) in vitro by broth dilution method [98-100] with two 

Gram-positive bacteria Staphylococcus aureus MTCC-96, Streptococcus pyogenes 

MTCC 443, two Gram-negative bacteria Escherichia coli MTCC 442, Pseudomonas 

aeruginosa MTCC 441 and three fungal strains Candida albicans MTCC 227, 

Aspergillus Niger MTCC 282, Aspergillus clavatus MTCC 1323 taking gentamycin, 

ampicillin, chloramphenicol, ciprofloxacin, norfloxacin, nystatin and greseofulvin as 

standard drugs. The standard strains were procured from the Microbial Type Culture 

Collection (MTCC), Institute of Microbial Technology, Chandigarh, India.  

 The minimal inhibitory concentration (MIC) values for all the newly 

synthesized compounds, defined as the lowest concentration of the compound 

preventing the visible growth, were determined by using micro dilution broth method 

according to NCCLS standards [98].  

 

Minimal Inhibition Concentration [MIC]:- 
The main advantage of the ‘Broth Dilution Method’ for MIC determination lies in the 

fact that it can readily be converted to determine the MIC as well. 

 
1. Serial dilutions were prepared in primary and secondary screening. 

2. The control tube containing no antibiotic is immediately subcultured (before 

inoculation) by spreading a loopful evenly over a quarter of plate of medium 

suitable for the growth of the test organism and put for incubation at 37 0C 

overnight.  

3. The MIC of the control organism is read to check the accuracy of the drug 

concentrations.  

4. The lowest concentration inhibiting growth of the organism is recorded as the 

MIC.  

5. The amount of growth from the control tube before incubation (which 

represents the original inoculums) is compared.  
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Methods used for primary and secondary screening: - 
Each synthesized drug was diluted obtaining 2000 μg mL-1 concentration, as a stock 

solution. Inoculum size for test strain was adjusted to 108
 cfu (colony forming unit) 

per milliliter by comparing the turbidity. 

Primary screen: - In primary screening 1000 μg mL-1, 500 μg mL-1 and 250 μg mL-1 

concentrations of the synthesized drugs were taken. The active synthesized drugs 

found in this primary screening were further tested in a second set of dilution against 

all microorganisms.  

Secondary screen: - The drugs found active in primary screening were similarly 

diluted to obtain 200 μg mL-1, 100 μg mL-1, 50 μg mL-1, 25 μg mL-1, 12.5 μg mL-1, 

and 6.250 μg mL-1 concentrations.  

 
Reading Result: - The highest dilution showing at least 99 % inhibition zone is taken 

as MIC. The result of this is much affected by the size of the inoculums. The test 

mixture should contain 108 organism/mL.           

                 
The results obtained from antimicrobial susceptibility testing are depicted in Table 1. 
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Table-1:-   In vitro Antimicrobial Screening Results for CPV-201 to 240 
 

Code Minimal inhibition concentration (µg mL-1 ) 
Gram-positive Gram-negative Fungal species 
S.a. S. p. E.c. P.a. C. a. A. n. A.c. 

CPV-201 
CPV-202 

200 
200 

200 
200 

150 
100 

100 
150 

500 
1000 

1000 
500 

1000 
500 

CPV-203 500 500 100 250 1000 500 1000 
CPV-204 1000 500 500 500 250 1000 1000 
CPV-205 100 62.5 62.5 50 500 500 1000 
CPV-206 500 500 500 250 500 250 250 
CPV-207 500 250 100 250 1000 1000 1000 
CPV-208 1000 500 62.5 500 1000 500 500 
CPV-209 1000 500 500 500 250 1000 1000 
CPV-210 500 62.5 150 250 500 500 500 
CPV-211 1000 250 250 500 250 1000 250 
CPV-212 500 200 250 555 250 1000 1000 
CPV-213 200 100 125 62.5 250 1000 1000 
CPV-214 125 100 500 500 500 >1000 1000 
CPV-215 500 500 500 250 500 500 1000 
CPV-216 1000 500 500 500 500 >1000 >1000 
CPV-217 1000 500 250 500 1000 500 >1000 
CPV-218 500 500 62.5 50 1000 500 500 
CPV-219 125 500 500 500 250 1000 1000 
CPV-220 1000 500 500 250 500 500 500 
CPV-221 62.5 200 250 500 500 1000 250 
CPV-222 250 250 500 500 1000 >1000 >1000 
CPV-223 500 500 500 250 1000 >1000 >1000 
CPV-224 200 200 500 500 500 500 1000 
CPV-225 250 500 250 250 500 1000 >1000 
CPV-226 250 250 500 500 500 1000 1000 
CPV-227 1000 100 500 250 1000 500 1000 
CPV-228 500 62.5 62.5 500 250 500 500 
CPV-229 62.5 100 125 500 500 1000 >1000 
CPV-230 1000 250 100 250 1000 >1000 >1000 
CPV-231 1000 500 250 555 250 1000 250 
CPV-232 250 250 250 250 200 1000 1000 
CPV-233 200 200 100 100 500 1000 1000 
CPV-234 62.5 200 500 100 1000 1000 1000 
CPV-235 200 250 200 500 1000 1000 1000 
CPV-236 500 200 250 500 1000 1000 1000 
CPV-237 100 62.5 150 62.5 250 500 250 
CPV-238 1000 500 250 500 250 500 >1000 
CPV-239 62.5 200 125 500 1000 >1000 >1000 
CPV-240 1000 250 500 250 1000 500 >1000 
Gentamycin 0.25 0.5 0.05 1 - - - 
Ampicillin 250 100 100 100 - - - 
Chloramphenicol 50 50 50 50 - - - 
Iprofloxacin 50 50 25 25 - - - 
Norfloxacin 10 10 10 10 - - - 
Nystatin - - - - 100 100 100 
Greseofulvin - - - - 500 100 100 
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4.8.2 Antimycobacterial, anticancer and antiviral evaluation 
Antimycobacterial, anticancer and antiviral screening of all the newly synthesized 

compounds CPV-201 to CPV-240 is currently under investigation and results are 

awaited.  
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  4.9 Reaction Scheme 

