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Preface 

Heterocyclic chemistry is vastly expending because of the enormous amount of research 

work being done in this area. The majority of known molecules are heterocycles and 

heterocycles dominate the field of biochemistry, medicinal chemistry, dyestuff, 

photographic sciences and are of increasing importance in many other areas including 

polymers, adhesives and molecular engineering.  

 

Among the heterocyclic compounds, pyrimidines have a long and distinguished history 

extending from the days of their discovery as important constituents of nucleic acid to 

their current use in the chemotherapy of AIDS. During the last four decades, several 

pyrimidines have been developed as chemotherapeutic agents and have found wide 

clinical applications as anticancer, antiviral and anti-AIDS, antitubercular, 

sedative/hypnotic/antiepileptic, cardiac agents, as well as analgetics, diuretics, antibiotics 

and metabolic electrolytes etc.1     

 

Thus, the focus of the present work is to synthesize some novel pyrimidine, condensed 

pyrimidine and dihydropyrimidine derivatives and to evaluate them for their antiulcer and 

multidrug reverting activities. 

 

This thesis has been divided into following three parts.  

 

Part-I of this work deals with the “Synthesis, Pharmacological Evaluation and QSAR of 

some Pyrimidylmethylsulfinylbenzimidazoles as potential reversible Proton Pump 

Inhibitors (PPI’s)”.  

In 19th Century, light diet consisting of food not stimulating gastric acid secretion was 

recommended for treating peptic ulcer related disorders. Since then a number of strategies 

have been designed to control these disorders related to the hypersecretion of acid.2,3 

These therapeutic strategies extend from simple conventional antacids to the use of more 

complex and effective proton pump inhibitors (PPI’s).4 Associated effects of conventional 

antacids like constipation or diarrhea limit their patient compliance and are today mainly 

used for fast symptomatic relief. Muscarinic antagonists like pirenzepine inhibit gastric 

acid secretion as well as decrease gastric motility, but clinical use of these drugs is now 

limited because of the availability of more effective anti-secretory medications. A new 
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era in the treatment of acid-peptic disorders dawned with the launch of H2-receptor 

antagonist, cimetidine in 1976. This class of drugs however, has a short duration of 

action. Peptic ulcers caused by H. pylori can be treated by combination of antibiotics and 

anti-secretory medications. However, complex drug regimen and associated side effects 

limit their usefulness. Launch of Omeprazole in 1988, introduced a conceptually new 

approach of inhibition of proton pump in the management of acid related disorders. PPI’s 

proved to be superior to any of the previously used drugs, including H2-anatagonists.5,6   

 

Today, almost two decades after introduction of first PPI, the apparent drawbacks of 

irreversible proton pump inhibitors, mainly because of their prolonged acid suppression 

are becoming a cause of concern.7 Hence, researchers worldwide have been attracted 

towards designing reversible, shorter and rapid acting acid pump antagonists (APA’s). 

Thus, APA’s are the conceivable future drugs for the treatment of acid-peptic disorders.  

 

 

Figure-1. Peptic ulcer  

 

The mechanism of action of existing PPI’s of the pyridylmethylsulfinylbenzimidazole 

(PMSB) class, at the H+/K+ATPase enzyme or the Proton Pump, involves the acid 

induced transformation of the drug molecule to the sulfenamide intermediate, which 

irreversibly binds through a sulfide linkage to the Cystine-813 and Cystine-822 of the 

pump, leading to its irreversible inhibition and many observed drawbacks of these agents. 
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This entire cascade of reaction is initiated at the basic ‘N’ atom of the basic pyridine ring 

of the PMSB.8  

 

In the present work, the basic pyridine ring of these compounds has been replaced with 

less basic pyrimidine ring, so the binding of these types of compounds is not so strong as 

PMSB and the target compounds can hopefully be even potential reversible PPI’s. 

 

Thus, a series of condensed pyrimidylmethylsulfinylbenzimidazoles 1 have been 

synthesized through the reaction of appropriate condensed 2-chloromethylpyrimidin-

4(3H)-one and 2-mercaptobenzimidazoles followed by the selective mild S-oxidation of 

the thioether linkage of the intermediates. 

S

N

H
N

N

NH

O

O

1

Y

 

In all 35 new target compounds have been synthesized and evaluated for antiulcer activity 

by the Shay’s rat pylorus ligation model9 and results compared with omeprazole as the 

standard, mainly keeping in mind and different observations or biological effects viz. pH 

of the gastric juice secreted, secreted acidity of the gastric juice secreted, volume of 

gastric secretion and ulcer score. Some of the compounds have exhibited anti-acid 

secretory and antiulcer activities comparable to the standard drug, omeprazole. 

 

A meaningful QSAR has been worked out to determine the optimal physico-chemical 

characteristics and properties as well as the structural feature of these molecules, for 

achieving optimal activity.  

 

Part-II of this work deals with “The Novel Microwave Assisted Green Chemical 

Synthesis of Condensed 2-Substitutedpyrimidin-4(3H)-ones Under Solventfree 

Conditions, their MWI Assisted Facile and Rapid Chlorination and their Multidrug 

Reverting Activity”. 
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In this part, rapid cyclocondensation of various nitriles with o-aminoesters of thiophene, 

benzene, dimethoxybenzene, 4,6-dimethylthieno[2,3-b]pyridine, 4-methoxybenzo[b]-

thiophene and quinazolin-4-one, in the presence of catalytic amount of conc. HCl, under 

MWI, was carried out to afford the compound library of their corresponding condensed 2-

substituted pyrimidine-4(3H)-ones (scheme-1).  

 

This type of condensation under MWI, using R-CN as the -C-N-fragment of the 

pyrimidine ring, is hitherto not reported in literature and is therefore novel and has great 

applicability for the rapid parallel synthesis of such derivatives, especially to buildup 

molecular libraries for New Drug Discovery Research (N.D.D.R.).  

 

Though there are many reported methods for chlorination of heterocycles conventionally, 

there are only a few reports on MWI assisted chlorination of heterocycles especially, 

pyrimidines. To the best of our knowledge there are just two reports10,11 on the 

chlorination of 4-hydroxypyrimidines to 4-chloropyrimidines under MWI. So it was 

decided to use MWI assisted methodology for the conversion of condensed-4-

hydroxypyrimidines to condensed-4-chloropyrimidines, which is one pot, solvent free, 

facile, eco-friendly and highly productive as well (Scheme-1). The 30 newly synthesized 

condensed 4-hydroxy-2-substituted pyrimidines and their 22, 4-chloro derivatives (in all 

52 compounds) have been characterized using spectroscopic techniques. All the newly 

synthesized compounds have been evaluated for their multidrug reverting activity, as well 

as, antiproliferative activity.   
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Part III of this work deals with the “Synthesis, Characterization and Anticancer Activity 

of some Aza-analogue of DP-7”.  

3,5-Dibenzoyl-1,4-dihydropyridine (DP-7) is a potent multidrug reverting agent that 

inhibits efflux of drug from cell wall by inhibiting activity of ATP binding cassettes 

(ABC).12,13 A dihydropyrimidine (DHPM) derivative, (aza analogue) namely, monestrol 

inhibits the Eg5 protein, which is responsible for the separation of daughter chromosomes 

during cell division and controls the growth of tumor cells.14,15  
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Figure-2. Role of MDR protein in making cancer cells resistant to chemotherapeutic 

agents and role of MDR protein inhibitor to revert the cell resistance.  

 

In the present work, it was thought to hybridize these two potent molecules to get the duel 

action in cancer chemotherapy by synthesizing various thio and oxo analogues, bearing 

variety of substituents at 4th position of the DHPM ring (Scheme-2). The 30 newly 

synthesized compounds were screened for antiproliferative effects in mdr1-gene 

transfected mouse lymphoma cellline (l5178 y). Some compounds exhibited potent 

antiproliferative activity.  
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Thus, in all 117 new target compounds have been synthesized, characterized and 

biologically evaluated in the work presented in this thesis.
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1. Recent advances in proton pump inhibitors and management of acid-peptic 

disorders: A Review 

 

1.1 Introduction 

‘Hurry, Worry & Curry’ are the causes of many disorders in today’s world of 

globalization. Of these acid-peptic ulcers and diseases have assumed a distinctly high 

proportion. The pathophysiology of acid-peptic disease is attributed to the imbalance 

between aggressive factors (like acid, pepsin, H. pylori infection) and local mucosal 

defenses (like secretion of bicarbonate, mucus and prostaglandin’s). Although treatment 

is often directed at reduction of aggressive factors, it can also be directed at strengthening 

mucosal defenses of stomach and duodenum1. 

 

The inhibition of gastric acid secretion is a key therapeutic target for the ulcer diseases 

(viz. peptic, duodenal ulcers or that through H. pylori infection), Gastro Esophageal 

Reflux Disease (GERD), Zollinger-Ellison Syndrome (Z-E) and Gastritis. Currently this 

is achieved by blocking the acid secretary effect of histamine (HA) through the use of H2-

receptor antagonists or the irreversible H+/K+-ATPase inhibitors, popularly referred as 

Proton Pump Inhibitors (PPIs). The incidence of ulcer diseases shows global variation 

and their treatment should be designed to alleviate the symptoms, while keeping the risk 

of adverse effects minimum. In western countries duodenal ulcers are more common, 

whereas in eastern countries gastric ulcers predominate. These differences are attributed 

to factors like diet and genetic make up. As a result the therapeutic strategies also differ 

from east to west. In western countries, the conventional therapy for duodenal and gastric 

ulcer is eradication of H. pylori. Whereas, in Japan unlike the west, H2-antagonists are 

commonly used for maintenance therapy along with the PPI’s2.  

 

The discovery of the gastric acid was the first step to understand the role of the stomach 

in digestion and the diseases associated with hyper secretion of acid3,4. The drug 

discovery process linked with the gastric acid secretion involving H2-receptor antagonists 

and PPIs is summarized in table-1, which indicates the gradual change in the focus in the 

treatment of gastric acid secretion disorders2.  

 

In this review we have summarized various disorders related with increased gastric acid 

secretion and therapeutic strategies thereof, to control them. Further, more emphasis has 
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been laid on the role of PPI’s in particular for the treatment of gastric acid disorders. The 

medicinal chemistry aspects of this class of compounds are also discussed.  

 

Table 1: Some landmarks in therapy of acid-peptic disorders in past 35 years2 

Year Company/Discoverer Event/Discovery 

1972 James Black et al5. Discovery of H2-receptor and H2-receptor antagonists 

1973 A. Ganser & J.Forte6 Discovery of H+/K+-ATPase (The Proton Pump) 

1976 SmithKline & French7 Cimetidine launched (H2-receptor antagonist) 

1982 Allen & Hanburys Ltd8 Ranitidine launched (H2-receptor antagonist) 

1988 AstraZeneca9 Omeprazole launched (PPI) 

1995 Takeda-Abbott10 Lansoprazole launched (PPI) 

1997 Eisai Co.(licensed to 

Janssen)11 

Rabeprazole launched (PPI) 

2001 AstraZeneca12 Esomeprazole launched (PPI) 

 

1.1.1 Mechanism of Gastric Acid Secretion 

Stomach is a primary site of digestion. Presence of food stimulates release of acids and 

enzymes in stomach. The chemo- and mechanosensitive receptors present in stomach are 

triggered by presence of food to produce specific responses.2 The acid secreting parietal 

cell is the principle cell in gastric glands. The physiological regulation of acid secretion 

by the parietal cells is an important factor behind the rationale of use of various agents to 

reduce gastric acidity. Three major pathways activating parietal acid secretion includes; 

1) neuronal stimulation via the vagus nerve, 2) paracrine stimulation by local release of 

histamine from enterochromaffin-like (ECL) cells. 3) endocrine stimulation via gastrin 

released from antral G cells. In neuronal pathway, acetylcholine (Ach) released by vagal 

nerve directly stimulates gastric acid secretion through muscarinic M3 receptors located 

on the basolateral membrane of parietal cells. The CNS is considered to be the chief 

contributor for initiating gastric acid secretion in response to the anticipation of food. Ach 

indirectly stimulates release of histamine from enterchromaffine-like (ECL) cells in the 

fundus and gastrin from the G cells in the gastric antrum. ECL cells, the sole source pf 

gastric histamine involved in acid secretion, are present in close proximity to parietal 

cells. Histamine released from ECL cells activates parietal cells in paracrine fashion by 

binding to H2 receptors. Gastrin is primarily present in antral G cells. Release of gastrin is 
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under regulation of central neural activation, local distension and chemical composition 

of gastric content. Gastric stimulates parietal cells by binding with gastrin receptors. 

Gastrin also exerts its action in an indirect manner by causing the release of histamine 

from ECL cells.1 Binding to respective G-protein coupled receptors by Ach, gastrin and 

histamine results in activation of second-messenger systems.2 Vagal stimulation and the 

action of gastrin (from duodenal and antral G cells), stimulate release of histamine from 

paracrine-ECL cells or mast cells. Thus, increased levels of both intracellular Ca2+ by 

gastrin/Ach and cyclic AMP by histamine, finally cause acid secretion.13 The final step in 

acid secretion is mediated by H+/K+-ATPase, also called as gastric proton pump.14 

Activation of either the cAMP or Ca2+ dependent pathway or both, causes stimulation of 

H+/K+-ATPase on parietal cells15 (Figure 1). 

 

 

Figure 1: Mechanism of Gastric Acid Secretion16 

 

1.1.2. Disorders Associated with Elevated Secretion of Gastric Acid 

 

a) Peptic Ulcers:- Neuropeptide Y, corticotrophin-releasing factor, bombesin, 

calcitonin, neurotension, interlukin 1, along with somatostatin, prostaglandins, 

bicarbonates and mucin act as mucosal defense factors. Imbalance between these mucosal 

defense factors and aggressive factors (acid and pepsin) is involved in peptic ulcers2 

(Figure 2). Their rational treatment is aimed at restoring this balance. In case of duodenal 
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ulcers (DU) there is increase in basal acid secretion. In gastric ulcers (GU), however, 

there is weakening of mucosal that can lead to injury in spite of low acid secretion. 

Differences between DU and GU are summarized in table 2. H. pylori and nonsteroidal 

anti-inflammatory drugs (NSAIDs) play important role in ulcer induction.1 Particularly 

NSAID’s inhibit production of prostaglandins  arachidonic acid by inhibiting enzyme 

cyclooxygenase (COX). Chronic NSAID users are at 2-4% risk of developing a 

symptomatic ulcer, gastrointestinal bleeding or associated perforation. In ulcer patients, 

NSAID’s increase the risk of probable complications four folds. Further, these 

complications may remain undetected because of reduction in pain, thereby worsening the 

condition. Co-administration of Misoprostol, the synthetic are superior to H2-receptor 

antagonist in promoting healing and preventing recurrence of both GU and DU.1  

 

    

 
 
 
 
 
 

 

 
Figure 2: Factors involved in maintaining acid balance 

 

 

Figure 3: Peptic Ulcer17 
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Table 2: Distinguishing Features of Two Major Forms of Peptic ulcers.18  
    

Sr. 
No. 

Feature Dudodenal Ulcer Gastric Ulcer 

1 Incidence Four times common than astric 
ulcers. Usual age 25-50 years. 
More common in males than 
in females ( 4:1)   

Less common than duodenal 
ulcers. Usually beyond 6th 
decade. More common in males 
than in females ( 3.5:1) 

2 Etiology Most commonly as a result of 
H. pylori infection. Other 
factors-hyper secretion of 
acid-pepsin, association with 
alcoholic cirrhosis, tobacco, 
hyperparathyroidism, chronic 
pancreatitis, blood group O, 
genetic factors    

Gastric colonization with H. 
pylori asymptomatic but higher 
chances of development of 
duodenal ulcers. Disruption of 
mucus barrier most important 
factor. Association with 
gastritis, bile reflux, drugs, 
alcohol, tobacco.  

3 Pathogenesis Mucosal digestion from 
hyperacidity most significant 
factor. Protective gastric 
mucus barrier may be 
damaged 

Usually normal-to-low acid 
levels: hyperacidity if present is 
due to high serum gastrin 
Damage to mucus barrier 
significant factor.  

4 Pathologic 
changes 

Most common in the first part 
of duodenum. Often solitary, 
1-2.5 cm in size, round to oval, 
punched out 

Most common along the lesser 
curvature and pyloric antrum. 
Grossly similar to duodenal 
ulcers  

5 Complication Commonly hemorrhage, 
perforation, sometimes 
obstruction, malignant 
transformation never occurs 

Perforation, hemorrhage and at 
times obstruction, malignant 
transformation less than 1% 
cases.  

6 Clinical 
features 

Pain food relief pattern. Night 
pain common. No vomiting. 
Melaena more common than 
heamatemesis, No loss of  
weight. No particular choice of 
diet. Marked seasonal ariation. 
Occurs more commonly in 
people at greater stress  

Food pain pattern. No night 
pain. Vomiting common. 
Haematemesis more common. 
Significant loss of weight 
Patients choose bland diet 
devoid of fried food, curries 
etc. No seasonal variation. 
More often in labouring groups 

 

b) Zollinger-Ellison (Z-E) Syndrome:- In this disease, a non-beta cell tumor of the 

pancreatic islets may produce gastrin in a quantity sufficient to stimulate the secretion of 

gastric acid to life-threatening levels. This can lead to severe gastroduodenal ulcerations 

and other consequences of the uncontrolled hyerchlorhdria. The therapy is aimed at 

reducing gastric acid secretion. In this the proton pump inhibitors being surely the drugs 

of choice.2 Gastric ECL-cells carcinoids are rare events that have been described in 

association with   Z-E syndrome.19 
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c) Helicobacter Pylori (H. pylori) Infection:- Around 40% of patients over 40 years age 

and with peptic ulcer disease, are infected with H. pylori infection. H. pylori is a              

gram-negative rod shaped bacteria and has clearly been associated with gastritis, peptic 

ulcers, gastric adenocarcinoma and gastric ∃-cell lymphoma. Upto 80-90% of ulcers may 

be associated with H. pylori infection of stomach. This infection may lead to impaired 

production of somatostatin by D cells. This results into increased gastric acid secretion 

along with impaired duodenal bicarbonate production.1 H. pylori infection is now proven 

to be a risk factor for gastric cancer and the organism was classified as group I carcinogen 

by WHO20. H. pylori infection causes inflammation of the antral gastric mucosa. 

Bacterial products and inflammatory cytokines may produce changes in the endocrine 

function21. It has now become a standard care procedure eradicate the infection in patients 

with gastric and duodenal ulcers. This strategy is almost successful in eliminating the risk 

of ulcer recurrence.1   

 

Figure 4: Helicobacter pylori22  

 

d) Gastro Esophageal Reflux Disease (GERD):- It is a disorder of defense mechanism 

at the esophageal junction, caused by regurgitation of the gastric contents, especially of 

gastric acid.  GERD is associated with decreased gastric emptying and/or increased 

incidence of transient lower esophageal relaxation (T-LESR).23 Smoking and obesity 

increase the incidence of GERD symptoms like heartburn, belching and bloating. GERD 

is not life  threatening, but can cause significant discomfort and increased risk Barrett’s 

esophagus.2 Relationship between GERD symptoms and incidence of esophageal 

adenocarcinoma has also been suggested. It has also been linked to tracheopulmonary 

symptoms like laryngitis and asthma. Besides disturbed gastrointestinal motility, injurious 

effects of the acid-peptic refluxate on the esophageal epithelium are also responsible for 

GERD symptoms. Hence along with prokinetic drugs, suppression of gastric acid is the 

current pharmacotherapeutic approach for its treatment.1 H. pylori infection does not 
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necessarily correlate with GERD, although a reduction in acid secretion reduces chances 

of reflux.23 

 

e) Stress-related Ulcers:- These are the ulcers of stomach and duodenum that usually 

occur as a result of severe systemic or CNS illness or trauma. Both acid and mucosal 

ischemia is involved in the etiology of stress ulcers. Similarly, stress due to physiological 

factors like septicemia, intracranial lesions, alcohol intake, and smoking can also 

appreciably contribute to ulcer induction. Intravenous H2-receptor antagonist and 

intravenous PPI’s are preferred agents for its treatment.1 

 

f) Nonulcer Dyspepsia:- It refers to ulcer-like symptoms in patients who are without 

overt gastroduodenal ulceration. Though pathogenesis of this syndrome remains unclear, 

it may occur because of gastritis or use of NSAID’s. Empirical treatment with acid 

suppressive agents is used routinely.1                          

 

1.1.3. Complications Arising from the Disorders Associated with Elevated Secretion 

of Gastric Acid18 

1.1.3.1. Obstruction: Development of fibrous scar at or near the pylorus results in 

pyloric stenosis. 

1.1.3.2. Haemorrhage: Minor bleeding by erosion of small blood vessels in the base of 

an ulcer occurs in all the ulcers and can be detected by testing the stool for occult blood. 

1.1.3.3. Malignant Transformation: The dictum ‘cancers ulcerate but rarely cancerate’ 

holds true for most peptic ulcers. A chronic duodenal ulcer never turns malignant, while 

less than 1% of chronic gastric ulcers may transform into carcinoma. 

1.1.3.4. Perforation: Perforation occurs more commonly in chronic duodenal ulcers than 

chronic gastric ulcers. Following sequel may result. 

i) On perforation the contents escape into the lesser sac or into the peritoneal cavity, 

causing acute peritonitis. 

ii) Air escapes from the stomach and lies between the liver and the diaphragm giving the 

characteristic radiological appearance of air under the diaphragm. 

iii) Perforation may extend further to involve adjacent organs (liver and pancreas). 
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1.2. Therapeutic Strategies 

Though, acid secretion is a physiologically important process of the stomach as; 

1.  Gastric    acid    induces     pepsinogen     activation   to   initiate   digestive   process   

and  

2. It kills bacteria and other microbes ensuring a stable intragastric environment. 

However, under certain circumstances secretion of large excess of gastric acid and 

pepsinogen injure the gastro duodenal mucosa and cause serious and fatal ulcerations.15 

Hence, there is a need of good gastric acid secretion inhibitor. 

 

The secretion of gastric acid occurs at the level of parietal cells of oxyntic glands in the 

gastric mucosa, producing 2-3 liters of gastric juice per day (HCl of pH 1).24 Based on the 

understanding of the mechanisms contributing to ulcer development and particularly to 

gastric acid secretion, variety of therapeutic strategies exist, including suppressing the 

aggressive factors with use of antacids, specific antagonists of muscarinic -M1 receptors, 

gastrin receptors, histamine-H2 receptors, proton pump inhibitors (PPIs), eradication of H. 

pylori and agonists of prostaglandins/somatostatin receptors1,15. These overall strategies 

are discussed below in terms of specific therapeutic agents. 

 

1.2.1. Antacids 

Naturally occurring carbonates, potash, bismuth were used as antacids more than century 

ago. Since then, they have been developed and are widely used.25 Antacids are compared 

quantitatively in terms of their acid neutralizing capacity, defined as the quantity of 1N 

HCl (expressed in milli equivalents), that can be brought to pH 3.5 in 15 min. Antacids 

neutralize HCl to form water and carbon dioxide. Hydroxides of aluminum and 

magnesium are the most common constituents of antacid preparations. Sodium 

bicarbonate, calcium carbonate are also used, as are other carbonates, silicates and 

phosphates. Some antacid preparations combine Al(OH)3 and NaHCO3 to achieve both 

the rapid effect of carbonate and sustained effect of Al(OH)3. Simethicone, a surfactant 

that may decrease foaming and thus, esophageal reflex, is therefore included in many 

antacid preparations. Common side effects include alkalosis, belching, nausea, abdominal 

distension, flatulence, diarrhea, and constipation1. 
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1.2.2. Muscarinic Antagonists 

The secretion of acid, mucus and pepsinogen in the gastric mucosal is stimulated via 

muscarinic receptors. Over expression of M3 receptors in DU patients is proved by 

autoradiographic techniques; thus blockade of this receptor subtype will reduce the pain 

by decreasing the duodenal motility and provide an effective anti-secretory therapy26. 

Based on its high affinity to block the muscarinic receptors on the intramural ganglia of 

stomach wall, pirenzepine 1 was developed as an anti-secretory drug, which was followed 

by telenzepine 2, a more potent derivative with improved healing rates.27 Parasympathetic 

side effects of these agents include dry mouth, blurred vision and constipation. These side 

effects along with their incomplete inhibition of gastric acid secretion limit their clinical 

utility28. 

HN

N

S

O O

N NH
HN

N

O O

N N

Pirenzepine 1
Telenzepine 2

 

Figure 2: Structures of Muscarinic Antagonists. 

 

1.2.3. H2 Receptor Antagonists 

H2 receptor antagonists completely inhibit the interaction of histamine 3 with H2 

receptors, thereby reducing both volume and H+ ion concentration of the gastric juice. 

They are selective and have little or no effect on H1 receptors. They also inhibit acid 

secretion elicited by gastrin, muscarinic agonists, food, sham feeding, fundic distension, 

as well as, other pharmacological agents. They also inhibit basal and nocturnal acid 

secretion. This effect contributes in a major way to their clinical efficacy1.  

 

Black et al.,5 identified H2-receptor and prototype H2-receptor antagonist, burimamide 4. 

The potency of burimamide at inhibiting gastric acids secretion far exceeded than that 

produced by anticholinergic drugs and was devoid of side effects. However, it had poor 

bioavailability. It was subsequently replaced by metiamide 5, which also because of its 

side effects like agranulocytosis, was withdrawn from the clinical trials.29,30 Cimetidine7 6 
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was the third H2 receptor antagonist to be tested in humans and was similar to metiamide 

in its pharmacological profile, but did not cause agranulocytosis. Discovery of this 

molecule reduced the necessity of surgical procedures for peptic acid diseases. Further, 

ranitidine8 7 was introduced as more potent drug in 1981 with a much superior safety 

profile.2 Third and most potent antagonist was famotidine31 8 available for clinical use, 

being 20-50 times more potent than cimetidine and 6-10 times more potent than 

ranitidine.32 nizatidine33 9 and roxatidine34 10 followed famotidine. Each of these drugs 

are rapidly absorbed and eliminated after oral administration.35 H2 receptor antagonists 

are histamine congeners that contain a bulky cysteamine side chain in place of ethylamine 

moiety of histamine. Earlier representatives of these groups such as burimamide and 

cimetidine retained the imidazole ring of histamine. This ring was further replaced by 

furan as in ranitidine, by thiazole as in famotidine and nizatidine and piperazine and 

benzene as in roxatidine.1 This helped to avoid unwanted cytochrome P450   

interactions.36 
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Figure 6: Structures of H2-receptor antagonists. 

 

H2 receptor antagonists are generally extremely safe drugs with incidence of adverse 

effect of cimetidine less than 3%. Adverse effects include dizziness, nausea, skin-rashes, 

somnolence, confusion, impotence, gynecomastia, hematological effects and altered 

function of immune system. Rarely they may cause bone marrow depression, hepatitis, 

and anaphylaxis.1 Cimetidine selectively showed anti-androgen properties in a small 

number of patients.37 

 

1.2.4. Eradication of H. Pylori Infections:  

H. pylori is a gram-negative rod shaped bacilli that colonizes in the mucus on the luminal 

surface of gastric epithelium. H. pylori infection causes inflammatory gastritis and is a 

putative contributor to peptic ulcer disease, gastric lymphoma and adenocarcinoma.1 

Infection may not always be causative as ulcers may recur in patients who have 

undergone successful eradication treatment.38 Double or triple antimicrobial therapies, in 

combination with antisecretory drugs, are being used successfully to treat peptic ulcers. 

Bismuth compounds are also been included in regimen probably due to their 

cytoprotective action. Triple therapy with metronidazole, a bismuth compound and either 

tetracycline or amoxycilline for two weeks is recommended to treat H. pylori infections. 

However, therapeutic limitations of this triple therapy include complex regimen and 

related nausea, diarrhea and dizziness.1 

 

1.2.5. Other Agents Used 

Carbenoxolone 11, an olendane derivative of glycyrrhizic acid, a compound found 

naturally in licorice is also useful in the treatment of peptic ulcer. Mechanism of action is 
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not clear, but appears to alter the composition and quantity of mucus. It is not approved 

for use in U.S., but is being used in Europe since 1962 for the treatment of peptic ulcer. 

Being a steroid analog, it exhibits substantial mineralocorticoid activity like hypertension, 

hypokalemia, fluid retention1 etc.  

 

Sucralfated polysaccharides inhibit pepsin mediated protein hydrolysis. The octasulfate of 

sucrose was observed to inhibit peptic hydrolysis in vitro. Reaction of sucrose octasulfate 

with Al(OH)3 forms a viscous substance, sucralfate 12. A variety of mechanisms have 

been proposed to account for the cytoprotective and healing effects of sucralfate, 

including stimulation of prostaglandin synthesis, absorption of pepsin and stimulation of 

local production of epidermal growth factor.39  

 

Prostaglandins PGE2 13 and PGI2 14 are synthesized by gastric mucosa and stimulate the 

secretion of mucus and bicarbonate. Because the administration of prostaglandins protects 

the gastric mucosa of animals against various ulcerogenic insults, a number of slowly 

metabolized prostaglandin analogs have been developed and tested in human beings. 

Example includes misoprostol 15, which is currently approved for prevention of gastric 

ulcers. Side effects of misoprostol include diarrhea, abdominal cramps and abortifacient 

in pregnant women.40 
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Figure 7: Structures of the other classes of drugs used in treatment of peptic ulcers. 

 

1.2.6. Proton Pump Inhibitors (PPIs) 

Proton pump is the ultimate mediator of gastric acid secretion by parietal cells. With the 

identification of H+/K+-ATPase as the primary gastric proton pump, it was proposed that 

activation of H+ secretion occurred by incorporation of H+/K+-ATPase rich tubulovesicles 

into the apical plasma membrane and that the pumps were re-sequestered back into the 

cytoplasmic compartment on return to the resting state.41 Inhibition of the protons 

pumping H+/K+-ATPase as a means of controlling gastric pH has attracted considerable 

attention in recent years with the discovery of benzimidazole sulfoxide class of anti-

secretory agents. In 1973, Ruwart et al.,42 identified timoprazole 16 as one of the first 

well-defined inhibitor of gastric proton pump. Timoprazole was followed by more potent 

picoprazole 17 (1976) and omeprazole43 18 (1979). Chemically, the basic structure 

consists of substituted benzimidazole ring & a substituted pyridine ring connected to each 

other by a methylsulfinyl chain. Clinically used PPIs include Omeprazole 18, 

Lansoprazole 19, Rabeprzole 20, Pantoprazole 21 and Esomeprazole 22. 
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Figure 6: Structures of Proton Pump Inhibitors. 

 

These compounds have proved to be effective in clinic for the treatment of acid related 

gastrointestinal disorders. They bind to the gastric proton pump on the parietal cell 

membrane, inhibiting the release of hydrogen ions from the parietal cells into the lumen 

of the gastric glands and hence stomach.44 Some of the adverse effects of PPIs include 

nausea, diarrhea, dizziness45, hypergastrinemia46, enteric infections2 etc. It has been 

demonstrated that irreversible inhibition of H+/K+-ATPase occurs following acid 

activation of these compounds within the acidic compartments in the parietal cells and 

covalent binding of the reactive intermediate to one or more critical thiol groups on the 

enzymes present in apical membrane47 as in Figure 9. Acid secretion is therefore blocked 

at the final step of its production independent of the different kind of its stimulation.48  
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Figure 9:  Covalent binding of sulfenamide with thiol group of proton pump. 

 

1.3. Structure of the Proton Pump 

The gastric H+/K+-ATPase is a member of the P2-type ATPase family and undergoes a 

cycle of phosphorylation and dephosphorylation coupled to the outward and inward 

transport of hydrogen and potassium ions, respectively, in the secretory canaliculus of the 

parietal cells. Conformations of the enzyme that bind ions for outward transport are 

defined as E1, whereas those that bind luminal ions for inward transport are termed E2. 

Ion binding to E1 activates phosphorylation from MgATP to form the intermediate E1-P, 

which then converts to E2-P in the acid transporting step. In the gastric H+/K+-ATPase as 

well as the Na+/K+-ATPases, K+ binding to E2-P stimulates dephosphorylation to give the 

occluded form E2•K+occ followed by conversion to E1•K+ and release of K+ to the 

cytoplasm. The gastric H+/K+-ATPase sustains a 10-fold inward potassium gradient (150 

K+ in, 15 mM K+ out) and a transmembrane outward hydrogen ion gradient of greater 

than 1 million fold to generate a luminal pH of 0.8. This is the largest ion gradient 

generated by a P2-type ATPase. The exported ions are presumed to be hydronium rather 

than protons partly because of the ability of Na+ to act as a competent surrogate for H+ at 

pH 8. Hence, there is a functional similarity to the Na+/K+-ATPase at this pH. The 

primary structure of the gastric H+/K+-ATPase       (HK R1) shows significant homology 

to the Na+/K+-ATPase (62%) and the sr Ca-ATPase 1 (29%). The ion binding sites of the 

H+/K+-ATPase are homologous to these, and other, P2-type ATPases in that they have 

only carboxylate side chains as the counter charge species.  
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Figure 10: Membrane domain of the H,K-ATPase E2-P model with pantoprazole, bound 

at Cys813 and Cys822 (stick with Connolly surfaces in cloud). A known site of a subunit 

interaction (36, 37), S[910]YGQ, is highlighted (white ribbon) in the TM7/TM8 

loop.Cys813, Cys892, and Cys321 are labeled (38) by various proton pump inhibitors (all 

at Cys813, omeprazole at Cys892, and  lansoprazole at Cys321) and are solvent-

accessible in the model. Labeling at the latter two sites is not correlated with inhibition 

(3). The crossover point (“pivot”) between TM5 near Ile793 and TM7 near Gly867 (gold 

sphere) is apparently conserved in the P2-type ATPases. An extensive array of aromatic 

side chains (in stick form) replaces non-aromatic sr Ca-ATPase residues and affects the 

spacing between helices. TM9 and TM10 are omitted for clarity. Reprinted with 

permission from Biochemistry 2005, 44, 5267. Copyright 2005 American Chemical 

Society. 

 
It is known that all PPIs bind to cysteine 813, resulting in covalent inhibition of the 

enzyme via formation of this disulfide that stabilizes the enzyme in the E2 conformation 

(Figure 10). The acid pump antagonists, APAs such as SCH28080 23 (Figure 11), 

represent a second class of inhibitor now under development. These are reversible, K+ 

competitive inhibitors with a substituted 1,2-R-imidazopyridine core structure, that also 

bind to the E2 form of the ATPase.49 
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Figure 11: Acid-Pump Antagonist. 
 

 

1.4. Classification of PPI’s  

1.4.1. Irreversible Gastric PPI’s:- Three main structural features of this class of 

compounds are, the substituted pyridine ring; the substituted benzimidazole ring and the 

methylsulfinyl linking group. Irreversible PPIs lacking one or more of these features are 

rare. They are further classified according to their chemical structure as follows-  

1.4.1.1. Pyridinylmethylsulfinyl Benzimidazoles:- The same chemical features are 

retained by clinically used PPIs, differing only in the substituents present on the 

benzimidazole and pyridine ring. Examples of this class include Omeprazole 18, 

Lansoprazole 19, Rabeprzole 20, Pantoprazole 21 and Esomeprazole 22. 

 1.4.1.2. Pyridylmethylsulfinyl Thienoimidazoles:- In this class, the benzene ring of 

imidazole is replaced by thiophene, keeping other structural features same. Examples 

include saviprazole 24. 
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Figure 12: Structures of thienoimidazoles as irreversible gastric proton pump inhibitors.  

 

1.4.1.3. Aminobenzylsulfinyl Benzimidazoles:- Here, pyridine ring is replaced by 

substituted aminobenzyl ring. Examples include Leminoprazole 25  
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Figure 13: Structure of 2-[(2-aminobenzyl)sulfinyl]-1H-benzimidazoles as irreversible 

gastric proton pump inhibitors. 

 

1.4.2. Reversible Gastric PPIs:-  To overcome the drawbacks associated with the use of 

irreversible PPIs, research has been directed towards discovery of reversible inhibitors. 

Examples include SCH28080 23, SK& F 97574 26, SCH 32651 27 & SKF 96067 28. 
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Figure 14: Structures of some reversible gastric proton pump inhibitors. 
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1.5. Irreversible Proton Pump Inhibitors 

 

1.5.1. Introduction 

In early 1970’s, anti-secretory activity of the analogs of the pyridylthioacetamide (CMN) 

29 was studied. This led to the discovery of a class of extremely efficacious inhibitors of 

gastric acid secretion, with a novel mode of action, of which the pyridylmethyl 

benzimidazole sulfoxide, timoprazole 16, is the archetypal structure. Meanwhile H+/K+-

ATPase enzyme was also discovered by other research group that enabled the 

demonstration that compounds related to timoprazole were non-competitive inhibitors of 

the enzyme. This led to the synthesis of picoprazole 17 and omeprazole 18, new drugs for 

the treatment of peptic-ulcer and related diseases. This work also helped in generating and 

understanding the way in which the enzyme operates.50 
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Figure 15:  Structure of some initial PPIs 

 

1.5.2. Mechanism of Action 

On studying the mechanism of action of these inhibitors of the H+/K+-ATPase, several 

salient features of their action became apparent like; a) the weak basicity of the 

compounds (pKa≈4), allowing them to accumulate in the acid space adjacent to their site 

of action      (i.e., secretory canaliculus of the parietal cells); b) the sulfoxides themselves 

have no intrinsic activity, but under the influence of acid undergo a chemical 

rearrangement to an active species; iii) the active species is thiophillic in nature and 

covalently binds to thiol functions like cysteinyl residues generating disulfide bridges to 

the enzymes, thereby causing its inactivation.50 
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The reaction mechanism proposed for the acid transformation of pyridinylmethylsulfinyl 

benzimidazoles 30 to the sulfenamide 30c isomers is outlined in figure 16. The reaction is 

reversible and goes via a spiro intermediate, 30a and the sulfenic acid 30b. The 

reversibility was firmly proved by kinetic measurements in both directions for example 

starting from 30 and 30c. The formation of the spiro intermediate 30a via Smile’s 

rearrangement50 is a rate limiting step supported by kinetic measurements. The rate 

constant obtained for omeprazole analogs is strongly dependent on substituents in the 

pyridine ring, indicating that a positive charge is created in the pyridine nitrogen atom in 

the rate-limiting step. The spiro intermediate 30a is dihyrobenzimidazole with a 

pronounced tendency to undergo aromatization, thus forming the sulfenic acid 30b by a 

C-S bond cleavage. The subsequent formation of the sulfenamide 30c is in accordance 

with known reaction between sulfenic acids and amines. This sulfenamide 30c represents 

the active enzyme inhibitor and binds covalently to sulfhydryl groups of cysteines of 

proton pump.15 Likewise, the reaction of 30c with β-mercaptoethanol or the cysteine 813 

residue of H+/K+-ATPase to form adducts 30d and 30e, respectively is now easily 

understood, since sulfenamides or sulfenic acid derivatives in general are known to react 

with mercaptanes to form disulfides. The adduct 30d may then react with endogenous 

thiols or a free thiol group of the enzyme and may react with second molecule of   β-

mercaptoethanol (or enzyme) in base catalyzed Smiles’ reaction to form a sulfide 36g, 

probably via the unstable mercaptan 30f, resulting form S-S bond cleavage during 

simultaneous formation of disulfide of the β-mercaptoethanol. This sulfide 30g, 

corresponds to original sulfoxide. Sulfides of this type are known to be oxidized by liver 

to parent sulfoxides, which raises the intriguing possibility of catalytic drug action in 

which cycling occurs as shown in Figure.14 for pyridinylmethylsulfinyl benzimidazoles 

30 (PMSB’s). The recovery of enzymes activity requires de novo synthesis of enzyme 

which is consistent with the long duration of action of drug.50,51 
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Figure 16: Reaction mechanism proposed for the acid transformation of pyridinyl-

methylsulfinyl benzimidazoles 30 (PMSB’s) to sulfenamide. 

 

The introduction of methyl group in the 6th position of the pyridine ring of the omeprazole 

analogs results in compounds stable in acid solutions. This supports the suggested 

mechanism. Also, the space filling models show that 6-methyl group will experience a 

strong steric interference with the imidazole ring, which prevents the formation of spiro 

intermediate 30a.51 

 

1.5.3. Structure Activity Relationships 
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Figure 17: General structure of classical irreversible PPIs 
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The pyridinylmethylsulfinyl benzimidazole (prototype) 31 (PSMB) can be considered to 

possess three structural elements:  the pyridine ring, the benzimidazole ring system and 

the linking chain. Replacement of SOCH2 of the linking chain, by a variety of other 

groups like -SCH2, -SO2CH2, -SCH2CH2 and various carbon and oxygen containing chains 

leads to loss of activity in vitro.  Extending the length of chain by -SOCH2CH2 give rise 

to inactive acid stable compound. In pyridine ring system, degree of nucleophilicity 

(rather than basicity) of nitrogen atom reflects the ease of spiro intermediate formation. 

For example, substitution in 6`-positon of the ring results in loss of activity as disfavoring 

steric interaction. When significant steric effects are absent, a pKa value of ≥4 is probably 

optimal for activity.  Weak bases like timoprazole and 4-CO2CH3 derivatives show 

greatly reduced activity, as 4-methyl compound is several times less active than 4-alkoxy 

analogs. In case of omeprazole (pKa = 4), the 4-methyl substitution has little effect on 

pKa, as it is bent out of plane by the two flanking methyl groups. The substitution in 

benzimidazole ring does not change the activity to a great extent. Introduction of electron 

withdrawing substituents like 5-NO2, 5-MeSO, 5-CF3 leading to decreased enzyme 

inhibition.50 

 

With respect to sulfinyl group, gastric proton pump inhibitors exist as a racemic mixture 

of both enantiomers. Although chirality is lost in corresponding pyridinium sulfenamide 

formation, it is unclear whether one enantiomer is more susceptible towards acid 

activation than the other. Both enantiomers of lansoprazole inhibit dbcAMP-induced 

amino pyridine uptake in isolated canine parietal cells, as well as, H+/K+-ATPase activity 

in canine gastric microsomes with equal activity.15 

 

1.5.4. Drawbacks of Irreversible Proton Pump Inhibitors 

Extreme acid suppression some times leads to achlorohydria at recommended doses and 

that may produce enteric infections like typhoid, cholera and dysentery. Significant drug 

interactions can lead to decreased absorption of some drugs like griseofulvin, 

ketoconazole, vit.B12, iron salts, etc. Unpredictable action and variation in individual 

responsiveness can cause hypergastrinemia, gastric polips and carcinoma.52 Other side 

effects include abdominal pain, diarrhea, nausea and headache. Acute interstitial nephritis 

progressing to acute renal failure has also been reported to be associated with the use of 

PPIs.53  
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1.5.5. Pharmacological Properties 

Anti-secretory effect of PPIs seems to depend on the presence of H. pylori infection 

because eradication of H. pylori has negative consequences on the efficacy of anti-

secretory drugs.54,55 Acid secretion can be restored only through endogenous synthesis of 

H+/K+-ATPase, which has a half-life of production of approximately 50 hours.56 

Rabeprazole shows faster rate of inhibition and a shorter duration of action.57 

Esomeprazole has least bioavailability, whereas, lansoprazole being the most 

bioavialable.58 The PPIs are clearly more potent than H2-receptor antagonist with 

clinically doses being at 15 times lower than those of H2 receptor antagonists in the 

treatment of duodenal ulcers.59  

 

Further, Becker et al.,60 evaluated a unique pathway for gastro-protective activity of PPIs 

demonstrating that both omeprazole and lansoprazole protect human gastric epithelial and 

endothelial cells against oxidative stress. The antioxidant defense protein heme 

oxygenease (HO-1) is a target of PPIs in both endothelial and gastric epithelial cells. HO-

1 induction might account for the gastroprotective effects of PPIs independently of acid 

inhibition. Concentration dependent hydroxy radical scavenging activity of PPIs has also 

been reported suggesting their possible anti-inflammatory activity.61 As lansoprazole and 

rabeprazole increased plasma adrenocorticotropic hormone (ACTH) and cortisol levels, 

they are under study for the treatment of psychiatric disorders involving dysregulation of 

appetite.62 

 

The currently available PPIs have similar pharmacological properties, which are detailed 

in table 3.  
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Table 3. Pharmacological properties of the different proton pump inhibitors 

 

Generic name 

Half

-life 

(h) 

Peak 

effect 

(h) 

Duration 

of effect 

(h) 

 

pKa 

Bioavail

ability 

(%) 

 

Metabolism 

 

Excretion 

(%) 

Omeprazole63 0.7 2 24-72 ~4 30-40 Extensively 

hepatic 

U=77 
F=23 

Pantoprazole64 1 2.5 24-72 ~4 77 Extensively 

hepatic 

U=71 
F=18 

Lansoprazole65 2 1.7 >24 ~4 80 Extensively 

hepatic 

U=35 
F=65 

Rabeprazole66 1 2-5 24 ~5 52 Extensively 

hepatic 

U=90 
F=10 

Esomeprazole67 1.3 1.5 24-27 ~4 64 Extensively 

hepatic 

U=80 
F=20 

U=urine; pKa=dissociation constant; F=faeces 

 

1.6. Reversible Proton Pump Inhibitor’s 

1.6.1. Introduction 

Prolonged suppression of gastric acid secretion produced by both H2 receptor antagonists 

and PPIs produce extended periods of hypergastrinemia, which has been associated with 

the formation of precancerous changes in human gastric mucosa and gastric carcinoids in 

long term animal studies. However, research efforts are currently targeted at obtaining 

reversible proton pump inhibitors often referred as Acid Pump Antagonists (APAs). 

Several research groups have progressed APAs into development though currently none 

is marketed.2 

 

The imidazopyridine based compound SCH28080 23 was the prototype of this class.68    

Antisecretory effect of this compound is mediated through gastric proton pump and this 

has been further demonstrated by its ability to antagonize the binding of omeprazole.69  
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Figure 18: Prototype Acid Pump Antagonist 
 
 
1.6.2. Mechanism of Action 

Omeprazole 18 and SCH 28080 23 differ in inhibition kinetics for their proton pump 

inhibitory activity. In contrast to omeprazole, SCH 28080 23 is a competitive inhibitor of 

high affinity luminal K+ site of the gastric proton pump. In contrast to Na+/K+-ATPase, it 

is highly selective to H+/K+-ATPase activity. SCH 28080 is a protonable weak base               

(pKa = 5.6), hence like omeprazole it accumulates in the acidic compartments of the 

parietal cells in its protonated form.70 SCH 28080 is chemically stable and after 

protonation, is itself active and does not need an acid induced transformation, as required 

by omeprazole and its congeners.71  

 

1.6.3. Structure-Activity Relationships  
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Figure 17: General structure of reversible PPIs to describe SAR 

Taking eighty-one derivatives of imidazo[1,2-a]pyridine derivatives of 32a and 32b 

related to SCH 28080 23 were synthesized and studied based on which following 

observations were made:- 1) a small alkyl group at C-2 (methyl or ethyl) favored activity; 

2) cyano methyl or amino group at C-3 was a requirement for maintaining both anti-

secretory and cytoprotective activity; 3) activity at 8-position was maximized with 

benzyloxy, 3-thienylmethoxy or phenylmethylamino substituion; 4) replacement of C-7 

by N leads to retention of activity. Surprisingly little work has been reported on these 
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reversible inhibitors of H+/K+-ATPase. Although, highly efficacious drugs could emerge 

from research on APAs.50 

 

1.7. Reports on the Continuing Research and Development on Different PPIs 

1.7.1. Irreversible Inhibitors; Related to Omeprazole 

K. Uchiyama, et al.,72 have reported the synthesis of (+/-) 5-methoxy-2-[(4-methoxy-3,5-

dimethyl-pyridin-2-yl)methylsulfinyl]-1H-imidazo[4,5-b]pyridine,  (TU-199) 33 and its 

effect on histamine, carbachol and tetragastrin stimulated gastric acid secretion. They 

have claimed it to be having more potent and long lasting effect on gastric acid secretion 

via inhibition of H+/K+-ATPase than omeprazole.  

N
N
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O

N

O

O

TU-199 33  

 

1.7.1.1. Changes Made on/in Benzimidazole Nucleus:  

Changes have been made on the benzimidazole nucleus without loss of activity. 

Following are some reports: 

 

Woo et al73., have reported the biological evaluation of 2-[3-(2,3-dihydro-1H-pyrolo             

[1,2-a]benzimidazolyl)sulfinyl]-5-methyl-1H-benzimidazoles, (YJA20379-4) 34 which 

had marked inhibitory effect on H+/K+-ATPase. YJA20379-4 also exhibited anti-H. pylori 

activity 3 times higher than omeprazole along with the enhancement of mucosal defense, 

thus, indicating a wide spectrum of anti-ulcer activities. In another related work, Kim, et 

al.,74 modified, 34, by fusing imidazopyridines with thiazolopyridines to get YJA-20379-

2. 35.  This compound not only suppressed H+/K+-ATPase activity, but also had 

significant reinforcing activity on the defensive factors. 
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Yoon, et al.,75 have replaced the conventional benzimidazole ring system with the 

bioisosteric benzothiazolidine ring system. They have reported the synthesis of 

derivatives of 2-[(3,5-dimethyl-4-methoxypyridylalkyl]-benzothiazolidine 36 which were 

found to be more potent in vitro inhibitors of H+/K+-ATPase. The methylsufinyl linkage 

has also been replaced by methylene linkages. 

N N
H

S

R3

R2

R1

O

n

36  

N-alkylation/acylation of the benzimidazole ring nitrogen leads to the biolabile N-

substituted benzimidazole derivatives (prodrugs) of timoprazole. The parent N-H 

compound is liberated either by in vivo esterase hydrolysis or requires an acidic 

environment. N-(acyloxy)alkyl-substituted benzimidazoles showed improved chemical 

stability of which 37 proved twice potent as omeprazole. Similarly 38 was found to be 

twice active as timoprazole.76 

N

N

S

O

N

O

O

O
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N

N

S

O

N
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38  

Fusion of one more ring on the benzimidazole nucleus has been shown to be beneficial. 

Sigrist-Nelson et al77., have reported the synthesis and evaluation of 5,7-dihydro-2{[(4-

methoxy-3-methyl-2-pyridyl)methyl]sulfinyl}-5,5,7,7-tetramethylindeno[5,6-d]imidazol-

6-(1H)-one (Ro 18-5364) 39 as an extremely effective inhibiting agent. Ro 18-5364 

produced almost complete inhibition of the H+/K+-ATPase activity, as well as, associated 
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proton translocation. The activity of the inhibitor appeared to be independent of its 

stereochemistry.  However, sulfide analog of Ro 18-5364 was devoid of any significant 

inhibitory activity. 

N
H

N

S

O

N

O

O

RO 18-5364 39  

Yoon, et al.,78 have synthesized imidazopyridines fused with benzothiazole moiety 40. 

These novel compounds not only showed potent inhibitory activity against H+/K+-ATPase 

but also showed significant cell protective activity.  

N

N

SN

H2N

40  

1.7.1.2. Changes made on the Pyridine Nucleus: 

The pyridine ring has been annulated to one more ring or its bioisosteric replacement is 

done or has been replaced by an aromatic carbocycle, without loss of potency. Uchida et 

al79., have quinoline analogs of PMSBs. A series of some 4-substituted 8-[(2-

benzimidazolyl)sulfinylmethyl]-1,2,3,4-tetrahydroquinolines, has exhibited H+/K+-

ATPase inhibitory and anti-secretory activities against histamine induced gastric acid 

secretion. Of these, 4-(N-allyl-N-methylamino)-1-ethyl-8-[(5-fluoro-6-methoxy-2-

benzimidazolyl)sulfinylmethyl]-1-ethyl-1,2,3,4-tetrahydroquinoline 41 was found to have 

potent  anti-ulcer activity. Further, many of the derivatives showed cytoprotective 

activities. Notably, the methyl sulfinyl side chain is not attached to the pyridine nucleus 

but to the benzene ring. 
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Annulations of pyridine ring to an alicycle has also been tried. Yamada et al.,80 have 

synthesized a series of 2-[(cycloalka[b]pyridinyl)sulfinyl]-1H-benzimidazoles and tested 

for the inhibition of pentagastrin induced gastric acid secretion. A novel benzimidazole 

derivative containing a cyclohepta[b]pyridine moiety was found to be the most potent 

among the congeners, which included five- to eight- membered cycloalka[b]pyridine ring 

system. Of them 2-[(6,7,8,9-tetrahydro-5H-cyclohepta[b]pyridin-9-yl)-sulfinyl]-1H-

benzimidazole analogs having various substituents on aromatic rings were found to be 

superior than omeprazole. TY-11345 42 was selected for further evaluation. Notably, the 

methysulfinyl linkage has also been modified. 

N

N

S

N

O

O

H
Na

TY 11345 42  

Replacement of the pyridine ring with less basic isosteric pyrimidine ring has also been 

reported by Japanese workers81. They have evaluated 2-(1H-benzoimidazole-2-

sulfinylmethyl)-4-dimethylamino-pyrimidine-5-carboxylic acid ethyl ester 43 for its 

proton pump inhibition. It was found to have marked proton pump inhibitory activity with 

IC50 of 7.5 µm as compared to omeprazole IC50 of 5.8 µm. 

N
H

N

S

N

N

N
O
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43  
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Replacement of the heterocyclic pyridine ring with aromatic carbocycles has also been 

attempted. Tsukahara et al82., synthesized [2-(1H-benzoimidazole-2-sulfinylmethyl)-

phenyl]-isobutyl-methyl-amine (Leminoprazole) 25 which was found to be a potent PPI. 

N
H

N

S

O

Leminiprazole 25

N

 

1.7.2. Irreversible Inhibitors - Not Related Structurally to Omeprazole   

Terauchi et al83., have reported the synthesis and evaluation of N-substituted 2-

(benzhydryl)nicotinamides 44 and N-substituted 2-(benzylsulfinyl)nicotinamides 45, 

which upon acid activation were converted to their active forms, 2,3-dihydro-3-

oxoisothiazolo[5,4-b]pyridines 46 responsible for  gastric H+/K+-ATPase inhibition.55 Of 

these, 45 showed in vivo and in vitro inhibitory activities equivalent to omeprazole and 

was more stable than omeprazole, lansoprazole and pantoprazole at neutral and weakly 

acidic pH. Further, these parent nicotinamides, were devoid of any in vitro H+/K+-ATPase 

inhibitory activity of themselves. 

S

O

N

O

N
H

R

R1 R2

O O

S

O

N

O

N
H

N

N
S

N R

O

44 45 46
 

Berzsenyi et al.,84 have synthesized and tested [2-(2,5-dimethyl-2H-[1,2,4]triazol-3-

ylsulfanylmethyl)phenyl]dimethylamine,  (GYKI-34655) 47 as irreversible inhibitor, 

which was found to be a  potent gastric anti-secretory, anti-ulcer and cytoprotective agent.  
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GYKI 34655 47  

1.7.3. Reversible Inhibitors (Acid Pump Antagonists) 

Cheon, et al.,85 have reported the activity of 1-(2-methyl-4-methoxyphenyl)-4-[(3-

hydroxypropyl)amino]-6-methyl-2,3-dihydropyrrolo[3,2-c]quinoline (DBM-819) 48 as 

potential reversible inhibitor. DBM-819 successfully reduced histamine and pentagastrin 

stimulated gastric acid secretion and protected against gastric lesions induced by ethanol, 

NaOH, indomethacin and aspirin, suggesting that DBM-819 acts as an effective anti-ulcer 

agent in vivo.  The same workers have also evaluated 1-(2-methyl-4-methoxyphenyl)-4-

[(2-hydroxyethyl)amino]-6-trifluoroethoxy-2,3-dihydropyrrolo[3,2-c] quinoline (AU-461) 

49, which was found to be reversible and competitive inhibitor with respect to the 

activating    K+ cation.86   

N
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O

N
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N

N

O

N
H

OH

OF3C
DBM 819 48 AU 461 49  

3-Amino-5-methyl-2(2-methyl-3-theinyl)-imidazo[1,2-a]thieno[3,2-c]pyridine (SPI-447) 

50 have also been studied as a reversible inhibitor of proton pump. SPI-447 had no effect 

on Na+/K+-ATPase activity and was K+ competitive inhibitor of H+/K+-ATPase similar to 

SCH28080 23.69 
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A series of 1-aryl-3-substitued pyrrolo[3,2-c]quinolines 51, have been found to be 

inhibitor of  H+/K+-ATPase. In vitro H+/K+-ATPase inhibitory activity was dependent on 

the substituents at the 3-posotion of the pyrrolo[3,2-c]quinolines, whereas 1-aryl 

substituents affected the in vivo gastric acid secretion.87 

N

N

R1

R2

R3

R4
51  

Niiyama et al.,88 have synthesized novel 4-substituted pyridine derivatives like 4-alkoxy-,   

4-alkylthio and 4-aryloxy-5-methyl-2-[1-(hydroxymethyl)-2-(1-napthyl)-ethyl (ethenyl)] 

pyridine 52 which were found to have reversible inhibitory activity against  H+/K+-

ATPase. 

N

O

HO

R

52  

Kinoshita, et al.,89 have reported a be novel reversible PPI, 2-[(2-dimethyl- 

aminobenzyl)sulfinyl]-1-(3-methylpyridine-2-yl-)imidazole 53 (T-330), which was found 

to possess, anti-secretory activity more potent than omeprazole and ranitidine.  
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Kim, et al.,90 have reported the synthesis and proton pump inhibitory activity of YH-1885 

54 which is now one of the most clinically advanced APA’s. 

N

YH 1885 54

N N

F
 

Condensed napthyridines have also been reported as possible reversible proton pump 

inhibitors, e.g. 4-substituted-1-(2-methylphenyl) thieno [2,3-c]-1,5-napthyridines 55. 

These compounds were evaluated for their H+/K+-ATPase and anti-secretory activity. 

However, in vitro activity of these substituted napthyridines was not high enough to be of 

further interest.91 

N

N

S

R 55  

Yamada et al.,92 reported the reversible H+/K+-ATPase inhibitory activity of 2-[(2-

aminobenzyl)sulfinyl]-1-(2-pyridyl)-1,4,5,6-tetrahydrocyclopenta[d]imidazoles. Acid 

degradation study of 56 indicates mechanism of action different from omeprazole. 
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Ife et al.,93 have reported 4-(2-pyridyl)-5-phenylthiazoles 57 as reversible, K+-competitive 

gastric H+/K+-ATPase inhibitors. 

N

S

N

57  

They have further reported reversible proton pump inhibitory activity of 4-(arylamino) 

quinazolines 58, 2,4-bis(arylamino)quinazolines 59 and 2,4-bis(arylamino)thieno- 

pyrimidines 60. In case of the theinopyrimidines, the [3,2-d] isomers proved to be more 

effective than [2,3-d].94 
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Yuki, et al.,95 have reported proton pump inhibitory activity of 2-methyl-8-(3-methyl-but-

2-enyloxy)imidazo[1,2-a]pyridine-3-carbonitrile (YM-020) 61. 
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Leach et al.,96 have  reported H+/K+-ATPase inhibitory activity of 3-butyryl-4-[(2-

methylphenyl)amino]-8-(2-hydroxyethoxy)quinoline, SK&F 97574 62.68 It is found to be 

well tolerated and efficacious in Phase-I studies. 

N

NH O

O

OH

SK & F 97574 62  

Similar derivatives, 3-[3-(ethoxycarbonyl)propionyl]-8-methoxy-4-[(2-methylphenyl) 

amino]quinolines, (CP-113411) 63 have also been reported. Besides being reversible 

inhibitors of gastric proton pump, they also inhibited bone absorption by osteoclasts.97 

N

NH O

O

CP 133411 63
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Ife et al.,98 have reported the synthesis and evaluation of a series of 1-arylpyrrolo[3,2-c]-

quinolines as inhibitors of H+/K+-ATPase. Unsaturation in the five membered ring of this 

nucleus made little difference, but introduction of heteroatom in the same ring reduced 

the activity drastically. Of the series, compound 64 showed reversible K+ competitive 
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binding to the enzyme.99 Further, modification of same nucleus by Leach et al.,100 led to 

discovery of SK & F 96356 65, a potent inhibitor of gastric acid secretion. Ife et al98., 

studied 3-substituted–4-(phenylamino)quinolines as reversible inhibitors of H+/K+-

ATPase. From this series, SK & F 96067 28 was found to be potent inhibitor of histamine 

stimulated gastric acid secretion. 

N

O

N

64

N

N

NH

SKF & F 96356 65

N
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NH O

SKF & F 96067 28
 

Kaminski et al.,101 identified 3-(cyanomethyl)-2,7-dimethyl-8-(phenylmethoxy)imidazo 

[1,2-a]pyridine 66,   3-amino-2-methyl-8-(2-phenylethyl)imidazo[1,2-a]pyridine 67, and                   

3-amino-2-methyl-8-(phenylmethoxy)imidazo[1,2-a]pyrazine, SCH-32651 68. These 

analogues exhibit anti-secretory and cytoprotective activity, particularly, SCH 32651 was 

mentioned as a promising candidate.  
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66 67 SCH 32651 68  

 

1.7.4. Other Proton Pump Inhibitors under Investigation 

Smolka, et al.,102 have reported the synthesis and evaluation of the pyrrolizine derivatives 

of the type,  ML 3000, 69,  which along with the inhibition of H+/K+-ATPase also 

inhibited 5-lipoxygenase. 
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Hayashi et al.,103 have reported the proton pump inhibitory effects of synthetic 

compounds with the scopadulan ring system, which have ether linkages at C-6, C-13 

and/or C-18 positions. Tert-butyldimethylsilyl ethers of 5-methylenecycloheptene and 

related compounds 70-72 were shown to be novel proton pump inhibitors. 
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72  

Jain et al.,104 have designed a variety of novel mononuclear and condensed pyrimidine 

analogs of omeprazole replacing the pyridine heterocycle of conventional PSMBs with its       

3-aza isoster, pyrimidine. The rationale behind their work is that the weakly basic nature 

of pyrimidine (pKa-1.31) as compared to pyridine (pKa-5.2), has the N1 and N3 of 

pyrimidine less electron donating than the pyridine nitrogen.105 This makes the formation 

of sulfenamide intermediate difficult. (Figure 20) 

 

A review of a basic literature on organic & the heterocyclic chemistry reveals that indeed 

pyrimidine ring is the ring of choice. 
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Pyridine
pKa : 5.2

Pyrimidine
pKa : 1.31

N
N
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The weekly basic nature of pyrimidine (pKa 1.31) is striking in relation to pyridine         

(pKa 5.2). It is understandable as in inductive effect (depletion of π-electrons), caused by 

insertion of the avidly electron-attracting second nuclear nitrogen atom. Pyrimidine may 

therefore be likened more to beta-nitropyridine (pKa 0.8), which contains the equally 

strongly electron-attracting nitro group, than to the parent pyridine. A cursory review of 

the literature does reveal successful use of this logic. Replacement of the pyridine ring 

with less basic isosteric pyrimidine ring has also been reported by Japanese workers81. 

They have evaluated2-(1H-benzoimidazole-2-sulfinylmethyl)-4-dimethylamino-

pyrimidine-5-carboxy-lic acid ethyl ester 43 for its proton pump inhibition. It was found 

to have marked proton pump inhibitory activity with IC50 of 7.5 µm as compared to 

omeprazole IC50 of 5.8 µm. 
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It really appears difficult that in this system the formation of the disulfide intermediate is 

likely. This is owing to the poor availability of electrons on pyrimidine and its nitrogens. 



Part-1 
Review on Antiulcer Literature 

 

 39 

N

O

S

O

H
N

NH

N

O

S

O
N

NH

H

N

N

S

O

H
N

NH

R1

R2

X

N

N

R1

S

O
N

NH

H
R2X

Not possible

O O

Omerazole

Pyrimidine

 

 

Figure 20: Inability of pyrimidine analog of omeprazole to form sulfenamide 

intermediate. 

 

1.7.5 Some More Literature Reports:   

Corvi-Mora106 synthesized derivatives of piperazinyl acetamides 73 possessing anti-ulcer 

and anti-secretion properties. These compounds were entirely free from anticholinergic 

activity. Though mechanism of action is not clear, anti-ulcer activity was evaluated 

successfully in different models like reserpine ulcer with rats and phenylbutazone-

histamine ulcer. 

H
N N

O

NH

73  

 

Murai et.al.,107 reported the anti-ulcerative activity of benzoguanamine derivatives 74. 
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Hirosada et.al.,108 reported gastric secretion inhibiting activity of spiro compounds with 

novel skeleton 75. These compounds were found to be of value as anti-ulcer, anti-

inflammatory and as analgesic. 
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75   

Otsubo et al.,109 synthesized the enantiomers of 2-(4-chlorobenzoylamino)-3-[2(1H)-

quinolinon-4-yl]propionic acid 76, new antiulcer agent that enhances mucosal resistance 

The (+) isomer, rebamipide, was about 1.7 times as potent as the (-)-isomer in antiulcer 

activity against ethanol-induced gastric ulcers. 
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Miki, et al.,110 have synthesized derivatives of benzamide, 77 which have exhibited 

excellent inhibitory effects on several gastric models such as alcohol ulcer, indomethacin 

ulcer, aspirin ulcer and stress ulcer. Also, these compounds exhibited an inhibitory effect 

on duodenal ulcer models such as cysteamine ulcer and dulcerozine ulcer. 
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Hino, et al.,111 have synthesized a novel class of anti-ulcer agents, substituted 4-phenyl-2-

(1-piperazinyl)quinolines. These compounds can be classified into three groups; that is 

effective on stress-induced ulcers, that is effective on both stress-induced and ethanol-

induced ulcer and that is selectively effective on the ethanol-induced ulcer. Among the 

compounds AS-2646 78 (fumarate salt), showed potent inhibition of stress induced ulcer 

and gastric acid secretion. 
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Katano, et al.,112 have reported the anti-ulcer activity of some pyridothiazole derivatives 

79 which exhibited both strong effect of inhibiting the secretion of gastric acid and an 

enhanced effect on protecting the gastrointestinal mucosa. 
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Herling et al.,113 had synthesized structural analogs of PSMBs by replacing 

benzimidazoles heterocycle by theinoimidazole to get S 1924 80. Similarly, aminobenzyl 

ring has also been tried as a replacement to pyridine ring of PSMBs as in 81 and 82. 
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NC 1300 B (Nippon Chemiphar) 81 NC 1300 (Nippon Chemiphar) 82

N
H

N

S S

O

N
S 1924 (Hoechst) 80

 

 

SAR and QSAR of N-acyl derivatives of amino acids for inhibition of gastric proton 

pump using gastric microsomal vesicles, and their effect on pylorus ligation-induced 

ulcers in rats has been studied. N-acylated amino acid derivatives, mostly analogs of 

proglumide, benzotript and rebamipide have shown potent anti-ulcer properties. It has 

been found that a significant number of N-acylated amino acids showed good degree of 

inhibition of gastric proton pump. From all of these compounds for their ability to control 

acid secretions in pylorus-ligated rats, cis-5-(2-phenylethenyl)-2-oxo-oxazolidine-4-

carboxylic acid  83 was found to be the most potent compound.114 
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O
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83  
 
A novel series of pyrrolo[3,2-c]pyridine derivatives 84, has been synthesized and 

evaluated for their reversible proton pump inhibitory effects. From this series, compound  

3-benzyl-2-methyl-4(1,2,3,4-tetrahydroisoquinolin-2-yl)-1H-pyrrolo[3,2-c]pyridine hydro 

chloride was found most potent reversible PPI, which inhibits H+/K+ATPase activity by 

50% before washout and did not inhibits H+/K+ATPase  activity after washout. The 
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gastric H+/K+ATPase inhibitory activity of these compounds completely recovered to 

non-treated group levels after washout, confirming the reversible inhibition of gastric 

H+/K+ATPase.115 Another compound from the same series, 2-(2,3-dimethyl-1-propyl-1H-

pyrrolo[3,2-c]pyridine-7-yl)-1,2,3,4-tetrahydroisoquinoline hydrochloride was also found 

very potent inhibitor of H+/K+ATPase with same mechanism of action.116  

 

N

N

R1

R2

R3

R4

R1= H, alkyl, alkoxy, hydroxy, cycloalkyl, thiazolyl, alkenyl, benzyl etc.
R2 = H, alkyl
R3 = H, alkyl, alkenyl, benzyl, etc. 
R4 = 1,2,3,4-tetrahydroisozuinolinyl, benzyloxy, amino, alkylcarbonyl, 
       phenoxycarbonyl,    benzyl etc.

84

 

 

Another novel series of pyrrolo[2,3-c]pyridine derivatives117 85, analogues to the above 

series in structure was found to be very potent as reversible inhibitors of H+/K+ATPase, 

especially the compound, 7-(4-fluorobenzyloxy)-2,3-dimethyl-1-(prop-2-ynyl)-1H-

pyrrolo[2,3-c]-pyridine hydrochloride which was very potent with ED50 of 14.0 mg/kg. 

Another analogues series118, pyrrolo[3,2-b]pyridine has also been equally found very 

potent. The compound, 7-(4-fluorobenzyloxy)-1-isobutyl-2,3-dimethyl-1H-pyrrolo[3,2-

b]pyridine hydrochloride was very effective with ED50 of 2.4 mg/kg. 
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R1 = H, alkyl, alkoxy, alkoxycarbonyl, alkylcarbonyl, alkylamine, naphthyl, quinolinyl, 
       thiazolyl, thiophenyl,      isoxazolyl, alkenyl, acetyl, phenyl etc.
R2  = alkylmstraight chain or branched
R3  = H, alkyl, alkylsulfanyl, etc. 
R4  = H, halogen, cyno, hydroxycarbonyl, alkoxycarbonylamino, morpholinocarbonyl etc.

R4

85

 

 

Prodrugs of benzimidazole-type proton pump inhibitors of general structure 86 have been 

studied, to develop agents that slowly hydrolyze to provide benzimidazole type proton 

pump inhibitors which inhibit exogenously or endogenousely gastric acid secretion along 
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with improved solubility in physiological fluids and improvement in cell penetration. The 

R substitution on imidazole is expected to undergo cleavage under physiological 

conditions or under influence of an enzyme to provide the corresponding compound with 

a free NH group.119 

N

N

S

O

N

SO2

R OCH2CF3

R = Sub. aryl, sub. pyridine, sub. naphthalene, sub. quinoline, sub. thiazole, 
       sub. benzothiazole or sub. amine etc.

86

 

A novel series of pyrrole containing derivatives of general structure 87 has been 

synthesized and evaluated for their anti-secretary effects. Compound, tert-butyl{[5-

bromo-1-(pyridine-3-ylsulfonyl)-1H-pyrrol-3-yl]methyl}methylcarbamate was a potent 

compound, from this series with IC50 of 210 nM.120  

N
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R2 R4

SO2

R1

R5

H

R1 = nitrogen cantaining heterocyclic group, gernally condensed 
        with benzene ring or a heterocycle
R2 = C6-C14 aryl groups
R3 = H
R4 = alkyl, acyl, helogen, CN, NO2
R5 = alkyl group

87

 

 
A series of chromane substituted benzimidazole derivatives of general structure 88 and 89 

has been synthesized and evaluated for their acid pump inhibitory activity. Some of the 

compounds from this series showed high potency with IC50 for the inhibition of 

H+/K+ATPase.121,122  
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A-B = -O-CH2-, -S-CH2-, -CH2-O- or -CH2-S-
X = O or NH
R1 = C1-C7 alkyl
R2, R3 = H, C3-C7 alkyl
R4, R5, R6, R7 = H, Halogen, OH, C1-C6 alkyl or 
                           C1-C6 alkoxy
R8 = H, OH, C1-C6 alkoxy
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A = CH2 or CH2-CH2
X = O, NH
R1 = H, C1-C6 alkyl
R2 = C1-C6 alkyl group, C3-C7 cycloalkyl
R5 = H, OH, C1-C6 alkyl, C1-C6 alkoxy
R6, R7, R6, R9 = H or halogen

88 89

 
 

Furthermore, chromane substituted 2-alkyl imidazopyridine derivatives of structure 90 

have been evaluated. These compounds showed less toxicity, better property of 

phototoxicity, good absorption, distribution, good solubility, less protein binding other 

then acid pump with good metabolic stability.123 
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A-B = -O-CH2-, -S-CH2-, -CH2-O- or -CH2-S-
X = O or NH
R1 = C1-C6 alkyl
R2 = C1-C6 alkyl, C3-C7 cycloalkyl group
R3 =  C1-C7 alkyl 

R4, R5, R6, R7 = H, Halogen, C1-C6 alkyl

90
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1.7.5.1. CCK2/Gastrin-Receptor Antagonists 

Gastrin is the only peptide hormone released from the stomach. It mediates the gastric 

acid secretion. Gastrin stimulated secretion of gastric acid is produced directly by 

stimulation of Cholecystokinin-2 (CCK2)/gastrin receptors on parietal cells or indirectly 

after CCK2/gastrin receptors-mediated HA releases from ECL cells. The regulation of 

gastrin and HA-stimulated gastric acid secretion are key therapeutic targets in controlling 

acid-peptic disorders. Inhibition of acid secretion through H2-receptor antagonists and 

PPI’s has positive feedback effect on the release of gastrin.124,125 Numbers of chemically 

diverse CCK2/gastrin receptor antagonist have been studied for their anti-secretory 

effects or as inhibitors of panic attacks including L-365260 (Merck) 91, CR2194 (Rotta) 

92 and JB95008 (James Black Foundation) 93.126 However, till date, none has been 

marketed. 
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Figure 21. Structures of CCK2/gastrin receptor antagonists. 
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1.8. Biological Evaluation of PPI’s 

 

1.8.1. Studies on Isolated Guinea Pig Mucosa127:-  

Preparation of tissue and solution:- Isolated guinea pig mucosa is mounted on a plastic 

funnel with the mucosal surface facing the tube lumen. Each preparation is immersed in 

an organ bath containing 40 ml of serosal solution having the different compositions. 

Measurement of H+ secretion: This is performed by continuous titration using a 

radiometer (Copenhagen, Denmark) pH-stat (pHM 82, TTT 80) and Autoburette (ABU 

80).  

Measurement of K+ secretion: K+ content of mucosal solution is determined on a flame-

emission photometer. 

Experiments with simultaneous measurements of K+ and H+ secretion: Histamine is 

added to serosal solutions followed by sample solutions and secretion rates are calculated. 

 

1.8.2. Effect of H+/K+ ATPase Inhibitors on Serum Gastrin Levels128: -  

Female wistar rats are treated with the H+/K+-ATPase inhibitors to cause gastric 

inhibition. Blood samples are collected and gastrin is determined by radio-immunoassay 

using a commercially available kit. At the end of the study of 10 weeks, the animals are 

studied for their gastric acid output using pylorus ligation (Shay technique)  

 

1.8.3. Pylorus Ligation in Rats (Shay rats)128:- 

A simple and reliable method for production of gastric ulceration in the rat based on the 

ligature of the pylorus has been published by Shay et al. (1945). The ulceration is caused 

by accumulation of acidic gastric juice in the stomach.  

 

1.9. Conclusion: 

In 19th century, light diet consisting of food not stimulating gastric acid secretion was 

recommended for treating peptic ulcer-related disorders. From then a number of strategies 

have been designed to control these disorders related to the hypersecretion of acid. These 

therapeutic strategies extend from simple conventional antacids to the use of more 

complex and effective proton pump inhibitors (PPI’s). Associated effects of antacids like 

constipation or diarrhea limit their patient compliance and are today mainly used for fast 

symptomatic relief. Muscarinic antagonists like pirenzepine inhibit gastric acid secretion 

as well as decrease gastric motility, but clinical use of these drugs is now limited because 
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of availability of more effective anti-secretory medications. A new era in the treatment of 

acid-peptic disorders dawned with the launch of H2-receptor antagonist, cimetidine, in 

1976. This class of drugs, however, has a short duration of action. Peptic ulcers caused by 

H. pylori can be treated by combination of antibiotics and anti-secretory medications. 

However, complex drug regimen and associated side effects may limit usefulness. Launch 

of omeprazole in 1988 introduced a conceptually new approach of inhibition of proton 

pump in the management of acid-related disorders. PPI’s proved to be superior to any of 

the previously used drugs including H2-antagonists. Today, almost two decades after 

introduction of the first PPI, the apparent drawbacks of irreversible proton pump 

inhibitors, mainly because of their prolonged acid suppression, are becoming a cause of 

concern. Hence, the researchers worldwide have been attracted toward designing 

reversible, shorter, and rapid acting acid pump antagonists (APAs). Thus, APAs are the 

conceivable future drugs for the treatment of acid-peptic disorders. 
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2. Aim of the Present Work 

A careful study and scrutiny of the review of literature on the currently used Proton Pump 

Inhibitors (PPI’s) especially of the pyridylmethylsulfinyl benzimidazoles (PMSB) types 

indicate some important drawbacks1,2 associated with their usage, such as;  

 

1. They have irreversible inhibitory effects on gastric acid secretion and can cause 

extreme irreversible gastric acid suppression 

2. They cause achlorhydria at recommended doses & may lead to enteric infections 

like typhoid, cholera & dysentery etc. 

3. They may affect digestion & nutrition 

4. They have significant drug interactions 

5. They are not recommended for maintenance 

6. They have un-predictable action and variation in individual responsiveness of 

duodenal ulcer patients 

7. Hypergastrinemia causes rebound phenomena 

8. They can cause cause gastric polyps and carcinoma 

9. Their affinity for various cytochrome P-450’s can lead to their self inhibition. 

 

Therefore, there is need for the discovery and development of milder, reversible PPI’s. 