+
a

Reagents and conditions: (a) glacial HAc, Reflux, 20-24 hours

HO

R2

HN N

NH2N
R1

C
O CH3

N
H

N

N

NR1

R2

CPV 241 TO 280  
 
Code R1 R2 M.F. M.W. M.P. ºC Yield % Rf1 Rf2 

CPV-241 4-Br H C17H13BrN4 353 185-187 70 0.56 0.71 
CPV-242 4-Br 4-CH3 C18H15BrN4 367 179-181 75 0.51 0.69 
CPV-243 4-Br 4-OCH3 C18H15BrN4O 383 190-192 71 0.48 0.64 
CPV-244 4-Br 4-Cl C17H12BrClN4 387 202-204 78 0.50 0.68 
CPV-245 4-Br 4-F C17H12BrFN4 371 185-187 68 0.53 0.70 
CPV-246 4-Br 4-NO2 C17H12BrN5O2 398 221-223 72 0.44 0.74 
CPV-247 4-Br 3-NO2 C17H12BrN5O2 398 205-207 67 0.51 0.70 
CPV-248 4-Br 2-NO2 C17H12BrN5O2 398 193-195 81 0.50 0.63 
CPV-249 4-Br 3-Cl C17H12BrClN4 387 207-209 76 0.41 0.62 
CPV-250 4-Br 2-Cl C17H12BrClN4 387 185-187 69 0.49 0.74 
CPV-251 4-Cl H C17H13ClN4 308 221-223 66 0.52 0.69 
CPV-252 4-Cl 4-CH3 C18H15ClN4 322 240-242 80 0.56 0.68 
CPV-253 4-Cl 4-OCH3 C18H15ClN4O 338 209-211 64 0.50 0.66 
CPV-254 4-Cl 4-Cl C17H12Cl2N4 343 267-269 75 0.61 0.77 
CPV-255 4-Cl 4-F C17H12ClFN4 326 217-219 71 0.52 0.69 
CPV-256 4-Cl 4-NO2 C17H12ClN5O2 353 191-193 80 0.54 0.61 
CPV-257 4-Cl 3- NO2 C17H12ClN5O2 353 208-210 72 0.53 0.71 
CPV-258 4-Cl 2-NO2 C17H12ClN5O2 353 148-150 68 0.64 0.78 
CPV-259 4-Cl 3-Cl C17H12Cl2N4 343 164-166 77 0.48 0.62 
CPV-260 4-Cl 2-Cl C17H12Cl2N4 343 210-212 80 0.61 0.72 
CPV-261 4-OCH3 H C18H16N4O 304 205-207 76 0.45 0.56 
CPV-262 4-OCH3 4-CH3 C19H18N4O 318 196-198 63 0.55 0.62 
CPV-263 4-OCH3 4-OCH3 C19H18N4O2 334 225-227 82 0.52 0.70 
CPV-264 4-OCH3 4-Cl C18H15ClN4O 338 222-224 64 0.58 0.73 
CPV-265 4-OCH3 4-F C18H15FN4O 322 145-147 75 0.50 0.58 
CPV-266 4-OCH3 4-NO2 C18H15N5O3 349 249-251 83 0.43 0.55 
CPV-267 4-OCH3 3-NO2 C18H15N5O3 349 229-231 79 0.53 0.69 
CPV-268 4-OCH3 2-NO2 C18H15N5O3 349 121-123 72 0.52 0.67 
CPV-269 4-OCH3 3-Cl C18H15ClN4O 338 212-214 74 0.53 0.61 
CPV-270 4-OCH3 2-Cl C18H15ClN4O 338 171-173 63 0.48 0.68 
CPV-271 4-NO2 H C17H13N5O2 319 203-205 80 0.51 0.59 
CPV-272 4-NO2 4-CH3 C18H15N5O2 333 227-229 77 0.45 0.63 
CPV-273 4-NO2 4-OCH3 C18H15N5O3 349 202-204 62 0.47 0.60 
CPV-274 4-NO2 4-Cl C17H12ClN5O2 353 224-226 68 0.49 0.67 
CPV-275 4-NO2 4-F C17H12FN5O2 337 264-266 60 0.57 0.64 
CPV-276 4-NO2 4-NO2 C17H12N6O4 364 199-201 72 0.52 0.65 
CPV-277 4-NO2 3-NO2 C17H12N6O4 364 212-214 75 0.48 0.55 
CPV-278 4-NO2 2-NO2 C17H12N6O4 364 207-209 77 0.43 0.59 
CPV-279 4-NO2 3-Cl C17H12ClN5O2 353 166-168 62 0.50 0.68 
CPV-280 4-NO2 2-Cl C17H12ClN5O2 353 206-208 61 0.54 0.64 
 TLC Solvent system Rf1: Hexane: Ethyl acetate – 6:4; TLC Solvent system Rf2: Chloroform: Methanol --9:1 
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4.10 Plausible Reaction Mechanism 
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4.11 Experimental 
 

4.11.1 Materials and Methods 

 

Melting points were determined in open capillary tubes and are uncorrected. 

Formation of the compounds was routinely checked by TLC on silica gel-G plates of 

0.5 mm thickness and spots were located by iodine. IR spectra were recorded 

Shimadzu FT-IR-8400 instrument using KBr pellet method. Mass spectra were 

recorded on Shimadzu GC-MS-QP-2010 model using Direct Injection Probe 

technique. 1H NMR was determined in DMSO-d6 solution on a Bruker Ac 400 MHz 

spectrometer. Elemental analysis of the all the synthesized compounds was carried out 

on Elemental Vario EL III Carlo Erba 1108 model and the results are in agreement 

with the structures assigned. 

 

4.11.2 General procedure for the synthesis of 5-(4-bromophenyl)-4,7-dihydro-7-

aryl-[1,2,4]triazolo[1,5-a]pyrimidine (CPV 241-250) 

 

A mixture of the aminoazole (0.01 mol), 4-Bromo acetophenone (0.01 mol) and an 

appropriate aromatic aldehyde (0.01 mol) was refluxed in 8 to 10 mL of glacial acetic 

acid for 20 to 24 hours. After cooling, methanol (~10 mL) was added. The reaction 

mixture was allowed to stand overnight and then filtered to give the solid 

triazolopyrimidine products CPV 241-250, which were crystallized from ethanol and 

subsequently dried in air. 

 

4.11.2.1       5-(4-bromophenyl)-4,7-dihydro-7-phenyl-[1,2,4]triazolo[1,5-a]pyrimidine 

(CPV-241) Yield: 70%; mp 185-187 ºC; MS: m/z 353; 

Anal. Calcd. For C17H13BrN4: C, 57.81; H, 3.71; N, 

15.86. Found: C, 57.72; H, 3.65; N, 15.80%. 
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N

N
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4.11.2.2       5-(4-bromophenyl)-4,7-dihydro-7-p-tolyl-[1,2,4]triazolo[1,5-a]pyrimidine 

(CPV-242) Yield: 75%; mp 179-181 ºC; IR (cm-1): 

3090 (N-H stretching of secondary amine), 3028 (C-H 

stretching of aromatic ring), 2987 (C-H symmetrical 

stretching of CH3 group), 2916 (C-H asymmetrical 

stretching of CH3 group), 1658 (N-H deformation of 

pyrimidine ring), 1597 (C=N stretching of triazole 

ring), 1550 and 1512 (C=C stretching of aromatic 

ring), 1411 (C-H asymmetrical deformation of CH3 group), 1330 (C-N stretching), 

1226 (C-H symmetrical deformation of CH3 group), 1203 (C-H in plane deformation 

of aromatic ring), 873 (C-H out of plane deformation of 1,4-disubstitution), 588 (C-Br 

stretching); 1H NMR (DMSO-d6) δ ppm: 2.30 (s, 3H, Ha), 5.11 (s, 1H, Hb), 6.11-6.12 

(d, 1H, Hc, J = 4.0 Hz), 7.13-7.19 (dd, 4H, Hdd’-ee’, J = 8.0 Hz), 7.52-7.54 (m, 5H, Hf-

h), 9.96 (s, 1H, Hi); MS: m/z 367; Anal. Calcd. For C18H15BrN4: C, 58.87; H, 4.12; N, 

15.26. Found: C, 58.80; H, 4.05; N, 15.20%. 

 

4.11.2.3      5-(4-bromophenyl)-4,7-dihydro-7-(4-methoxyphenyl)-[1,2,4]triazolo[1,5-

a]pyrimidine (CPV-243) Yield: 71%; mp 190-192 ºC; 

MS: m/z 383; Anal. Calcd. for C18H15BrN4O: C, 56.41; 

H, 3.95; N, 14.62; O, 4.17. Found: C, 56.35; H, 3.90; 

N, 14.55; O, 4.11%. 

 

 

 

 

4.11.2.4 5-(4-bromophenyl)-7-(4-chlorophenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-

a]pyrimidine  (CPV-244) Yield: 78%; mp 202-204 ºC; 

MS: m/z 387; Anal. Calcd. for C17H12BrClN4: C, 

52.67; H, 3.12; N, 14.45. Found: C, 52.59; H, 3.04; N, 

14.40%. 
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4.11.2.5  5-(4-bromophenyl)-7-(4-fluorophenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-

a]pyrimidine (CPV-245) Yield: 68%; mp 185-187 ºC; 

IR (cm-1): 3093 (N-H stretching of secondary amine), 

3036 (C-H stretching of aromatic ring), 1656 (N-H 

deformation of pyrimidine ring), 1593 (C=N 

stretching of triazole ring), 1550 and 1508 (C=C 

stretching of aromatic ring), 1410 (C-F stretching), 

1330 (C-N stretching), 1226 (C-H in plane 

deformation of aromatic ring), 842 (C-H out of plane deformation of 1,4-

disubstitution), 717 (C-Br stretching); 1H NMR (DMSO-d6) δ ppm: 1H NMR 

(DMSO-d6) δ ppm: 5.10-5.11 (d, 1H, Ha, J = 4.0 Hz), 6.18-6.19 (d, 1H, Hb, J = 4.0 

Hz), 7.06-7.10 (m, 2H, Hcc’), 7.32-7.35 (m, 2H, Hdd’), 7.53-7.54 (m, 5H, He-g), 10.03 

(s, 1H, Hh); MS: m/z 371; Anal. Calcd. for C17H12BrFN4: C, 55.00; H, 3.26; N, 15.09. 

Found: C, 53.99; H, 3.20; N, 15.05%. 

 

4.11.2.6 5-(4-bromophenyl)-4,7-dihydro-7-(4-nitrophenyl)-[1,2,4]triazolo[1,5-

a]pyrimidine (CPV-246) Yield: 72%; mp 221-223 ºC; 

MS: m/z 398; Anal. Calcd. for C17H12BrN5O2: C, 

51.27; H, 3.04; N, 17.59; O, 8.04. Found: C, 51.20; H, 

2.96; N, 17.50; O, 8.00%. 

 

 

 

 

4.11.2.7  5-(4-bromophenyl)-4,7-dihydro-7-(3-nitrophenyl)-[1,2,4]triazolo[1,5-

a]pyrimidine (CPV-247) Yield: 67%; mp 205-207 ºC; 

MS: m/z 398; Anal. Calcd. for C17H12BrN5O2: C, 

51.27; H, 3.04; N, 17.59; O, 8.04. Found: C, 51.15; H, 

2.94; N, 17.52; O, 8.00%. 
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4.11.2.8 5-(4-bromophenyl)-4,7-dihydro-7-(2-nitrophenyl)-[1,2,4]triazolo[1,5-

a]pyrimidine (CPV-248) Yield: 81%; mp 193-195 ºC; 

MS: m/z 398; Anal. Calcd. for C17H12BrN5O2: C, 

51.27; H, 3.04; N, 17.59; O, 8.04. Found: C, 51.21; H, 

2.91; N, 17.53; O, 7.99%. 

 

 

 

 

4.11.2.9  5-(4-bromophenyl)-7-(3-chlorophenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-

a]pyrimidine (CPV-249) Yield: 76%; mp 207-209 ºC; 

MS: m/z 388; Anal. Calcd. for C17H12BrClN4: C, 

52.67; H, 3.12; N, 14.45. Found: C, 52.58; H, 3.06; N, 

14.39%. 

 

 

 

 

4.11.2.10  5-(4-bromophenyl)-7-(2-chlorophenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-

a]pyrimidine (CPV-250) Yield: 69%; mp 185-187 ºC; 

IR (cm-1): IR (cm-1): 3254 (N-H stretching of 

secondary amine), 3101 (C-H stretching of aromatic 

ring), 1683 (N-H deformation of pyrimidine ring), 

1597 (C=N stretching of triazole ring), 1473 and 1442 

(C=C stretching of aromatic ring), 1269 (C-N 

stretching), 1199 (C-H in plane deformation of 

aromatic ring), 835 (C-H out of plane deformation of 1,4-disubstitution), 808 (C-Cl 

stretching), 758 (C-Br stretching); 1H NMR (DMSO-d6) δ ppm: 5.08-5.09 (d, 1H, Ha, 

J = 4.0 Hz), 6.60-6.61 (d, 1H, Hb, J = 4.0 Hz), 7.00-7.02 (m, 1H, Hc), 7.25-7.27 (m, 

2H, Hde), 7.38-7.41 (m, 1H, Hf), 7.48-7.53 (m, 4H, Hg-h’), 7.59 (s, 1H, Hi), 10.00 (s, 

1H, Hj): MS: m/z 388; Anal. Calcd. for C17H12BrClN4: C, 52.67; H, 3.12; N, 14.45. 

Found: C, 52.61; H, 3.06; N, 14.38%. 
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4.11.3 General procedure for the synthesis of 5-(4-chlorophenyl)-4,7-dihydro-7-

aryl-[1,2,4]triazolo[1,5-a]pyrimidine (CPV 251-260) 

 

A mixture of the aminoazole (0.01 mol), 4-Chloro acetophenone (0.01 mol) and an 

appropriate aromatic aldehyde (0.01 mol) was refluxed in 8 to 10 mL of glacial acetic 

acid for 20 to 24 hours. After cooling, methanol (~10 mL) was added. The reaction 

mixture was allowed to stand overnight and then filtered to give the solid 

triazolopyrimidine products CPV 251-260, which were crystallized from ethanol and 

subsequently dried in air. 

 

4.11.3.1      5-(4-chlorophenyl)-4,7-dihydro-7-phenyl-[1,2,4]triazolo[1,5-a]pyrimidine 

(CPV-251) Yield: 66%; mp 221-223 ºC; MS: m/z 309; 

Anal. Calcd. for C17H13ClN4: C, 66.13; H, 4.24; N, 

18.15. Found: C, 66.05; H, 4.20; N, 18.09%. 

 

 

 

 

 

4.11.3.2      5-(4-chlorophenyl)-4,7-dihydro-7-p-tolyl-[1,2,4]triazolo[1,5-a]pyrimidine 

(CPV-252) Yield: 80%; mp 240-242 ºC; IR (cm-1): 

3282 (N-H stretching of secondary amine), 3109 (C-H 

stretching of aromatic ring), 3030 (C-H asymmetrical 

stretching of CH3 group), 2831 (C-H symmetrical 

stretching of CH3 group), 1683 (C=N stretching of 

triazole ring), 1622 (N-H deformation of pyrimidine 

ring), 1554 and 1498 (C=C stretching of aromatic 

ring), 1425 (C-H asymmetrical deformation of CH3 group), 1375 (C-H symmetrical 

deformation of CH3 group), 1294 (C-N stretching), 1203 (C-H in plane deformation 

of aromatic ring), 802 (C-H out of plane deformation of 1,4-disubstitution), 721 (C-Cl 

stretching); 1H NMR (DMSO-d6) δ ppm: 2.30 (s, 3H, Ha), 5.11-5.12 (d, 1H, Hb, J = 

4.0 Hz), 6.12-6.13 (d, 1H, Hc, J = 4.0 Hz), 7.13-7.19 (2×d, 2×2H, Hd-e’, J = 8.0 Hz), 

7.39-7.41 (d, 2H, Hff’, J = 8.0 Hz), 7.53 (s, 1H, Hg), 7.59-7.61 (d, 2H, Hhh’, J = 8.0 
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Hz), 9.97 (s, 1H, Hi): MS: m/z 323; Anal. Calcd. for C18H15ClN4: C, 66.98; H, 4.68; N, 

17.36. Found: C, 66.89; H, 4.62; N, 17.30%. 

 