This fact has been realized by the medicinal chemists’ worldover.  

 

An investigation into the mechanism of action of these PPI’s can throw some light on the 

probable reasons for these drawbacks. These molecules rearrange in the strongly acidic 

environment of the parietal cells.3 Covalent binding of the rearranged inhibitor to the 

H+/K+-ATPase results in inactivation of proton pump.4  In the covalent binding, a 

disulfide linkage of the drug is formed with the active site of the cystine-rich H+/K+-

ATPase (Proton Pump).  One of these sites has been identified as cystine-813 (and 

probably cystine-822) of H+/K+-ATPase as shown in Fig. 1.  
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Figure 1. Membrane domain of the H+/K+-ATPase E2-P model with pantoprazole, bound 
at Cys813 and Cys822 (stick with Connolly surfaces in cloud). A known site of a subunit 
interaction (36, 37), S [910] YGQ, is highlighted (white ribbon) in the TM7/TM8 loop. 
Cys813, Cys892, and Cys321 are labeled (38) by various proton pump inhibitors (all at 
Cys813, Omeprazole at Cys892, and lansoprazole at Cys321) and are solvent-accessible 
in the model. Labeling at the latter two sites is not correlated with inhibition (3). The 
crossover point (“pivot”) between TM5 near Ile793 and TM7 near Gly867 (gold sphere) 
is apparently conserved in the P2-type ATPases. An extensive array of aromatic side 
chains (in stick form) replaces non-aromatic Ca2+-ATPase residues and affects the 
spacing between helices. TM9 and TM10 are omitted for clarity.5   
 

The entire cascade for the formation of disulfide is initiated by donation of an electron 

pair from the basic pyridinyl ‘N’ atom to the electron deficient ‘C’ of benzimidazole 

(Figure 2). 
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Figure 2. Reaction mechanism proposed for the acid transformation of pyridinylmethyl-

sulfinyl benzimidazoles (PMSB’s) to sulfenamide. 

 

Therefore, there is a need to develop better analogs of the existing PPI’s in which the 

formation of this disulfide intermediate can be avoided, so as to obtain reversible Proton 

pump inhibition & thus overcome the drawbacks of the currently available PPI’s. 

 

2.1 Structural changes done so far  

Earlier, medicinal chemists worldwide have tried a variety of changes in the skeleton of 

PMSB moiety based on the principles of the isosteric/bioisosteric replacement of the 

group as well as the heterocyclic ring system to achieve subtle changes in the nature of 

this PMSB nucleus, which may alter its irreversible binding (inhibition) to the proton 

pump to a reversible one. 
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Table 4. Modifications reported in the PMSB nucleus 
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One of the changes worth trying is the replacement of the pyridine ring of the PSMB 

skeleton with the less basic pyrimidine ring. 
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2.2. Bacisity of Pyridine vs Pyrimidine 

As suggested above, one of the options that has not been tried is the 3-aza analog of 

pyridine i.e. pyrimidine, which is it’s logical bioisoster. 

 

Pyridine
pKa : 5.2

Pyrimidine
pKa : 1.31

N N

N

 

 

A review of a basic literature on organic & the heterocyclic chemistry reveals that indeed 

pyrimidine ring is the ring of choice.  This is because 

 

1. Pyrimidine is weakly basic or rather acidic than pyridine (lower pKa) 

2. Electronegativity of the additional N3 Nitrogen depletes electrons on N1. 

3. Depletion of the π-electrons is caused by an insertion of the second electron 

attracting nitrogen. 

 

The weakly basic nature of pyrimidine (pKa-1.31) is striking in relation to pyridine (pKa-

5.2).8 It is understandable as an inductive effect (depletion of π-electrons), caused by 

insertion of the avidity electron-attracting second nitrogen atom at N3. Pyrimidine may 

therefore be likened more to β-nitropyridine (pKa-0.8), which contains the equally strong 

electron-attracting nitro group, than to the parent pyridine.  

 

A cursory review of the literature does reveal only one successful use of this logic9 

(structure-6).   
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2.3. Proposed Series of Compounds 

Theoretically, it really appears that in this pyrimidine system the formation of the 

disulfide intermediate is difficult.  This is owing to the poor availability of electrons on 

pyrimidine ‘N1’ & ‘N 3’ nitrogens (Fig. 3).  
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Figure 3. Pyridine derivative vs Pyrimidines derivative in acidic medium  

 

Thus, one can envisage that this system though can bind the proton pump; the binding 

may not as strong as the PMSB pyridine system and may be even loose and reversible. 

Therefore, series of pyrimidine analogues of the existing drug PMSB skeleton was 

planned for the proposed work. 

 

It was decided to utilize the availability of 2-chloromethylpyrimidines, especially the 

condensed 2-chloromethylpyrimidin-4(3H)-ones to condense them with 2-mercapto-

benzimidazole to get the corresponding pyrimidinylmethylsulfinyl benzimidazoles of the 

following general type 7 (Figure 4).  
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Figure 4. Proposed series of compounds 
 
The choice of this particular system is due to the reason that main building block of this 

system namely, condensed  2-chloromethylpyrimidin-4-(3H)-ones are easy to prepare. The 

other precursor, 2-mercaptobenzimidazole is either preparable or easily accessible, 

commercially.  

 

Thus, a series of 2-(1H-benzimidazol-2-ylsulfinyl)-3H-pyrimidin-4-ones and 2-(5-methoxy-

1H-benzimidazol-2-ylsulfinyl)-3H-pyrimidin-4-ones was planned to be  synthesized, 

characterized and evaluated for antiulcer activity, using a suitable animal model. The 

following series was envisaged (Table 5). 
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Table 5. Proposed series of compounds synthesized for biological evaluation 
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S. No. A

 
S. No. A

 

15. N

N

O  

16. H3CO

H3CO  

17. 

S

O
 

18. 

N

N

S

 

 

2.4 Pharmacological Activity 

Antiulcer and anti acid secretary activity of the newly synthesized compounds on rats was 

planned using a simple and reliable method for production of gastric ulceration based on 

the ligature of the pylorus as per method published by Shay et al10. The ulceration is 

caused by accumulation of acidic gastric juice in the stomach. The intensity of ulceration 

is expressed in terms of ulcer index.  

 

2.5 Establishing Quantitative Structure Activity Relationships (QSAR)  

QSAR is one of the most effective lead optimization techniques of rational drug design 

since last three decades. It quantitatively correlates the effects of structural changes all 

around the molecule on its exhibited biological activity. In simple words it provides a 

mathematical near to accurate picture on the optimal desirable structural features of a lead 

molecule with best biological activity. 

 

Thus, structures of all the synthesized and biologically evaluated molecules shall be built 

in 3D using standard drug design softwares, shall be minimized and refined and various 

physicochemical 2D and 3D properties of these molecules shall be computed and 

correlated with the observed biological activity data through systematic multiparameter 

statistical regression analysis, to evolve out meaningful mathematical equations of 

Qunatitative Structure Activity Relationships (QSAR). Systematic interpretation of the 

QSAR data should help in probing into the optimal physico-chemical/structural 

requirements for the highest antiulcer activity in this series of compounds. This is one of 

the logical and rational approaches to the drug design leading to lead optimization. 
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3.1 Synthesis of Starting Materials 

3.1.1 Synthesis of thiophene o-aminoesters (The Gewald reaction) 

3.1.2 Synthesis of other o-aminoesters substrates 

 

3.1.1 Synthesis of thiophene o-aminoesters (The Gewald reaction) 

Excellent synthetic methodologies for a variety of substituted 2-aminothiophenes, have 

been developed by Gewald and coworkers.1 The 2-amino-3-cyano 1, 2-amino-3-

carbethoxy 2 and 2-amino-3-carbamoyl 3 thiophenes obtained by the Gewald reaction 

are of considerable importance for the generation of thienopyridines, thienopyrimidines 

and thienodiazepines. These molecules especially thieno[2,3-d]pyrimidines have 

exhibited antimalarial2, anti-bacterial3, anti-inflammatory4, anticonvulsant properties5, 

CNS depressant6, hypnotic7 and anti-platelet aggregating8 activity. Besides this the 

thienodiazepines have exhibited good antidepressant activities9, antianxiety10, 

antipsychotic11 and anticonvulsant activities.12 

S
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NH2 S
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NHR
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These molecules show great promise in biomedicine13, because of their application in 

pharmaceuticals, agriculture, pesticides and dyes. The Gewald methods offer 

considerable improvements over all the other existing methods for 2-aminothiophenes. 

 

Notably, Gewald has described four synthetic methods for 2-amino-3- 

carbalkoxythiophenes. These methods involve: 

 

3.1.1a Condensation of α-mercaptoketones or α-mercaptoaldehydes with alkyl 

cyanoacetates.14 

3.1.1b Treatment of aldehydes or ketones with alkylcyanoacetates and elemental 

sulfur.15 

3.1.1c Cyclization of acryonitriles (obtained from condensing aldehydes or ketones with 

alkylcyanoacetates) with elemental sulfur.15 
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3.1.1d The reaction of enamines (derived from ketones and morpholine or piperidine 

with alkyl cyanoacetate) and elemental sulfur.15 

 

3.1.1a Condensation of α-Mercaptoketones or Aldehydes with Alkyl Cyanoacetates  

In one of the versions16-18 of the Gewald reaction, an α-mercaptoketone or aldehyde is 

treated with an active methylene nitrile bearing an electron withdrawing group, such as; 

methyl/ethyl cyanoacetates, malonitrile, benzoylacetonitrile or p-nitrobenzyl cyanide in 

solvents such as ethanol, dimethylformamide or dioxane in the presence of a catalyst 

such as triethylamine, diethylamine or piperidine at around 50oC (Scheme-1). The α-

mercaptoketone or aldehyde is often generated in situ by the reaction of an alkali sulfide 

with an appropriate α-halocarbonyl compound. The detailed mechanism of the reaction 

has not been demonstrated, but it seems likely that the aldol-type condensation occurs 

first, followed by an attack of the thiolate on the cyano group (Scheme-2). This particular 

version of Gewald reaction has several drawbacks such as; 

 

i. it utilizes the starting compounds which are unstable and difficult to prepare 

ii. this methodology is limited to aliphatic α-mercapto derivatives 

ii i. non-activated nitriles such as cyanoacetic acid and benzyl cyanide do not undergo 

the Gewald reaction. 
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3.1.1b Treatment of Aldehydes or Ketones with Alkyl Cyanoacetates and Elemental 

Sulfur  

This method involves a one pot procedure which is extensively used for the synthesis of 

numerous 2-amino-3-carbonylthiophenes.19-21 Here, the methodology involves 

condensation of methyl aldehydes, methyl ketones, or 1,3 dicarbonyl compounds with 

activated acetonitriles such as malonitrile, cyanoacetic ester, cyanoacetamide and its N-

substituted derivatives, hetroarylacetonitriles, α-cyanoketones & sulfur in presence of a 

secondary or tertiary aliphatic amine at room temperature. Ethanol, dimethylformamide, 

dioxane, excess ketone such as methyl ethyl ketone or cyclohexanone are preferred 

solvents, while the 2o or 3o amines employed may be diethylamine, morpholine or 

triethylamine. Only 0.5-1.0 molar equivalents of the amine, based on the amount of 

nitrile is used. The yields of the product are much higher by this method (Scheme-3).     

      

O
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S
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S
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R2

X

NH2

R1, R2 = H, alkyl, aryl, cycloalkyl,heteroaryl 
X = CN, COOMe, COOEt, COPh, CO-heteroaryl, CONH2

Scheme 3  

 

Alternatively, a two step procedure is preferable. An, α, β-unsaturated nitrile is first 

prepared through Knovenagel condensation of the carbonyl compound and an active 

methylene nitrile and then treated with sulfur and amine (Scheme-4). This two step 

version of the Gewald reaction gives higher yields. Even more important is that certain 

ketones such as alkyl aryl ketones, do not give thiophene in the one pot-modification,22,23 

but give acceptable yields by this  two-step technique (Scheme-4). 
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Both of these one and two steps variants have been employed out with numerous ketones 

and aldehydes and active methylene nitriles. Cyclic and heterocyclic ketones have been 

used extensively. It was however, observed that significantly lower yields (40-65%) were 

obtained with cyclic ketones having rings larger than six-membered. This trend is 

suggestive of increasing non-bounded repulsive interaction between methylene protons 

in middle and large sized rings fused to a planar five membered rings.24  

 

3.1.1c Cyclization of Acryonitriles with Elemental Sulfur 

Acryonitriles, obtained through the condensation of aldehydes or ketones with alkyl 

cyanoacetates, using either diethylamine or morpholine, get cyclized into substituted 2-

aminothiophenes through the action of ‘S’ in presence of a 2o amine. (Scheme-5) 

S
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3.1.1d Treatment of Enamines with Alkyl Cyanoacetates and Elemental Sulfur 

 Enamines derived from ketones and 2o aliphatic amines like morpholine or piperidine 

undergo the Gewald reaction with activated acetonitriles and elemental sulfur to give 2- 

aminothiophenes (Scheme-6). 
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Sabnis and Rangekar25,26 have developed the synthesis of versatile synthons in more than 

90% yield by condensing diethyl acetonedicarboxylate with sulphur and an activated 

acetonitrile (Scheme-7). These compounds have demonstrated tremendous application in 

synthesizing novel dyes and many biologically active compounds.   
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In the present work, two different variants have been used to prepare thiophene-o-amino 

esters (Ii-xii) 

Method A 

It is one pot condensation reaction involving reaction of ketone, ethylcyanoacetate and 

sulphur in the presence of diethylamine as catalyst at ambient temperature (method 

4.1.1b). Secondary amine used here is 0.5-1.0 mole equivalent of the amount of nitrile 

used (Scheme-8). 
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Scheme 8
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Method B 

This method is two-step process (method 4.1.1b). First step is the prior condensation of 

ketone with an ethylcynoacetate, under the catalysis of sodium acetate to obtain an α,β-

unsaturated nitrile (Knoevenagel condensation product which is otherwise known as 

alkylidine intermediate) in a suitable solvent like benzene. In this step, water molecules 
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formed during the reactions were removed using Dean-Stark condenser. In the second 

step, the alkylidine intermediate is reacted with sulphur in ethanol containing a secondary 

amine base such as diethylamine at around 50oC to afford the corresponding o-

aminothiophene (Scheme-9). 
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Table-6: Physical data of 2-amino-3-carbethoxythiophenes (Ii-xii) synthesized. 

S

R1

R2 NH2

O

O

 
 

Sr. No R1 R2 Mol.For. 
Sol. of recryst 

Yield 
(%) 

M.P. 
(oC) 

Time 
(hrs) 

Route 

I i -(CH2)4- C11H15NO2S 
 (E) 

80 110-112 3 A 

I ii -CH3 -COOCH3 C10H13NO4S 
 (E) 

70 80-82 2-3 A 

I iii -CH3 -COOC2H5 C11H15NO4S 
(T) 

50 103-105 2 A 

I iv -CH3 -CH3 C9H13NO2S 
(E) 

50 92-93 
 

3 A 

Iv -C6H5 H C13H13NO2S 
(E) 

75 95-97 15-18 B 

Ivi 4-CH3OC6H4 H C14H15NO3S 
(E) 

73 96-99 15-18 B 

Ivii 4-CH3C6H4 H C14H15NO2S 
(E) 

89 102-104 15-18 B 

Iviii 4-BrC6H4 H C13H12BrNO2S 
(E) 

76 78-80 15-18 B 

I ix 4-ClC6H4 H C13H12ClNO2S 
(E) 

80 102-104 15-18 B 

Ix -C6H5 -CH3 C14H15NO2S 
(E) 

76 91-93 15-18 B 

Ixi -(CH2)3- C10H13NO2S 
(E) 

59 82-84 15-18 B 

Ixii -(CH2)5- C12H17NO2S 
(E) 

71 75-77 15-18 B 

E =Ethanol, T = Toluene 
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3.1.2 Synthesis of other o-aminoester substrates:  

 

3.1.2a. Synthesis of 3-amino-2-carbethoxy-4, 6-dimethylthieno[2,3-b]pyridine 28 (Ixiii) 

The synthesis of thiocyanoacetamide 2 was carried out through the reaction of 

malononitrile 1 and H2S gas using triethylamine as a base. The 4,6-dimethyl-3-cyano-2-

mercaptopyridine 4 was synthesized by suspending thiocyanoacetamide and acetyl-

acetone 3 in absolute ethanol under basic condition.27 Synthesis of 3-amino-2-carbethoxy-

4,6-dimethylthieno[2,3-b]pyridine Ixiii was carried out by reacting 4,6-dimethyl-3-cyano-

2-mercaptopyridine 4 and ethyl chloroacetate under strong basic conditions like using 

sodium ethoxide (Scheme-10). 
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3.1.2b Synthesis of 3-amino-2-carbethoxyquinazolin-4-one29 (Ixiv) 

First step to synthesize 3-amino-2-carbethoxyquinazolin-4-one Ixiv was to reflux methyl 

anthranilate 5 and hydrazine hydrate for 2 hrs. On cooling solid crystals of anthranilic 

acid hydrazide 6 were obtained. The mixture of anthranilic acid hydrazide and diethyl 

oxalate 7 were heated under reflux with stirring in an oil bath at 180oC.  After completion 

of the reaction, excess of diethyl oxalate was removed in vacuo to give a semi-solid 

product which became crystalline on treatment with ethanol, characterized as 3-amino-2-

carbethoxyquinazolin-4-one Ixiv (Scheme-11).  
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3.1.2.c Synthesis of methyl-2-amino-4,5-dimethoxybenzoate30 (Ixv) 

Synthesis of methyl-2-amino-4,5-dimethoxybenzoate was carried out through a series of  

following steps. The synthesis starts with o-methylation of vanillin 8, with dimethyl 

sulphate in presence of aq. KOH. In the next step, selective nitration of veratraldehyde 9 

under controlled conditions was carried out using fuming nitric acid at 0oC to get 3,4-

dimethoxy-6-nitrobenzaldehyde/6-nitroveratraldehyde 10. The 3,4-dimethoxy-6-nitro-

bezoic acid 11 was prepared by the oxidation of the aldehyde group of 6-

nitroveratraldehyde using potassium permanganate as a oxidizing agent. The next step 

involves the esterification of the benzoic acid by passing dry HCl gas in methanol to get 

methyl 4,5-dimethoxy-2-nitrobenzoate 12. The next step involved the reduction of the 

nitro group with the use of iron powder (activated 80#mesh) and catalytic amount of 

conc. HCl in ethanol at 80oC to get target compound, 2-animo-4,5-dimethoxy 

methylbenzoate Ixv (Scheme-12). 
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3.1.2.d. Synthesis of 2-carbethoxy-3-amino-4-methoxybenzo(b)thiophene (Ixvi) 

a. Synthesis of 2-nitro-6-methoxybenzonitrile31 14  

m-Dinitrobenzene 13 was reacted with potassium cyanide in water and the purple mixture 

was allowed to stand at RT for 2-3 days. The black precipitate separated out was 

collected. The filtrate was diluted with cold water & allowed to stand overnight to obtain 

the second crop of the product. The combined precipitates were extracted with 

chloroform, which on evaporation gave the 2-nitro-6-methoxy benzonitrile 14 as a red 

powder. 

 

b. Synthesis of methyl thioglycolate32 16 

Dry HCl gas was bubbled in methanol containing thioglycolic acid 15 under ice-cold 

conditions for 5-6 hrs. Next day the reaction mixture was boiled on water bath for 2 hrs, 

cooled to RT and reaction mixture was quenched with ice water & extracted with 

chloroform. Chloroform extracts on evaporation gave yellow colored methyl 

thioglycolate 16. 
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c. Synthesis of 2-carbethoxy-3-amino-4-methoxybenzo(b)thiophene33 (Ixvii)  

Reaction of 2-nitro-6-methoxy benzonitrile 14 and methyl thioglycolate 16 under basic 

condition and with continuous stirring at 0oC gave the title compound in high yield 

(Scheme-13). 

KCN

CH3OH

NO2O2N NO2O

CN

HS

OH

O

HS

O

O

Dry HCl

MeOH

NO2O

CN

HS

O

O

+
DMF

O

S

NH2

O

O

13 14

15
16

14 16 Ixvi

Scheme-13  

 

3.1.2e. Synthesis of 5-amino-4-carboxamido-3-(methylthio)-1-phenylpyrazole34 (Ixv) 

The 5-amino-4-carboxamido-3-(methylthio)-1-phenylpyrazole was synthesized by series 

of steps as under. The ethyl cyanoacetate 17 and ammonia were reacted to get 

cyanoacetamide 18. Then cyanoacetamide and carbon disulfide were reacted in presence 

of aq. KOH to form the potassium dithiolate salt 19, which was then S-methylated with 

dimethyl sulphate to yield ethyl-2,2-di-(methylthio)methylene cyanoacatamide 20.  The 

ethyl-2,2-di-(methylthio)methylene cyanoacetamide was then refluxed with phenyl 

hydrazine 21 in ethanol to form  5-amino-4-carboxamide-3-(methylthio)pyrazole Ixvii as 

a sole product (Scheme-14). 
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Table 7: Physical data of other o-aminoesters (Ixiii-xvii) synthesized 

 

Compd 
No. 

Compound M.P (oC) Yield 
(%) 

Mol. Formula 
(Solv. of 
Crystn.) 

IR (cm-1) Mass (m/e) NMR (δppm) 

Ixiii N SH3C

CH3
NH2

COOC2H5

 

152-156 90 C12H14N2O2S 
(E) 

3435, 
3332(γNH), 
2979(γC-H), 
1668(γC=O) 
 

250(M+), 222, 
204, 176, 149, 
132 

1.38 (3H, t, COOCH2CH3, J 
= 5.1 & 6.9), 2.57 (3H, s, 
CH3), 2.71 (3H, s, CH3), 
4.32 (2H, q, COOCH2CH3, 
J = 6.9 & 7.2), 6.14 (2H, s, 
NH2), 6.82 (1H, s, Ar-H) 

Ixiv 

N

N COOC2H5

NH2

O  

137-138 44 C11H11N3O3 

(E) 
3476, 
3334(γNH), 
2998(γC-H), 
1739(γC=O), 
1687(γCONH) 

218(M+), 204, 
161, 144, 218, 
204, 161, 144 

1.45 (3H, t, COOCH2CH3, J 
= 7.2), 4.50 (2H, q, 
COOCH2CH3, J = 6.9 & 
7.2), 5.15 (2H, s, br, NH2), 
7.48-8.29 (4H, m, Ar-H) 

Ixv 

NH2

COOCH3

H3CO

H3CO

 

120-122 47 C11H15NO4 

(E) 
3476, 
3373(γNH), 
2998(γC-H), 
1739(γC=O). 

-- -- 

Ixvi S

OCH3
NH2

COOC2H5

 

140-143 80 C11H11NO3S 
(E) 

3484, 
3376(γNH), 
2947(γC-H), 
1670(γC=O) 

-- -- 

Ixvii 

N

N

S

NH2

CONH2

 

146-150 56 C11H12N4OS 
(E) 

3449, 
3394(γNH), 
3138(γC-H), 
1662(γCONH) 
 

248(M+), 231, 
216, 198, 186, 
157 

-- 

 E= Ethanol 
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3.2 Synthesis of condensed pyrimidine intermediates. 

3.2.1 Synthesis of condensed 2-chloromethylpyrimidin-4(3H)-ones (IIi-xvii) 

The condensed 2-chloromethylpyrimidine-4(3H)-ones II i-xvii were planned to be 

synthesized through the dry HCl gas catalyzed one pot condensation of the appropriate 2-

amino-3-carbethoxy substrates I i-xvii and chloroacetonitrile 22 as described in earlier 

reports on HCl gas catalyzed one pot condensation by Shishoo et al.35-38 (Scheme-15) 

NH2

O

OR

N

NH

O

Cl

dry HCl gas

1,4-dioxane
0-5oC, 6-12 hrs

R = CH3 or C2H5

N

Cl

IIi-xvii22
Scheme-15  

 

The proposed mechanism is as follows (Scheme-16);  

The interaction of the nitrile 22a with a lewis A+ under anhydrous conditions leads to the 

formation of species 23, with enhanced electrophilicity. This enhanced reactivity of 

nitriles towards nucleophiles in the presence of acids, particularly   halogen acids is well 

known. This enhanced   reactivity    has   been   appropriately   exploited for the synthesis 

of condensed pyrimidines through their reaction with appropriate o-aminocarbonyl 

compounds (Ii-xvii). 

R

N

+ A+

R

N A
R C N A

22a 23
Scheme-16  

Cyclization reactions with nitriles under acidic conditions presumably proceed via the 

formation of transient amidine intermediate 26 resulting from the reaction of                       

o-aminocarbonyl compounds with the protonated nitrile 24 or imidoyl halide intermediate 

25 (Scheme-17). 
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25

X
NH2

O

OEt
NH

CH2Cl

Ii-xvi (IVa)

X
N

O

OEt

26 CH2Cl

NH2

X
NH2

O

OEt
NH

CH2ClCl

X

IIi-xvii

N

NH

O

Cl

X = S or -CH=CH-

24

Ii-xvi

Scheme-17  

 

The imidoyl halide intermediate enhances the electrophilicity of the nitrile carbon 

tremendously and thus, helps in their facile condensation with the aminocarbonyl 

compounds. This is then followed by intramolecular cyclization.36 This cyclization is also 

probably facilitated by the protonation of the carbonyl group. 

 

For the condensation of 2-amino-3-carbethoxy substrate with nitriles under the influence 

of dry HCl gas, some productive modification in experimental procedure has been tried, 

that involves the mixing the two reactants in saturated solution of HCl in dioxane (7M) 

and stirring the mixture for few hrs at 0-5oC, followed by further stirring for 2 hrs at RT 

and thereafter heating on a boiling water-bath for 2 hrs. The reaction mixture was then 

worked up as usual, involving pouring on ice-water mixture and basification with conc. 

ammonium hydroxide. This modification not only reduced the reaction time and labour 

but also gave excellent yields of the desired products. In fact only once a stock solution of 

dioxane saturated with HCl was to be prepared and then it could be used simultaneously 

for 4-5 different condensations at a time. This has also curtailed the use of multiple HCl 

generation assemblies.  
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3.2.2 Synthesis of 2-chloromethyl-5-substituted-7-phenylpyrazolo[4,3-d]pyrimidin-

4(3H)-one (II xviii) 

However, when o-aminoester of the nitrogen containing heterocycle pyrazole was tried to 

cyclize with nitriles under acidic conditions, the reaction failed to proceed. So 

modification was done by preparing pyrazole o-aminoamides as the starting material and 

reacted with chloroacetylchloride 26 in presence of potassium carbonate and cyclized in 

situ in presence of water to get the corresponding 2-chlormethyl derivative (Scheme-16). 

 

N

N

S

O

OC2H5
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N

N

S

O

NH

N

Cl

0-5oC
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O
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Table-8: Physical data of condensed 2-chloromethylpyrimidin-4(3H)-ones (IIi-xviii) synthesized 

N

NH

O

Cl

IIi-xvii

A

 

 

Compd. 
No. A

 

Yield 
(%) 

M. P (oC) Mol. formula 
(Solv. of crystn.) 

IR (cm-1) Mass 
(m/e) 

NMR (δppm) 

II i 

S  

90 
 

273-276 
 

C11H11ClN2OS 
(D) 

 

3014(γAr-H), 1662(γCONH), 
754(γC-Cl). 

255(M+), 
221, 149 

1.62 (4H, s, CH2 at 6 & 7), 2.77 (2H, s, CH2 at 4), 
3.02 (2H, s, CH2 at 8), 4.55 (2H, s, CH2 at 2), 
10.60 (1H, s, NH at 3) 

II ii 

S

O

O  

90 250-252 C10H9ClN2O3S 
(M-C) 

 

2863(γArH), 1724(γCOO), 
1664(γCONH), 915, 763, 
686(γC-Cl) 

-- -- 

II iii 

S

O

O  

86 243-245 
 

C11H11ClN2O3S 
(T-M) 

 

2864(γCH-), 1725(γCOO-), 
1670(γCONH), 249(γCH2), 
763 (γC-Cl) 

286(M+) 1.41 (3H, t, OCH2CH3, J = 7), 2.95 (3H, s, CH3 at 
5). 4.38 (2H, quartlet, J = 7, OCH2CH3), 4.57 
(2H, s, CH2), 10.62 (1H, s, NH) 

II iv 

S  

97 253-255 
 

C9H9ClN2OS 
(D) 

 

2917(γC-H), 662(γCONH), 
1211(γCH2) and 769(γC-Cl) 

229(M+) 2.39 (3H, s, CH3), 2.47 (3H, s, CH3), 4.51 (2H, s, 
CH2), 10.03 (1H, s, br, NH) 

II v 

S  

87 221-223 
 

C13H9ClN2OS 
(D) 

 

2855(γC-H), 663(γCONH), 
1294(γCH2), 1046 and 
748(γC-Cl) 

276(M+) 4.58 (2H, s, CH2,), 7.31-7.52 (5H, m, Ar-H and 
1H at 6 position), 12.69 (1H, s, br, NH) 
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Compd. 
No. A

 

Yield 
(%) 

M. P (oC) Mol. formula 
(Solv. of crystn.) 

IR (cm-1) Mass 
(m/e) 

NMR (δppm) 

II vi 

S

O

 

87 208-210 
 
 

C14H11ClN2O2S 
(T-M) 

3094(γArH), 2945(C-H), 
1672(γCONH), 715(γC-Cl) 

-- 3.84 (3H, s, Ar-OCH3), 4.49 (2H, s, CH2 at 2), 
7.14-7.54 (5H, m, Ar-H at 6) 

II vii 

S  

86 258-260 C14H11ClN2OS 
(E-C) 

 

3028(γArH), 1651(γCONH), 
762 (γC-Cl) 

290(M+) 2.39 (3H, s, CH3), 4.53 (2H, s, CH2), 7.13 (1H, s, 
CH), 7.19-7.46 (4H, m, Ar-H), 10.43 (1H,s, NH) 

II viii 

S

Br

 

76 247-249 C13H8BrClN2OS 
(E-C) 

3120(γAr-H), 1651(γCONH), 
756(γC-Cl) 

-- -- 

IIix  

S

Cl

 

78 229-231 
 

C13H8Cl2N2OS 
(T-M) 

 

3107(γAr-H), 1649(γCONH), 
756(γC-Cl) 

-- 4.55 (2H, s, CH2 at 2), 7.40-7.55 (5H, m, Ar-H & 
H at 6) 

II x 

S  

94 261-264 
 

C14H11ClN2OS 
(E-C) 

3035(γCH2),1658(γCONH), 
728(γC-Cl) 
 

-- 2.40 (3H, s, CH3 at 6), 4.42 (2H, s, CH2 at 2), 
7.38-7.44 (5H, m, Ar-H) 
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Compd. 
No. A

 

Yield 
(%) 

M. P (oC) Mol. formula 
(Solv. of crystn.) 

IR (cm-1) Mass 
(m/e) 

NMR (δppm) 

II xi 

S  

73 
 

278-280 
 

C10H9ClN2OS 
(T-M) 

 

3015(γCH2), 1678(γCONH), 
754(γC-Cl) 

-- 2.46 (2H, m, CH2 at 6, J = 7.0), 2.94 (4H, m, CH2 
at 5 & 7), 4.50 (2H, s, CH2, at 2), 12.56 (1H, s, br, 
NH) 

II xii 

S  

84 188-190 
 

C12H13ClN2OS 
(M-C) 

 

2924(γC-H), 1670(γCONH), 
1471(γC-H), 736, 752 (γC-Cl) 

-- -- 

II xiii 

 

70 257-259 
 

C9H7ClN2O 
(E-C) 

1699(γCONH)    -- -- 

II xiv 

N S  

58 273-275 C12H10Cl N3OS 
(E-C) 

3443, 3338 (γNH), 2946(γC-

H), 1672(γCONH), 760(γC-Cl) 
 

281(M+1), 
279(M+), 
244, 216 
 

-- 

II xv 

N

N

O  

50 240-243 C11H7Cl N4O2 

(E-C) 
2896(γC-H), 1686(γCONH),  
778(γC-Cl) 

-- 4.62 (2H, s, CH2), 7.22-8.35 (4H, m, Ar-H), 9.62 
(1H, s, NH) 

II xvi 

O

O

 

87 240-242 C11H11ClN2O3 

(E-C) 
3012 (γC-H), 1666 (γCONH), 
780 (γC-Cl) 

254(M+), 
239, 219 

-- 

II xvii S

O
 

58 265-267 C12H9Cl N2O2S 
(E-C) 

2782(γC-H), 1670(γCONH),  
735 (γC-Cl) 

-- -- 

II xviii 

N

N

S

 

74 275-277 C13H11Cl N4OS 
(E-C) 

2849(γC-H), 1676(γCONH),  
765(γC-Cl) 

-- 2.50 (3H, s, CH3), 4.35 (2H, s, CH2Cl), 7.12-7.91 
(5H, m, Ar-H) 
 

E = Ethanol, C = Chloroform, D = Dimethylformamide, T = Toluene, M = Methanol, 
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3.3 Condensation of 2-chloromethylpyrimidin-4(3H)-ones and 2-mercaptobenz- 

imidazoles to get corresponding condensed pyrimidinylmethylthiobenz-

imidazoles (III i-xxxv) 

The appropriate condensed 2-chloromethylpyrimidines-4(3H)-one II i-xviii were 

condensed with the 2-mercaptobenzimidazole and 2-mercapto-5-methoxy 27 

benzimidazole under basic conditions. Literature reports indicate use of NaOMe/MeOH 

as one of the preferred reaction condition for this condensation. However, it was decided 

to utilize the green chemical, eco-friendly technique of Phase Transfer Catalysis (PTC), 

which involved aq. NaOH (10%) and methylene dichloride as two phases. Triethyl 

Benzylammonium Chloride (TEBA.Cl) was the PTC employed. The reaction was facile 

at stirring condition at RT within an hour; the product was formed completely and in 

excellent yield and purity (Scheme-19).     

 

H
N

N

HS+

Y

Y = H, OCH3
TEBA
Aq. NaOH (10%)

N

NH

O

Cl

N

NH

O

S

HN

N

Y

IIi-xviii

27

IIIi-xxxv

Scheme-19  

The proposed mechanism is as follows (Scheme-20):                                                                    
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N

N
H

+NaS+

Y = H, OCH3

N

NH

O

Cl

N

NH

O

S

HN

N

H
N

N

SH

Y

Y = H, OCH3

NaOH

-H2O

H
N

N

SNa+

Y

 Step-I

Step-II

-NaCl

Y

Y

27

IIi-xviii

IIIi-xxxv

Scheme-20  

 
In a typical procedure, the appropriate 2-mercaptobenzimidazole was taken in 20 ml of 

10% aq. NaOH and stirred at RT. This was followed by addition of a pinch of TEBA. 

chloride. Thereafter, added the solution of dropwise condensed 2-chloromethylpyrimidin-

4(3H)-ones (II i-xviii) dissolved in methylenedichloride (MDC). When the addition of 2-

chloromethylpyrimidin-4(3H)-one was complete, the reaction mixture was further stirred 

at RT for 6-8 hrs. The two phases were separated and the organic layer was washed with 

water and dried over anhydrous sodium sulphate. The dichlomethane was removed under 

reduced pressure to give the crude product.  The dry crude solid was recrystallized from 

mixture of solvents such as methanol-chloroform or methanol-MDC.  
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Table-9. Physical data of condensed pyrimidinylmethylthiobenzimidazoles (IIIi-xxxv) synthesized 

N

NH

O

S

HN

N

Y

 
 
S. No. 

 

Y Mol. Formula 
(Sol. of 

recryst.) 

M.P (oC) 
 

IR (cm-1) 
(KBr) 

Mass 
(m/e) 

NMR (δppm) 
(DMSO-d6) 

III i 

S  

H C18H16N4OS2 

(C-M) 
264-267 3247(γNH), 

2939(γC-H), 
1680(γCONH), 
743(γC-S) 

368(M+), 
335, 
307, 150 
 

1.83-1.88 (4H, m, CH2 at 6 & 7), 2.76 (2H, t, CH2 at 5, J = 5.64),  
2.95 (2H, t, CH2 at 8, J = 5.80), 4.39 (2H, s, CH2 at SCH2), 7.39-
7.16 (4H, m, Ar-H), 12.50 (1H, s, NH), 13.17 (1H, s, NH) 

III ii 

S  

OCH3 C19H18N4O2S2 

(C-M) 
210-215 3266(γNH), 

2940(γC-H), 
1670(γCONH), 
643(γC-S).        

398(M+), 
365, 
219, 180        
 

1.83-1.88 (4H, m, CH2 at 6 & 7), 2.75 (2H, t, CH2 at 5, J = 5), 2.97 
(2H, t, CH2 at 8, J = 5), 3.87 (3H, s, OCH3), 4.32 (2H, s, CH2 at 
SCH2), 6.81-7.25 (3H, m, Ar-H), 7.57 (1H, s, NH), 12.21 (1H, s, 
NH) 

III iii 

S

O

O  

H C17H14N4O3S2 

(C-M) 
258-260 3282(γNH), 

2956(γC-H), 
1667(γCONH), 
741(γC-S)         

386(M+), 
353, 150        

2.90 (3H, s, CH3 at 5), 3.87 (3H, s, CH3 of CH3OOC), 4.36 (2H, s, 
CH2 at SCH2), 7.17 (2H, q, H at imidazole, J = 3.2), 7.53 (2H, q, 
imidazole, J = 3.16)   

III iv 

S

O

O  

OCH3 C18H16N4O4S2 

(C-M) 
230-235 3339(γNH), 

2943(γC-H), 
1690(γCONH), 
613(γC-S) 

416(M+), 
383, 
210, 180       

2.68 (3H, s, CH3 at 5), 3.86 (3H, s, OCH3), 3.88 (3H, s, CH3-O-
CO-), 4.65 (2H, s, CH2 at SCH2), 7.05 (1H, dd, CH at imidazole, J 
= 2.30 & 6.64), 7.15 (1H, d, CH at imidazole, J = 2.2), 7.54 (1H, d, 
CH at imidazole, J = 8.92), 12.47 (1H, br s, NH), 13.45 (1H, s, 
NH). 

III v 

S

O

O  

H C18H16N4O3S2 

(C-M) 
270-272 3237(γNH), 

2945(γC-H), 
1716(γCOOEt), 
1673(γCONH), 
740(γC-S) 

400(M+), 
365, 
215, 150       

-- 
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S. No. 

 

Y Mol. Formula 
(Sol. of 

recryst.) 

M.P (oC) 
 

IR (cm-1) 
(KBr) 

Mass 
(m/e) 

NMR (δppm) 
(DMSO-d6) 

III vi 

S

O

O  

OCH3 C19H18N4O4S2 

(C-M) 
257-260  3247(γNH), 

2985(γC-H), 
1690(γCONH), 
650(γC-S) 

430(M+), 
397, 
369, 180        

1.38 (3H, t, CH3 of CH3-CH2-O-, J = 6), 2.67 (3H, s, CH3 at 5), 
3.84 (3H, s, OCH3), 4.20-4.38 (4H, m, CH3-CH2-O and SCH2), 
6.82 (1H, dd, CH at Imidazole J = 6.8 & 2.04); 7.03 (1H, s, CH at 
imidazole), 7.42 (1H, d, CH at imidazole), 10.84 (1H, br s, NH), 
12.94 (1H, br s, NH) 

III vii 

S  

H C16H14N4OS2 

(C-M) 
272-275 3263(γNH), 

2917(γC-H), 
1669(γCONH), 
605(γC-S)    

-- -- 

III viii 

S  

OCH3 C17H16N4O2S2 

(C-M) 
130-134  3306(γNH), 

2966(γC-H), 
1683(γCONH), 
601(γC-S) 

368(M+), 
339, 180 

2.38 (3H, s, CH3 at 5), 2.47 (3H, s, CH3 at 6), 3.80 (3H, s, OCH3), 
4.27 (2H, s, CH2 at SCH2), 6.77-6.80 (3H, m, Ar-H), 10.19 (1H, s, 
NH), 13.25 (1H, s, NH) 

III ix 

S  

H C20H14N4OS2 

(C-M) 
224-227 3044(γC-H), 

1680(γCONH), 
741(γC-S)         

390(M+), 
357, 
272, 150       

4.39 (2H, s, CH2 at SCH2), 7.10 (1H, s, H at 6), 7.16-7.54 (9H, m, 
Ar-H), 12.60 (1H, s, NH), 13.78 (1H, s, NH) 

III x 

S  

OCH3 C21H16N4O2S2 

(C-M) 
165-170  3091(γNH), 

2988(γC-H), 
1685(γCONH), 
620(γC-S)         

420(M+), 
387, 
256, 180        

3.82 (3H, s, OCH3), 4.36 (2H, s, CH2 at SCH2), 6.81 (1H, dd, CH 
at Imidazole, J = 6.44 & 2.36), 7.11 (1H, s, CH at 6), 7.01-7.56 
(7H, m, Ar-H), 11.90 (1H, s, NH), 13.30 (1H, s, NH) 

III xi 

S

O

 
 
 

H C21H16N4O2S2 

(C-M) 
244-248 3256(γNH), 

2839(γC-H), 
1663(γCONH), 
746(γC-S)         

421(M+), 
387, 
359, 159        

3.82 (3H, s, OCH3), 4.43 (2H, s, CH2 at SCH2), 6.84 (2H, d, H at 
imidazole, J = 8.6), 7.08 (1H, s, H at 7), 7.17 (2H, q, H at 
imidazole, J = 3.16), 7.47-7.52 (4H, m, Ar-H), 12.40 (1H, s, NH), 
13.25 (1H, s, NH) 
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S. No. 

 

Y Mol. Formula 
(Sol. of 

recryst.) 

M.P (oC) 
 

IR (cm-1) 
(KBr) 

Mass 
(m/e) 

NMR (δppm) 
(DMSO-d6) 

III xii 

S

O

 

OCH3 C22H18N4O3S2 

(C-M) 
140-142 

 
3242(γNH), 
2941(γC-H), 
1690(γCONH), 
603(γC-S).         

450(M+), 
272, 
180.         

3.34 (3H, s, OCH3), 3.84 (3H, s, OCH3), 4.34 (2H, s, CH2 at 
SCH2), 7.06 (H, s, H at thiophene), 6.89-7.50 (7H, m, Ar-H), 12.35 
(1H, br s, NH), 13.20 (1H, s, NH) 

III xiii 

S  

H C21H16N4OS2 

(C-M) 
260-262 3229(γNH), 

3032(γC-H), 
1685(γCONH), 
743(γC-S)         

404(M+), 
371, 
343, 150        

2.36 (3H, s, CH3), 4.42 (2H, s, CH2 at SCH2), 7.10 (1H, s, H at 6), 
7.15-7.43 (8H, m, Ar-H), 12.54 (1H, s, NH), 13.37 (1H, s, NH)     

III xiv 

S  

OCH3 C22H18N4O2S2 

(C-M) 
245-247  3246(γNH), 

2878(γC-H), 
1659(γCONH), 
627(γC-S)         

401(M+), 
270, 180      

-- 

III xv 

S

Br

 

H C20H13BrN4OS2 

(C-M) 
247-249 3235(γNH), 

2940(γC-H), 
1647(γCONH), 
756(γC-S)         

470(M+), 
437, 150       

4.42 (2H, s, CH2 at SCH2), 7.16-7.20 (3H, m, H at imidazole), 
7.43-7.56 (6H, m, Ar-H), 12.45 (1H, s, NH), 13.55 (1H, s, NH)     

III xvi 

S

Br

 

OCH3 C21H15BrN4O2S2 

(C-M) 
135-141  3262(γNH), 

2945(γC-H), 
1690(γCONH), 
666(γC-S)         

500(M+), 
322, 180        

3.82 (3H, s, OCH3), 4.37 (2H, s, CH2 at SCH2), 6.80 (1H, dd, CH 
at imidazole, J = 2.4  & 6.5), 6.99 (1H, s, CH  at imidazole), 7.14 
(1H, s, CH at imodazole), 7.38-7.51 (5H, m, 4Ar-H and 1H at 6 of 
thiophene), 12.50 (1H, br s, NH) 
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S. No. 

 

Y Mol. Formula 
(Sol. of 

recryst.) 

M.P (oC) 
 

IR (cm-1) 
(KBr) 

Mass 
(m/e) 

NMR (δppm) 
(DMSO-d6) 

III xvii 

S

Cl

 

H C20H13ClN4OS2 

(C-M) 
227-230 3279(γNH), 

1662(γCONH), 
743(γC-S) 

424(M+), 
391, 
363, 150 

-- 

III xviii 

S

Cl

 

OCH3 C21H15ClN4O2S2 

(C-M) 
128-130  3194γNH),  

3090(γC-H), 
1680(γCONH), 
622(γC-S)         

454(M+), 
421, 
276, 180        

3.82 (3H, s, OCH3), 4.38 (2H, s, CH2 at SCH2), 7.15 (1H, s, CH at 
6), 6.80 (1H, dd, CH at imidazole, J = 2.4 & 6.36), 7.00 (1H, d, CH 
at imidazole, J = 2.16), 7.40 (1H, d, CH at imidazole, J = 8.76), 
7.32-7.52 (4H, m, Ar-H) 

III xix 

S  

H C21H16N4OS2 

(C-M) 
263-265 3243(γNH), 

2937(γC-H), 
1656(γCONH), 
740(γC-S) 

404(M+), 
371, 
343, 150 

2.20 (3H, s, CH3 at 6), 4.52 (2H, s, CH2 at CH2S),   7.10-7.60 (9H, 
m, Ar-H), 12.25 (1H, s, NH), 13.00 (1H, s, NH)    

III xx 

S  

H C17H14N4OS2 

(C-M) 
258-260 3247(γNH), 

2943(γC-H), 
1685(γCONH), 
741(γC-S)         

354(M+), 
321, 
293, 
205,  
150         

2.45 (2H, m, CH2 at 6), 2.94 (4H, m, CH2 at 5 & 7), 4.40 (2H, s, 
CH2 at SCH2), 7.19 (2H, m, H at imidazole), 7.51 (2H, m, H at 
imidazole), 12.90 (1H, s, NH), 13.45 (1H, s, NH)  

III xxi 

S  

OCH3 C18H16N4O2S2 

(C-M) 
162-165 3235(γNH), 

2992(γC-H), 
1668(γCONH), 
665(γC-S)         

384(M+), 
351, 
205, 
180.         

-- 

III xxii 

S  

H C19H18N4OS2 

(C-M) 
264-266 3212(γNH), 

2916(γC-H), 
1685(γCONH), 
737(γC-S)         

382(M+), 
349, 
232, 150        

1.68 (6H, m, CH2 at 6, 7, & 8), 1.88 (2H, t, CH2 at 5, J = 3.36), 
3.30 (2H, t, CH2 at 9, J = 5.36), 4.36 (2H, s, CH2 at SCH2), 7.20 
(2H, m, H at imidazole),  7.56 (2H, m, H at imidazole, J = 3.16), 
12.50 (1H, s, NH), 13.40 (1H, s, NH)    

III xxiii 

S  

OCH3 C20H20N4O2S2 

(C-M) 
226-230  3190(γNH), 

2918(γC-H), 
1685(γCONH), 
650(γC-S)         

412(M+), 
379, 
232, 180       

1.66 (4H, m, CH2 at 6 & 7), 1.87 (2H, m, CH2 at 5), 2.85 (2H, m, 
CH2 at 8), 3.29 (2H, m, CH2 at 9), 3.84 (3H, s, CH3 at OCH3), 4.34 
(2H, s, SCH2), 6.79-7.43 (3H, m, Ar-H), 12.30 (1H, s, NH), 13.21 
(1H, s, NH) 
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S. No. 

 

Y Mol. Formula 
(Sol. of 

recryst.) 

M.P (oC) 
 

IR (cm-1) 
(KBr) 

Mass 
(m/e) 

NMR (δppm) 
(DMSO-d6) 

III xxiv 

 

H C16H12N4OS 
(C-M) 

196-198 3145(γNH), 
1670(γCONH), 
742(γC-S) 

308(M+), 
275, 
247, 
163.      

4.53 (2H, s, CH2 at CH2S), 7.11-8.09 (8H, m, Ar-H). 

III xxv 

 

OCH3 C17H14N4O2S 
(C-M) 

177-179 3061(γNH), 
1675(γCONH), 
772(γC-S). 

-- -- 

III xxvi N S

 

H C19H15N5OS2 

(C-M) 
120-122 2922(γC-H), 

1685(γCONH), 
1570(γC-C), 
738(γC-S)         

-- -- 

III xxvii N S

 

OCH3 C20H17N5O2S2 

(C-M) 
178-180 2922(γC-H), 

1654(γCONH),  
1570(γC-C), 
785(γC-S)         

423(M+), 
390, 
362, 
180. 

-- 

III xxviii N

N

O  

H C18H12N6O2S 
(C-M) 

180-182 2923(γC-H), 
1670(γCONH),  
1606(γC-C), 
742(γC-S)         

-- -- 

III xxix N

N

O  

OCH3 C19H14N6O3S 
(C-M) 

154-156 2923(γC-H), 
1672(γCONH),  
1607(γC-C), 
774(γC-S)         

-- -- 

III xxx H3CO

H3CO  
 

H C18H16N4O3S 
(C-M) 

200-202 3201(γNH), 
1662(γCONH),  
1608(γC-C), 
742(γC-S)         

-- -- 

III xxxi H3CO

H3CO  
 

OCH3 C19H18N4O4S 
(C-M) 

115-118 2926(γC-H), 
1647(γCONH),  
785(γC-S)         

398(M+), 
365, 
220, 
180 

-- 
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S. No. 

 

Y Mol. Formula 
(Sol. of 

recryst.) 

M.P (oC) 
 

IR (cm-1) 
(KBr) 

Mass 
(m/e) 

NMR (δppm) 
(DMSO-d6) 

III xxxii S

O

 

H C19H14N4O2S2 

(C-M) 
155-158 2916(γC-H), 

1663(γCONH),  
736(γC-S)         

-- -- 

III xxxiii S

O

 

OCH3 C20H16N4O3S2 

(C-M) 
115-120 2923(γC-H), 

1669(γCONH),  
738(γC-S)         

-- -- 

III xxxiv 

N

N

S

 

H C20H16N6OS2 

(C-M) 
240-242 2922(γC-H), 

1691(γCONH),  
739(γC-S)         

-- -- 

III xxxv 

N

N

S

 

OCH3 C21H18N6O2S2 

(C-M) 
82-85 3123(γC-H), 

1685(γCONH),  
1589(γC-C), 
758(γC-S)         

450(M+), 
417, 
272, 180 

-- 
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3.4 Mild Oxidation of Thio Derivatives (III i-xxxv) to Sulfinyl Derivatives Using m-

Chloroper-Benzoic Acid (m-CPBA) (IV i-xxxv) 

The organic sulfides may be selectively oxidized to sulfinyl derivatives by using m-CPBA 28. 

Since oxidation using per acids occurs under very mild conditions, it can be successfully 

applied to the preparation of base sensitive sulfoxides.39-41 Oxidation of sulfides with 1.2 

moles of m-CPBA in methanol & dichloromethane at 0oC gave the corresponding sulfinyl 

derivative in quantitative yields. Further, the reaction doesn’t proceed further to the sulfonyls 

under these reactions conditions using this reagent.  

 

Thus, the target 2-(1H-benzimidazol-2-yl)methylsulfinylcondensedpyrimidin-4(3H)-ones and 

2-{[(5-methoxy-1H-benzimidazol-2-yl)methylsulfinylcondensedpyrimidin-4(3H)-ones (IV i-

xxxv) were synthesized by mild oxidation of 2-(1H-benzimidazol-2-yl) and 2-{[(5-methoxy-

1H-benzimidazol-2-yl)methylthiocondensedpyrimidin-4(3H)-ones (III i-xxxv) using m-

chloroperbenzoic acid as oxidizing agent (Scheme-21). 

N

NH

O

S

HN

N

Y

Mild Oxidation

N

NH

O

S

HN

N

Y

O

Y = H, OCH3

IIIi-xxxv

IVi-xxxv

Scheme-21  
 

The proposed reaction of oxidation involves a nucleophilic attack by the sulfide on a 

cyclic hydrogen-bonded form of the peracid42-43 (Scheme-22). 
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N

NH

O

S

HN

N

Y

N

NH

O

S

HN

N

Y

O

O

O

OH

+

O

O

O

H

Cl

Cl

Intermidiate

+
OH

O

Cl

IIIi-xxxv

28

IVi-xxxv

Scheme-22  
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Table-10. Physical data of 2-(1H-benzimidazol-2-yl)methylsulfinylcondensedpyrimidin-4(3H)-ones and 2-{[(5-methoxy-1H-

benzimidazol-2-yl)methylsulfinylcondensedpyrimidin-4(3H)-one (IVi-xxxv) 

N

NH

O

S

HN

N

Y

O

A

 
 

S. No. 
A

 

Y Mol. Formula 
(Sol of recryst.) 

M.P  (oC) 
 

IR (cm-1) 
(KBr) 

Mass (m/e) NMR (δppm) 
(DMSO-d6) 

IVi 

S  

H C18H16N4O2S2 

(C-M) 
216-218 3235(γNH),  

2946(γC-H),  
1655(γCONH), 
1060(γS-O),  
747(γC-S)    
                                              

368, 364,  
336, 218, 
150 

1.79-1.83 (4H, m, CH2 at 6 & 7), 2.54-2.79 (4H, 
m, CH2 at 5 & 8), 5.58 (2H, s, CH2 at SCH2), 
7.39-7.16 (4H, m, Ar-H), 12.60 (1H, s, NH), 
13.80 (1H, s, NH) 

IVii 

S  

OCH3 C19H18N4O3S2 

(C-M) 
194-196 3054(γNH),  

2934(γC-H),  
1681(γCONH),  
1045(γS-O),  
716(γC-S)         

-- -- 

IViii 

S

O

O  

H C17H14N4O4S2 

(C-M) 
210-214 3237(γNH),  

3078(γC-H), 
1726(γCOO), 
682(γCONH), 
1097(γS-O), 
743(γC-S)  
 

-- -- 
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S. No. 
A

 

Y Mol. Formula 
(Sol of recryst.) 

M.P  (oC) 
 

IR (cm-1) 
(KBr) 

Mass (m/e) NMR (δppm) 
(DMSO-d6) 

IViv  

S

O

O  

OCH3 C18H16N4O5S2 

(C-M) 
200-205 3008(γC-H), 

1722(γCOO), 
1659(γCONH), 
1026(γS-O), 
761(γC-S) 

-- 2.67 (3H, s, CH3 at 5), 3.88 (3H, s, OCH3), 3.87 
(3H, s, CH3-O-CO-), 5.50 (2H, s, CH2 at SCH2), 
7.03 (1H, dd, CH at imidazole, J = 2.30 & 6.62), 
7.17 (1H, d, CH at imidazole, J = 2.2), 7.52 (1H, 
d, CH at imidazole, J = 8), 12.40 (1H, br s, NH), 
13.20 (1H, s, NH) 

IVv  

S

O

O  

H C18H16N4O4S2 

(C-M) 
220-222 3239(γNH), 

2946(γC-H), 
1717(γCOOEt), 
1670(γCONH), 
1038(γS-O), 
741(γC-S) 

-- -- 

IVvi  

S

O

O  

OCH3 C19H18N4O5S2 

(C-M) 
200-207  3175(γNH), 

2978(γC-H), 
1715(γCOO-), 
1659(γCONH), 
1029(γS-O),  
754(γC-S) 

-- -- 

IVvii  

S  

H C16H14N4O2S2 

(C-M) 
160-162 3379(γNH), 

3057(γC-H), 
1681(γCONH), 
1055(γS-O), 
740(γC-S)           

-- -- 

IVviii  

S  

OCH3 C17H16N4O3S2 

(C-M) 
200-202  3174(γNH), 

2893(γC-H), 
1651(γCONH), 
1050(γS-O), 
801(γC-S) 

-- -- 

IVix  

S  

H C20H14N4O2S2 

(C-M) 
207-210 3193(γNH), 

2971(γC-H), 
1680(γCONH), 
1046(γS-O), 
740(γC-S) 
 

-- -- 
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S. No. 
A

 

Y Mol. Formula 
(Sol of recryst.) 

M.P  (oC) 
 

IR (cm-1) 
(KBr) 

Mass (m/e) NMR (δppm) 
(DMSO-d6) 

IVx  

S  

OCH3 C21H16N4O3S2 

(C-M) 
195-198  3120(γNH), 

2883(γC-H), 
1677(γCONH), 
1046(γS-O),  
697(γC-S)     

-- -- 

IVxi  

S

O

 

H C21H16N4O3S2 

(C-M) 
214-218 3335(γNH), 

3058(γC-H), 
1677(γCONH), 
1046(γS-O), 
745(γC-S) 

-- -- 

IVxii  

S

O

 

OCH3 C22H18N4O4S2 

(C-M) 
220-225 

 
3119(γNH), 
2997(γC-H), 
1675(γCONH), 
1045(γS-O), 
703(γC-S)         

-- -- 

IVxiii  

S  

H C21H16N4O2S2 

(C-M) 
215-217 3195(γNH), 

3055(γC-H), 
1678(γCONH), 
1046(γS-O), 
739(γC-S) 

-- 2.43 (3H, s, CH3), 5.50 (2H, s, CH2 at SCH2), 
7.15-7-75 (9H, m, H at 6 and Ar-H), 12.56 (1H, s, 
NH), 13.50 (1H, s, NH) 

IVxiv  

S  

OCH3 C22H18N4O3S2 

(C-M) 
203-207  3123(γNH), 

2895(γC-H), 
1678(γCONH), 
1046(γS-O),  
768(γC-S)         

-- -- 
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S. No. 
A

 

Y Mol. Formula 
(Sol of recryst.) 

M.P  (oC) 
 

IR (cm-1) 
(KBr) 

Mass (m/e) NMR (δppm) 
(DMSO-d6) 

IVxv  

S

Br

 

H C20H13BrN4O2S2 

(C-M) 
214-217 3189(γNH), 

3074(γC-H), 
1678(γCONH), 
1045(γS-O), 
746(γC-S) 

-- -- 

IVxvi  

S

Br

 

OCH3 C21H15BrN4O3S2 

(C-M) 
214-216  3118(γNH), 

2894(γC-H), 
1677(γCONH), 
1044(γS-O), 
772(γC-S)         

496, 481, 
466, 218, 
180 

-- 

IVxvii  

S

Cl

 

H C20H13ClN4O2S2 

(C-M) 
180-182 3280(γNH), 

1665(γCONH), 
1056(γS-O), 
743(γC-S)  

-- -- 

IVxviii  

S

Cl

 

OCH3 C21H15ClN4O3S2 

(C-M) 
214-219  3123(γNH), 

2895(γC-H), 
1678(γCONH), 
1046(γS-O),  
768(γC-S)         

-- -- 

IVxix  

S  

H C21H16N4O2S2 

(C-M) 
180-182 3351(γNH), 

3077(γC-H), 
1681(γCONH), 
1054(γS-O), 
742(γC-S) 

-- -- 
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S. No. 
A

 

Y Mol. Formula 
(Sol of recryst.) 

M.P  (oC) 
 

IR (cm-1) 
(KBr) 

Mass (m/e) NMR (δppm) 
(DMSO-d6) 

IVxx  

S  

H C17H14N4O2S2 

(C-M) 
221-225 3218(γNH), 

2960(γC-H), 
1661(γCONH), 
1057(γS-O), 
745(γC-S) 

-- -- 

IVxxi  

S  

OCH3 C18H16N4O3S2 

(C-M) 
210-212 3394(γNH), 

2954(γC-H), 
1659(γCONH), 
1029(γS-O),  
808(γC-S)   

-- -- 

IVxxii  

S  

H C19H18N4O2S2 

(C-M) 
196-199 3250(γNH), 

2916(γC-H), 
1651(γCONH), 
1057(γS-O), 
744(γC-S) 
 

-- 1.68-1.71 (6H, m, CH2 at 6, 7, & 8), 1.88 (2H, t, 
CH2 at 5, J = 3.30), 3.30 (2H, t, CH2 at 9, J = 
5.32), 5.35 (2H, s, CH2 at SCH2), 7.20-7.69 (4H, 
m, H at imidazole), 12.30 (1H, s, NH), 13.20 (1H, 
s, NH) 

IVxxiii  

S  

OCH3 C20H20N4O3S2 

(C-M) 
155-160  3269(γNH), 

2909(γC-H), 
1672(γCONH), 
1048(γS-O), 
804(γC-S)         

408, 392, 
380, 363, 
245, 180 

-- 

IVxxiv  

 

H C16H12N4O2S 
(C-M) 

175-177 3059(γNH), 
1676(γCONH), 
1052(γS-O), 
741(γC-S). 

-- -- 

IVxxv  

 

OCH3 C17H14N4O3S 
(C-M) 

110-112 3351(γNH), 
3076(γC-H), 
1681(γCONH), 
1029(γS-O), 
776(γC-S).        

-- -- 

IVxxvi  N S

 

H C19H15N5O2S2 

(C-M) 
140-143 3345(γNH), 

3030(γC-H), 
1685(γCONH), 
1040(γS-O), 
768(γC-S)         

-- -- 
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S. No. 
A

 

Y Mol. Formula 
(Sol of recryst.) 

M.P  (oC) 
 

IR (cm-1) 
(KBr) 

Mass (m/e) NMR (δppm) 
(DMSO-d6) 

IVxxvii  N S

 

OCH3 C20H17N5O3S2 

(C-M) 
160-162 3358γNH), 

2980(γC-H), 
1682(γCONH), 
1055(γS-O), 
760(γC-S) 

-- -- 

IVxxviii  N

N

O  

H C18H12N6O3S 
(C-M) 

170-172 3059, 
2909(γC-H), 
1677(γCONH), 
1053(γS-O), 
741(γC-S)         

-- 4.70 (2H, s, CH2 at SCH2), 7.02-8.06 (8H, m, Ar-
H), 12.44 (1H, s, NH), 13.55 (1H, s, NH) 

IVxxix  N

N

O  

OCH3 C19H14N6O4S 
(C-M) 

157-159 3184, 
2922(γC-H), 
1686(γCONH), 
1061(γS-O), 
779(γC-S)         

-- 3.81 (3H, s, OCH3), 4.65 (2H, s, CH2 at SCH2), 
7.02-8.06 (8H, m, Ar-H), 12.45 (1H, s, NH), 
13.42 (1H, s, NH) 

IVxxx  H3CO

H3CO  

H C18H16N4O4S 
(C-M) 

122-124 2916(γC-H), 
1655(γCONH), 
1064(γS-O), 
746(γC-S)         

380, 366, 
351, 203, 
150 

-- 

IVxxxi  H3CO

H3CO  

OCH3 C19H18N4O5S 
(C-M) 

105-107 2916(γC-H), 
1663(γCONH), 
1026(γS-O),  

-- -- 

IVxxxii  S

O
 

H C19H14N4O3S2 

(C-M) 
195-197 3068(γC-H), 

1683(γCONH), 
1022(γS-O), 
739(γC-S)         

392, 363, 
245, 180 

-- 

IVxxxiii  S

O
 

 

OCH3 C20H16N4O4S2 

(C-M) 
125-127 2917(γC-H), 

1675(γCONH), 
1028(γS-O), 
784(γC-S)         

-- -- 
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S. No. 
A

 

Y Mol. Formula 
(Sol of recryst.) 

M.P  (oC) 
 

IR (cm-1) 
(KBr) 

Mass (m/e) NMR (δppm) 
(DMSO-d6) 

IVxxxiv  

N

N

S

 

H C20H16N6O2S2 

(C-M) 
132-134 2980(γC-H), 

1670(γCONH), 
1029(γS-O), 
752(γC-S)         

-- -- 

IVxxxv  

N

N

S

 

OCH3 C21H18N6O3S2 

(C-M) 
172-175 2923(γC-H), 

1678(γCONH), 
1025(γS-O), 
756(γC-S)         

404, 270, 
180 

-- 
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3.5. Spectral Discussion 
 

3.5.1. 2-Chloromethylthieno[2,3-d]pyrimidines   

The 2-chloromethylthienopyrimidines are colorless to buff white colored solid, with high 

melting points generally above 200oC. These compounds are soluble in mixture of 

chloroform and methanol and hot DMF and practically insoluble in methanol, hexane or 

ethanol. 

 

Infra red (IR) spectra: 

IR spectra of 2-chloromethylthienopyrimidines exhibit bands of medium faint intensity 

around 3200-3100 cm-1 due to asymmetric and symmetric N-H stretching vibrations. 

Intense absorption bands observed in all these spectras around 1680-1650 may be due to 

N-H deformation vibrations. The IR spectra of some compounds exhibited a strong 

absorption band around 1730-1720 cm-1 due to C=O stretching.  Stretching due to C-Cl 

was observed between 760-730 cm-1 (Table-8). 

 

The 1H NMR spectra: 

The 1H NMR spectra of 2-chloromethylthienopyrimidines were taken in CDCl3. All the 

compounds showed characteristic peaks corresponding to the protons of different groups 

and functionalities in the molecules. The 2-methylene protons of the chloromethyl linkage 

appear downfield as a singlet at around 4.4 to 4.6 ppm. Since this methylene group is 

attached to electronegative atom, the proton signal appear downfield than the normal 

position. The NH proton present in all the compounds at the 3 position of the pyrimidine 

ring is observed as a singlet between 10 to 13 ppm. All the aromatic protons present in the 

molecules were observed as a multiplet at around 7-8 ppm (Table-8).   

 

The Mass Spectra:  

The fragmentation pattern of the synthesized compounds 2-chloromethyl-

thienopyrimidines, under electron impact ionization has also been studied. It is very 

interesting and many prominent fragment ion peaks are revealed in the mass spectra of 

these compounds. The mass spectrum of 2-chloromethyl-5,6,7,8-tetrahydro-

benzo(b)thieno[2,3-d]pyrimidin-4(3H)-one II i was clearly showing the molecular ion 

peak (a) 255 m/e, which is the base peak as well. The major mode of fragmentation is 

loss of chloride ion to give daughter ion (b) m/e 219. The molecular ion (a) also loses 
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neutral CO and ethyl ion along with chloromethyl ion to give fragment (c) m/e 149. The 

fragmentation patten of compound IIi was given in Scheme-23 (Table-8).   

 

S
N

NH

O

Cl

+

M+, m/e 255

S
N

NH

S
N

NH

O

m/e 219

-Cl
.

Scheme-23

b

-CO
-(-CH=CH-)

m/e 149

c

a

.

-
.
CH2Cl

 

 

Specimen IR Spectra of some 2-chloromethylthienopyrimidines: 

1. IR spectrum of 2-chloromethyl-5,6,7,8-tetrahydrobenzo(b)thieno[2,3-d]pyrimidin-

4(3H)-one IIi   

 

(KBr)/cm-1: 3014(γAr-H), 1662(γCONH), 754(γC-Cl). 

 

N

NH

S

O

Cl

C11H11ClN2OS
Mol. Wt.: 254.74
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Specimen 1H NMR spectra of 2-chloromethylthienopyrimidines:  

2. 1H NMR spectrum of 2-chloromethyl-5,6,7,8-tetrahydrobenzo(b)thieno[2,3-d]pyrimidin-

4(3H)-one IIi   

 
1H NMR (CDCl3)δppm: 1.62 (4H, s, CH2 at 6 & 7),  2.77 (2H, s, CH2 at 4), 3.02 (2H, s, 

CH2 at 8), 4.55 (2H, s, CH2 at 2), 10.60 (1H, s, NH at 3).  

Specimen Mass spectra of 2-chloromethylthienopyrimidines: 

3. Mass spectra of 2-chloro-methyl-5,6,7,8-tetrahydrobenzo(b)thieno[2,3-d]pyrimidin-

4(3H)-one.  

 

MS  m/e: 255(M+), 219, 149.                   

N

NH

S

O

Cl

C11H11ClN2OS
Mol. Wt.: 254.74

N

NH

S

O

Cl

C11H11ClN2OS
Mol. Wt.: 254.74
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3.5.2 Condensed products of 2-chloromethylpyrimidin-4(3H)-ones with 2-mercapto 

benzimidazoles (IIIi-xxxv) 

The condensed products of 2-chloromethylpyrimidines with 2-mercaptobenzimidazole 

and 2-mercapto-5-methoxybenzimidazole are colorless to buff white colored solid, with 

high melting points generally above 250oC but some of the compounds melt in the range 

of 210-220oC.  These compounds are soluble in mixture of MDC and methanol and 

chloroform and methanol, practically insoluble in methanol, ethanol and hexane (Table-

9). 

 

Infra red (IR) spectra: 

IR spectra of all the thio compounds reveal characteristic γ(C-S) bands due to stretching 

vibrations in between the regions of 700-600 cm-1. Besides these the usual bands are 

observed in the IR spectra of all the compounds, characteristic of γ(C-H), around 3030 to 

2890 cm-1, as well as bands corresponding to γ(NH) and γ(CONH)  between 1680-1575 cm-1 

(Table-9). 

 

The 1H NMR spectra: 

The 1H NMR spectra of condensed thio derivatives were taken in DMSO-d6. All the 

compounds showed characteristic peaks corresponding to the protons of different groups 

and functionalities in the molecules. The 2-methylene protons of the thiomethyl linkage 

appear as a singlet at around 4.35 to 4.40 ppm. Since this methylene group is attached to 

electronegative atom, the proton signal appear downfield than its normal position. The 

NH protons present in these compounds at the 3 position of the pyrimidine ring and on 

the benzimidazole ring were observed much downfield, falling in the range of 12-14 ppm. 

However, in some of the compounds the NH protons are not seen in the spectra this is 

probably due to very faint or broad peck of these protons. All the aromatic protons 

present in the molecules were observed as a multiplet at 7-8 ppm (Table-9).   

 

The Mass spectra:  

The fragmentation pattern of the condensed thio derivatives under electron impact has 

also been studied. The condensed product exhibits some common fragmentation 

pathways. Prominent molecular ion peaks were observed in most of the compounds. In 

some of the spectra, (M+1) and (M+2) peaks were also observed. The common 

fragmentation pattern is depicted in Scheme-24. This decomposition of molecular ion (a) 
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involves loss of SH to give the daughter ion (b). Subsequent, loss of neutral CO from the 

daughter ion (b) gives the fragment (c). Further, breaking of carbon and sulfur bond in the 

molecular ion (a) gives two daughter ions (d) and (e). In some compounds, molecular ion 

(a) gives daughter ion (f) by the loss of benzimidazole ion. The fragmentation pattern of 

these compounds complies with the assigned structure to the compounds (Table-9). 
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X
N

NH

O

S

HN

N

X = S, -C=C-

R1

R2

R3

+

IIIia, R1 = R2 = -(CH2)4-, R3 = H, M+, m/e 368
IIIiia, R1 = R2 = -(CH2)4-, R3 = OCH3, M+, m/e 398
IIIiiia, R1 = CH3, R2 = COOCH3, R3 = H, M+, m/e 386
IIIiva, R1 = CH3, R2 = COOCH3, R3 = OCH3, M+, m/e 416
IIIva, R1 = CH3, R2 = COOC2H5, R3 = H, M+, m/e 400
IIIvia, R1 = CH3, R2 = COOC2H5, R3 = OCH3, M+, m/e 430
IIIviiia, R1 = R2 = CH3, R3 = OCH3, M+, m/e 372
IIIixa, R1 = Ph, R2 = H, R3 = H, M+, m/e 390
IIIxa, R1 = Ph, R2 = H, R3 = OCH3,M+,  m/e 420
IIIxia, R1 = 4-OCH3Ph, R2 = R3 = H, M+, m/e 420
IIIxiia, R1 = 4-OCH3Ph, R2 = H, R3 = OCH3, M+, m/e 450
IIIxiiia, R1 = 4-CH3Ph, R2 = R3 = H, M+, m/e 404
IIIxiva, R1 = 4-CH3Ph, R2 = H, R3 = OCH3, M+, m/e 434
IIIxva, R1 = 4-BrPh, R2 = R3 = H, M+, m/e 469
IIIxvia, R1 = 4-BrPh, R2 = H, R3 = OCH3, M+, m/e 499
IIIxviia, R1 = 4-ClPh, R2 = R3 = H, M+, m/e 424
IIIxviiia, R1 = 4-ClPh, R2 = H, R3 = OCH3, M+, m/e 454
IIIxixa, R1 = Ph, R2 = CH3, R3 = H, M+, m/e 404
IIIxxa, R1 = R2 = -(CH2)3-, R3 = H, M+, m/e 354
IIIxxia, R1 = R2 = -(CH2)3-, R3 = OCH3, M+, m/e 384
IIIxxiia, R1 = R2 = -(CH2)5-, R3 = H, M+, m/e 382
IIIxxiiia, R1 = R2 = -(CH2)5-, R3 = OCH3, M+, m/e 412
IIIxxxiva, R1 = R2 = -(-CH=CH-CH=CH-)-, R3 = H, M+, m/e 308
IIIxxxia, R1 = R2 = -(-CH=C(OCH3)-C(OCH3)=CH-)-, R3 = OCH3, 
              M+, m/e 398

-SH

X

N

NH

O

R1

R2

N

N
H

R3

IIIib, R1 = R2 = -(CH2)4-, R3 = H, M+, m/e 335 
IIIiib, R1 = R2 = -(CH2)4-, R3 = OCH3, M+, m/e 365 
IIIiiib, R1 = CH3, R2 = COOCH3, R3 = H, M+, m/e 353 
IIIvb, R1 = CH3, R2 = COOC2H5, R3 = H, M+, m/e 365 
IIIvib, R1 = CH3, R2 = COOC2H5, R3 = OCH3, M+, m/e 397 
IIIviiib, R1 = R2 = CH3, R3 = OCH3, M+, m/e 339 
IIIixb, R1 = Ph, R2 = H, R3 = H, M+, m/e 357 
IIIxb, R1 = Ph, R2 = H, R3 = OCH3, M+, m/e 387 
IIIxib, R1 = 4-OCH3Ph, R2 = R3 = H, M+, m/e 387 
IIIxiii, R1 = 4-CH3Ph, R2 = R3 = H, M+, m/e 371 
IIIxivb, R1 = 4-CH3Ph, R2 = H, R3 = OCH3, M+, m/e 401 
IIIxvb, R1 = 4-BrPh, R2 = R3 = H, M+, m/e 437 
IIIxviib, R1 = 4-ClPh, R2 = R3 = H, M+, m/e 391 
IIIxviiib, R1 = 4-ClPh, R2 = H, R3 = OCH3, M+, m/e 421
IIIxixb, R1 = Ph, R2 = CH3, R3 = H, M+, m/e 386
IIIxxb, R1 = R2 = -(CH2)3-, R3 = H, M+, m/e 321
IIIxxbi, R1 = R2 = -(CH2)3-, R3 = OCH3, M+, m/e 351
IIIxxiib, R1 = R2 = -(CH2)5-, R3 = H, M+, m/e 349
IIIxxiiib, R1 = R2 = -(CH2)5-, R3 = OCH3, M+, m/e 379
IIIxxxivb, R1 = R2 = -(-CH=CH-CH=CH-)-, R3 = H, M+, m/e 275
IIIxxxib, R1 = R2 = -(-CH=C(OCH3)-C(OCH3)=CH-)-, R3 = OCH3, 
              M+, m/e 365

X
N

N

O

X = S, -C=C-

R1

R2

IIIie, IIIiie, R1 = R2 = -(CH2)4-, M+, m/e 219 
IIIiiie, IIIive, R1 = CH3, R2 = COOCH3, M+, m/e 237 
IIIve, IIIvie, R1 = CH3, R2 = COOC2H5, M+, m/e 252 
IIIviiie, R1 = R2 = CH3, M+, m/e 193
IIIixe, IIIxe, R1 = Ph, R2 = H, M+, m/e 242
IIIxie, R1 = 4-OCH3Ph, R2 = H, M+, m/e 271 
IIIxiiie, IIIxive, R1 = 4-CH3Ph, R2 = H, M+, m/e 256 
IIIxve, R1 = 4-BrPh, R2 = H, M+, m/e 322 
IIIxviie, IIIxviiie, R1 = 4-ClPh, R2 = H, M+, m/e 276 
IIIxixe, R1 = Ph, R2 = CH3, M+, m/e 255
IIIxxe, IIIxxie, R1 = R2 = -(CH2)3-, M+, m/e 205
IIIxxiie, IIIxxiiie, R1 = R2 = -(CH2)5-, M+, m/e 233
IIIxxxive, R1 = R2 = -(-CH=CH-CH=CH-)-, M+, m/e 163
IIIxxxia, R1 = R2 = -(-CH=C(OCH3)-C(OCH3)=CH-)-, 
R3 = OCH3, M+, m/e 220

HS

HN

N

R3

IIIid,  IIIiiid, IIIvd, IIIixd, IIIxid, IIIxiiid, IIIxvd, 
IIIxviid, IIIxixd, IIIxxd, IIIxxiid, IIIxxxivd, 
R3 = H, m/e 150
IIIiid, IIIivd, IIIvid,   IIIviiid, IIIxd, IIIxiid, IIIxivd,
IIIxvid, IIIxviiid, IIIxxid, IIIxxiiid, IIIxxxid,
R3 = OCH3, m/e 180

Scheme-24:General fragmentation pattern of condensed pyrimidinylmethylthiobenzimidazoles (IIIi-xxxv) synthesized

+

X

N

H
N

R1

R2

N

N
H

R3

IIIic, R1 = R2 = -(CH2)4-, R3 = H, M+, m/e 307
IIIiiic, R1 = CH3, R2 = COOCH3, R3 = H, M+, m/e 325
IIIvc, R1 = CH3, R2 = COOC2H5, M+, m/e 339
IIIvic, R1 = CH3, R2 = COOC2H5, R3 = OCH3, M+, m/e 369
IIIviiic, R1 = R2 = CH3, R3 = OCH3, M+, m/e 311
IIIxic, R1 = 4-OCH3Ph, R2 = R3 = H, M+, m/e 359
IIIxiiic, R1 = 4-CH3Ph, R2 = R3 = H, M+, m/e 343
IIIxixc, R1 = Ph, R2 = CH3, R3 = H, M+, m/e 343
IIIxxc, R1 = R2 = -(CH2)3-, R3 = H, M+, m/e 393
IIIxxiic, R1 = R2 = -(CH2)5-, R3 = H, M+, m/e 321

-CO

a

c

b

e

d

X
N

NH

O

X = S, -C=C-

R1

R2

f S

HN

N
R3

M-33

M-33-28

M-118 or 
M-148

IIIif, R1 = R2 = -(CH2)4-, R3 = H, M+, m/e 250
IIIvif, R1 = CH3, R2 = COOC2H5, R3 = OCH3,
         M+, m/e 282
IIIviiif, R1 = R2 = CH3, R3 = OCH3, M+, m/e 224
IIIixf, R1 = Ph, R2 = H, R3 = H, M+, m/e 272
IIIxif, R1 = 4-OCH3Ph, R2 = R3 = H, M+, m/e 302
IIIxiiif, R1 = 4-CH3Ph, R2 = R3 = H, M+,  m/e 286
IIIxvf, R1 = 4-BrPh, R2 = R3 = H, M+, m/e 351
IIIxixf, R1 = Ph, R2 = CH3, R3 = H, M+, m/e 286

.-

.