4.11.3.3      5-(4-chlorophenyl)-4,7-dihydro-7-(4-methoxyphenyl)-[1,2,4]triazolo[1,5-

a]pyrimidine (CPV-253) Yield: 64%; mp 209-211 ºC; 

IR (cm-1): 3252 (N-H stretching of secondary amine), 

3099 (C-H stretching of aromatic ring), 1683 (N-H 

deformation of pyrimidine ring), 1604 (C=N 

stretching of triazole ring), 1552 and 1510 (C=C 

stretching of aromatic ring), 1425 (C-H asymmetrical 

deformation of CH3 group), 1298 (C-N stretching),  

1246 (C-H in plane deformation of aromatic ring), 1199 (C-O-C asymmetrical 

stretching of ether linkage), 1060 (C-O-C asymmetrical stretching of ether linkage), 

802 (C-H out of plane deformation of 1,4-disubstitution), 721 (C-Cl stretching); 1H 

NMR (DMSO-d6) δ ppm: 3.76 (s, 3H, Ha), 5.08-5.09 (d, 1H, Hb, J = 4.0 Hz), 6.10-

6.11 (d, 1H, Hc, J = 4.0 Hz), 6.86-6.88 (d, 2H, Hdd’, J = 8.0 Hz), 7.23-7.25 (d, 2H, 

Hee’, J = 8.0 Hz), 7.38-7.40 (d, 2H, Hff’, J = 8.0 Hz), 7.51 (s, 1H, Hg), 7.57-7.61 (m, 

2H, Hhh’), 9.93 (s, 1H, Hi): MS: m/z 339; Anal. Calcd. for C18H15ClN4O: C, 63.81; H, 

4.46; N, 16.54; O, 4.72. Found: C, 63.75; H, 4.42; N, 16.50; O, 4.63%. 

 

4.11.3.4     5,7-bis(4-chlorophenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine 

(CPV-254) Yield: 71%; mp 217-219 ºC; MS: m/z 343; 

Anal. Calcd. for C17H12Cl2N4: C, 59.49; H, 3.52; N, 

16.32. Found: C, 59.40; H, 3.43; N, 16.27%. 
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4.11.3.5       5-(4-chlorophenyl)-7-(4-fluorophenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-

a]pyrimidine (CPV-255) Yield: 75%; mp 267-269 ºC; 

IR (cm-1): 3553 (N-H stretching of secondary amine), 

3097 (C-H stretching of aromatic ring), 1656 (N-H 

deformation of pyrimidine ring), 1593 (C=N 

stretching of triazole ring), 1550 and 1506 (C=C 

stretching of aromatic ring), 1330 (C-N stretching), 

1222 (C-H in plane deformation of aromatic ring), 

1134 (C-F stretching), 842 (C-H out of plane deformation of 1,4-disubstitution), 795 

(C-Cl stretching); 1H NMR (DMSO-d6) δ ppm: 5.08-5.09 (d, 1H, Ha, J = 4.0 Hz), 

6.18-6.19 (d, 1H, Hb, J = 4.0 Hz), 7.05-7.10 (m, 2H, Hcc’), 7.31-7.36 (m, 2H, Hdd’), 

7.38-7.40 (d, 2H, Hee’, J = 8.0 Hz), 7.52 (s, 1H, Hf), 7.58-7.59 (d, 2H, Hgg’, J = 4.0 

Hz), 10.07 (s, 1H, Hh): MS: m/z 327; Anal. Calcd. for C17H12ClFN4: C, 62.49; H, 3.70; 

N, 17.15. Found: C, 62.40; H, 3.65; N, 17.10%. 

 

4.11.3.6 5-(4-chlorophenyl)-4,7-dihydro-7-(4-nitrophenyl)-[1,2,4]triazolo[1,5-

a]pyrimidine (CPV-256) Yield: 80%; mp 191-193 ºC; 

MS: m/z 354; Anal. Calcd. for C17H12ClN5O2: C, 

57.72; H, 3.42; N, 19.80; O, 9.05. Found: C, 57.65; H, 

3.36; N, 19.76; O, 8.93%. 

 

 

 

 

4.11.3.7 5-(4-chlorophenyl)-4,7-dihydro-7-(3-nitrophenyl)-[1,2,4]triazolo[1,5-

a]pyrimidine (CPV-257) Yield: 72%; mp 208-210 ºC; 

MS: m/z 354; Anal. Calcd. for C17H12ClN5O2: C, 

57.72; H, 3.42; N, 19.80; O, 9.05. Found: C, 57.67; H, 

3.38; N, 19.74; O, 8.95%. 
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4.11.3.8 5-(4-chlorophenyl)-4,7-dihydro-7-(2-nitrophenyl)-[1,2,4]triazolo[1,5-

a]pyrimidine (CPV-258) Yield: 68%; mp 148-150 ºC; 

MS: m/z 354; Anal. Calcd. for C17H12ClN5O2: C, 

57.72; H, 3.42; N, 19.80; O, 9.05. Found: C, 57.64; H, 

3.35; N, 19.73; O, 8.97%. 

 

 

 

 

4.11.3.9    7-(3-chlorophenyl)-5-(4-chlorophenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-

a]pyrimidine (CPV-259) Yield: 77%; mp 164-166 ºC; 

MS: m/z 343; Anal. Calcd. for C17H12Cl2N4: C, 59.49; 

H, 3.52; N, 16.32. Found: C, 59.42; H, 3.45; N, 

16.22%. 

 

 

 

 

4.11.3.10  7-(2-chlorophenyl)-5-(4-chlorophenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-

a]pyrimidine (CPV-260) Yield: 80%; mp 210-212 ºC; 

MS: m/z 343; Anal. Calcd. for C17H12Cl2N4: C, 59.49; 

H, 3.52; N, 16.32. Found: C, 59.40; H, 3.46; N, 

16.24%. 

 

 

 

 

4.11.4  General procedure for the synthesis of 4,7-dihydro-5-(4-methoxyphenyl)-7-

aryl-[1,2,4]triazolo[1,5-a]pyrimidine (CPV 261-270) 

 

A mixture of the aminoazole (0.01 mol), 4-Methoxy acetophenone (0.01 mol) and an 

appropriate aromatic aldehyde (0.01 mol) was refluxed in 8 to 10 mL of glacial acetic 

acid for 20 to 24 hours. After cooling, methanol (~10 mL) was added. The reaction 
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mixture was allowed to stand overnight and then filtered to give the solid 

triazolopyrimidine products CPV 261-270, which were crystallized from ethanol and 

subsequently dried in air. 

 

4.11.4.1    4,7-dihydro-5-(4-methoxyphenyl)-7-phenyl-[1,2,4]triazolo[1,5-a]pyrimidine 

(CPV-261) Yield: 76%; mp 205-207 ºC; MS: m/z 304; 

Anal. Calcd. for C18H16N4O: C, 71.04; H, 5.30; N, 

18.41; O, 5.26. Found: C, 70.98; H, 5.24; N, 18.36; O, 

5.20%. 