.

X
N

N

O

X = S, -C=C-

R1

R2

-

HS

HN

N
R3

-

+.
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Specimen IR spectrum of condesed derivatives of substituted 2-chloromethylthieno-
pyrimidines and 2-mercaptobenzimidazoles. 
1. IR spectrum of 2-(1H-benzimidazol-2-yl)methylthio-5,6,7,8-tetrahydrobenzo(b)-

thieno[2,3-d]pyrimidin-4-(3H)-one III i 
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IR (KBr) cm-1: 3247(γNH), 2939(γC-H), 1680(γCONH), 743(γC-S). 

 

Specimen 1H NMR spectrum of condesed derivatives of substituted 2-chloromethyl-

thienopyrimidines and 2-mercaptobenzimidazoles. 

2.  1HNMR spectrum of 2-(1H-benzimidazol-2-yl)methylthio-5,6,7,8-tetrahydrobenzo-

(b)thieno[2,3-d]pyrimidin-4-(3H)-one (III i) 

 

S
N

NH

O

S

HN

N

C18H16N4OS2
Mol. Wt.: 368.48

S
N

NH

O

S

HN

N

C18H16N4OS2
Mol. Wt.: 368.48
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1HNMR (DMSO-d6)δppm: 1.83-1.88 (4H, m, CH2 at 6 & 7), 2.76 (2H, t, CH2 at 5, J = 

5.64),  2.95 (2H, t, CH2 at 8, J = 5.80), 4.39 (2H, s, CH2 at SCH2), 7.39-7.16 (4H, m, Ar-

H), 12.50 (1H, s, NH), 13.17 (1H, s, NH). 

 

Specimen Mass spectrum of condesed derivatives of substituted 2-chloro-methyl-

thienopyrimidines and 2-mercaptobenzimidazoles. 

3. Mass spectrum of 2-(1H-benzimidazol-2-yl)methylthio-5,6,7,8-tetrahydrobenzo(b)- 

thieno[2,3-d]pyrimidin-4-(3H)-one (III i) 

 

MS m/e: 368(M+), 335, 307, 150.         

 

3.5.3 Spectral discussion of 5,6-disubstituted-2-((1H-benzo[d]imidazol-2-

ylsulfinyl)methyl)thieno[2,3-d]pyrimidin-4(3H )-ones (IVi-xxxv) 

The selective oxidised products of 2-((5-methoxy-1H-benzo[d]imidazol-2-

ylthio)methyl)thieno[2,3-d]pyrimidin-4(3H)-one are colorless to buff white colored solid, 

with the exception of IV xxi which is slightly orange colored solid with much lower 

melting points then the corresponding thio derivatives. However, melting point of some 

of the product is higher than the thio derivatives.  These compounds are soluble in 

mixture of MDC/methanol and chloroform/methanol, practically insoluble in ethanol, 

methanol and hexane (Table-10). 

 

S
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NH

O

S

HN

N

C18H16N4OS2
Mol. Wt.: 368.48



  Part-I 
Results and Discussion 

 109 

The Infrared (IR) spectra: 

IR spectra of all the oxidized (sulfinyl) compounds reveal characteristic γ(S=O) bands due 

to stretching vibrations in the regions of 1070-1030 cm-1. These stretching vibrations are 

prominent in all spectrums. Additionally, stretching vibrations characteristic of γ(C-S) were 

observed in all the spectrums in the range of 700-600 cm-1. Besides these, the usual bands 

are observed in the IR spectra of all the compounds, characteristic of γ(C-H), around 3030 

to 2890 cm-1, as well as bands corresponding to γ(NH) and γ(CONH) between 1680-1575 cm-1 

(Table-10). 

 

The 1H NMR spectra: 

The 1H NMR spectra of oxidized (sulfinyl) derivatives were taken in DMSO-d6. These 

compounds showed characteristic peaks corresponding to the protons of different groups 

and functionalities in the molecules. The 2-methylene protons of the sulfinylmethyl 

linkage appear as a singlet at around 5.5-5.6 ppm, while the same protons were observed 

in thio derivatives in the range of 4.35 to 4.40 ppm. This downfield shifting of these 

protons is possibly due to attachment of additional electronegative atom (oxygen) to the 

neighboring sulfur atom. The NH protons present in these compounds at the 3 position of 

the pyrimidine ring and on the benzimidazole ring were observed much downfield, falling 

in the range of 12-14 ppm. However, in some of the compounds the NH protons are not 

seen in the spectra probably due to very faint or broad pecks. All the aromatic protons 

present in the molecules were observed as a multiplet at 7-8 ppm (Table-10).  

 

The Mass spectra:  

The fragmentation pattern of the condensed sulfinyl derivatives under electron impact has 

been studied. Though, the electron impact is a standard procedure for the ionizations of 

molecules in mass spectroscopy, this technique sometime have disadvantage, when it 

results in the disappearance of the molecular ion peak so that the molecular weight of the 

analyte cannot be established.44 In the mass spectrum of sulfiny derivatives, the molecular 

ion peak was not observed. This is may be due the very labile nature of the oxygen atom 

attached to the sulfur atom. The fragmentation pattern of these molecules is almost same 

as observed for corresponding thio derivatives (Table-10). 

 

The common fragmentation pattern is depicted in Scheme-25. This decomposition of 

molecular ion involves loss of SO to give the daughter ion (c). Subsequently, loss of 
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neutral CO from the daughter ion (c) gives the fragment (d) and loses of methyl radical 

gives fragment (g). Fragment (g) loses neutral CO molecule to give fragment (h). This 

fragment subsequently gives fragment (j ) and (k) by the lose of propylene and ethylene 

ion, respectively. In some of the spectra, lose of H2S from the molecular ion has also been 

detected to give the fragment (e), which further loses methyl radical to give fragment (f). 

Breaking of carbon/sulfur bond in the molecular ion and subsequent lose of oxygen 

radical gives two daughter ions (a) and (b). The fragmentation pattern of these 

compounds compliance with the assigned structure to the compounds (Scheme-25). 
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N
R1

R2

R3

+

IVi, R1 = R2 = -(CH2)4-, R3 = H
IVxvi, R1 = 4-BrPh, R2 = H, R3 = OCH3
IVxxiii, R1 = R2 = -(CH2)5-, R3 = OCH3
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R2
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-SO

+

IVia, R1 = R2 = -(CH2)4-, R3 = H, M+, m/e 218
IVxxiiia, R1 = R2 = -(CH2)5-, R3 = OCH3, 
              M+, m/e 232

a

IVib, R1 = R2 = -(CH2)4-, R3 = H, M+, m/e 150
IVxvib, R1 = 4-BrPh, R2 = H, R3 = OCH3, M+, m/e 180
IVxxiiib, R1 = R2 = -(CH2)5-, R3 = OCH3, M+, m/e 180
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IVic R1 = R2 = -(CH2)4-, R3 = H, M+, m/e 336
IVxxiiic, R1 = R2 = -(CH2)5-, R3 = OCH3, 
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b

c

-CO

S
N

NH
R1

R2

NH

N

R3

d

IVxxiiid, R1 = R2 = -(CH2)5-, R3 = OCH3, M+, m/e 352

N

N

S

N

N

R1

R2

O

R3

O

IVxvie, R1 = 4-BrPh, R2 = H, R3 = OCH3, M+, m/e 481

-H2S

e

N

N

S

N

N

R1

R2

O

O

O

f

IVxvif, R1 = 4-BrPh, R2 = H, M+, m/e 466

-CH3
.

g

IVxxiiig, R1 = R2 = -(CH2)5-, M+, m/e 365
S

N

NH

O

R1

R2

NH

N

O

j
S

N

NH

O

NH

N

O
-CH2-CH=CH2

.

IVxxiiij, M+, m/e 323

k
S

N

NH

O

NH

N

O

IVxxiiik, M+, m/e 309

h

IVxxiiih, R1 = R2 = -(CH2)5-, M+, m/e 337
S

N

NH
R1

R2

NH

N

O

-CO

Scheme-25 General fragmentation pattern of condensedpyrimidinylmethylsulfinylbenzimidazoles (IVi-xxxv) synthesized
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The fragmentation pattern of the compound IV xxxiii is depicted in Scheme-26. 

Decomposition of molecular ion involves neutral loss of SO to give the daughter ion (a) 

at m/e 392. The daughter ion (a) further loses neutral CO molecule to give fragment (b) at 

m/e 363. Molecular ion also loses single oxygen atom to yield daughter ion (c) at m/e 

245. The prominent daughter ion (d) at m/e 180 is attributed to the starting material, 2-

mercapto-5-methoxybenzimidazole as a radical cation. The fragmentation pattern 

compliance with the structure assigned to the compound (Table-10). 
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+

HS N
H

N

O

d
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Scheme-26
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+.

+.

 

 

The fragmentation pattern of the compound IV xxxv is depicted in Scheme-27. 

Decomposition of molecular ion involves loss of thiomethyl and methyl radicals to give 

the daughter ion (a) at m/e 404. The molecular ion also ejects an oxygen atom to give 

daughter ion (b) at m/e 270. The prominent daughter ion (c) at m/e 180 is attributed to the 

starting material, 2-mercapto-5-methoxybenzimidazole as a radical cation. The 

fragmentation pattern compliance with the structure assigned to the compound (Scheme-

27) (Table-10). 
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Specimen IR spectrum of some 5,6-disubstituted 2-((1H-benzo[d]imidazol-2-ylsulfinyl)-

methyl)thieno[2,3-d]pyrimidin-4(3H )-ones: 

1. IR spectrum of 2-(1H-benzimidazol-2-yl)methylsulfinyl-5,6,7,8-tetrahydrobenzo(b)-

sulfinyl[2,3-d]pyrimidin-4-(3H)-one (Ivi)  

 

IR (KBr) cm-1: 3235(γNH), 2946(γC-H), 1655(γCONH). 1060(γS=O), 747(γC-S). 
 

2. IR spectrum of 2-[(1H-benzimidazol-2-ylsulfinyl)methyl]-5-(4-methylphenyl)thieno-

[2,3-d]pyrimidin-4(3H)-one  (Ivxiii) 

 

IR (KBr) cm-1: 3195(γNH), 3055(γC-H), 1678(γCONH), 1046(γS-O), 739(γC-S). 

S
N

NH

O

S

HN

N

O

C18H16N4O2S2
Mol. Wt.: 384.48

S
N

NH

O

S

HN

N

O

C21H16N4O2S2
Mol. Wt.: 420.51
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3.6 Biological Evaluation of PPI’s 

3.6.1 Acute toxicity study (LD50 determination) 

The acute oral toxicity study of newly synthesized derivatives was carried out as per the 

guidelines set by Organization for Economic Co-operation and Development (OECD) 

guideline 423. OECD Guidelines for the Testing of Chemicals are periodically reviewed 

in the light of scientific progress or changing assessment practices. The original Guideline 

423 was adopted in March 1996 as the second alternative to the conventional acute 

toxicity test, described in Test Guideline 401.  

 

Principle of the test: 

The principle of the test based on a stepwise procedure with the use of a minimum 

number of animals per step; sufficient information is obtained on the acute toxicity of the 

test substance to enable its classification. The substance is administered orally to a group 

of experimental animals at one of the defined doses. The substance is tested using a 

stepwise procedure, each step using three animals of a single sex (normally females). 

Absence or presence of compound-related mortality of the animals dosed at one step will 

determine the next step, i.e. 

- no further testing is needed, 

- dosing of three additional animals, with the same dose 

- dosing of three additional animals at the next higher or the next lower dose level. 

 

Description of the method: 

The acute toxic class method/OECD42345 set out in this guideline is a stepwise procedure 

with the use of three animals of a single sex per step. Depending on the mortality and/or 

the moribund status of the animals, on average 2-4 steps may be necessary to allow 

judgment on the acute toxicity of the test substance. The acute toxic class method is based 

on biometric evaluations46 with fixed doses, adequately separated to enable a substance to 

be ranked for classification purposes and hazard assessment. The method as adopted in 

1996 was extensively validated in vivo against LD50 data obtained from the literature, 

both nationally and internationally. 

 

The preferred rodent species is the rat, although other rodent species may be used. 

Normally females are used (OECD, 2000). Females were nulliparous and non-pregnant. 

The animals were randomly selected, marked to permit individual identification, and kept 
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in their cages for at least 5 days prior to dosing to allow for acclimatization to the 

laboratory conditions. The test substances were administered in a single dose by gavage 

using a stomach tube. Animals were fasted prior to dosing, following fasting period, the 

animals were weighed and test substance was administered. After the dose was 

administered, food was withheld for a further 3-4 h in rats. 

 

The literature survey showed that LD50 value of omeprazole and related derivatives were 

calculated starting from the higher level dose i.e 2000 mg/kg of body weight or even 

higher dosages.47 Hence, limit test for newly synthesized derivatives was conducted at the 

highest starting dose level 3000 mg/kg of body weight.  

 

Observations: 

Animals were observed initially after dosing at least once during the first 30 minutes, 

periodically during the first 24 h. In all cases, no death was observed during the whole 

study period. Additional observations like changes in skin and fur, eyes and mucous 

membranes, respiratory, circulatory, autonomic and central nervous systems, 

somatomotor activity and behavior pattern were also observed during the period. 

Attention was also given to observation of tremors and convulsions. A dose of 30 mg/kg 

of the body weight was selected for the pylorus ligation in rat model.  

 

3.6.2 Various methods for the evaluation of PPI’s  

1. Studies on Isolated Guinea Pig Mucosa48 

Isolated guinea pig mucosa is mounted on a plastic funnel with the mucosal surface 

facing the tube lumen. Each preparation is immersed in an organ bath containing 40 ml of 

serosal solution having the different compositions. 

 

Measurement of H+ secretion: This is performed by continuous titration using a 

radiometer (Copenhagen, Denmark) pH-stat (pHM 82, TTT 80) and Autoburette               

(ABU 80).  

 

Measurement of K+ secretion: K+ content of mucosal solution is determined on a flame-

emission photometer. 
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Experiments with simultaneous measurements of K+ and H+ secretion: Histamine is 

added to serosal solutions followed by sample solutions and secretion rates are calculated. 

  

2. Effect of H+/K+ ATPase inhibitors on serum gastrin levels49  

Female wistar rats are treated with the H+/K+ATPase inhibitors to cause gastric inhibition. 

Blood samples are collected and gastrin is determined by radio-immunoassay using a 

commercially available kit. At the end of the study of 10 weeks, the animals are studied 

for their gastric acid output using pylorus ligation (Shay technique).  

 

3. Pylorus Ligation in rats (Shay et al.)49,50 

A simple and reliable method for production of gastric ulceration in the rat based on the 

ligature of the pylorus has been published by Shay et al.51 The ulceration is caused by 

accumulation of acidic gastric juice in the stomach. The intensity of ulceration is 

expressed in terms of ulcer index.  

 

Of all the different methods and models discussed above, the “Pylorus Ligation in rats 

method”, reported by Shay et al.51 appeared more acceptable for preliminary test and this 

is a more practical method with respect to the availability of equipment and infrastructure 

with us. The detailed procedure is as follows:  

 

3.6.3 Adopted procedure:  

The antiulcer activity was evaluated in wistar rats of either sex (200-250 gm). The 

animals were divided in thirty five groups of 5 rats each. The thirty five groups were as 

follows; 

Group I        :   Treated with 1% Acacia (0.4 ml/kg, p.o,): Control Group. 

Group II       :   Treated with Omeprazole (30 mg/kg, p.o,): Standard  

Group III    :   Treated with Compound IVi (30 mg/kg, p.o,) 

Group IV :   Treated with Compound IVii (30 mg/kg, p.o,) 

Group V :   Treated with Compound IViii (30 mg/kg, p.o,) 

Group VI :   Treated with Compound IViv (30 mg/kg, p.o,)  

Group VII   :   Treated with Compound IVv (30 mg/kg, p.o,) 

Group VIII    :   Treated with Compound IVvi (30 mg/kg, p.o,) 

Group IX    :   Treated with Compound IVvii (30 mg/kg, p.o,) 
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Group X    :   Treated with Compound IVviii (30 mg/kg, p.o,) 

Group XI    :   Treated with Compound IVix (30 mg/kg, p.o,) 

Group XII    :   Treated with Compound IVx (30 mg/kg, p.o,) 

Group XIII    :   Treated with Compound IVxi (30 mg/kg, p.o,) 

Group XIV    :   Treated with Compound IVxii (30 mg/kg, p.o,) 

Group XV   :   Treated with Compound IVxiii (30 mg/kg, p.o,) 

Group XVI    :   Treated with Compound IVxiv (30 mg/kg, p.o,) 

Group XVII :   Treated with Compound IVxv (30 mg/kg, p.o,) 

Group XVIII :   Treated with Compound IVxvi (30 mg/kg, p.o,) 

Group XIX    :   Treated with Compound IVxvii (30 mg/kg, p.o,) 

Group XX    :   Treated with Compound IVxviii (30 mg/kg, p.o,) 

Group XXI :   Treated with Compound IVxix (30 mg/kg, p.o,) 

Group XXII :   Treated with Compound IVxx (30 mg/kg, p.o,) 

Group XXIII :   Treated with Compound IVxxi (30 mg/kg, p.o,)        

Group XXIV   :   Treated with Compound IVxxii (30 mg/kg, p.o,)  

Group XXV    :   Treated with Compound IVxxiii (30 mg/kg, p.o,) 

Group XXVI :   Treated with Compound IVxxiv (30 mg/kg, p.o,) 

Group XXVII :   Treated with Compound IVxxv (30 mg/kg, p.o,)  

Group XXVIII :   Treated with Compound IVxxviii (30 mg/kg, p.o,)  

Group XXIX :   Treated with Compound IVxxix (30 mg/kg, p.o,)  

Group XXX   :   Treated with Compound IVxxx (30 mg/kg, p.o,)  

Group XXXI   :   Treated with Compound IVxxxi (30 mg/kg, p.o,)  

Group XXXII  :   Treated with Compound IVxxxii (30 mg/kg, p.o,)  

Group XXXIII :   Treated with Compound IVxxxiii (30 mg/kg, p.o,)  

Group XXXIV:   Treated with Compound IVxxxiv (30 mg/kg, p.o,)  

Group XXXV :   Treated with Compound IVxxxv (30 mg/kg, p.o,)  

 

Materials & Methods:  

Wistar rats (each weighing 200-250 gm) of either sex was used for this experimental 

study. The animals were housed in standard metal cages and provided with food and 

water. Food was withdrawn 24 hrs before the study. However, water was allowed ad 

libitum.  
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Drug Preparation & Treatment:  

Omeprazole (30 mg/kg) & test compounds were suspended in 1% suspension of acacia in 

distilled water and administered by oral route.  

The animals were fasted for 24 hrs prior the experiment, but had free access to water. 

After the fasting period, the animals were given the drug samples p.o, 1 hr. prior the 

ligation. Thereafter, the rats were anaesthetized with anesthetic ether. After an hour, each 

of the rats was secured on the operating table. An incision of 1 cm length in the abdomen 

just below the sternum was made. The stomach was exposed. A thread was passed around 

the pyloric sphincter and a light knot was applied to it taking due care that no blood 

vessel was tied along with the knot. After this, the incision was closed by stitching the 

abdominal wall by a thread. The underlying skin was cleaned of any bleeding etc. An 

antiseptic cream was applied over the wound. Thereafter, the animal was kept in a 

separate cage and allowed to recover.   

After 24 hrs, these animals were sacrificed and the stomach of each of the animals was 

isolated and cut open through its greater curvature. The gastric contents were carefully 

removed. 

Following parameters were studied 

1. Volume of gastric juice secreted: The volume of gastric juice was measured and 

centrifuged at 1000 rpm for 10 min.  

2. Determination of total acidity of the gastric juice: From the supernatant, aliquots 

(1 ml of each) were taken for the determination of total acidity.  

3. The ulcer index: gastric mucosa was also examined for ulcers. 

4. The pH of the gastric secretion was measured by digital pH meter (Equipt-Tronics 

Digital pH meter, Model EQ-610). 

 

Determination of total acidity: An aliquot of 1 ml of gastric juice was taken in a 50 ml 

conical flask then dilute with distill water to make volume  10 ml and 2 drops of 

phenolphthalein indicator was added to it. It was further titrated with 0.01 N NaOH until 

a permanent pale pink color was developed. 

The volume of alkali consumed was noted. The total acidity is expressed as mEq./lt/gm 

by the following formula: 

Total Acidity = Vol. of NaOH consumed x N x 100 / 0.1 (mEq/100gm) 
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Where;  

N = Normality of NaOH  

 

The Ulcer Score: The gastric mucosa was examined for ulcers by magnifying lens and 

the ulcer scored according to its severity in comparison with that of the Ulcer in the 

standard group. Ulcer score was recorded as follows; 

0 = Normal, no Ulcer 

0.5 = Red coloration  

1 = Spot ulcer 

1.5 = Haemorrhagic breaks  

2 = Ulcer ≥ 3 but ≤ 5 

Mean ulcer score for each animal was expressed as ulcer index.52 

 

Statistical Analysis of Data:  Results are expressed as mean±SEM. The statistical 

difference between the mean volume of gastric juice, mean total acidity, pH of gastric 

secretion and mean ulcer score of the treated group were calculated by using the Student’s 

‘t’ test (Table-11). 
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Table 11. Effect of newly synthesized proton pump inhibitors on gastric secretion and antiulcer activity in Shay rat model  

N

NH

O

S

N

H
N

A

R

O

 

S. 
No. 

A

 
R 

Treatment group 
(mg/kg b.w.) 

pH of Gastric 
juice Acidity 

Total vol. 
in Stomach 

(ml) 
Ulcer score 

1. -- -- 
Group 1: 

Control group 
2.40±0.11 63.60±1.20 10.16±0.52 2.60±0.24 

2. -- -- 
Group 2: 

Omeprazole (30) 
7.11±0.27*** 31.20±3.39*** 5.72±0.43*** 1.20±0.2** 

3. 
S  

H 
Group 3: 
IV i (30) 

6.70±0.44*** 21.60±2.40*** 5.78±0.28*** 0.51±0.15*** 

4. 
S  

OCH3 
Group 4: 
IV ii(30) 

2.89±0.31 60.40±8.83 11.72±1.34 2.50±0.15 

5. 
S

O

O  

H 
Group 5: 
IV iii (30) 

3.22±0.29* 56.40±3.20 12.0±1.0 1.75±0.63 

6. 
S

O

O  

OCH3 
Group 6: 
IV iv (30) 

2.67±0.16 68.40±4.41 9.88±.057 1.5±0.91 
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S. 
No. 

A

 
R 

Treatment group 
(mg/kg b.w.) 

pH of Gastric 
juice Acidity 

Total vol. 
in Stomach 

(ml) 
Ulcer score 

7. 
S

O

O  

H 
Group 7: 
IV v (30) 

3.42±0.19** 56.40±2.50** 8.72±0.43* 1.20±0.23** 

8. 
S

O

O  

OCH3 
Group 8: 
IV vi (30) 

2.75±0.23 69.20±5.56 9.62±0.21 2.60±0.24 

9. 
S  

H 
Group 9: 
IV vii (30) 

6.70±0.19*** 24.00±1.14*** 7.08±0.21*** 0.20±0.2*** 

10. 
S  

OCH3 
Group 10: 
IV viii (30) 

3.71±0.13*** 43.00±2.47*** 6.08±0.45*** 0.40±0.24*** 

11. 

S  

H 
Group 11: 
IV ix (30) 

3.48±0.40** 58.40±10.73** 7.95±1.35** 1.20±0.12** 

12. 

S  

OCH3 
Group 12: 
IV x (30) 

6.12±0.08*** 38.20±2.28*** 5.92±0.25*** 1.20±0.12*** 

13. 

S

O

 

H 
Group 13: 
IV xi (30) 

5.72±0.46*** 45.00±2.85*** 7.65±0.58** 1.25±0.11*** 
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S. 
No. A

 

R Treatment group 
(mg/kg b.w.) 

pH of Gastric 
juice 

Acidity Total vol. 
in Stomach 

(ml) 

Ulcer score 

14. 

S

O

 

OCH3 
Group 14: 
IV xii (30) 

2.93±0.16 66.50±8.26 9.20±0.57 2.60±0.24 

15. 

S  

H 
Group 15: 
IV xiii (30) 

2.73±0.11 63.80±5.57 8.50±0.74 2.70±0.12 

16. 

S  

OCH3 
Group 16: 
IV xiv (30) 

3.38±0.90* 57.80±3.65* 5.36±1.05** 1.80±0.12* 

17. 

S

Br

 

H 
Group 17: 
IV xv (30) 

3.31±0.15** 55.20±1.74** 7.24±0.38** 1.0±0.20*** 

18. 

S

Br

 

OCH3 
Group 18: 
IV xvi (30) 

3.30±0.20** 56.40±1.34** 7.18±0.22** 1.12±0.22** 
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S. 
No. 

A

 
R 

Treatment group 
(mg/kg b.w.) 

pH of Gastric 
juice Acidity 

Total vol. 
in Stomach 

(ml) 
Ulcer score 

19. 

S

Cl

 

H 
Group 19: 
IV xvii (30) 

3.67±0.36*** 52.00±3.67* 5.44±0.20*** 0.60±0.1*** 

20. 

S

Cl

 

OCH3 
Group 20: 

IV xviii (30) 
3.11±0.11** 61.20±3.87* 7.68±0.27* 0.40±0.1*** 

21. 

S  

H 
Group 21: 
IV xix (30) 

3.68±0.19*** 54.40±1.78** 8.08±0.36* 0.62±0.31*** 

22. 
S  

H 
Group 22: 
IV xx (30) 

2.39±0.06 64.4±1.03 10.68±0.48 2.5±0.20 

23. 
S  

OCH3 
Group 23: 
IV xxi (30) 

4.55±0.40*** 47.6±0.67*** 6.92±0.36** 0.87±0.27*** 

24. 
S

 
 

H 
Group 24: 
IV xxii (30) 

2.86±0.33 62.40±1.99 8.68±0.42 2.25±0.4 
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S. 
No. 

A

 
R 

Treatment group 
(mg/kg b.w.) 

pH of Gastric 
juice Acidity 

Total vol. 
in Stomach 

(ml) 
Ulcer score 

25. 
S

 

OCH3 
Group 25: 

IV xxiii (30) 
6.99±0.11*** 23.60±1.03*** 5.25±0.15*** 0.5±0.12*** 

26. 
 

H 
Group 26: 

IV xxiv (30) 
2.74±0.19 68.60±1.20 11.54±0.43 2.62±0.37 

27. 
 

OCH3 
Group 27: 
IV xxv (30) 

3.66±0.19*** 51.20±1.62*** 7.66±0.39** 1.0±0.20*** 

28. N

N

O  

H 
Group 28: 

IV xxviii (30) 
5.15±0.57** 37.20±3.15*** 6.28±0.79** 0.62±0.12*** 

29. N

N

O  

OCH3 
Group 29: 

IV xxix (30) 
3.54±0.22** 

 
51.20±1.6** 

 
7.32±0.43** 0.62±0.12*** 

30. 
O

O

 
H 

Group 30: 
IV xxx (30) 

3.76±0.79 60.60±2.85 8.12±0.49* 3.12±0.12 

31. 
O

O

 
 

OCH3 
Group 31: 

IV xxxi (30) 
5.56±0.70** 35.60±3.37** 4.92±0.35*** 1.9±0.20* 

32. 

S

O

 
 

H 
Group 32: 

IV xxxii (30) 
5.36±0.87** 39.20±5.16** 5.40±0.78*** 1.3±0.32** 
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S. 
No. 

A

 
R 

Treatment group 
(mg/kg b.w.) 

pH of Gastric 
juice Acidity 

Total vol. 
in Stomach 

(ml) 
Ulcer score 

33. 

S

O

 

OCH3 
Group 33: 

IV xxxiii (30) 
3.39±0.27* 58.20±5.95* 7.26±0.65** 2.75±0.14 

34. 
N

N

S

 

H 
Group 34: 

IV xxxiv (30) 
5.79±0.63*** 43.20±3.24*** 5.48±0.21*** 1.5±0.20** 

35. 
N

N

S

 

OCH3 
Group 35: 

IV xxxv (30) 
5.08±0.56** 45.80±2.38*** 6.50±0.66** 1.0±0.20** 

 
n = 5, values are expressed as mean ±SEM 

***=  p<0.001 compared to control group (Student’s t test) 

**=  p<0.01 compared to control group (Student’s t test) 

*= p<0.05 compared to control group (Student’s t test) 
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Figure-1. Effect of newly synthesized compounds on pH of gastric secretion in Shay rat model 
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Figure-2. Effect of newly synthesized compounds on total acidity of gastric secretion in Shay rat model 
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Figure-3. Effect of newly synthesized compounds on total volume of gastric secretion in Shay rat model 
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Figure-4. Effect of newly synthesized compounds on ulcer score in Shay rat model  
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Figure 5. Stomach of rat in pylorus ligation model for antiulcer activity: control 

group. 

 

 

Figure 6. Stomach of rat in pylorus ligation model for antiulcer activity: Standard 

(Omerazole) group. 
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Figure-7. Stomach of rat in pylorus ligation model for antiulcer activity: IVi 

 

 

Figure 8. Stomach of rat in pylorus ligation model for antiulcer activity: IVvii 
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Figure 9. Stomach of rat in pylorus ligation model for antiulcer activity: IVx 

 

 

 

Figure-10. Stomach of rat in pylorus ligation model for antiulcer activity: IVxxiii 
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3.7 Results and discussion on biological activity and mechanism of action of the 

synthesized compounds. 

The etiology of the ulcer is unknown in most of the cases, yet it is generally accepted that 

it results from an imbalance between aggressive factors and the maintenance of mucosal 

integrity through the endogenous defense mechanisms.53 To regain the balance, different 

therapeutic agent are used to inhibit the gastric acid secretion or to boost the mucosal 

defense mechanism by increasing mucosal production, stabilizing the surface epithelial 

cells, interfering with the prostaglandins synthesis or inhibiting the activity of 

H+/K+ATPase pump responsible for the final secretion of the acid in the stomach.54 

 

The cause of gastric ulcer after pylorus ligation is believed to be the stress-induced 

increase in gastric hydrochloric acid secretion/ or stasis of acid. According to Shay et 

al.,51 the volume of secretion is also an important factor in the formation of ulcer due to 

exposure of the unprotected lumen of the stomach to the accumulating acid. 

 

In the present study, the results from pylorus ligated rats were expressed in terms of the 

pH of the gastric juice, total acidity, volume of gastric secretion and ulcer index values 

(Mean ± SEM) in control, standard (omeprazole) and test groups. LD50 values of all the 

test compounds were calculated according to OECD guidelines 42355 and the dose of 30 

mg/kg was selected as the treatment dose.  

 

Omeprazole in a dose of 30 mg/kg produced significant (p<0.001) increase in pH 

(7.11±0.27), decrease in total acidity (31.20±3.39), volume of gastric secretion 

(5.72±0.43) and ulcer score (1.20±0.24) as compared to the control group. (pH 

(2.40±0.11), total acidity (63.60±1.20), volume of gastric secretion (10.16±0.52) and 

ulcer score (2.60±0.24) of the control group. 

 

1. Effect of test compounds on pH of gastric secretion: 

Some compounds in the test series showed comparable and significant (p<0.001) increase 

in pH of the gastric secretion. Compound IV xxiii showed the maximum increase in pH 

(6.99±0.11) of gastric secretion. Other compounds IV i, IV vii and IV x were also 

significantly increase the pH (6.70±0.44, 6.70±0.19 and 6.12±0.08 respectively) of the 

gastric secretion in the pylorus ligated rats, (Omeprazole; 7.11±0.27). 
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2. Effect of test compounds on total acidity of gastric secretion: 

Test compounds, IV i, IV vii and IV xxiii produced significant (p<0.001) decrease in total 

acidity (21.60±2.4, 24.00±1.14 and 23.60±1.03, respectively). (Omeprazole; 31.20±3.39). 

 

3. Effect of test compounds on total volume of gastric secretion: 

Compounds, IV i (5.78±0.28), IV x (5.92±0.25), IV xiv (5.36±1.05), IV xvii (5.44±0.20), 

IV xxiii (5.25± 0.15), IV xxxi (4.92±0.35), IV xxxii (5.40±0.78) and IV xxxiv (5.48±0.21) 

decreased significantly (p<0.001) the volume of gastric secretion as compared  to control 

group whereas all other compounds did not produced significant decrease in volume of 

gastric secretion. (Omeprazole; 5.72±0.43) 

 

4. Effect of test compounds on ulcer score values 

Compounds IV i (0.51±0.15), IV vii (0.20±0.2), IV viii (0.40±0.24), IV xvii (0.60±0.1), 

IV xviii (0.40±0.1), IV xix (0.62±0.31), IV xxiii (0.5±0.12), IV xxviii (0.62±0.12) and 

IV xxix (0.62±0.12) produced significant (p<0.001) decrease in ulcer score values as 

compared to control values where as all other compounds did not produce significant 

decrease in ulcer score values. (Omeprazole; 1.20±0.2) 

 

From the results, as shown in Table-6, Figure 1-4, compound IV i, IV vii, IV x and IV xxiii 

are the most potentially promising compounds among all the screened compounds. The 

pH of the gastric acid secretion with these compounds was much close to the standard 

(omeprazole) group. The total acidity for these compounds is even lower than that of 

omeprazole. Also, the total volume of the stomach content (gastric juice) in these 

compounds was almost same as of the standard in contrast to the other test groups. 

 

This suggests that these test compounds potentially inhibited the secretion of H+ from the 

stomach as well as reduced the total volume of gastric content as compared to the control 

group which is in turn reflected by the ulcer score. The ulcer score for these compounds 

was much lower than the standard, confirming the potent activity of these compounds 

almost comparable to standard (Omeprazole 30 mg/kg).   
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Other screened compounds did not show significant improvement in the pH of the gastric 

juice. But, despite of low pH and high total acidity value, some of the tested compounds 

(IV viii, IV xi, IV xv, IV xvii, IV xviii, IV xix, IV xxi, IV xxv, IV xxviii, and IV xxix) have the 

ability to protect the stomach from the ulceration as indicated by the low values of ulcer 

scores, may be because of some other mechanism of protecting gastric mucosa. 

  

Suggested Proton Pump Inhibitor mechanism of the test compounds:   

In normal irreversible PPI’s, the pyridinylmethylsulfinylbenzimidazoles (e.g., 

Omeprazole, pentaprazole, rabiprazole etc.) the mechanism of action is depicted as 

below: 
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Initial acid catalyzed transformation of pyridinylmethylsulfinyl benzimidazoles 29 to the 

sulfenamide 29c isomers is outlined in scheme-28. The reaction is reversible and goes via 

a spiro intermediate, 29a and the sulfenic acid 29b. The reversibility was firmly proved 
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by kinetic measurements in both directions for example starting from 29 and 29c. The 

formation of the spiro intermediate 29a via Smile’s rearrangement is a rate limiting step 

supported by kinetic measurements. The rate constant obtained for omeprazole analogs is 

strongly dependent on substituents in the pyridine ring, indicating that a positive charge is 

created in the pyridine nitrogen atom in the rate-limiting step. The spiro intermediate 29a 

is dihyrobenzimidazole with a pronounced tendency to undergo aromatization, thus 

forming the sulfenic acid 29b by a C-S bond cleavage. This sulfenic acid further loses a 

molecule of H2O to form a sulfenamide, 29c. This sulfenamide 29c represents the active 

enzyme inhibitor and binds covalently to the sulfhydryl groups of the cysteines (Cys-813 

and 822) of the proton pump. The recovery of enzyme’s activity requires de novo 

synthesis of the enzyme which is consistent with the long duration of action of drug.56 

This blocking and deactivating of the H+/K+-ATPase enzyme results in irreversible 

inactivation of the proton pump and thus, affects its normal acid production and secretion. 

This leads to most of side effects associated with these PPI’s usage.  

 

However, the pyrimidine ring is less basic than the pyridine ring and therefore thought in 

the first step the imidazole gets protonated, it can’t form spiro intermediate 29a as the 

pyrimidine N1 nitrogen has no electron available for donation to the nucleophilic centre; 

the C2 of the imidazole ring and therefore can’t form the spiro intermediate analogous to 

29a via Smiles rearrangement (Scheme-29).  
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However, it may abstract the proton of the sulfhydryl group of the cysteine 813 and 

cysteine 822 of the H+/K+-ATPase (proton pump) at its imidazolyl nitrogen. Thus, 

temporarily deprotonating the amino acid residue of the H+/K+-ATPase and makes it 

ineffective (Scheme-30). 

 

However, in the presence of the SH group of the Cysteines in its protonated form, the 

molecules can still loose the molecules of H2O and form an ionic bonding with the 

cysteine as depicted in scheme-30. But this is quite reversible and thus the effect is short 

lived. 
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Further, a comparison of minimized 3D structures of these active compounds (IV i, IV vii, 

IV x and IV xxiii) with the standard PPI, therapeutically used  drug, omeprazole, in three 

different orientation (Figure-11a-c), point out the fact that the mechanism of action of 

these compounds may be slightingly different from the irreversible PPI’s (omeprazole 

and it’s congeners). Because, the 3D structure of omeprazole has a distinctly different 

orientation compared to pyrimidymethylsulfinylbenzimidazoles synthesized by us. This is 

an indirect support to the proposed mechanism given by us.  

 

However, further specific studies are needed to establish the mechanism involved in the 

antiulcer action of these compounds. 

Figure-11a. Comparision of minimized 3D structures of the most active compounds (IV i, 

IV vii, IV x and IV xxiii) with the standard PPI’s, omeprazole. 
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Figure-11b. Comparision of minimized 3D structures of the most active compounds (IV i, 

IV vii, IV x and IV xxiii) with the standard PPI’s, omeprazole. 

 

Figure-11c. Comparision of minimized 3D structures of the most active compounds (IV i, 

IV vii, IV x and IV xxiii) with the standard PPI’s, omeprazole. 
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3.8. QSAR Studies 

In order to deduce the correlation between physicochemical parameters and biological 

activity of present series of molecules, multiple regression analysis was used to generate 

different 2D-QSAR models (equations) by calculating various descriptors available 

within the software used for these molecules and correlating them with the observed 

biological activity. Such equations help in giving the insight in the optimal 

physiochemical properties required by molecules for lead activity, and also in predicting 

their mechanism of action, sometimes.   

 

Methodology and Protocols 

Chemical data 

Softwares 

All QSAR studies were carried out using the QSAR plus module of Molecular Designing 

Suite (MDS) of Vlife Sciences (Pune, India), running on Microsoft windows. Structures 

of the molecules were constructed in ChemDraw® Ultra, version 8.0, (CambridgeSoft 

Corporation). 

 

Molecules 

In the present study a set of 33 molecules belonging to pyrimidylmethylsulfinyl 

benzimidazole class of compounds synthesized by us and which exhibited antiulcer 

activity was used. These molecules were divided into two groups based on the type of 

benzimidazole used. Series A: 5-H benzimidazole derivatives (17 compounds) and Series 

B: 5-methoxybenzimidazole derivatives (16 molecules). All these molecules were 

constructed in ChemDraw® Ultra, version 8.0, and imported in MDS directly. 

 

These molecular structures were subsequently minimized using MMFF force field using 

rms gradient 0.001 and other parameters as default values. Structures of some most active 

molecules with minimized energy are given as under,  
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Figure-12: Optimized structure of compound 2-(1H-benzimidazol-2-yl)methylsulfinyl-

5,6,7,8-tetrahydro-benzo-(b)sulfinyl[2,3-d]pyrimidin-4-(3H)-one (IV i) 

 

 

Figure-13: Optimized structure of compound 2-((1H-benzo[d]imidazol-2-

ylsulfinyl)methyl) 5,6-dimethyl-thieno[2,3-d]pyrimidin-4(3H)-one (IV vii) 
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Figure-14: Optimized structure of compound 2-{[(5-methoxy-1H-benzimidazol-2-

yl)sulfinyl]methyl}-5-phenyl-thieno[2,3-d]pyrimidin-4(3H)-one (IV x) 

 

 

Figure-15: Optimized structure of compound 2-{[(5-methoxy-1H-benzimidazol-2-

yl)sulfinyl]methyl}-3,5,6,7,8,9-hexahydro-4H-cyclohepta[4,5]thieno[2,3-d]pyrimidin-4-

one (IV xxiii) 
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Figure-16: Optimized structure of Omeprazole. 

  

 

Biological activity 

Biological activity of the molecules was evaluated in four different headings namely, pH 

of the gastric secretion, total acidity of the gastric contents, volume of the gastric juice 

secreted and ulcer score. For this study, total acidity in the form of log(1/C), was used for 

this study. However, it was found that pH of the gastric secretion and total acidity were 

found intercorrelated with each other thus, only total acidity was taken in the present 

study.  

 

Calculation of descriptors 

Different types of descriptors were calculated for each of the energy minimized molecule 

in the study table using default settings of Molecular Designing Suite (MDS Vlife). These 

descriptors represented the properties; electronic, spatial, structural, thermodynamic, and 

molecular shape analysis (MSA). A complete list of descriptors used in the study includes 

239 descriptors, based on the physiochemical properties of these molecules, and are 

divided in total 23 subclasses.   

 

Physicochemical Descriptors Class: (Total 239 descriptors) 
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Physicochemical Descriptors are based on the physicochemical properties of the 

molecules. Subclasses of the physicochemical descriptors are as follows: 

1. Individual 

2. Retention Index (chi) 

3. Atomic valence connectivity index (chiv) 

4. Path Count 

5. Chi Chain 

6. Chiv Chain 

7. Chain Path Count 

8. Cluster 

9. Path Cluster 

10. Kappa 

11. Element Count 

12. Dipole Moment 

13. Distance Based Topological 

14. Estate numbers 

15. Estate Contributions 

16. Polar Surface Area 

17. Electrostatic 

18. Information Theory Index 

19. Semi Empirical 

20. Hydrophobicity XlogpA 

21. Hydrophobicity XlogpK 

22. Hydrophobicity SlogpA 

23. Hydrophobicity SlogpK 

However, for the present study the first 16 of the subclasses were only considered. 

In addition to this, Alignment Independent Descriptors (AI) can also calculated in the 

MDS, which are more than 700 in number. Alignment Independent descriptors are 

calculated as discussed by Baumann.57 For calculation of AI descriptors every atom in the 

molecule was assigned at least one and at most three attributes. The first attribute is 

‘Tattribute’ that thoroughly characterizes the topology of the molecule. The second 

attribute is the atom type. The atom symbol is used here. The third attribute is assigned to 

atoms taking part in a double or triple bond. After all atoms have been assigned their 

respective attributes, selective distance count statistics for all combinations of different 
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attributes are computed.57 A selective distance count statistic ‘XY2’ (e.g. ‘TOPO2N3) 

counts all the fragments between start atom with attribute ‘X’ (e.g. ‘2’ double bonded 

atom) and end atom with attribute ‘Y’ (e.g. ‘N’) separated by the graph distance 3. The 

graph distance can be defined as the smallest number of atoms along the path connecting 

two atoms in molecular structure. In this study to calculate AI descriptors, we have used 

following attributes: 2 (double bonded atom), C, N, O, S, Cl, and Br and the distance 

range of 0 to 7. 

Table-12: List of the physicochemical descriptors available in the software. 

S. No. Descriptor S. No. Descriptor S. No. Descriptor 
1 Mol.Wt 44 chiV3Cluster 87 SdsCHcount 
2 Volume 45 3ClusterCount 88 SaaCHcount 
3 H-AcceptorCount 46 chi4pathCluster 89 SsssCHcount 
4 H-DonorCount 47 chiV4pathCluster 90 SddCcount 
5 RotatableBondCount 48 4pathClusterCount 91 StsCcount 
6 XlogP 49 kappa1 92 SdssCcount 
7 slogp 50 kappa2 93 SaasCcount 
8 clogP 51 kappa3 94 SaaaCcount 
9 logP 52 k1alpha 95 SssssCcount 
10 smr 53 k2alpha 96 SsNH3count 
11 polarizabilityAHC 54 k3alpha 97 SsNH2count 
12 polarizabilityAHP 55 HydrogensCount 98 SssNH2count 
13 chi0 56 CarbonsCount 99 SdNHcount 
14 chi1 57 SulfursCount 100 SssNHcount 
15 chi2 58 OxygensCount 101 SaaNHcount 
16 chi3 59 NitrogensCount 102 StNcount 
17 chi4 60 ChlorinesCount 103 SsssNHcount 
18 chi5 61 BrominesCount 104 SdsNcount 
19 chiV0 62 XcompDipole 105 SaaNcount 
20 chiV1 63 YcompDipole 106 SsssNcount 
21 chiV2 64 ZcompDipole 107 SddsN(nitro)count 
22 chiV3 65 DipoleMoment 108 SaasN(Noxide)count 
23 chiV4 66 Quadrupole1 109 SssssN(onium)count 
24 chiV5 67 Quadrupole2 110 SsOHcount 
25 0PathCount 68 Quadrupole3 111 SdOcount 
26 1PathCount 69 DistTopo 112 SssOcount 
27 2PathCount 70 ConnectivityIndex 113 SaaOcount 
28 3PathCount 71 WienerIndex 114 SsPH2count 
29 4PathCount 72 RadiusOfGyration 115 SssPHcount 
30 5PathCount 73 MomInertiaX 116 SsssPcount 
31 chi3chain 74 MomInertiaY 117 SdsssPcount 
32 chi4chain 75 MomInertiaZ 118 SsssssPcount 
33 chi5chain 76 BalabanIndexJ 119 SsSHcount 
34 chi6chain 77 BalabanB 120 SdScount 
35 chiV3chain 78 BalabanC 121 SssScount 
36 chiV4chain 79 BalabanQ 122 SaaScount 
37 chiV5chain 80 BalabanCdash 123 SdssS(sulfone)count 
38 chiV6chain 81 BalabanQdash 124 SddssS(sulfate)count 
39 3ChainCount 82 HosoyaIndex 125 SsClcount 
40 4ChainCount 83 SsCH3count 126 SsBrcount 
41 5ChainCount 84 SdCH2count 127 SsIcount 
42 6ChainCount 85 SssCH2count 128 SsFcount 
43 chi3Cluster 86 StCHcount 129 SsCH3E-index 
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S. No. Descriptor S. No. Descriptor S. No. Descriptor 
130 SdCH2E-index 153 15SddsN(nitro)E-

index 
176 SsOHE-index 

131 SssCH2E-index 154 SaasN(Noxide)E-
index 

177 SdOE-index 

132 StCHE-index 155 SssssN(onium)E-
index 

178 SssOE-index 

133 SdsCHE-index 156 SsOHE-index 179 SaaOE-index 
134 SaaCHE-index 157 SdOE-index 180 SsPH2E-index 
135 SsssCHE-index 158 SssOE-index 181 SssPHE-index 
136 SddCE-index 159 SaaOE-index 182 SsssPE-index 
137 StsCE-index 160 SsPH2E-index 183 SdsssPE-index 
138 SdssCE-index 161 SssPHE-index 184 SsssssPE-index 
139 SaasCE-index 162 SsssPE-index 185 SsSHE-index 
140 SaaaCE-index 163 SdsssPE-index 186 SdSE-index 
141 SssssCE-index 164 SsssssPE-index 187 SssSE-index 
142 SsNH3E-index 165 SsSHE-index 188 SaaSE-index 
143 SsNH2E-index 166 SdSE-index 189 SdssS(sulfone)E-index 
144 SssNH2E-index 167 SssSE-index 190 SddssS(sulfate)E-index 
145 dNHE-index 168 SaaSE-index 191 SsClE-index 
146 SssNHE-index 169 SdssS(sulfone)E-

index 
192 SsBrE-index 

147 SaaNHE-index 170 SddssS(sulfate)E-
index 

193 SsIE-index 

148 StNE-index 171 SsClE-index 194 SsFE-index 
149 SsssNHE-index 172 SsBrE-index 195 PolarSurfaceArea 

ExcludingPandS 
150 SdsNEindex 173 SddsN(nitro)E-index 196 PolarSurfaceArea 

IncludingPandS 
151 SaaNE-index 174 SaasN(Noxide)E-

index 
  

152 SsssNE-index 175 SssssN(onium)E-
index 

  

 

Variable Selection Method: 

As stated earlier there are a large number molecular descriptors and alignment 

independent descriptors available in the software for building a QSAR model. The 

software automatically selects the best of these as independent variables. The dependant 

variable on the other hand was the biological activity expressed as log(1/C), where C = 

observed Total Acidity of the gastric secretion, Volume of the gastric secretion and Ulcer 

Score. Accordingly, three major sets of regression analyses were performed, based on 

these three activity expressions. 

 

For model validation the dataset is required to be divided into training set (for building 

the QSAR model) and test set (for examining its predictive ability). For any QSAR 

model, it is of crucial importance that the training set selected to calibrate the model 

exhibits a well balanced distribution and contains representative molecules. In the present 

study Manual Selection method was used to select the molecules in the training set.  
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Evaluation of the statistical Model: (QSAR relationship equation) 

There are various statistical measures available for evaluation of the significance of the 

model; following are the most commonly used: 

 n = number of molecules (>20 molecules) 

k = number of descriptors in the model (statistically n = 5 per descriptor in a model is 

significant) 

r2 = coefficient of determination (>0.7) 

r = coefficient of regression  

q2 = cross-validated r2 (total variance in the internal predictive ability, respective to the 

training set) 

F-test = Fishers-test for statistical significance of the model (higher is better, for same set 

of descriptors and compounds). This depends on the degree of freedom (Ф), where, Ф = 

n-m-1 = number of variables-number of data points-1. Higher Ф, is better. As thumb rule 

per variable five data points (here compounds), should be used minimally. 

 

Generation of QSAR models 

QSAR analysis is an area of computational research, which builds models of biological 

activity using physico-chemical properties of a series of compounds. The underlying 

assumption is that the variations of biological activity within a series can be correlated 

with changes in measured or computed molecular features of the molecules. In the present 

study, QSAR model generation was performed by multiple regression analysis technique. 

The application of the multiple regression analysis allows the construction of good quality 

predictive models. Multiple regression analysis was performed by applying stepwise-

forward variable selection method using 0.5 as cross correlation limit, F-test cut off value 

as 2 and  term selection criteria as r2. The number of terms in the equation was fixed to 5 

including the constant in the training set. 

 

Results and Discussion: 

For better insight the compounds were divided into two main series based on the 

benzimidazole part of the molecule  

A) 5-H-Benzimidazole Series 

B) 5-Methoxybenzimidazole  
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The MDS generates different descriptors belonging to different categories like 

conformational, electronic, shape, spatial, thermodynamic, etc. Interpretation of QSAR 

models with more terms becomes difficult for QSAR. Moreover all the terms may not be 

relevant. Multiple regression was run several time taking different calculated descriptors 

to obtain the equation with high coefficient of determination (r2).  

 

Further, the biological activity has been expressed in by different expressions viz. pH of 

Gastric Secretion, Total Acidity, Volume of Gastric Secretion and Ulcer Score of which 

pH of Gastric Secretion and Total Acidity are inter correlated therefore, only total acidity 

was selected for the present study. Thus, we had three different expressions of the 

biological activity. The biological activity for all the three expressions was taken as the 

log values of its inverted figures.  

Thus, to summarize, the QSAR study was performed for two series of compounds, in 

which three main sets of biological activities per series was used.  

 

A. 5-H benzimidazole Series: 

1. Total Acidity:  

Description of the descriptors used in the final equation: 

1. Quadrupole2 

This descriptor signifies magnitude of second tensor of quadrupole moments and is 

directly proportional to the activity. 

2. T_C_O_2 

This is the count of number of carbon atoms (single, double or triple bonded) 

separated from any oxygen atom (single or double bonded) by 2 bond distance in a 

molecule and is inversely proportion to the activity. 

3. chi4pathCluster 

This descriptor signifies molecular connectivity index of 4th order pathcluster and is 

directly proportional to activity. 

  

Of these the best equation was given as under: 

 

Acidity log(1/C) = + 0.0044(± 0.0000) Quadrupole2 - 0.0792(± 0.0121) T_C_O_2 

       + 0.1386(± 0.0547) chi4pathCluster -1.9411…………..(Equation-1) 
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n = 17, Degree of freedom = 13, r = 0.880, r2 = 0.7751, q2 = 0.6818, F test = 14.9367, s 

= 0.0738, t = 2.16 (95%). 

 

The resultant equation was evaluated on the basis of good r (coefficient of regression), 

(r2) coefficient of determination, high cross-validated q2 for internal productivity and 

other statistical terms like higher F value.   

The observed and predicted biological activities of the molecules under study are given in 

table-13. 

 

Table-13: Observed and predicted biological activities of the molecules under study. 

 

Compound 
No. 

Observed 
Activity 

Predicted 
Activity 

Residuals 

IV i -1.334 -1.31505 0.018954 
IV iii -1.751 -1.69053 0.060468 
IV v -1.751 -1.70559 0.045415 
IV vii -1.38 -1.5545 -0.1745 
IV ix -1.766 -1.80303 -0.03703 
IV xi -1.653 -1.636 0.016996 
IV xiii -1.805 -1.78416 0.020839 
IV xv -1.741 -1.73562 0.005376 
IV xvii -1.716 -1.68073 0.035275 
IV xix -1.736 -1.76821 -0.03221 
IV xx -1.809 -1.80641 0.002587 
IV xxii -1.795 -1.69803 0.096974 
IV xxiv -1.836 -1.82279 0.013208 
IV xxviii -1.571 -1.59371 -0.02271 
IV xxx -1.782 -1.78252 -0.00052 
IV xxxii -1.593 -1.72621 -0.13321 
IV xxxiv -1.635 -1.55096 0.084041 

 

Regression analysis of these molecules with the lipophilic parameters, logP has also been 

carried out and the equation is given as under; and is not very significant. 

 

Acidity log(1/C) = - 0.0703(± 0.0398) logP -1.5503 

 

n = 17, Degree of freedom = 15, r =0.4149, r2 = 0.1722, q2 = -0.0157, F test = 3.1208. 
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2. Volume of gastric secretion: 

Description of the descriptors used in the final equation: 

1. Quadrupole2 

This descriptor signifies magnitude of second tensor of quadrupole moments which is 

directly proportional to the activity.   

2. T_2_O_2 

This is the count of number of double bounded atoms (i.e. any double bonded atom, T_2) 

separated from Oxygen atom by 2 bonds in a molecule and is inversely proportional to 

the activity. 

3. chi4pathCluster 

This descriptor signifies molecular connectivity index of 4th order pathcluster and is 

directly proportional to the activity. 

 

Of these the best equation was given as under: 

 

Volume log(1/C) = + 0.0044(± 0.0000) Quadrupole2 - 0.0792(± 0.0121) T_2_O_2 

       + 0.1385(± 0.0548) chi4pathCluster -2.0199……. (Equation-2) 

 

n = 17, Degree of freedom = 13, r = 0.880, r2 = 0.7752, q2 = 0.6818, F test = 14.9402, s 

= 0.0768, t =2.16 (95%).  

 

The resultant equation was evaluated on the basis of good r (coefficient of regression), 

(r2) coefficient of determination, high cross-validated r2 for internal productivity and other 

statistical terms like higher F-value 

 

The observed and predicted biological activities of the molecules used in the study are 

given in table-14. 
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Table-14: Observed and predicted biological activities of training set of molecules. 

Compound 
No.  

Observed 
Activity 

Predictive 
activity 

Residuals 

IV i -1.334 -1.31497 -0.01903 
IV iii -1.751 -1.69058 -0.06042 
IV v -1.751 -1.70558 -0.04542 
IV vii -1.38 -1.55453 0.174531 
IV ix -1.766 -1.80312 0.037119 
IV xi -1.653 -1.63602 -0.01698 
IV xiii -1.805 -1.78431 -0.02069 
IV xv -1.742 -1.73576 -0.00624 
IV xvii -1.716 -1.68084 -0.03516 
IV xix -1.736 -1.76835 0.032351 
IV xx -1.809 -1.8065 -0.0025 
IV xxii -1.795 -1.69808 -0.09692 
IV xxiv -1.836 -1.82276 -0.01324 
IV xxvii -1.571 -1.59378 0.022784 
IV xxx -1.782 -1.78242 0.000419 
IV xxxii -1.593 -1.72625 0.133254 
IV xxxiv -1.635 -1.55104 -0.08396 

 

Regression analysis of these molecules with the lipophilic parameter logP has also been 

carried out and the equation is given as under; which is not significant. 

 

Volume log(1/C) = - 0.0704(± 0.0398) logP-1.5501 

 

n = 17, Degree of freedom = 15, r = 0.4154, r2 = 0.1726, q2 = -0.0153, F test = 3.129.  

 

3. Ulcer Score: 

Description of the descriptors used in the final equation: 

1. chiV6chain: 

This descriptor signifies atomic valence connectivity index for six membered ring and is 

directly proportional to the activity. 

2. chi3Cluster 

This descriptor signifies simple 3rd order cluster chi index in a compound and is directly 

proportional to the activity. 

3. XcompDipole 

This descriptor signifies the x component of the dipole moment (external coordinates) and 

is inversely proportional to the activity. 
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For the best equation Compound IV vii and IV xiii were removed as outliers and the best 

equation was given as under: 

 

Ulcer score log(1/C) = +11.5236(±1.5660)chiV6chain + 1.0933(±0.0853)chi3Cluster 

                             - 0.0592(±0.0009) XcompDipole -2.8581………………….(Eqation-3) 

 

n = 15, Degree of freedom = 11, r = 0.9311, r2 = 0.8671, q2 = 0.7599, F test = 23.9156, 

s = 0.2303, t =2.201 (95%).  

 

The observed and predicted biological activities of the molecules used in the study are 

given in table-15. 

 

Table-15: Observed and predicted biological activities of training set of molecules. 

Compound Observed 
Activity 

Predicted 
Activity 

Residuals 

IV i 0.292 0.249781 -0.04222 
IV iii -0.243 -0.12875 0.114248 
IV v -0.079 -0.25869 -0.17969 
IV ix -0.079 -0.1125 -0.0335 
IV xi -0.097 -0.07537 0.021628 
IV xv 0 0.141555 0.141555 
IV xvii 0.222 0.126106 -0.09589 
IV xix 0.208 0.13629 -0.07171 
IV xx -0.398 -0.48522 -0.08722 
IV xxii -0.352 -0.32535 0.026648 
IV xxiv -0.418 -0.38635 0.031655 
IV xxviii 0.208 0.136855 -0.07115 
IV xxx -0.494 -0.43894 0.05506 
IV xxxii -0.114 -0.01292 0.101084 
IV xxxiv -0.176 -0.08657 0.089427 

 

Regression analysis of these molecules with the lipophilic parameter logP has also been 

carried out and the equation is given as under; which is not very significant. 

 

Ulcer Score log(1/C) = + 0.0452(± 0.0615) XlogP -0.2637 

n = 17, Degree of freedom = 15, r =0.1865, r2 = 0.0348, q2 = -0.2394, F test = 0.5403. 
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B. 5-Methoxybenzimidazole Series: 

1. Total Acidity:  

Description of the descriptors used in the final equation: 

1. T_2_O_6 

This is the count of number of double bounded atoms (i.e. any double bonded atom, T_2) 

separated from Oxygen atom by 6 bonds in a molecule and is inversely proportional to 

the activity. 

2. XcompDipole 

This descriptor signifies the x component of the dipole moment (external coordinates) and 

is directly proportional to the activity. 

3. DipoleMoment 

This descriptor signifies dipole moment calculated from the partial charges of the 

molecule and is directly proportional to the activity. 

 

Compound IV ii was taken out from the study taking as outlier and the best equation was 

given as under: 

 

Acidity log(1/C) = - 0.0469(± 0.0128) T_2_O_6 + 0.0391(± 0.0164) XcompDipole 

       + 0.0183(± 0.0110) DipoleMoment -1.3513.................. (Equation-4) 

 

n = 15, Degree of freedom = 11, r = 0.819, r2 = 0.6712, q2 = 0.3759, F test = 7.4847, s = 

0.777, t = 2.201 (95%).  

 

The resultant equation was evaluated on the basis of good r (coefficient of regression), 

(r2) coefficient of determination, high cross-validated r2 for internal productivity and other 

statistical terms like higher F value 

 

The observed and predicted biological activities of the molecules under study are given in 

table-16. 
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Table-16: Observed and predicted biological activities of the molecules under study. 

Compound 
No. 

Observed 
Activity 

Predicted  
Activity 

Residuals 

IV iv -1.835 -1.85122 0.01622 
IV vi -1.84 -1.85958 0.019576 
IV viii -1.633 -1.66489 0.031885 
IV x -1.582 -1.73331 0.151309 
IV xii -1.822 -1.75702 -0.06498 
IV xiv -1.761 -1.73812 -0.02288 
IV xvi -1.75 -1.70894 -0.04106 
IV xviii -1.786 -1.69871 -0.0873 
IV xxi -1.678 -1.57946 -0.09854 
IV xxiii -1.372 -1.50115 0.129148 
IV xxv -1.709 -1.65017 -0.05883 
IV xxix -1.709 -1.69189 -0.01711 
IV xxxi -1.551 -1.56647 0.015468 
IV xxxiii -1.765 -1.81873 0.053725 
IV xxxv -1.661 -1.63431 -0.02669 

 

Regression analysis of these molecules with the lipophilic parameter, logP has also been 

carried out and the equation is given as under; and not very significant. 

 

Acidity log(1/C) = - 0.0315(± 0.0403) logP-1.6491 

 

n = 16, Degree of freedom = 14, r = 0.2046, r2 = 0.0419, q2 = -0.2264, F test = 0.6126.  

 

2. Volume of Gastric Secretion: 

Description of the descriptors used in the final equation: 

1. SaaNE-index:  

An Electro topological state index for number of nitrogen atom connected with two 

aromatic bonds and is directly proportional to the activity.   

2. chi3Cluster: 

This descriptor signifies simple 3rd order cluster chi index in a compound and is inversely 

proportional to the activity. 

3. XcompDipole: 

This descriptor signifies the x component of the dipole moment (external coordinates) and 

is directly proportional to the activity. 

Of these, the best equation was given as under: 
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Volume log(1/C) = + 0.3554(± 0.0221) SaaNE-index - 0.4466(± 0.1681) chi3Cluster 

        + 0.0439(± 0.0139) XcompDipole -2.3894………….. (Equation-5) 

 

n = 16, Degree of freedom = 12, r = 0.9793, r2 = 0.9591, q2 = 0.6276, F test = 93.7008, 

s = 0.1181, t = 2.179 (95%).  

 

The resultant equation was evaluated on the basis of good r (coefficient of regression), 

(r2) coefficient of determination, high cross-validated r2 for internal productivity and other 

statistical terms like higher F value. 

 

The observed and predicted biological activities of the molecules under study are given in 

table-17. 

 

Table-17: Observed and predicted biological activities the molecules under study. 

 

Compound Observed 
Activity 

Predictive 
Activity 

Residuals 

IV ii -1.781 -1.64482 0.13618 
IV iv -1.835 -1.76983 0.065166 
IV vi -1.84 -1.77703 0.062968 
IV viii -1.633 -1.67031 -0.08831 
IV x -1.582 -1.7035 0.119503 
IV xii -1.823 -1.7585 -0.1255 
IV xiv -1.762 -1.80356 -0.04156 
IV xvi -1.751 -1.78582 -0.03482 
IV xviii -1.787 -1.77591 0.011091 
IV xxi -1.678 -1.62873 0.049266 
IV xxiii -1.373 -1.56862 -0.19562 
IV xxv -1.709 -1.62632 0.082684 
IV xxix -1.709 -1.666 0.043002 
IV xxxi -1.551 -1.58987 -0.03887 
IV xxxiii -1.765 -1.81295 -0.04795 
IV xxxv -0.861 0.002715 0.002715 

 

Regression analysis of these molecules with the lipophilic parameter logP has also been 

carried out and the equation is given as under; and is not very significant. 

Volume log(1/C) = - 0.0909(± 0.0778) logP -1.4993 

n = 16, Degree of freedom = 14, r = 0.2981, r2 = 0.0889, q2 = -0.1806, F test = 1.3656.  
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3. Ulcer score  

Description of the descriptors used in the final equation: 

1. Quadrupole2: 

This descriptor signifies magnitude of second tensor of quadrupole moments and is 

inversely proportional to the activity.   

2. chiV6chain: 

This descriptor signifies atomic valence connectivity index for six membered ring and is 

inversely proportional to the activity. 

3. T_O_S_3: 

This is the count of number of oxygen atoms (single double or triple bonded) separated 

from sulfur atom by 3 bond distance in a molecule and is inversely proportional the 

activity. 

 Compound IV xviii has been removed as an outlier from the series. Of these the best 

equation was given as under: 

 

Ulcer score log(1/C) = - 0.0067(± 0.0000) Quadrupole2 -9.6483(± 1.8345) chiV6chain 

            - 0.1924(± 0.0029) T_O_S_3 + 0.4548….. ………… (Equation-6) 

 

n = 15, Degree of freedom = 11, r = 0.9106, r2 = 0.8292, q2 = 0.6485, F test = 17.8008, 

s = 0.1993, t = 2.201 (95%). 

 

The resultant equation was evaluated on the basis of good r (coefficient of regression), 

(r2) coefficient of determination, high cross-validated r2 for internal productivity and other 

statistical terms like higher F value. 

 

The observed and predicted biological activities of the molecules under study are given in 

table-18. 
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Table-18: Observed and predicted biological activities of the molecules under study. 

Compound Observed  
Activity 

Predicted 
Activity 

Residuals 

IV ii -0.398 -0.41755 -0.01955 
IV iv -0.176 -0.36548 -0.18948 
IV vi -0.415 -0.31857 0.096429 
IV viii 0.398 0.209533 -0.18847 
IV x -0.079 -0.19428 -0.11528 
IV xii -0.415 -0.41383 0.00117 
IV xiv -0.255 -0.18184 0.073165 
IV xvi -0.049 -0.09709 -0.04809 
IV xxi 0.06 0.174431 0.114431 
IV xxiii 0.301 0.350227 0.049227 
IV xxv 0 0.097442 0.097442 
IV xxix 0.208 0.142233 -0.06577 
IV xxxi -0.279 -0.21341 0.065595 
IV xxxiii -0.439 -0.2529 0.186102 
IV xxxv 0 -0.05693 -0.05693 

 

Regression analysis of these molecules with the lipophilic parameter logP has also been 

carried out and the equation is given as under; which is not very significant. 

 

Ulcer Score log(1/C) = + 0.1239(± 0.0906) logP -0.2800 

 

n = 16, Degree of freedom = 14, r =0.3432, r2 = 0.1178, q2 = -0.1596, F test = 1.8699.  
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Table-19a: Properties of the most active and most inactive molecules used in the study and their comparison with currently used PPI’s.  

Comp. No. Quadrupole2 T_C_O_2 chi4path
Cluster 

T_2_O_2 chiV6chain chi3Cluster XcompDipole T_2_O_6 Dipole 
Moment 

SaaNE-
index 

T_O_S_3 

Omeprazole -0.503 6 4.339 5.000 0.040 1.671 1.244 6 2.995 8.939382 0.000 

Esomeprazole -15.812 6 4.339 5.000 0.040 1.671 1.276 6 2.893 8.939382 0.000 

Lansoprazole 1.584 8 3.888 7.000 0.043 1.817 2.205 7 2.804 8.546975 0.000 

Pentaprazole -11.284 8 3.888 7.000 0.043 1.817 2.594 7 2.804 8.546975 0.000 

Rabiprazole -38.656 6 3.855 3.000 0.044 1.467 -3.178 7 6.051 9.019930 0.000 

IVi 58.752 3 4.356 2.000 0.104 1.756 0.175 -- -- -- -- 

IVvii  -2.166 3 4.573 -- -- -- -- -- -- -- -- 

IViii -11.035 5 5.018 -- -- -- -- -- -- -- -- 

IVxiii  -61.437 3 4.808 -- -- -- -- -- -- -- -- 

IVxx  -52.304 3 4.356 -- -- -- -- -- -- -- -- 

IVxvii  -38.059 -- 4.808 2.000 0.070 2.045 0.983 -- -- -- --- 

IVxxxii  -14.619 -- 4.875 4.000 -- -- -- -- -- -- -- 

IVxxiv  -31.911 -- 4.859 2.000 -- -- -- -- -- -- -- 

IVxix  -- -- -- -- 0.074 1.967 0.149 -- -- -- -- 

IVxxiv  -- -- -- -- 0.070 1.478 -0.832 -- -- -- -- 

IVxxx  -- -- -- -- 0.063 1.812 4.863 -- -- -- -- 

IVx  -- -- -- -- -- 1.960 -0.101 9 2.417 4.499 -- 

IVxxxiii  -12.414 -- -- -- 0.062 -- -1.96 11 6.853 -- 1.000 

IVvi  -- -- -- -- -- -- 0.482 12 1.963 -- -- 

IVxii  -- -- -- -- -- -- 1.187 11 3.497 -- -- 

IVxiv  -- -- -- -- -- 2.249 -0.253 9 2.479 4.506 -- 

IVii -- -- -- -- -- 1.960 0.399 -- -- 4.509 -- 

IViv  10.279 -- -- -- 0.038 2.222 0.719 -- -- 4.447 2.000 

IVviii  -18.163 -- -- -- 0.038 -- -- -- -- -- 0.000 

IVxxiii  -39.210 -- -- -- 0.038 -- -- -- -- -- 0.000 
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Discussion: 

From these results it is can be seen that multiple regression analysis method allows 

building statistically significant model. It is evident from all the six equations (models) 

developed. It is the electronic and stearic parameters that govern the activity of the proton 

pump inhibitors used in the present study.  

For 5-H-benzimidazole series of compounds, total acidity and volume of gastric 

secretion is directly influenced by the two common electronic and steric parameters i.e. 

quadrupole2 and chi4pathCluster. This suggests that substitutions that increase the 

contribution of quadrupole2 and chi4pathCluster may lead to increase in the activity. For 

total acidity, the third descriptor, T_C_O_2 is inversely proportional to the activity that 

means substitution with oxygen atom separated from any carbon atom (single or double 

bonded) by two bond distance in a molecule may lead to negative effect on the activity. 

Similarly, for volume of gastric secretion, descriptor T_2_O_2 is inversely proportional 

to the activity that means, substitution with oxygen atom separated from any double 

bonded atom by two bond distances in a molecule may lead to negative effect on the 

activity. For ulcer score, steric parameter (chiV6chain and chi3cluster) directly influences 

the activity, while the electronic parameter XcompDipole, is influencing the activity, 

inversely as indicated by its minus sign. 

In 5-methoxybenzimidazole series, descriptor XcompDipole (electronic parameter) is 

directly influencing the total acidity and volume of the gastric secretion. This suggests 

that substitution that leads to positive contribution in XcompDipole, may lead to increase 

in activity. 

For total acidity, dipole moment is contributing positively in the activity of the molecule 

while descriptor T_2_O_6 that is substitution on oxygen atom separated from any double 

bonded atom by six bond distance shall lead to negative effect on the activity. 

For volume of gastric secretion, SaaNE-index (any nitrogen atom connected with two 

aromatic bonds) plays important role in activity as it directly influences the activity. 

While increases in the value of chi3Cluster leads to negative effects on the activity. For 

ulcer score, both electronic (Quadrupole2) and stearic (chiV6chain) parameters influence 

the activity in the indirect manner, that means substitutions that increases the 

contributions of these parameters may lead to decrease in the activity. The third 

descriptor, T_O_S_3 that is presence of substitution on sulfur atom separated from any 

oxygen atom (single or double bonded) by three bond distance may lead to decrease in 

the activity. 
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Table-19b. List of QSAR equations developed for the 5-H benzimidazole and 5-methoxybenzimidazole series of compounds under study. 

S. 
No. 

Total Acidity Volume of Gastric Secretion Ulcer Score 

For H-Benzimidazole series  
1. Acidity log(1/C) =  

+0.0044(±0.0000)Quadrupole2         
-0.0792(± 0.0121)T_C_O_2  
+0.1386(±0.0547)chi4pathCluster   
-1.9411  
and  
Acidity log(1/C) =  
-0.0703(± 0.0398)logP -1.5503 
 

Volume log(1/C) = 
+0.0044(± 0.0000)Quadrupole2  
-0.0792(±0.0121)T_2_O_2+0.1385(±0.0548) 
+chi4pathCluster -2.019  
and  
Volume log(1/C) =  
-0.0704(± 0.0398) logP-1.5501 

 
 

Ulcer score log(1/C) =  
+11.5236(±1.5660)chiV6chain  
+1.0933(±0.0853)chi3Cluster 
-0.0592(±0.0009) XcompDipole-2.8581  
and  
Ulcer Score log(1/C) = + 0.0452(± 0.0615)XlogP  
-0.2637 
  

For 5-Methoxybenzimidazole series 
2. Acidity log(1/C) = 

-0.0469(± 0.0128)T_2_O_6  
+0.0391(± 0.0164)XcompDipole 
+0.0183(± 0.0110)DipoleMoment -
1.3513  
and  
Acidity log(1/C) = 
-0.0315(± 0.0403)logP-1.6491 

Volume log(1/C) =  
+0.3554(± 0.0221)SaaNE-index 
-0.4466(± 0.1681)chi3Cluster 
+ 0.0439(± 0.0139)XcompDipole-2.3894  
and  
Volume log(1/C) = -0.0909(± 0.0778)logP 
-1.4993 
 

Ulcer score log(1/C) =  
-0.0067(±0.0000)Quadrupole2  
-9.6483(± 1.8345)chiV6chain 
-0.1924(± 0.0029)T_O_S_3+0.4548  
and  
Ulcer Score log(1/C) = +0.1239(± 0.0906)logP  
-0.2800 
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4. Experimental 

 

All the chemicals used in the synthesis were of laboratory grade. The melting points were 

determined in open capillary method on Veego (VMP-D) electronic apparatus and are 

uncorrected.  

 

The IR spectra of synthesized compounds were recorded on Shimadzu 8400-S FT-IR, as 

well as, Perkin Elmer BX2 FT-IR Spectrophotometer in potassium bromide discs.  
 

1H NMR spectra were recorded on a Bruker AC 400 MHz FT-NMR spectrometer using 

TMS (Tetramethyl silane) as an internal standard and DMSO-d6 as a solvent at SAIF, 

Punjab University, Chandigarh.  

 

Mass spectra were obtained by Electron Impact method on (GCMS-QP2010 

spectrometer) using 70 eV ionizing beam and using direct insertion probe. 

 

To monitor the reactions, as well as, to establish the identity and purity of reactants and 

products, thin layer chromatography was performed on precoated silica plates (Merck 

Silicagel F254) using hexane-ethyl acetate-glacial acetic acid  as the solvent systems and 

the spots were visualized by exposure to iodine vapors or under ultra violet (UV) light at 

254 nm and 360 nm. 

 

4.1 Synthesis of Starting Materials 

 

4.1.1 Synthesis of chloroacetonitrile (CAS # 107142)1,2: 

a. Synthesis of chloroacetamide  

In a 2 liter round-bottomed flask, fitted with a mechanical stirrer and surrounded by an 

ice-bath was placed 215 gm (1.75 mole) of ethyl chloroacetate. To the vigorously stirred 

cold ester, 200 ml of chilled aq. ammonia (sp. gr 0.9) was added. The solution was stirred 

in the cold for further 30 min; thereafter another 200 ml portion of aq. ammonia was 

added and the stirring was continued for about 15 min. The mixture was then allowed to 

stand for 30 min at 0-5oC, filtered under suction and washed with 25 ml portion of cold 

water to remove ammonium chloride. The yield of air-dried material, melting at 118-
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119oC was 128-138 gm (78-84% of the theoretical amount). The crude product was used 

as such in further step. 

 

b. Synthesis of chloroacetonitrile 

In a 3 litre round-bottomed flask fitted with an efficient mechanical stirrer, a reflux 

condenser and a thermometer were placed 170 gm (1.2 mole) of phosphorous pentoxide, 

187 gm (2 mole) of chloroacetamide and 800 ml of dry technical trimethylbenzene. The 

mixture was refluxed gently with vigorous stirring for 1 hr. The reaction mixture was then 

allowed to cool to about 100oC with continuous stirring and the reflux condenser was 

replaced with a distilling adapter fitted with a thermometer and a water-cooled condenser. 

The crude product and part of solvent were distilled at atmospheric pressure. The yield of 

crude product boiling at 124-128oC was 121-131 gm (80-87%). To obtain pure product, 

the crude chloroacetonitrile was mixed with 10 g of phosphorous pentoxide and 

redistilled through an efficient packed fractionating column. The yield of the pure 

chloroacetonitrile distilling at 123-124oC was 93-106 gm (62-70%). 

 

4.1.2 Synthesis of Thiophene o-aminoesters (Ii-xii)3,4 

 

1. Synthesis of 2-amino-3-carbethoxy-4,5,6,7-tetrahydrobenzo(b)thiophene(Ii) 

(Method A) 

Cyclohexanone (9.8 gm; 0.1 mole), powdered sulfur (3.2 gm; 0.1mole), ethyl 

cyanoacetate (11.7 gm; 0.1 mole) and ethanol (20 ml) were mixed and stirred together at 

room temperature. To this well stirred mixture, diethylamine (9.14 gm; 0.125 mole) was 

added dropwise in 0.5 hrs and stirring continued for another 3 hrs at ambient temperature. 

The reaction mixture was allowed to attain room temperature and thereafter kept in 

refrigerator overnight. The solid separated was filtered at suction and washed with 20 ml 

chilled 50% aq. methanol. The product (18.0 gm; 80% yield) having m.p 110-112oC 

(112-115oC)5 was characterized as 2-amino-3-carbethoxy-4,5,6,7-tetrahydrobenzo(b)-

thiophene (Ii). 

 

Mol. Formula : C11H15NO2S; Mol. Wt. 225  

IR (KBr) cm-1 : 3414, 3306(γNH), 3165, 3074, 2988(γC-H), 1725(γCOOEt). 

UV(MeOH) : 311 nm 
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2. Synthesis of 2-amino-3-carbethoxy-5-cabemethoxy-4-methylthiophene (Iii) 

(Method A) 

Methyl acetoacetate (11.6 gm; 0.1 mole), sulfur (3.2 gm; 0.1 mole) and ethyl 

cyanoacetate (11.7 gm; 0.1 mole) were reacted in ethanol (20 ml) in presence of 

diethylamine (9.14 gm; 0.125 mole) as per the procedure described for compound (Ii). 

The product (17 gm; 70% yield) having m.p. 80-82oC was characterized as 2-amino-3-

carbethoxy-5-cabemethoxy-4-methylthiophene (Iii). 

 

Mol. Formula  : C10H13NO4S; Mol. Wt. 243.2 

IR (KBr) cm-1 : 3430, 3311(γNH), 3170, 3070, 2979(γC-H), 1724(γCOOEt). 

UV(MeOH) : 312 nm 

 

 3. Synthesis of 2-amino-3,4-dicarbethoxy-5-methylthiophene (Iiii) (Method A) 

Ethyl acetoacetate (13.0 gm; 0.1 mole), sulfur (3.2 gm; 0.1 mole) and ethyl cyanoacetate 

(11.7 gm; 0.1 mole) were reacted in ethanol (20 ml) in the presence of diethylamine (9.14 

gm; 0.125 mole) as per the procedure described for compound (Ii). The product (13.0 gm; 

50.5% yield) having m.p. 103-105oC (108-109oC)5 was characterized as 2-amino-3,4-

dicarbethoxy-5-methylthiophene (Iiii). 

 

Mol. Formula  : C11H15NO4S; Mol. Wt. 257.3 

IR (KBr) cm-1
 : 3408, 3294(γNH),  2988(γC-H), 1722(γCOOEt). 

UV(MeOH) : 314.4 nm 

 

4. Synthesis of 2-amino-3-carbethoxy-4,5-dimethylthiophene (Iiv) (Method A) 

2-Butanone (ethylmethylketone) (7.21 gm; 0.1 mole), sulfur (3.2 gm; 0.1 mole) and ethyl 

cyanoacetate (11.7 gm; 0.1 mole) were reacted in ethanol (20 ml) in the presence of 

diethylamine (10.0 gm; 0.125 mole) as per the procedure described for compound (Ii). 

The product (10 gm; 50% yield) having m.p. 92-93oC (91-93oC)5 was characterized as 2-

amino-3-carbethoxy-4,5-dimethylthiophene (Iiv). 

 

Mol. Formula : C9H13NO2S; Mol. Wt. 199.2     

IR (KBr) cm-1 : 3425, 3312(γNH), 3155, 2984(γC-H), 1724(γCOOEt). 

UV(MeOH) : 310.4 nm 
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5. Synthesis of ethyl 2-amino-4-phenylthiophene-3-carboxylate (Iv) (Method B) 

Step-I 

Acetophenone (12.0 gm; 0.1 mole), ethyl cyanoacetate (11.3 gm; 0.1 mole), glacial acetic 

acid (4.8 gm; 0.08 mole), anhydrous ammonium acetate (1.54 gm; 0.02 mole) and dry 

benzene (50 ml) were refluxed in a round bottomed flask, fitted with a Dean-Stark 

condenser until the total water removed in the side arm was slightly excess than the 

calculated value. Benzene was distilled out thereafter and reaction mixture was dissolved 

in dichloromethane (50 ml) and given washings of aq. NaHCO3 (20 ml; 10% w/v 

solution), aq. NaCl (20 ml; 10% w/v solution) and water (20 ml). The organic layer was 

separated, dried (Na2SO4) and dichloromethane was distilled out. The solid product 

alkylidene ethyl cyanoacetate obtained (24.2 gm) was used as such for the second step, 

without purification. 

Step-II 

The alkylidene ethyl cyanoacetate was thereafter dissolved in methanol (50 ml) and sulfur 

(2.6 gm; 0.08 mole) was added, the reaction mixture was then stirred and maintained at 

50-60oC. Then, diethylamine (7.39 gm; 0.1 mole) was added dropwise over 30 min. at a 

temperature around 60oC. The reaction mixture was stirred further at 50oC for 6-8 hrs & 

cooled overnight. The crystalline product separated was filtered, washed with 50% aq. 

ethanol and dried. The product, (9.0 gm; 75% yield) melting at 95-97oC, (97-99oC)5, was 

characterized as ethyl 2-amino-4-phenylthiophene-3-carboxylate (Iv).  

 

Mol. Formula  : C13H13NO2S; Mol. Wt. 247.3 

IR (KBr) cm-1
 : 3435, 3320(γNH), 3163, 2980(γC-H), 1722(γCOOEt). 

UV(MeOH) : 298.4 nm 

 

6. Synthesis of ethyl 2-amino-4-(4-methoxyphenyl)thiophene-3-carboxylate (Ivi) 

(Method B) 

This compound was prepared in two steps by reacting 4-methoxyacetophenone (15.0 gm; 

0.1 mole), ethyl cyanoacetate (11.3 gm; 0.1 mole) and sulfur (2.6 gm; 0.08 mole) as 

described for compound (Iv). The crystalline product separated was filtered, washed with 

50% aq. ethanol and dried. The product, (11 gm; 73.3% yield) melting at 205-208oC, 

(208-210oC)5 was characterized as ethyl 2-amino-4-(4-methoxyphenyl)thiophene-3-

carboxylate (Ivi).  
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Mol. Formula  : C14H15NO3S; Mol. Wt. 277.3 

IR (KBr) cm-1
 : 3440, 3315(γNH), 3160, 2983(γC-H), 1724(γCOOEt). 

UV(MeOH) : 270.6 nm 

 

7. Synthesis of ethyl 2-amino-4-(4-methylphenyl)thiophene-3-carboxylate (Ivii) 

(Method B) 

This compound was prepared in two steps by reacting 4-methylacetophenone (13.4 gm; 

0.1 mole), ethyl cyanoacetate (11.3 gm; 0.1 mole) and sulfur (2.6 gm; 0.08 mole) as per 

the procedure described for compound (Iv). The crystalline product separated was 

filtered, washed with 50% aq. ethanol and dried. The product, (12 gm; 89% yield) melting 

at 102-104oC (102-104oC)5 was characterized as ethyl 2-amino-4-(4-

methylphenyl)thiophene-3-carboxylate (Ivii). 

 

Mol. Formula  : C14H15NO2S; Mol. Wt. 261.3 

IR (KBr) cm-1
 : 3432, 3319(γNH), 3173, 2985(γC-H), 1727(γCOOEt). 

UV(MeOH) : 292.4 nm 

 

8. Synthesis of ethyl 2-amino-4-(4-bromophenyl)thiophene-3-carboxylate (Iviii) 

(Method B) 

This compound was prepared in two steps by reacting 4-bromoacetophenone (19.7 gm; 0.1 

mole), ethyl cyanoacetate (11.3 gm; 0.1 mole) and sulfur (2.6 gm; 0.08 mole) as per the 

procedure described for compound (Iv). The crystalline product separated was filtered, 

washed with 50% aq. ethanol and dried. The product, (15 gm; 76% yield) melting at 78-

80oC was characterized as ethyl 2-amino-4-(4-bromophenyl)thiophene-3-carboxylate (Iviii). 

 

Mol. Formula  : C13H12BrNO2S; Mol. Wt. 326.2 

IR (KBr) cm-1
 : 3433, 3323(γNH), 3162, 2985(γC-H), 1719(γCOOEt). 

UV(MeOH) : 309 nm 

 

9. Synthesis of ethyl 2-amino-4-(4-chlorophenyl)thiophene-3-carboxylate (Iix) 

(Method B) 

This compound was prepared in two steps by reacting 4-chloroacetophenone (15.4 gm; 

0.1 mole), ethyl cyanoacetate (11.3 gm; 0.1 mole) and sulfur (2.6 gm; 0.08 mole) as per 
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the procedure described for compound (Iv). The crystalline product separated was 

filtered, washed with 50% aq. ethanol and dried. The product, (12 gm; 80% yield) m.p. 

102-104oC (102-104oC)5 was characterized as ethyl 2-amino-4-(4-chlorophenyl)-

thiophene-3-carboxylate (Iix). 

 

Mol. Formula  : C13H12ClNO2S; Mol. Wt. 281.7 

IR (KBr) cm-1
 : 3450, 3333(γNH), 3109, 2890(γC-H), 1721(γCOOEt).   

UV(MeOH) : 286.2 nm 

 

10. Synthesis of ethyl 2-amino-5-methyl-4-phenylthiophene-3-carboxylate (Ix) 

(Method B) 

This compound was prepared in two steps by reacting propiophenone (14.4 gm; 0.1 

mole), ethyl cyanoacetate (11.3 gm; 0.1 mole) and sulfur (2.6 gm; 0.08 mole) as per the 

procedure described for compound (Iv). The crystalline product separated was filtered, 

washed with 50% aq. ethanol and dried. The product, (11.0 gm; 76% yield) of m.p. 91-

93oC (91-93oC)5 was characterized as ethyl 2-amino-5-methyl-4-phenylthiophene-3-

carboxylate (Ix). 

 

Mol. Formula : C14H15NO2S; Mol. Wt. 261.3 

IR (KBr) cm-1
 : 3450, 3333(γNH), 3109, 2890(γC-H), 1723(γCOOEt).   

UV(MeOH) : 307 nm 

 

11. Synthesis of ethyl 2-amino-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carboxylate 

(Ixi)  (Method B) 

This compound was prepared in two steps by reacting cyclopentanone (8.4 gm; 0.1 mole), 

ethyl cyanoacetate (11.3 gm; 0.1 mole) and sulfur (2.6 gm; 0.08 mole) as per the 

procedure described for compound (Iv). The crystalline product separated was filtered, 

washed with 50% aq. ethanol and dried. The product, (5 gm; 59% yield) melting at 89-

91oC (91-93oC)5 was characterized as ethyl 2-amino-5,6-dihydro-4H-cyclopenta[b]-

thiophene-3-carboxylate (Ixi). 

 

Mol. Formula : C10H13NO2S; Mol. Wt. 211.2 

IR (KBr) cm-1 : 3450, 3333(γNH), 3109, 2890(γC-H), 1728(γCOOEt).   
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UV(MeOH) : 312 nm 

 

12. Synthesis of ethyl 2-amino-5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophene-3-

carboxylate (Ixii) (Method B) 

This compound was prepared in two steps by reacting cycloheptanone (11.2 gm; 0.1 

mole), ethyl cyanoacetate (11.3 gm; 0.1 mole) and sulfur (2.6 gm; 0.08 mole) as per the 

procedure described for compound (Iv). The crystalline product separated was filtered, 

washed with 50% aq. ethanol and dried. The product, (8.0 gm; 71% yield) of m.p. 88-

90oC (88-90oC)6 was characterized as ethyl 2-amino-5,6,7,8-tetrahydro-4H-cyclohepta-

[b]thiophene-3-carboxylate (Ixii).  

 

Mol. Formula  : C12H17NO2S; Mol. Wt. 239.1 

IR (KBr) cm-1
 : 3453, 3337(γNH), 3112, 2895(γC-H), 1723(γCOOEt). 

UV(MeOH) : 310 nm 

 

4.2 Synthesis of starting materials (Ixiii-xvii) of other condensed pyrimidines (Ixiii-

xvii) 

 

13. Synthesis of 3-amino-2-carbethoxy-4, 6-dimethylthieno[2,3-b]pyridine (Ixiii) 

a. Synthesis of thiocyanoacetamide 

To a solution of malononitrile (6.6 gm; 1 mole) in ethanol (20 ml); triethylamine (0.5 ml) 

was added and the mixture was stirred while H2S gas was bubbled into the solution for 3-

4 hrs at room temperature. Three crops of crystals were isolated and recrystallization from 

ethanol to yield 7.84 gm (80%) of a crystalline product. m.p. 114-115oC (116-117oC)7. 

 

Mol. Formula : C3H4N2S; Mol. wt. 100              

 

b. Synthesis of 4, 6-dimethyl-3-cyano-2-mercaptopyridine 

To a suspension of thiocyanoacetamide (9.8 gm; 0.1 mole) in ethanol (100 ml), was 

added acetylacetone (10 gm; 0.1 mole) followed by triethylamine (1 ml) dropwise, while 

stirring the solution. Thereafter, the solution was allowed to stand at room temperature for 

1 hr. The solid separated out was filtered washed with cold ethanol and dried. 
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Recrystallization from ethanol yielded 15.4 gm (90%) of crystalline product, m.p. 259-

260oC (262-264oC).8 

Mol. Formula : C8H8N2S; Mol. Wt. 164 

 

c. Synthesis of 3-amino-2-carbethoxy-4,6-dimethylthieno[2,3-b]pyridine8 

To a solution of sodium ethoxide, prepared by dissolving sodium (2.3 gm; 0.1 mole) in 

absolute ethanol (50 ml), 4, 6-dimethyl-3-cyano-2-mercaptopyridine (8.2 gm; 0.05 mole) 

was added,  followed by dropwise addition of ethyl chloroacetate (6.2 gm; 0.05 mole) 

over 15 min.  The reaction mixture was stirred at room temperature for 1.5 hrs and then 

allowed to stand at RT for 1.5 hrs and poured into ice-water (100 ml) mixture. The solid 

separated out was filtered, washed with water, dried and recrystallized from ethanol to 

yield 11.2 gm (90%) of crystalline product. m.p. 152-156oC (152-156oC)8.  

 

M.P. : 152-156oC; Yield: 90% 

Mol. Formula          : C12H14N2O2S; Mol. Wt. 250.3 

IR (KBr) cm-1 : 3435, 3332(γNH), 2979(γC-H), 1668(γC=O). 
1H NMR (CDCl3)δppm : 1.38 (3H, t, COOCH2CH3, J = 5.1 & 6.9), 2.57 (3H, s, CH3), 

2.71 (3H, s, CH3), 4.32 (2H, q, COOCH2CH3, J = 6.9 & 7.2), 

6.14 (2H, s, NH2), 6.82 (1H, s, Ar-H). 

MS m/e : 250(M+), 222, 204, 176, 149, 132. 

 

14. Synthesis of 3-amino-2-carbethoxyquinazolin-4-one9 (Ixiv) 

a. Synthesis of anthranilic acid hydrazide: 

Methyl anthranilate (0.065 mole; 10 ml) and hydrazine hydrate (0.2 mole; 9.57 ml) were 

taken in a 250 ml RBF attached with a reflux condenser. The reaction mixture was 

refluxed for 2 hrs. The reaction mixture was cooled, avoiding direct exposure to the 

sunlight. Solid crystals of anthranilic acid hydrazide separated out. The flask was chilled 

out overnight and the crystals were filtered, washed with isopropyl alcohol and dried to 

afford the product (10.0 gm). 

 

M.P.   : 118-119oC (120-122oC)9; Yield: 90%  

Mol. Formula  : C7H9N3O; Mol. Wt.: 151.1  

 

b. Synthesis of 3-amino-2-carbethoxyquinazolin-4-one (Ixiv) 
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The mixture of anthranilic acid hydrazide (10.02 gm; 0.05 mole) and diethyl oxalate (19.5 

gm; 0.133 mole) was heated under reflux with stirring in an oil bath at 180oC for 6 hrs. 

The excess of diethyl oxalate was removed under vacuum to give a semi-solid which 

became crystalline on treatment with ethanol. Recrystallization from methylene 

dichloride gave 6.8 gm (44%) of colorless crystals of 3-amino-2-carbethoxyquinazolin-4-

one (Ixiv) (140-142oC)9. 

 

M.P. : 137-139oC; Yield: 44% 

Mol. Formula : C11H11N3O3; Mol. Wt. 233.2 

IR(KBr)cm-1 : 3476, 3334(γNH), 2998(γC-H), 1739(γC=O), 1687(γCONH). 
1H NMR (CDCl3)δppm : 1.45 (3H, t, COOCH2CH3, J = 7.2), 4.50 (2H, q, COOCH2CH3, 

J = 6.9 & 7.2), 5.15 (2H, s, br, NH2), 7.48-8.29 (4H, m, Ar-H). 

MS m/e : 233(M+), 218, 204, 161, 144. 

 

15. Synthesis of methyl 3, 4-dimethoxy-6-amino-benzoate10 (Ixv) 

a. Synthesis of 3, 4-dimethoxybenzaldehyde 

The solution of KOH (30.3 gm in 49.5 ml water) was added dropwise into the melted 

vanillin (0.3 mol; 50.0 gm) with constant stirring. Simultaneously, dimethyl sulfate (52.8 

gm; 0.39 mol) was added dropwise with continuous stirring till addition was complete. 

The mixture was transferred to porcelin dish and kept overnight, then washed with ice 

cold water and dried in a vacuum dessicator. The product (51.0 gm; 93.4%) melting at 43-

44oC (44oC)10 was characterized as 3, 4-dimethoxybenzaldehyde (veratraldehyde). 

 

M.P.                 : 43-45oC; Yield: 93.4% 

Mol. Formula : C9H10O3; Mol. Wt. 166  

 

b. Synthesis of 3-4-dimethoxy-6-nitrobenzaldehyde  

To the stirred solution of conc. HNO3 (310 ml) in an ice bath (0-5oC), powdered 

veratraldehyde (50.0 gm; 0.3 mole) was added over a period of 45 min. After the addition 

was complete, the reaction mixture was allowed to stand at 15oC for half an hour in dark 

and then poured on an ice-water mixture (2 lit). The yellow voluminous precipitated solid 

was filtered, washed with ice cold water, dried and recrystallized from methanol to yield a 

yellow crystalline solid product. The product (40.0 gm; 62.6% yield) melting at 132-

134oC (134-136oC)10 was characterized as 3-4-dimethoxy,6-nitrobenzaldehyde. 
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M.P. : 132-134oC; Yield: 62.6% 

Mol. Formula  : C9H9NO5; Mol. Wt. 211   

 

c. Synthesis of 3, 4-dimethoxy-6-nitrobenzoic acid  

In a 250 ml conical flask, 2, 3-dimethoxy-6-nitrobenzaldehyde (0.01 mol) was taken in 

acetone (100 ml) and aq. solution of KMnO4 (15 gm in 25 ml water) was charged 

dropwise over a period of 20 min in it. The solution was stirred at RT for another 2 hrs. 

The color of reaction mass changed from dark grey to violet at the end of the addition. 

The reaction mass was filtered through highflow bed and washed with hot water. The 

filtrate was concentrated to remove excess of acetone and acidify with conc. HCl. The 

precipitate formed were filtered, washed with cold water and dried under vacuum to give 

yellow solid (yield 70%) melting at 191-194oC.  

 

M.P. : 191-194oC (191-194oC)10; Yield: 70% 

Mol. Formula : C9H9O6; Mol. Wt. 213 

IR(KBr)cm-1 : 1703(γCOOH), 1529(γC-NO2), 1282(γAr-O-CH3).  

 

d. Synthesis of methyl 3, 4-dimethoxy-6-nitrobenzoate  

Through a solution of 2, 3-dimethoxy-6-nitrobezoic acid (2.13 gm; 0.01 mol) in dry 

methanol (50 ml) dry HCl gas was bubbled over a period of 1-1.5 hrs. Yellow colored 

precipitates were observed after 2-3 hrs of refluxing. The reaction completion was 

monitored by TLC. The reaction mixture was concentrated to half the original volume 

and then quenched in ice-water mixture (100 ml). The solution was extracted with 

chloroform, washed with 10% w/v aq. NaHCO3 solution, dried and concentrated to give 

the yellow colored solid, melting at 141-142oC.  

 

M. P.  : 140-142oC (141-142oC)10; Yield: 88% 

Mol. Formula : C10H11NO6; Mol. Wt. 241 

IR(KBr)cm-1 : 1726(γAr-O-OR), 1519(γC-NO2), 1288(γAr-O-CH3).   

 

e. Synthesis of methyl 3, 4-dimethoxy-6-aminobenzoate (Ixv)  

This step involved the reduction of the nitro group of methyl 3, 4-dimethoxy-6-

nitrobenzoate with the use of iron powder (activated 80#mesh) and catalytic amount of 
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conc. HCl in ethanol at 80oC for 8-9 hrs. The mixture of iron (8.0 gm; 0.62 mol), rectified 

spirit (100 ml) and HCl (3 ml) were stirred and refluxed for 0.5 hr. To this mixture, 

solution of 2-nitro-4, 5-dimethoxymethylbenzoate (5.0 gm; 0.019) in 50 ml of ethanol 

was added over 45 min. Then, the mixture was refluxed with stirring for 12-14 hrs. After 

completion of the reaction, reaction mixture was neutralized with sodium carbonate and 

filtered hot. The filtrate was concentrated to 1/5th of its original volume, cooled to room 

temperature and poured on ice cold water (100 ml). The solid obtained was filtered and 

washed with cold water followed by washing with potassium thiocyanate to remove iron 

impurities. (120-122oC).10   

 

M.P. : 120-122oC; Yield: 47% 

Mol. Formula : C10H13NO4; Mol. Wt. 211 

IR(KBr)cm-1  : 3476, 3373(γNH), 2998(γC-H), 1739(γC=O) 

MS m/e : 211(M+), 196, 164, 136. 

 

16. Synthesis of methyl 3-amino-4-methoxybenzo[b]thiophene 2-carboxylate (Ixvi)  

a. Synthesis of 2-nitro-6-methoxybenzonitrile11 

m-Dinitrobenzene (50 gm; 0.3 mole) was dissolved in 750 ml of methanol in a RBF fitted 

with a mechanical stirrer. The temp was raised to 40oC on water bath & maintained, while 

a solution of KCN (23.0 gm; 0.30 mole) in 400 ml of water was added with stirring. The 

purple mixture was stirred for 2 hrs & then it was allowed to stand at RT for 2-3 days. 

The black ppt. were collected by suction on a buchner funnel & pressed as dry as 

possible. The filtrate was diluted with 6.0 lit of cold water & allowed to stand overnight. 

The brown sludge formed was filtered by suction. The combined precipitates were 

refluxed for 30 min each with 3x50 ml portions of chloroform. The combined chloroform 

extract was filtered while hot and concentrated by distillation. Then petroleum ether (b.p. 

40-60oC) was added to the combined extracts till it became hazy. On chilling the solution, 

the 2-nitro-6-methoxy benzonitrile separated as red powder. 

 

M.P. : 154-156oC (148-157oC)11; Yield: 30% 

Mol. Formula : C8H6N2O3; Mol. Wt. 178.1               

IR(KBr)cm-1  : 2962(γC-H), 2228(γC≡N)      

 

b. Synthesis of methyl thioglycolate12 
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A solution of thioglycolic acid (9.2 gm; 0.1 mole) in 50 ml of methanol was cooled in ice 

bath. Dry HCl gas was bubbled in this solution over 3-4 hrs. The reaction mixture was 

kept overnight, undisturbed at room temperature. Next day, the mixture was boiled on 

water bath for 2-3 hrs, cooled to room temperature, quenched with ice water (50 ml), 

extracted with chloroform and washed with NaHCO3 (10% w/v) and water and dried 

(Na2SO4). On concentrating this organic extracts, gave yellow colored liquid. 

 

B.P. : 120-124oC (120-124oC)12; Yield: 90% 

Mol. Formula : C3H6O2S; Mol. Wt. 106                  

 

c. Synthesis of methyl 3-amino-4-methoxybenzo[b]thiophene 2-carboxylate13 

To a cold solution of 2-nitro-6-methoxybenzonitrile (53 gm; 0.30 mole) and methyl 

thioglycolate in 60 ml of dry dimethylformamide (31.8 gm; 0.30 mole), an aq. solution of 

KOH (3.0 gm in 15 ml of water) was added with continuous stirring. The solution was 

stirred at 0oC for 3 hrs and then diluted with ice-water. The solid obtained was filtered, 

dried and recrystallized from ethanol-water mixture to yield colorless needles. 

 

M.P. : 140-143oC (147-148oC)13; Yield: 80%  

Mol. Formula : C11H11NO3S; Mol. Wt. 237.2                

IR(KBr)cm-1 : 3484, 3376(γNH), 2947(γC-H), 1670(γC=O). 
1H NMR (CDCl3)δppm : 3.90 (3H, s, CH3 at COOCH3), 3.95 (3H, s, CH3 of OCH3), 6.75 

(2H, s, br, NH2 at 3), 7.21-7.40 (3H, m, Ar-H). 

MS m/e  : 238(M+1), 237(M+), 222, 206. 

 

17. Synthesis of 5-amino-4-carboxamide-3-(methylthio)pyrazole14 (Ixvii) 

a. Synthesis of ethyl-2,2-di-(methylthio)methylene cyanoacetamide  

In an ice cold solution of KOH in 10 ml of water was added 30 ml dimethylformamide 

slowly with stirring and cooling. To this, cyanoacetamide and carbon disulphide were 

added with continuous stirring and cooling. Thereafter, the reaction mixture was cooled 

and stirred for 1 hr at 5-10oC and again stirred for 1 hr at room temperature. The reaction 

mixture was further cooled to 0-5oC and to this, dimethylsulphate was added dropwise 

while maintaining the temperature below 20oC. Stirring was continued further for 2 hrs 

and thereafter the reaction mixture was allowed to stand overnight at room temperature. 
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Next day the reaction mass was poured on to ice-water mixture (100 ml) and the 

separated precipitates were filtered, washed with water and air dried. 

 

M.P. : 72-74oC (74-76oC)14; Yield: 80% 

Mol. Formula : C6H8N2OS2; Mol. Wt. 156 

 

b. Synthesis of 5-amino-4-carboxamido-3-(methylthio)pyrazole 

A mixture of ethyl di(methylthio)methylene cyanoacetamide (16.9 gm; 0.07 mole) and 

phenylhydrazine (10.8 gm; 0.1 mole) in ethanol (100 ml, 95%) was refluxed for 3-4 hrs. 

The excess of ethanol was removed by distillation under reduced pressure. The crystals 

obtained were recrystallized from cyclohexane. 

 

M.P. : 146-150oC; Yield: 56%   

Mol. Formula : C11H12N4OS; Mol. Wt. 248.3 

IR(KBr)cm-1 : 3449, 3394(γNH), 3138(γC-H), 1662(γCONH). 

MS m/e : 248(M+), 231, 216, 198, 186, 157. 

 

4.3 Synthesis of condensed 2-chloromethylthieno[2,3-d]pyrimidin-4(3H)-ones (IIi-

xviii) 

1. Reaction of 2-amino-3-carbethoxy-4,5,6,7-tetrahydrobenzo(b)thiophene with 

chloroacetonitrile in the presence of dry hydrogen chloride gas (IIi) 

A stream of dry hydrogen chloride gas was bubbled through an ice-cold mixture of 2-

amino-3-carbethoxy-4,5,6,7-tetrahydrobenzo(b)thiophene (Ii, 13.52 gm; 0.06 mole) and 

chloroacetonitrile (6.8 gm; 0.09 mole) in dry dioxane (60 ml) for 6-8 hrs. The reaction 

mixture was allowed to stand at room temperature for 12 hrs. The reaction mixture was 

thereafter heated on a water bath for 2 to 3 hrs., cooled to room temperature and poured 

onto ice-water mixture (150-200 ml) and neutralized with strong aq. NH4OH solution (50 

%v/v). The solid separated was filtered, washed with water and dried. The crude product 

on recrystallization from dioxane yielded fine needles (12.62 gm; 82.7%), m.p. 273-

276oC (273-276oC)15, characterized as 2-chloromethyl-5,6,7,8-tetrahydrobenzo(b)thieno-

[2,3-d]pyrimidin-4(3H)-one (IIi).   

 

Mol. Formula : C11H11ClN2OS; Mol. Wt. 254.5 

IR(KBr) cm-1 : 3014(γAr-H), 1662(γCONH), 754(γC-Cl). 
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NMR (CDCl3)δppm : 1.62 (4H, s, CH2 at 6 & 7),  2.77 (2H, s, CH2 at 4), 3.02 (2H, s, 

CH2 at 8), 4.55 (2H, s, CH2 at 2), 10.60 (1H, s, NH at 3).  

MS  m/e : 255(M+), 221, 149.                    

 

2. Reaction of 2-amino-3-carbethoxy-5-carbemethoxy-4-methylthiophene with 

chloroacetonitrile in the presence of dry hydrogen chloride gas (IIii) 

A stream of dry hydrogen chloride gas was bubbled through an ice-cold mixture of        2-

amino-3-carbethoxy-5-carbemethoxy-4-methylthiophene (Iii, 16.3 gm; 0.06 mole) and 

chloroacetonitrile (6.8 gm; 0.09 mole) in dry dioxane (60 ml) for 6-8 hrs. The reaction 

was worked up as for IIi. The crude product on recrystallisation from dioxane yielded 

fine needles (14 gm; 86%), melting at 250-250oC, characterized as methyl 2-

(chloromethyl)-3,4-dihydro-5-methyl-4-oxothieno[2,3-d]pyrimidine 6-carboxylate (IIii).  

 

Mol. Formula : C10H9ClN2O3S; Mol. Wt. 272.71 

IR (KBr) cm-1 : 1724(γCOO-), 1664(γCONH), 2863(γArH), 1254(γCH2),  686(γC-Cl).     

 

3. Reaction of diethyl 5-amino-3-methylthiophene 2,4-dicarboxylate with chloro-

acetonitrile in the presence of dry hydrogen chloride gas (IIiii) 

A stream of dry hydrogen chloride gas was bubbled through an ice-cold mixture of 

diethyl 5-amino-3-methylthiophene 2,4-dicarboxylate (Iiii, 17.1 gm; 0.06 mole) and 

chloroacetonitrile (6.8 gm; 0.09 mole) in dry dioxane (60 ml) for 6-8 hrs. The reaction 

was woked up as for IIi. The crude product on recrystallisation from dioxane yielded fine 

needles (15 gm; 87%), m.p 241-243oC (243-246oC)3, characterized as ethyl 2-

(chloromethyl)-3,4-dihydro-5-methyl-4-oxothieno[2,3-d]pyrimidine-6-carboxylate (IIiii).  

 

Mol. Formula : C11H11ClN2O3S; Mol. Wt. 286.7 

IR (KBr)/cm-1 : 2864(γCH-), 1725(γCOO-), 1670(γCONH), 763(γC-Cl).  

NMR (CDCl3)δppm : 1.41 (3H, t, J = 7, CH3), 2.95 (3H, s, CH3), 4.38 (2H, quartlet, J = 

7, CH2), 4.57 (2H, s, CH2), 10.62 (1H, s, NH),  

MS  m/e : 286(M+). 
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4. Reaction of 2-amino-3-carbethoxy-4,5-dimethylthiophene with chloroacetonitrile 

in the presence of dry hydrogen chloride gas (IIiv) 

A stream of dry hydrogen chloride gas was bubbled through an ice-cold mixture of        2-

amino-3-carbethoxy-4,5-dimethylthiophene (Iiv, 11.9 gm; 0.06 mole) and chloroaceto-

nitrile (6.8 gm; 0.09 mole) in dry dioxane (60 ml) for 6-8 hrs. The reaction mixture was 

worked up as for IIi. The crude product on recrystallisation from dioxane yielded fine 

needles (15 gm; 83%), m.p 252-254oC (253-255oC)3, characterized as 2-(chloromethyl)-

5,6-dimethylthieno[2,3-d]pyrimidin-4(3H)-one (IIiv). 

 

Mol. Formula : C9H9ClN2OS; Mol. Wt. 228.7 

IR(KBr)/cm-1 : 2917(γC-H), 1662(γCONH), 1211(γCH2), 769(γC-Cl).  

NMR (CDCl3)δppm : 2.39 (3H, s, CH3), 2.47 (3H, s, CH3), 4.51 (2H, s, CH2), 10.03 

(1H, s, br, NH). 

MS  m/e : 229(M+).  

 

5. Reaction of ethyl 2-amino-4-phenylthiophene 3-carboxylate with chloro-

acetonitrile in the presence of dry hydrogen chloride gas (IIv) 

A stream of dry hydrogen chloride gas was bubbled through an ice-cold mixture of ethyl 

2-amino-4-phenylthiophene 3-carboxylate (Iv, 14.8 gm; 0.06 mole) and chloroacetonitrile 

(6.8 gm; 0.09 mole) in dry dioxane (60 ml) for 6-8 hrs. The reaction mixture was worked 

up as for IIi. The solid separated was filtered, washed with water and dried. The crude 

product on recrystallisation from dioxane yielded fine needles (18 gm; 80%), m.p 220-

222oC (221-223oC)3, characterized as 2-(chloromethyl)-5-phenylthieno[2,3-d]pyrimidin-

4(3H)-one (IIv).  

 

Mol. Formula : C13H9ClN2OS; Mol. Wt. 276.7 

IR (KBr) cm-1 : 2855(γC-H), 1663(γCONH), 1294(γCH2), 1046 and 748(γC-Cl). 

NMR (CDCl3)δppm : 4.58 (2H, s, CH2), 7.31-7.52 (5H, m, Ar-H and 1H at 6 position), 

12.69 (1H, s, br, NH). 

MS  m/e : 276(M+). 

 



Part-I 
Experimental 

 180 

6. Reaction of ethyl 2-amino-4-(4-methoxyphenyl)thiophene 3-carboxylate with 

chloroacetonitrile in the presence of dry hydrogen chloride gas (IIvi) 

A stream of dry hydrogen chloride gas was bubbled through an ice-cold mixture of ethyl 

2-amino-4-(4-methoxyphenyl)thiophene 3-carboxylate (IIvi, 16.2 gm; 0.06 mole) and 

chloroacetonitrile (6.8 gm; 0.09 mole) in dry dioxane (60 ml) for 6-8 hrs. The reaction 

mixture was worked up as for IIi. The crude product on recrystallisation from dioxane 

yielded fine needles (14 gm; 86%), m.p 205-207oC (208-210oC)3, characterized as 2-

(chloromethyl)-5-(4-methoxyphenyl)thieno[2,3-d]pyrimidin-4(3H)-one (IIvi). 

 

Mol. Formula : C14H11ClN2O2S; Mol Wt. 306.7                          

IR (KBr) cm-1 : 1672(γCONH), 3094(γAr-H), 2945(γC-H), 715(γC-Cl). 

NMR (CDCl3)δppm  : 3.84 (3H, s,  Ar-OCH3), 4.49 (2H, s, CH2 at 2), 7.14-7.54 (5H, m, 

Ar-H at 6).  

 

7. Reaction of ethyl 2-amino-4-(4-methylphenyl)thiophene 3-carboxylate with 

chloroacetonitrile in the presence of dry hydrogen chloride gas (IIvii) 

A stream of dry hydrogen chloride gas was bubbled through an ice-cold mixture of ethyl 

2-amino-4-(4-methylphenyl)thiophene 3-carboxylate (Ivii, 15.6 gm; 0.06 mole) and 

chloroacetonitrile (6.8 gm; 0.09 mole) in dry dioxane (60 ml) for 6-8 hrs. The reaction 

mixture was worked up as for IIi. The solid separated was filtered, washed with water 

and dried. The crude product on recrystallisation from dioxane yielded fine needles (12 

gm; 77%), m.p 258-260oC (260-262oC)4, characterized as 2-(chloromethyl)-5-(4-

methylphenyl)thieno[2,3-d]pyrimidin-4(3H)-one (IIvii). 

 

Mol. Formula : C14H11ClN2OS; Mol. Wt. 290.7 

IR (KBr) cm-1 : 3028(γArH), 1651(γCONH), 762(γC-Cl).  

NMR (CDCl3)δppm : 2.39 (3H, s, CH3), 4.53 (2H, s, CH2), 7.13 (1H, s, CH), 7.19-7.46 

(4H, m, Ar-H), 10.43 (1H,s, NH) 

MS  m/e : 290(M+) 

 

8. Reaction of ethyl 2-amino-4-(4-bromophenyl)thiophene 3-carboxylate with 

chloroacetonitrile in the presence of dry hydrogen chloride gas (IIviii) 

A stream of dry hydrogen chloride gas was bubbled through an ice-cold mixture of ethyl 

2-amino-4-(4-bromophenyl)thiophene 3-carboxylate (Iviii, 19.5 gm; 0.06 mole) and 
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chloroacetonitrile (6.8 gm; 0.09 mole) in dry dioxane (60 ml) for 6-8 hrs. The reaction 

mixture was woked up as for IIi. The crude product on recrystallisation from dioxane 

yielded fine needles (15 gm; 77%), m.p 247-249oC and characterized as 5-(4-

bromophenyl)-2-(chloromethyl)thieno[2,3-d]pyrimidin-4(3H)-one (IIviii). 

 

Mol. Formula : C13H8BrClN2OS; Mol. Wt. 355.6 

IR (KBr) cm-1 : 3049(γArH), 1660(γCONH), 767(γC-Cl). 

 

9. Reaction of ethyl 2-amino-4-(4-chlorophenyl)thiophene 3-carboxylate with 

chloroacetonitrile in the presence of dry hydrogen chloride gas (IIix) 

A stream of dry hydrogen chloride gas was bubbled through an ice-cold mixture of ethyl 

2-amino-4-(4-chlorophenyl)thiophene 3-carboxylate (Iix, 16.8 gm; 0.06 mole) and 

chloroacetonitrile (6.8 gm; 0.09 mole) in dry dioxane (60ml) for 6-8 hrs. The reaction 

mixture was worked up as for IIi. The crude product on recrystallisation from dioxane 

yielded fine needles (14 gm; 83%), m.p 233-234oC (229-231oC)13, characterized as 2-

(chloromethyl)-5-(4-chlorophenyl)thieno[2,3-d]pyrimidin-4(3H)-one (IIix). 

 

Mol. Formula  : C13H8Cl2N2OS; Mol. Wt. 311.1     

IR (KBr) cm-1  : 3107(γAr-H), 1649(γCONH), 756(γC-Cl) 

NMR (CDCl3)δppm  : 4.55 (2H, s,CH2 at 2), 7.40-7.55 (5H, m, Ar-H & H at 6).  

 

10. Reaction of ethyl 2-amino-5-methyl-4-phenylthiophene 3-carboxylate with 

chloroacetonitrile in the presence of dry hydrogen chloride gas (IIx) 

A stream of dry hydrogen chloride gas was bubbled through an ice-cold mixture of ethyl 

2-amino-5-methyl-4-phenylthiophene 3-carboxylate (Ix, 15.6 gm; 0.06 mole) and 

chloroacetonitrile (6.8 gm; 0.09 mole) in dry dioxane (60 ml) for 6-8 hrs. The reaction 

mixture was worked up as for IIi. The crude product on recrystallisation from dioxane 

yielded fine needles (12 gm; 77%), m.p 261-264oC, (262-264oC)4 characterized as 2-

(chloromethyl)-6-methyl-5-phenylthieno[2,3-d]pyrimidin-4(3H)-one (IIx).  

 

Mol. Formula        : C14H11ClN2OS; Mol. Wt. 290.7 

IR (KBr) cm-1          : 3035(γCH2), 1658(γCONH), 628(γC-Cl) 
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NMR (CDCl3)δppm : 2.40 (3H, s, CH3 at 6), 4.42 (2H, s, CH2 at 2), 7.38-7.44 (5H, m, Ar-

H  & H at 5 & 6).  

 

11. Reaction of ethyl 2-amino-5,6-dihydro-4H-cyclopenta[b]thiophene 3-carboxylate 

with chloroacetonitrile in the presence of dry hydrogen chloride gas (IIxi) 

A stream of dry hydrogen chloride gas was bubbled through an ice-cold mixture of ethyl 

2-amino-5,6-dihydro-4H-cyclopenta[b]thiophene 3-carboxylate (Ixi, 12.6 gm; 0.06 mole) 

and chloroacetonitrile (6.8 gm; 0.09 mole) in dry dioxane (60 ml) for 6-8 hrs. The 

reaction mixture was worked up as for IIi. The crude product on recrystallisation from 

dioxane yielded fine needles (9.0 gm; 72%), m.p 276-278oC (278-280oC)3, characterized 

as 2-chloromethyl-3,5,6,7-tetrahydrocyclopenta[4,5]thieno[2,3-d]pyrimidin-4(3H)-one 

(IIxi).  

 

Mol. Formula : C10H9ClN2OS; Mol. Wt. 240.7   

IR (KBr) cm-1 : 1678(γCONH), 3015(γCH2), 754, 686, 625(γC-Cl).      

 

12. Reaction of 2-amino-5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophene 3-carboxylate  

with chloroacetonitrile in the presence of dry hydrogen chloride gas (IIxii) 

A stream of dry hydrogen chloride gas was bubbled through an ice-cold mixture of 2-

amino-5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophene-3-carboxylate (Ixii, 14.3 gm; 0.06 

mole) and chloroacetonitrile (6.8 gm; 0.09 mole) in dry dioxane (60ml) for 6-8 hrs. The 

reaction mixture was worked up as for IIi. The crude product on recrystallisation from 

dioxane yielded fine needles (10 gm; 70%), m.p 188-190oC, characterized as 2-

chloromethyl-3,5,6,7,8,9-hexahydro-10-thia-1,3-diaza-benzo[a]azulen-4-one (IIxii). 

 

M.P. : 188-190oC; Yield: 70% 

Mol. Formula : C12H13ClN2OS; Mol. Wt. 268.7 

IR (KBr) cm-1 : 2924(γC-H), 1670(γCONH), 1471(γC-H), 736, 752(γC-Cl) 

 

13. Reaction of 3-amino-2-carbethoxy-4,6-dimethylthieno[2,3-b]pyridine with 

chloroacetonitrile in the presence of dry hydrogen chloride gas (IIxiii) 

A stream of dry hydrogen chloride gas was bubbled through an ice-cold mixture of 3-

amino-2-carbethoxy-4,6-dimethylthieno[2,3-b]pyridine (Ixiii, 1.5 gm; 0.0066 mole) and 
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chloroacetonitrile (0.98 gm; 0.012 mole) in dry dioxane (20 ml) for 6 hrs. at temperature 

below 10oC. The reaction mixture was worked up as for IIi. The solid separated was 

filtered, washed with water and dried. The crude product on recrystallization from 

chloroform-methanol mixture yield fine needles characterized as 6-chloromethyl-2,4-

dimethyl-7H-9-thia-1,5,7-triaza-fluoren-8-one (IIxiii).  

 

M.P. : 275-277oC (273-275oC)7; Yield: 90% 

Mol. Formula : C12H10Cl N3OS; Mol. Wt. 279.7               

IR (KBr) cm-1 : 3013(γC-H), 1675(γCONH), 746(γC-Cl) 

MS m/e : 281(M+1), 279(M+), 244, 216. 

 

14. Reaction of 3-amino-2-carbethoxyquinazolin-4-one with chloroacetonitrile in the 

presence of dry hydrogen chloride gas (IIxiv) 

A stream of dry hydrogen chloride gas was bubbled through an ice-cold mixture of 3-

amino-2-carbethoxyquinazolin-4-one (Ixiv, 2 gm; 0.0085 mole) and chloroacetonitrile 

(1.30 gm; 0.017 mole) in dry dioxane (20 ml) for 10 hrs. at temperature below 10oC. The 

reaction mixture was then worked up as for IIi. The solid separated was filtered, washed 

with water and dried. The crude product on recrystallization from chloroform-methanol 

mixture yielded fine needles, characterized as 2-(chloromethyl)-3H-[1,2,4]triazino[6,1-

b]quinazoline-4,10-dione  (IIxiv).  

 

M.P. : 240-243oC (242-244oC)16; Yield: 60%  

Mol. Formula : C11H7Cl N4O2; Mol. Wt. 262.6   

IR (KBr) cm-1 : 2896(γC-H), 1686(γCONH), 778(γC-Cl). 

 

15. Reaction methyl 2-amino-4,5-dimethoxybenzoate with chloroacetonitrile in the 

presence of dry hydrogen chloride gas (IIxv)  

A stream of dry hydrogen chloride gas was bubbled through an ice-cold mixture of 

methyl 2-amino-4,5-dimethoxybenzoate (Ixv, 13.5 gm; 0.06 mole) and chloroacetonitrile 

(6.8 gm; 0.09 mole) in dry dioxane (60 ml) for 6 hrs. at temperature below 10oC. The 

reaction mixture was worked up as for IIi. The solid separated was filtered, washed with 

water and dried. The crude product on recrystallization from dioxane yielded fine needles 

characterized as 2-(chloromethyl)-6,7-dimethoxyquinazolin-4(3H)-one (IIxv).  
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M.P. : 240-245oC (240-245oC)12; Yield: 70% 

Mol. Formula : C11H11Cl N2O3; Mol Wt. 254.6 

IR (KBr) cm-1  : 3012(γAr-H), 2888(γC-H), 1666(γCONH), 792, 754(γC-Cl)  

MS m/e : 254(M+), 239, 219 

 

16. Reaction of 2-carbethoxy-3-amino-4-methoxybenzo(b)thiophene with chloro-

acetonitrile in the presence of dry hydrogen chloride gas (IIxvi) 

A stream of dry HCl gas was bubbled through an ice-cold mixture of 2-carbethoxy-3-

amino-4-methoxybenzo(b)thiophene (Ixvi, 2 gm; 0.0079 mole) and chloroacetonitrile 

(1.18 gm; 0.015 mole) in dry dioxane (20 ml) for 6 hrs. at temperature below 10oC. The 

reaction mixture was worked up as for IIi. The solid separated was filtered, washed with 

water and air dried. The crude product on recrystallization from chloroform-methanol 

mixture yield fine needles, characterized as 2-chloromethyl-9-methoxy-3H-benzo-

[4,5]thieno[3,2-d]pyrimidin-4-one (IIxvi).  

 

M.P. : 265-267oC; Yield: 70% 

Mol. Formula : C12H9Cl N2O2S; Mol Wt. 280.7               

IR(KBr)cm-1 : 2978(γC-H), 1676(γCONH), 736(γC-Cl) 

 

17. Synthesis of 2-chloromethylquinazolin-4(3H)-one (IIxvii) 

A stream of dry hydrogen chloride gas was bubbled through an ice-cold mixture of 

methylanthranilate (9.1 gm; 0.06 mole) and chloroacetonitrile (6.7 gm; 0.09 mole) in dry 

dioxane (60 ml) for 6 hrs at temperature below 10oC. The reaction mixture was allowed to 

stand at RT for 12 hrs. The reaction mixture was worked up as for IIi. The solid separated 

was filtered, washed with water and air dried. The crude product on recrystallization from 

chloroform-methanol mixture yield white crystals characterized as 2-

chloromethylquinazolin-4(3H)-one (IIxvii). 

 

M.P.  : 257-258oC (257-258oC)17; Yield: 72.0%     

Molecular formula    : C9H7ClN2O; Mol. wt: 194.5                      

IR (KBr) cm-1
:             : 1699(γCONH)    
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18. Synthesis of 6-(chloromethyl)-3-(methylthio)-1-phenyl-1H-pyrazolo[3,4-d]- 

pyrimidin-4(5H)-one (IIxviii) 

Mixture of 4-methylthio-1-phenyl-pyrazolo-o-aminoamide (Iixvii, 2.0 gm, 0.008 mole) 

and potassium carbonate (6.67 gm, 0.048 mole) were taken in dimethylformamide (15 

ml) and the reaction mixture was cooled to 0-5oC. Chloroacetylchloride (3.13 gm, 0.028 

mole) was then added dropwise and reaction was continued to stirr for 2 hrs. Progress of 

the reaction was monitored by TLC for the formation of the intermediate acetylated 

derivative. At this point, 50 ml of water was added to the reaction mixture and reaction 

was stirred further at 0-5oC for 4-6 hrs. Thereafter, it was allowed to stand overnight. 

Next day the reaction mixture was poured into ice water mixture (100 ml) and the product 

precipitated out as yellow solid was filtered off and air dried and on recrystallization from 

chloroform-methanol mixture, yielded fine crystals, characterized as 6-(chloromethyl)-3-

(methylthio)-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one (IIxviii). 

 

M.P. :  275-277oC; Yield: 90% 

Mol. Formula : C13H11ClN4OS; Mol. Wt. 306.07 

IR (KBr) cm-1 : 2849(γC-H), 1676(γCONH), 765(γC-Cl) 
1H NMR(DMSO-d6)δppm  : 2.50 (3H, s, CH3), 4.35 (2H, s, CH2Cl), 7.12-7.91 (5H, m, 

Ar-H). 

 

4.4 Condensation of the condensed 2-chloromethylthieno[2,3-d]pyrimidin-4(3H)-

ones (IIi-xviii) with 2-mercaptobenzimidazoles (IIIi-xxxv) 

 

1. Condensation of 2-chloromethyl-5,6,7,8-tetrahydrobenzo(b)thieno[2,3-d]-

pyrimidin-4(3H)-one with  2-mercaptobenzimidazole (IIIi) 

2-Mercaptobenzimidazole (1.5 gm; 0.01 mole) was dissolved in 25 ml of 10% sodium 

hydroxide solution by stirring at room temperature. To this clear solution pinch of TEBA 

chloride (Triethyl benzyl ammonium chloride; PTC) was added and stirring was further 

continued for 10 min. To this well stirred solution, added clear solution of 2-

chloromethyl-5,6,7,8-tetrahydrobenzo-(b)thieno[2,3-d]pyrimidin-4(3H)-one (IIi, 2.54 

gm; 0.01 mole) in methylene dichloride (25 ml), over a period of 15-20 min. The reaction 

mixture was stirred at room temperature for 6-8 hrs. After completion of reaction, the 

organic phase was separated and washed with cold water. The organic layer on 

evaporation under reduced pressure gave crude product. The crude product on 
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recrystallization from methanol-chloroform, afforded pale yellow crystals (1.90 gm; 51% 

yield), m.p 264-267oC, characterized as 2-(1H-benzimidazol-2-yl)methylthio-5,6,7,8-

tetrahydrobenzo(b)thieno[2,3-d]pyrimidin-4-(3H)-one (IIIi). 

 

M.P. : 264-267oC; Yield: 51% 

Mol. Formula : C18H16N4OS2; Mol. Wt. 368                      

IR (KBr) cm-1 : 3247(γNH), 2939(γC-H), 1680(γCONH), 743(γC-S).          

NMR (DMSO-d6)δppm : 1.83-1.88 (4H, m, CH2 at 6 & 7), 2.76 (2H, t, CH2 at 5, J = 

5.64),  2.95 (2H, t, CH2 at 8, J = 5.80), 4.39 (2H, s, CH2 at 

SCH2), 7.39-7.16 (4H, m, ArH), 12.50 (1H, s, NH), 13.17 (1H, s, 

NH). 

MS m/e : 368(M+), 335, 307, 150.         

 

2. Synthesis of 2-{[(5-methoxy-1H-benzimidazol-2-yl)thio]methyl}-5,6,7,8-tetra-

hydro[1]benzo-thieno[2,3-d]pyrimidin-4(3H)-one (IIIii) 

2-Mercapto-5-methoxybenzimidazole (1.8 gm; 0.01 mole) was dissolved in 25 ml of 10% 

sodium hydroxide solution by stirring at room temperature. To this clear solution pinch of 

TEBA chloride was added and stirring was further continued for 10 min. To this well 

stirred solution, added clear solution of 2-chloromethyl-5,6,7,8-tetrahydrobenzo(b)-

thieno[2,3-d]pyrimidin-4(3H)-one (IIi, 2.54 gm; 0.01 mole)  in methylene dichloride (25 

ml), over a period of 15-20 min. Reaction was worked up as described for the compound 

IIIi to get the title compound. 

 

M.P. : 210-215oC; Yield: 60%. 

Mol. Formula : C19H18N4O2S2; Mol. Wt. 398.5.  

IR (KBr) cm-1 : 3266(γNH), 2940(γC-H), 1670(γCONH), 643(γC-S).          

NMR(DMSO-d6)δppm : 1.83-1.88 (4H, m, CH2 at 6 & 7), 2.75 (2H, t, CH2 at 5, J = 5), 

2.97 (2H, t, CH2 at 8, J = 5), 3.87 (3H, s, OCH3), 4.32 (2H, s, 

CH2 at SCH2), 6.81-7.25 (3H, m, ArH), 7.57 (1H, s, NH), 12.21 

(1H, s, NH). 

MS m/e : 398(M+), 365, 219, 180.         
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3. Synthesis of methyl 2-[(1H-benzimidazol-2-ylthio)methyl]-5-methyl-4-oxo-3,4-

dihydrothieno[2,3-d]pyrimidine 6-carboxylate (IIIiii)  

2-Mercaptobenzimidazole (1.5 gm; 0.01 mole) was dissolved in 25 ml of 10% sodium 

hydroxide solution by stirring at room temperature. To this clear solution pinch of TEBA 

chloride was added and stirring was further continued for 10 min. To this well stirred 

solution, added clear solution of methyl 2-(chloromethyl)-3,4-dihydro-5-methyl-4-

oxothieno[2,3-d]pyrimidine 6-carboxylate (IIii, 2.72 gm; 0.01 mole) in methylene 

dichloride (25 ml), over a period of 15-20 min. Reaction was worked up as described for 

the compound IIIi to get the title compound. 

 

M.P. : 258-260oC; Yield: 65%. 

Mol. Formula : C17H14N4O3S2; Mol. Wt. 386.4.  

IR (KBr) cm-1 : 3282(γNH), 2956(γC-H), 1667(γCONH), 741(γC-S)          

NMR (DMSO-d6)δppm : 2.90 (3H, s, CH3 at 5), 3.87 (3H, s, CH3 of CH3OOC), 4.36 (2H, 

s, CH2 at SCH2), 7.17 (2H, q, H at imidazole, J = 3.2), 7.53 (2H, 

q, imidazole, J = 3.16).   

MS m/e : 386(M+), 353, 150.         

 

4. Synthesis of methyl 2-{[(5-methoxy-1H-benzimidazol-2-yl)thio]methyl}-5-methyl-

4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine 6-carboxylate (IIIiv)  

2-Mercapto-5-methoxybenzimidazole (1.8 gm; 0.01 mole) was dissolved in 25 ml of 10% 

sodium hydroxide solution by stirring at room temperature. To this clear solution pinch of 

TEBA chloride was added and stirring was further continued for 10 min. To this well 

stirred solution, added clear solution of methyl 2-(chloromethyl)-3,4-dihydro-5-methyl-4-

oxothieno[2,3-d]pyrimidine 6-carboxylate (IIii, 2.72 gm; 0.01 mole) in methylene 

dichloride (25 ml), over a period of 15-20 min. Reaction was worked up as described for 

the compound IIIi to get the title compound. 

 

M.P. : 230-235oC; Yield: 73%. 

Mol. Formula : C18H16N4O4S2; Mol. Wt. 416.4.  

IR (KBr) cm-1 : 3339(γNH), 2943(γC-H), 1690(γCONH), 613(γC-S).  

NMR (DMSO-d6)δppm : 2.68 (3H, s, CH3 at 5), 3.86 (3H, s, OCH3), 3.88 (3H, s, CH3-O-

CO-), 4.65 (2H, s, CH2 at SCH2), 7.05 (1H, dd, CH at imidazole, 

J = 2.30 & 6.64), 7.15 (1H, d, CH at imidazole, J = 2.2), 7.54 
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(1H, d, CH at imidazole, J = 8.92), 12.47 (1H, br s, NH), 13.45 

(1H, s, NH). 

MS m/e : 416(M+), 383, 210, 180.         

 

5. Synthesis of ethyl 2-((1H-benzo[d]imidazol-2-ylthio)methyl)-5-methyl-4-oxo-3,4-

dihydrothieno[2,3-d]pyrimidine 6-carboxylate (IIIv) 

2-Mercaptobenzimidazole (1.5 gm; 0.01 mole) was dissolved in 25 ml of 10% sodium 

hydroxide solution by stirring at room temperature. To this clear solution pinch of TEBA 

chloride was added and stirring was further continued for 10 min. To this well stirred 

solution, added clear solution of ethyl 2-(chloromethyl)-3,4-dihydro-5-methyl-4-

oxothieno[2,3-d]pyrimidine 6-carboxylate  (IIiii, 2.86 gm; 0.01 mole) in methylene 

dichloride (25 ml), over a period of 15-20 min. Reaction was worked up as described  for 

the compound IIIi to get the title compound. 

 

M.P. : 270-272oC; Yield: 52%. 

Mol. Formula : C18H16N4O3S2; Mol. Wt. 400.                         

IR(KBr) cm-1 : 3237(γNH), 2945(γC-H), 1716(γCOOEt), 1673(γCONH), 740(γC-S). 

MS  m/e : 400(M+), 372, 296, 150. 

 

6. Synthesis of ethyl 2-{[(5-methoxy-1H-benzimidazol-2-yl)thio]methyl}-5-methyl-4-

oxo-3,4-dihydrothieno[2,3-d]pyrimidine 6-carboxylate (IIIvi)  

2-Mercapto-5-methoxybenzimidazole (1.8 g; 0.01 mole) was dissolved in 25 ml of 10% 

sodium hydroxide solution by stirring at room temperature. To this clear solution pinch of 

TEBA chloride was added and stirring was further continued for 10 min. To this well 

stirred solution, added clear solution of ethyl 2-(chloromethyl)-3,4-dihydro-5-methyl-4-

oxothieno[2,3-d]pyrimidine 6-carboxylate (IIiii, 2.86 gm; 0.01 mole) in methylene 

dichloride (25 ml), over a period of 15-20 min. Reaction was worked up as described for 

compound the IIIi to get the title compound. 

 

M.P. : 257-260oC; Yield: 65%. 

Mol. Formula : C19H18N4O4S2; Mol. Wt. 430.5.  

IR (KBr) cm-1 : 3247(γNH), 2985(γC-H), 1690(γCONH), 650(γC-S).  

NMR (DMSO-d6)δppm : 1.38 (3H, t, CH3 of CH3-CH2-O-, J = 6), 2.67 (3H, s, CH3 at 5), 

3.84 (3H, s, OCH3), 4.20-4-38 (4H, m, CH3-CH2-O and SCH2), 
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6.82 (1H, dd, CH at Imidazole J = 6.8 & 2.04); 7.03 (1H, s, CH at 

imidazole), 7.42 (1H, d, CH at imidazole), 10.84 (1H, br s, NH), 

12.94 (1H, br s, NH). 

MS m/e : 430(M+), 397, 369, 180.   

       

7. Synthesis of 2-((1H-benzo[d]imidazol-2-ylthio)methyl)-5,6-dimethylthieno[2,3-d]-

pyrimidin-4(3H)-one (IIIvii)  

2-Mercaptobenzimidazole (1.5 gm; 0.01 mole) was dissolved in 25 ml of 10% sodium 

hydroxide solution by stirring at room temperature. To this clear solution pinch of TEBA 

chloride was added and stirring was further continued for 10 min. To this well stirred 

solution, added clear solution of 2-(chloromethyl)-5,6-dimethylthieno[2,3-d]pyrimidin-

4(3H)-one (IIiv, 2.28 gm; 0.01 mole) in methylene dichloride (25 ml), over a period of 

15-20 min. Reaction was worked up as described for the compound IIIi  to get the title 

compound. 

 

M.P. : 272-275oC; Yield: 48%. 

Mol. Formula : C16H14N4OS2; Mol. Wt. 342.                         

IR (KBr) cm-1 : 3263(γNH), 2917(γC-H), 1669(γCONH), 605(γC-S).    

 

8. Synthesis of 2-{[(5-methoxy-1H-benzimidazol-2-yl)thio]methyl}-5,6-dimethyl-

thieno[2,3-d]pyrimidin-4(3H)-one (IIIviii)  

2-Mercapto-5-methoxybenzimidazole (1.8 gm; 0.01 mole) was dissolved in 25 ml of 10% 

sodium hydroxide solution by stirring at room temperature. To this clear solution pinch of 

TEBA chloride was added and stirring was further continued for 10 min. To this well 

stirred solution, added clear solution of 2-(chloromethyl)-5,6-dimethylthieno[2,3-

d]pyrimidin-4(3H)-one (IIiv, 2.28 gm; 0.01 mole) in methylene dichloride (25 ml), over a 

period of 15-20 min. Reaction was worked up as described for the compound IIIi to get 

the title compound. 

 

M.P. : 130-134oC; Yield: 65%. 

Mol. Formula : C17H16N4O2S2; Mol. Wt. 372.4.  

IR (KBr) cm-1 : 3306(γNH), 2966(γC-H), 1683(γCONH), 601(γC-S).  
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NMR (DMSO-d6)δppm : 2.38 (3H, s, CH3 at 5), 2.47 (3H, s, CH3 at 6), 3.80 (3H, s, 

OCH3), 4.27 (2H, s, CH2 at SCH2), 6.77-6.80 (3H, m, Ar-H), 

10.19 (1H, s, NH), 13.25 (1H, s, NH). 

MS m/e : 368(M+), 339, 180. 

 

9. Synthesis of 2-[(1H-benzimidazol-2-ylthio)methyl]-5-phenylthieno[2,3-d]-

pyrimidin-4(3H)-one (IIIix)  

2-Mercaptobenzimidazole (1.5 gm; 0.01 mole) was dissolved in 25 ml of 10% sodium 

hydroxide solution by stirring at room temperature. To this clear solution pinch of TEBA 

chloride was added and stirring was further continued for 10 min. To this well stirred 

solution, added clear solution of 2-(chloromethyl)-5-phenylthieno[2,3-d]pyrimidin-4(3H)-

one (IIv, 2.76 gm; 0.01 mole) in methylene dichloride (25 ml), over a period of 15-20 

min. Reaction was worked up as described for the compound IIIi to get the title 

compound. 

 

M.P. : 224-227oC; Yield: 60%. 

Mol. Formula : C20H14N4OS2; Mol. Wt. 390.4. 

IR (KBr) cm-1 : 3044(γC-H), 1680(γCONH), 741(γC-S).          

NMR (DMSO-d6)δppm : 4.39 (2H, s, CH2 at SCH2), 7.10 (1H, s, H at 6), 7.16-7.54  (9H, 

m, Ar-H).     

MS m/e : 390(M+), 357, 272, 150.        

 

10. Synthesis of 2-{[(5-methoxy-1H-benzimidazol-2-yl)thio]methyl}-5-phenyl-thieno-

[2,3-d]pyrimidin-4(3H)-one (IIIx) 

2-Mercapto-5-methoxybenzimidazole (1.8 gm; 0.01 mole) was dissolved in 25 ml of 10% 

sodium hydroxide solution by stirring at room temperature. To this clear solution pinch of 

TEBA chloride was added and stirring was further continued for 10 min. To this well 

stirred solution, added clear solution of 2-(chloromethyl)-5-phenylthieno[2,3-d]-

pyrimidin-4(3H)-one (IIv, 2.76 gm; 0.01 mole) in methylene dichloride (25 ml), over a 

period of 15-20 min. Reaction was worked up as described for the compound IIIi to get 

the title compound. 

 

M.P. : 165-170oC; Yield: 65%. 

Mol. Formula : C21H16N4O2S2; Mol. Wt. 420.5.  
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IR (KBr) cm-1 : 3091(γNH), 2988(γC-H), 1685(γCONH), 620(γC-S).          

NMR (DMSO-d6)δppm : 3.82 (3H, s, OCH3), 4.36 (2H, s, CH2 at SCH2), 6.81 (1H, dd, 

CH at Imidazole, J = 6.44 & 2.36), 7.11 (1H, s, CH at 6), 7.01-

7.56 (7H, m, Ar-H).  

MS m/e : 420(M+), 387, 256, 180.   

 

11. Synthesis of 2-[(1H-benzimidazol-2-ylthio)methyl]-5-(4-methoxyphenyl)-thieno-

[2,3-d]pyrimidin-4(3H)-one (IIIxi)  

2-Mercaptobenzimidazole (1.5 gm; 0.01 mole) was dissolved in 25 ml of 10% sodium 

hydroxide solution by stirring at room temperature. To this clear solution pinch of TEBA 

chloride was added and stirring was further continued for 10 min. To this well stirred 

solution, added clear solution of 2-(chloromethyl)-5-(4-methoxyphenyl)thieno[2,3-

d]pyrimidin-4(3H)-one (IIvi, 3.0 gm; 0.01 mole) in methylene dichloride (25 ml), over a 

period of 15-20 min. Reaction was worked up as described for the compound IIIi to get 

the title compound. 

 

M.P. : 244-248oC; Yield: 70%. 

Mol. Formula : C21H16N4O2S2; Mol. Wt. 420.5.   

IR (KBr) cm-1 : 3256(γNH), 2839(γC-H), 1663(γCONH), 746(γC-S)          

NMR (DMSO-d6)δppm : 3.82 (3H, s, OCH3), 4.43 (2H, s, CH2 at SCH2), 6.84 (2H, d, H 

at imidazole, J = 8.6), 7.08 (1H, s, H at 7), 7.17 (2H, q, H at 

imidazole, J = 3.16), 7.47-7.52 (4H, m, Ar-H), 12.40 (1H, s, NH), 

13.25 (1H, s, NH).  

MS m/e : 421(M+), 387, 359, 159.         

 

12. Synthesis of 2-{[(5-methoxy-1H-benzimidazol-2-yl)thio]methyl}-5-(4-methoxy-

phenyl)thieno[2,3-d]pyrimidin-4(3H)-one (IIIxii) 

2-Mercapto-5-methoxybenzimidazole (1.8 gm; 0.01 mole) was dissolved in 25 ml of 10% 

sodium hydroxide solution by stirring at room temperature. To this clear solution pinch of 

TEBA chloride was added and stirring was further continued for 10 min. To this well 

stirred solution, added clear solution of 2-(chloromethyl)-5-(4-methoxyphenyl)thieno-

[2,3-d]pyrimidin-4(3H)-one (IIvi, 3.0 gm; 0.01 mole) in methylene dichloride (25 ml), 

over a period of 15-20 min. Reaction was worked up as described for the compound IIIi 

to get the title compound. 
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M.P. : 140-142oC; Yield: 73%. 

Mol. Formula : C22H18N4O3S2; Mol. Wt. 450.5.  

IR (KBr) cm-1 : 3242(γNH), 2941(γC-H), 1690(γCONH), 603(γC-S).          

NMR (DMSO-d6)δppm : 3.34 (3H, s, OCH3), 3.84 (3H, s, OCH3), 4.34 (2H, s, CH2 at 

SCH2), 7.06 (H, s, H at thiophene), 6.89-7.50 (7H, m, Ar-H), 

12.35 (1H, br s, NH), 13.20 (1H, s, NH). 

MS m/e : 450(M+), 272, 180.         

 

13. Synthesis of 2-[(1H-benzimidazol-2-ylthio)methyl]-5-(4-methylphenyl)-thieno-

[2,3-d]pyrimidin-4(3H)-one (IIIxiii)  

2-Mercaptobenzimidazole (1.5 gm; 0.01 mole) was dissolved in 25 ml of 10% sodium 

hydroxide solution by stirring at room temperature. To this clear solution pinch of TEBA 

chloride was added and stirring was further continued for 10 min. To this well stirred 

solution, added clear solution of 2-(chloromethyl)-5-(4-methylphenyl)thieno[2,3-

d]pyrimidin-4(3H)-one (IIvii, 2.90 gm; 0.01 mole) in methylene dichloride (25 ml), over 

a period of 15-20 min. Reaction was worked up as described for the compound IIIi to get 

the title compound. 

 

M.P. : 260-262oC; Yield: 73%. 

Mol. Formula : C21H16N4OS2; Mol. Wt. 404.5.  

IR (KBr) cm-1 : 3229(γNH), 3032(γC-H), 1685(γCONH), 743(γC-S).          

NMR (DMSO-d6)δppm : 2.36 (3H, s, CH3), 4.42 (2H, s, CH2 at SCH2), 7.10 (1H, s, H at 

6), 7.15-7.43 (8H, m, Ar-H), 12.54 (1H, s, NH), 13.37 (1H, s, 

NH).     

MS m/e : 404(M+), 371, 343, 150.   

 

14. Synthesis of 2-{[(5-methoxy-1H-benzimidazol-2-yl)thio]methyl}-5-(4-methyl-

phenyl)thieno[2,3-d]pyrimidin-4(3H)-one (IIIxiv) 

2-Mercapto-5-methoxybenzimidazole (1.8 gm; 0.01 mole) was dissolved in 25 ml of 10% 

sodium hydroxide solution by stirring at room temperature. To this clear solution pinch of 

TEBA chloride was added and stirring was further continued for 10 min. To this well 

stirred solution, added clear solution of 2-(chloromethyl)-5-(4-methylphenyl)thieno[2,3-

d]pyrimidin-4(3H)-one (IIvii, 2.90 gm; 0.01 mole) in methylene dichloride (25 ml), over 
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a period of 15-20 min. Reaction was worked up as described for the compound IIIi to get 

the title compound. 

 

M.P. : 245-247oC; Yield: 65%. 

Mol. Formula : C22H18N4O3S2; Mol. Wt. 434.5.  

IR (KBr) cm-1 : 3246(γNH), 2878(γC-H), 1659(γCONH), 627(γC-S).          

MS m/e : 434(M+), 401, 270, 180.         

 

15. Synthesis of 2-[(1H-benzimidazol-2-ylthio)methyl]-5-(4-bromophenyl)-thieno-

[2,3-d]pyrimidin-4(3H)-one (IIIxv)  

2-Mercaptobenzimidazole (1.5 gm; 0.01 mole) was dissolved in 25 ml of 10% sodium 

hydroxide solution by stirring at room temperature. To this clear solution pinch of TEBA 

chloride was added and stirring was further continued for 10 min. To this well stirred 

solution, added clear solution of 5-(4-bromophenyl)-2-(chloromethyl)thieno[2,3-d]-

pyrimidin-4(3H)-one (IIviii, 3.5 gm; 0.01 mole) in methylene dichloride (25 ml), over a 

period of 15-20 min. Reaction was worked up as described for the compound IIIi to get 

the title compound. 

 

M.P. : 247-249oC; Yield: 68%. 

Mol. Formula : C20H13BrN4OS2; Mol. Wt. 469.3.  

IR (KBr) cm-1 : 3235(γNH), 2940(γC-H), 1647(γCONH), 756(γC-S).          

NMR (DMSO-d6)δppm : 4.42 (2H, s, CH2 at SCH2), 7.16-7.20 (3H, m, H at imidazole), 

7.43-7.56 (6H, m, Ar-H); 12.45 (1H, s, NH), 13.55 (1H, s, NH).      

MS m/e : 470(M+), 437, 150.         

 

16. Synthesis of 5-(4-bromophenyl)-2-{[(5-methoxy-1H-benzimidazol-2-yl)-thio]-

methyl}thieno[2,3-d]pyrimidin-4(3H)-one (IIIxvi)  

2-Mercapto-5-methoxybenzimidazole (1.8 gm; 0.01 mole) was dissolved in 25 ml of 10% 

sodium hydroxide solution by stirring at room temperature. To this clear solution pinch of 

TEBA chloride was added and stirring was further continued for 10 min. To this well 

stirred solution, added clear solution of 5-(4-bromophenyl)-2-(chloromethyl)thieno[2,3-

d]pyrimidin-4(3H)-one (IIviii, 3.5 gm; 0.01 mole) in methylene dichloride (25 ml), over a 

period of 15-20 min. Reaction was worked up as described for the compound IIIi to get 

the title compound. 
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M.P. : 135-141oC; Yield: 67%. 

Mol. Formula : C21H15BrN4O2S2; Mol. Wt. 499.4.  

IR (KBr) cm-1 : 3262(γNH), 2945(γC-H), 1690(γCONH), 666(γC-S).          

NMR (DMSO-d6)δppm : 3.82 (3H, s, OCH3), 4.37 (2H, s, CH2 at SCH2), 6.80 (1H, dd, 

CH at imidazole J = 2.4 & 6.5), 6.99 (1H, s, CH  at imidazole), 

7.14 (1H, s, CH at imodazole), 7.38-7.51 (5H, m, 4Ar-H and 1H 

at 6 of thiophene), 12.50 (1H, br s, NH). 

MS m/e : 500(M+), 322, 180.         

 

17. Synthesis of 2-((1H-benzo[d]imidazol-2-ylthio)methyl)-5-(4-chlorophenyl)-

thieno[2,3-d]pyrimidin-4(3H)-one (IIIxvii) 

2-Mercaptobenzimidazole (1.5 gm; 0.01 mole) was dissolved in 25 ml of 10% sodium 

hydroxide solution by stirring at room temperature. To this clear solution pinch of TEBA 

chloride was added and stirring was further continued for 10 min. To this well stirred 

solution, added clear solution of 2-(chloromethyl)-5-(4-chlorophenyl)thieno[2,3-

d]pyrimidin-4(3H)-one  (IIix, 3.11 gm; 0.01 mole) in methylene dichloride (25 ml), over 

a period of 15-20 min. Reaction was worked up as described for the compound IIIi to get 

the title compound. 

 

M.P. : 227-230oC; Yield: 58%. 

Mol. Formula : C20H13ClN4OS2; Mol. Wt. 425.                         

IR (KBr) cm-1 : 3279(γNH), 1662(γCONH),743.18 (γC-S). 

MS  m/e : 424(M+), 391, 363, 150. 

 

18. Synthesis of 5-(4-chlorophenyl)-2-{[(5-methoxy-1H-benzimidazol-2-yl)thio]-

methyl}thieno[2,3-d]pyrimidin-4(3H)-one (IIIxviii) 

2-Mercapto-5-methoxybenzimidazole (1.8 gm; 0.01 mole) was dissolved in 25 ml of 10% 

sodium hydroxide solution by stirring at room temperature. To this clear solution pinch of 

TEBA chloride was added and stirring was further continued for 10 min. To this well 

stirred solution, added clear solution of 2-(chloromethyl)-5-(4-chlorophenyl)thieno[2,3-

d]pyrimidin-4(3H)-one (IIix, 3.11 gm; 0.01 mole) in methylene dichloride (25 ml), over a 

period of 15-20 min. Reaction was worked up as described for the compound IIIi to get 

the title compound. 
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M.P. : 128-130oC; Yield: 71%. 

Mol. Formula : C21H15ClN4O2S2; Mol. Wt. 454.9.  

IR (KBr) cm-1 : 3194(γNH), 3090(γC-H), 1680(γCONH), 622(γC-S).          

NMR (DMSO-d6)δppm : 3.82 (3H, s, OCH3), 4.38 (2H, s, CH2 at SCH2), 7.15 (1H, s, CH 

at 6), 6.80 (1H, dd, CH at imidazole, J = 2.4 & 6.36), 7.00 (1H, d, 

CH at imidazole, J = 2.16), 7.40 (1H, d, CH at imidazole, J = 

8.76), 7.32-7.52 (4H, m, Ar-H). 

MS m/e : 454(M+), 421, 276, 180.         