 

 

 

 

4.11.4.2 4,7-dihydro-5-(4-methoxyphenyl)-7-p-tolyl-[1,2,4]triazolo[1,5-a]pyrimidine 

(CPV-262) Yield: 63%; mp 196-198 ºC; IR (cm-1): 

3265 (N-H stretching of secondary amine), 3101 (C-H 

stretching of aromatic ring), 3026 (C-H symmetrical 

stretching of CH3 group), 2895 (C-H asymmetrical 

stretching of CH3 group), 1591 (C=N stretching of 

triazole ring), 1554 (N-H deformation of pyrimidine 

ring), 1514 and 1492 (C=C stretching of aromatic 

ring), 1396 (C-H asymmetrical deformation of CH3 group), 1325 (C-H symmetrical 

deformation of CH3 group), 1247 (C-N stretching), 1230 (C-O-C asymmetrical 

stretching of ether linkage), 1089 (C-H in plane deformation of aromatic ring), 1031 

(C-O-C symmetrical stretching of ether linkage), 825 (C-H out of plane deformation 

of 1,4-disubstitution), 781 (C-Cl stretching); 1H NMR (DMSO-d6) δ ppm: 2.30 (s, 3H, 

Ha), 3.80 (s, 3H, Hb), 4.97-4.98 (d, 1H, Hc, J = 4.0 Hz), 6.08-6.09 (d, 1H, Hd, J = 4.0 

Hz), 6.91-6.93 (d, 2H, Hee’, J = 8.0 Hz), 7.12-7.19 (2×d, 2×2H, Hff’-gg’, J = 8.0 Hz), 

7.50-7.54 (m, 3H, Hh-i’), 9.87 (s, 1H, Hj): MS: m/z 318; Anal. Calcd. for C19H18N4O: 

C, 71.68; H, 5.70; N, 17.60; O, 5.03. Found: C, 71.62; H, 5.65; N, 17.52; O, 4.96%.  
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4.11.4.3        4,7-dihydro-5,7-bis(4-methoxyphenyl)-[1,2,4]triazolo[1,5-a]pyrimidine 

(CPV-263) Yield: 82%; mp 225-227 ºC; IR (cm-1): 

3198 (N-H stretching of secondary amine), 3093 (C-H 

stretching of aromatic ring), 1658 (N-H deformation 

of pyrimidine ring), 1595 (C=N stretching of triazole 

ring), 1548 and 1512 (C=C stretching of aromatic 

ring), 1336 (C-N stretching), 1298 (C-H in plane 

deformation of aromatic ring), 1246 (C-O-C 

asymmetrical stretching of ether linkage), 1035 (C-O-C symmetrical stretching of 

ether linkage), 804 (C-H out of plane deformation of 1,4-disubstitution); 1H NMR 

(DMSO-d6) δ ppm: 3.75 (s, 3H, Ha), 3.79 (s, 3H, Hb), 4.96-4.97 (d, 1H, Hc, J = 4.0 

Hz), 6.07-6.08 (d, 1H, Hd, J = 4.0 Hz), 6.85-6.87 (d, 2H, Hee’, J = 8.0 Hz), 6.91-6.93 

(d, 2H, Hff’, J = 8.0 Hz), 7.23-7.25 (d, 2H, Hgg’, J = 8.0 Hz), 7.48 (s, 1H, Hh), 7.53-

7.55 (d, 2H, Hii’, J = 8.0 Hz), 9.99 (s, 1H, Hj); MS: m/z 334; Anal. Calcd. for 

C19H18N4O2: C, 68.25; H, 5.43; N, 16.76; O, 9.57. Found: C, 68.20; H, 5.36; N, 16.71; 

O, 9.53%. 

 

4.11.4.4     7-(4-chlorophenyl)-4,7-dihydro-5-(4-methoxyphenyl)-[1,2,4]triazolo[1,5-

a]pyrimidine (CPV-264) Yield: 75%; mp 145-147ºC; 

MS: m/z 339; Anal. Calcd. for C18H15ClN4O: C, 63.81; 

H, 4.46; N, 16.54; O, 4.72. Found: C, 63.71; H, 4.42; 

N, 16.50; O, 4.66%. 

 

 

 

 

4.11.4.5    7-(4-fluorophenyl)-4,7-dihydro-5-(4-methoxyphenyl)-[1,2,4]triazolo[1,5-

a]pyrimidine (CPV-265) Yield: 64%; mp 222-224 ºC; 

IR (cm-1): 3477 (N-H stretching of secondary amine), 

3091 (C-H stretching of aromatic ring), 1656 (N-H 

deformation of pyrimidine ring), 1593 (C=N 

stretching of triazole ring), 1552 and 1512 (C=C 

stretching of aromatic ring), 1338 (C-N stretching), 
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1298 (C-F stretching), 1224 (C-O-C asymmetrical stretching of ether linkage), 1136 

(C-O-C stretching), 1072 (C-H in plane deformation of aromatic ring), 1031 (C-O-C 

symmetrical stretching of ether linkage), 842 (C-H out of plane deformation of 1,4-

disubstitution); 1H NMR (DMSO-d6) δ ppm: 3.82 (s, 3H, Ha), 4.95-4.96 (d, 1H, Hb, J 

= 4.0 Hz), 6.14-6.15 (d, 1H, Hc, J = 4.0 Hz), 6.91-6.93 (d, 2H, Hdd’, J = 8.0 Hz), 7.03-

7.07 (m, 2H, Hee’), 7.33-7.36 (m, 2H, Hff’), 7.52-7.55 (m, 3H, Hg-h’), 9.73 (s, 1H, Hi); 

MS: m/z 322; Anal. Calcd. for C18H15FN4O: C, 67.07; H, 4.69; N, 17.38; O, 4.96. 

Found: C, 67.00; H, 4.62; N, 17.30 O, 4.90%. 

 

4.11.4.6  4,7-dihydro-5-(4-methoxyphenyl)-7-(4-nitrophenyl)-[1,2,4]triazolo[1,5-

a]pyrimidine (CPV-266) Yield: 83%; mp 249-251 ºC; 

MS: m/z 349; Anal. Calcd. for C18H15N5O3: C, 61.89; 

H, 4.33; N, 20.05; O, 13.74. Found: C, 61.81; H, 4.24; 

N, 19.96; O, 13.69%. 

 

 

 

 

4.11.4.7  4,7-dihydro-5-(4-methoxyphenyl)-7-(3-nitrophenyl)-[1,2,4]triazolo[1,5-

a]pyrimidine (CPV-267) Yield: 79%; mp 229-231 ºC; 

MS: m/z 349; Anal. Calcd. for C18H15N5O3: C, 61.89; 

H, 4.33; N, 20.05; O, 13.74. Found: C, 61.80; H, 4.22; 

N, 19.98; O, 13.68%. 

 

 

 

 

4.11.4.8 4,7-dihydro-5-(4-methoxyphenyl)-7-(2-nitrophenyl)-[1,2,4]triazolo[1,5-

a]pyrimidine (CPV-268) Yield: 72%; mp 121-123 ºC; 

MS: m/z 349; Anal. Calcd. for C18H15N5O3: C, 61.89; 

H, 4.33; N, 20.05; O, 13.74. Found: C, 61.81; H, 4.25; 

N, 19.95; O, 13.65%. 
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4.11.4.9 7-(3-chlorophenyl)-4,7-dihydro-5-(4-methoxyphenyl)-[1,2,4]triazolo[1,5-

a]pyrimidine (CPV-269) Yield: 74%; mp 212-214 ºC; 

MS: m/z 339; Anal. Calcd. for C18H15ClN4O: C, 63.81; 

H, 4.46; N, 16.54; O, 4.72. Found: C, 63.75; H, 4.40; 

N, 16.50; O, 4.64%. 

 

 

 

 

4.11.4.10     7-(2-chlorophenyl)-4,7-dihydro-5-(4-methoxyphenyl)-[1,2,4]triazolo[1,5-

a]pyrimidine (CPV-270) Yield: 63%; mp 171-173 ºC; 

MS: m/z 339; Anal. Calcd. for C18H15ClN4O: C, 63.81; 

H, 4.46; N, 16.54; O, 4.72. Found: C, 63.77; H, 4.38; 

N, 16.49; O, 4.66%. 