 

19. Synthesis of 2-((1H-benzo[d]imidazol-2-ylthio)methyl)-6-methyl-5-phenylthieno-

[2,3-d]pyrimidin-4(3H)-one (IIIxix) 

2-Mercaptobenzimidazole (1.5 gm; 0.01 mole) was dissolved in 25ml of 10% sodium 

hydroxide solution by stirring at room temperature. To this clear solution pinch of TEBA 

chloride was added and stirring was further continued for 10 min. To this well stirred 

solution, added clear solution of 2-(chloromethyl)-6-methyl-5-phenylthieno[2,3-

d]pyrimidin-4(3H)-one (IIx, 2.9 gm; 0.01 mole) in methylene dichloride (25 ml), over a 

period of 15-20 min. Reaction was worked up as described for the compound IIIi to get 

the title compound. 

 

M.P. : 263-265oC; Yield: 51%. 

Mol. formula : C21H16N4OS2; Mol. Wt. 404. 

IR (KBr) cm-1 : 3243(γNH), 2937(γC-H), 1656(γCONH), 740(γC-S). 

NMR (DMSO-d6)δppm : 2.20 (3H, s, CH3 at 6), 4.51 (2H, s, CH2 at CH2S),   7.12-7.61 

(9H, m, Ar-H); 12.25 (1H, s, NH), 13.00 (1H, s, NH).    

MS m/e : 404(M+), 371, 343, 150.                                                              

 

20. Synthesis of 2-[(1H-benzimidazol-2-ylthio)methyl]-3,5,6,7-tetrahydro-4H-cyclo-

penta[4,5]thieno[2,3-d]pyrimidin-4-one (IIIxx)  

2-Mercaptobenzimidazole (1.5 gm; 0.01 mole) was dissolved in 25 ml of 10% sodium 

hydroxide solution by stirring at room temperature. To this clear solution pinch of TEBA 

chloride was added and stirring was further continued for 10 min. To this well stirred 

solution, added clear solution of 2-chloromethyl-3,5,6,7-tetrahydrocyclopenta[4,5]-

thieno[2,3-d]pyrimidin-4(3H)-one (IIxi, 2.40 gm; 0.01 mole) in methylene dichloride (25 
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ml), over a period of 15-20 min. Reaction was worked up as described for the compound 

IIIi to get the title compound. 

 

M.P. : 258-260oC; Yield: 65%. 

Mol. Formula : C17H14N4OS2; Mol. Wt. 354.4.  

IR (KBr) cm-1 : 3247(γNH), 2943(γC-H), 1685(γCONH), 741(γC-S).          

NMR (DMSO-d6)δppm : 2.45 (2H, m, CH2 at 6), 2.94 (4H, m, CH2 at 5 and 7), 4.40 (2H, 

s, CH2 at SCH2), 7.19 (2H, m, H at imidazole), 7.51 (2H, m, H 

at imidazole), 12.90 (1H, s, NH), 13.45 (1H, s, NH).  

MS m/e : 354(M+), 321, 293, 205, 150.         

       

21. Synthesis of 2-{[(5-methoxy-1H-benzimidazol-2-yl)thio]methyl}-3,5,6,7-tetra-

hydro-4H-cyclopenta[4,5]thieno[2,3-d]pyrimidin-4-one (IIIxxi)  

2-Mercapto-5-methoxybenzimidazole (1.8 gm; 0.01 mole) was dissolved in 25 ml of 10% 

sodium hydroxide solution by stirring at room temperature. To this clear solution pinch of 

TEBA chloride was added and stirring was further continued for 10 min. To this well 

stirred solution, added clear solution of 2-chloromethyl-3,5,6,7-tetrahydrocyclopenta-

[4,5]thieno[2,3-d]pyrimidin-4(3H)-one (IIxi, 2.40 gm; 0.01 mole) in methylene 

dichloride (25 ml), over a period of 15-20 min. Reaction was worked up as described for 

the compound IIIi to get the title compound. 

 

M.P.    : 162-165oC; Yield: 65%. 

Mol. Formula   : C18H16N4O2S2; Mol. Wt. 384.4.  

IR (KBr) cm-1   : 3235(γNH), 2992(γC-H), 1668(γCONH), 665(γC-S).          

MS m/e   : 384(M+), 351, 205, 180.    

 

22. Synthesis of 2-[(1H-benzimidazol-2-ylthio)methyl]-3,5,6,7,8,9-hexahydro-4H-

cyclohepta[4,5]-thieno[2,3-d]pyrimidin-4-one (IIIxxii)  

2-Mercaptobenzimidazole (1.5 gm; 0.01 mole) was dissolved in 25 ml of 10% sodium 

hydroxide solution by stirring at room temperature. To this clear solution pinch of TEBA 

chloride was added and stirring was further continued for 10 min. To this well stirred 

solution, added clear solution of 2-chloromethyl-3,5,6,7,8,9-hexahydro-10-thia-1,3-diaza-

benzo[a]azulen-4-one (IIxii, 2.68 gm; 0.01 mole) in methylene dichloride (25 ml), over a 



Part-I 
Experimental 

 197 

period of 15-20 min. Reaction was worked up as described for the compound IIIi to get 

the title compound. 

 

M.P. : 264-266oC; Yield: 68%. 

Mol. Formula : C19H18N4OS2; Mol. Wt. 382.5.  

IR (KBr) cm-1 : 3212(γNH), 2916(γC-H), 1685(γCONH), 737(γC-S).          

NMR (DMSO-d6)δppm : 1.68 (6H, m, CH2 at 6, 7, & 8), 1.88 (2H, t, CH2 at 5, J = 3.36), 

3.30 (2H, t, CH2 at 9, J = 5.36), 4.36 (2H, s, CH2 at SCH2), 7.20 

(2H, m, H at imidazole),  7.56 (2H, m, H at imidazole, J = 

3.16), 12.50 (1H, s, NH), 13.40 (1H, s, NH).    

MS m/e : 382(M+), 349, 232, 150.         

 

23. Synthesis of 2-{[(5-methoxy-1H-benzimidazol-2-yl)thio]methyl}-3,5,6,7,8,9-hexa-

hydro-4H-cyclohepta[4,5]thieno[2,3-d]pyrimidin-4-one (IIIxxiii)  

2-Mercapto-5-methoxybenzimidazole (1.8 gm; 0.01 mole) was dissolved in 25 ml of 10% 

sodium hydroxide solution by stirring at room temperature. To this clear solution pinch of 

TEBA chloride was added and stirring was further continued for 10 min. To this well 

stirred solution, added clear solution of 2-chloromethyl-3,5,6,7,8,9-hexahydro-10-thia-

1,3-diaza-benzo[a]azulen-4-one (IIxii, 2.68 gm; 0.01 mole) in methylene dichloride (25 

ml), over a period of 15-20 min. Reaction was worked up as described for the compound 

IIIi to get the title compound. 

 

M.P. : 226-230oC; Yield: 70%. 

Mol. Formula : C20H20N4O2S2; Mol. Wt. 412.5.  

IR (KBr) cm-1 : 3190(γNH), 2918(γC-H), 1685(γCONH), 750(γC-S).          

NMR (DMSO-d6)δppm : 1.66 (4H, m, CH2 at 6 & 7), 1.87 (2H, m, CH2 at 5), 2.85 (2H, 

m, CH2 at 8), 3.29(2H, m, CH2 at 9), 3.84 (3H, s, CH3 at 

OCH2), 4.34 (2H, s, SCH2), 6.79-7.43 (3H, m, Ar-H), 12.30 

(1H, s, NH), 13.21 (1H, s, NH).  

MS m/e : 412(M+), 379, 232, 180. 

 

24. Synthesis of 2-(1H-benzimidazol-2-yl)methylthioquinazolin-4-(3H)-one (IIIxxiv) 

2-Mercaptobenzimidazole (1.5 gm; 0.01 mole) was dissolved in 25 ml of 10% sodium 

hydroxide solution by stirring at room temperature. To this clear solution pinch of TEBA 
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chloride was added and stirring was further continued for 10 min. To this well stirred 

solution, added clear solution of 2-chloromethylquinazoline-4(3H)-one (IIxiii, 1.94 gm; 

0.01 mole) in methylene dichloride (25 ml), over a period of 15-20 min. Reaction was 

worked up as described for the compound IIIi to get the title compound. 

 

M.P. : 196-198oC; Yield: 62%. 

Mol. Formula   : C16H12N4OS; Mol. Wt. 308                          

IR (KBr) cm-1               : 3145(γNH), 1670(γCONH), 742(γC-S)  

NMR (DMSO-d6)δppm : 4.53 (2H, s, CH2 at CH2S), 7.11-8.09 (8H, m, Ar-H). 

MS  m/e.                     : 308(M+), 275, 247, 163.      

 

25. Synthesis of 2-((5-methoxy-1H-benzo[d]imidazol-2-ylthio)methyl)-quinazolin-

4(3H)-one (IIIxxv) 

2-Mercapto-5-methoxybenzimidazole (1.8 gm; 0.01 mole) was dissolved in 25 ml of 10% 

sodium hydroxide solution by stirring at room temperature. To this clear solution pinch of 

TEBA chloride was added and stirring was further continued for 10 min. To this well 

stirred solution, added clear solution of 2-chloromethylquinazoline-4(3H)-one (IIxiii, 

1.94 gm; 0.01 mole) in methylene dichloride (25 ml), over a period of 15-20 min. 

Reaction was worked up as described for the compound IIIi to get the title compound. 

 

M.P. : 177-179oC; Yield: 71% 

Mol. Formula : C17H14N4O2S; Mol. Wt. 338.4  

IR (KBr) cm-1 : 3061(γNH), 1675(γCONH), 772(γC-S). 

 

26. Synthesis of 6-(1H-benzoimidazol-2-ylsulfanylmethyl)-2,4-dimethyl-7H-9-thia-

1,5,7-triazafluoren-8-one (IIIxxvi) 

2-Mercaptobenzimidazole (1.5 gm; 0.01 mole) was dissolved in 25 ml of 10% sodium 

hydroxide solution by stirring at room temperature. To this clear solution pinch of TEBA 

chloride was added and stirring was further continued for 10 min. To this well stirred 

solution, added clear solution of 6-chloromethyl-2,4-dimethyl-7H-9-thia-1,5,7-

triazafluoren-8-one (IIxiv, 2.79 gm; 0.01 mole) in methylene dichloride (25 ml), over a 

period of 15-20 min. Reaction was worked up as described for the compound IIIi to get 

the title compound. 
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M.P. : 120-122oC; Yield: 70% 

Mol. Formula : C19H15N5OS2; Mol. Wt. 393.4 

IR (KBr) cm-1 : 2922(γC-H), 1685(γCONH), 1570(γC-C) 738(γC-S)          

 

27. Synthesis of 6-(5-methoxy-1H-benzoimidazol-2-ylsulfanylmethyl)-2,4-dimethyl-

7H-9-thia-1,5,7-triazafluoren-8-one (IIIxxvii) 

2-Mercapto-5-methoxybenzimidazole (1.8 gm; 0.01 mole) was dissolved in 25 ml of 10% 

sodium hydroxide solution by stirring at room temperature. To this clear solution pinch of 

TEBA chloride was added and stirring was further continued for 10 min. To this well 

stirred solution, added clear solution of 6-chloromethyl-2,4-dimethyl-7H-9-thia-1,5,7-

triaza-fluoren-8-one (IIxiv, 2.79 gm; 0.01 mole) in methylene dichloride (25 ml), over a 

period of 15-20 min. Reaction was worked up as described for the compound IIIi to get 

the title compound. 

 

M.P. : 178-180oC; Yield: 75% 

Mol. Formula : C20H17N5O2S2; Mol. Wt. 423.5 

IR (KBr) cm-1 :  2922(γC-H), 1654(γCONH), 1570(γC-C), 785(γC-S)          

MS  m/e : 423(M+), 390, 362, 180. 

 

28. Synthesis of 2-((1H-benzo[d]imidazol-2-ylthio)methyl)-3H-[1,2,4]triazino[6,1-b]-

quinazoline-4,10-dione (IIIxxviii) 

2-Mercaptobenzimidazole (1.5 gm; 0.01 mole) was dissolved in 25 ml of 10% sodium 

hydroxide solution by stirring at room temperature. To this clear solution pinch of TEBA 

chloride was added and stirring was further continued for 10 min. To this well stirred 

solution, added clear solution of 2-(chloromethyl)-3H-[1,2,4]triazino[6,1-b]quinazoline-

4,10-dione (IIxv, 2.62 gm; 0.01 mole) in methylene dichloride (25 ml), over a period of 

15-20 min. Reaction was worked up as described for the compound IIIi to get the title 

compound. 

 

M.P. : 180-182oC; Yield: 65% 

Mol. Formula : C18H12N6O2S; Mol. Wt. 376.39 

IR (KBr) cm-1 : 2923(γC-H), 1670(γCONH), 1606(γC-C), 742(γC-S)          
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29. Synthesis of 2-((5-methoxy-1H-benzo[d]imidazol-2-ylthio)methyl)-3H-[1,2,4]-

triazino[6,1-b]quinazolin-4,10-dione (IIIxxix) 

2-Mercapto-5-methoxybenzimidazole (1.8 gm; 0.01 mole) was dissolved in 25 ml of 10% 

sodium hydroxide solution by stirring at room temperature. To this clear solution pinch of 

TEBA chloride was added and stirring was further continued for 10 min. To this well 

stirred solution, added clear solution of 2-(chloromethyl)-3H-[1,2,4]triazino[6,1-

b]quinazoline-4,10-dione (IIxv, 2.62 gm; 0.01 mole) in methylene dichloride (25 ml), 

over a period of 15-20 min. Reaction was worked up as described for the compound IIIi 

to get the title compound. 

 

M.P. : 154-156oC; Yield: 72% 

Mol. Formula : C19H14N6O3S; Mol. Wt. 406.4 

IR (KBr) cm-1 : 2923(γC-H), 1672(γCONH), 1607(γC-C), 774(γC-S)          

 

30. Synthesis of 2-((1H-benzo[d]imidazol-2-ylthio)methyl)-6,7-dimethoxy-quinazolin-

4(3H)-one (IIIxxx) 

2-Mercaptobenzimidazole (1.5 gm; 0.01 mole) was dissolved in 25 ml of 10% sodium 

hydroxide solution by stirring at room temperature. To this clear solution pinch of TEBA 

chloride was added and stirring was further continued for 10 min. To this well stirred 

solution, added clear solution of 2-(chloromethyl)-6,7-dimethoxyquinazolin-4(3H)-one 

(IIxvi, 2.54 gm; 0.01 mole) in methylene dichloride (25 ml), over a period of 15-20 min. 

Reaction was worked up as described for the compound IIIi to get the title compound. 

 

M.P. : 200-202oC; Yield: 56% 

Mol. Formula : C18H16N4O3S; Mol. Wt. 368.4 

IR (KBr) cm-1 : 3201(γNH), 1662(γCONH), 1608(γC-C), 742(γC-S)          

 

31. Synthesis of 2-((5-methoxy-1H-benzo[d]imidazol-2-ylthio)methyl)-6,7-dimethoxy-

quinazolin-4(3H)-one (IIIxxxi) 

2-Mercapto-5-methoxybenzimidazole (1.8 gm; 0.01 mole) was dissolved in 25 ml of 10% 

sodium hydroxide solution by stirring at room temperature. To this clear solution pinch of 

TEBA chloride was added and stirring was further continued for 10 min. To this well 

stirred solution, added clear solution of 2-(chloromethyl)-6,7-dimethoxyquinazolin-

4(3H)-one (IIxvi, 2.54 gm; 0.01 mole) in methylene dichloride (25 ml), over a period of 
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15-20 min. Reaction was worked up as described for the compound  IIIi to get the title 

compound. 

 

M.P. : 115-118oC; Yield: 68%  

Mol. Formula : C19H18N4O4S; Mol. Wt. 398.4 

IR (KBr) cm-1 :  2926(γC-H), 1647(γCONH), 785(γC-S)          

MS  m/e : 398(M+), 365, 220, 180. 

 

32. Synthesis of 9-methoxy-2-(1H-benzoimidazol-2-ylsulfanylmethyl)-3H-benzo[4,5]-

thieno[3,2-d]pyrimidin-4-one (IIIxxxii)  

2-Mercaptobenzimidazole (1.5 gm; 0.01 mole) was dissolved in 25 ml of 10% sodium 

hydroxide solution by stirring at room temperature. To this clear solution pinch of TEBA 

chloride was added and stirring was further continued for 10 min. To this well stirred 

solution, added clear solution of 2-chloromethyl-9-methoxy-3H-benzo[4,5]thieno[3,2-

d]pyrimidin-4-one (IIxvii, 2.8 gm; 0.01 mole) in methylene dichloride (25 ml), over a 

period of 15-20 min. Reaction was worked up as described for the compound IIIi to get 

the title compound. 

 

M.P. : 155-158oC; Yield: 55% 

Mol. Formula : C19H14N4O2S2; Mol. Wt. 394.4   

IR (KBr) cm-1 :  2916(γC-H), 1663(γCONH), 736(γC-S)          

 

33. Synthesis of 9-methoxy-2-(5-methoxy-1H-benzoimidazol-2-ylsulfanyl-methyl)-

3H-benzo[4,5]thieno[3,2-d]pyrimidin-4-one (IIIxxxiii) 

2-Mercapto-5-methoxybenzimidazole (1.8 gm; 0.01 mole) was dissolved in 25 ml of 10% 

sodium hydroxide solution by stirring at room temperature. To this clear solution pinch of 

TEBA chloride was added and stirring was further continued for 10 min. To this well 

stirred solution, added clear solution of 2-chloromethyl-9-methoxy-3H-

benzo[4,5]thieno[3,2-d]pyrimidin-4-one (IIxvii, 2.8 gm; 0.01 mole) in methylene 

dichloride (25 ml), over a period of 15-20 min. Reaction was worked up as described for 

the compound IIIi to get the title compound. 

 

M.P. : 115-120oC; Yield: 45% 

Mol. Formula : C20H16N4O3S2; Mol. Wt. 424.5 
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IR (KBr) cm-1 : 2923(γC-H), 1669(γCONH), 738(γC-S)          

 

34. Synthesis of 6-((1H-benzo[d]imidazol-2-ylthio)methyl)-3-(methylthio)-1-phenyl-

1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one (IIIxxxiv) 

2-Mercaptobenzimidazole (1.5 gm; 0.01 mole) was dissolved in 25 ml of 10% sodium 

hydroxide solution by stirring at room temperature. To this clear solution pinch of TEBA 

chloride was added and stirring was further continued for 10 min. To this well stirred 

solution, added clear solution of 6-(chloromethyl)-3-(methylthio)-1-phenyl-1H-

pyrazolo[3,4-d]pyrimidin-4(5H)-one (IIxviii, 3.0 gm; 0.01 mole) in methylene dichloride 

(25 ml), over a period of 15-20 min. Reaction was worked up as described for the 

compound IIIi to get the title compound. 

 

M.P. : 240-242oC; Yield: 65% 

Mol. Formula : C20H16N6OS2; Mol. Wt. 420.5 

IR (KBr) cm-1 : 2922(γC-H), 1691(γCONH), 739(γC-S)          

 

35. Synthesis of 6-((5-methoxy-1H-benzo[d]imidazol-2-ylthio)methyl)-3-(methyl-

thio)-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one (IIIxxxv) 

2-Mercapto-5-methoxybenzimidazole (1.8 gm; 0.01 mole) was dissolved in 25 ml of 10% 

sodium hydroxide solution by stirring at room temperature. To this clear solution pinch of 

TEBA chloride was added and stirring was further continued for 10 min. To this well 

stirred solution, added clear solution of 6-(chloromethyl)-3-(methylthio)-1-phenyl-1H-

pyrazolo[3,4-d]pyrimidin-4(5H)-one (IIxviii, 3.0 gm; 0.01 mole) in methylene dichloride 

(25 ml), over a period of 15-20 min. Reaction was worked up as described for the 

compound IIIi to get the title compound. 

 

M.P. : 82-85oC; Yield: 50% 

Mol. Formula : C21H18N6O2S2; Mol. Wt. 450.5 

IR (KBr) cm-1 : 3123(γC-H), 1685(γCONH), 1589(γC-C), 758(γC-S).          

MS  m/e : 450(M+), 417, 272, 180. 
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4.5 Oxidation of condensed 2-(1H-benzimidazole-2-yl)methylthiopyrimidin-4(3H)-

ones using meta-chloro perbenzoic acid (m-CPBA) to obtain corresponding 

sulfinyl derivatives (IVi-xxxv) 

 

1. Synthesis of 2-(1H-benzimidazol-2-yl)methylsulfinyl-5,6,7,8-tetrahydro-benzo-

(b)sulfinyl[2,3-d]pyrimidin-4-(3H)-one using m-CPBA (IVi)   

2-(1H-Benzimidazol-2-yl)methylthio-5,6,7,8-tetrahydrobenzo(b)thieno[2,3-d]pyrimidin-

(3H)-one (IIIi, 1.98 gm; 0.0054 mole) was dissolved in 125 ml methanol and 100 ml 

methylene dichloride by stirring at room temprature. The reaction mixture was chilled in 

an ice salt bath while maintaining the temperature below 0oC. To this clear solution, 

methanolic solution of m-CPBA (1.16 gm; 0.0065 mole) was added with stirring and 

continued the stirring for 30-45 mins. Progress of the reaction was monitored using 

precoated TLC using benzene: methanol::4.5:0.5 as a solvent system. After completion of 

the reaction, the reaction was stopped by the addition of 10% sodium bicarbonate. The 

organic layer was separated and washed with 10% NaCl and water (50 ml each). The 

organic layer was dried with anhydrous sodium sulphate and solvent was distilled out 

under reduced pressure to obtain the crude product and on recrystallization from 

methanol-chloroform, afforded  crystalline material (0.78 gm; 74% yield), m.p. 216-

218oC.  

 

Mol. Formula : C18H16N4O2S2; Mol. Wt. 384                         

IR (KBr) cm-1 : 3235(γNH), 2946(γC-H), 1655(γCONH), 1060(γS-O), 747(γC-S)  

NMR (DMSO-d6)δppm : 1.79-1.83 (4H, m, CH2 at 6 & 7), 2.54-2.79 (4H, m, CH2 at 5 & 

8), 5.58 (2H, s, CH2 at SCH2), 7.39-7.16 (4H, m, Ar-H), 12.60 

(1H, s, NH), 13.80 (1H, s, NH). 

MS(m/e) : 368, 364, 335, 218. 

 

2. Synthesis of 2-{[(5-methoxy-1H-benzimidazol-2-yl) sulfinyl]methyl}-5,6,7,8-tetra-

hydro[1]benzo-thieno[2,3-d]pyrimidin-4(3H)-one (IVii) 

2-{[(5-Methoxy-1H-benzimidazol-2-yl)thio]methyl}-5,6,7,8-tetrahydro[1]benzothieno-

[2,3-d]pyrimidin-4(3H)-one (IIIii, 2.14 gm; 0.0054 mole) was dissolved in 125 ml 

methanol and 100 ml methylene dichloride by stirring at room temprature. Thereafter, the 

reaction mixture was chilled in an ice salt bath while maintaining the temperature below 

0oC. To this clear solution, methanolic solution of m-CPBA (1.16 gm; 0.0065 mole) was 
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added while stirring and the reation was continued for 30-45 mins. After completion of 

the reaction, worked up was done as for the compound IVi. 

 

M.P. : 194-196oC; Yield: 76%. 

Mol. Formula : C19H18N4O3S2; Mol. Wt. 414.5.  

IR (KBr) cm-1 : 3054(γNH), 2934(γC-H), 1681(γCONH), 1045(γS-O), 716(γC-S).          

 

3. Synthesis of methyl 2-[(1H-benzimidazol-2-ylsulfinyl)methyl]-5-methyl-4-oxo-3,4-

dihydrothieno[2,3-d]pyrimidine 6-carboxylate (IViii) 

Methyl 2-[(1H-benzimidazol-2-ylthio)methyl]-5-methyl-4-oxo-3,4-dihydrothieno[2,3-d]-

pyrimidine 6-carboxylate (IIIiii, 2.08 gm; 0.0054 mole) was dissolved in 125 ml 

methanol and 100 ml methylene dichloride by stirring at room temprature. Thereafter, the 

reaction mixture was chilled in an ice salt bath while maintaining the temperature below 

0oC. To this clear solution, methanolic solution of m-CPBA (1.16 gm; 0.0065 mole) was 

added while stirring and the reation was continued for 30-45 mins. After completion of 

the reaction, worked up was done as for the compound IVi. 

M.P. : 210-214oC; Yield: 10%. 

Mol. formula : C17H14N4O4S2; Mol. Wt. 402.4                 

IR (KBr) cm-1 : 3237(γNH), 3078(γC-H), 1726(γCOO),1682(γCONH), 1097(γS-O), 743(γC-S).  

 

4. Synthesis of methyl 2-{[(5-methoxy-1H-benzimidazol-2-yl)sulfinyl]methyl}-5-

methyl-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-6-carboxylate (IViv)  

Methyl-2-{[(5-methoxy-1H-benzimidazol-2-yl)thio]methyl}-5-methyl-4-oxo-3,4-

dihydrothieno[2,3-d]pyrimidine 6-carboxylate (IIIiv, 2.24 gm; 0.0054 mole) was 

dissolved in 125 ml methanol and 100 ml methylene dichloride by stirring at room 

temprature. Thereafter, the reaction mixture was chilled in an ice salt bath while 

maintaining the temperature below 0oC. To this clear solution, methanolic solution of m-

CPBA (1.16 gm; 0.0065 mole) was added while stirring and the reation was continued for 

30-45 mins. After completion of the reaction, worked up was done as for the compound 

IVi. 

 

M.P. : 200-205oC; Yield: 10%. 

Mol. formula : C18H16N4O5S2; Mol. Wt. 432.4.  

IR (KBr) cm-1 : 3008(γC-H), 1722(γCOO-), 1659(γCONH), 1026(γS-O), 761(γC-S). 
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NMR (DMSO-d6)δppm : 2.67 (3H, s, CH3 at 5), 3.88 (3H, s, OCH3), 3.87 (3H, s, CH3-O-

CO-), 5.50 (2H, s, CH2 at SCH2), 7.03 (1H, dd, CH at imidazole, 

J = 2.30 & 6.62), 7.17 (1H, d, CH at imidazole, J = 2.2), 7.52 

(1H, d, CH at imidazole, J = 8), 12.40 (1H, br s, NH), 13.20 (1H, 

s, NH). 

 

5. Synthesis of ethyl 2-((1H-benzo[d]imidazol-2-ylsulfinyl)methyl)-5-methyl-4-oxo-

3,4-dihydro-thieno[2,3-d]pyrimidine-6-carboxylate (IVv) 

Ethyl 2-((1H-benzo[d]imidazol-2-ylthio)methyl)-5-methyl-4-oxo-3,4-dihydro-thieno[2,3-

d]pyrimidine 6-carboxylate (IIIv, 2.16 gm; 0.0054 mole) was dissolved in 125 ml 

methanol and 100 ml methylene dichloride by stirring at room temprature. Thereafter, the 

reaction mixture was chilled in an ice salt bath while maintaining the temperature below 

0oC. To this clear solution, methanolic solution of m-CPBA (1.16 gm; 0.0065 mole) was 

added while stirring and the reation was continued for 30-45 mins. After completion of 

the reaction, worked up was done as for the compound IVi. 

 

M.P. : 220-222oC; Yield: 41%. 

Mol. formula : C18H16N4O4S2; Mol. Wt. 416.                         

IR(KBr) cm-1 : 3239(γNH), 2946(γC-H), 1717(γCOOEt), 1670(γCONH), 1038(γS-O), 741(γC-S). 

 

6. Synthesis of ethyl 2-{[(5-methoxy-1H-benzimidazol-2-yl)sulfinyl]methyl}-5-

methyl-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine 6-carboxylate (IVvi)  

Ethyl 2-{[(5-methoxy-1H-benzimidazol-2-yl)thio]methyl}-5-methyl-4-oxo-3,4-dihydro-

thieno[2,3-d]pyrimidine 6-carboxylate (IIIvi, 2.30 gm; 0.0054 mole) was dissolved in 125 

ml methanol and 100 ml methylene dichloride by stirring at room temprature. Thereafter, 

the reaction mixture was chilled in an ice salt bath while maintaining the temperature 

below 0oC. To this clear solution, methanolic solution of m-CPBA (1.16 gm; 0.0065 

mole) was added while stirring and the reation was continued for 30-45 mins. After 

completion of the reaction, worked up was done as for the compound IVi. 

 

M.P. : 200-207oC; Yield: 43%. 

Mol. formula : C19H18N4O5S2; Mol. Wt. 446.5.  

IR (KBr) cm-1 : 3175(γNH), 2978(γC-H), 1715(γCOO-), 1659(γCONH), 1029(γS-O),  754(γC-S).  
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7. Synthesis of 2-((1H-benzo[d]imidazol-2-ylsulfinyl)methyl)5,6-dimethyl-thieno[2,3-

d]pyrimidin-4(3H)-one (IVvii)  

2-((1H-Benzo[d]imidazol-2-ylthio)methyl)-5,6-dimethylthieno[2,3-d]pyrimidin-4(3H)-

one (IIIvii, 1.84 gm; 0.0054 mole) was dissolved in 125 ml methanol and 100 ml 

methylene dichloride by stirring at room temprature. Thereafter, the reaction mixture was 

chilled in an ice salt bath while maintaining the temperature below 0oC. To this clear 

solution, methanolic solution of m-CPBA (1.16 gm; 0.0065 mole) was added while 

stirring and the reation was continued for 30-45 mins. After completion of the reaction, 

worked up was done as for the compound IVi. 

 

M.P. : 160-162oC; Yield: 65%. 

Mol. formula : C16H14N4O2S2; Mol. Wt. 358.                         

IR (KBr) cm-1 : 3379(γNH), 3057(γC-H), 1681(γCONH), 1055(γS-O), 740(γC-S).               

 

8. Synthesis of 2-{[(5-methoxy-1H-benzimidazol-2-yl)sulfinyl]methyl}-5,6-dimethyl-

thieno[2,3-d]pyrimidin-4(3H)-one (IVviii)  

2-{[(5-Methoxy-1H-benzimidazol-2-yl)thio]methyl}-5,6-dimethylthieno[2,3-d]-

pyrimidin-4(3H)-one (IIIviii, 2.0 gm; 0.0054 mole) was dissolved in 125 ml methanol 

and 100 ml methylene dichloride by stirring at room temprature. Thereafter, the reaction 

mixture was chilled in an ice salt bath while maintaining the temperature below 0oC. To 

this clear solution, methanolic solution of m-CPBA (1.16 gm; 0.0065 mole) was added 

while stirring and the reation was continued for 30-45 mins. After completion of the 

reaction, worked up was done as for the compound IVi. 

 

M.P. : 200-202oC; Yield: 60%. 

Mol. formula : C17H16N4O3S2; Mol. Wt. 388.4.  

IR (KBr) cm-1 : 3174(γNH), 2893(γC-H), 1651(γCONH), 1050(γS-O), 801(γC-S).  

 

9. Synthesis of 2-[(1H-benzimidazol-2-ylsulfinyl)methyl]-5-phenylthieno[2,3-d]-

pyrimidin-4(3H)-one (IVix) 

2-[(1H-Benzimidazol-2-ylthio)methyl]5-phenylthieno[2,3-d]pyrimidin-4(3H)-one (IIIix, 

2.10 gm; 0.0054 mole) was dissolved in 125 ml methanol and 100 ml methylene 

dichloride by stirring at room temprature. Thereafter, the reaction mixture was chilled in 

an ice salt bath while maintaining the temperature below 0oC. To this clear solution, 
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methanolic solution of m-CPBA (1.16 gm; 0.0065 mole) was added while stirring and the 

reation was continued for 30-45 mins. After completion of the reaction, worked up was 

done as for the compound IVi. 

 

M.P. : 207-210oC; Yield: 95%. 

Mol. formula : C20H14N4O2S2; Mol. Wt. 406.4                 

IR (KBr) cm-1 : 3193(γNH), 2971(γC-H), 1680(γCONH), 1046(γS-O), 740(γC-S).  

MS(m/e) : 368, 364, 335, 218. 

 

10. Synthesis of 2-{[(5-methoxy-1H-benzimidazol-2-yl)sulfinyl]methyl}-5-phenyl-

thieno[2,3-d]pyrimidin-4(3H)-one (IVx) 

2-{[(5-Methoxy-1H-benzimidazol-2-yl)thio]methyl}-5-phenylthieno[2,3-d]pyrimidin-

4(3H)-one  (IIIx, 2. 26 gm; 0.0054 mole) was dissolved in 125 ml methanol and 100 ml 

methylene dichloride by stirring at room temprature. Thereafter, the reaction mixture was 

chilled in an ice salt bath while maintaining the temperature below 0oC. To this clear 

solution, methanolic solution of m-CPBA (1.16 gm; 0.0065 mole) was added while 

stirring and the reation was continued for 30-45 mins. After completion of the reaction, 

worked up was done as for the compound IVi. 

 

M.P. : 195-198oC; Yield: 91%. 

Mol. formula : C21H16N4O3S2; Mol. Wt. 436.5.  

IR (KBr) cm-1 : 3120(γNH), 2883(γC-H), 1677(γCONH), 1046(γS-O),  697(γC-S).          

 

11. Synthesis of 2-[(1H-benzimidazol-2-ylsulfinyl)methyl]-5-(4-methoxy-phenyl)-

thieno[2,3-d]pyrimidin-4(3H)-one (IVxi). 

2-[(1H-Benzimidazol-2-ylthio)methyl]-5-(4-methoxyphenyl)thieno[2,3-d]pyrimidin-

4(3H)-one (IIIxi, 2.26 gm; 0.0054 mole) was dissolved in 125 ml methanol and 100 ml 

methylene dichloride by stirring at room temprature. Thereafter, the reaction mixture was 

chilled in an ice salt bath while maintaining the temperature below 0oC. To this clear 

solution, methanolic solution of m-CPBA (1.16 gm; 0.0065 mole) was added while 

stirring and the reation was continued for 30-45 mins. After completion of the reaction, 

worked up was done as for the compound IVi. 

 

M.P. : 214-218oC; Yield: 77%. 
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Mol. formula : C21H16N4O3S2; Mol. Wt. 436.5                 

IR (KBr) cm-1 : 3335(γNH), 3058(γC-H), 1677(γCONH), 1046(γS-O), 745(γC-S). 

 

12. Synthesis of 2-{[(5-methoxy-1H-benzimidazol-2-yl)sulfinyl]methyl}-5-(4-

methoxyphenyl)-thieno[2,3-d]pyrimidin-4(3H)-one (IVxii) 

2-{[(5-Methoxy-1H-benzimidazol-2-yl)thio]methyl}-5-(4-methoxyphenyl)-thieno[2,3-d]-

pyrimidin-4(3H)-one (IIIxii, 2.4 gm; 0.0054 mole) was dissolved in 125 ml methanol and 

100 ml methylene dichloride by stirring at room temprature. Thereafter, the reaction 

mixture was chilled in an ice salt bath while maintaining the temperature below 0oC. To 

this clear solution, methanolic solution of m-CPBA (1.16 gm; 0.0065 mole) was added 

while stirring and the reation was continued for 30-45 mins. After completion of the 

reaction, worked up was done as for the compound IVi. 

 

M.P. : 220-225oC; Yield: 77%. 

Mol. formula : C22H18N4O4S2; Mol. Wt. 466.5.  

IR (KBr) cm-1 : 3119(γNH), 2997(γC-H), 1675(γCONH), 1045(γC-S), 703(γC-S).     

 

13. Synthesis of 2-[(1H-benzimidazol-2-ylsulfinyl)methyl]-5-(4-methylphenyl)-

thieno[2,3-d]pyrimidin-4(3H)-one  (IVxiii). 

2-[(1H-Benzimidazol-2-ylthio)methyl]-5-(4-methylphenyl)thieno[2,3-d]pyrimidin-4(3H)-

one (IIIxiii, 2.18 gm; 0.0054 mole) was dissolved in 125 ml methanol and 100 ml 

methylene dichloride by stirring at room temprature. Thereafter, the reaction mixture was 

chilled in an ice salt bath while maintaining the temperature below 0oC. To this clear 

solution, methanolic solution of m-CPBA (1.16 gm; 0.0065 mole) was added while 

stirring and the reation was continued for 30-45 mins. After completion of the reaction, 

worked up was done as for the compound IVi. 

 

M.P. : 215-217oC; Yield: 91%. 

Mol. formula : C21H16N4O2S2; Mol. Wt. 420.5                 

IR (KBr) cm-1 : 3195(γNH), 3055(γC-H), 1678(γCONH), 1046(γS-O), 739(γC-S). 

NMR (DMSO-d6)δppm : 2.43 (3H, s, CH3), 5.50 (2H, s, CH2 at SCH2), 7.15-7-75 (9H, m, 

H at 6 and Ar-H), 12.56 (1H, s, NH), 13.50 (1H, s, NH).     
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14. Synthesis of 2-{[(5-methoxy-1H-benzimidazol-2-yl)sulfinyl]methyl}-5-(4-methyl-

phenyl)thieno[2,3-d]pyrimidin-4(3H)-one (IVxiv) 

2-{[(5-Methoxy-1H-benzimidazol-2-yl)thio]methyl}-5-(4-methylphenyl)-thieno[2,3-d]-

pyrimidin-4(3H)-one (IIIxiv, 2.3 gm; 0.0054 mole) was dissolved in 125 ml methanol 

and 100 ml methylene dichloride by stirring at room temprature. Thereafter, the reaction 

mixture was chilled in an ice salt bath while maintaining the temperature below 0oC. To 

this clear solution, methanolic solution of m-CPBA (1.16 gm; 0.0065 mole) was added 

while stirring and the reation was continued for 30-45 mins. After completion of the 

reaction, worked up was done as for the compound IVi. 

 

M.P. : 203-207oC; Yield: 90%. 

Mol. formula : C22H18N4O3S2; Mol. Wt. 450.  

IR (KBr) cm-1 : 3123(γNH), 2895(γC-H), 1678(γCONH), 1046(γS-O), 768(γC-S). 

 

15. Synthesis of 2-[(1H-benzimidazol-2-ylsulfinyl)methyl]-5-(4-bromophenyl)-

thieno[2,3-d]pyrimidin-4(3H)-one (IVxv) 

2-[(1H-Benzimidazol-2-ylthio)methyl]-5-(4-bromophenyl)thieno[2,3-d]pyrimidin-4(3H)-

one (IIIxv, 2.53 gm; 0.0054 mole) was dissolved in 125 ml methanol and 100 ml 

methylene dichloride by stirring at room temprature. Thereafter, the reaction mixture was 

chilled in an ice salt bath while maintaining the temperature below 0-2oC. To this clear 

solution, methanolic solution of m-CPBA (1.16 gm; 0.0065 mole) was added while 

stirring and the reation was continued for 30-45 mins. After completion of the reaction, 

worked up was done as for the compound IVi. 

 

M.P. : 214-217oC; Yield: 72%. 

Mol. formula : C20H13BrN4O2S2; Mol. Wt. 485.3                 

IR (KBr) cm-1 : 3189(γNH), 3074(γC-H), 1678(γCONH), 1045(γS-O), 746(γC-S). 

 

16. Synthesis of 5-(4-bromophenyl)-2-{[(5-methoxy-1H-benzimidazol-2-yl)-sulfinyl]-

methyl}-thieno[2,3-d]pyrimidin-4(3H)-one (IVxvi)  

5-(4-Bromophenyl)-2-{[(5-methoxy-1H-benzimidazol-2-yl)thio]methyl}-thieno[2,3-d]-

pyrimidin-4(3H)-one (IIIxvi, 2.7 gm; 0.0054 mole) was dissolved in 125 ml methanol 

and 100 ml methylene dichloride by stirring at room temprature. Thereafter, the reaction 

mixture was chilled in an ice salt bath while maintaining the temperature below 0oC. To 



Part-I 
Experimental 

 210 

this clear solution, methanolic solution of m-CPBA (1.16 gm; 0.0065 mole) was added 

while stirring and the reation was continued for 30-45 mins. After completion of the 

reaction, worked up was done as for the compound IVi. 

 

M.P. : 214-216oC; Yield: 60%. 

Mol. formula : C21H15BrN4O3S2; Mol. Wt. 515.4.  

IR (KBr) cm-1 : 3118(γNH), 2894(γC-H), 1677(γCONH), 1044(γS-O), 772(γC-S).          

MS(m/e) : 496, 446, 332, 180. 

 

17. Synthesis of 2-((1H-benzo[d]imidazol-2-ylsulfinyl)methyl)-5-(4-chloro-phenyl)-

thieno[2,3-d]pyrimidin-4(3H)-one (IVxvii) 

2-((1H-Benzo[d]imidazol-2-ylthio)methyl)-5-(4-chlorophenyl)thieno[2,3-d]pyrimidin-

4(3H)-one (IIIxvii, 2.3 gm; 0.0054 mole) was dissolved in 125 ml methanol and 100 ml 

methylene dichloride by stirring at room temprature. Thereafter, the reaction mixture was 

chilled in an ice salt bath while maintaining the temperature below 0oC. To this clear 

solution, methanolic solution of m-CPBA (1.16 gm; 0.0065 mole) was added while 

stirring and the reation was continued for 30-45 mins. After completion of the reaction, 

worked up was done as for the compound IVi. 

 

M.P. : 180-182oC; Yield: 51%. 

Mol. formula : C20H13ClN4O2S2; Mol. Wt. 440.9.                         

IR (KBr) cm-1 : 3280(γNH), 1665(γCONH), 1056(γS-O), 743.18(γC-S).  

 

18. Synthesis of 5-(4-chlorophenyl)-2-{[(5-methoxy-1H-benzimidazol-2-yl)-sulfinyl]-

methyl}thieno[2,3-d]pyrimidin-4(3H)-one (IVxviii) 

5-(4-Chlorophenyl)-2-{[(5-methoxy-1H-benzimidazol-2-yl)thio]methyl}thieno[2,3-d]-

pyrimidin-4(3H)-one (IIIxviii, 2. 54 gm; 0.0054 mole) was dissolved in 125 ml methanol 

and 100 ml methylene dichloride by stirring at room temprature. Thereafter, the reaction 

mixture was chilled in an ice salt bath while maintaining the temperature below 0oC. To 

this clear solution, methanolic solution of m-CPBA (1.16 gm; 0.0065 mole) was added 

while stirring and the reation was continued for 30-45 mins. After completion of the 

reaction, worked up was done as for the compound IVi. 

 

M.P. : 214-219oC; Yield: 82%. 
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Mol. formula : C21H15ClN4O3S2; Mol. Wt. 470.  

IR (KBr) cm-1 : 3119(γNH), 2882(γC-H), 1677(γCONH), 1044(γC-S), 772(γC-S). 

NMR (DMSO-d6)δppm : 3.85 (3H, s, OCH3), 5.52 (2H, s, CH2 at SCH2), 7.13 (1H, s, CH 

at 6), 6.81(1H, dd, CH at imidazole, J = 2.4 & 6.36), 7.05 (1H, d, 

CH at imidazole, J = 2.16), 7.45 (1H, d, CH at imidazole, J = 

8.76), 7.30-7.55 (4H, m, Ar-H).         

 

19. Synthesis of 2-((1H-benzo[d]imidazol-2-ylsulfinyl)methyl)-6-methyl-5-phenyl-

thieno[2,3-d]pyrimidin-4(3H)-one (IVxix) 

2-((1H-Benzo[d]imidazol-2-ylthio)methyl)-6-methyl-5-phenylthieno[2,3-d]pyrimidin-

4(3H)-one (IIIxix, 2.10 gm; 0.0054 mole) was dissolved in 125 ml methanol and 100 ml 

methylene dichloride by stirring at room temprature. Thereafter, the reaction mixture was 

chilled in an ice salt bath while maintaining the temperature below 0oC. To this clear 

solution, methanolic solution of m-CPBA (1.16 gm; 0.0065 mole) was added while 

stirring and the reation was continued for 30-45 mins. After completion of the reaction, 

worked up was done as for the compound IVi. 

 

M.P. : 180-182oC; Yield: 30%. 

Mol. formula : C21H16N4O2S2; Mol. Wt. 420. 

IR (KBr) cm-1 : 3351(γNH), 3077(γC-H), 1681(γCONH), 1054(γS-O), 742(γC-S). 

 

20. Synthesis of 2-[(1H-benzimidazol-2-ylsulfinyl)methyl]-3,5,6,7-tetrahydro-4H-

cyclopenta[4,5]thieno[2,3-d]pyrimidin-4-one (IVxx) 

2-[(1H-Benzimidazol-2-ylthio)methyl]-3,5,6,7-tetrahydro-4H-cyclopenta[4,5]thieno[2,3-

d]pyrimidin-4-one (IIIxx, 1.90 gm; 0.0054 mole) was dissolved in 125 ml methanol and 

100 ml methylene dichloride by stirring at room temprature. Thereafter, the reaction 

mixture was chilled in an ice salt bath while maintaining the temperature below 0oC. To 

this clear solution, methanolic solution of m-CPBA (1.16 gm; 0.0065 mole) was added 

while stirring and the reation was continued for 30-45 mins. After completion of the 

reaction, worked up was done as for the compound IVi. 

 

M.P. : 221-225oC; Yield: 60%. 

Mol. formula : C17H14N4O2S2; Mol. Wt. 370.4                 

IR (KBr) cm-1 : 3218(γNH), 2960(γC-H), 1661(γCONH), 1057(γS-O), 745(γC-S). 
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21. Synthesis of 2-{[(5-methoxy-1H-benzimidazol-2-yl)sulfinyl]methyl}-3,5,6,7-tetra-

hydro-4H-cyclopenta[4,5]thieno[2,3-d]pyrimidin-4-one (IVxxi)  

2-{[(5-Methoxy-1H-benzimidazol-2-yl)thio]methyl}-3,5,6,7-tetrahydro-4H-cyclopenta-

[4,5]thieno[2,3-d]pyrimidin-4-one (IIIxxi, 2.0 gm; 0.0054 mole) was dissolved in 125 ml 

methanol and 100 ml methylene dichloride by stirring at room temprature. Thereafter, the 

reaction mixture was chilled in an ice salt bath while maintaining the temperature below 

0oC. To this clear solution, methanolic solution of m-CPBA (1.16 gm; 0.0065 mole) was 

added while stirring and the reation was continued for 30-45 mins. After completion of 

the reaction, worked up was done as for the compound IVi. 

 

M.P. : 210-212oC; Yield: 48%. 

Mol. formula : C18H16N4O3S2; Mol. Wt. 400.4.  

IR (KBr) cm-1 : 3394(γNH), 2954(γC-H), 1659(γCONH), 1029(γS-O),  808(γC-S).   

 

22. Synthesis of 2-[(1H-benzimidazol-2-ylsulfinyl)methyl]-3,5,6,7,8,9-hexa-hydro-4H-

cyclohepta[4,5]thieno[2,3-d]pyrimidin-4-one  (IVxxii) 

2-[(1H-Benzimidazol-2-ylthio)methyl]-3,5,6,7,8,9-hexahydro-4H-cyclohepta[4,5]thieno-

[2,3-d]pyrimidin-4-one (IIIxxii, 2.0 gm; 0.0054 mole) was dissolved in 125 ml methanol 

and 100 ml methylene dichloride by stirring at room temprature. Thereafter, the reaction 

mixture was chilled in an ice salt bath while maintaining the temperature below 0oC. To 

this clear solution, methanolic solution of m-CPBA (1.16 gm; 0.0065 mole) was added 

while stirring and the reation was continued for 30-45 mins. After completion of the 

reaction, worked up was done as for the compound IVi. 

 

M.P. : 196-199oC; Yield: 37%. 

Mol. formula : C19H18N4O2S2; Mol. Wt. 398.5                 

IR (KBr) cm-1 : 3250(γNH), 2916(γC-H), 1651(γCONH), 1057(γS-O), 744(γC-S). 

NMR (DMSO-d6)δppm : 1.68-1.71 (6H, m, CH2 at 6, 7, & 8), 1.88 (2H, t, CH2 at 5, J = 

3.30), 3.30 (2H, t, CH2 at 9, J = 5.32), 5.35 (2H, s, CH2 at SCH2), 

7.20-7.69 (4H, m, H at imidazole), 12.30 (1H, s, NH), 13.20 (1H, 

s, NH).    
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23. Synthesis of 2-{[(5-methoxy-1H-benzimidazol-2-yl)sulfinyl]methyl}-3,5,6,7,8,9-

hexahydro-4H-cyclohepta[4,5]thieno[2,3-d]pyrimidin-4-one (IVxxiii)  

2-{[(5-Methoxy-1H-benzimidazol-2-yl)thio]methyl}-3,5,6,7,8,9-hexahydro-4H-cyclo-

hepta[4,5]thieno[2,3-d]pyrimidin-4-one (IIIxxiii, 2.2 gm; 0.0054 mole) was dissolved in 

125 ml methanol and 100 ml methylene dichloride by stirring at room temprature. 

Thereafter, the reaction mixture was chilled in an ice salt bath while maintaining the 

temperature below 0oC. To this clear solution, methanolic solution of m-CPBA (1.16 gm; 

0.0065 mole) was added while stirring and the reation was continued for 30-45 mins. 

After completion of the reaction, worked up was done as for the compound IVi. 

 

M.P. : 155-160oC; Yield: 44%. 

Mol. formula : C20H20N4O3S2; Mol. Wt. 428.5.  

IR (KBr) cm-1 : 3269(γNH), 2909(γC-H), 1672(γCONH), 1048(γS-O), 804(γC-S).          

MS(m/e) : 408, 393, 380, 365, 352, 323, 309, 180 

 

24. Synthesis of 2-((1H-benzo[d]imidazol-2-ylsulfinyl)methyl)quinazolin-4(3H)-one 

(IVxxiv) 

2-((1H-Benzo[d]imidazol-2-ylthio)methyl)quinazolin-4(3H)-one (IIIxxiv, 1.66 gm; 

0.0054 mole) was dissolved in 125 ml methanol and 100 ml dichloromethane by stirring 

at room temprature. Thereafter, the reaction mixture was chilled in an ice salt bath while 

maintaining the temperature below 0oC. To this clear solution, methanolic solution of m-

CPBA (1.16 gm; 0.0065 mole) was added while stirring and the reation was continued for 

30-45 mins. After completion of the reaction, worked up was done as for the compound 

IVi. 

 

M.P. : 175-177oC; Yield: 56% 

Mol. Formula : C16H12N4O2S; Mol. Wt. 324.3 

IR (KBr) cm-1 : 3059(γNH), 1676(γCONH), 1052(γS-O), 741(γC-S). 

 

25. Synthesis of 2-((5-methoxy-1H-benzo[d]imidazol-2-ylsulfinyl)methyl)quinazolin-

4(3H)-one (IVxxv) 

2-((5-Methoxy-1H-benzo[d]imidazol-2-ylthio)methyl)quinazolin-4(3H)-one (IIIxxv, 1.8 

gm; 0.0054 mole) was dissolved in 125 ml methanol and 100 ml dichloromethane by 

stirring at room temprature. Thereafter, the reaction mixture was chilled in an ice salt bath 
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while maintaining the temperature below 0oC. To this clear solution, methanolic solution 

of m-CPBA (1.16 gm; 0.0065 mole) was added while stirring and the reation was 

continued for 30-45 mins. After completion of the reaction, worked up was done as for 

the compound IVi. 

 

M.P. : 110-112oC; Yield: 60% 

Mol. Formula : C17H14N4O3S; Mol. Wt. 354.3 

IR (KBr) cm-1 : 3351(γNH), 3076(γC-H), 1681(γCONH), 1029(γS-O), 776(γC-S)          

 

26. Synthesis of 2-(1H-benzoimidazol-2-sulfinylmethyl)-6,8-dimethyl-3H-9-thia-

1,3,5-triazafluoren-4-one (IVxxvi) 

6-(1H-benzoimidazol-2-ylsulfanylmethyl)-2,4-dimethyl-7H-9-thia-1,5,7-triazafluoren-8-

one (IIIxxvi, 2.1 gm; 0.0054 mole) was dissolved in 125 ml methanol and 100 ml 

chloroform by stirring at room temprature. Thereafter, the reaction mixture was chilled in 

an ice salt bath while maintaining the temperature below 0oC. To this clear solution, 

methanolic solution of m-CPBA (1.16 gm; 0.0065 mole) was added while stirring and the 

reation was continued for 30-45 mins. After completion of the reaction, worked up was 

done as for the compound IVi. 

 

M.P. :  140-143oC; Yield: 60% 

Mol. Formula : C19H15N5O2S2; Mol. Wt. 409.4 

IR (KBr) cm-1 :  3345(γNH), 3030(γC-H), 1685(γCONH), 1040(γS-O), 768(γC-S).          

 

27. Synthesis of 2-(5-methoxy-1H-benzoimidazol-2-sulfinylmethyl)-6,8-dimethyl-3H-

9-thia-1,3,5-triazafluorene 4-one (IVxxvii) 

6-(5-Methoxy-1H-benzoimidazol-2-ylsulfanylmethyl)-2,4-dimethyl-7H-9-thia-1,5,7-

triazafluoren-8-one (IIIxxvii, 2.2 gm; 0.0054 mole) was dissolved in 125 ml methanol 

and 100 ml chloroform by stirring at room temprature. Thereafter, the reaction mixture 

was chilled in an ice salt bath while maintaining the temperature below 0oC. To this clear 

solution, methanolic solution of m-CPBA (1.16 gm; 0.0065 mole) was added while 

stirring and the reation was continued for 30-45 mins. After completion of the reaction, 

worked up was done as for the compound IVi. 

 

M.P. : 160-162oC; Yield: 64% 
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Mol. Formula : C20H17N5O3S2; Mol. Wt. 439.5 

IR (KBr) cm-1 :  3358γNH), 2980(γC-H), 1682(γCONH), 1055(γS-O), 760(γC-S).          

 

28. Syntheis of 2-(1H-benzoimidazole-2-sulfinylmethyl)-3H-1,3,9a,10-tetraaza-

anthracene-4,9-dione (IVxxviii) 

2-((1H-Benzo[d]imidazol-2-ylthio)methyl)-3H-[1,2,4]triazino[6,1-b]quinazoline-4,10-

dione (IIIxxviii, 2.0 gm; 0.0054 mole) was dissolved in 125 ml methanol and 100 ml 

chloroform by stirring at room temprature. Thereafter, the reaction mixture was chilled in 

an ice salt bath while maintaining the temperature below 0oC. To this clear solution, 

methanolic solution of m-CPBA (1.16 gm; 0.0065 mole) was added while stirring and the 

reation was continued for 30-45 mins. After completion of the reaction, worked up was 

done as for the compound IVi. 

 

M.P. : 170-172oC; Yield: 61% 

Mol. Formula : C18H12N6O3S; Mol. Wt. 392.4 

IR (KBr) cm-1 : 3059, 2909(γC-H), 1677(γCONH), 1053(γS-O), 741(γC-S) 

NMR (DMSO-d6)δppm : 4.70 (2H, s, CH2 at SCH2), 7.02-8.06 (8H, m, Ar-H), 12.44 (1H, 

s, NH), 13.55 (1H, s, NH). 

 

29. Synthesis of 2-(5-methoxy-1H-benzoimidazol-2-sulfinylmethyl)-3H-1,3,9a,10-

tetraaza-anthracene 4,9-dione (IVxxix) 

2-((5-Methoxy-1H-benzo[d]imidazol-2-ylthio)methyl)-3H-[1,2,4]triazino[6,1-b]-quina-

zoline 4,10-dione  (IVxxix, 2.2 gm; 0.0054 mole) was dissolved in 125 ml methanol and 

100 ml chloroform by stirring at room temprature. Thereafter, the reaction mixture was 

chilled in an ice salt bath while maintaining the temperature below 0oC. To this clear 

solution, methanolic solution of m-CPBA (1.16 gm; 0.0065 mole) was added while 

stirring and the reation was continued for 30-45 mins. After completion of the reaction, 

worked up was done as for the compound IVi. 

 

M.P. : 157-159oC; Yield: 50% 

Mol. Formula : C19H14N6O4S; Mol. Wt. 422.4 

IR (KBr) cm-1 :  3184, 2922(γC-H), 1686(γCONH), 1061(γS-O), 779(γC-S).          

NMR (DMSO-d6)δppm : 3.81 (3H, s, OCH3), 4.65 (2H, s, CH2 at SCH2), 7.02-8.06 (8H, 

m, Ar-H), 12.45 (1H, s, NH), 13.42 (1H, s, NH). 



Part-I 
Experimental 

 216 

30. Synthesis of 2-((1H-benzo[d]imidazol-2-ylsulfinyl)methyl)-6,7-dimethoxy-

quinazolin-4(3H)-one (IVxxx) 

2-((1H-benzo[d]imidazol-2-ylthio)methyl)-6,7-dimethoxyquinazolin-4(3H)-one (IIIxxx, 

1.98 gm; 0.0054 mole) was dissolved in 125 ml methanol and 100 ml chloroform by 

stirring at room temprature. Thereafter, the reaction mixture was chilled in an ice salt bath 

while maintaining the temperature below 0oC. To this clear solution, methanolic solution 

of m-CPBA (1.16 gm; 0.0065 mole) was added while stirring and the reation was 

continued for 30-45 mins. After completion of the reaction, worked up was done as for 

the compound IVi). 

 

M.P. : 122-124oC; Yield: 56% 

Mol. Formula : C18H16N4O4S; Mol. Wt. 384.4 

IR (KBr) cm-1 : 2916(γC-H), 1655(γCONH), 1064(γS-O), 746(γC-S)          

MS(m/e) : 380, 366, 351, 203, 150. 

 

31. Synthesis of 2-((5-methoxy-1H-benzo[d]imidazol-2-ylsulfinyl)methyl)-6,7-

dimethoxyquinazolin-4(3H)-one (IVxxxi) 

2-((5-Methoxy-1H-benzo[d]imidazol-2-ylthio)methyl)-6,7-dimethoxyquinazolin-4(3H)-

one (IIIxxxi, 2.1 gm; 0.0054 mole) was dissolved in 125 ml methanol and 100 ml 

chloroform by stirring at room temprature. Thereafter, the reaction mixture was chilled in 

an ice salt bath while maintaining the temperature below 0oC. To this clear solution, 

methanolic solution of m-CPBA (1.16 gm; 0.0065 mole) was added while stirring and the 

reation was continued for 30-45 mins. After completion of the reaction, worked up was 

done as for the compound IVi. 

 

M.P. : 105-107oC; Yield: 60% 

Mol. Formula : C19H18N4O5S; Mol. Wt. 414.4 

IR (KBr) cm-1 : 2916(γC-H), 1663(γCONH), 1026(γS-O). 

 

32. Synthesis of 2-(1H-benzoimidazol-2-sulfinylmethyl)-8-methoxy-3H-benzo-[4,5]-

thieno[2,3-d]pyrimidin-4-one (IVxxxii) 

9-Methoxy-2-(1H-benzoimidazol-2-ylsulfanylmethyl)-3H-benzo[4,5]thieno[3,2-d]-

pyrimidin-4-one (IIIxxxii, 2.1 gm; 0.0054 mole) was dissolved in 125 ml methanol and 

100 ml chloroform by stirring at room temprature. Thereafter, the reaction mixture was 
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chilled in an ice salt bath while maintaining the temperature below 0oC. To this clear 

solution, methanolic solution of m-CPBA (1.16 gm; 0.0065 mole) was added while 

stirring and the reation was continued for 30-45 mins. After completion of the reaction, 

worked up was done as for the compound IVi. 

 

M.P. : 195-197oC;Yield: 61% 

Mol. Formula : C19H14N4O3S2; Mol. Wt. 410.4 

IR (KBr) cm-1 : 3068(γC-H), 1683(γCONH), 1022(γS-O), 739(γC-S).         

 

33. Syntheis of 8-methoxy-2-(5-methoxy-1H-benzoimidazole-2-sulfinylmethyl)-3H-

benzo[4,5]thieno[2,3-d]pyrimidin-4-one (IVxxxiii) 

9-Methoxy-2-(5-methoxy-1H-benzoimidazol-2-ylsulfanylmethyl)-3H-benzo[4,5]-thieno-

[3,2-d]pyrimidin-4-one  (IIIxxxiii, 2.2 gm; 0.0054 mole) was dissolved in 125 ml 

methanol and 100 ml chloroform by stirring at room temprature. Thereafter, the reaction 

mixture was chilled in an ice salt bath while maintaining the temperature below 0oC. To 

this clear solution, methanolic solution of m-CPBA (1.16 gm; 0.0065 mole) was added 

while stirring and the reation was continued for 30-45 mins. After completion of the 

reaction, worked up was done as for the compound IVi. 

  

M.P. : 125-127oC; Yield: 64% 

Mol. Formula : C20H16N4O4S2; Mol. Wt. 440.5 

IR (KBr) cm-1 : 2917(γC-H), 1675(γCONH), 1028(γS-O), 784(γC-S).         

 

34. Synthesis of 6-((1H-benzo[d]imidazol-2-ylsulfinyl)methyl)-3-(methylthio)-1-

phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one (IVxxxiv) 

6-((1H-Benzo[d]imidazol-2-ylthio)methyl)-3-(methylthio)-1-phenyl-1H-pyrazolo[3,4-d]-

pyrimidin-4(5H)-one (IIIxxxiv, 2.2 gm; 0.0054 mole) was dissolved in 125 ml methanol 

and 100 ml dichloromethane by stirring at room temprature. Thereafter, the reaction 

mixture was chilled in an ice salt bath while maintaining the temperature below 0oC. To 

this clear solution, methanolic solution of m-CPBA (1.16 gm; 0.0065 mole) was added 

while stirring and the reation was continued for 30-45 mins. After completion of the 

reaction, worked up was done as for the compound IVi. 

 

M.P. : 132-134oC; Yield: 55% 
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Mol. Formula : C20H16N6O2S2; Mol. Wt. 436.5 

IR (KBr) cm-1 : 2923(γC-H), 1678(γCONH), 1025(γS-O), 756(γC-S).         

 

35. Synthesis of 6-((5-methoxy-1H-benzo[d]imidazol-2-ylsulfinyl)methyl)-3-(methyl-

thio)-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one (IVxxxv) 

6-((5-Methoxy-1H-benzo[d]imidazol-2-ylthio)methyl)-3-(methylthio)-1-phenyl-1H-

pyrazolo[3,4-d]pyrimidin-4(5H)-one (IIIxxxv, 2.4 gm; 0.0054 mole) was dissolved in 

125 ml methanol and 100 ml dichloromethane by stirring at room temprature. Thereafter, 

the reaction mixture was chilled in an ice salt bath while maintaining the temperature 

below 0oC. To this clear solution, methanolic solution of m-CPBA (1.16 gm; 0.0065 

mole) was added while stirring and the reation was continued for 30-45 mins. After 

completion of the reaction, worked up was done as for the compound IVi. 

 

M.P. : 172-175oC; Yield: 40% 

Mol. Formula : C21H18N6O3S2; Mol. Wt. 466.5 

IR (KBr) cm-1 : 2980(γC-H), 1670(γCONH), 1029(γS-O), 752(γC-S).         
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 1. Synthesis of Pyrimidines and Condensed Pyrimidines through Reactions of Nitriles 

with  ortho-Aminocarbonyl Substrates under Acidic Conditions: A Review 

 

1.1 Introduction 

Pyrimidines & condensed pyrimidines have a long and distinguished history extending 

from the days of their discovery as important constituents of nucleic acids to their current 

use in the chemotherapy of AIDS. The pyrimidine nucleus has very wide biological and 

medicinal significance. For more details a comprehensive review1 on this topic can be 

consulted. 

 

A. Bioisosterism 

The bioisosterism2 between benzene and various heterocycles, namely thiophene, furan, 

pyrrole, pyridine etc. is well known since long. Thus, various condensed pyrimidine 

systems like thienopyrimidines, furanopyrimidines, pyrrolopyrimidines, 

pyridopyrimidines etc., are the logical bioisosters of the bioactive quinazolines. 
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1.2 Synthesis of Condensed Pyrimidines: General Aspects 

Logically, medicinal chemistry research worldwide routinely involves the synthesis and 

evaluation of bioisosteric molecules of existing drugs. As many of the drug molecules 

have quinazoline as the basic nucleus, the synthesis of condensed pyrimidines, 
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appropriately functionalised, especially at the 2- and 4-positions has attracted great 

attention of the medicinal chemists. 

N

N

Z

R

1  

The synthesis of condensed pyrimidine systems is a very important process subject to 

improvement on various points and parameters. The regularly employed methods for 

synthesis of condensed pyrimidines involve mainly, two different approaches as 

mentioned below. 

 

Approach A: 

Annelation of pyrimidines on an appropriately substituted heterocycle3. 

N

N

Z

RNH2

X

Y

A

2 1

Z=OH, NH2, R, H etc;

Y

X
= carbonyl

 

Approach B: 

Annelation of a heterocycle on the appropriately substituted pyrimidine ring3. 
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Approach A is the most widely used approach for the synthesis of condensed pyrimidines. 

Under this approach, a variety of o-aminocarbonyl substrates of various heterocycles have 

been cyclocondensed with a host of reagents namely amides, thioamides, imidates, 

amidines etc., mostly under basic conditions, to afford various condensed pyrimidines, 

quinazolines, thienopyrimidines, pyrrolopyrimidines, triazolopyrimidines, pteridines, 

furanopyrimidines, pyridopyrimidines and many more.  
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X

R1

R2

Y

X

NH2

H2N R

O

H2N R

S

RO R

NH

H2N R

NH

or

or

X

R1

R2 N

N

Z

R

R1, R2 = H, alkyl, aryl, cycloalkyl, aloxy, carboxy, heterocycloalkyl etc;
        X = HC=CH, NH, S, O, CH=N, N=NH, etc;
        Y = COOH, COOR3, CONH2, COR3, CHO,CN, etc;
        Z =OH, NH2;
        R = alkyl, aryl,aralkyl, etc.
       R3 = CH3, C2H5, alkyl, aryl

 

However, the direct use of a nitrile (RCN) as a reagent to cyclocondense with o-amino 

carbonyl substrates to afford condensed pyrimidines has received rather scant attention. 

There are a few reports3,4,5 available in the literature on such reactions under basic 

conditions. The major drawback of these reactions under basic conditions is poor product 

yields. 
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1.3 Reactions of Nitriles Under Acidic Conditions 

Nitriles have played a major role in the synthesis of a variety of open chain and 

heterocyclic compounds6. The polar C≡N group of the nitrile is prone towards 

electrophilic attack at the nitrogen and nucleophilic attack at the carbon. 

 

The enhanced electrophilicity of nitriles in the presence of halogen acids is known since 

long. The interaction of a nitrile 4, with an acid or its complexation with a Lewis acid 

results in the formation of a species 5, with enhanced electrophilicity and therefore, many 

of the reactions of nitriles with nucleophilic reagents are acid catalyzed. Halogen acids 
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have been found to be particularly effective in promoting the reaction of nitriles with a 

variety of nucleophiles. 

R

N

+ A+

R

N A
R C N A

4 5  

In the absence of other nucleophilic species, nitriles react with halogen acids, to yield 

unstable adducts of different compositions. The nature of these adducts, as well as, the 

possible involvement of such nitrile-halogen acid adducts in the hydrogen halide 

catalyzed reactions of nitriles with nucleophiles has been the subject of considerable 

discussion6-16. These adducts are of compositions, such as RCN.HX, 2 RCN.HX, 2 

RCN.nHX etc., depending upon the nature of the nitriles and the reaction conditions 

employed. The unstable, hygroscopic adducts resulting from the reaction of a variety of 

aliphatic and aromatic nitriles with halogen acids, at low temperatures, have been found 

to be of the general composition RCN.2HX. The structure 6 however, has been assigned 

to many of these adducts7,17-21. 
R

C

NH.HX

X

6  

The sequence of reactions leading to the formation of imidoyl halide hydrohalide 6 from a 

nitrile 4 can be depicted as shown below. The protonation of the nitrile yields the 

nitrilium ion 7, which combines with a halide ion to form imidoyl halide 8. The imidoyl 

halide 8 thus formed, is sufficiently basic to react with another molecule of halogen acid 

to yield the imidoyl halide hydrohalide salt 6. In this reversible reaction, the formation of 

imidoyl halide salt 6, is frequently slow and is favoured by high concentrations of 

hydrogen halide (Scheme 1)11,12. 

R

N

R

NH R

C

NH.HX

4

X

6

R

NH

R C

NH

X-

X

+HX

-HX

+HX

-HX

7 8

Scheme 1  

This reactive intermediate, imidoyl halide, is formed in situ through the reaction of nitrile 

R-C≡N and halogen acid HX.  The addition of HX is across the polar C≡N bond.  The 
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electron withdrawing group X (Cl) further makes the nitrile C’ more electrophilic or 

enhances its electrophilicity. 

N

R

NH

Cl

R

Vs
δ−δ++δ+ δ−

 

The imidoyl halide when is reacted with the o-aminocarbonyl substrate, attracts the 

electrons of the nucleophilic-NH2 group of the substrate very readily as follows (Scheme 

2). 

N

N

Z

R

NH2

X

Y

Z= OH, NH2, R, H etc;

Y

X

= COOH, COOR', CONHR', CHO, COR', CN

N
H

X

Y

+

NH

RCl

-HCl

R

N

N
H

X

Y

R

N

N
H

X

Y

R

N

Step-1

Step-2

Scheme 2  

 

The reaction of a nitrile with an o-aminocarbonyl substrate possessing electrophilic and 

nucleophilic centers leads to the formation of an azaheterocycle through the incorporation 

of CN of the nitrile in the ring. The mechanism may be any one  of the following three, a 

concerted cycloaddition process (Type A) or by discreet steps, involving either the initial 

electrophilic attack on the nitrile nitrogen (Type B) or by the initial electrophilic attack at 

the nitrile carbon (Type C), followed by ring closure22 (Scheme 3).  
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One pot concerted mechanism

Nucleophilic attack on "C" of the nitrile,
followed by intramolecular nuleophilic attack.

Electrophilic attack on "N" of the nitrile,
followed by intramolecular nucleophilic attack.

(carbonyl)

(amino)

+

N

R

N

RNu

E

Nu

E

Type A

N

RNu

E
N

RNu

E
N

RNu

E

Type B

NH

RNu

E
N

RNu

EType C

Scheme 3  

Of the above three mechanisms the type C mechanism is the most favored mechanism 

and is mostly reported. 

 

1.4 Synthesis of Various Condensed Pyrimidines under the Influence of Dry HCl Gas 

This enhanced reactivity of nitriles in the presence of acids has been particularly 

exploited for the synthesis of condensed pyrimidines. A host of nitriles have been reacted 

with various o-aminocarbonyl compounds to obtain a variety of condensed pyrimidines. 

This approach has led to the development of a facile, one pot synthesis of condensed 2-

substituted functionalised pyrimidines of wide applicability23-30. A variety of o-

aminocarbonyl compounds, such as o-aminoesters 9, o-aminoamides 10, o-aminoketones 

11 and o-aminonitriles 12 have been reacted with nitriles to obtain the corresponding 

condensed 4-oxo I, 4-aryl II, and 4-aminopyrimidines III.  

 

N

NH

O

RNH2

Y

O

I

+ RCN

9, Y = OR1

10a, Y = NHR1

R1 = H, alkyl, aryl, etc.  
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N

N

R1

RNH2

O

R1

11 II

+ RCN

 

N

N

NH2

RNH2

N

12 III

+ RCN

 

1.4.1 Synthesis of Condensed 4-Oxopyrimidines  

The reaction essentially consists of bubbling a stream of dry hydrogen chloride gas 

through a mixture of an o-aminoester 9 or o-aminoamide 10 substrate and the nitrile in a 

suitable solvent like dioxane at ambient temperature for a few hours. On basification the 

condensed 4-oxopyrimidines I  are isolated in good yields (60-80%). This is exemplified 

by the reaction between methyl anthranilate 9a and acetonitrile which when conducted in 

the presence of dry hydrogen chloride gas has been found to give 2-methylquinazolin-4-

one Ia in 75% yield. This is higher in yields, than that obtained under basic conditions4. 

N

NH

O

RNH2

O

+ CH3CN

OCH3 a

b

9a

 a = dry HCl gas, b = NaOEt/ EtOH

Ia

 

A series of 2-substitutedquinazolin-4-ones (Table 20) has been synthesized through the 

reaction of methyl anthranilates 9a, with alkyl, aryl, aralkyl and heteroaryl nitriles under 

the influence of dry HCl gas. Further, the reaction has been found to be applicable to the 

condensation of a large variety of active methylene nitriles to obtain the corresponding 

condensed 2-substitutedmethylquinazolin-4-ones, which are otherwise inaccessible by the 

base catalyzed condensations (Table 20). 



Part-II 
Synthesis of Pyrimidines 

 227 

Table 20: 2-Substitutedquinazolin-4(3H)-ones 

N

NH

O

RNH2

O

+ RCN

OC2H5

R' R'

8a

dry HCl

Ia
 

R’ R Nitrile used R. Solv Yield 

(%) 

Reference 

H CH3- CH3CN E 75 28 

H C6H5- C6H5 CN E- D 77 28 

H 4-ClC6H4- 4-ClC6H4CN E-D 70 28 

H C6H5CH2- C6H5 CH2CN E-D 64 28 

H 3-C5H4N 3-C5H4N CN E-D 58 28 

H C2H5CO2CH2- C2H5CO2 CH2CN E 69 23 

H CH3CO2CH2- CH3CO2CH2CN E 72 28 

H NH2COCH2- NH2COCH2CN E-C 68 28 

H ClCH2- ClCH2CN Di 72 28 

H Cl2CH- Cl2CHCN Di 73 31 

H 4-ClC6H4OCH2- 4-Cl C6H4OCH2CN E-D 65 28 

H 4-ClC6H4SCH2- 4-ClC6H4SCH2CN E-D 79 28 

H C6H5SO2CH2- C6H5SO2CH2CN E-D 67 28 

H C6H5OCH2CH2- C6H5OCH2CH2CN Di 75 32 

H 4-ClC6H4OCH2CH2- 4-ClC6H4OCH2CH2CN E 75 32 

H C6H5NHCH2CH2- C6H5NHCH2CH2CN Di 73 32 

H 4-CH3C6H5NHCH2CH2 4- CH3C6H5NHCH2CH2CN Di 72 32 

H C2H5OCH2CH2- C2H5OCH2CH2CN C 73 32 

H C10H7OCH2CH2- C10H7OCH2CH2CN E 51 32 

I C6H5OCH2CH2- C6H5OCH2CH2CN Di 77 32 

I 4-ClC6H4OCH2CH2- 4-ClC6H4OCH2CH2CN E-D 71 32 

H C6H5S- C6H5SCN E-D 55 33 

H CH3S- CH3SCN E-D 60 33 

C= Chloroform, D=Dimethylformamide, Di= Dioxane, E= Ethanol 

This method has been found to be equally applicable to the condensation of the  o-amino 

esters and amides of a variety of substrates like thiophenes, pyridothiophenes, 

benzofurans, with a host of alkyl, aryl, aralky, heteroaryl nitriles as well as a range of α-

substituted acetonitriles to give the corresponding condensed 2-substitutedpyrimidin-

4(3H)-ones, namely, 2-substitutedthieno[2,3-d]pyrimidin-4(3H)-ones, 2-substituted 
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pyrido[4’,3’-4,5]-thieno[2,3-d]pyrimidin-4(3H)-ones (Table 21), 2-substitutedthieno[3,2-

d]pyrimidin-4(3H)-ones, 2-substituted benzothieno[3,2-d]pyrimidin-4(3H)-ones, 2-

substitutedpyrido-thieno-[3,2-d]pyrimidin-4(3H)-ones (Table 22), 2-substituted benzo 

furano[3,2-d]pyrimidin-4(3H)-ones (Table 23), 2-substituted-4H-[1,2,4]triazino[6,1-

b]quinazoline-4,10-diones (Table 24) and 2-substitutedthieno [3,4-d]- and isothiazolo-

[3,4-d]pyrimidin-4(3H)-ones (Table 25). 

S

R1

R2 NH2

O

OC2H5

+ RCN
dry HCl

S

R1

R2 N

NH

O

R

Ib9b  

2-Substituted thieno[2,3-d]pyrimidin-4(3H)-ones (Table 21) 

S
NH2

O

OC2H5

+ RCN
dry HCl

S
N

NH

O

R

Ic

NR1
NR1

9c  

2-Substituted pyrido[4’,3’-4,5]thieno[2,3-d]pyrimidin-4(3H)-ones (Table 21) 

S
NH2

O

OC2H5

+ RCN
dry HCl

S
N

NH

O

R

Id

N
R1

N
R1

9d
 

2-Substituted pyrido [4’,3’-4,5]thieno[2,3-d]pyrimidin-4(3H)-ones (Table 21) 
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Table 21: 2-Substituted thieno[2,3-d]pyrimidin-4(3H )-ones 

S

R1

R2 N

NH

O

R

 

R1 R2 R Yield 

(%) 

R. Solv. Reference 

- (CH2)4- -CH3 85 E-D 24 

- (CH2)4- -CH2CO2C2H5 72 E 28 

- (CH2)4- -CH2CONH2 46 E-D 28 

- (CH2)4- -CHClCH2Cl 40 Di 28 

- (CH2)4- -CH2C6H5 83 E-D 34 

- (CH2)4- -CH2Cl 81 E-C 25 

- (CH2)4- -CH2OC6H4Cl-4 75 D 34 

- (CH2)4- -CH2SC6H4CH3-4 75 E-C 34 

- (CH2)4- -CH2SO2C6H4CH3-4 58 E-C 34 

- (CH2)4- -CH2CO2CH3 66 E-C 34 

- (CH2)4- -CH2NHSO2C6H5NH2-4 50 E 34 

- (CH2)4- -CH2NHSO2C6H4NH-

COCH3-4 

58 E-C 34 

- (CH2)4- -CH2SO2C6H4Cl-4 50 D 34 

- (CH2)4- -CH2SC6H4Cl-4 70 E-C 34 

- (CH2)4- -CH2SC6H4NO2-4 65 M-C 36 

- (CH2)4- -CH2SO2C6H4NO2-4 63 D 36 

- (CH2)4- -CH2NHSO2C6H4 63 E-C 36 

- (CH2)4- -CH2C6H4Cl-4 75 E 31 

- (CH2)4- -CH2COC6H5 62 Di 31 

- (CH2)4- -CH2NHC6H4 56 C-P 31 

- (CH2)4- -CH2CH2Cl 50 E-C 31 

-(CH2)4- -C6H5 80 E-D 24 

- (CH2)4- -C6H4Cl-4 66 E-D 31 

- (CH2)4- 3-C5H4N 60 E-D 28 

- (CH2)4- -CO2C2H5 68 E-D 31 

- (CH2)4- -SC6H4N(CH3)2-4 56 E-C 37 

- (CH2)4- -SC10H6OH-4 50 M-C 37 

- (CH2)4- -SC6H4CH3-4 59 E-C 37 

- (CH2)4- SC2H5 64 E-C 37 

- (CH2)4- -SC3H7 6.9 E-C 37 
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R1 R2 R Yield 

(%) 

R. Solv. Reference 

- (CH2)4- -SCH3 82 E-C 37 

- (CH2)4- -SCH2C6H5 77 E-C 37 

- (CH2)4- -C6H3(OCH3) 2-3,4 60 E-C 31 

- (CH2)4- -NHC6H5 57 E-D 26 

- (CH2)4- -NHC6H4CH3-4 45 E-D 26 

- (CH2)4- -NHC6H4OCH3-4 40 E-D 33 

- (CH2)4- -NHC6H4Cl-4 69 E-C 26 

- (CH2)4- -NHC6H4Cl-2 35 Di 26 

- (CH2)4- -NH2 68 n-P 26 

- (CH2)4- ON

 
62 E-C 26 

- (CH2)4- -CH=CHC6H5 50 E-C 23 

- (CH2)4- -SH 60 E-D 26, 38 

- (CH2)3- -CH3 73 E-D 28 

- (CH2)3- -CO2C2H5 65 E 28 

- (CH2)3- -CH2CH2Cl 47 E-C 28 

- (CH2)3- -CH2CO2C2H5 68 E 28 

- (CH2)3- -CH2Cl 70 Di 26 

- (CH2)3- -C6H5 60 E-C 31 

CH3- CH3- -CH3 85 E-C 24 

CH3 CH3- 3-C5H4N 66 Di 28 

CH3- CH3- -C6H5 66 D-E 24 

CH3- CH3- -SC6H4N(CH3) 2-4 60 E-C 37 

CH3- CH3- -SC10H6OH-4 51 M-C 37 

CH3- CH3- -SC6H4CH3-4 58 E-C 31 

CH3- CH3- -SC6H5 64 E-C 37 

CH3- CH3- -SCH3 79 E-C 37 

CH3- CH3- -CH2C6H5 70 E-D 24 

CH3- CH3- -CH2COC6H5 57 Di 31 

CH3- CH3- -CH2NHSO2C6H5 64 E-C 36 

CH3- CH3- -CH2NHSO2C6H4NH2-4 60 E 36 

CH3- CH3- -CH2NHSO2C6H4NH-

COCH3-4 

48 E-C 36 

CH3- CH3- -CH2NHC6H5 65 C-P 31 

CH3- CH3- -CH2CO2C2H5 68 E 28 

CH3- CH3- -CH2Cl 78 E-C 26, 34 

CH3- CH3- -CH2SC6H5 74 E-C 36 

CH3- CH3- -CH2SC6H4CH-4 59 E-C 36 
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R1 R2 R Yield 

(%) 

R. Solv. Reference 

CH3- CH3- -CH2SC6H4NO2-4 71 E-C 36 

CH3- CH3- -CH2SO2C6H4CH3-4 50 E-C 36 

CH3- CH3- -C6H3(OCH3)2-3,4 70 E-C 31 

CH3- CH3- -CO2C2H5 60 E 31 

CH3- CH3- -NHC6H4CH3-4 60 E-C 33 

CH3- CH3- -NHC6H4OCH3-4 53 E-C 33 

CH3- CH3- ON

 
57 Ch 26 

CH3- CH3- -SH 47 E-D 38 

CH3- CH3- -CH2SC6H4Cl-4 59 E-C 26 

C6H5- H -CH3 74 E-C 24 

C6H5- H -C6H5 56 Di 24 

C6H5- H -C6H3(OCH3)2 60 E-C 31 

C6H5- H -NHC6H4CH3-4 62 E-C 33 

C6H5- H -CO2C2H5 70 C-P 31 

C6H5- H -CH2C6H5 50 E-C 24 

C6H5- H -CH2CO2C2H5 70 E 28 

C6H5- H -CH2Cl 81 Ch 34 

C6H5- H -CH2COC6H5 58 E 31 

C6H5- H -SH 54 D-E 38 

4-CH3OC6H4- H -CH2Cl 98 Di 39 

4-CH3OC6H4- H -CH2CO2C2H5 88 E 39 

4-CH3OC6H4- H -CH2C6H5 75 E-C 39 

4-CH3OC6H4- H -CH3 90 D 39 

4-ClC6H4- H CH2Cl 65 M-C 26 

4-CH3C6H4- H -CH2Cl 86 E-C 40 

H C2H5- 3-C5H4N 70 E-D 31 

H C2H5- -CH2Cl 98 Di 34 

H C2H5- -CH2COC6H5 67 E 31 

H C2H5- -C6H3(OCH3) 2-3,4 65 E-C 28 

CH3- COOC2H5- -CH2C6H5 58 E-D 23, 31 

CH3- COOC2H5- -CH2COC6H5 76 Di 31 

CH3- COOC2H5- -CH2Cl 87 Di 34 

CH3- COOC2H5- -CH3 80 D 23, 31 

CH3- COOC2H5- -CO2C2H5 60 Ch 31 

CH3- COOC2H5- -C6H3(OCH3) 2-3,4 50 E-C 28 

C6H5- CH3- -CH2Cl 94 E-C 40 

-(CH2) 2-N-(CH2C6H5)CH2- -CH3 77 D-P 28 
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R1 R2 R Yield 

(%) 

R. Solv. Reference 

-(CH2) 2-N-(CH2C6H5)CH2- -CH2Cl 54 D 28 

-(CH2) 2-N-(CH2C6H5)CH2- -CH2CO2C2H5 50 E-C 31 

-(CH2) 2-N-(CH2C6H5)CH2- -CH2OC6H4Cl-4 61 Di 31 

-(CH2) 2-N-(CH2C6H5)CH2- -CH2C6H5 60 E-C 28 

-(CH2) 2-N-(CH2C6H5)CH2- -C6H5 55 E-C 28 

-(CH2) 2-N-(CH2C6H5)CH2- -CH2COC6H5 76 Di 31 

-(CH2) 2-N-(CH2C6H5)CH2- -C6H3 (OCH3) 2-3,4 50 E-C 28, 31 

-(CH2) 2-N-(CH2C6H5)CH2- -CO2C2H5 76 Ch 31 

-(CH2) 2-N-(CH2C6H5)CH2- -NHC6H4CH3-4 43 E-C 33 

-(CH2) 2-N-(CH2C6H5)CH2- -SC6H4N(CH3)2-4 55 E-C 37 

-(CH2) 2-N-(CH3CO)CH2- -CH2CO2C2H5 56 E 37 

-(CH2) 2-N-(CH3CO)CH2- -CH2Cl 50 E-C 41 

-(CH2) 2-N-(CH3CO)CH2- -CH3 64 E-D 41 

-(CH2) 2-N-(CH3CO)CH2- -CH2C6H5 59 E 41 

-(CH2) 2-N-(CH3CO)CH2- -CH2OC6H4Cl-4 51 Di 41 

-(CH2) 2-N-(CH3CO)CH2- -C6H5 57 E-C 41 

-(CH2) 2-N-(CH3CO)CH2- 3-C5H4N 57 E-D 28, 31 

-CH2 CH(C6H5)N-(CH3)CH(C6H5)- -CH3 90 E-C 31 

-CH2 CH(C6H5)N-(CH3)CH(C6H5)- -CH2CO2C2H5 75 E-C 31 

-CH2 CH(C6H5)NHCH(C6H5)- -CH2C6H5 45 E-D 31 

C = Chloroform, Ch = Cyclohexane, D = Dimethylformamide, Di = Dioxane, E = Ethanol, M = Methanol,  

P = Petroleum ether(60-80oC), n-P = n-Propanol 

S

NH2

+ RCN
dry HCl

R1

R2

O

OC2H5

S

R1

R2

NH

N

O

R

Ie9e  

2-Substitutedthieno[3,2-d]pyrimidin-4(3H)-ones (Table 22) 

X

NH2

+ RCN
dry HCl

O

R3

X

NH

N

O

R

Y= CH, N; X = O, S

Y

R1

R2

Y

R1

R2

R3 = alkoxy, NH2
R1,R2 = H, CH3

9f
If
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2-Substitutedbenzothieno[3,2-d]pyrimidin-4(3H)-ones, 2-Substitutedpyridothieno[3,2-d]-

pyrimidin-4(3H)-ones (Table 3) and 2-Substitutedbenzofurano[3,2-d]pyrimidin-4(3H)-

ones (Table 23) 

 

Table 22: 2-Substitutedthieno[3,2-d]/benzo(b)thieno[3,2-d]/pyridothieno[3,2-d]-

pyrimidin-4(3H )-ones. 

S

R1

R2

NH2

COOC2H5

+ RCN
dry HCl

S

R1

R2

NH

N

O

R

 

R1 R2 R Yield 

(%) 

R. Solv. Reference 

C6H5 H -CH3 80 C 42 

C6H5 H -CH2Cl 82 E 42 

C6H5 H -CH2CH2Cl 76 C 42 

C6H5 H -C6H5 63 D 43 

C6H5 H -SH 54 D-E 43 

H C6H5 -CH3 45 E-C 42 

H C6H5 -CH2Cl 40 E-C 42 

H C6H5 -CO2C2H5 25 E-C 42 

H C6H5 -CH2CO2C2H5 38 C-P 42 

H C6H5 -CH2CH2Cl 41 E-C 42 

H C6H5 -C6H5 35 E-C 42 

H C6H5 -CH2C6H5 32 E-C 42 

H C6H5 -CH2C6H4Cl-4 38 C-P 42 

H C6H5 -CH2C6H4NO2-4 52 C-P 42 

H C6H5 -CH2=CH-C6H5 55 E-C 42 

-CH=CH-CH=CH- -CH3 73 E-D 28, 35 

-CH=CH-CH=CH- -CH2C6H5 69 E-D 28 

-CH=CH-CH=CH- -CH2Cl 63 E-D 35 

-CH=CH-CH=CH- -CH2CO2C2H5 66 E-D 31 

-C(OCH3)=CH-CH=CH- -CH2C6H5 65 E-D 28 

-C(OCH3)=CH-CH=CH- -CH2CO2C2H5 58 E-D 31 

-C(CH3)=CH-C(CH3)=N- -CH3 62 E-C 35 

-C(CH3)=CH-C(CH3)=N- -CH2Cl 68 E 35 

-C(CH3)=CH-C(CH3)=N- -CH2OCH3 62 D 44 

-C(CH3)=CH-C(CH3)=N- -CH2OC2H5 64 E-C 44 
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R1 R2 R Yield 

(%) 

R. Solv. Reference 

-C(CH3)=CH-C(CH3)=N- -CH2OCOCH3 60 A 44 

-C(CH3)=CH-C(CH3)=N- -CH2OCOC6H5 56 E-C 44 

-C(CH3)=CH-C(CH3)=N- -CHCl2 64 E-C 44 

-C(CH3)=CH-C(CH3)=N- -CH2N(C2H5)2 64 C 44 

-C(CH3)=CH-C(CH3)=N- -CH2NHCH(CH3)2 61 M 44 

-C(CH3)=CH-C(CH3)=N- 
N

 
59 E-C 44 

A = Gl.acetic acid, C = Chloroform, D = Dimethylformamide, E = Ethanol,M = Methanol,  P= Petroleum 

ether(60-80oC) 

Table 23: 2-Substitutedbenzo(b)furo[3,2-d]pyrimidin-4(3H )-ones 

O

NH

N

O

R

 

 

 

 

 

 

 

 

 

           B=Benzene, M=Methanol 

+    RCN

N

N

O

NH2

N

N

O

OC2H5

O

dry HCl

NH

N R

OIg9g  

 

R Yield 

(%) 

R. Solv. Reference 

-CH3 66 B-M 45 

-CH2CO2C2H5 60 B-M 45 

-CH2C6H5 65 B-M 45 

-CH2Cl 62 B-M 45 

-CH2Cl 17 M 46 

-CH2CH2Cl 30 M 46 

-CO2C2H5 50 B-M 46 

-CH2C6H4NO2 22 M 46 

-CH2SC6H4Cl-4 12 M 46 
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Table 24: 2-Substituted-4H-[1,2,4]triazino[6,1-b]qunazolin-4,10-diones 

R Yield 

(%) 

R. Solv. Reference 

-CH2CH2Cl 43 A 47 

-CHCl2 43 A 47 

-CH3 53 E 32 

-CH2CONH2 55 A 47 

-CH2CONHC6H5 43 A 47 

-C6H4(2-NH2) 45 A 47 

-CH2CONHCH3 42 A 47 

-CH2Cl 53 E 32 

-COOC2H5 46 A 47 

-CH2C6H4Cl-4 50 A 47 

-CH2COOC2H5 53 B 32 

-CH2C6H5 51 B-P 32 

-CH2CH2OC6H5 52 E-D 32 

-C6H5 35 A 47 

-CH2SC6H5 51 B 32 

-CH2CH2OC6H4Cl-4 51 B-P 32 

A=Gl.Acetic acid,B=Benzene,D=Dimethylformamide,  E=Ethanol, P= Petroleum ether(60-80oC) 

  RCN

S

X

NH2

R1

C2H5O

O +
dry HCl

S

X
R1

N

HN

O

R

Ih
9h  

Table 25: 2-Substitutedthieno[3,4-d] and isothiazolo[3,4-d]pyrimidin-4(3H )-ones 

D = Dimethylformamide, E = Ethanol 

 

Heteronitriles, such as thiocyanates have been found to react with methyl anthranilate 9a 

and thiophene 2-amino-3-carboxylates 9b in the presence of dry hydrogen chloride to 

R1 X R Yield 

(%) 

R. Solv. Reference 

SCH3 =C(COOC2H5)- SCH3 70 E-D 31 

NHC6H5 =C(COOC2H5)- CH3 52 E-D 31 

SCH3 =N- CH3 70 E-D 31 
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yield 2-alkyl and arylthioquinazolinones (Table 20), as well as, 2-alkyl or 

arylthiothieno[2,3-d]pyrimidin-4-ones (Table 21), 2-alkylthiothieno[3,2-d]pyrimidin-4-

ones (Table 22) and 2-alkylthiothieno[3,4-d]pyrimidin-4-ones (Table 25), which are 

otherwise accessible only through two step syntheses. 
O

OC2H5

NH2

+ RXCN
dry HCl

N

NH

O

XR

X = S, O
9a

Ia

 

2-Alkyl and arylthioquinazolinones (Table 20) 

+ RXCN
dry HCl

X =  S, O

S

R1

R2

O

OC2H5

NH2 S

R1

R2 N

NH

O

XR

9b

Ib

 

2-Alkyl and arylthiothieno[2,3-d]pyrimidin-4-ones (Table 2), 2-alkylthiothieno[3,2-

d]pyrimidin-4-ones (Table 3) and 2-alkylthiothieno[3,4-d]pyrimidin-4-ones (Table 25). 

 

Similarly, simple cyanamide and dialkyl cyanamides yield 2-amino- and 2-

dialkylaminothieno[2,3-d]pyrimidin-4(3H)-ones (Table 26) under these reaction 

conditions. However when N-monoaryl cyanamides were used two isomeric 

thienopyrimidin-4-ones Ii  and Ij  have been obtained as the condensation products of their 

dry HCl catalyzed reaction with thiophene o-aminoesters 9b. The reaction proceeds via 

the transient guanidine intermediate, which cyclizes through two alternate pathways to 

afford the isomeric 2-aminothieno[2,3-d]pyrimidin-4-ones. (Scheme 4) (Tables 26 and 

27).26,33 
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+
dry HCl

S

R1

R2

O

OC2H5

NH2

S

R1

R2 N

NH

O

NHAr

N

NH

S

R1

R2

O

OC2H5

N
NHAr

NH2

S

R1

R2

O

OC2H5

N
NH2

NHAr

S

R1

R2 N

N

O

NH2

Ar

R1 = R2 = -(CH2)4,-(CH2)2-N-(CH2C6H5)CH2-; R1 =  R2 = CH3, R1 =  C6H5, R2 = H,
Ar = C6H5, 4-CH3C6H4, 4-CH3OC6H4, 4-ClC6H4, 2-ClC6H4.

Ar

9b

Ii Ij

Scheme 4

 

Table 26: 2-Arylaminothieno[2,3-d]pyrimidin-4(3H )-ones 

N

NH

S

R1

R2

O

N
H

R

 
R1 R2 R Yield 

% 

R. Solv Reference 

(CH2)4 H 57 E-D 26, 33 

(CH2)4 4-CH3 45 E-D 26, 33 

(CH2)4 4-CH3O 40 E-D 33 

(CH2)4 4-Cl 69 E-C 33 

(CH2)4 2-Cl 35 Di 26, 33 

CH3 CH3 4-CH3 60 E-C 33 

CH3 CH3 4-CH3O 53 E-C 33 

C6H5 H 4-CH3 62 E-C 33 

-(CH2) 2-N-

(CH2C6H5)CH2- 

4-CH3 43 E-C 33 

D=Dimethylformamide, C=Chloroform, E = Ethanol, Di=Dioxane 
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Table 27: 2-Amino-3-substitutedarylthieno[2,3-d]pyrimidin-4(3H )-ones 

N

N

S

R1

R2

O

NH2

R

 
R1 R2 R Yield 

(%) 

R. Solv. Reference 

-(-CH2-)4- H 20 E-C 26, 33 

-(-CH2-)4- 4-CH3 25 E 26, 33 

-(-CH2-)4- 4-CH3O 18 B 33 

-(-CH2-)4- 4-Cl 20 B 33 

-(-CH2-)4- 2-Cl 30 E-C 26, 33 

CH3 CH3 4-CH3 19 E 33 

CH3 CH3 4-CH3O 23 E 33 

C6H5 H 4-CH3 27 E 33 

-(CH2) 2-N-

(CH2C6H5)CH2- 

4-CH3 22 E 33 

B=Benzene, C=Chloroform, E = Ethanol 

 

Boehm et al.48 have reported the synthesis of 2-substitutedpyrrolo[2,3-d]pyrimidin-4(3H)-

ones Ik by reacting the pyrrole o-aminoester 9i with various nitriles in the presence of dry 

hydrogen chloride. 

dry HCl

N
H

S

O

NH2

N
H

O

H2N

R1 R3

R2CN

N
H

S

O

H2N

R1

NH

O

R2

R3

9i Ik

R1 = alkyl, R2 = alkyl, arylalkyl, carboxyalkyl, R3 = H  

Recently, Juraszyk and coworkers49 have utilized the same approach to synthesize methyl 

trans-4-(4-oxo-3,4-dihydro[1]benzothieno[2,3-d]pyrimidin-2-yl)cyclo hexane carboxylate 

from 2-aminobenzothiophene-3-carboxylic ester 9j and methyl trans-4-cynocyclohexane 

carboxylate 13 under the influence of dry HCl gas. 
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+
dry HCl

S

OCH3

O

NH2

N

O

O CH3

S

N

NH

O O

O

CH3

9j 13

 

Similarly, Eid Fathy et al.,50 have synthesized novel naphtha[2,1-b]pyrano[2,3-d]-

pyrimidin-4-one derivatives from the corresponding o-amino ester 14 under the influence 

of dry HCl gas. 

O

O

O

O

NH2

RCN

dry HCl

O

O

N

NH

O

14  

A.a   Some Interesting Observations:  Condensed 4-Oxopyrimidines   

The condensation of thiophene o-aminoester 9b with ethyl cyanoacetate, when effected in 

the presence of dry HCl gas yields the corresponding 2-carbethoxy-4-

oxothienopyrimidine in 65% yields.23,26 In contrast, the base catalyzed condensation, 

employing sodium ethoxide is reported to afford the 3-cyano-2,4-dihydroxy-

thienopyridine3115.  

CNCH2COOC2H5

NaOC2H5

CNCH2COOC2H5

R1, R2 = (-CH2-)4

R1 = R2 = CH3

dry HCl

S

R1

R2

O

OC2H5

NH2

S

R1

R2 N

NH

O

CH2COOC2H5

S

R1

R2 N

HO

OH

CN

15

9b
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While, the use of cinnamonitrile in this condensation with the thiophene o-aminoester 9b 

has yielded the expected 2-styrylthienopyrimidin-4-ones. On the other hand, acrylonitrile 

when condensed with 2-amino-3-carbethoxythiophene, yields 2-chloroethylthieno-

pyrimidin-4-ones as the only product of the reaction.23, 31 (Table 21). 

dry HCl

CNCH=CHC6H5

NCCH=CH2

R1, R2 = (-CH2-)4

dry HCl

S

R1

R2

O

OC2H5

NH2

S

R1

R2 N

NH

O

CH=CHC6H5

S

R1

R2 N

NH

O

CH2CH2Cl
9b

 

The condensation of thiophene o-aminoesters with ethyl cyanoformate yielded the 2-

carbethoxy-4-oxothienopyrimidin-4-one, which otherwise is, accessible only by the 

condensation of the o-aminoamide with diethyl oxalate at elevated temperature.51 

dry HCl

S

R1

R2

O

OC2H5

NH2

S

R1

R2 N

NH

O

COOC2H5

S

R1

R2

O

CONH2

NH2

+

+

N

COOC2H5

OC2H5

COOC2H5O

heat

9b

10a

base

 

On this basis Madding & co-workers52 have reported the synthesis of 3,4-dihydro-4-

oxothieno[2,3-d]pyrimidine-2-carboxylates via the HCl catalysed reactions of a mixture 

of the thiophene 3-carboxylates with activated nitriles. One of the derivatives, Tiprinast, 

3,4-dihydro-5-methyl-6-(2-methylpropyl)-4-oxothieno[2,3-d]pyrimidine carboxylic acid 

is a proven  orally active antiallergic and antiasthamatic drug.  
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S

R1

R2

O

OC2H5

NH2
S

R1

R2 N

NH

O

COOR3

dryHCl/AcOH

Tiprinast, R1 = CH3, R2 = (CH3)2CHCH2
-, R3 = H.

CNCOOR3

9b

 

Some European workers53 have synthesized a series of 3-phenylthieno[2,3-d]pyrimidin-

4(3H)-ones by the cyclization of 2-amino-3-carbethoxythiophenes with benzonitrile in 

the presence of dry HCl gas. These compounds have exhibited potent analgesic and anti-

inflammatory activities. 

S

R1

R2

CO2C2H5

NH2

C6H5CN

dry HCl

S

R1

R2 N

NH

O

C6H5

R1, R2= -(-CH2-)3-; -(-CH2-)4-, -(-CH2-)5-; -CH(CH3)-(-CH2-)3-;  -(-CH2-)2-CH(CH3)-CH2-
             -CH2-CH(CH3)-(-CH2-)2-; R1 = C6H5, R2= H.

9b

 

The dry HCl gas catalyzed reaction of 2-aminothiophene-3-carboxamide 10a with 

acetonitrile and benzonitrile has yielded the corresponding 2-substituted-4-

oxothienopyrimidines. Similar reaction of 2-amino-N-substituted thiophene-3-

caboxamide 10b with acetonitrile could be expected to yield the 3-N-substituted 2-

substitutedthienopyrimidin-4-one. However, the reaction when actually conducted led to 

the formation of the 3-unsubstituted thienopyrimidin-4-one (R = CH3), as the only 

product.23,31,54 

S
NH2

S
N

NH

O

R

NH2

O

10a
R=CH3, C6H5

S
NH2

NHCH3

O

10b
S

N

N

O

CH3

CH3

RCN

dry HCl

dry HCl

dry HCl

CH3CN

CH3CN
X
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Similarly, benzofuro[3,2-d]-4-oxopyrimidines 10c have been obtained by the reaction of 

the corresponding, ortho-aminocarboxamide derivative of the benzofuran, with nitriles 

(Table 23).45,46  

O

NH2

O

NH2

+ RCN dry HCl gas

O

NH

N

O

R

R = CH3, CH2Cl, CHCl2, etc10c  

The plausible explanation and proof for the reaction mechanism has been discussed in 

details in section V in the later part of this review. 

 

1.4.2 Synthesis of Condensed 4-Arylpyrimidines 

The hydrogen chloride catalyzed condensation has been found applicable to the synthesis 

of certain fully aromatic condensed pyrimidines by the reaction of ortho-aminoketones 

with nitriles. Thus, 2-amino-5-chlorobenzophenone 11a has been reacted with aliphatic 

and aromatic nitriles to obtain the corresponding 2-substituted 4-phenyl-6-

chloroquinazolines (Table 28).23,31 

Cl

O

C6H5

NH2

+ RCN
dry HCl

N

N

C6H5

Cl

R
11a  

Similarly, 4-phenylthienopyrimidines have been obtained through the reaction of 2-amino 

3-benzoylthiophenes 11b with various nitriles.23, 31 

S

C6H5

O

NH2

+ RCN
dry HCl gas

11b

N

N

S

C6H5

R
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Table 28: Condensed 2-Substituted-4-phenylpyrimidines 

X

R1

R2 N

N

R

 

R1 

 

R2 R X Yield 

(%) 

R. Solv. Reference 

H Cl -CH3 -HC=CH- 70 B-H 31 

H Cl -CH2Cl -HC=CH- 70 B-H 31 

H Cl -CH=C(C6H5)OH -HC=CH- 73 E 55 

-(-CH2-)4- -CH3 S 54 E 31 

-(-CH2-)4- -CH2CO2C2H5 S 57 E 31 

-(-CH2-)4- -CH2Cl S 51 E 31 

B = Benzene, C=Chloroform, H = Hexane, E = Ethanol 

The condensation of o-aminoketoxime 16 with nitriles was found to yield the condensed 

4-arylpyrimidines via the elimination of hydroxylamine, rather than the expected 

condensed 4-arylpyrimidin-N-oxides 17 (Table 28).23 

Cl

N

C6H5

OH

NH2

+ RCN

Cl

Cl

N

N

N

N

C6H5

C6H5

R

R

X
16

17

dry HCl

dry HCl

O

 

Some novel 2-substituted-4-phenylpyrido[3,2-d]pyrimidines have also been obtained 

through the dry HCl gas catalysed condensation of the corresponding pyridothiophene o-

aminoketone 11c with nitriles like acetonitrile and chloroacetonitrile (Table 29).56  

 



Part-II 
Synthesis of Pyrimidines 

 244 

Table 29: 4-Phenylpyridothieno[3,2-d]pyrimidines  

NH3C

CH3

S

NH2

COC6H5
+ RCN

NH3C

CH3

S

N

N

R

C6H5

dry HCl

11c R = CH3, CH2Cl  

 

 

 

E = Ethanol, C = Chloroform 

1.4.3 Synthesis of Condensed 4-Aminopyrimidines 

This facile, dry HCl gas catalyzed one-pot synthesis of condensed pyrimidin-4(3H)-ones 

have been further extended to obtain condensed 4-aminopyrimidines through the reaction 

of nitriles with a variety of o-aminonitrile substrates. Thus, anthranilonitrile 12a has been 

reacted with nitriles; acetonitrile, benzyl cyanide and benzoyl acetonitrile  in presence of 

hydrogen chloride gas to give the corresponding 4-amino-2-substitutedquinazolines III  in 

40-65% yields (Table 30).29,57  

+ RCN
dry HCl

CN

NH2 N

N

NH2

R

12a IIIa  

A host of nitriles has been found to react smoothly to give condensed 4-aminopyrimidines 

in good yields. Thus, the HCl (g) catalyzed reaction of nitrile with o-aminonitriles, for the 

synthesis of condensed pyrimidines can be said to be quite general in its scope. This 

hydrogen chloride catalysed condensation of nitriles, especially acetonitrile, benzonitrile, 

phenylacetonitrile,   as well as heteronitriles like alkylthiocyanates, dialkyl and monoaryl 

cyanamides with thiophene o-aminonitriles, furan o-aminonitriles and pyrrole o-

aminonitriles 12b-d has been found to give the corresponding 2-substituted condensed 4-

aminopyrimidines derivatives (Table 30) in good yields.29,31,34,58 

R Yield 

(%) 

R. Solv. Reference 

CH3 66 E 55 

CH2Cl 55 E-C 55 
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+ R3CN
dry HCl

S

R1

R2

CN

NH2 S

R1

R2 N

N

NH2

R3

12b IIIb  

+ RCN
dry HCl

X

R1

R2

CN

NH2 X

R1

R2 N

N

H2N

R

12c; X =  O, R1, = R2 = C6H5,
12d; X= -N(C6H5)-, R1, = R2 = C6H5

IIIc

 

Table 30:  4-Amino-2-substituted Condensed[2,3-d]pyrimidines 

dry HCl

X

CN

NH2

+ RCN

R1

R2

X

R1

R2 N

N

NH2

R

 

R1 

 

R2 R X Yield 

(%) 

R. Solv. Reference 

H H -CH3 -HC=CH- 63 EA-Ch 29 

H H -CH2C6H5 -HC=CH- 40 EA-Ch 29 

H H -CH2OC6H5 -HC=CH- 40 E 29 

-(CH2)4- -CH3 S 50 B 29 

-(CH2)4- -CH2C6H5 S 43 B 29 

-(CH2)4- -C6H5 S 47 B 29 

-(CH2)4- -SCH3 S 84 I 29 

-(CH2)4- 
-N O

 

S 40 C-H 29 

-(CH2)4- 2-C5H4N S 40 B-M 29 

-(CH2)4- -NHC6H5 S 33.8 E 34 

-(CH2)4- -NHC6H4CH3-2 S 55.2 E-C 34 

-(CH2)4- -NHC6H4CH3-4 S 41.8 E 34 

-(CH2)4- -NHC6H4OCH3-2 S 61.3 E 34 

-(CH2)4- -NHC6H4OCH3-4 S 61 E 34 

-(CH2)4- -NHC6H40C2H5-4 S 58.8 E-C 34 

-(CH2)4- -NHC6H4Cl-3 S 40 E-C 34 

-(CH2)4- -NHC6H4Cl-2 S 51.5 E-C 34 
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R1 

 

R2 R X Yield 

(%) 

R. Solv. Reference 

-(CH2)4- -NHC6H4Br-4 S 56.1 E-C 34 

-(CH2)4- -SC2H5 S 68 B-h 57 

-(CH2)4- -SC3H7 S 79 B-h 57 

-(CH2)4- -SC4H9 S 84 B 57 

-(CH2)4- -SCH2C6H5 S 70 B 57 

-CH3 -CH3 -SCH3 S 66 I 29 

-CH3 -CH3 ON

 
S 35 B-H 29 

-CH3 -CH3 -SC3H7 S 83 I 57 

-CH3 -CH3 -SC4H9 S 72 I 57 

-CH3 -CH3 -SCH2C6H5 S 71 E-C 57 

-CH2CH2N(CH2C6H5)CH2- 3-C6H4N S 43 D-E 31 

-(CH2)5- -SCH2C6H5 S 56 E-C 57 

-C6H5 -C6H5 -CH3 O 68 B 29 

-C6H5 -C6H5 -C6H5 O 47 B-M 29 

-C6H5 -C6H5 -CHCl2 O 55 B-H 29 

-C6H5 -C6H5 -CO2C2H5 O 35 B-H 29 

-C6H5 -C6H5 -CH3 -N(C6H5)- 45 E-D 39 

B=Benzene, H = Hexane, I = Isopropanol , C = Chloroform, E =Ethanol, M = Methanol, D = 

Dimethylformamide, Ch =Cyclohexane, EA =Ethylacetate   

 

The hydrogen chloride catalysis has also been extended to the synthesis of some novel 2-

substituted 4-aminobenzo(b)furo[3,2-d]pyrimidines (Table 31) from the corresponding 3-

amino-carbethoxybenzo(b)furan 12e. However, the yields of the products are below 50%. 

 

+ RCN
dry HCl

O

NH2

CN
O

N

N

NH2

R

12e IIId  
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Table 31:  4-Amino-2-substituted benzo(b)furo[3,2-d]pyrimidines  

R Yield 

(%) 

R. Solv. Reference 

-CH3 35 B 45 

-C6H5 48 B 45 

SC6H5 17 B-M 46 

CO2C2H5 24 B 46 

CHCl2 17 B-M 46 

CH2C6H5 21 B-M 46 

CH2CH2Cl 18 B-M 46 

CH2C6H4NO2 19 B-M 46 

CH2SC6H4Cl 22 B-P 46 

B=Benzene, M=Methanol, P=Petroleum ether 

 

Angular condensed 4-aminopyrimidines, namely the  4-aminothieno[3,4-d]pyrimidines 

and 4-aminoisothiazolo[3,4-d]pyrimidine (Table 32) have also been synthesized through 

the reaction of 3-amino-4-cyanothiophene 12f and 3-amino-4-cyanoisothiazole 12g with 

nitriles in the presence of dry hydrogen chloride.31,58 

+ RCN
dry HCl

S

X

NH2

R2

CN

R1

N

N

S

X

R1

R2

NH2

R

 12f, 12g IIIe  

Table 32:  4-Amino-2-substitutedthieno[3,4-d]pyrimidines and 4-aminoisothiazolo-

[3,4-d]pyrimidines  

R1 R2 X R Yield 

(%) 

R. Solv. Reference 

- SCH3 COOC2H5 C CH3 64 D-E 31 

- SCH3 COOC2H5 C C6H5 51 E 31 

- SCH3 COOC2H5 C CO2C2H5 60 P-C 58 

-N O

 

COOC2H5 C CO2C2H5 50 P-C 58 

- SCH3 --- N CH3 45 E-D 31 

D = Diethylformamide, E = Ethanol, P = Petroleum ether C = Chloroform 

Molina and co-worker59 have reacted condensed pyrazole o-aminonitrile 12h with 

aliphatic nitriles to yield the corresponding 4-amino-2-substitutedpyrazolopyrimidines 18. 
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RCN

N

N

NH2

N

dry HCl
+

N

N

N

N

NH2

R12h 18  

Interestingly, when mono arylcyanamides were reacted with thiophene o-aminonitriles 

under the influence of dry HCl gas, a mixture of two products was obtained. The major 

product was 2-amino-3-aryl-4-iminothieno[2,3-d]pyrimidine 20, while the minor product 

was 2-amino-3-arylthieno[2,3-d]pyrimidin-4-one 23 (Scheme 5). 

 

The proposed reaction mechanism envisages the possibility of the formation of three 

isomeric 2,4-diamoaminothieno[2,3-d]pyrimidines 20-22  through the alternate modes of 

cyclization of the guanidine intermediate 19 and Dimroth rearrangement of one of the 

isomers to the third isomer. However, the structural proof to the actual products was 

given through the unequivocal synthesis of three isomeric 2,4-diamoaminothieno[2,3-

d]pyrimidines (Table 30) as well as, the 2-amino-3-arylthieno[2,3-d]pyrimidin-4-one 

(Table 27 and 29).60,61 Compound 23 is infact the antifact of the reaction, arising through 

the hydrolysis of 20 during the workup. 
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S

R1

R2

CN

NH2

+

N

NHAr

dry HCl

S

R1

R2 N

HN

Cl

NHAr

NH2

S

R1

R2 N

N

HN
Ar

NH2

S

R1

R2 N

N

H2N

NHAr

S

R1

R2 N

N

ArHN

NH2

S

R1

R2 N

N

O
Ar

NH2

12b 19

20

21

22

23

Scheme 5  

A Plausible explanation for the reaction mechanism involved in the condensation of an o-

aminonitrile substrate 12 and a  nitrile under the influence of dry HCl gas yield a 2-

substituted condensed 4-aminopyrimidine III is discussed below. 

These reactions, possibly, proceed through o-cyanoamidine intermediate 24 formed by 

the nucleophilic attack of the amino nitrogen on the N-protonated nitrilium species 7, as 

the imidoyl halide, hydrohalide 6. The o-cyanoamidine intermediate undergoes 

intramolecular cyclization through the nuceophilic attack by the amidine nitrogen on the 

carbon to yield the condensed 4-aminopyridine III  as the observed product (path ‘a’). The 

intramolecular cyclisation of o-cyanoamidine 24 is facilitated by the protonation of the 

cyano function 25 under the reaction conditions employed. Such ortho functionalised 

amidines have been presumed to be the intermediates in a variety of condensed 

pyrimidine synthesis through the reaction of o-aminocarbonyl derivatives with imidoyl 

derivatives. In view of the known tendency of the nitriles to form imidoyl halides in the 

presence of halogen acids, an alternate pathway involving the formation of o-

amidinoimidoylchloride 26 and its intramolecular cyclisation to condensed 4-

aminopyrimidines III also seems plausible (path ‘b’) (Scheme 6).  
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NH2

N

+ RCN

12

4
N

N

NH2

R

R

NH

R C

NClH

HCl

Cl

7

6

N

CN+HCl-

NH2

R

N

NH

R

NH2.HCl

N

NH2.HCl

N

R

24

25

Cl

26

a

b

III
Scheme 6  

An open chain intermediate 27 has been isolated in the reaction of the o-aminonitrile of 

triphenylpyrrole 12i with nitriles; benzonitrile, phenylacetonitrile and chloroacetonitrile 

in presence of dry hydrogen chloride.60  

N

N

NH2

+ RCN
N

N
H

R

HN

N

dry HCl

12i
27

R = C6H5 ,CH2C6H5,CH2Cl  

Eger et. al.,62 have also isolated such amidine intermediate 28 in reaction of 

trimethylpyrrole o-aminonitrile 12j with cyanamide and acetonitrile. 
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N

R1

N

NH2

+ R2CN

N

R1

N
H

R2

HN

N

dry HCl

12j
28

R1 = C6H5, R2 = NH2  
R1 = CH (CH3)C6H5, R2 = NH2
R1 = CH (CH3)C6H5, R2 = CH3  

1.4.4 Synthesis of Condensed 4-Chloropyrimidines 

In some of the reactions of o-aminonitriles with nitriles in presence of dry hydrogen 

chloride, interestingly 4-chloropyrimidine IV  has been found to be the sole product 

formed. 

NH2

N

+ RCN

12
N

N

Cl

R

dry HCl

IV  

For example, the reaction of chloroacetonitrile and dichloroacetonitrile with 

anthranilonitrile 12a in presence of excess of dry hydrogen chloride gas has been found to 

yield 4-chloro-2-chloromethylquinazolines in 85% yield. Surprisingly the expected 4-

amino-2-chloromethylquinazoline was found to be totally absent.29,61 Similarly, this 

hydrogen chloride catalysed condensation of active nitriles, especially, chloroacetonitrile 

and dichloroacetonitrile with thiophene o-aminonitriles 12b and furan o-aminonitriles 12c 

has been found to give the corresponding 2-substituted condensed 4-chloropyrimidines 

derivatives in good yields.29 

N

N

X

R1

R2

Cl

R

RCN
dry HCl

X

R1

R2 NH2

N

+

12 R1 =  R2 = H, X = -CH=CH-; R1 =  R2 = CH3, X = S; R =  CH2Cl, CHCl2
R1, R2 = -(CH2) 4-, X =  S; R =  CH2Cl, CHCl2;
R1 = R2 =C6H5, X = O;  R =  CH2Cl  

Interestingly, when chloroacetonitrile and dichloroacetinitrile are reacted with 

anthranilonitrile 12a, thiophene o-aminonitriles 12b, furan o-amino nitrile 12c, as well as, 

3-amino-2-cyanopyridothiophene 12k, in presence of dry HBr gas. The corresponding 

condensed 4-bromo-2-substitutedpyrimidine is the sole product.63  
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N

N

X

R1

R2

Br

R

RCN
dry HBr

X

R1

R2 NH2

N

+

R1 =  R2 = H, CH3, C6H5, R1, R2 = -(CH2) 4-, 
X = -CH=CH-, S, O; R =  CH2Cl, CHCl2  

The hydrogen chloride catalysed reaction has been further utilized for the synthesis of 

some novel 2-substituted-4-chlorobenzo(b)furo[3,2-d]pyrimidines (Table 33)54 and 4-

chloropyridothieno[3,2-d]pyrimidines55 from the corresponding 3-amino-carbethoxy-

benzo(b)furan 12e and 3-amino-2-cyanopyridothiophene 12k.  

O

NH2

CN

+
dry HCl

RCN

O

N

N

Cl
12e

R

 

S

NH2

CN

+
dry HCl

RCN

S

N

N

N N

Cl

R

12k  

Table 33:  4-Chloro-2-substitutedbenzofuro[3,2-d]pyrimidines and 4-chloro-2-

substituted pyridothieno[3,2-d]pyrimidine  

X
Y

NH2

CN

+ RCN

X
Y

N

N

Cl

R

dry HCl

R1

R2

R1

R2

 

 B = Benzene, H = Hexane, P = Petroleum Ether (60-80oC) 

R1 R2 X Y R Yield 

(%) 

R. Solv. Reference 

H H O =CH- CH2Cl 68 H 54 

H H O =CH- CHCl2 21 P 54 

CH3 CH3 S =N- CH2Cl 60 B-H 54 
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In contrast to the exclusive formation of condensed 2-substituted 4-chloropyrimidines as 

seen particularly in the reactions of mono & dichloroacetonitriles with various o-

aminonitrile substrates, the condensation of the nitriles bearing moderately electron 

withdrawing groups, such as ethyl cyanoacetate, ethyl cyanoformate, 

phenylthioacetonitrile, phenoxyacetonitrile, phenylsulphonylacetonitrile, 4-nitrobenzo-

nitrile, 4-nitrobenzyl cyanide, 3-cyanopyridine & 4-cyanopyridine, with thiophene o-

aminonitriles 12b  and furan o-aminonitrile 12c has been found to give a mixture of the 

corresponding condensed 2-substituted 4-amino- and 4-chloropyrimidines.29  

 

dry HCl

X
NH2

N

+

X
N

N

Cl

R

R1

R2

X
N

N

H2N

R

+
RCN

R1

R1

R2

R2

R1, R2= -(-CH2-)4-, C6H5
X= S, O
R= C2H5COOCH2, C2H5COO, 4-NO2C6H4CH2,
4-NO2C6H4,C6H5OCH2, C6H5SCH2,C6H5SO2CH2,
4-ClC6H5SO2CH2, 3-C5H4N, 4-C5H4N

12b, 12c

 

 

1.5 Investigations in the Reaction Mechanisms for Product Formation, 

Disproportionations, as well as, Isolation and Cyclizations of Intermediates 

Involved.   

1.5.1 Isolation of intermediate amidines in the synthesis of condensed 4-

oxopyrimidines and their dry HCl gas catalyzed cyclization to condensed 

2,3-disubstitutedthieno[2,3-d]pyrimidin-4-ones and condensed 3-

unsubstituted-thieno[2,3-d]pyrimidin-4-ones 

 

The reaction of 2-aminothiophene-3-carboxamide 10b with acetonitrile and benzonitrile 

in presence of dry HCl has been found to yield the corresponding 2-substituted 

thieno[2,3-d]pyrimidin-4(3H)-ones I. These pyrimidines could conceivably arise by the 

loss of ammonia from the amidine intermediate 29 by either of the pathways involving 
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the nucleophilic attack by the amidine nitrogen on the amide carbonyl group (path ‘a’) or 

through the nucleophilic attack of the amide nitrogen on the amidine carbon (path ‘b’) 

(Scheme 7). 

S
NH2

+
dry HCl

RCN

R1

R2

NH2

O

S
N

R1

R2

NH2

O

NH2

R

S

R1

R2 N
H

NH

O

R

NH2

S

R1

R2 N

NH

R

OH
H2N

a
b

S

R1

R2 N

NH

O

R

-NH2

-NH2

29

I

Scheme 7

a

b

 

The fact that the reaction of o-amino-N-methylcarboxamide 10b with acetonitrile leads to 

the exclusive formation of 3-N-unsubstitutedthienopyrimidin-4(3H)-one and not to 3-N-

methyltheinopyrimidin-4-one indicates that the reaction with the amides, presumably 

proceeds by the pathway ‘a’ involving the loss of NH3 from the amide function.28  

S
NH2

+
dry HCl

CH3CN

NH

O

S
N

NH

O

S
N

N

O
+

10b
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The condensation reaction of o-aminocarbonyl substrate with nitriles, presumably, 

proceeds by the nucleophilic addition of the amino group of the substrate to the nitrile or 

to a reaction species derived from the nitriles to yield the o-functionalized amidine 

intermediate, which undergoes intramolecular cyclisation to yield the pyrimidine.  

 

Generally, such intermediates are not isolated due to their unstable nature. However, 

isolation of such amidine intermediates 30 has been reported in the reaction of thiophene 

o-aminoanilides 10d with nitriles under acidic conditions.28  

 

S
NH2

+
dry HCl

RCN

NH

O

R1

R2

S

R1

R2 N

N

O

R

R3

S
N
H

NH

O

R1

R2

R3

R

NH

S

R1

R2 N

NH

O

R

Reflux in 
10% HCl

R3

Reflux in
 EtOH

a

b

R1= R2= -(CH2)4-, R
3= H

R1= R2= -(CH2)4-, R
3= CH3

R1= R2=- (CH2)3-, R
3= CH3

R1= R2= R3= CH3

R1, R2= -(CH2)4-, R3=H, R= -CH3
R1, R2= -(CH2)4-, R3= R=  -CH3
R1, R2= -(CH2)4-, R3= H, R= -CH3
R1, R2=  R3=R-CH3
R1, R2= -(CH2)4-, R3= CH3, 
R= 4-Cl-C6H4CH2, CH3

10d
30

31

I  

These intermediate amidines 30 when heated in absolute ethanol (path ‘a’) have been 

found to give the 2,3-disubstitutedthieno[2,3-d]pyrimidin-4-ones 31, while on heating in 

acidic media they have been found to yield the 3-unsubstituted thieno[2,3-d]pyrimidin-4-

ones I.28  

 

1.5.2 Isolation of intermediate amidines and their dry HCl gas catalyzed cyclization 

to mononuclear 4-chloropyrimidines 

 

A perusal of the comparative yields of the condensed 4-chlorothienopyrimidines III  and 

4-aminothienopyrimidines IV  obtained in the reaction of acetonitrile and substituted 
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acetonitrile with thiophene o-aminonitrile indicates that 4-chlorothienopyrimidine 

formation can be observed in the reactions of thiophene-o-aminonitrile with nitriles 

possessing strong electron withdrawing substituent. Moreover, it appears that the yield of 

4-chlorothienopyrimidine increases progressively with an increase in the –I effect of the 

substituent, reaching maximum with dichloroacetonitrile.60 

Thus, the product formation in these reactions appears to depend upon the reactivity of 

amidine carbon of the o-cyanoamidine intermediate 32 towards nucleophilic attack which 

in turn can be expected to depend upon the nature of the nitrile component employed in 

the condensed pyrimidine synthesis. The formation of condensed 4-chloropyrimidines IV  

in the reaction of nitriles, possessing electron withdrawing substituent with o-

aminonitriles 12 can be attributed to a low electron density at the amidine carbon of the o-

cyanoamidine 32 intermediate because of the electron withdrawing effect of the 

substituent, which makes amidine carbon prone to nucleophilic attack by the incipient 

imidoyl nitrogen. 

N

N

R

NH2.HCl32  

On the other hand, the nitriles, which do not possess an electron withdrawing substituent, 

lead to an amidine intermediate with a higher electron density at the amidine carbon, 

therefore an alternative pathway involving the nucleophilic attack of the amidine nitrogen 

on the cyano or imidoyl carbon predominates to yield the condensed 4-aminopyrimidine, 

III. 

 

It has been found that changes in reaction temperature and rate of flow of hydrogen 

chloride, do not affect either the nature of the product or its yield.  Nor the solvent of the 

reaction has any influence on the product nature or disproportionation. 

 

However, it has been observed that the amount of hydrogen chloride does play some role 

in influencing the nature of product formed. Thus, in a set of experiment the condensation 
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of equimolar quantities of thiophene o-aminonitrile and chloroacetonitrile was affected by 

employing dry HCl in different molar quantities.  

 

With 1, 2 and 3 molar equivalents of a solution of dry HCl in dioxane, the product of the 

reaction was not the 4-chlorothienopyrimidine, but instead, the 4-aminothienopyrimidine. 

Addition of further excess of dry HCl, however, led to the formation the 4-

chloropyrimidine.60  

N

N

S

NH2

S

CN

NH2

ClCH2CN

1,2 or 3 moles of 
dry HCl in dioxane

ClCH2CN

Excess of HCl
/dioxane

12b

III

IV

Cl

N

N

S

Cl

Cl

 

The above observations indicated the possibility of the formation of 4-chloropyrimidine 

through the 4-aminopyrimidine in the presence of excess of dry HCl gas, by the addition-

elimination of HCl and NH4Cl (Scheme 8). 

 

NH2

N

+ RCN

N

N

NH2

R

dry HCl dry HCl

N

NH

R

ClH2N

dry HCl-NH4Cl

N

N

Cl

RScheme 8  

However, the possibility of the 4-aminopyrimidine as an intermediate in the formation of 

4-chloropyrimidine has been excluded experimentally by bubbling excess of dry HCl gas 

through the solution of the preformed 4-aminothienopyrimidine in dioxane, under same 

standard reaction conditions. The workup of the reaction mixture didn’t yield the 
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expected 4-chlorothienopyrimidine, instead the unchanged 4-aminopyrimidine was 

recovered.60 

IV
N

N

S

Cl

Cl

S
N

N

H2N

Cl

dioxane

dry HCl

X

III  

This one-pot formation of 4-chloropyrimidines is indeed novel, especially, in view of the 

fact that 4-chloropyrimidines are normally prepared through multistep synthesis, 

involving the preparation of the corresponding 4-oxopyrimidine, followed by its 

chlorination with POCl3. The formation of 4-chloropyrimidines presumably proceeds 

through the transient o-cyanoamidine intermediates, 32 especially in view of the 

demonstrated isolability and also the cyclization of acyclic analogs of o-cyanoamidines, 

namely the N-(cyanovinyl)amidines 33 to 4-chloropyrimidines 34 in the presence of 

hydrogen chloride under essentially the same condition.63,64  

N

NH2O

O

N
H

R2

R1

N
N

NO

O

N
H

R2

R1

Cl

32

33

dry HCl

dry HBr

N

NO

O

N
H

R2

R1

Br

34

R1 = C6H5, 4-CH3C6H4, 2-CH3C6H4, 4-ClC6H4, 
        4-BrC6H4, 2-CH3OC6H4

R2 = H, CH3, C6H5  

On these lines, a plausible mechanism has been proposed29,63,64 for the formation of 

condensed functionalised 4-halopyrimidines in these reactions under the influence of dry 

HCl or HBr gas. 

 

It appears reasonable to assume that under the reaction conditions employed, the CN 

groups of both, the substrate, o-aminonitrile and the nitrile are activated by protonation or 

by the formation of hydrogen halide adducts. The initial condensation between the two 

components or their activated forms can be expected to result in the formation of the 
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amidine hydrohalide or its hydrohalide adduct. Assuming that the imidoyl halide 

derivatives is the common intermediate, the formation of 4-aminopyrimidines, III  can 

take place by ‘path a’ from the cyclic adduct and that of the 4-halopyrimidines IV  by the 

‘path b’ or ‘path c’ (Scheme 9). 

 

NH2

N

+ RCN

N

dry HX

dry HX

N

NH

R

NH2.HXX

-NH4X

N
H

N

X

NH2.HX

N

R

NH2.HX

N

X

NH2.HX

R

N

X

R

NH2.HX

NH

NH

R

N

N

X

R

Path b
-NH4X

N

N

X

R

N

N

NH2.HX

R

Path a

-HX

Path c

32

32a

32b
32c

IV IV

III

Scheme 9

X = Cl, Br

 

1.6 Synthesis of Various Mononuclear Pyrimidines under Influence of Dry HCl Gas 

This novel reaction has been extended to the synthesis of monocyclic pyrimidines. Thus, 

ethyl cyanoacetate has been condensed with monoaryl and diaryl thioureas 35 to yield 6-

amino-1-aryl and 6-amino-1, 3-diaryl thiouracils.65,66 
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OC2H5

O

N

dry HCl

HN X

HN

N

N

O

H2N X
R1

+ 0-5oC, 12-14 h

R1= H, 3-CH3C6H4, 3-ClC6H4, C6H5, 4-CH3C6H4, 2-CH3C6H4, 
       4-ClC6H4, 2-ClC6H4, 4-CH3OC6H4, 2-CH3OC6H4
R2= H, 3-CH3C6H4, 3-ClC6H4
X= S, O

R2

R2

R135

 

Novel series of 6-amino-1,3-diaryl-2-thiouracils,  6-aminouracil, 6-amino-2-thiouracil, 6-

amino-1-aryluracils and 6-amino-1-aryl-2-thiouracils were synthesized65 through the dry 

HCl catalyzed cycolcondensation of ethyl cyanoacetate with symm-diarylthioureas, urea, 

thiourea, monoarylureas and monoarylthioureas, respectively. The reaction involves the 

condensation of ethyl cyanoacetate with an appropriate urea or thiourea in the presence of 

dry HCl gas in dioxane at 0-5oC for 12-14 hours. However, ethyl cyanoacetate failed to 

react with 1,3-diarylureas may be due to weaker nucleophilicity of the latter.  

 

As an extension, on similar condensation benzoylacetonitrile with simple thiourea yielded 

6-amino-4-phenyl-2-thoxopyrimidine.65 Ethyl cyanoacetate reacts with ureas and 

thioureas presumably through the initial nucleophilic attack on the sulphur or oxygen 

atom of urea or thiourea on the protonated nitrile or imidoyl halide to yield imino oxide or 

sulphide intermediate, followed by its intramolecular cyclization through the 

corresponding oxazine or thiazine. The oxazine or thiazine intermediate may then under 

go a Dimroth rearrangement under the reaction condition to yield then corresponding 6-

aminouracils or 6-amino-2-thiouracils (Scheme 10).66 
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OC2H5

O

N

dry HCl
OC2H5

O

HN

HX NR1

NH2

X=O/S

Cl

OC2H5

O

H2N X

NHR2

NR1

N

N

O

H2N XX

N

O

HN NR1

Scheme 10

R2 R2

R1X= O, S

 

 

1.7 Synthesis of Condensed 4-Oxopyrimidines by Novel Acid Catalyzed Microwave 

Assisted Reaction of Nitriles with o-Aminoesters under Solvent Free Conditions. 

Encouraging results in the MWI based syntheses of thiophene o-aminoesters involving 

Gewald reaction67, as well as, thienopyrimidine bioisosteres of gefitinib68 under 

microwave irradiation conditions, prompt for the use of MWI to be extended to the one-

pot cyclocondensation of the nitriles with various o-aminoester substrates under solvent 

free conditions for generating compound libraries of condensed pyrimidines 36. 

X = S, -CH=CH-
R1, R2 = H, alkyl, aryl, cycloalkyl, carboalkoxy,
carbocyclic, heterocyclic, etc

X

R1

R2 N

N

R4

R3

36

 

A novel microwave assisted green synthesis of the bioactive condensed 2-

substitutedpyrimidin-4(3H)-ones I  under solvent free conditions has been reported for the 

first time.69 The unusually rapid synthetic methodology involves the cyclocondensation of 

a variety of nitriles with o-aminoesters of benzene 9a, thiophene 9b, quinazolinone 9g 

and dimethoxybenzene 35 in the presence of catalytic amount of conc. HCl alone or with 

the Lewis acid, AlCl3. This  novel synthesis involving nitriles as the building blocks, 

under microwave irradiation for these condensed 2-substitutedpyrimidin-4(3H)-ones 

requires only 10-75 min as compared to the conventional reaction protocols requiring 6-

12 h, thereby showing a significant acceleration in reaction rates (Table 34) (Scheme 11). 
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The reaction proceeds through the same activated electrophilic nitrile derivatives, the 

imidoyl halide intermediate & affords the products in yields superior to that by the 

conventional protocols. Coupled with simple workup procedures and superior yields the 

methodology is eminently suitable for the generation of diverse libraries of condensed 2-

substitutedpyrimidin-4(3H)-ones employing parallel synthesis procedures.   

 

It is therefore really interesting, that this acid catalysed cyclocondensation reaction has 

been made adaptable to high throughput synthesis, for the generation of diverse libraries 

of condensed pyrimidines 36 with four diversity points for further functionalization, if 

necessary. 

NH2

O

CH3CN OC2H5

N

NH

O

a

N

NH

O

Cl

N

b

ClCH2CN c

N

NH

O

Cl

=

S

R1

R2

MeO

MeO
N

N

O

or or or

 R1, R2 = -(CH2)4-; CH3;
 R1, =4-CH3-C6H4, R2 = H;
 R1 = CH3, R2 = COOC2H5;             
 R1 = C6H5,  R2 = H.

Reaction conditions;
a:Under microwave irradiation; 350W, 20-75 min (60-94%), 
b:Under microwave irradiation; 350W, 20-50 min (83-99%),
c:Under  microwave irradiation; 350W, 10-40 min (66-95%).

Scheme 11  
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Table 34: Physical data of 2-substitutedthieno[2,3-d]pyrimidin-4(3H )-ones  

S

R1

R2 N

NN

O

R3

 

Conventional Method Microwave-Assisted Method  

R1                        R2 

 

R3 Yield 

(%) 

Mp (oC) 

 

Time 

(h) 

 Yield 

   (%) 

Mp (oC) 

 

Time 

(min.) 

        -( CH2)4- CH3 66 300 8-10 68 298 75 

CH3                CH3 CH3 76 256 10-12 89  256 60 

4-CH3C6H4             H CH3 93 245 8-10 94 248 55 

CH3         OOC2H5 CH3 71 262 8-10 85  262 40 

 C6H5                 H CH3 69 264 8-10 75 264 65 

-( CH2)4- CH2CH2Cl 84 220 8-10 96* 218 45 

CH3                CH3 CH2CH2Cl 85 200 20-24 99 201 50 

4-CH3C6H4             H CH2CH2Cl 91 168 10-12 92* 169 35 

CH3      COOC2H5 CH2CH2Cl 85 167 8-10 88 167 20 

 C6H5                  H CH2CH2Cl 94 268 8-10 96 267 45 

-( CH2)4- CH2Cl 77 259 6-8 90 258 30 

CH3                CH3 CH2Cl 83 257 8-10 91 256 25 

4-CH3C6H4             H CH2Cl 88 248 6-8 93 249 40 

CH3      COOC2H5 CH2Cl 86 225 6-8 95 225 10 

 C6H5                  H CH2Cl 90 215 6-8 91 214 35 

* Catalytic amount of anhydrous. AlCl3 was added to the reaction mixture 
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Table 35: Physical data of other condensed 2-substitutedpyrimidin-4(3H)-ones 

N

NH

R1

R2

O

R3  
    R1                      R2 R3 Conventional Method Microwave-Assisted Method 

  Yield                                                                                                                                                       

  (%) 

M.P (oC) 

 

Time 

(h) 

 Yield 

   (%) 

M.P (oC) 

 

Time 

(min.) 

     H                              H  CH3 70 240 8-10 80 240 45 

OCH3                      OCH3 CH3 62 239 8-10 70 240 45 

N

N

N

NH

O

O

R3

 

CH3 52 243 8-10 71 243 20 

    H                               H  CH2CH2Cl 80 200 8-10 83 202 30 

    H                               H  CH2Cl 90 242 6-8 94 241 30 

OCH3                       OCH3 CH2Cl 65 242 6-8 70 242 25 

N

N

N

NH

O

O

R3

 

CH2Cl 53 240 8-10 66 241 20 

 

1.8 Scope and Limitations 

The synthesis of condensed 2-substitutedpyrimidines is in general carried out by initially 

introducing the appropriate o-aminocarbonyl substrate and a nitrile into a suitable solvent 

like dry dioxane and then passing a stream of dry hydrogen chloride gas under ambient 

temperature through the reaction mixture. However, it is possible to significantly increase 

reaction yield and purity of reaction product and further to shorten the reaction time if 

initially an excess of acid is dissolved in the solvent, preferably the solvent is saturated 

with the acid. 

 

An excess of acid is an amount of acid so large that after quantitative reaction of 

compounds subsequent precipitation as salt unbound acid still remains in this solution. 

This amount of acid is to be already present in the reaction mixture at the start of reaction. 
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It has proved to be appropriate for the solvent to be selected from the group consisting of 

ethers, esters, alcohols, water, formamides, amines, carboxylic acid, but particularly 

important & suitable solvent is dioxane 

 

The acids are suitably selected from the group consisting of Bronsted acid & Lewis acids 

in particular hydrochloric acid, hydrobromic acid, sulphuric acid, phosphoric acid, 

methane  sulphonic acid, particularly suitable are gaseous acid  e.g., hydrogen chloride. 

 The reaction is suitably carried out at temperature of from -10oC to 100oC, preferably 

0oC to 60oC, in particular 10oC to 50oC. The addition of acid to the mixture is continued 

during the reaction. Thus, it is possible to achieve nearly quantitative precipitation of 

compound as salt of acid. 

 

Madding & co-workers52 have reported the synthesis of 3,4-dihydro-4-oxothieno[2,3-

d]pyrimidine 2-carboxylates via the HCl catalysed reactions of thiophene 3-carboxylates 

with activated nitriles. One of the derivatives, Tiprinast, 3,4-dihydro-5-methyl-6-(2-

methylpropyl)-4-oxothieno[2,3-d]pyrimidinecarboxylic acid is a proven  orally active 

antiallergic and antiasthamatic drug. 

S

R1

R2 N

NH

O

OC2H5

O S
N

NH

O

OH

O

Tiprinast

 

There are three reported routes for the synthesis and manufacture of Prazosin 38, a 

selective α1-adrenoreceptor antagonist antihypertensive drug. However, these presently 

used routes are having disadvantages (Scheme 12)70,71 of very low overall yields 8-10, or 

use of thiophosgene, use of drastic reaction conditions as well as prolonged reaction times 

and lastly longer and multistep syntheses, which increases the overall cost of the product.   

Many of the key steps in this synthesis have been modified and replaced with simpler 

reactants and drastic reaction conditions have been replaced by this novel nitrile reaction 

under acidic conditions.72 Thus, many more uses of this novel reaction condition can be 

explored for the syntheses of API and drug intermediates as well as specialty fine 

chemicals. 
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37

 

The potential of this reaction for parallel synthesis by judiciously modifying the reaction 

conditions to generate novel libraries of NCE’s of pyrimidine and condensed pyrimidines 

is also quite good. With the successful application MWI in speeding up this reaction, the 

potential of this reaction for the parallel synthesis of NCE’s is much more.  

 

A few limitations to this reaction, especially its inability to proceed to completion with a 

few typical o-aminocarbonyl substrates are noted below. 

 

This one-pot, hydrogen chloride catalyzed reaction has found to fail with the o-amino 

carbonyl substrates of 1, 2, 3-triazole 38, pyrazole 39, and pyrimidine 40. 
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1.9 Conclusions 

Interestingly, this novel and interesting reaction can be explored to prepare a variety of 

drugs and drug intermediates, through almost one pot condensations and to afford 

products in good yields as well as purity. 

 

Secondly, the reaction can also be modified suitably in its reaction conditions to be 

exploit and use for high throughput synthesis of compound libraries for New Drug 

Discovery Research (NDDR). 
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2. Impact of Microwave Assisted Heating on the Combinatorial and Parallel 

Syntheses of Compound Libraries for New Drug Discovery Research: A Review 

 

2.1 Introduction 

Medicinal chemistry has benefited tremendously from the technological advances in the 

field of combinatorial chemistry and high-throughput parallel synthesis. Developments of 

methods and technologies have helped accelerate the design, synthesis, purification, and 

analysis of compound libraries. These new tools have had a significant impact on both 

lead identification and lead optimization in New Drug Discovery Research (NDDR). 

Large compound libraries can now be designed and synthesized in very short time to 

provide valuable leads for new therapeutic targets.1 Once a chemist has developed a 

suitable high-speed synthesis of a lead, it is now possible to synthesize and purify 

hundreds of molecules in parallel to discover new leads and/or to derive structure–activity 

relationships (SAR) in unprecedented timeframes. 

 

Microwave-assisted heating under controlled conditions has been shown to be an 

invaluable technology for medicinal chemistry and drug discovery applications since it 

often dramatically reduces reaction times, typically from days or hours to minutes or even 

seconds. Compound libraries can then be rapidly synthesized in either a parallel or 

sequential (automated) format using this new, enabling technology.  

 

Microwave synthesis has the potential to influence medicinal chemistry efforts in at least 

three major phases of NDDR  

1.      Generation of a discovery library; 

2.       Hit-to-lead efforts and  

3.      Lead optimization.  

 

A common theme throughout this drug discovery and development process is speed. To 

the pharmaceutical industry and the medicinal chemist, time truly does equal money, and 

microwave chemistry has become a central tool in this fast-paced, time-sensitive field. 

 

The short reaction times required by microwave synthesis make it ideal for rapid reaction 

scouting and optimization, allowing rapid synthesis of large number of NCE’s.1,2  
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Microwave heating can readily be adapted to a parallel or automatic sequential processing 

format. In particular, the latter technique allows for the rapid testing of new ideas and 

high-speed optimization of reaction conditions. The fact that a “yes or no answer” for a 

particular chemical transformation can often be obtained within few a minutes (as 

opposed to several hours in a conventional protocol), has contributed significantly to the 

acceptance of microwave chemistry both in industry and academia. The recently reported 

incorporation of real time, in situ monitoring of microwave-assisted reactions by Raman 

spectroscopy allows a further increase in efficiency and speed in microwave chemistry.3
  

 

2.2 Theory of Microwave Assisted Heating 

Microwave radiation is an electromagnetic radiation in the frequency range of 0.3 to 300 

GHz, corresponding to wavelengths of 1 cm to 1 m. The microwave region of the 

electromagnetic spectrum (Figure-1) therefore lies between infrared and radio 

frequencies. All domestic “kitchen” microwave ovens and all dedicated microwave 

reactors for chemical syntheses commercially available today operate at a frequency of 

2.45GHz (corresponding to a wavelength of 12.25 cm) in order to avoid interference with 

telecommunication and cellular phone frequencies. 

 

Figure-1 The electromagnetic spectrum 

 

Microwave heating is either by any of the following three mechanisms4-6: 

1. Dielectric heating involving dipolar polarization  

2. Heating by ionic conductance and  

3. Heating by interfacial polarization. 
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Figure-2 (a) Dipolar polarization mechanism (b) Dipolar molecular try to align with an 

oscillating electric field. Ionic conduction mechanism: Ions in solution will 

move in the electric field. 

 

2.2.1 Dielectric Properties 

The heating characteristics of a particular material (for example, a solvent) under 

microwave irradiation conditions are dependent on the dielectric properties of the 

material. The ability of a specific substance to convert electromagnetic energy into heat at 

a given frequency and temperature is determined by the so-called loss tangent, (tan δ). 

The loss factor is expressed as the quotient tan δ= ε˝/ε′, where ε˝ is the dielectric loss, 

indicative of the efficiency with which electromagnetic radiation is converted into heat, 

and ε′ is the dielectric constant describing the polarizability of the molecules in the 

electric field. A reaction medium with a high tan δ is required for efficient absorption and, 

consequently, for rapid heating. Materials with a high dielectric constant such as water (ε′ 

at 25oC = 80.4) may not necessarily also have a high tan δ value. In fact, ethanol has a 

significantly lower dielectric constant (ε′ at 25oC = 24.3), but heats much more rapidly 

than water in a microwave field due to its higher loss tangent (tan δ: ethanol = 0.941, 

water = 0.123). In general, solvents can be classified as high (tan δ > 0.5), medium (tan δ 

0.1-0.5), or low microwave-absorbing (tan δ < 0.1). 

 

 

2.2.2 Microwave versus Conventional Thermal Heating 

Microwave irradiation produces efficient internal heating (in core volumetric heating) by 

direct coupling of microwave energy with the molecules (solvents, reagents, catalysts) 

that are present in the reaction mixture. Since the reaction vessels employed are typically 

made out of (nearly) microwave-transparent materials such as borosilicate glass, quartz or 

teflon, the radiation passes through the walls of the vessel and an inverted temperature 

gradient as compared to conventional thermal heating results7 (Figure-3).  
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Figure-3. Microwave irradiation (left) compared to heating in an oil bath (right). 

Microwave irradiation raises the temperature of the whole volume simultaneously (bulk 

heating), whereas in the oil heated tube the reaction mixture in contact with the vessel 

wall is heated first. (Temperature in oK) 

 
2.3. Applications of MWI in Combinatorial Parallel Syntheses of Compounds for 

New Drug Discovery Research  

 

The current trend in the pharmaceutical industry is to generate comparatively small, 

focused libraries containing ~30-300 compounds for a typical drug discovery project. In 

this report, we are highlighting some reports of past few years on the generation of 

diverse libraries of compounds through combinatorial or parallel synthesis under MWI.  

 

2.3.1 Library Synthesis of Acyclic and Heterocyclic NCE’s. 

Herein, an exhaustive account on the microwave assisted syntheses of diverse library of 

acyclic to heterocyclic NCE’s is discussed. Around 40 examples documented in literature 

are covered.  

 

An easy and convenient microwave-assisted synthesis of N-alkylated glycine methyl 

esters 1 (10 compounds) has been described, involving reductive alkylations of several 
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glycine methyl esters in the presence of sodium cynoborohydride (NaBH3CN). Good 

yields and short reaction times are the main aspects of these procedures8. 

H3N

O

O

Cl-
1. R1CHO, TEA, MeOH, MWI

2. NaBH3CN, MWI

HN

O

OR1

1

R1 = 2,6-Cl Ph, 2,6-methyl Ph, 3,5 dimethyl-4-hydroxy Ph, 4-Cl 
Ph, 3-NO2 Ph etc.  

 
Rottger et al., 9 have successfully developed a general method for the microwave-induced 

N-arylation of amino acids in water providing moderate to high yields and less than 6% 

racemization. A diverse set of amino acids 2 (20 derivatives) and differently substituted 

aryl bromides were fully reacted after 40 min of microwave radiation. In addition, various 

amino acid esters could be N-arylated with simultaneous deprotection, generating the free 

acid as product. 

NH2.HX

COOR1

R

+

Br

CuI, KI, K2CO3

MWI
NHR

COOH

Amino acid ester= L-Leu, 
L-Phe, L-Lcu etc
R= H, CH2Ph

2

R1= CH3, Et, t-Bu, allyl
HX= HCl, HOTs

 

Wipf et al.,10 have developed an expeditious divergent multi-component reaction method, 

combining the advantages of microwave reaction acceleration and combinatorial 

technologies with a libraries-from-libraries concept to prepare 20 allylic amides and C-

cyclopropylalkylamides and create an expanded 100-member library as in scheme-1. The 

library building blocks consisted of 3 alkynes, 7 phosphinoylimines, 10 acid chlorides, 6 

carbamoyl chlorides, and 9 sulfonyl chlorides (Scheme-1). 
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R1

R2

1.Cp2ZrHCl
2. Me2Zn

Ar H

N
P

Ph

PhO MWI

R1

R2

Ar

NHZnP(O)Ph2

CH2I2

MWI

R2

R1

NHP(O)Ph2

Ar

R1

R2

NHP(O)Ph2

Ar

aq. quench

R1

R2

NHCOR3

Ar

1. HCl, CH3OH
2. R3COCl

R1

R2

NHCO2R4

Ar

1. HCl, CH3OH
2. R4OCOCl

1. HCl, CH3OH
2. R5SO2Cl

R1

R2

NHSO2R5

Ar

R2

R1

NHCOR3

Ar

1. HCl, CH3OH
2. R3COCl

1. HCl, CH3OH
2. R5OCOCl

R2

R1

NHCO2R4

Ar

R2

R1

NHSO2R5

Ar

R1= H, n-C3H7, o-C6H11
R2 = n-C4H9, n-C3H7, CH3
Ar = Ph, 4-ClC6H5, 3-ClC6H5 etc.
R3 = Ph, CH2Ph, CH2CH2Ph, t-Bu, 4-PhC6H5 etc.
R4 = CH2Ph, CH2CH(CH2)2, i-Bu, 2-ClC6H4CH2 etc. 
R5 = Ph, 8-quinoline, 4-ClC6H5, CH3, 4PhC6H4 etc.

Scheme-1  

A robust and straightforward palladium-catalyzed aminocarbonylation protocol that 

rapidly transforms aryl chlorides into a variety of benzamides 3 has been developed by 

Lagerlund et al.11 This microwave method includes the use of commercially available 

molybdenum hexacarbonyl [Mo(CO)6]  as a solid carbon monoxide source. This procedure 

affords a convenient and versatile alternative for small-scale carbonylative applications 

relative to existing methods starting from aryl bromides or aryl iodides. A library of 18 

compounds has been reported. 

Cl

R + HNR1R2
R

NR1R2

O

Herrmann's Palladacycle
[(t-Bu)3PH]BF4

Mo(CO)6, DBU
MWI, 170oC
15-25 min R = 4-OCH3, 2,6-Me, 4-COOMe, 4-CF3 etc.

HNR1R2= BuNH, n-BuNH, t-BuNH, piperidine, aniline

3

 

Microwave mediated reduction of nitro and azido arenes to N-arylformamides 4 (31 

compounds) using Zn-HCOONH4 has been described.12 Interestingly, the reaction 

conditions are identical for both protocols.  
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NO2 N3

NHCHO

Zn/HCOONH4

MWI, 300W MWI, 300W

Zn/HCOONH4

4  

 

A microwave-enhanced variation of the Kindler thioamide synthesis has been introduced 

by taking advantage of the sealed vessel capabilities of a dedicated single-mode 

microwave reactor. A diverse selection of 13 aldehyde and 12 amine precursors was 

utilized in the construction of a representative 34-member library of substituted 

thioamides 5. The three-component condensations were carried out by employing 

microwave flash heating at 110-180°C for 2-20 min. A simple workup protocol allows the 

isolation of synthetically valuable primary, secondary and tertiary thioamide building 

blocks in 83% average yield and >90% purity.13 

 

R1

O

H

+
HN

R2

R3

+ S8 R1

S

N

R3

R2
MWI, 110-180oC
2-20 min

R1 = Ph, 4-NO2Ph, CH2Ph, 3-NO2Ph etc
R2=R3= H, H, -(CH2)5-, -(CH2)4-, H, PhCH2, 
H, Propyl etc

5

  

 
Zhang et al.,14 have demonstrated the utility of microwave- assisted, boron trichloride 

(BCl3)-mediated coupling of phenols with aryl isocyanates to make salicylamide-based 

exploratory library 6 of a total 16 compounds. The effect of diverse substitution groups, 

especially neutral and electron-withdrawing groups on the coupling reactions, has been 

analyzed. 

OH NCO

+R1 R2
BCl3

           DCM
MWI, 140oC, 10 min

OH

N
H

O

R2

R1

6

R1 = H, 2-allyl, 3-MeO, 4-Cl, 4-CO2Me;
R2 = 4-Me, 4-MeO, 4-NO2,  

 
Mayer et al.,15 have produced an array of alkyl- and aryl based biguanide compounds 7 

using microwave irradiation and using trimethylsilyl chloride (TMSCl) for the first time 
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as an excellent and practical catalyst for the formation of alkyl and aryl biguanides. Using 

these methods, a 60-compound collection was prepared.  

 

RNH2 + H2N

NH

N
H

CN N
H

R

NH

N
H

NH

NH2

1. TMSCl, 150oC, 
15 min

2. iPrOH, 150oC, 
1 min R = CH2Ph, 4-F Ph, etc

7

 
 
 
An effective microwave assisted method for the amination of phenols and arylboronic 

acids with various amines and anilines under the catalysis of cupper(II)acetate 

(Cu(OAc)2) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) has been reported16 (22 

compounds).  

+ HNR1R2
Cu(OAc)2, DBU

MWI, 100oC

NR1R2

NR1R2= Isopropyl amine, morpholine, 
aniline, anisidine etc.