 

 

 

 

4.11.5  General procedure for the synthesis of 4,7-dihydro-5-(4-nitrophenyl)-7-aryl-

[1,2,4]triazolo[1,5-a]pyrimidine (CPV 271-280) 

 

A mixture of the aminoazole (0.01 mol), 4-Nitro acetophenone (0.01 mol) and an 

appropriate aromatic aldehyde (0.01 mol) was refluxed in 8 to 10 mL of glacial acetic 

acid for 20 to 24 hours. After cooling, methanol (~10 mL) was added. The reaction 

mixture was allowed to stand overnight and then filtered to give the solid 

triazolopyrimidine products CPV 271-280, which were crystallized from ethanol and 

subsequently dried in air. 
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4.11.5.1       4,7-dihydro-5-(4-nitrophenyl)-7-phenyl-[1,2,4]triazolo[1,5-a]pyrimidine 

(CPV-271) Yield: 80%; mp 203-205 ºC; MS: m/z 319; 

Anal. Calcd. for C17H13N5O2: C, 63.94; H, 4.10; N, 

21.93; O, 10.02. Found: C, 63.90; H, 4.04; N, 21.87; 

O, 9.92%. 

 

 

 

4.11.5.2     4,7-dihydro-5-(4-nitrophenyl)-7-p-tolyl-[1,2,4]triazolo[1,5-a]pyrimidine 

(CPV-272) Yield: 77%; mp 227-229 ºC; IR (cm-1): 

3553 (N-H stretching of secondary amine), 3255 (C-H 

symmetrical stretching of CH3 group), 3095 (C-H 

stretching of aromatic ring), 2939 (C-H asymmetrical 

stretching of CH3 group), 1653 (N-H deformation of 

pyrimidine ring), 1593 (C=N stretching of triazole 

ring), 1554 and 1475 (C=C stretching of aromatic 

ring), 1518 and 1377 (C-NO2 stretching), 1344 (C-N stretching), 1315 (C-H 

asymmetrical deformation of CH3 group), 1271 (C-H symmetrical deformation of 

CH3 group), 1197 (C-H in plane deformation of aromatic ring), 810 (C-H out of plane 

deformation of 1,4-disubstitution); 1H NMR (DMSO-d6) δ ppm: 2.14 (s, 3H, Ha), 

5.29-5.30 (d, 1H, Hb, J = 4.0 Hz), 6.16-6.17 (d, 1H, Hc, J = 4.0 Hz), 7.15-7.21 (2×d, 

2×2H, Hdd’-ee’, J = 8.0 Hz), 7.54 (s, 1H, Hf), 7.84-7.86 (d, 2H, Hgg’, J = 8.0 Hz), 8.23-

8.25 (d, 2H, Hhh’, J = 8.0 Hz), 10.17 (s, 1H, Hi); MS: m/z 333; Anal. Calcd. for 

C18H15N5O2: C, 64.86; H, 4.54; N, 21.01; O, 9.60. Found: C, 64.80; H, 4.49; N, 20.94; 

O, 9.52%. 

 

4.11.5.3 4,7-dihydro-7-(4-methoxyphenyl)-5-(4-nitrophenyl)-[1,2,4]triazolo[1,5-

a]pyrimidine (CPV-273) Yield: 62%; mp 202-204 ºC; 

IR (cm-1): 3201 (N-H stretching of secondary amine), 

3093 (C-H stretching of aromatic ring), 1595 (C=N 

stretching of triazole ring), 1550 (N-H deformation of 

pyrimidine ring), 1512 and 1464 (C=C stretching of 

aromatic ring), 1346 (C-N stretching), 1307 (C-NO2 
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stretching), 1247 (C-H in plane deformation of aromatic ring), 1197 (C-O-C 

asymmetrical stretching of ether linkage), 1031 (C-O-C symmetrical stretching of 

ether linkage), 808 (C-H out of plane deformation of 1,4-disubstitution); 1H NMR 

(DMSO-d6) δ ppm: 3.77 (s, 3H, Ha), 5.29-5.30 (d, 1H, Hb, J = 4.0 Hz), 6.15-6.16 (d, 

1H, Hc, J = 4.0 Hz), 6.87-6.89 (d, 2H, Hdd’, J = 8.0 Hz), 7.25-7.27 (d, 2H, Hee’, J = 8.0 

Hz), 7.53 (s, 1H, Hf), 7.85-7.87 (d, 2H, Hgg’, J = 8.0 Hz), 8.23-8.25 (d, 2H, Hhh’, J = 

8.0 Hz), 10.16 (s, 1H, Hi); MS: m/z 349; Anal. Calcd. for C18H15N5O3: C, 61.89; H, 

4.33; N, 20.05; O, 13.74. Found: C, 61.82; H, 4.25; N, 19.97; O, 13.70%. 

 

4.11.5.4       7-(4-chlorophenyl)-4,7-dihydro-5-(4-nitrophenyl)-[1,2,4]triazolo[1,5-a] 

pyrimidine (CPV-274) Yield: 60%; mp 264-266 ºC; 

MS: m/z 354; Anal. Calcd. for C17H12ClN5O2: C, 

57.72; H, 3.42; N, 19.80; O, 9.05. Found: C, 57.63; H, 

3.35; N, 19.74; O, 9.00%. 

 

 

 

 

4.11.5.5       7-(4-fluorophenyl)-4,7-dihydro-5-(4-nitrophenyl)-[1,2,4]triazolo[1,5-a] 

pyrimidine (CPV-275)  Yield: 68%; mp 224-226 ºC; 

IR (cm-1): 3099 (N-H stretching of secondary amine), 

3010 (C-H stretching of aromatic ring), 1595 (C=N 

stretching of triazole ring), 1552 (N-H deformation of 

pyrimidine ring), 1510 and 1479 (C=C stretching of 

aromatic ring), 1346 (C-NO2 stretching), 1269 (C-N 

stretching), 1219 (C-H in plane deformation of 

aromatic ring), 1134 (C-F stretching), 804 (C-H out of plane deformation of 1,4-

disubstitution),; 1H NMR (DMSO-d6) δ ppm: 5.31-5.32 (d, 1H, Ha, J = 4.0 Hz), 6.24-

6.25 (d, 1H, Hb, J = 4.0 Hz), 7.07-7.11 (m, 2H, Hcc’), 7.33-7.37 (m, 2H, Hdd’), 7.56 (s, 

1H, He), 7.84-7.89 (m, 2H, Hff’), 8.23-8.25 (m, 2H, Hgg’), 10.22 (s, 1H, Hh); MS: m/z 

337; Anal. Calcd. for C17H12FN5O2: C, 60.53; H, 3.59; N, 20.76; O, 9.49. Found: C, 

60.48; H, 3.52; N, 20.70; O, 9.45%. 
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4.11.5.6 4,7-dihydro-5,7-bis(4-nitrophenyl)-[1,2,4]triazolo[1,5-a]pyrimidine (CPV-

276) Yield: 72%; mp 199-201 ºC; MS: m/z 364; Anal. 

Calcd. for C17H12N6O4: C, 56.05; H, 3.32; N, 23.07; O, 

17.57. Found: C, 55.99; H, 3.27; N, 23.00; O, 17.50%. 

 

 

 

 

4.11.5.7 4,7-dihydro-7-(3-nitrophenyl)-5-(4-nitrophenyl)-[1,2,4]triazolo[1,5-a] 

pyrimidine (CPV-277) Yield: 75%; mp 212-214 ºC; 

MS: m/z 364; Anal. Calcd. for C17H12N6O4: C, 56.05; 

H, 3.32; N, 23.07; O, 17.57. Found: C, 55.98; H, 3.25; 

N, 23.02; O, 17.51%. 