8

PhNH2 + ArB(OH)2

Cu(OAc)2, DBU

MWI, 100oC

NHAr

9

Ar = Ph, 4-CH3OPh, 3-CH3OPh, 
4-NO2Ph,  4-ClPh, 4-CH3Ph

PhB(OH)2

 
A novel and efficient microwave-assisted, boron trichloride (BCl3) mediated coupling 

reaction to synthesize o-(hydroxyaryl)-(aryl)methanone structures 10 from phenols and 

acyl chlorides has been  described for the generation of a library of 40 compounds.17 

R

OH

Cl

O

R2+
HCl, DCM

MWI, 140oC,
20 min

OOH

R
2

10

R

 

 
A palladium-catalyzed fluorous Stille cross-coupling reaction with organic halides or 

triflates requiring only 90-120 seconds for completion under microwave irradiation has 

been studied. Conventional thermal reactions require about 1 day. Fourteen different 

coupling products 11 were synthesized and isolated in good yields after three-phase 

extraction.18 
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(C6F13H2CH2C)3Sn + I

X = 4-OCH3, 2-CF3, 4-Ph, 4-CH3, 
4-COCH3, 3-CHO, etc

X X

11

 

 

Microwave-assisted palladium-catalyzed coupling of aryl and heteroaryl boronic acids 

with iodo- and bromo-substituted benzoic acids, anchored to tentagel S RAM, provided 

high isolated yields of coupled products 12 after a reaction time of 3.8 min. In all 16 

compounds have been synthesized.19 

 

+

Y

(Bu3)Sn

O

NHRAM

X

MWI, 3.8 min, 
40 W

X = I or Br

H2N

O

Y

Y = H, 4-OCH3, 2-OCH3, 4-F, 3-NO2 etc
12

 

 
Georgsson et al.,20 has described a noninert palladium catalyzed method for the synthesis 

of ester-protected carboxylic acids 13 from aryl iodides and bromides, employing 

molybdenum hexacarbonyl [Mo(CO)6] as a convenient solid carbon monoxide source. 

Thus, butyl-, benzyl- and trimethylsilylethyl esters were smoothly prepared after only 15-

20 minutes of microwave heating. This in situ carbonylation route couples a facile 

experimental procedure to handle “carbon monoxide gas” in a highthroughput manner, 

with the rapid reaction speed associated with single-mode microwave irradiation. The 

methodology is quite applicable to today’s modern synthetic techniques, both in solution 

and in solid-phase organic chemistry. In all 16 compounds have been reported.  

 

X

R1 + R2OH
Mo(CO)6,[Pd]

MWI, 150-190oC
15-20 min

R1

O

O

R2

X = I, Br R1 = 1-naphthyl, 4-OCH3, 2-CH3, 4-CF3, 3-Br
R2 = n-Bu, CH2CH2Si(CH3)3, t-Bu

13

  

An efficient copper-catalyzed cross-coupling of aryl iodides with aryl acetylenes to give 

compounds of structure 14 under microwave irradiation has been described by Huan et 
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al.21 The reaction proceeds under microwave heating with 10 mol % CuI and 2 equiv 

cesium carbonate (Cs2CO3) with 43-87% yields. 

I

+
CuI, Cs2CO3

MWI, NMP, 195oC

14

R R1

R

R1

R =  4-t-Bu, 4-CN, 3-OCH3, 4-CHO etc
R1 = 4-CH3, 4-OCH3, 4-F, 2-F, 2-Cl, 2-Br etc.  

 

Young et al.,22 have demonstrated the reactivity enhancing effects of microwave 

irradiation combined with the effects of spatial diyne separation on a polymeric support 

on the ruthenium-catalyzed [2+2+2] cyclotrimerization reaction. The conducted 

transformations were highly efficient and a high level of chemoselectivity was observed. 

Microwave-irradiation did not affect the regioselectivity of the cyclotrimerization 

reaction when differentially substituted diyne precursors were used (Scheme-2). In all, 34 

compounds have been reported. 

R1

R4

+

R2

R3

[2+2+2]

R1

R2

R3

R4

Scheme-2  

 
A microwave-assisted parallel solid-phase synthesis of a collection of 21 polymer-bound 

enones 15 has been developed. The two-step protocol involves initial high-speed 

acetoacetylation of polystyrene Wang resin with a selection of seven common β-

ketoesters. When microwave flash heating at 170°C was employed, complete conversions 

were achieved within 1-10 minutes, against several hours for completion in the 

conventional heating protocol. Significant rate enhancements were also observed for the 

subsequent microwave-heated Knoevenagel condensations with a second set of 13 

different aldehydes. Reaction times were reduced to 30-60 min at 125°C in the 

microwave protocol compared to 1-2 days using conventional thermal conditions.23 
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RO

O O

R1

1,2-dichlorobenzene
MWI, 170oC, 1-20 min

OH

PS-Wang

O

O

OR1

R = C2H5, CH3, t-Bu
R1= CH3, iPr, Ph, Bu, C2H5 etc

O

O

OR1

R2

R2 H

O
MWI, 125oC, 
30-60 min

piperidinium 
acetate

R2= Ph, 3-NO2Ph, 2-CF3Ph, 
4-FPh, 4-CH3Ph etc

15

 
 

A diverse collection of pyrroles 16 (20 compounds) has been prepared using a one-pot, 

domino aldehyde/amine condensation, [3,3]-aza-Claisen rearrangement followed by 

imine-allene cyclization strategy. This protocol was accelerated by microwave irradiation 

and provided very good levels of conversion after reacting for only 30 min.24 

 

R2 N
H

R1

R3
+

H

O

R4

DMF, MWI, 200oC,
30 min

N

R1 R4

R2

R3

16  
 

A general method has been developed for the synthesis of N-substituted oxindoles 17. 

The two-step process involves initial microwave-assisted amide bond formation between 

2-haloarylacetic acids and various alkylamines and anilines, followed by a palladium-

catalyzed intramolecular amidation under aqueous conditions. In case of alkylamines, the 

procedure can be carried out as a one-pot process without isolation of the intermediate 

amide.25 
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X

OH

O
R1 R NH2

R = alkyl, aryl
X =Br, Cl

+
R1

N

O

R17

1. MWI, 150oC, 
30 min

2. Pd(OAc)2/ligand
base, H2O/tolune,
MWI, 100oC, 30 min

 

 

Chang et al.26 have demonstrated a microwave-assisted traceless, liquid-phase 

methodology to assemble substituted indole alkaloids with exceedingly high 

stereoselectivity. All the steps in this synthetic sequence have been accomplished under 

focused microwave irradiation, resulting in significantly reduced reaction times from 

hours to minutes in enhanced yields. This rapid synthesis of tetracyclic tetrahydro-β-

carboline pharmacophore 18 with two points of diversity has the potential for the creation 

of a diverse array of polycyclic fused heterocyclic systems, closely resembling 

biologically active natural products. In all 15 compounds have been reported by them. 

N
H

N

O

S H R1

H

R2

18

R1= C4H9, CH2CH2Ph etc
R2 = CH2Ph, C4H9, 3-CH3Ph etc

PEGHO OH

N
H

NH

HO

O

BOC

H

+ DCC/Cat. DMAP

MWI, 100W, 
20 min

N
H

NH

O

O

BOC

HPEG

2

N
H

N

O

O

H

H

R1

PEG

2

R1CHO, CF3COOHMWI, 100W, 
20 min

R2NCS, Et3N
MWI, 200W, 30 min

ClCH2CH2Cl

cis: trans~1:1

 
 

Some Chinese workers27 have developed an efficient synthetic method to generate 

structurally diverse and medicinally interesting 3-acyl-5-hydroxybenzofurans 19 via a 

one-pot two-step reaction sequence under microwave irradiation. The method was 

employed to rapidly construct twenty-six different 3-acyl-5-hydroxybenzofurans. 
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R1

O

+

N

OO
R2

DMA, MWI, 
170oC,10 min

R2N

R1

O

O

O

R3

R4

MWI, 60oC, 
20 min O

HO

R3

R4

R1

O

R2

R1= Ph, 4-CH3Ph, CH3, 2-pyridine-2-yl etc.
R2= H, CH3
R3, R4= H, Br, Cl, COOCH3

19

 
 

A highly efficient microwave-assisted method was successfully developed for the 

synthesis of a library of carbostyril analogues 20 (15 compounds). The reaction time for 

synthesis of carbostyril analogues was drastically reduced from a reported 18-58 hrs to 

only 80 min. Compounds obtained directly from each synthesis were more than 90% pure 

and did not require any further purification.28  

N
H

R3

H2N

R4

R2

R1

O

R1=H, CH3
R2=CH3, C2H5, C3H7, CF3
R3=H, CH3
R4=H, CH3

20

NH2H2N

R3

+ R2

O

O

O

R1

MWI

80 min, 150oC, 150W

 
 

Korean workers29 have reported the application of functionalized ionic liquids as the 

soluble support for the synthesis of tetrahydropyrano- and tetrahydrofuranoquinolines 24 

(10 compounds) under microwave irradiation. The efficient preparation of the 

functionalized 1-[2-(4-benzoyloxy)ethyl]-3-methylimidazolium tetrafluoroborate-bound 

aldehyde 22 was realized by the reaction of an ionic liquid (IL), 1-(2-hydroxyethyl)-3-

methylimidazolium tetrafluoroborate ([2-hydemim] [BF4]) 21, and 4-formylbenzoic acid 

in dry acetonitrile with dicyclo-hexylcarbodiimide (DCC) and 5% dimethylamino 

pyridine (DMAP) as catalysts to afford the functionalized IL-bound benzaldehyde 22 in 

high yields. The cyclization of 22 to 23 and removel of the IL-binding to afford isomeric 

mixture 23, were under MWI. 
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N N
+

OH

BF4
-

21 HOOC CHO

N N
+

O

BF4
-

O

CHO

NH2RO

n
Cat, 2% TFA/CH3CN,
MWI, 400W, 5 min
NaOCH3/CH3OH

NN
+O

BF4
-

O

HN

O

R

n

MWI, 400W, 10 min

O
O

HN

O

R

n

O
O

HN

O

R

n

+

23

22

DCC, DMAP, 
dry CH3CN,
RT, 24 h

24

 
 

A microwave-assisted parallel synthesis of 2,4-disubstituted 5-aminoimidazoles 25 (15 

compounds) has been developed. Significant rate enhancement was observed for all steps 

in the three-step protocol. The overall reaction time was shortened to 25 min, as 

compared to 53 hrs for the conventional procedures.30 

R1 CN + EtO P

S

SH

OEt

H2O, MWI, 80oC

10 min
R1 NH2

S

Br

CHCl3, MWI, 80oC,
10 min

S

R1

NH.HBr

N
H

N
R2

H2N

R1

NH2.HCl

R2 CN

R2= Ph or COOEt

Pyridine, CHCl3,
MWI, 60oC, 5 min

25  

A methodology for the microwave parallel synthesis of library has been described which 

involves the use of an array of expandable reaction vessels that can accommodate 
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pressure buildup within the vessel due to heating without loss of volatile solvents or 

reagents. A demonstration 24-membered library of substituted 4(5)-sulfanyl-1H-

imidazoles 26 was generated by microwave procedures, achieving a reduction from 12 

hrs to 16 min in library generation time for the microwave approach.31 

 

R2

O

S

NH2

N

H
N

R1 R2

SCH2R3

R3CH2Br

MWI,180 W, 8 min

R1= 4-FPh, C4H9, 3-NO3Ph, etc
R2 =Ph
R3= COOH, CONH2
CH2OH, CH3

26

  

The solvent-free microwave-assisted synthesis of 2,4,5-substituted imidazoles 27 and 

1,2,4,5-substituted imidazoles  28 (8 compounds) has been reported. Imidazoles were 

obtained as a result of the condensation of a 1,2-dicarbonyl compound with an aldehyde 

and an amine using acidic alumina impregnated with ammonium acetate as the solid 

support.32 

R1CHO + R2COCOR2
Al2O3/NH4OAc

MWI, 130W
20 min

N NH

R2 R2

R1

R1CHO + R2COCOR2 + R3NH2

Al2O3/NH4OAc

MWI, 130W
20 min

N N

R2 R2

R1

R3

R1= Ph, 4-ClPh etc
R2= Ph

R1= Ph, 4-C2H5Ph
R2= Ph, 4-CH3Ph
R3= CH2CH2Ph, CH2-3-ClPh

27

28

  

Nie and Huang33 have demonstrated a method of solution-phase parallel synthesis 

coupled with microwave assisted synthesis for constructing two distinct combinatorial 

libraries of flavanone hydrazone 29 & 4,5-dihydropyrazole 30, starting from the same 

reactants only by subtly changing the reaction temperature. Thus, two focused molecular 

libraries of >400 compounds were synthesized in high purity. 
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O

+ N

NH

O

H2N
OH

N

NH

O

N

OH

O

N

NH

O

N

N
N

O

N

OH29 30

MWI, 120oC

MWI, 200oC

 
 

A methodology for the generation of a microwave-assisted parallel library and its 

conversion into a second library was described. A 24-membered library of substituted 

4(5)-sulfanyl-1H-imidazoles was generated and subsequently converted into a second 

library of bicyclic imidazo[5,1-b]thiazol-3-ones and imidazo[5,1-b]-thiazin-4-ones 31. 

The first library was generated using a multi-component reaction (MCR) and transformed 

into a daughter library with a polymer-supported coupling agent. The procedure involved 

microwave heating without loss of volatile solvents or reagents. Library generation time 

for each library was 16 min.34 
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N

N
R1 R2

S

R3

O

n

31
Substituted sulfanyl-1H-imidazole library and imidazo[5,1-b] thiazol-3-one, n = 0 
and imidazo[5,1-b]-thiazin-4-one library n =1.

Na2CO3, EtOH

MWI, 250 W, 
16 min

N

H
N

R1 R2

SCH(R3)(CH2)nCOOH

N

N

C6H11

DMF/CH2Cl2
MWI, 250 W,
16 min

BrCH(R3)(CH2)nCO2H+R1

H

O

NH4OAc

R2O

SH2N

 

 

An efficient, facile, and practical liquid-phase combinatorial synthesis of benzimidazoles 

32 under microwave irradiation has been described.35 All reactions involving (SNAr 

reaction, reduction, cyclization, and support cleavage) were performed completely within 

a few minutes under microwave irradiation. The coupling of microwave technology with 

liquid phase combinatorial synthesis constitutes a novel and particularly attractive avenue 

for the rapid generation of structurally diverse libraries of 23 compounds. 
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O

O

PEGH3CO

NO2

F
RNH2

MWI, 450 W, 
1 min

O

O

PEGH3CO

NO2

N

R

H

Zn, NH4Cl
MWI, 450W,
2 min

O

O

PEGH3CO

NH2

N

R

H
R1NCS, DCC

MWI, 450W, 
4 min

O

O

PEGH3CO

N

N NHR1

R

H3CO

O

N

N NHR1

R

LiBr MWI, 450W,
 4 min

R= 4-OCH3PhCH2, 4-FPhCH2, Cyclopentyl etc
R1=  Ph, 4-FPh, 3-CH3Ph, 3-FPh, 4-FPh etc

32

 

 
Microwave mediated intra molecular carbanilide cyclizations to condensed 

imidazolinediones 33 (17 compounds) have been reported36 with significantly reduced 

reaction time (microwave minutes vs heating hours) for both solution and solid phase 

reactions. Catalytic barium hydroxide [Ba(OH)2] in DMF was uniquely effective in this 

microwave mediated transformation and, in certain systems, can provide access to 

unepimerized products not available in thermal transformations.   

 

O

NH

N

COOR2

R3

N

N
O O

R3

Cat. Ba(OH)2

DMF, MWI
1-7.5 min

R2= alkyl or polymer R3= Ph

33

 
 

Lin and Sun37 have explored a combination of microwave techniques and traceless 

polymer-supported strategies for the synthesis of tricyclic quinoxalinone imidazoles (13 

compounds) 34 with three points of diversity. Simultaneous reduction of the two nitro 

groups led to the intramolecular cyclizative cleavage of polymer support and N-

heterocyclization with aldehydes to the formation of imidazole ring in one pot. The 
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synthetic strategy constitutes a novel and attractive avenue for the rapid generation of 

structurally diverse libraries. 

N

N
H

N

N

R2

R3

R1

O

34

H3CO

O

O

O

NH2

R1

n +

NO2O2N

FF

Et3N

MWI, 150 W,
7 min

F

NO2

NO2

NH

O

R1

O

O

H3CO n

R2NH2

MWI, 150 W,
10 min

H
N

NO2

NO2

NH

O

R1

O

O

H3CO n

R2
Pd/HCOONH4

R3CHO, MWI, 150 W
7 min

 
Microwave-assisted synthesis of hydrochloride salts of primary amines 35 from their 

corresponding halides and 7 M ammonia in methanol has been described by Saulnier et 

al.38 It provides practically high yields, with even volatile primary amines for parallel 

synthesis. 

N

N

Cl

7M NH3, MeOH

MWI, 130oC, 2.5 h
N

N

NH3
+Cl-

35   

 
The library (34 compounds) synthesis of substituted pyrazoles and isoxazoles 36 has been 

developed via the in situ generation of polymer-bound enaminones. This new support 

allowed carrying out reactions in polar solvents under both conventional heating and MW 

irradiation without degradation of the polymer.39 
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O

R

YO

R1

N

N

CH(OMe)2

NH2

+

Camphorsulfonic 
Acid

MWI, 80oC, 
15 min

O

R

O

Y

R1

NH

NH2

NH2XH

N

X
R

Y

O
R1

MWI, 82oC, 
15 min

R = CH3, i-Pr, i-Bu etc
R1 = CH2Ph, C2H5, allyl, i-Pr, CH3, Ph etc
Y = O, NH, N, NC2H5
X = NPh, NCONH2, O etc

36

 

 
Microwave-assisted solid-phase Diels-Alder cycloaddition reactions of 2(1H)-

pyrazinones with dienophiles to yield the products of general structure 37, have been 

discussed by Kaval et al.40 All steps in the solid-phase protocol (linking, cycloaddition, 

cleavage) were carried out under controlled microwave irradiation conditions. In general, 

significant rate enhancements were found along with the reduction of reaction times from 

hours or days to minutes.  

N

H
N O

R1= Ph, OCH3

Cl R1

Cs2CO3, Resin

MWI, 70oC, 
5 min N

N O

Cl R1

N O

H3COOC R1

COOCH3

Dimethyl acetylenedicarboxylate (DMAD),
1,2 dichlorbenzene

MWI, 220oC, 
20-40 min

TFA-DCM
MWI, 120oC,
10-40 min

H
N O

H3COOC R1

COOCH3

37  
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A facile microwave assisted protocol has been described for the fast generation of 2-

arylbenzopyrano[2,3-c]pyrazol-3-one library, 38 of 144 compounds, utilizing highly 

reactive 2-iminocoumarines or the corresponding hydrazines, as starting materials. 

Microwave irradiation of the reaction mixture in the acetic acid led to one pot synthesis of 

the desired compounds in 43-87% yields and 90-100% purity.41 

 

O

O

NH2

NH

R1

O

O

NH2

N

R1

O

R1

HN

R2

N

N R2

O

H2NNHR2, MWI, 190oC, 15 min

H2NNHR2, MWI, 
80oC, 2 min

MWI,190oC, 
5 min

38

R1= H, 8-OMe, 6-Cl, 7-OH etc.
R2= H, 4-NO2Ph, 4-OCH3Ph,
4-Br, Bn, t-Bu

 

A sequential one-pot two-step protocol for microwave-assisted Hantzsch-type synthesis 

of hexa substituted 1,4-dihydropyridines 39 has been developed 42 (33 compounds). The 

three-component condensation of β-aroylthioamides, aldehydes and acetonitriles followed 

by the in situ S-alkylation of the intermediates afforded the hexasubstituted 1,4-

dihydropyridines. 

O

R1
NHPh

O

+

R2

O

H

CN

R3

Et3N, KI, KOH, R4X

MWI

N

O

SR4H2N

R3

R2

R1

39

R1= H, 4-Cl, 4-CH3
R2 = Ph, 4-ClPh, 4-OCH3Ph, 3-NO2Ph, CH3 etc
R3 = CN, COOEt
R4 =C4H9, CH2Ph

 
Zhou et al.43 have synthesized sixty compounds containing 4-thiazolidinone 40 & 41 and 

4-thiazinanone 42 & 43 cores with biaryl and thioaryl substitutions using a microwave-
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assisted fluorous synthesis protocol. Because of the favorable solution-phase reactions 

and the simple F-SPE for intermediate purifications, this protocol is expected to be easily 

adopted for the production of larger libraries. 

R1

O

S

O

O

C8F17

S

N

O

R3

R2

R1

S

R5

S

N

O

R3

R2

R1

R4

S

N

O

R3

R2

R4B(OH)2

40

41

Pd(pddf)Cl2K2CO3,
MWI, 150oC, 20 min

R5SH

 

R1

O

S

O

O

C8F17

R1

S

R5

Pd(pddf)Cl2, K2CO3
MWI, 150oC, 20 min

R4B(OH)2

42

S

N

O

R2

S

N

O

R2

R1

R4

S

N

O

R2

43

R5SH

 
 

A new highly efficient microwave-assisted combinatorial synthesis for generating 

combinatorial libraries has been described by Cotterill et al.44 The technology was 

applied to the high throughput, automated, one-step, parallel synthesis of diverse 

substituted pyridines 44 and 45 (108 derivatives) using the Hantzsch synthesis. The 

advantages of microwave-assisted chemistry for combinatorial synthesis included a broad 

range of available chemistries, simple reaction setup and product recovery readily 

amenable to automation, extremely short reaction times, and high product yields. 
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O

OEt

O

+ RCHO
MWI, 5 min

NH4NO3/
Bentonite N

EtO

O

OEt

OR

N

EtO

O

OEt

O

+

R = Ph, 4-OHPh, 4-CNPh, 
4-NO2Ph etc

44 45

 
 

Lin et al.,45 have developed an efficient method to generate the key intermediate 6-aryl-3-

chloropyridazines 46 (8 compounds) by microwave-enhanced Suzuki coupling of 3,6-

dichloropyrridazine with aryl boronic acids in moderate to good yields. Amination of 46 

with various amines afforded 3-substitued-amino-6-arylpyridazines 47 in high yields 

under microwave irradiation. This approach could be used to rapidly construct the diverse 

pyridazine compound libraries for high-throughput biological screening.  

N N

Cl Cl

R= 3-OHPh, 4-ClPh, 
2-OCH3Ph, 2-FPh etc

N N

Cl

MWI, 120oC, 10 min

46

B(OH)2+

PdCl2(PPh3)2,
K2CO3

R R

MWI, 120oC
10 min

N N

NHX

R

NH2X

X= CH2NH, Ph, 4-CH3Ph

47

 

 

Microwave-assisted parallel synthesis of a library of 20 phenyl dihydrotriazines 48 was 

successfully achieved and compared to an identical library generated by conventional 

parallel synthesis. Microwave synthesis dramatically decreased reaction times from an 

average of 22 h to 35 min, and compounds generated using microwave irradiation were 

relatively pure.46 
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H2N

HN

NH

CN

O

N

N
H

N

NH2

H2N

R
R

+

Cl-

MWI, 300W, 
5 min

HCl

R = 2-Cl, 2-CH3, 2-OCH3, 
3-Cl, 4-OCH3, etc

48

H2N

 

 
Effective spatially addressed parallel assembly of trisamino- and amino-oxy-1,3,5-

triazines 49 has been achieved by applying the SPOT-synthesis technique on cellulose 

and polypropylene membranes. In addition, a highly effective microwave-assisted 

nucleophilic substitution procedure at membrane-bound monochlorotriazines has been 

developed. The 1,3,5-triazines obtained could be cleaved in parallel from the solid 

support by TFA vapor to give compounds adsorbed on the membrane surface in a 

conserved spatially addressed format for analysis and screening. The reaction conditions 

developed were employed for the synthesis of 8000 cellulose bound 1,3,5-triazines which 

were probed in parallel for binding to the anti-transforming growth factor-R monoclonal 

antibody Tab2 in order to identify epitope mimics.47 
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CH2Cl2, RT, 15 min MWI, 60 W, 30 Sec

TFA, vapor

XR2

XR3

NHR1
N

N

N

N

Cl

ClCl

N

NN

Cl

Cl

R1

N N

NN

Cl

XR2

R1

N N

NN

XR3

XR2

R1

R1HN N

NN

XR3

XR2

49

X = NH, NR, O

MWI, 60 W, 
30 Sec

 

 
2.3.2 Library Syntheses of Mononuclear and Condensed Pyrimidines through MWI 

Pyrimidines have a long and distinguished history extending from the days of their 

discovery as important constituents of nucleic acid to their current use in the 

chemotherapy of AIDS. During last four decades, several pyrimidines and condensed 

pyrimidines have been developed as chemotherapeutic agents and have found wide 

clinical applications as anticancer, antiviral and anti-AIDS, antitubercular, 

sedative/hypnotic/antiepileptic, cardiac agents, as well as analgetics, diuretics, antibiotics 

and metabolic electrolytes etc.48 There are some reports on the combinatorial as well as 

parallel library synthesis of pyrimidines and condensed pyrimidines through MWI that 

are reviewed here.  

 

23.2.1 Mononuclear pyrimidine libraries through MWI 

A series of substituted aliphatic nitriles have been trimerized to their corresponding 

pyrimidine structures 50 (32 analogues) under solvent-free conditions in the presence of 

catalytic quantities of potassium tert-butoxide using a focused microwave reactor. 
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Multigram quantities of the corresponding 4-aminopyrimidines which are potential 

NCE’s, have been prepared in high yields and purity following a simple and scaleable 

protocol.49 

R CN
t-BuOK

MWI, 160oC,
3x15 min

N

N

R

R

R

NH2

50

R = Ph, 4-OCH3Ph, 4-ClPh, 4-BrPh,
(CH2)3Ph, CH2Me, H, (CH2)3Me etc.  

 
A fast method has been developed for transition-metal-catalyzed decoration of 4-aryl-

dihydropyrimidones (29 compounds) using controlled microwave heating as the energy 

source. The palladium-catalyzed protocols allow facile installation of diversities into 4-

(bromoaryl)-DHPMs as in 51 and 52. Both in situ carbonylations, using different nitrogen 

and oxygen nucleophiles and direct N-arylations efficiently generated functionalized 

amides 53 or esters after only short periods of high-density microwave heating. 

Additionally, intramolecular seven-membered Heck-endocyclization using Harrmann’s 

Palladacycle {Pd2(Ac)2[P(o-tolyl)] 2}  to afford compounds 54 was successfully done under 

microwave irradiations.50 
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Nie et al.,51 reported microwave-assisted reaction of 2’-hydroxychalcones with amidines 

or guanidines to synthesize 2,4,6-trisubstitutedpyrimidines 55 (100 compounds).  

O

OH

+ HN

R2

NH2

Ar

R1

MWI, 190oC, 30 min

OH

R1

NN

R2

Ar

55

R1= H, F, Cl, Br
R2= Ph, 4-CH3Ph, 4-ClPh, cyclopropyl, NH2

 
An efficient and rapid microwave-assisted solution-phase method for the synthesis of 2-

amino-4-arylpyrimidine 5-carboxylic acid derivatives has been developed. The five-step 

linear protocol involves an initial Biginelli multicomponent reaction leading to 

dihydropyrimidine-2-thiones 56 which are subsequently S-alkylated with methyl iodide. 

The resulting 2-methylthiodihydropyrimidines 57 are sequentially oxidized first with 

manganese dioxide and then with oxone to provide 2-methylsulfonyl-pyrimidines 58 

which serve as excellent precursors for the generation of a variety of 2-substituted 

pyrimidines 59 via displacement of the reactive sulfonyl group with nitrogen, oxygen, 

sulfur, and carbon nucleophiles. The use of high-temperature sealed-vessel microwave 

irradiation allows the preparation of the desired target structures in high yields and 

comparatively short reaction times.52 
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O
O

nucleophile, base

MWI, 70-230oC, 10 min

N

N

PhO

EtO

Nu

Nu= pyrrolidine, piperidine,
ethanolamine, amonia, phenol etc

59

56

5758
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Pisani et al.,53 have developed a two-step protocol for the synthesis of 5-aroyl-3,4-

dihydropyrimidin-2-ones libraries (30 compounds) of type 60, combining a trimethylsilyl 

chloride-mediated Biginelli multicomponent approach with the transition metalcatalyzed 

Liebeskind-Srogl ketone synthesis. Both reaction steps can be efficiently carried out with 

controlled microwave irradiation. 

 

N

N

O

SEt

H

R1

O

R2

R3-B(OH)2
Pd(OAc)2 PPh3, CuTC
solvent

MWI, 130oC, 1h

N

N

O

R3

H

R1

O

R2

60

R1= Ph, 3-BrPh, 2-CF3Ph etc. 
R2=H, CH3, C2H5
R3= Ph, 3-ClPh,4-CH3Ph, 3-OCH3Ph etc.  

 

A diverse set of 17 acidic carbonyl synthons, 25 aldehydes and 8 urea/thioureas was used 

in the preparation of a dihydropyrimidine library 61. Out of the full set of 3400 possible 

DHPM derivatives, a representative subset of 48 analogues was prepared using automated 

addition of building blocks and subsequent sequential microwave irradiation of each 

process vial. For most building block combinations 10 min of microwave flash heating at 

120°C using AcOH/EtOH (3:1) and 10 mol % ytterbium trifluoromethanesulfonate 

[Yb(OTf)3] as solvent/catalyst system proved to be successful, leading to an average 

isolated yield of 52% of DHPMs with >90% purity.54 

O H

R1

R2 O

E

HN Z

NH2

R3

+
MWI, 120oC, 
10 min N

NH

E

R1

Z

R3

R2

R1=Ph, 2-NO2Ph, 4-NO2Ph, 3-OHPh,4-CH3Ph etc
R2= CH3, C2H5, Ph etc
R3= CH3, C2H5, CH2Ph, Ph etc.
E= COOC2H5, COOCH3, COCH3, CONH2,  etc

61

AcOh/EtOH
Yb(OTf)3

 
 

Yeh et al.,55 have successfully combined the advantages of microwave technology with 

liquid phase combinatorial chemistry to facilitate thioxotetrahydropyrimidinone 62 
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synthesis (15 derivatives). Purification steps were minimized, analytical methods were 

significantly simplified, and a much defined products were yielded. 
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N S
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N

NS O
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R1= Isopropyl, n-butane, etc
R2= 4-F Ph, 4-NO2Ph, 3-CH3 Ph, 3-F Ph etc

62

 
 

Porcheddu et al.,56 have described an efficient approach to synthesize the libraries (39 

compounds) of substituted pyrimidines 63 starting from different β-keto-esters or β-keto-

amides, using a low cost and high loading polymer, under very mild conditions using 

microwave irradiation. 
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2.3.2.2 Condensed pyrimidine libraries through MWI 

Huang et al.,57 have reported an expeditious and efficient method to prepare 2,6,9-

substituted purines 64 in a two-pot reaction using microwave assisted reactions. The 2-

chloro-6,9-substituted purines were prepared via a one-pot two-step reaction, which 

involves a sequential SNAr displacement of the C6 chlorosubstituent with various anilines 

and amines, followed by N-alkylation and N-arylation at the N9 position with different 

organic halides and boronic acids. 

 

N

N N
H

N

Cl

Cl

1. Aniline/amine(R1R2NH), 
AcOH, MWI, 10 min

NaBF4, DMSO, 
MWI, 5 min

N

N N

N

N

N

2. Halide/bronic acid, (R3X)
K2CO3, DMF, MWI
10 min

Aniline/amine (R4R5NH)

R1 R2

R4

R5 R3

64

N

N
N

N

N

Cl

R1 R2

R3

 

A high-speed, one-pot combinatorial method for synthesizing diverse sets of imidazo[1,2-

a]quinolines, pyrimido[1,2-a]quinolines 65 and quinolino[1,2-a]quinazolines 66 from 

readily available starting materials (12 analogues) has been reported.58 
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R = Ph, 4-NO2Ph, 4-FPh, 4-BrPh, 4-CH3Ph etc
R1 = CH3, H
R2 = CH2COOH, CH3CHCOOH
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O R
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66

R = Ph, 4-NO2Ph, 4-FPh, 4-BrPh, 4-CH3Ph etc  
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An efficient and convenient method has been developed for the preparation of 

2,4(1H,3H)-quinazolinediones 67 and 2-thioxoquinazolinones 68  (35 compounds). 

Substituted methyl anthranilates have been reacted with various iso(thio)cyanates in 

DMSO/H2O without any catalyst or base by using microwave irradiation to generate 

diversity on the 2,4(1H,3H)-quinazolinediones or 2-thioxoquinazolinones. A variety of 

substrates can participate in the process to yield products in good yields and high purity, 

making this methodology suitable for library synthesis of NCE’s in drug discovery 

efforts.59 
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+
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MWI, 120oC, 20 min
N
H
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MWI, 120oC, 20 min
N
H

N

O

R2

S

R1

R1= H, 5-F, 4,5-dimethoxy Ph
R2= Ph, 3-F3CPh, 4-F3CPh, 
2-BrPh, ethyl, bytyl etc

68

 
 

Some Russian workers60 have developed a fast and convenient microwave assisted 

procedure for the rapid generation of 7-aryl-2-alkylthio-4,7-dihydro-1,2,4-triazolo[1,5-a]-

pyrimidine-6-carboxamides 69 by three-component condensation of 3-amino-2-alkylthio-

1,2,4-triazoles with aromatic aldehydes and acetoacetamides. All reactions were 

completed within 5 min of microwave irradition at 120°C and provided the desired 

products in high yields and excellent purity. Total 60 compounds have been reported.  
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R1 = Ph, 4-F Ph, 4-Cl Ph, 4-Br Ph, 4-CH3 Ph etc.
R2 = Ph, 4-Cl Ph, 2,4 dimethyl Ph, 2-OCH3 Ph
R3 = H, 3-CH3 Ph, CH3

 
A short and practical synthesis of 2,3-substituted imidazo[1,2-a]pyrimidines 70, based on 

microwave-assisted Heck-type arylation of 2-substituted imidazo[1,2-a]pyrimidines, has 

been developed. A 45-membered library of 2,3-substituted imidazo[1,2-a]pyrimidines has 

been obtained with good yields and purities using this optimized protocol.61 

N

N

NH2

Br
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R1= Ar, CONH2

EtOH, NaHCO3
N

N

N
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N

N
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R1= Ph, Hetaryl

70

 

 
Recently, we have reported microwave assisted cyclocondensation, chlorination and 

amination (nucleophilic displacement) reactions to afford a variety of libraries of 2,4-

diamino and 4-aminothieno[2,3-d]pyrimidines. The versatile synthons i.e., 2-amino-3-

carbethoxy-4,5-disubstitutedthiophenes were also generated through rapid one pot 

Gewald condensations under microwave irradiations.62 They are cyclocondensed with 

urea or amides under MWI to their corresponding thienopyrimidin-2,4-diones and -4-

ones. These and the other 2-substitutedthieno[2,3-d]pyrimidin-4(3H)-ones have been 

subsequently chlorinated with POCl3 under MWI. This chlorination under MWI, is indeed 

interesting, high yielding and less reported procedure to the best of our knowledge. 

Subsequent aminations involving nucleophilic displacements under MWI are also novel.63 

(Scheme-3). 
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2.4. Conclusions 

There are more than 5,000 documented examples of Microwave Assisted Organic 

Synthesis (MAOS) reported by both academic and industrial laboratories, which suggests 

that most chemical transformations can be carried out successfully under microwave 

conditions. This does not necessarily imply that dramatic rate-enhancements compared 

with a classical, thermal process will be observed in all cases, but the simple convenience 

of using microwave technology will make this non-classical heating method a standard 

tool in the laboratory within a few years The recently reported incorporation of real time, 

in situ monitoring of microwave-assisted reactions by Raman spectroscopy will facilitate 

a further increase in efficiency and speed.   

 

For the production of New Chemical Entities (NCE’s) in pharmaceutical industry today, 

microwave is an essential tool and several laboratories have already incorporated 

microwave reactors into in-house ‘synthesis stations’ for producing small- and medium-

sized compound libraries in a high-throughput format. 
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2.5. Drawbacks associated with MWI 

1. One of the major drawbacks of this relatively new technology is equipment. 

Although prices for dedicated microwave reactors for organic synthesis have 

dropped considerably since their first introduction in the late 1990s, the current 

price range for microwave reactors is still many times higher than that of 

conventional heating equipment cost, ranging from US$15,000-100,000. 

2. An even bigger problem, especially for the drug discovery industry, is scalability. 

It has to be noted that with few exceptions most of the examples of microwave-

assisted synthesis published so far were carried out on a small scale (<1 gm; 

typically 1-5-ml reaction volume).  

3. There is a need to develop larger-scale microwave reaction techniques that can 

routinely provide products for lead development and ultimately for production on 

a large scale (multi 100 kg, or even higher).  

4. Two different approaches that address these issues have emerged. Some groups 

have experimented with larger batch-type reactors, whereas others have used 

continuous-flow techniques to overcome the inherent problems associated with 

microwave irradiation scale-up.  

5. Currently, there are no documented published examples of the use of microwave 

technology for organic synthesis on a production scale level (>1,000 kg), which is 

a clear limitation of this otherwise so successful technology. 

 

Despite these limitations, microwave chemistry has opened up several new avenues in 

organic synthesis. Many reactions that previously were not possible, or resulted in a low 

yield, can now often be performed quickly, safely and efficiently in a few minutes. In 

summary, Microwave Assisted Organic Synthesis has changed the world of organic 

chemistry and drug discovery, and it would be wise to embrace this new technology or be 

left lagging behind with conventional heating methodologies. 
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3. Aim of the Present Work 

 

3.1 Introduction 

Pyrimidines and condensed pyrimidines have a long and distinguished history of their 

immense biological and medicinal significance.1 The synthesis and biological evaluation 

of condensed pyrimidines, appropriately functionalized, especially at 2- & 4- positions 

has attracted considerable attention of medicinal chemists worldwide, as they are 

potentially bioactive molecules.2  

 

3.2 Biological and Pharmacological Significance of Thienopyrimidines 

Condensed pyrimidines and quinazolines have shown a wide spectrum of biological 

activities and have been exhaustively reviewed.1 Thieno[2,3-d]pyrimidines are considered 

to be bioisosteres of quinazolines. The concept of bioisosterism3 has been exploited by 

medicinal chemists as an approach to the drug design. This has lead to the synthesis of 

various types of condensed pyrimidines, which show a wide range of biological activities.  

 

4-Amino and 4-oxo-5,6,7,8-tetrahydro-7-benzylpyrido[4’.3’:4,5]thieno[2,3-d]pyrimidines 

1 and 24,5, some derivatives of thieno[2,3-d]pyrimidin-4-(3H)-ones 36, 3,4-dihydro-4-

oxothieno[2,3-d]pyrimidine carboxylates 47 and 58 and thieno[2,3-d]pyrimidin-4-(3H)-

ones 69 have exhibited potent anti-allergic activity. 
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R= alkyl, Ar-CH2
-, alkylthio, pyridyl
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R2 N
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S
N

NH

-O

COO-Na+

R1

R2

5

Na+

R1, R2 = -(CH2)n;
R1 = H, CH3, i-But, NH2, NO2 ;
R2 = H, C2H5, i-But, COCH3 , n-Hexyl etc.

S
N

N

O

R

R2

R3

6

R1

R = COOC2H5,  COONa;
R1 = H;
R2 = H, CH3;
R3 = C2H5, Hexyl

 

Some thienopyrimidines derivatives such as thieno[2,3-d]pyrimidine 2-mercaptoacetic 

acids 710-12, 2-alkyl-3-arylthieno[2,3-d]pyrimidin-4-(3H)-ones 813,14, 2-ethoxy-4-oxo-

5,6,7,8-tetrahydrobenzo(b)thieno[2,3-d]pyrimidine 915, thieno[2,3-d]pyrimidin-4(3H)-

ones 1016,17, 2-(substituted)styrylthieno[2,3-d]pyrimidin-4(3H)-ones 1118, 3-arylamino-

5,6,7,8-tetrahydrobenzo(b)thieno[2,3-d]pyrimidines 1219, 5,6-disubstitutedthieno[2,3-d]-

pyrimidines 13 and 1420, derivatives of general structure 1521, [1,3,4]thiadiazolo[3,2-a]-

thieno[2,3-d]pyrimidin-5-ones 1622, thieno[2,3-d]pyrimidin-4-ones 1723, thiadiazolo-

thieno[2,3-d]pyrimidines 1824 and 2-substituted-4-oxo-5,6,7,8-tetrahydrobenzo(b)thieno-

[2,3-d]pyrimidines 1925 have been discussed for their potent analgesic, anti-inflammatory 

and CNS depressant activities.    

S
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R= C6H5, ClC6H4, OH, alkyl, alkoxyl, aralkyl;
R1, R2= H, alkyl, (-CH2-)n, n = 3,4 - halo, nitro;
R3 = SCH2COOC2H5,  SCH2COOH, SCH2CH2COOH.
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19  

Recently, a series of 4-arylthieno[3,2-d]pyrimidines was reported as potent adenosine A2A 

receptor antagonist. These novel compounds showed high degrees of selectivity against 

the human A1, A2B and A3 receptor sub-types. Compounds 20 showed promising activity 

in vivo, suggesting potential utility in the treatment of Parkinson’s disease.26 
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N
S

NH2

O
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Another novel series of thienopyrimidines and thienopyridines have been identified as 

potent inhibitors of VEGFR-2 kinase. Compound 21 was found most potent with IC50 

values of 80 nM and 3 nM for VGFR and EGFR respectively.27 

N

N
S

HN

H
N

VGFR IC50 = 80 nM
EGFR IC 50 = 3 nM

21  

Interestingly, a series of novel thieno[2,3-d]pyrimidin-4(1H)-one based analogs were 

found potent  inhibitor of the growth of human colon tumors. Compound 22 was the most 

potent inhibitor of the tumor cell growth.28   

S

NH

N

O

O

O

O 22  

3.3 Synthesis of Pyrimidines: 

The synthesis of condensed pyrimidines is a very important process which is subject to 

improvement, routinely. The regularly employed synthetic methodology involves 

annealation of the pyrimidine ring on an appropriately substituted heterocycles in which a 

variety of o-aminocarbonyl heterocycles have been cyclocondensed with a host of 

reagents namely amides, thioamodes, imidates, amidines, etc., mostly under basic 

conditions to afford variety of condensed pyrimidines, quinazolines, thienopyrimidines, 

furanopyrimidines, purines, pteridines, pyridopyrimidines,  pyrrolopyrimidines, 

pyrazolopyrimidines, etc.,29 (Scheme 1). 
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= benzene, thiophene, furan, pyrrole, imidazole, 
   pyridine, pyrazole, etc.

= carbonyl, Z = OH, NH2, halo, alkyl, aryl

R = H, alkyl, aryl, heteroaryl, etc

X

Y

NH2 N

N

Z

R

X

Y

Scheme-1  

 

There are also a few reports on the direct use of ‘R-CN’ as the reagent to be 

cyclocondensed with o-aminocarbonyl substrates, under basic conditions to prepare 

condensed 2-substitutedpyrimidin-4-ones, mostly 2-substitutedquinazolin-4-ones, albiet 

in low yields.30,31 A large number of heterocyclic structures have been successfully 

synthesized through the reactions of nitriles mainly under such basic conditions.32,33 All 

these syntheses involve the nucleophilic attack of the reagent on the nitrile function 

(Scheme 2).34 The direct use of the electrophillic properties of the nitrile in such 

syntheses, though has received relatively less attention, is however not new.35 

NH+B-
NH

B

Scheme-2  

 

Shishoo and co-workers36-44 have exploited the reactions of a variety of nitriles with a 

host of o-aminocarbonyl substrates, under the influence of dry HCl gas to obtain a wide 

range of 2-substituted-4-oxo/4-amino/4-chloro & 4-aryl condensedpyrimidines. The 

scope of this work is subject to a review.45 These reaction proceeds via the imidoyl halide 

intermediates (Scheme 3). 

N

Scheme-3

H+Cl-

NH

Cl

 

Interestingly, the nitriles ‘RCN’, possessing strongly electron withdrawing substituents 

(R) are more reactive under this conditions.39 The main limitation of this interesting 

reaction is the failure of o-aminocarbonyl substrates possessing azaheterocyclic nucleus. 
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In spite of this limitation, the reaction is indeed a facile, high yielding one pot synthetic 

procedure for a variety of condensed pyrimidines (Scheme 4). 

 

= benzene, thiophene, furan, pyrrole, imidazole, 
   pyridine, pyrazole, pyridothiophene etc.

= COOR1, CONHR1, CN, COR1 etc

Z

Y

NH2 N

N

Z

R

Z

Y

dry HCl gas

Z = OH, NH2, chloro, aryl, alkyl, etc

R N+

Scheme-4  

 

3.4 Thienopyrimidines as an Important Scaffold for Parallel Synthesis of Compound 

Library for NDDR 

Reactions that are adaptable for high speed and throughput syntheses have become an 

important component of the modern medicinal chemist’s library, as a great number of 

compounds can be produced through such rapid parallel synthetic programs.46 Synthetic 

methods that enable the rapid production of an array of heterocycles, useful for the 

identification of new lead structures are of critical importance to the pharmacological 

activity. Thienopyrimidine and other condensed pyrimidines scaffolds and their 

derivatives are important heterocyclic building blocks and have been shown to possess 

significant pharmacological activity against a variety of molecular targets.47  

 

Extensive work on condensed 2-substitutedpyrimidin-4(3H)-ones, 23, especially 

thieno[2,3-d]pyrimidin-4(3H)-ones by Shishoo et al., as discussed above involve the 

reaction of nitriles under acidic conditions using dry HCl gas.36-44 These 

condensedpyrimidines have four diversity points.  

X

R1

R2 N

N

R4

R3

X = S, -CH=CH-, N, O, etc
R1, R2 = H, alkyl, aryl, cycloalkyl, carboalkoxy, carbocyclic,  heterocyclic, etc
R3 = alkyl, aryl, arylalkyl, heteroaryl, substituted amino, heteroalkyl,aryl, etc
R4 = OH, alkyl, aryl, Cl, NH2

23
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The cyclization reactions involving their synthesis proceed via the formation of transient 

amidine intermediates resulting from the reaction of the o-aminocarbonyl compounds 

with protonated nitrile or imidoyl chloride intermediate. The imodyl chloride intermediate 

possess the nitrile carbon with enhanced electrophilicity towards the amino function of 

the thiophene o-aminocarbonyl substrates leading to their facile condensation to the 

amide intermediate to form the amidine intermediate (Scheme 5). This is followed by 

intramolecular cyclisation of these transient amidine intermediates.   

NH2

X

Y

Cl R

NH

N

N

Z

R

Z = OH, NH2, Cl, aryl, alkyl

= carbocyclic &heterocyclic;

R = alkyl, aryl, aralkyl, heteroaryl, etc.

amidine intermediate

R N
nitrile

+

imidoyl halide

dry HCl, 
dioxane

-HCl

N
H

Y

Z

R

NH

N

Y

Z

R

NH2

Scheme 5  

 

Recently, encouraging results in the MWI based syntheses of thiophene o-aminoesters 

involving Gewald reaction,48 as well as, thienopyrimidine bioisosteres of gefitinib49 under 

microwave conditions from this laboratory gave an impetus to assess whether these could 

be extended to the single pot cyclocondensation of the acetonitriles with various o-

aminoester substrates under solvent free conditions using MWI. This was particularly of 

interest, especially for quickly generating compound libraries of increasing molecular 

diversity, through the development of synthetic methods that could combine the 

expediency of microwave energy. 
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Thus, the Aim of the Present Work was to use microwave irradiation for the synthesis 

of condensed 2-substitutedpyrimidin-4(3H)-ones (V and VI) involving the condensation 

of variety of nitriles with o-aminoesters of thiophene, benzene, dimethoxybenzene and 

quinazolinone in the presence of catalytic amount of HCl alone or with the Lewis acid, 

AlCl 3 under solvent free conditions for the first time. Further, it was decided to synthesize 

4-chloro derivatives of these condensed 2-substituted pyrimidines-4-ones through MWI 

assisted facile and rapid chlorination method (Scheme 6), and also evaluated them for 

some biological activity. 

NH2

O

CH3CN

OCH3/C2H5

N

NH

O

N

NH

O

Cl
N

ClCH2CN

N

NH

O

Cl

=

S

R1

R2

MeO

MeO
N

N

O

, , ,

R1, R2 = -(CH2)4-; R1, R2 = CH3; R1 = 4-CH3-C6H4, R2 = H;
R1 = CH3, R2 = COOC2H5; R1 = C6H5,  R2 = H.

Scheme 6
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4.1 Synthesis of Starting Materials: 

4.1.1 Synthesis of o-aminothiophenes (The Gewald reaction) 

4.1.2 Synthesis of other o-amino esters substrate 

 

4.1.1 Synthesis of o-Aminothiophenes (The Gewald reaction) 

 

The starting material used for the synthesis of 2-substituted condensed pyrimidines was 

synthesized using classical Gewald reaction, which is explained in Part-1 of this thesis.  

 

Table-36: Physical data of 2-amino-3-carbethoxythiophenes (Ii-xii)  

S

R1

R2 NH2

O

O

 
 

Sr. No R1 R2 Mol.For. 
Sol. of recryst 

Yield 
(%) 

M.P. 
oC 

Time 
(hrs.) 

Route 

I i -(CH2)4- C11H15NO2S 
 (E) 

80 110-112 3 A 

I ii -CH3 -COOCH3 C10H13NO4S 
 (E) 

70 80-82 2-3 A 

I iii -CH3 -COOC2H5 C11H15NO4S 
(B) 

50 103-105 2 A 

I iv -CH3 -CH3 C9H13NO2S 
(E) 

50 92-93 
 

3 A 

Iv -C6H5 H C13H13NO2S 
(E) 

75 95-97 15-18 B 

Ivi 4-CH3OC6H4 H C14H15NO3S 
(E) 

73 96-99 15-18 B 

Ivii 4-CH3C6H4 H C14H15NO2S 
(E) 

89 102-104 15-18 B 

Iviii 4-BrC6H4 H C13H12BrNO2S 
(E) 

76 78-80 15-18 B 

I ix 4-ClC6H4 H C13H12ClNO2S 
(E) 

80 102-104 15-18 B 

Ixi -(CH2)5- C12H17NO2S 
(E) 

71 75-77 15-18 B 

Ixii -(CH2) 2-N-(CH2C6H5)CH2- C17H16ClN3OS 
(E-C) 

78 
 

232-234 
 

15-18 B 

E =Ethanol, B = Benzene 



Part-II 
Results and Discussion 

 322 

4.1.2 Synthesis of other o-amino esters substrates 

The other o-amino ester substrates used were synthesized by using the methods reported in Part-1 of this thesis. 

Table 37: Physical data of other o-aminoesters (Ixiii-xvii) synthesized 

Compd 
No. 

Compound M.P (oC) Yield 
(%) 

Mol. Formula 
(Solv. of 
Crystn.) 

IR (cm-1) Mass (m/e) NMR (δppm) 

Ixiii N SH3C

CH3
NH2

COOC2H5

 

152-156 90 C12H14N2O2S 
(E) 

3435, 
3332(γNH), 
2979(γC-H), 
1668(γC=O) 
 

250(M+), 222, 
204, 176, 149, 
132 

1.38 (3H, t, COOCH2CH3, J 
= 5.1 & 6.9), 2.57 (3H, s, 
CH3), 2.71 (3H, s, CH3), 
4.32 (2H, q, COOCH2CH3, 
J = 6.9 & 7.2), 6.14 (2H, s, 
NH2), 6.82 (1H, s, Ar-H) 

Ixiv 

N

N COOC2H5

NH2

O  

137-138 44 C11H11N3O3 

(E) 
3476, 
3334(γNH), 
2998(γC-H), 
1739(γC=O), 
1687(γCONH) 

218(M+), 204, 
161, 144, 218, 
204, 161, 144 

1.45 (3H, t, COOCH2CH3, J 
= 7.2), 4.50 (2H, q, 
COOCH2CH3, J = 6.9 & 
7.2), 5.15 (2H, s, br, NH2), 
7.48-8.29 (4H, m, Ar-H) 

Ixv 

NH2

COOCH3

H3CO

H3CO

 

120-122 47 C11H15NO4 

(E) 
3476, 
3373(γNH), 
2998(γC-H), 
1739(γC=O). 

-- -- 

Ixvi S

OCH3
NH2

COOC2H5

 

145-147 80 C12H13NO3S 
(E) 

3484, 
3376(γNH), 
2947(γC-H), 
1670(γC=O) 

-- -- 

Ixviii S

NH2

COOC2H5

 

106-108 60 C11H11NO2S 
(E) 

3452, 
3397(γNH), 
3130(γC-H), 
1686(γCONH) 
 

-- -- 

 E= Ethanol 
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4.2 Synthesis of condensed 2-substitutedpyrimidines 

For the first time a rapid, microwave assisted green chemical synthesis of condensed 2-

substitutedpyrimidin-4(3H)-ones involving the condensation of a variety of nitriles with 

o-aminoesters of thiophene, benzene, dimethoxybenzene, pyridothiophene, 4-methoxy-

benzothiophene and quinazolinone in the presence of catalytic amount of HCl alone or 

with the Lewis acid, AlCl3 under solvent free conditions is reported, herein (Scheme 1). 

=

S

R1

R2

MeO

MeO

N

N

O

, , ,

R1, R2 = -(CH2)4-; R1, R2 = CH3; R1 = 4-CH3-C6H4, R2 = H;
R1 = CH3, R2 = COOC2H5; R1 = C6H5,  R2 = H.

SN

,

S

OCH3

,

where,

NH2

O

CH3CN OC2H5

N

NH

O

a

N

NH

O

Cl

N

b

ClCH2CNc

N

NH

O

Cl

Vxxv-xxx Vxviii-xxiv

Vi-xvii

Scheme 1: Reaction conditions a: Under microwave irradiation; 350W, 20-75 min (60-    
                 94%), b: Under microwave irradiation; 350W, 20-50 min (83-99%), c: Under 
                 microwave irradiation; 350W, 10-40 min (66-95%).

I

 

 

These reactions under microwave irradiation at 350W were accomplished by using 

catalytic amount of concentrated HCl (33%w/v) in very short time periods. The reaction 

time varied depending upon the type of the nitrile used. The reactions with acetonitrile 

were completed in 40-75 min to obtain the condensed 2-methylpyrimidin-4(3H)-ones 

(Vxxv-xxx) with isolated yields ranging from 68-94%. The reactions with acrylonitrile 

were completed in 20-50 min time and afforded the condensed 2-chloroethylpyrimidin-
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4(3H)-ones (Vxviii-xxiv) excellent isolated yields (85-96%), as well as, purity (Scheme 

1). 

 

Interestingly, when the reactive nitrile, chloroacetonitrile, was used the reaction went to 

completion in just 10-40 min and afforded the corresponding 2-chloromethylpyrimidin-

4(3H)-ones (Vi-xvii) in excellent isolated yields (>90%). Thus, in all the above cases, 

there is considerable reduction in the reaction times, when conventional method is 

replaced by microwave assisted heating, i.e., from 6-12 hrs to 10-75 min, respectively. 

Considerable improvement in yields was also observed.  

 

A very important and noteworthy fact is that, all the reactions, depicted in Scheme 3, 

failed to proceed in the absence of HCl. This indicates that these reactions under MWI, 

may also be involving the imidoyl chloride intermediates.8,23 Further, in a few typical 

cases, only catalytic amount of HCl failed to bring about the completion of the reaction. 

However, addition of catalytic amount of a Lewis acid, anhydrous AlCl3 along with conc. 

HCl, accomplished the successful completion of the above reactions to afford the target 

condensed 2-substitutedpyrimidin-4(3H)-ones in excellent isolated yields. Thus, the 

Lewis acid AlCl3, has forwarded the reactions, probably by way of forming the 

electrophilic nitrile-metal halide, hydrohalide complex as shown below.24  

 

R

N

+ HCl

R

NH

Cl

R

N

+ AlCl3
 HCl

RCN+AlCl3.HCl

 

Using this novel microwave assisted green synthesis, following 2-substituted-thieno[2,3-

d]pyrimidin-4(3H)-ones  and other 2-substitutedpyrimidin-4(3H)-ones were synthesized: 
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Table 38: Physical data of condensed 2-substitutedpyrimidin-4(3H)-ones synthesized using MWI irradiation (Vi-xxx) 

N

NH

O

X  
 

S. No. 

 

X Time of 
MWI 

Heating 
(Min) 

Yield 
(%) 

M.P. Mol. formula 
(Solv. of crystn.) 

IR (cm-1) 
(KBr) 

Mass 
(m/e) 

NMR (δppm) 
(CDCl3) 

Vi 

S  

-CH2Cl 25 85 258-260 C14H11ClN2OS 
(E-C) 

 

3438, (γNH), 
2919(γC-H), 
1650(γC=O), 
712(γC-Cl) 

-- 2.39 (3H, s, CH3), 
4.53 (2H, s, CH2), 
7.13 (1H, s, CH), 
7.19-7.46 (4H, m, 
Ar-H), 10.43 (1H,s, 
NH) 

Vii 

S  

-CH2Cl 30 92 252-254 C9H9ClN2OS 
(D) 

 

2917 (γC-H), 
1662(γC=O), 
769(γC-Cl) 

-- 2.39 (3H, s, CH3), 
2.47 (3H, s, CH3), 
4.51 (2H, s, CH2), 
10.03 (1H, s, br, 
NH) 

Viii 

S  

-CH2Cl 20 75 220-222 C13H9ClN2OS 
(D) 

 

2855(γC-H), 
1660(γC=O), 
748(γC-Cl) 

-- 4.58 (2H, s, CH2,), 
7.31-7.52 (5H, m, 
Ar-H and 1H at 6 
position), 12.69 
(1H, s, br, NH) 

Viv 

S

O

O  

-CH2Cl 27 90 241-243 C11H11ClN2O3S 
(T-M) 

 

2864(γC-H), 
1725(γC=O), 
1670(γCONH), 
763(γC-Cl) 

-- 1.41 (3H, t, J = 7, 
CH3), 2.95 (3H, s, 
CH3), 4.38 (2H, 
quartlet, J = 7, 
CH2), 4.57 (2H, s, 
CH2), 10.62 (1H, s, 
NH) 
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S. No. 

 

X Time of 
MWI 

Heating 
(Min) 

Yield 
(%) 

M.P. Mol. formula 
(Solv. of crystn.) 

IR (cm-1) 
(KBr) 

Mass 
(m/e) 

NMR (δppm) 
(CDCl3) 

Vv 

S  

-CH2Cl 10 86 273-276 C11H11ClN2OS 
(D) 

 

2931(γC-H), 
1663(γCONH), 
754(γC-Cl) 

255(M+), 
221, 149 

1.86 (4H, s, CH2 at 
6 and 7), 2.79 (2H, 
s, CH2 at 5), 3.02 
(2H, s, CH2 at 8), 
4.55 (2H, s, CH2), 
10.65 (1H, s, br, 
NH) 

Vvi 

 

-CH2Cl 20 84 257-258 C9H7ClN2O 
(E-C) 

2981(γC-H), 
1697(γCONH), 
776(γC-Cl) 

-- 4.53 (2H, s, CH2,), 
7.49-7.82 (4H, m, 
Ar-H), 12.56 (1H, 
s, br, NH) 

Vvii 

S  

-CH2Cl 12 74 188-190 C12H13ClN2OS 
(M-C) 

 

2925(γC-H), 
1660(γCONH), 
755(γC-Cl) 

-- -- 

Vviii 

S

O

 

-CH2Cl 25 84 205-207 C14H11ClN2O2S 
(T-M) 

2990(γC-H), 
1680(γC=O), 
746(γC-Cl) 

-- 3.85 (3H, s, OCH3), 
4.48 (2H, s, 
CH2Cl), 6.94-7.54 
(5H, m, 4H, Ar-H 
and 1H at 6), 12.02 
(1H, s, NH) 

Vix 

S

Cl

 

-CH2Cl 20 71 233-234 C13H8Cl2N2OS 
(T-M) 

 

3107(γNH), 
1649(γCONH), 
756(γC-Cl) 

-- 4.54 (2H, s, 
CH2Cl), 7.23-7.57 
(5H, m, 4H, Ar-H 
and 1H at 6), 11.5 
(1H, s, NH) 

Vx 

S

N

 

-CH2Cl 15 78 232-234 C18H17ClN2OS 
(T-M) 

 

3016(γC-H), 
1669(γCONH), 
743(γC-Cl) 

-- -- 
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S. No. 

 

X Time of 
MWI 

Heating 
(Min) 

Yield 
(%) 

M.P. Mol. formula 
(Solv. of crystn.) 

IR (cm-1) 
(KBr) 

Mass 
(m/e) 

NMR (δppm) 
(CDCl3) 

Vxi 

S

O

O  

-CH2Cl 30 86 250-254 C10H9ClN2O3S 
(M-C) 

 

2863(γC-H), 
1724(γC=O), 
1664(γCONH), 
763(γC-Cl) 

-- -- 

Vxii 

S

Br

 

-CH2Cl 20 68 247-249 C13H8BrClN2OS 
(E-C) 

2980(γC-H), 
1655(γC=O), 
775(γC-Cl) 

-- -- 

Vxiii 

N

N

O  

-CH2Cl 30 60 240-242 C11H7ClN4O2 

(E-C) 
2896(γC-H), 
1686(γCONH), 
778(γC-Cl). 

-- -- 

Vxiv S

 

-CH2Cl 45 62 150-152 C11H7ClN2OS 
(E-C) 

2980(γC-H), 
1680(γCONH), 
740(γC-Cl) 

-- -- 

Vxv S

O
 

-CH2Cl 40 83 265-267 C12H9ClN2O2S 
(E-C) 

2978(γC-H), 
1676(γCONH), 
736(γC-Cl) 

-- -- 

Vxvi 

N S  

-CH2Cl 50 76 275-277 
(dec.) 

C12H10ClN3OS 
(E-C) 

3443, 3338 
(γNH), 2946(γC-

H), 
1672(γCONH), 
760(γC-Cl). 

279(M+), 
253, 
244, 
230, 216 

-- 

Vxvii 

O

O

 

-CH2Cl 40 70 240-245 C11H11ClN2O3 

(E-C) 
3012(γArH), 
2888(γCH2), 
1666(γCONH), 
754(γC-Cl) 

254(M+), 
239, 219 

-- 
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S. No. 

 

X Time of 
MWI 

Heating 
(Min) 

Yield 
(%) 

M.P. Mol. formula 
(Solv. of crystn.) 

IR (cm-1) 
(KBr) 

Mass 
(m/e) 

NMR (δppm) 
(CDCl3) 

Vxviii 

S  

-CH2CH2Cl 40 81 166-168 C15H13ClN2OS 
(E-C) 

2837(γC-H), 
1672(γCONH), 
762(γC-Cl) 
 

-- 2.40 (3H, s, CH3), 
3.06 (2H, t, J = 7, 
CH2), 3.87 (2H, t, J 
= 7, CH2), 7.06 
(1H, s, CH), 7.15-
7.45 (4H, m, Ar-H), 
12.99 (1H, s, NH) 

Vxix 

S  

-CH2CH2Cl 60 86 200-202 C10H11ClN2OS 
(E-C) 

2922(γC-H), 
1666(γCONH), 
758(γC-Cl) 

-- 2.38 (3H, s, CH3), 
2.47 (3H, s, CH3), 
3.19 (2H, t, CH2, J 
= 7.5), 3.97 (2H, t, 
CH2, J = 7.2), 12.34 
(1H, s, br, NH). 

Vxx 

S  

-CH2CH2Cl 45 90 268-270 C14H11ClN2OS 
(E-C) 

2848(γC-H), 
1670(γC=O), 
748(γC-Cl) 

-- 3.14 (2H, t, CH2, J 
= 7.2), 4.02 (2H, t, 
CH2, J = 7.5), 7.30-
7.50 (6H, m, 5H  
Ar-H and 1H at 6 
position), 12.40 
(1H, s, br, NH) 

Vxxi 

S

O

O  

-CH2CH2Cl 70 72 250-252 C12H13ClN2O3S 
(M-C) 

 

2960(γC-H), 
1718(γC=O) 
1667(γCONH) 

-- 1.40 (3H, t, J = 7.3, 
CH3), 2.55 ( 3H, s, 
CH3), 2.94 (3H, s, 
CH3), 4.36 (2H, 
quartlet, J = 7.1, 
CH2); 10.95 (1H, s, 
NH) 

Vxxii 

S  

-CH2CH2Cl 55 83 156-158 C12H13ClN2OS 
(D) 

2920(γC-H), 
1661(γCONH) 

-- 1.77 (4H, s, 2 X 
CH2 at 6 and 7), 
2.30 (3H, s, CH3 at 
2), 2.70 (2H, s, CH2 
at 5), 2.83 (2H, s, 
CH2 at 8), 7.07 (br, 
s, 1H, NH at 3) 
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S. No. 

 

X Time of 
MWI 

Heating 
(Min) 

Yield 
(%) 

M.P. Mol. formula 
(Solv. of crystn.) 

IR (cm-1) 
(KBr) 

Mass 
(m/e) 

NMR (δppm) 
(CDCl3) 

Vxxiii 

 

-CH2CH2Cl 40 91 200-202 C10H9ClN2O 
(M-C) 

 

2979(γC-H), 
1665(γCONH), 
771(γC-Cl) 

-- 3.18 (2H, t, CH2, J 
= 6.3, 7.2), 4.06 
(2H, t, CH2 at 2, J 
= 6.3, 7.2), 7.44-
8.07 (4H, m, Ar-H). 

Vxxiv S

O
 

-CH2CH2Cl 75 63 260-262 C13H11ClN2O2S 
(E-C) 

2978(γC-H), 
1676(γCONH), 
736(γC-Cl) 

-- -- 

Vxxv 

S  

-CH3 40 80 97-99 C14H12N2OS 
(E-C) 

2898(γC-H), 
1667(γCONH) 

-- 2.39 (3H, s, CH3), 
2.47 (3H, s, CH3), 
7.04 (1H, s, H), 
7.16-7.48 (4H, m, 
Ar-H), 11.90 (1H, 
s, NH). 

Vxxvi 

S  

-CH3 55 70 102-104 C9H10N2OS 
(E-C) 

2918(γC-H), 
1665(γCONH) 

-- 2.37 (3H, s, CH3), 
2.46 (3H, s, CH3), 
2.51 (3H, s, CH3), 
12.04 (br, s, 1H, 
NH) 

Vxxvii 

S  

-CH3 45 77 235-237 C13H10N2OS 
(E-C) 

2998(γC-H), 
1667(γCONH) 

-- 3.36 (3H, s, CH3), 
7.31-7.50 (5H, m, 
Ar-H and 1H at 6), 
12.28 (1H, s, NH) 

Vxxviii 

S

O

O  

-CH3 30 99 278-280 C11H12N2O3S 
(E-C) 

2960(γC-H), 
1718(γC=O) 
1667(γCONH) 

-- 1.40 (3H, t, J = 7.3, 
CH3), 2.55 ( 3H, s, 
CH3), 2.94 (3H, s, 
CH3), 4.36 (2H, 
quartlet, J = 7.1, 
CH2), 10.95 (1H, s, 
NH) 
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S. No. 

 

X Time of 
MWI 

Heating 
(Min) 

Yield 
(%) 

M.P. Mol. formula 
(Solv. of crystn.) 

IR (cm-1) 
(KBr) 

Mass 
(m/e) 

NMR (δppm) 
(CDCl3) 

Vxxix 

S  

-CH3 30 91 155-158 C11H12N2S 
(D) 

2920(γC-H), 
1661(γCONH) 

-- 1.77 (4H, s, 2 X 
CH2 at 6 and 7), 
2.30 (3H, s, CH3 at 
2), 2.70 (2H, s, CH2 
at 5), 2.83 (2H, s, 
CH2 at 8), 7.07 (br, 
s, 1H, NH at 3) 

Vxxx 

 

-CH3 40 71 237-239 C9H8N2O 
(E-C) 

2918(γC-H), 
1666(γCONH) 

-- 2.50 (2H, s, CH3), 
7.38-7.74 (4H, m, 
Ar-H), 12.13 (1H, 
br, s, NH) 
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4.3 Synthesis of condensed 4-chloro-2-substitutedpyrimidines using MWI 

Irradiation  

Heterocycles and especially pyrimidines and condensed pyrimidines are potentially 

bioactive compounds. The halogeno heterocycles have wide synthetic applicability, as 

important intermediates of metatheses. These halogeno substituents are mostly active 

towards nucleophillic displacements akin to those of aliphatic halogeno compounds or 

halogeno of nitro substituted aromatic compounds. 

 

The chloro derivatives of various heterocycles are most widely employed compared to 

the corresponding bromo or iodo derivatives as there is not much difference in their 

reactivity and they are easily accessible. 

 

Though, there are many reported methods for chlorination of heterocycles 

conventionally1-3 there are only a few reports on MWI assisted chlorination of 

heterocycles. Some of them involve side chain chlorination and some involve ring 

chlorination.4 To the best of our knowledge there are just two reports5,6 on the 

chlorination of 4-hydroxypyrimidines to 4-chloropyrimidines. Thus, it was decided to use 

MWI assisted methodology for the conversion of condensed-4-hydroxypyrimidines to 

condensed-4-chloropyrimidines, which is one pot, solvent free, facile, eco-friendly and 

highly productive as well (Scheme 2). 
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N

NH

O

N

NH

O

Cl

N

NH

O

Cl

=

S

R1

R2

MeO

MeO
N

N

O

, , ,

R1, R2 = -(CH2)4-; R1, R2 = CH3; R1 = 4-CH3-C6H4, R2 = H;
R1 = CH3, R2 = COOC2H5; R1 = C6H5,  R2 = H.

Scheme 2

N

N

Cl

Cl

POCl3, MWI

POCl3, MWI

N

N

Cl

POCl3, MWI

N

N

Cl

Cl

SN

,

S

OCH3

,

Vi-xvii
VIi-xiii

Vxviii-xxiv
VIxiv-xvii

VIxviii-xxiiVxxv-xxx

where,

 

Conventionally, the chlorination of the above type of condensed 2-substituted-4-

hydroxypyrimidines involves refluxing with excess of POCl3 or PCl3 alone or in 

combination with excess of PCl5. Use of catalytic amount of 2o amines or DMAP is also 

well known. The reaction time required generally ranges on an average from 2 to 12 hrs. 

The work up of the reaction mixture involves, removal of excess of chlorinating agent 

under reduced pressure almost to the last traces and neutralization of the HCl and H3PO4 

formed. This involves excess of water which may sometimes render the chlorination 

product partially soluble in it and may require extraction of products using solvents like 

methylene dichloride. The neutralization needs to be under ice cold conditions to avoid 

the decomposition or the conversion of condensed-4-chloropyrimidines back to 

condensed-4-hydroxypyrimidines. 
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Herein, we are reporting remarkable improvisation over the conventional methodology 

wherein we have mainly circumvented, 

 

I. Prolonged reaction time from 2-12 hrs to just few minutes,  

II.  Usage of excess of chlorinating reagent required to form a homogenous reaction 

mixture (just 2-3 times excess of volumes of starting material).  

 

Further, the reaction is conducted under very mild conditions (80W). Usage of minimal 

quantity of the chlorinating agent helps in very quick and simpler workup like pouring 

the reaction mixture over crushed ice and using of minimum quantity of neutralizing 

agent (pinch full of solid sodium bicarbonate). The resultant product, condensed 4-

chloro-2-substitutedpyrimidine, separates out in high yield (90-99%) and purity more 

than (>95% by TLC). Thus, this methodology offers a very simple rapid high yielding, 

eco-friendly process for the chlorination of condensed-4-hydroxypyrimidines to 

condensed-4-chloropyrimidines. 

 
Using this novel microwave assisted green synthesis, following 4-chloro 2-substituted 

condensed pyrimidine were synthesized. 
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Table 39: Physical data of condensed 4-chloro 2-substitutedpyrimidines synthesized using MWI irradiation (VIi-xxii) 

N

N

Cl

R  
S. No. 

 

R Time of 
MWI 

Heating 
(Min) 

Yield 
(%) 

M.P. Mol. formula 
(Solv. of crystn.) 

IR (cm-1) 
(KBr) 

Mass (m/e) NMR (δppm) 
(CDCl3) 

VI i 

S  

-CH2Cl 4 90 85-87 C14H10Cl2N2S 2979(γC-H), 
1458(γ), 
722(γC-Cl) 

-- 2.42 (3H, s, CH3), 4.82 
(2H, s, CH2Cl), 7.25-
7.51 (5H, m, Ar-H and 
H at 6) 

VI ii 

S  

-CH2Cl 5 92 116-118 C9H8Cl2N2S 2980(γC-H), 
677(γC-Cl) 

-- 2.45 (3H, s, CH3), 2.50 
(3H, s, CH3), 4.82 (2H, 
s, CH2Cl) 

VI iii 

S  
 

-CH2Cl 4 77 68-70 C13H8Cl2N2S 2932(γC-H), 
1510(γC-C) 

-- 4.82 (2H, s, CH2Cl), 
7.25-7.62 (4H, m, Ar-
H and 1H at 6) 

VI iv 

S

O

O  

-CH2Cl 6 75 135-137 C11H10Cl2N2O2S 1718(γC=O), 
1534(γC-C), 
762(γC-Cl) 

305(M+), 
289, 276, 
259, 241, 
232, 244,  
197 

1.43 (3H, t, CH2CH3, J 
= 7.2 & 6.9), 3.06 (3H, 
s, CH3), 4.42 (2H, q, 
CH2CH3, J = 6.9 & 
7.2), 4.78 (2H, s, 
CH2Cl) 
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S. No. 

 

R Time of 
MWI 

Heating 
(Min) 

Yield 
(%) 

M.P. Mol. formula 
(Solv. of crystn.) 

IR (cm-1) 
(KBr) 

Mass (m/e) NMR (δppm) 
(CDCl3) 

VI v 

S  

-CH2Cl 4 70 80-82 C11H10Cl2N2S 2941(γC-H), 
1447(γC-C), 
736(γC-Cl) 

273(M+), 
244, 239, 
209, 174,  
140 

1.99 (4H, s, CH2 at 6 & 
7), 2.57 (3H, s, CH2  at 
5), 2.95 (2H, s, CH2 at 
8), 4.80 (2H, s, CH2Cl) 

VI vi 

S  

-CH2Cl 5 85 75-77 C12H12Cl2N2S 2923(γC-H), 
1658(γC-C), 
755 (γC-Cl) 

-- -- 

VI vii 

S

O

 

-CH2Cl 6 90 122-124 C14H10Cl2N2OS 3001(γC-H), 
1608(γC-C), 
787(γC-Cl) 

-- 3.90 (3H, s, OCH3), 
4.92 (2H, s, CH2 at 2), 
6.95-7.55 (5H, m, Ar-
H & 1H at 6) 

VI viii 

S

Cl

 

-CH2Cl 4 70 175-177 C13H7Cl3N2S 3030(γC-H), 
1543(γC-C), 
787 (γC-Cl) 

-- 2.71 (3H, s, CH3), 4.90 
(2H, s, CH2Cl), 7.20-
7.57 (5H, m, Ar-H & 
1H at 6) 

VI ix 

N

N

O  

-CH2Cl 10 88 90-92 C11H6Cl2N4O 3046(γC-H), 
1608(γC-C), 
756(γC-Cl) 

-- -- 

VI x S

 

-CH2Cl 12 76 220-222 C11H6Cl2N2S 3040(γC-H), 
1547(γC-C), 
768(γC-Cl) 

-- -- 

VI xi S

O
 

-CH2Cl 8 80 180-182 C12H8Cl2N2OS 2980(γC-H), 
1534(γC-C), 
718(γC-Cl) 

-- -- 
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S. No. 

 

R Time of 
MWI 

Heating 
(Min) 

Yield 
(%) 

M.P. Mol. formula 
(Solv. of crystn.) 

IR (cm-1) 
(KBr) 

Mass (m/e) NMR (δppm) 
(CDCl3) 

VI xii 

N S  

-CH2Cl 10 86 116-118 C12H9Cl2N3S 2990(γC-H), 
1629(γC-C), 
730(γC-Cl) 

-- -- 

VI xiii 

O

O

 

-CH2Cl 6 90 162-164 C11H10Cl2N2O2 2919 (γC-H), 
1506(γC-C), 
743(γC-Cl) 

-- -- 

VI xiv 

S  

-CH2CH2Cl 5 81 160-162 C15H12Cl2N2S 2923(γC-H), 
1496(γC-C), 
794(γC-Cl) 

-- -- 

VI xv 

S  

-CH2CH2Cl 4 70 40-42 C10H10Cl2N2S 1478(γC-C), 
841(γC-Cl) 

-- -- 

VI xvi 

S  

-CH2CH2Cl 6 67 >300 C14H10Cl2N2S 2940 (γC-H), 
1553(γC-C), 
759(γC-Cl) 

-- -- 

VI xvii 

S  

-CH2CH2Cl 4 90 62-64 C12H12Cl2N2S 2939 (γC-H), 
1528(γC-C), 
735(γC-Cl) 

287(M+), 
286(M-1), 
253, 251, 
225, 209 

1.94 (4H, s, CH2 at 6 
& 7), 2.92 (2H, s, CH2 

at 5), 3.05 (2H, s, CH2 

at 8), 3.42 (2H, t, 
CH2CH2Cl, J = 6.9 & 
7.1), 4.05 (2H, t, 
CH2CH2Cl, J = 6.9 & 
7.1) 
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S. No. 

 

R Time of 
MWI 

Heating 
(Min) 

Yield 
(%) 

M.P. Mol. formula 
(Solv. of crystn.) 