 

 

 

 

4.11.5.8 4,7-dihydro-7-(2-nitrophenyl)-5-(4-nitrophenyl)-[1,2,4]triazolo[1,5-a] 

pyrimidine (CPV-278) Yield: 77%; mp 207-209 ºC; 

MS: m/z 364; Anal. Calcd. for C17H12N6O4: C, 56.05; 

H, 3.32; N, 23.07; O, 17.57. Found: C, 55.95; H, 3.26; 

N, 23.00; O, 17.49%. 

 

 

 

 

4.11.5.9        7-(3-chlorophenyl)-4,7-dihydro-5-(4-nitrophenyl)-[1,2,4]triazolo[1,5-a] 

pyrimidine (CPV-279) Yield: 62%; mp 166-168 ºC; 

MS: m/z 354; Anal. Calcd. for C17H12ClN5O2: C, 

57.72; H, 3.42; N, 19.80; O, 9.05. Found: C, 57.65; H, 

3.37; N, 19.70; O, 8.98%. 
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4.11.5.10 7-(2-chlorophenyl)-4,7-dihydro-5-(4-nitrophenyl)-[1,2,4]triazolo[1,5-

a]pyrimidine (CPV-280) Yield: 61%; mp 206-208 ºC; 

MS: m/z 354; Anal. Calcd. for C17H12ClN5O2: C, 

57.72; H, 3.42; N, 19.80; O, 9.05. Found: C, 57.63; H, 

3.35; N, 19.75; O, 8.97%. 
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4.12 Spectral discussion 

4.12.1 Mass spectral study 
Mass spectra were recorded on Shimadzu GC-MS-QP-2010 model using Direct 

Injection Probe technique. Systematic fragmentation pattern was observed in mass 

spectral analysis. Molecular ion peak was observed in agreement with molecular 

weight of respective compound. Mass fragmentation pattern for a representative 

compound of each series is depicted below. 

 

4.12.1.1 Mass fragmentation pattern for CPV-245 
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4.12.1.2 Mass fragmentation pattern for CPV-252 
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4.12.1.3 Mass fragmentation pattern for CPV-263 
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4.12.1.4 Mass fragmentation pattern for CPV-272 
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4.12.4.2  IR spectral study 
IR spectra were recorded on Shimadzu FT-IR-8400 model using KBr pellet method. 

Various functional groups present in molecule were identified by characteristic 

frequency obtained for them. For triazolopyrimidines CPV-241 to 280, confirmatory 

bands for secondary amine and C=N stretching band of triazole ring were observed at 

3090-3553 cm-1 and 1591-1683 cm-1 respectively. Another characteristic band for N-H 

deformation and C-N stretching were observed at 1550-1683 cm-1 and 1247-1346 cm-

1 respectively, which suggested the formation of pyrimidine ring.   

 

4.12.4.3  1H NMR spectral study 
1H NMR spectra were recorded in DMSO-d6 solution on a Bruker Ac 400 MHz 

spectrometer using TMS as an internal standard. Number of protons and their 

chemical shifts were found to support the structure of the synthesized compounds. 
1H NMR spectra confirmed the structures of triazolopyrimidines CPV-241 to 

280 on the basis of following signals: two characteristic peaks for the methine proton 

of pyrimidine ring and for the methine proton of triazole ring were observed at 4.95-

5.32 δ ppm and 7.48-7.59 δ ppm respectively. And another singlet for amino group 

proton was observed at 9.73-10.22 δ ppm. The aromatic ring protons and J value were 

found to be in accordance with substitution pattern.  
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IR spectrum of CPV-242 

 
 

Mass spectrum of CPV-242 
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1H NMR spectrum of CPV-242 

 
 

Expanded 1H NMR spectrum of CPV-242 
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IR spectrum of CPV-245 

 
 

Mass spectrum of CPV-245 
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1H NMR spectrum of CPV-245 

 
 

Expanded 1H NMR spectrum of CPV-245 
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IR spectrum of CPV-250 

 
 

Mass spectrum of CPV-250 

 



 
Chapter 4                                                                       1,2,4-triazolo[1,5-a]pyrimidines 
     

   192

1H NMR spectrum of CPV-250 

 
 

Expanded 1H NMR spectrum of CPV-250 
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IR spectrum of CPV-252 

 
 

Mass spectrum of CPV-252 
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1H NMR spectrum of CPV-252 

 
 

Expanded 1H NMR spectrum of CPV-252 
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IR spectrum of CPV-253 

 
 

Mass spectrum of CPV-253 
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1H NMR spectrum of CPV-253 

 
 

Expanded 1H NMR spectrum of CPV-253 
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IR spectrum of CPV-255 

 
 

Mass spectrum of CPV-255 
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1H NMR spectrum of CPV-255 

 
 

Expanded 1H NMR spectrum of CPV-255 
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IR spectrum of CPV-262 

 
 

Mass spectrum of CPV-262 
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1H NMR spectrum of CPV-262 

 
 

Expanded 1H NMR spectrum of CPV-262 
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IR spectrum of CPV-263 

 
 

Mass spectrum of CPV-263 
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1H NMR spectrum of CPV-263 

 
 

Expanded 1H NMR spectrum of CPV-263 
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IR spectrum of CPV-265 

 
 

Mass spectrum of CPV-265 
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1H NMR spectrum of CPV-265 

 
 

Expanded 1H NMR spectrum of CPV-265 
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IR spectrum of CPV-272 

 
 

Mass spectrum of CPV-272 
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1H NMR spectrum of CPV-272 

 
 

Expanded 1H NMR spectrum of CPV-272 
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IR spectrum of CPV-273 

 
 

Mass spectrum of CPV-273 
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1H NMR spectrum of CPV-273 

 
 

Expanded 1H NMR spectrum of CPV-273 

 



 
Chapter 4                                                                       1,2,4-triazolo[1,5-a]pyrimidines 
     

   209

IR spectrum of CPV-275 

 
 

Mass spectrum of CPV-275 
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1H NMR spectrum of CPV-275 

 
 

Expanded 1H NMR spectrum of CPV-275 
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4.13 Biological evaluation 

4.13.1 Antimicrobial evaluation 
All of the synthesized compounds (CPV-241 to 280) were tested for their antibacterial 

and antifungal activity (MIC) in vitro by broth dilution method [98-100] with two 

Gram-positive bacteria Staphylococcus aureus MTCC-96, Streptococcus pyogenes 

MTCC 443, two Gram-negative bacteria Escherichia coli MTCC 442, Pseudomonas 

aeruginosa MTCC 441 and three fungal strains Candida albicans MTCC 227, 

Aspergillus Niger MTCC 282, Aspergillus clavatus MTCC 1323 taking gentamycin, 

ampicillin, chloramphenicol, ciprofloxacin, norfloxacin, nystatin and greseofulvin as 

standard drugs. The standard strains were procured from the Microbial Type Culture 

Collection (MTCC), Institute of Microbial Technology, Chandigarh, India.  

 The minimal inhibitory concentration (MIC) values for all the newly 

synthesized compounds, defined as the lowest concentration of the compound 

preventing the visible growth, were determined by using micro dilution broth method 

according to NCCLS standards [98].  

 

Minimal Inhibition Concentration [MIC]:- 
The main advantage of the ‘Broth Dilution Method’ for MIC determination lies in the 

fact that it can readily be converted to determine the MIC as well. 

 
1. Serial dilutions were prepared in primary and secondary screening. 

2. The control tube containing no antibiotic is immediately subcultured (before 

inoculation) by spreading a loopful evenly over a quarter of plate of medium 

suitable for the growth of the test organism and put for incubation at 37 0C 

overnight.  

3. The MIC of the control organism is read to check the accuracy of the drug 

concentrations.  

4. The lowest concentration inhibiting growth of the organism is recorded as the 

MIC.  

5. The amount of growth from the control tube before incubation (which 

represents the original inoculums) is compared.  
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Methods used for primary and secondary screening: - 
Each synthesized drug was diluted obtaining 2000 μg mL-1 concentration, as a stock 

solution. Inoculum size for test strain was adjusted to 108
 cfu (colony forming unit) 

per milliliter by comparing the turbidity. 

Primary screen: - In primary screening 1000 μg mL-1, 500 μg mL-1 and 250 μg mL-1 

concentrations of the synthesized drugs were taken. The active synthesized drugs 

found in this primary screening were further tested in a second set of dilution against 

all microorganisms.  

Secondary screen: - The drugs found active in primary screening were similarly 

diluted to obtain 200 μg mL-1, 100 μg mL-1, 50 μg mL-1, 25 μg mL-1, 12.5 μg mL-1, 

and 6.250 μg mL-1 concentrations.  

 
Reading Result: - The highest dilution showing at least 99 % inhibition zone is taken 

as MIC. The result of this is much affected by the size of the inoculums. The test 

mixture should contain 108 organism/mL.           

                 
The results obtained from antimicrobial susceptibility testing are depicted in Table 1. 
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Table-1:-   In vitro Antimicrobial Screening Results for CPV-241 to 280 
 

Code Minimal inhibition concentration (µg mL-1 ) 
Gram-positive Gram-negative Fungal species 
S.a. S. p. E.c. P.a. C. a. A. n. A.c. 

CPV-241 
CPV-242 

200 
500 

200 
200 

150 
500 

100 
500 

500 
500 

1000 
>1000 

1000 
>1000 

CPV-243 250 250 250 500 1000 >1000 >1000 
CPV-244 500 500 500 500 1000 >1000 >1000 
CPV-245 500 500 1000 1000 1000 >1000 >1000 
CPV-246 200 250 500 250 500 250 250 
CPV-247 500 250 150 250 1000 1000 1000 
CPV-248 1000 62.5 62.5 500 1000 500 500 
CPV-249 1000 500 200 500 250 500 1000 
CPV-250 500 250 250 500 500 500 >1000 
CPV-251 1000 62.5 100 125 250 1000 250 
CPV-252 250 500 250 250 250 200 200 
CPV-253 200 250 100 250 500 500 >1000 
CPV-254 100 500 250 500 500 >1000 1000 
CPV-255 200 250 250 500 >1000 >1000 >1000 
CPV-256 100 62.5 62.5 125 500 >1000 >1000 
CPV-257 500 500 250 500 1000 500 >1000 
CPV-258 500 500 62.5 500 1000 500 500 
CPV-259 250 500 500 500 250 >1000 >1000 
CPV-260 200 500 1000 1000 500 1000 1000 
CPV-261 250 62.5 100 500 500 1000 200 
CPV-262 200 250 250 250 500 500 1000 
CPV-263 200 500 500 1000 250 500 500 
CPV-264 500 100 62.5 100 500 500 >1000 
CPV-265 500 500 500 500 200 500 200 
CPV-266 250 250 500 500 1000 1000 1000 
CPV-267 500 100 500 250 1000 >1000 1000 
CPV-268 500 62.5 62.5 125 250 1000 500 
CPV-269 100 250 150 500 500 1000 >1000 
CPV-270 500 250 1000 1000 1000 >1000 >1000 
CPV-271 500 62.5 62.5 100 250 1000 >1000 
CPV-272 500 500 250 200 >1000 >1000 >1000 
CPV-273 200 500 250 200 500 >1000 >1000 
CPV-274 250 250 500 500 500 250 500 
CPV-275 500 500 250 500 >100 >1000 >1000 
CPV-276 500 500 250 500 250 >1000 >1000 
CPV-277 250 200 150 100 250 500 250 
CPV-278 500 500 250 1000 250 500 >1000 
CPV-279 100 62.5 62.5 500 1000 >1000 >1000 
CPV-280 500 250 500 250 >1000 >1000 >1000 
Gentamycin 0.25 0.5 0.05 1 - - - 
Ampicillin 250 100 100 100 - - - 
Chloramphenicol 50 50 50 50 - - - 
Iprofloxacin 50 50 25 25 - - - 
Norfloxacin 10 10 10 10 - - - 
Nystatin - - - - 100 100 100 
Greseofulvin - - - - 500 100 100 
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4.13.2 Antimycobacterial, anticancer and antiviral evaluation 
Antimycobacterial, anticancer and antiviral screening of all the newly synthesized 

compounds CPV-241 to CPV-280 is currently under investigation and results are 

awaited.  
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Summary 
 

The work presented in the current Ph.D.thesis entitled “Studies on Some Heterocycles 

of Medicinal Interest” can be summarized as below. 

 

Chapter 1 briefly introduces importance of bicyclic and tricyclic aromatic 

heterocycles in drug discovery as well as concept of “privileged structures”. Chapter 1 

further describes aims and objectives of the proposed research work. 

Chapter 2 outlines the biological significance and medical significance of 

pyrimidines. Also, an attempt has been made to include most of the physiologically as 

well as medicinally important compounds containing pyrimidine and its derivatives to 

further elaborate the importance of these class of compounds. 

In Chapter 3, synthesis of thirty novel dihydropyrimidines is reported, which 

occupy a special position among fused pyrimidines due to a very wide spectrum of 

their biological activities. The synthesis of these derivatives was carried out by 

Biginelli cyclocondensation of acetoacetamide of 3-aminopyridine, urea derivative 

and substituted aromatic aldehydes, using concentrated hydrochloric acid as a 

catalyst. 

Recently, 1,2,4-triazolo[1,5-a]pyrimidines have aroused increasing from the 

standpoint of biological activity, due to their diverse pharmacological activities. 

Chapter 4 includes the brief review of the reported synthetic strategies for the 

synthesis of these classes of compound. 

In Section A of chapter 4, forty 1,2,4-triazolo[1,5-a]pyrimidines were 

synthesized by Biginelli like cyclocondensation of aromatic aldehydes and 

acetoacetanilide derivatives with aminoazole. The synthesis was accomplished by 

refluxing in small amount of DMF within a very short period of time of just 12-15 

minutes. 

In Section B, another four new series of 5-substituted 4,7-dihydro-1,2,4-

triazolo[1,5-a]pyrimidines were synthesized. The reaction is one pot 

cyclocondensation of aromatic aldehyde, corresponding acetophenone and 5-amino-

1,2,4-triazole using glacial acetic acid as a solvent. 

All the synthesized compounds were characterized by various analytical 

techniques like IR spectroscopy, Mass spectromentry, 1H NMR spectroscopy and 

elemental analyses. 



Thus, 110 compounds are synthesized and characterized in entire thesis work. 

The synthesized compounds are screened for antimicrobial activity, results of which 

are incorporated in the thesis. Looking at the antimicrobial activity results (i.e. 

antibacterial and antifungal), remarkable number of compounds have demonstrated 

excellent antimicrobial activity as compared to the standard drugs. All the newly 

synthesized compounds are also under antimycobacterial, anticancer and antiviral 

evaluation and their results are awaited. 
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