IR (cm-1) 
(KBr) 

Mass (m/e) NMR (δppm) 
(CDCl3) 

VI xviii 

S  

-CH3 3 65 97-99 C14H11ClN2S 1553(γC-C), 
791(γC-Cl) 

-- 2.47 (3H, s, CH3), 4.82 
(2H, s, CH2 at 2), 7.18-
7.50 (5H,  m, 4-Ar-H 
and 1H at 6) 

VI xix 

S  

-CH3 4 90 102-104 C9H9ClN2S 1560(γC-C), 
841(γC-Cl) 

-- -- 

VI xx 

S  

-CH3 6 90 235-237 C13H9ClN2S 2932(γC-H), 
1510(γC-C), 
818(γC-Cl) 

-- -- 

VI xxi 

S

O

O  

-CH3 4 90 280-282 C11H11ClN2O2S 1718(γC-O), 
1534(γC-C) 

-- 2.43 (3H, t, 
CH3CH2COO, J = 6.9 
& 7.1), 3.05 (3H, s, 
CH3 at 5), 4.35 (2H, q, 
CH3CH2COO, J = 6.9, 
7.2), 4.82 (2H, s, CH2 
at 2) 

VI xxii 

S  

-CH3 5 90 157-159 C11H11ClN2S 2939(γC-H), 
1413(γC=C) 

-- -- 
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4.4 Spectral Discussion: 

 

4.4.1. 2-Substituted condensed pyrimidin-4(3H)-ones 

The 2-chloromethylthienopyrimidine are colorless to buff white colored solid, with high 

melting points generally above 240oC. These compounds are soluble in mixture of 

chloroform and methanol and hot DMF and insoluble in methanol, hexane or ethanol. 

The 2-chloroethylthienopyrimidine and 2-methylthienopyrimidine are buff white to slight 

yellow coloured solids with gernally high melting point.  

 

Infra Red (IR) spectra  

IR spectra of 2-chloromethylthienopyrimidines, 2-chloroethylthienopyrimidine and 2-

methylthienopyrimidines exhibit multiple bands, of medium intensity around 3200-3100 

cm-1 due to asymmetric and symmetric N-H stretching vibrations. Intense absorption 

bands observed in all these spectras around 1680-1650 may be due to N-H deformation 

vibrations. The IR spectra of ethyl 2-substituted-3,4-dihydro-5-methyl-4-oxothieno[2,3-

d]pyrimidine-6-carboxylates exhibited a strong absorption band around 1730-1720 cm-1 

due to C=O stretching.  

 

The 1H NMR spectra 

The 1H NMR spectra of 2-chloromethylthienopyrimidines, 2-chloroethylthieno-

pyrimidine and 2-methylthienopyrimidine were taken in CDCl3. All the compounds 

showed characteristic peaks corresponding to the protons of different groups and 

functionalities in the molecules. The 2-methylene protons of the chloromethyl linkage 

appear as a singlet at around 4.4 to 4.6 ppm. Since this methylene group is attached to 

electronegative atom, the proton signal appear downfield then the normal position. In 2-

chloroethylpyrimidines, characteristic triplets were observed at 3 to 4 ppm. The 2-methyl 

protons were observed above 2 ppm in the spectra due to presence of two nitrogen atoms 

of the pyrimidine ring system. The NH proton present in all the compounds at the 3 

position of the pyrimidine ring is observed as a singlet between 10 to 13 ppm. The 

aromatic protons were observed as a multiplet at around 7-8 ppm.   
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The Mass spectra  

The fragmentation pattern of the synthesized compounds 2-chloromethylthieno-

pyrimidines, under electron impact ionization has been studied. Many prominent 

fragment ion peaks were revealed in the mass spectra of these compounds. The mass 

spectrum of compound Vxvi showed the molecular ion (M+.) peak (a) corresponding to 

the molecular weight and (M+2) due to presence of 37Cl isotope. The major mode of 

fragmentation is loss of chloride ion from the molecular ion (a) to give daughter ion (d) 

m/e 244. The daughter ion (d) loses neutral CO molecule to give fragment (e) at m/e 216. 

The daughter ion (d) also loses neutral HNCO fragment to give fragment (f) at m/e 202. 

The molecular ion (a) also loses neutral CO and CH2Cl radical to give daughter ion (b) 

m/e 251 and (c) m/e 230, respectively. The fragmentation pattern of the compound Vxvi 

is given in the Scheme 3.   

N S

NH

N

Cl

O

a, M+. = m/e 279, M+2 = m/e 281

N S

NH

N

O

d, m/e 244

-Cl
.

N S

NH

N

O

c, m/e 230

-CH2Cl
.

N S

NH

N

e, m/e 216

-CO

N S

N

f, m/e 202

Scheme-3

Vxvia

-HNCO

N S

NH

N

Cl
-CO

b, m/e 251

+.

+.

,
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The mass spectrum of compound Vxvii showed the molecular ion (M+.) peak (a), m/e 

254, is corresponding to the molecular weight of the compound. The major mode of 

fragmentation is loss of chloride ion from the molecular ion (a) to give daughter ion (b) 

m/e 219. The second daughter ion (c) m/e 239 was obtained by the loss of methyl radical 

from the molecular ion (a). Alternatively, a neutral ethyl molecule is ejected out from the 

molecular ion to yield the fragment (d) m/e 225. This further loses CH3Cl as a neutral 

molecule to afford fragment ion (e) at m/e 175. The fragmentation pattern of the 

compound Vxvii is given in the Scheme 4.   

 

N

NH

O

O

O

Cl
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N
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O

O

O

-Cl
.

N
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O
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N
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O

O

Cl
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N
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O

O

O

-
.
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+.
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Specimen IR spectra of some 2-chloromethylthienopyrimidines  

1. IR spectrum of 2-(chloromethyl)-5-(4-methylphenyl)thieno[2,3-d]pyrimidin-4(3H)-one 

(Vi) 

 

IR (KBr) cm-1: 3438, (γNH), 2919(γC-H), 1650(γC=O), 712(γC-Cl) 

 

2. IR spectrum of 6-chloromethyl-2,4-dimethyl-7H-9-thia-1,5,7-triaza-fluoren-8-one (Vxvi) 

 

IR (KBr) cm-1: 3443, 3338 (γNH), 2946(γC-H), 1672(γCONH), 760(γC-Cl). 

S
N

NH

O

Cl

C14H11ClN2OS
Mol. Wt.: 290.77

S

N

N

NH

O

Cl

C12H10ClN3OS
Mol. Wt.: 279.75
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Specimen 1H NMR spectra of some 2-chloromethylthienopyrimidines 

3. 1H NMR spectrum of 2-(chloromethyl)-5-(4-methylphenyl)thieno[2,3-d]-pyrimidin-

4(3H)-one (Vi) 

 
1H NMR (CDCl3)δppm: 2.39 (3H, s, CH3), 4.53 (2H, s, CH2), 7.13 (1H, s, CH), 7.19-7.46 

(4H, m, Ar-H), 10.43 (1H,s, NH). 

Specimen Mass spectra of some 2-chloromethylthienopyrimidines 

4. Mass spectrum of 6-chloromethyl-2,4-dimethyl-7H-9-thia-1,5,7-triaza-fluoren-8-one 
(Vxvi) 

 

MS m/e: 281(M+1), 279(M+), 244, 216. 

S
N

NH

O

Cl

C14H11ClN2OS
Mol. Wt.: 290.77

N S

NH

N

O

Cl

C12H10ClN3OS
Mol. Wt.: 279.75
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Specimen IR spectra of some 2-chloroethylthienopyrimidine  

5. IR spectrum of 2-(2-chloroethyl)-5-(4-methylphenyl)thieno[2,3-d]pyrimidin-4(3H)-one 
(Vxviii)  

 
IR (KBr) cm-1:  2837(γC-H), 1672(γCONH), 762(γC-Cl) 
 

Specimen IR spectra of some 2-chloroethylthienopyrimidine  

6. 1H NMR spectrum of 2-(2-chloroethyl)-5-(4-methylphenyl)thieno[2,3-d]-pyrimidin-

4(3H)-one (Vxviii) 

 

S
N

NH

O

Cl

C15H13ClN2OS
Mol. Wt.: 304.79

S
N

NH

O

Cl

C15H13ClN2OS
Mol. Wt.: 304.79
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1H NMR (CDCl3)δppm: 2.40 (3H, s, CH3), 3.06 (2H, t, J = 7, CH2), 3.87 (2H, t, J = 7, 

CH2), 7.06 (1H, s, CH), 7.15-7.45 (4H, m, Ar-H), 12.99 (1H, s, 

NH). 

Specimen IR spectra of some 2-methyl condensed pyrimidine  

7. IR spectrum of 2-methylquinazolin-4(3H)-one (Vxxx)  

 
IR (KBr) cm-1: 2918(γC-H), 1666(γCONH). 

Specimen 1H NMR spectra of some 2-methylthienopyrimidine 

 

8. 1H NMR spectrum of 2-methylquinazolin-4(3H)-one (Vxxx) 

 

N

NH

O

C9H8N2O
Mol. Wt.: 160.17

N

NH

O

C9H8N2O
Mol. Wt.: 160.17
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1H NMR (CDCl3)δppm: 2.50 (2H, s, CH3,), 7.38-7.74 (4H, m, Ar-H), 12.13 (1H, br, s, 
NH). 

 

4.4.2. Condensed 4-chloro-2-substitutedpyrimidines 

The condensed 4-chloro-2-substitutedpyrimidines are brown or slightly dark colored  

solid, with low melting points generally below 200oC. These compounds are soluble in 

chloroform and insoluble in ethanol, methanol or hexane.  

 

Infra Red (IR) spectra  

IR spectra of 4-chloro-2-chloromethylthienopyrimidines, 4-chloro-2-chloroethylthieno-

pyrimidine and 4-chloro-2-methylthienopyrimidine did not exhibits bands due to 

asymmetric and symmetric N-H stretching vibrations along with absence of absorption 

bands around 1680-1650 due to N-H deformation vibrations. The IR spectra of ethyl 2-

substituted-3,4-dihydro-5-methyl-4-oxothieno[2,3-d]pyrimidine-6-carboxylates exhibited 

a strong absorption band around 1730-1720 cm-1 due to C=O stretching.  

 

The 1H NMR spectra 

The 1H NMR spectra of 4-chloro-2-chloromethylthienopyrimidines, 4-chloro-2-

chloroethylthienopyrimidine and 4-chloro-2-methylthienopyrimidine were taken in 

CDCl3. All the compounds showed characteristic peaks corresponding to the protons of 

different groups and functionalities in the molecules. The 2-methylene protons of the 

chloromethyl linkage appear as a singlet at around 4.4 to 4.6 ppm. Since this methylene 

group is attached to electronegative atom, the proton signal appear downfield then the 

normal position. In 2-chloroethylpyrimidines, characteristic triplets were observed at 3 to 

4 ppm. The 2-methyl protons were observed above 2 ppm in the spectra due to presence 

of two nitrogen atoms of the pyrimidine ring system. The aromatic protons were observed 

as a multiplet at around 7-8 ppm.   

 

The Mass spectra  

The fragmentation pattern of the synthesized compounds (4-chloro-2-chloromethyl-

thienopyrimidines), under electron impact ionization has also been studied. Many 

prominent fragment ion peaks are revealed in the mass spectra of these compounds. The 
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mass spectrum of compound, VI iv showing the molecular ion (a) at m/e 304, is 

corresponding to its molecular weight. The major mode of fragmentation is loss of ethyl 

fragment from the molecular ion (a) to give the daughter ion (b) m/e 276.  The molecular 

ion (a) also loses 5-methyl group to give second daughter ion (c), m/e 289. The molecular 

ion (a) loses a neutral molecule of ethanol to give a third daughter ion (d) m/e 259. The 

fragment (d) loses neutral molecule of CO to give fragment (e) m/e 232, which further 

ejects one of the chloride ion to give fragment (f) m/e 195. The fragmentation pattern of 

the compound VI iv, is given in the Scheme 5.  
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The mass spectrum of compound, VI v showing the molecular ion (a) at m/e 273 and is 

corresponding to its molecular weight. The major mode of fragmentation is loss of ethyl 

fragment from the molecular ion (a) to give the daughter ion (c) m/e 244.  The daughter 
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ion (c) loses chloride ion to give the fragment (d) m/e 209. The molecular ion (a) also 

loses chloride ion to give second daughter ion (b) m/e 237. The fragmentation pattern of 

the compound VI v, is given in the Scheme 6. 
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VIv
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The mass spectrum of compound, VI xvii showing the molecular ion (a) at m/e 286 and is 

corresponding to its molecular weight. The major mode of fragmentation is loss of 

chloride ion from the molecular ion (a) to give the daughter ion (b) m/e 251.  The 

daughter ion (b) loses ethyl fragment either from cyclohexane ring or from the C2 of the 

pyrimidine ring to give fragment (c) and (d), m/e 223 respectively. The fragmentation 

pattern of the compound VI xvii, is given in the Scheme 7. 
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Specimen IR spectra of some 4-chloro-2-chloromethylthienopyrimidine 

9. IR Spectra of ethyl 4-chloro-2-(chloromethyl)-5-methylthieno[2,3-d]pyrimidine-6-

carboxylate (VI iv) 

 

IR (KBr) cm-1: 1718(γC=O), 1534(γC-C), 762(γC-Cl) 

 

10. IR Spectra of 4-chloro-2-(chloromethyl)-6,7-dimethoxyquinazoline (VI xiii) 

 

IR (KBr) cm-1: 2919 (γC-H), 1506(γC-C), 743(γC-Cl) 
 

N

N
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Specimen Mass spectra of some 4-chloro-2-chloromethylthienopyrimidines 

11. Mass spectrum of ethyl 4-chloro-2-(chloromethyl)-5-methylthieno[2,3-d]pyrimidine-

6-carboxylate (VI iv) 

 

MS  m/e : 305 (M+), 289, 276, 259, 241, 232, 244, 197.                   

Specimen IR spectra of some 4-chloro-2-(2-chloroethyl)-thienopyrimidines 

12. IR Spectra of 4-chloro-2-(2-chloroethyl)-5,6-dimethylthieno[2,3-d]pyrimidine (VI xv) 

 

IR (KBr) cm-1: 1478(γC-C), 841(γC-Cl). 
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Specimen 1H NMR  spectra of 4-chloro-2-(2-chloroethyl)-thienopyrimidines 

13. 1H NMR spectrum of 4-chloro-2-(2-chloroethyl)-5,6,7,8-tetrahydro-benzo-
[4,5]thieno[2,3-d]pyrimidine (VI xvii) 

 
1H NMR (CDCl3)δppm: 1.94 (4H, s, CH2 at 6 & 7), 2.92 (2H, s, CH2 at 5), 3.05 (2H, s, 

CH2 at 8), 3.42 (2H, 7, CH2CH2Cl, J = 6.9 & 7.1), 4.05 (2H, 7, 

CH2CH2Cl, J = 6.9 & 7.1). 

Specimen Mass spectra of 4-chloro-2-(2-chloroethyl)-thienopyrimidine. 

14. Mass spectrum of 4-chloro-2-(2-chloroethyl)-5,6,7,8-tetrahydro-benzo[4,5]-
thieno[2,3-d]pyrimidine (VI xvii) 
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MS m/e: 287(M+), 286(M-1), 253, 251, 225, 209. 
 

Specimen 1H NMR  spectra of 4-chloro-2-methylthienopyrimidines 

15. 1H NMR spectrum of ethyl 4-chloro-2,5-dimethylthieno[2,3-d]pyrimidine-6-

carboxylate (VI xxi) 

 
1H NMR (CDCl3)δppm: 1.43 (3H, t, CH3CH2COO, J = 6.9), 3.05 (3H, s, CH3 at 5), 4.35 

(2H, q, CH3CH2COO, J = 6.9, 7.2), 4.82 (2H, s, CH2 at 2). 
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4.5 MDR Reversal Activity of Condensed Pyrimidines synthesized: 

MDR reversal effects of condensed pyrimidines on MDR1-gene transfected mouse 

lymphoma cell line (l 5178 y) was carried out in the laboratory of  Prof. Joseph Molnar at 

Department of Medical Microbiology and Immunobiology, Faculty of Medicine, 

University of Szeged, Hungary. 

 

4.5.1 Assay for reversal of MDR in tumor cells7,8: 

The cells were adjusted to a density of 2×106/ml, resuspended in serum-free McCoy’s 5A 

medium and distributed in 0.5-ml aliquots into Eppendorf centrifuge tubes. The tested 

compounds were added at various concentrations in different volumes (2.0-20.0 µl) of the 

1.0-10.0 mg/ml stock solutions, and the samples were incubated for 10 min at room 

temperature. Next, 10 µl (5.2 µM final concentration) of the indicator rhodamine 123 was 

added to the samples and the cells were incubated for a further 20 min at 37°C, washed 

twice and resuspended in 0.5 ml PBS for analysis. The fluorescence of the cell population 

was measured with a Beckton Dickinson FAC Scan flow cytometer. Verapamil was used 

as a positive control in the rhodamine 123 exclusion experiments. The percentage mean 

fluorescence intensity was calculated for the treated MDR and parental cell lines as 

compared with the untreated cells. An activity ratio R was calculated via the following 

equation, on the basis of the measured fluorescence values: 

controlparentaltreatedparental

controlMDRtreatedMDR
R =  

The fluorescence activity ratio (FAR) is calculated based on the mean fluorescence 

intensities. That is ratio of FL-1 value of treated sample to that of the untreated sample. 

The ratio of parentral treated/parentral control is taken as 1, as the MDR efflux protein 

does not exist in them, therefore they cannot modify the uptake or efflux of drug.  
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Table-40. MDR reversal effects of newly synthesized compounds on mdr1-gene 

transfected mouse lymphoma cell line (l 5178 y) by flow cytometry 

S. No. Samples µM dye FSC SSC FL-1 FAR Peak 
Ch 

1. PAR - R123 458,30 172,15 941,45 - 865 

2. PAR - R123 459,37 173,16 970,00 - 1036 

3. MDR - R123 514,50 220,60 9,56 - 8 

MDR mean 484,91 213,55 7,79 - - 

4. Verapamil 21,99 R123 510,85 222,13 27,43 3,52 16 

5. Vi 

S N

NH

O

Cl

H3C

 

4 R123 522,12 212,17 9,18 1,24 9 

6. Vxviii 

S
N

NH

O

H3C

Cl  

4 R123 515,55 210,80 8,68 1,10 7 

7. Vxxv 
 

S N

NH

O

CH3

H3C

 

4 R123 522,05 215,01 7,58 1,02 6 

8. VI i 

S N

N

Cl

Cl

H3C

 

4 R123 511,71 215,04 7,70 1,12 7 

9. VI xiv 

S
N

N

Cl

H3C

Cl  

4 R123 485,09 217,45 20,75 2,66 14 

10. VI xviii 

S N

N

Cl

CH3

H3C

 

4 R123 491,21 216,08 11,29 1,44 7 
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11. Vii 
S

N

NH

O

Cl

H3C

H3C

 

4 R123 465,20 207,98 15,19 1,94 10 

12. Vxix 
S

N

NH

O
H3C

Cl

H3C

 

4 R123 467,70 223,54 10,96 1,40 7 

13. Vxxvi 
S N

NH

O

CH3

H3C

H3C

 

4 R123 490,30 201,94 38,41 4,93 24 

14. VI ii 
S

N

N

Cl

Cl

H3C

H3C

 

4 R123 446,37 199,20 19,99 2,56 12 

15. VI xv 
S

N

N

Cl
H3C

Cl

H3C

 

4 R123 476,95 213,90 28,83 3,79 18 

16. VI xix 
S N

N

Cl

CH3

H3C

H3C

 

4 R123 436,05 211,16 12,40 1,59 10 

17. Viii 

S N

NH

O

Cl

 

4 R123 452,91 212,10 10,28 1,31 10 

18. Vxx 

S
N

NH

O

Cl  

4 R123 428,75 201,21 10,30 1,32 10 

19. Vxxvii 

S N

NH

O

CH3  

4 R123 454,70 202,83 8,90 1,14 7 

20. VI iii 

S N

N

Cl

Cl

 

4 R123 433,05 188,24 8,44 1,08 6 

21. VI xvi 

S
N

N

Cl

Cl  

4 R123 466,70 201,41 8,62 1,10 7 

22. VI xx 

S N

N

Cl

CH3  

4 R123 444,29 204,16 7,35 0,94 5 

23. DMSO control 20 µL  R123 472,83 224,22 8,44 1,11 7 
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24. MDR - R123 425,32 256,50 8,05 - 7 

FAR: Fluorescence Activity Ratio 
 
Table-41. MDR reversal effects of newly synthesized compounds on mdr1-gene 

transfected mouse lymphoma cell line (l 5178 y) by flow cytometry 

 
S. 

No. Samples µM dye FSC SSC FL-1 FAR 
Peak 
Ch 

1. PAR - R123 509,50 196,92 953,39 - 956 

2. PAR - R123 517,57 201,82 979,59 - 1074 

3. MDR - R123 568,14 234,98 6,93 - 7 

MDR mean 571,32 227,55 8,42 - - 

4. Verapamil 21,99 R123 568,16 234,96 27,99 3,32 14 

5. Viv 
S N

NH

O

Cl

H3C

O

H3C

O  

4 R123 533,26 215,30 6,38 0,75 5 

6. Vxxi 
S

N

NH

O
H3C

ClO

O

H3C

 

4 R123 563,43 225,41 6,09 0,75 5 

7. Vxxviii 
S

N

NH

O

CH3

H3C

O

O

H3C

 

4 R123 559,72 226,45 6,79 0,80 6 

8. VI iv 
S N

N

Cl

Cl

H3C

O

H3C

O  

4 R123 564,25 231,19 7,25 0,86 7 

9. VI xxi 
S N

N

Cl

CH3

H3C

O

O

H3C

 

4 R123 561,81 216,36 7,67 0,91 8 

10. Vv 
S N

NH

O

Cl

 

4 R123 559,66 222,12 8,44 1,00 8 

11. Vxxii 
S N

NH

O

Cl  

4 R123 561,10 220,10 5,79 0,68 5 

12. Vxxix 
S

N

NH

O

CH3  

4 R123 550,09 219,91 8,40 0,99 8 

13. VI v 
S N

N

Cl

Cl

 

4 R123 526,11 222,50 7,05 0,94 8 
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14. VI xvii 
S

N

N

Cl

Cl  

4 R123 567,04 221,23 16,17 1,95 10 

15. VI xxii 
S

N

N

Cl

CH3  

4 R123 562,70 212,60 6,01 0,72 6 

16. Vvi 

N

NH

O

Cl

 

4 R123 568,09 221,80 6,78 0,80 6 

17. Vxxiii 

N

NH

O

Cl  

4 R123 571,58 220,31 6,39 0,75 6 

18. Vxxx 

N

NH

O

CH3  

4 R123 580,66 222,19 25,47 5,40 26 

19. Vxiii 
N

N

N

NH

O

O

Cl

 

4 R123 560,39 228,32 10,07 1,31 8 

20. VI ix 
N

N

N

N

O

Cl

Cl

 

4 R123 572,31 235,70 14,25 1,69 9 

21. Vxiv 

S

NH

N

O

Cl

 

4 R123 569,64 218,59 38,68 4,50 22 

22. VI x 

S

N

N

Cl

Cl

 

4 R123 560,60 239,91 21,67 2,57 12 

23. DMSO control 20 µL R123 586,10 216,24 6,29 0,77 4 

24. MDR - R123 570,51 229,73 6,19 - 5 

FAR: Fluorescence Activity Ratio 
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Table-42. MDR reversal effects of newly synthesized compounds on mdr1-gene 

transfected mouse lymphoma cell line (l 5178 y) by flow cytometry 

 
S. 

No. Samples µM dye FSC SSC FL-1 FAR Peak 
Ch 

1. PAR - R123 506,87 202,17 983,79 - 858 

2. PAR - R123 499,44 206,08 1232,14 - 1336 

3. MDR - R123 503,98 237,33 13,42 - 11 

MDR mean 481,13 221,05 11,75 - - 

4. Verapamil 21,99 R123 512,22 253,01 120,78 10,21 50 

5. Vxv 

S

NH

N

O

Cl
OCH3

 

4 R123 515,23 239,45 95,88 8,16 41 

6. VI xi 

S

N

N

Cl

Cl
OCH3

 

4 R123 504,37 223,27 83,29 7,11 35 

7. Vxxiv 
S

NH

N

O

OCH3

Cl

 

4 R123 543,46 220,40 74,58 6, 34 31 

8. Vxvi 
N

S N

NH

O

Cl

CH3

H3C

 

4 R123 510,49 223,91 14,87 1,26 7 

9. VI xii 
N

S N

N

Cl

Cl

CH3

H3C

 

4 R123 501,91 237,41 93,15 7,92 37 

10. Vxvii 

N

NH

O

Cl

H3CO

H3CO  

4 R123 498,39 220,06 80,55 6,80 34 

11. VI xiii 

N

N

Cl

Cl

H3CO

H3CO  

4 R123 489,47 227,03 85,44 7,27 35 

12. Vvii 

S

N

NH

O

Cl

 

4 R123 491,04 213,91 139,86 11,90 60 

13. Vx 

S

N

NH

O
Cl

N

 

4 R123 486,19 222,54 142,10 12, 09 61 
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14. Vxi 
S

N

NH

O

Cl
H3C

O

H3C

O  

4 R123 481,70 216,11 32,58 2,77 13 

15. Vxii 

S

N

NH

O

Cl

Br

 

4 R123 465,70 215,09 30,18 3,24 16 

16. Vviii 

S

N

NH

O

Cl

O

 

4 R123 428,23 212,63 87,98 87,98 37 

17. Vix 

S

N

H
NO

Cl

Cl

 

4 R123 472,45 211,30 56,84 4,83 24 

18. VI vi 

S

N

N

Cl

Cl

 

4 R123 468,92 223,64 129,43 11,01 55 

19. VI viii 

S

N

NCl

Cl

Cl

 

4 R123 483,27 210,21 80,18 6,82 34 

20. VI vii 

S

N

N

Cl

Cl

H3CO

 

4 R123 478,21 220,54 119,88 10,20 51 

23. DMSO control 20 µL R123 463,44 215,29 10,00 0,85 5 

24. MDR - R123 454,28 204,77 12,00 - 10 

FAR: Fluorescence Activity Ratio 
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4.5.2 Discussion: 

MDR reversal assay has gained importance in view of many cancerous cells developing 

multiple drug resistance (MDR) due to incorporation of MDR-1 gene coding of P-gp, a 

glycoprotein involved in MDR. The glycoprotein P-gp is driven by ATP and is 

responsible for efflux of drug from the cancerous cells leading to MDR. Therefore, MDR 

reversal agents are being exploited as potential anticancer agents.7,8 

 

Condensed pyrimidines synthesized in this part of the thesis were tested for MDR 

reversal activity on MDR -1 gene transfected cell line 15178 by flow cytometry. Total of 

52 compounds were tested for the MDR reversal activity. Details of the test protocol are 

given earlier. The tests were carried out in three sets with veerapamil as positive control.  

 

The great majority of the compounds were ineffective on the MDR reversal efflux pump 

activity. The majority of the compounds were identified and characterized in this group 

as ineffective compounds when tested in 4 micro mol conc. No direct cytotoxic effect 

was found at the above concentration.  

 

However, compounds 4-chloro-2-(2-chloroethyl)-5-p-tolylthieno[2,3-d]pyrimidine VI xiv, 

2,5,6-trimethylthieno[2,3-d]pyrimidin-4(3H)-one Vxxvi, 4-chloro-2-(2-chloroethyl)-5,6-

dimethylthieno[2,3-d]pyrimidine VI xv, 4-chloro-2-(2-chloroethyl)-5,6,7,8-tetrahydro-

benzo[4,5]thieno[2,3-d]pyrimidine VI v, 2-methylquinazolin-4(3H)-one Vxxx, 2-chloro-

methyl-3H-benzo[4,5]thieno[3,2-d]pyrimidin-4-one Vxiv,  9-methoxy-2-chloromethyl-

3H-benzo[4,5]thieno[3,2-d]pyrimidin-4-one Vxv, 2-chloromethyl-3,5,6,7,8,9-hexahydro-

10-thia-1,3-diaza-benzo[a]azulen-4-one Vvii, 7-benzyl-2-chloromethyl-5,6,7,8-tetra-

hydro-3H-9-thia-1,3,7-triaza-fluoren-4-one Vx, 4-chloro-2-chloromethyl-6,7,8,9-tetra-

hydro-5H-10-thia-1,3-diaza-benzo[a]azulene VI vi and 4-chloro-2-(chloromethyl)-5-(4-

methoxyphenyl)thieno[2,3-d]pyrimidine VI vii showed moderate activity which is 

exhibited by fluorescence activity ratio. None of the compounds showed cytotoxic effect 

in the above said concentration which is desirable. This means that the above stated 

compounds were moderately effective in reversal of MDR efflux pump activity. 
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5. Experimental  

All the chemicals used in the synthesis were of laboratory grade. The melting points were 

determined in open capillary on Veego (VMP-D) electronic apparatus and are 

uncorrected.  

 

The IR spectra of synthesized compounds were recorded on Perkin Elmer BX2 FT-IR 

spectrophotometer in potassium bromide discs.  
 

1H NMR spectra were recorded on Varian Mercury YH-300 FT-NMR spectrometer using 

TMS (tetramethyl silane) as an internal standard CDCl3 and DMSO-d6 as a solvent at 

University of Pune, Pune.  

 

Mass spectra were obtained on an Electron Impact Mass (GCMS-QP2010 spectrometer) 

70 eV ionizing beam and using direct insertion probe at Department of Chemistry, 

Saurashtra University, Rajkot. 

 

To monitor the reactions, as well as, to establish the identity and purity of reactants and 

products, thin layer chromatography was performed on precoated silica plates (Merck 

Silicagel F254) using hexane-ethyl acetate-glacial acetic acid, chloroform-methanol  as the 

solvent systems and the spots were visualized by exposure to iodine vapors or under Ultra 

Violet (UV) light at 254 nm and 360 nm. 

 

Microwave synthesizer (Questron Technologies Corp., Canada; model: Q-Pro M) having 

monomode open-vessel was used for the synthesis.  

 

5.1 Synthesis of chloroacetonitrile 

Choloroacetonitrile was synthesized as describe in the experimental procedure in the Part-

1. 

 

5.2 Synthesis of thiophene o-aminoesters and other cyclic o-aminoesters 

These starting materials were synthesized as per procedure described in the experimental 

part in the Part-1. 
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5.3 Synthesis of condensed 2-chloromethylpyrimidin-4(3H)-ones under Microwave 

Irradiation (MWI) (V i-xvii) 

 

1. Synthesis of 2-chloromethyl-5-(4-methylphenyl)thieno[2,3-d]pyrimidin-4(3H )-

one (Vi) 

A mixture of the ethyl 2-amino-4-(4-methylphenyl)thiophene-3-carboxylate (Ivii, 5.2 gm; 

0.02 mole), chloroacetonitrile (1.65 gm; 0.022 mole) and catalytic amount of HCl (0.5 

ml) was irradiated at 350W for 25 min in a microwave synthesizer. The progress of 

reaction was monitored using TLC at each 5 min intervals. The reaction mixture was 

allowed to cool to RT and poured on to ice-water mixture (50 ml). The resulting 

precipitated solid was filtered, washed with chilled water and dried. The crude product on 

recrystallization from methanol-chloroform mixture yielded the 2-chloromethyl-5-(4-

methylphenyl)thieno[2,3-d]pyrimidin-4(3H)-one (Vi).  

 

M.P. : 258-260oC (260-262oC)1; Yield: 85% 

Mol. Formula          : C14H11ClN2OS; Mol. Wt. 290.77 

IR (KBr) cm-1 : 3438, (γNH), 2919(γC-H), 1648(γC=O), 747(γC-Cl) 
1H NMR (CDCl3)δppm : 2.39 (3H, s, CH3), 4.53 (2H, s, CH2), 7.13 (1H, s, CH), 7.19-

7.46 (4H, m, Ar-H), 10.43 (1H,s, NH) 

 

2. Synthesis of 2-chloromethyl-5,6-dimethylthieno[2,3-d]pyrimidin-4(3H )-one (Vii) 

A mixture of the ethyl 2-amino-4,5-dimethylthiophene 3-carboxylate (I iv, 3.98 gm; 0.02 

mole), chloroacetonitrile (1.65 gm; 0.022 mole) and catalytic amount of HCl (0.5 ml) 

were reacted under microwave irradiation (30 min) as per procedure described for the 

compound Vi. The crude product on recrystallization from methanol-chloroform mixture 

yielded the 2-chloromethyl-5,6-dimethylthieno[2,3-d]pyrimidin-4(3H)-one (Vii). 

 

M.P. : 252-254oC (253-255oC)2; Yield: 92% 

Mol. Formula          : C9H9ClN2OS; Mol. Wt. 228.7 

IR (KBr) cm-1 : 2917 (γC-H), 1662(γC=O), 769(γC-Cl) 
1H NMR (CDCl3)δppm : 2.39 (3H, s, CH3), 2.47 (3H, s, CH3), 4.51 (2H, s, CH2), 10.03 

(1H, s, br, NH) 
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3. Synthesis of 2-chloromethyl-5-phenylthieno[2,3-d]pyrimidin-4(3H )-one (Viii) 

A mixture of ethyl 2-amino-4-phenylthiophene 3-carboxylate (Iv, 4.94 gm; 0.02 mole), 

chloroacetonitrile (1.65 gm; 0.022 mole) and catalytic amount of HCl (0.5 ml) were 

reacted under microwave irradiation (20 min) as per procedure described for the 

compound Vi. The crude product on recrystallization from methanol-chloroform mixture 

yielded the 2-chloromethyl-5-phenylthieno[2,3-d]pyrimidin-4(3H)-one (Viii). 

 

M.P. : 220-222oC (221-223oC)2; Yield: 75% 

Mol. Formula          : C13H9ClN2OS; Mol. Wt. 276.74 

IR (KBr) cm-1 : 2855(γC-H), 1660(γC=O), 748(γC-Cl) 
1H NMR (CDCl3)δppm : 4.58 (2H, s, CH2,), 7.31-7.52 (5H, m, Ar-H and 1H at 6 

position), 12.69 (1H, s, br, NH); 

 

4. Synthesis of ethyl 2-chloromethyl-3,4-dihydro-5-methyl-4-oxothieno[2,3-d]-

pyrimidine 6-carboxylate (Viv) 

A mixture of diethyl 5-amino-3-methylthiophene-2,4-dicarboxylate (I iii, 5.14 gm; 0.02 

mole), chloroacetonitrile (1.65 gm; 0.022 mole) and catalytic amount of HCl (0.5 ml) 

were reacted under microwave irradiation (27 min) as per procedure described for the 

compound Vi. The crude product on recrystallization from methanol-chloroform mixture 

yielded the ethyl 2-chloromethyl-3,4-dihydro-5-methyl-4-oxothieno[2,3-d]pyrimidine 6-

carboxylate (Viv). 

 

M.P. : 241-243oC (243-246oC)2; Yield: 90% 

Mol. Formula          : C11H11ClN2O3S; Mol. Wt. 286.73 

IR (KBr) cm-1 :  2864(γC-H), 1725(γC=O), 1670(γCONH), 763(γC-Cl) 
1H NMR (CDCl3)δppm : 1.41 (3H, t, J = 7, CH3), 2.95 (3H, s, CH3), 4.38 (2H, quartlet, J 

= 7, CH2), 4.57 (2H, s, CH2), 10.62 (1H, s, NH) 

 

5. Synthesis of 2-chloromethyl-5,6,7,8-tetrahydrobenzo(b)thieno[2,3-d]pyrimidin-

4(3H)-one (Vv)  

A mixture of ethyl 2-amino-4,5,6,7-tetrahydrobenzo[b]thiophene 3-carboxylate (I i, 4.5 

gm; 0.02 mole), chloroacetonitrile (1.65 gm; 0.022 mole) and catalytic amount of HCl 

(0.5 ml) were reacted under microwave irradiation  (10 min) as per procedure described 

for the compound Vi.  The crude product on recrystallization from methanol-chloroform 
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mixture yielded the 2-chloromethyl-5,6,7,8-tetrahydrobenzo(b)thieno[2,3-d]pyrimidin-

4(3H)-one (Vv).   

 

M.P. : 273-276oC (273-276oC)3; Yield: 86% 

Mol. Formula          : C11H11ClN2OS; Mol. Wt. 254.74 

IR (KBr) cm-1 : 2931(γC-H), 1663(γCONH), 754(γC-Cl) 
1H NMR (CDCl3)δppm : 1.86 (4H, s, CH2 at 6 and 7), 2.79 (2H, s, CH2 at 5), 3.02 (2H, s, 

CH2 at 8), 4.55 (2H, s, CH2), 10.65 (1H, s, br, NH) 

MS m/e : 255(M+), 221, 149. 

 

6. Synthesis of 2-chloromethylquinazolin-4(3H)-one (Vvi) 

A mixture of methyl anthranilate (3.0 gm; 0.02 mole), chloroacetonitrile (1.65 gm; 0.022 

mole) and catalytic amount of HCl (0.5 ml) were reacted under microwave irradiation (20 

min) as per procedure described for the compound Vi. The crude product on 

recrystallization from methanol-chloroform mixture yielded the 2-

chloromethylquinazolin-4(3H)-one (Vvi). 

 

M.P. : 257-258oC (257-258oC)4; Yield: 84% 

Mol. Formula          : C9H7ClN2O; Mol. Wt. 194.62 

IR (KBr) cm-1 : 2981(γC-H), 1697(γCONH), 776(γC-Cl) 
1H NMR(CDCl3)δppm : 4.53 (2H, s, CH2,), 7.49-7.82 (4H, m, Ar-H), 12.56 (1H, s, br, 

NH) 

 

7. Synthesis of 2-chloromethyl-3,5,6,7,8,9-hexahydro-10-thia-1,3-diazabenzo[a]-

azulen 4-one (Vvii) 

A mixture of ethyl 2-amino-5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophene 3-carboxylate 

(Ixi, 4.78 gm; 0.02 mole), chloroacetonitrile (1.65 gm; 0.022 mole) and catalytic amount 

of HCl (0.5 ml) were reacted under microwave irradiation (12 min) as per procedure 

described for the compound Vi. The crude product on recrystallization from methanol-

chloroform mixture yielded 2-chloromethyl-3,5,6,7,8,9-hexahydro-10-thia-1,3-diaza-

benzo[a]azulen-4-one (Vvii). 

 

M.P. : 188-190oC; Yield: 74% 

Mol. Formula : C12H13ClN2OS; Mol. Wt. 268.76 
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IR (KBr) cm-1 : 2925(γC-H), 1660(γCONH), 755(γC-Cl) 

 

8. Synthesis of 2-chloromethyl-5-(4-methoxyphenyl)thieno[2,3-d]pyrimidin-4(3H )-

one (Vviii) 

A mixture of ethyl 2-amino-4-(4-methoxyphenyl)thiophene-3-carboxylate (Ivi, 5.5 gm; 

0.02 mole), chloroacetonitrile (1.65 gm; 0.022 mole) and catalytic amount of HCl (0.5 

ml) were reacted under microwave irradiation (25 min) as per procedure described for the 

compound Vi. The crude product on recrystallization from methanol-chloroform mixture 

yielded 2-chloromethyl-5-(4-methoxyphenyl)thieno[2,3-d]pyrimidin-4(3H)-one (Vviii). 

 

M.P. : 205-207oC (208-210oC)2; Yield: 84% 

Mol. Formula          : C14H11ClN2O2S; Mol. Wt. 306.77 

IR (KBr) cm-1 : 2990(γC-H), 1680(γC=O), 746(γC-Cl) 
1H NMR (CDCl3)δppm : 3.85 (3H, s, OCH3), 4.48 (2H, s, CH2Cl), 6.94-7.54 (5H, m, 4H, 

Ar-H and 1H at 6), 12.02 (1H, s, NH). 

 

9. Synthesis of 2-chloromethyl-5-(4-chlorophenyl)thieno[2,3-d]pyrimidin-4(3H )-one 

(Vix) 

A mixture of ethyl 2-amino-4-(4-chlorophenyl)thiophene-3-carboxylate (I ix, 5.6 gm; 0.02 

mole), chloroacetonitrile (1.65 gm; 0.022 mole) and catalytic amount of HCl (0.5 ml) 

were reacted under microwave irradiation  (20 min) as per procedure described for the 

compound Vi. The crude product on recrystallization from methanol-chloroform mixture 

yielded 2-chloromethyl-5-(4-chlorophenyl)thieno[2,3-d]pyrimidin-4(3H)-one (Vix). 

 

M.P. : 233-234oC (229-231oC)5; Yield: 71% 

Mol. Formula          : C13H8Cl2N2OS; Mol. Wt. 311.19 

IR (KBr) cm-1 : 3107(γNH), 1649(γCONH), 756(γC-Cl) 
1H NMR (CDCl3)δppm : 4.54 (2H, s, CH2Cl), 7.23-7.57 (5H, m, 4H, Ar-H and 1H at 6), 

11.5 (1H, s, NH). 
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10. Synthesis of 7-benzyl-2-chloroethyl-5,6,7,8-tetrahydro-3H-pyrido-[4 ’,3’:4,5]-

thieno[2,3-d]pyrimidin-4-one (Vx) 

A mixture of ethyl 2-amino-6-benzyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-

carboxylate (Ixii, 6.32 gm; 0.02 mole), chloroacetonitrile (1.65 gm; 0.022 mole) and 

catalytic amount of HCl (0.5 ml) were reacted under microwave irradiation (15 min) as 

per procedure described for the compound Vi. The crude product on recrystallization 

from methanol-chloroform mixture yielded 7-benzyl-2-chloroethyl-5,6,7,8-tetrahydro-

3H-pyrido-[4’,3’:4,5]thieno[2,3-d]pyrimidine-4-one (Vx). 

 

M.P. : 232-234oC (232-234oC)3; Yield: 78% 

Mol. Formula : C17H16ClN3OS; Mol. Wt. 345.85 

IR (KBr) cm-1 : 3016(γC-H), 1669(γCONH), 743(γC-Cl) 

 

11. Synthesis of methyl 2-chloromethyl-3,4-dihydro-5-methyl-4-oxothieno[2,3-d] 

pyrimidine 6-carboxylate (Vxi) 

A mixture of 4-ethyl 2-methyl 5-amino-3-methylthiophene-2,4-dicarboxylate (I ii, 4.8 gm; 

0.02 mole), chloroacetonitrile (1.65 gm; 0.022 mole) and catalytic amount of HCl (0.5 

ml) were reacted under microwave irradiation (30 min) as per procedure described for the 

compound Vi.  The crude product on recrystallization from methanol-chloroform mixture 

yielded methyl 2-chloromethyl-3,4-dihydro-5-methyl-4-oxothieno[2,3-d]pyrimidine 6-

carboxylate (Vxi). 

 

M.P. : 250-254oC; Yield: 86% 

Mol. Formula : C10H9ClN2O3S; Mol. Wt. 272.71 

IR (KBr) cm-1 : 2863(γC-H), 1724(γC=O), 1664(γCONH), 763(γC-Cl) 

 

12. Synthesis of 5-(4-bromophenyl)-2-chloromethylthieno[2,3-d]pyrimidin-4(3H )-one 

(Vxii) 

A mixture of ethyl 2-amino-4-(4-bromophenyl)thiophene-3-carboxylate (Iviii, 6.5 gm; 

0.02 mole), chloroacetonitrile (1.65 gm; 0.022 mole) and catalytic amount of HCl (0.5 

ml) were reacted under microwave irradiation (20 min) as per procedure described for the 

compound Vi.  The crude product on recrystallization from methanol-chloroform mixture 

yielded 5-(4-bromophenyl)-2-chloromethylthieno[2,3-d]pyrimidin-4(3H)-one (Vxii). 
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M.P. : 247-249oC; Yield: 68% 

Mol. Formula : C13H8BrClN2OS; Mol. Wt. 355.64 

IR (KBr) cm-1 : 2980(γC-H), 1655(γC=O), 775(γC-Cl) 

 

13.    Synthesis of 2-chloromethyl-4H-[1,2,4]triazino[6,1-b]quinazolin-4,10-dione 

(Vxiii) 

A mixture of 3-amino-2-carbethoxyquinazolin-4-one (Ixiv, 4.66 gm; 0.02 mole), 

chloroacetonitrile (1.65 gm; 0.022 mole) and catalytic amount of HCl (0.5 ml) were 

reacted under microwave irradiation (30 min) as per procedure described for the 

compound Vi. The crude product on recrystallization from methanol-chloroform mixture 

yielded the 2-chloromethyl-4H-[1,2,4]triazino[6,1-b]quinazolin-4,10-dione (Vxiii). 

 

M.P. : 240-243oC (242-244oC)6; Yield: 60%  

Mol. Formula : C11H7Cl N4O2; Mol. Wt. 262.2   

IR (KBr) cm-1 : 2896(γC-H), 1686(γCONH), 778(γC-Cl). 

 

14. Synthesis of 2-chloromethyl-3H-benzo[4,5]thieno[3,2-d]pyrimidin-4-one (V xiv) 

A mixture of ethyl 3-aminobenzo[b]thiophene 2-carboxylate (Ixviii, 4.42 gm; 0.02 mole), 

chloroacetonitrile (1.65 gm; 0.022 mole) and catalytic amount of HCl (0.5 ml) were 

reacted under microwave irradiation (45 min) as per procedure described for the 

compound Vi. The crude product on recrystallization from methanol-chloroform mixture 

yielded the 2-chloromethyl-3H-benzo[4,5]thieno[3,2-d]pyrimidin-4-one (Vxiv). 

 

M.P. : 150-152oC; Yield: 62% 

Mol. Formula : C11H7ClN2OS; Mol. Wt. 250.7 

IR (KBr) cm-1 : 2980(γC-H), 1680(γCONH), 740(γC-Cl). 

 

15. Synthesis of 2-chloromethyl-9-methoxy-3H-benzo[4,5]thieno[3,2-d]pyrimidin-4-

one (Vxv) 

A mixture of ethyl 3-amino-4-methoxybenzo[b]thiophene 2-carboxylate (Ixvi, 5.02 gm; 

0.02 mole), chloroacetonitrile (1.65 gm; 0.022 mole) and catalytic amount of HCl (0.5 

ml) were reacted under microwave irradiation (40 min) as per procedure described for the 

compound Vi.  The crude product on recrystallization from methanol-chloroform mixture 
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yielded the 2-chloromethyl-9-methoxy-3H-benzo[4,5]thieno[3,2-d]pyrimidin-4-one 

(Vxv). 

 

M.P. : 265-267oC; Yield: 83% 

Mol. Formula : C12H9Cl N2O2S; Mol. Wt. 280.7               

IR(KBr)cm-1 : 2978(γC-H), 1676(γCONH), 736(γC-Cl) 

 

16. Synthesis of 2-chloromethyl-7,9-dimethylpyrido[3’, 2’:4, 5]thieno[3,2-d]-

pyrimidin-4(3H )-one (Vxvi) 

A mixture of 3-amino-2-carbethoxy-4,6-dimethylthieno[2,3-b]pyridine (Ixiii, 5.02 gm; 

0.02 mol), chloroacetonitrile (1.65 gm; 0.022 mol)  and catalytic amount of conc. HCl 

(0.5 ml) were reacted under microwave irradiation (50 min) as per procedure described 

for the compound Vi. The crude product on recrystallization from methanol-chloroform 

mixture yielded the 2-chloromethyl-7,9-dimethylpyrido[3’,2’:4,5]thieno[3,2-d]-

pyrimidine-4(3H)-one (Vxvi). 

  

M.P. : 275-277oC (273-275oC)7; Yield: 76% 

Mol. Formula : C12H10Cl N3OS; Mol. Wt. 279.7               

IR (KBr) cm-1 : 3013(γC-H), 1675(γCONH), 746(γC-Cl) 

MS m/e : 281(M+1), 279(M+), 244, 216. 

 

17. Synthesis of 2-chloromethyl-6,7-dimethoxyquinazolin-4(3H)-one (Vxvii) 

A mixture of methyl-2-amino-4,5-dimethoxybenzoate (Ixv, 4.22 gm; 0.02 mole), 

chloroacetonitrile (1.65 gm; 0.022 mole) and catalytic amount of HCl (0.5 ml) were 

reacted under microwave irradiation (40 min) as per procedure described for the 

compound Vi. The crude product on recrystallization from methanol-chloroform mixture 

yielded the 2-chloromethyl-6, 7-dimethoxyquinazolin-4(3H)-one (Vxvii). 

 

M.P. : 240-245oC (240-245oC)8; Yield: 70% 

Mol. Formula : C11H11Cl N2O3; Mol Wt. 254.6 

IR (KBr) cm-1  : 3012(γArH), 2888(γCH2), 1666(γCONH), 754(γC-Cl)  

MS m/e : 254(M+), 239, 219 
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5.4 Synthesis of condensed 2-chloroethylpyrimidin-4(3H)-ones under Microwave 

Irradiations (MWI) (V xviii-xxiv) 

 

18. Synthesis of 2-(2-chloroethyl)-5-(4-methylphenyl)thieno[2,3-d]pyrimidin-4(3H )-

one (Vxviii) 

A mixture of ethyl 2-amino-4-(4-methylphenyl)thiophene-3-carboxylate (Ivii, 5.2 gm; 

0.02 mole), acrylonitrile (1.21 gm; 0.022 mole) and catalytic amount of HCl (0.5 ml) 

were reacted under microwave irradiation (35 min) as per procedure described for the 

compound Vi. The crude product on recrystallization from methanol-chloroform mixture 

yielded 2-(2-chloroethyl)-5-(4-methylphenyl)thieno[2,3-d]pyrimidin-4(3H)-one (Vxviii). 

 

M.P. : 166-168oC (168-170oC)9; Yield: 81% 

Mol. Formula          : C15H13ClN2OS; Mol. Wt. 304.79 

IR (KBr) cm-1 :  2837(γC-H), 1672(γCONH), 762(γC-Cl) 
1H NMR (CDCl3)δppm : 2.40 (3H, s, CH3), 3.06 (2H, t, J = 7, CH2), 3.87 (2H, t, J = 7, 

CH2), 7.06 (1H, s, CH), 7.15-7.45 (4H, m, Ar-H), 12.99 (1H, s, 

NH). 

 

19. Synthesis of 2-(2-chloroethyl)-5,6-dimethylthieno[2,3-d]pyrimidin-4(3H )-one 

(Vxix) 

A mixture of ethyl 2-amino-4,5-dimethylthiophene-3-carboxylate (I iv, 3.9 gm; 0.02 

mole), acrylonitrile (1.21 gm; 0.022 mole) and catalytic amount of HCl (0.5 ml) were 

reacted under microwave irradiation (60 min) as per procedure described for the 

compound Vi. The crude product on recrystallization from methanol-chloroform mixture 

yielded 2-(2-chloro-ethyl)-5,6-dimethylthieno[2,3-d]pyrimidin-4(3H)-one (Vxix). 

 

M.P. : 200-202oC (200-202oC)9; Yield: 86% 

Mol. Formula          : C10H11ClN2OS; Mol. Wt. 242.73 

IR (KBr) cm-1 : 2922(γC-H), 1666(γCONH), 758(γC-Cl) 
1H NMR (CDCl3)δppm : 2.38 (3H, s, CH3), 2.47 (3H, s, CH3), 3.19 (2H, t, CH2, J = 7.5), 

3.97 (2H, t, CH2, J = 7.2), 12.34 (1H, s, br, NH). 
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20. Synthesis of 2-(2-chloroethyl)-5-phenylthieno[2,3-d]pyrimidin-4(3H )-one (Vxx) 

A mixture of ethyl 2-amino-4-phenylthiophene-3-carboxylate (Iv, 4.9 gm; 0.02 mole), 

acrylonitrile (1.21 gm; 0.022 mole) and catalytic amount of HCl (0.5 ml) were reacted 

under microwave irradiation (45 min) as per procedure described for the compound Vi. 

The crude product on recrystallization from methanol-chloroform mixture yielded 2-(2-

chloroethyl)-5-phenylthieno[2,3-d]pyrimidin-4(3H)-one (Vxx). 

 

M.P. : 268-270oC (268-270oC)9; Yield: 90% 

Mol. Formula          : C14H11ClN2OS; Mol. Wt. 290.77 

IR (KBr) cm-1 : 2848(γC-H), 1670(γC=O), 748(γC-Cl) 
1H NMR (CDCl3)δppm : 3.14 (2H, t, CH2, J = 7.2), 4.02 (2H, t, CH2, J = 7.5), 7.30-7.50 

(6H, m, 5H  Ar-H and 1H at 6 position), 12.40 (1H, s, br, NH). 

 

21. Synthesis of ethyl 2-(2-chloroethyl)-3,4-dihydro-5-methyl-4-oxothieno[2,3-d]-

pyrimidine 6-carboxylate (Vxxi) 

A mixture of diethyl 5-amino-3-methylthiophene-2,4-dicarboxylate (I iii, 5.1 gm; 0.02 

mole), acrylonitrile (1.21 gm; 0.022 mole) and catalytic amount of HCl (0.5 ml) were 

reacted under microwave irradiation (70 min) as per procedure described for the 

compound Vi. The crude product on recrystallization from methanol-chloroform mixture 

yielded ethyl 2-(2-chloroethyl)-3,4-dihydro-5-methyl-4-oxothieno[2,3-d]pyrimidine 6-

carboxylate (Vxxi). 

 

M.P. : 250-252oC (250-252oC)9; Yield: 72% 

Mol. Formula          : C12H13ClN2O3S; Mol. Wt. 300.76 

IR (KBr) cm-1 : 2865(γC-H), 1719(γC=O), 1670(γCONH), 762(γC-Cl) 
1H NMR (CDCl3)δppm : 1.41 (3H, t, J = 7.3, CH3), 2.9 (3H, s, CH3), 3.24 (2H, t, J = 6.7, 

CH2), 4.29 (2H, t, J = 7.3, CH2) , 4.3(2H, q, J = 7.1, CH2), 

12.30 (1H, s, NH).   

 

22. Synthesis of 2-(2-chloroethyl)-5,6,7,8-tetrahydro-3H-benzo[4,5]thieno[2,3-d]-

pyrimidin-4-one (Vxxii) 

A mixture of ethyl 2-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate (I i, 5.1 

gm; 0.02 mole), acrylonitrile (1.21 gm; 0.022 mole) and catalytic amount of HCl (0.5 ml) 
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were reacted under microwave irradiation (55 min) as per procedure described for the 

compound Vi. The crude product on recrystallization from methanol-chloroform mixture 

yielded 2-(2-chloroethyl)-5,6,7,8-tetrahydro-3H-benzo[4,5]thieno[2,3-d]pyrimidin-4-one 

(Vxxii). 

 

M.P. : 156-158oC (156-158oC)9; Yield: 83% 

Mol. Formula          : C12H13ClN2OS; Mol. Wt. 268.76 

IR (KBr) cm-1 : 2935(γC-H), 1665(γCONH), 665(γC-Cl). 
1H NMR (CDCl3)δppm : 1.90 (4H, s, CH2 at 6 and 7), 2.81 (2H, s, CH2 at 5), 3.02 (2H, s, 

CH2 at 8), 3.23 (2H, t, CH2, J = 7.0), 4.02 (2H, t, CH2, J = 7.2), 

11.90 (1H, s, br, NH) 

 

23. Synthesis of 2-(2-chloroethyl)quinazolin-4(3H)-one (Vxxiii) 

A mixture of methylanthranilate (3.2 gm; 0.02 mole), acrylonitrile (1.21 gm; 0.022 mole) 

and catalytic amount of HCl (0.5 ml) were reacted under microwave irradiation (40 min) 

as per procedure described for the compound Vi. The crude product on recrystallization 

from methanol-chloroform mixture yielded 2-(2-chloroethyl)quinazolin-4(3H)-one 

(Vxxiii). 

 

M.P. : 200-202oC; Yield: 91% 

Mol. Formula          : C10H9ClN2O; Mol. Wt. 208.64 

IR (KBr) cm-1 : 2979(γC-H), 1665(γCONH), 771(γC-Cl). 
1H NMR (CDCl3)δppm : 3.18 (2H, t, CH2, J = 6.3, 7.2), 4.06 (2H, t, CH2 at 2, J = 6.3, 

7.2), 7.44-8.07 (4H, m, Ar-H ).  

 

24. Synthesis of 2-(2-chloroethyl)-9-methoxy-3H-benzo[4,5]thieno[3,2-d]pyrimidin-4-

one (Vxxiv) 

A mixture of methyl 3-amino-4-methoxybenzo[b]thiophene-2-carboxylate (Ixvi, 4.7 gm; 

0.02 mole), acrylonitrile (1.21 gm; 0.022 mole) and catalytic amount of HCl (0.5 ml) 

were reacted under microwave irradiation (75 min) as per procedure described for the 

compound Vi. The crude product on recrystallization from methanol-chloroform mixture 

yielded 2-(2-chloro-ethyl)-9-methoxy-3H-benzo[4,5]thieno[3,2-d]pyrimidin-4-one 

(Vxxiv). 
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M.P. : 260-262oC; Yield: 63% 

Mol. Formula : C12H9Cl N2O2S; Mol Wt. 280.7               

IR(KBr)cm-1 : 2978(γC-H), 1676(γCONH), 736(γC-Cl) 

 

5.5 Synthesis of condensed 2-methylpyrimidin-4(3H)-ones under Microwave 

Irradiation (MWI) (V xxv-xxx) 

 

25. Synthesis of 2-methyl-5-(4-methylphenyl)thieno[2,3-d]pyrimidin-4(3H )-one 

(Vxxv) 

A mixture of ethyl 2-amino-4-(4-methylphenyl)thiophene-3-carboxylate (Ivii, 5.22 gm; 

0.02 mole), acetonitrile (1.0 gm; 0.022 mole) and catalytic amount of HCl (0.5 ml) were 

reacted under microwave irradiation (40 min) as per procedure described for the 

compound Vi. The crude product on recrystallization from methanol-chloroform mixture 

yielded 2-methyl-5-(4-methylphenyl)thieno[2,3-d]pyrimidin-4(3H)-one (Vxxv). 

 

M.P. : 97-99oC; Yield: 80% 

Mol. Formula          : C14H12N2OS; Mol. Wt. 256.3 

IR (KBr) cm-1 : 2898(γC-H), 1667(γCONH). 
1H NMR (CDCl3)δppm : 2.39 (3H, s, CH3), 2.47 (3H, s, CH3), 7.04 (1H, s, H), 7.16-7.48 

(4H, m, Ar-H), 11.90 (1H, s, NH).  

 

26. Synthesis of 2,5,6-trimethylthieno[2,3-d]pyrimidin-4(3H )-one (Vxxvi) 

A mixture of ethyl 2-amino-4,5-dimethylthiophene 3-carboxylate (I iv, 3.98 gm; 0.02 

mole), acetonitrile (1.0 gm; 0.022 mole) and catalytic amount of HCl (0.5 ml) were 

reacted under microwave irradiation (55 min) as per procedure described for the 

compound Vi. The crude product on recrystallization from methanol-chloroform mixture 

yielded 2,5,6-trimethylthieno[2,3-d]pyrimidin-4(3H)-one (Vxxvi). 

 

M.P. : 102-104oC (102-104oC)10; Yield: 70% 

Mol. Formula          : C9H10N2OS; Mol. Wt. 194.25 

IR (KBr) cm-1 : 2918(γC-H), 1665(γCONH). 
1H NMR (CDCl3)δppm : 2.37 (3H, s, CH3), 2.46 (3H, s, CH3), 2.51 (3H, s, CH3), 12.04 

(br, s, 1H, NH). 
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27. Synthesis of 2-methyl-5-phenylthieno[2,3-d]pyrimidin-4(3H )-one  (Vxxvii) 

A mixture of ethyl 2-amino-4-phenylthiophene-3-carboxylate (Iv, 4.9 gm; 0.02 mole), 

acetonitrile (1.0 gm; 0.022 mole) and catalytic amount of HCl (0.5 ml) were reacted 

under microwave irradiation (45 min) as per procedure described for the compound Vi. 

The crude product on recrystallization from methanol-chloroform mixture yielded 2-

methyl-5-phenylthieno[2,3-d]pyrimidin-4(3H)-one (Vxxvii). 

 

M.P. : 235-237oC (235-237oC)10; Yield: 77% 

Mol. Formula          : C13H10N2OS; Mol. Wt. 242.3 

IR (KBr) cm-1 : 2998(γC-H), 1667(γCONH). 
1H NMR (CDCl3)δppm : 3.36 (3H, s, CH3), 7.31-7.50 (5H, m, Ar-H and 1H at 6), 12.28 

(1H, s, NH). 

 

28. Synthesis of ethyl 3,4-dihydro-2,5-dimethyl-4-oxothieno[2,3-d]pyrimidine 6-

carboxylate (Vxxviii) 

A mixture of diethyl 5-amino-3-methylthiophene-2,4-dicarboxylate (I iii, 5.1 gm; 0.02 

mole), acetonitrile (1.0 gm; 0.022 mole) and catalytic amount of HCl (0.5 ml) were 

reacted under microwave irradiation (30 min) as per procedure described for the 

compound Vi. The crude product on recrystallization from methanol-chloroform mixture 

yielded ethyl 3,4-dihydro-2,5-dimethyl-4-oxothieno[2,3-d]pyrimidine 6-carboxylate 

(Vxxviii). 

 

M.P. : 278-280oC (280-283oC)11; Yield: 99% 

Mol. Formula          : C11H12N2O3S; Mol. Wt. 252.29 

IR (KBr) cm-1 : 2960(γC-H), 1718(γC=O) 1667(γCONH). 
1H NMR (CDCl3)δppm : 1.40 (3H, t, CH3, J = 7.3), 2.55 ( 3H, s, CH3), 2.94 (3H, s, CH3), 

4.36 (2H, CH2 quartlet, J = 7.1), 10.95 (1H, s, NH). 

 

29. Synthesis of 2-methyl-5,6,7,8-tetrahydro-3H-benzo[4,5]thieno[2,3-d]pyrimidin-4-

one (Vxxix) 

A mixture of ethyl 2-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate (I i, 4.5 

gm; 0.02 mole), acetonitrile (1.0 gm; 0.022 mole) and catalytic amount of HCl (0.5 ml) 

were reacted under microwave irradiation (30 min) as per procedure described for the 
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compound Vi. The crude product on recrystallization from methanol-chloroform mixture 

yielded 2-methyl-5,6,7,8-tetrahydro-3H-benzo[4,5]thieno[2,3-d]pyrimidin-4-one (Vxxix). 

 

M.P. : 155-158oC (157-159oC)10; Yield: 91% 

Mol. Formula          : C11H12N2OS; Mol. Wt. 220.29 

IR (KBr) cm-1 : 2920(γC-H), 1661(γCONH). 
1H NMR (CDCl3)δppm : 1.77 (4H, s, 2 X CH2 at 6 and 7), 2.30 (3H, s, CH3 at 2), 2.70 

(2H, s, CH2 at 5), 2.83 (2H, s, CH2 at 8), 7.07 (br, s, 1H, NH at 

3). 

 

30. Synthesis of 2-methylquinazolin-4(3H)-one (Vxxx) 

A mixture of methylanthranilate (3.0 gm; 0.02 mole), acetonitrile (1.0 gm; 0.022 mole) 

and catalytic amount of HCl (0.5 ml) were reacted under microwave irradiation (40 min) 

as per procedure described for the compound Vi. The crude product on recrystallization 

from methanol-chloroform mixture yielded 2-methylquinazolin-4(3H)-one (Vxxx).  

 

M.P. : 237-239oC (240-240oC)12; Yield: 71% 

Mol. Formula          : C9H8N2O; Mol. Wt. 160.17 

IR (KBr) cm-1 : 2918(γC-H), 1666(γCONH). 
1H NMR (CDCl3)δppm : 2.50 (2H, s, CH3), 7.38-7.74 (4H, m, Ar-H), 12.13 (1H, br, s, 

NH) 

 

5.6 Synthesis of condensed 4-chloro-2-chlormethylpyrimidines under Microwave 

Irradiations (MWI) (VI i-xiii) 

 

31. Synthesis of 4-chloro-2-chloromethyl-5-(4-methylphenyl)thieno[2,3-d]-

pyrimidine (VI i) 

A mixture of 2-chloromethyl-5-(4-methylphenyl)thieno[2,3-d]pyrimidin-4(3H)-one (Vi, 

5.22 gm; 0.02 mole) and phosphorus oxychloride (6.0 gm; 0.04 mole) was irradiated at 

350W for 4 min in a microwave synthesizer. The progress of reaction was monitored 

using TLC after each 2 min intervals (chloroform: methanol::4.5: 0.5). After completion 

of the reaction, the reaction mixture was allowed to cool to room temperature and poured 

on to ice-water mixture (100 ml). The resulting precipitated solid was filtered, washed 

with chilled water and dried. The crude product on recrystallization from hexane (60-
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80oC) that yielded 4-chloro-2-chloromethyl-5-(4-methylphenyl)thieno[2,3-d]pyrimidine 

(VI i). 

 

M.P. : 85-87oC (85-87oC)3; Yield: 90% 

Mol. Formula          : C14H10Cl2N2S; Mol. Wt. 309.1 

IR (KBr) cm-1 : 2979(γC-H), 1458(γC=C), 722(γC-Cl). 
1H NMR (CDCl3)δppm : 2.42 (3H, s, CH3), 4.82 (2H, s, CH2Cl), 7.25-7.51 (5H, m, Ar-H 

and H at 6). 

 

32. Synthesis of 4-chloro-2-chloromethyl-5,6-dimethylthieno[2,3-d]pyrimidine (VI ii) 

A mixture of 2-chloromethyl-5,6-dimethylthieno[2,3-d]pyrimidin-4(3H)-one (Vii, 4.5 

gm; 0.02 mole) and phosphorus oxychloride (6.0 gm; 0.04 mole) were reacted under 

microwave irradiation (5 min) as per procedure described for the compound VI i. The 

crude product on recrystallization from hexane that yielded 4-chloro-2-chloromethyl-5,6-

dimethylthieno[2,3-d]pyrimidine (Viii). 

 

M.P. : 116-118oC (118-120oC)3; Yield: 92% 

Mol. Formula          : C9H8C2N2S; Mol. Wt. 247.16 

IR (KBr) cm-1 : 2980(γC-H), 677(γC-Cl). 
1H NMR (CDCl3)δppm : 2.45 (3H, s, CH3), 2.50 (3H, s, CH3), 4.82 (2H, s, CH2Cl). 

 

33. Synthesis of 4-chloro-2-chloromethyl-5-phenylthieno[2,3-d]pyrimidine (VI iii) 

A mixture of 2-chloromethyl-5-phenylthieno[2,3-d]pyrimidin-4(3H)-one (Viii, 5.5 gm; 

0.02 mole) and phosphorus oxychloride (6.0 gm; 0.04 mole) were reacted under 

microwave irradiation (4 min) as per procedure described for the compound VI i. The 

crude product on recrystallization from hexane that yielded 4-chloro-2-chloromethyl-5-

phenylthieno[2,3-d]pyrimidine (VIiii). 

 

M.P. : 68-70oC (70-72oC)3; Yield: 77% 

Mol. Formula          : C13H8Cl2N2S; Mol. Wt. 295.2 

IR (KBr) cm-1 : 2932(γC-H), 1510(γC=C). 
1H NMR (CDCl3)δppm : 4.82 (2H, s, CH2Cl), 7.25-7.62 (4H, m, Ar-H and 1H at 6). 
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34. Synthesis of ethyl 4-chloro-2-chloromethyl-5-methylthieno[2,3-d]pyrimidine 6-

carboxylate (VIiv) 

A mixture of ethyl 2-chloromethyl-5-methyl-4-oxothieno[2,3-d]pyrimidine 6-

carboxylate (Viv, 5.7 gm; 0.02 mole) and phosphorus oxychloride (6.0 gm; 0.04 mole) 

were reacted under microwave irradiation (6 min) as per procedure described for the 

compound VI i. The crude product on recrystallization from hexane that yielded ethyl 4-

chloro-2-chloromethyl-5-methylthieno[2,3-d]pyrimidine 6-carboxylate (VIiv). 

 

M.P. : 135-137oC (135-137oC)3; Yield: 75% 

Mol. Formula          : C11H10Cl2N2O2S; Mol. Wt. 305.2 

IR (KBr) cm-1 : 2984(γC-H), 1718(γC=O), 1534(γC=C). 
1H NMR (CDCl3)δppm : 1.43 (3H, t, CH2CH3, J = 7.2 & 6.9), 3.06 (3H, s, CH3), 4.42 

(2H, q, CH2CH3, J = 6.9 & 7.2), 4.78 (2H, s, CH2Cl). 

MS  m/e : 304 (M+), 289, 276.                   

 

35. Synthesis of 4-chloro-2-chloromethyl-5,6,7,8-tetrahydro-3H-benzo[4,5]thieno-

[2,3-d]pyrimidine (VI v) 

A mixture of 2-chloromethyl-5,6,7,8-tetrahydro-3H-benzo[4,5]thieno[2,3-d]pyrimidin-4-

one (Vvii, 5.0 gm; 0.02 mole) and phosphorus oxychloride (6.0 gm; 0.04 mole) were 

reacted under microwave irradiation (4 min) as per procedure described for the compound 

VI i. The crude product on recrystallization from hexane that yielded 4-chloro-2-

chloromethyl-5,6,7,8-tetrahydro-3H-benzo[4,5]thieno[2,3-d]pyrimidine (VI v). 

 

M.P. : 80-82oC (80-82oC)3; Yield: 70% 

Mol. Formula          : C11H10Cl2N2S; Mol. Wt. 273.2 

IR (KBr) cm-1 : 2941(γC-H), 1447(γC=C), 736(γC-Cl) 
1H NMR (CDCl3)δppm : 1.99 (4H, s, CH2 at 6 & 7), 2.57 (3H, s, CH3), 2.95 (3H, s, CH3 

at 5), 3.12 (3H, s, CH3 at 8), 4.80 (2H, s, CH2Cl).  

MS m/e : 275(M+), 244, 237, 209. 
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36. Synthesis of 4-chloro-2-chloromethyl-3,5,6,7,8,9-hexahydro-10-thia-1,3-diaza-

benzo[a]azulene (VIvi) 

A mixture of 2-chloromethyl-3,5,6,7,8,9-hexahydro-10-thia-1,3-diazabenzo[a]azulen-4-

one  (Vvii, 5.0 gm; 0.02 mole) and phosphorus oxychloride (5.3 gm; 0.04 mole) were 

reacted under microwave irradiation (5 min) as per procedure described for the compound 

VI i. The crude product on recrystallization from hexane that yielded 4-chloro-2-

chloromethyl-3,5,6,7,8,9-hexahydro-10-thia-1,3-diazabenzo[a]azulene (VIvi). 

 

M.P. : 75-77oC; Yield: 85% 

Mol. Formula : C12H12Cl2N2S; Mol. Wt. 287.21 

IR (KBr) cm-1 : 2923(γC-H), 1658(γC=C), 755 (γC-Cl).  

 

37. Synthesis of 4-chloro-2-chloromethyl-5-(4-methoxyphenyl)thieno[2,3-d]-

pyrimidine (VI vii) 

A mixture of 2-chloromethyl-5-(4-methoxyphenyl)thieno[2,3-d]pyrimidin-4(3H)-one 

(Vviii, 6.1 gm; 0.02 mole) and phosphorus oxychloride (5.3 gm; 0.04 mole) were reacted 

under microwave irradiation (6 min) as per procedure described for the compound VI i. 

The crude product on recrystallization from hexane that yielded 4-chloro-2-chloromethyl-

5-(4-methoxyphenyl)thieno[2,3-d]pyrimidine (VIvii). 

 

M.P. : 122-124oC (124-126oC)3; Yield: 90% 

Mol. Formula          : C14H10Cl2N2OS; Mol. Wt. 325.21 

IR (KBr) cm-1 : 3001(γC-H), 1608(γC=C), 787(γC-Cl). 
1H NMR (CDCl3)δppm : 3.90 (3H, s, OCH3), 4.92 (2H, s, CH2 at 2), 6.95-7.55 (5H, m, 

Ar-H & 1H at 6). 

MS m/e : 325(M+), 309, 289. 

 

38. Synthesis of 4-chloro-2-chloromethyl-5-(4-chlorophenyl)thieno[2,3-d]-

pyrimidines (VI viii) 

A mixture of 2-chloromethyl-5-(4-chlorophenyl)thieno[2,3-d]pyrimidin-4(3H)-one (Vix, 

6.2 gm; 0.02 mole) and phosphorus oxychloride (5.3 gm; 0.04 mole) were reacted under 

microwave irradiation (4 min) as per procedure described for the compound VI i. The 

crude product on recrystallization from hexane that yielded 4-chloro-2-chloromethyl-5-

(4-chlorophenyl)thieno[2,3-d]pyrimidine (VIviii). 
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M.P. : 175-177oC (175-177oC)3; Yield: 70% 

Mol. Formula : C13H7Cl3N2S; Mol. Wt. 329.63 

IR (KBr) cm-1 : 3030(γC-H), 1543(γC=C), 787 (γC-Cl). 
1H NMR (CDCl3)δppm : 4.90 (2H, s, CH2Cl), 2.71 (3H, s, CH3), 7.20-7.57 (5H, m, Ar-H 

& 1H at 6) 

MS m/e : 329(M+), 263, 257. 

 

39. Synthesis of 4-chloro-2-chloromethyl-10H-[1,2,4]triazino[6,1-b]quinazolin-10-one 

(VI ix) 

A mixture of 2-chloromethyl-3H-[1,2,4]triazino[6,1-b]quinazoline-4,10-dione (Vxiii, 5.2 

gm; 0.02 mole) and phosphorus oxychloride (6.0 gm; 0.04 mole) were reacted under 

microwave irradiation (10 min) as per procedure described for the compound VI i. The 

crude product on recrystallization from hexane that yielded 4-chloro-2-chloromethyl-

10H-[1,2,4]triazino[6,1-b]quinazolin-10-one (VIix). 

 

M.P. : 90-92oC; Yield: 88% 

Mol. Formula : C11H6Cl2N4O; Mol. Wt. 281.1 

IR (KBr) cm-1 : 3046(γC-H), 1608(γC=C), 756(γC-Cl). 

 

40. Synthesis of 4-chloro-2-chloromethylbenzo[4,5]thieno[3,2-d]pyrimidine (VI x) 

A mixture of 2-chloromethyl-3H-benzo[4,5]thieno[3,2-d]pyrimidin-4-one (Vxiv, 5.0 gm; 

0.02 mole) and phosphorus oxychloride (6.0 gm; 0.04 mole) were reacted under 

microwave irradiation (12 min) as per procedure described for the compound VI i. The 

crude product on recrystallization from hexane that yielded 4-chloro-2-chloromethyl-

benzo[4,5]thieno[3,2-d]pyrimidine (VIx). 

 

M.P. : 220-222oC; Yield: 76% 

Mol. Formula : C11H6Cl2N2S; Mol. Wt. 269.15 

IR (KBr) cm-1 : 3040(γC-H), 1547(γC=C), 768(γC-Cl). 

 

41. Synthesis of 4-chloro-2-chloromethyl-9-methoxybenzo[4,5]thieno[3,2-d]-

pyrimidine (VI xi)  

A mixture of 2-chloromethyl-9-methoxy-3H-benzo[4,5]thieno[3,2-d]pyrimidin-4-one 

(Vxv, 5.0 gm; 0.02 mole) and phosphorus oxychloride (5.6 gm; 0.04 mole) were reacted 
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under microwave irradiation (18 min) as per procedure described for the compound VI i. 

The crude product on recrystallization from hexane that yielded 4-chloro-2-chloromethyl-

9-methoxy-benzo[4,5]thieno[3,2-d]pyrimidine (VIxi). 

 

M.P. : 180-182oC; Yield: 80% 

Mol. Formula  : C12H8Cl2N2OS; Mol. Wt. 299.18 

IR (KBr) cm-1 : 2980(γC-H), 1534(γC=C), 718(γC-Cl) 

 

42. Synthesis of 4-chloro-2-chloromethyl-7,9-dimethylpyrido[3’,2’: 4,5]thieno[3,2-

d]pyrimidine (VI xii) 

A mixture of 6-chloromethyl-2,4-dimethyl-7H-9-thia-1,5,7-triaza-fluoren-8-one (Vxvi, 

5.5 gm; 0.02 mole) and phosphorus oxychloride (5.6 gm; 0.04 mole) were reacted under 

microwave irradiation (10 min) as per procedure described for the compound VI i. The 

crude product on recrystallization from hexane that yielded 4-chloro-2-chloromethyl-7,9-

dimethylpyrido[3’,2’: 4,5]thieno[3,2-d]pyrimidine (VIxii). 

 

M.P. : 116-118oC; Yield: 86% 

Mol. Formula : C12H9Cl2N3S; Mol. Wt. 298.19 

IR (KBr) cm-1 : 2990(γC-H), 1629(γC=C), 730(γC-Cl) 

 

43. Synthesis of 4-chloro-2-chloromethyl-6,7-dimethoxyquinazoline (VIxiii) 

A mixture of 2-chloromethyl-6,7-dimethoxyquinazolin-4(3H)-one (Vxvii, 5.0 gm; 0.02 

mole) and phosphorus oxychloride (5.6 gm; 0.04 mole) were reacted under microwave 

irradiation (6 min) as per procedure described for the compound VI i. The crude product 

on recrystallization from hexane that yielded 4-chloro-2-chloromethyl-6,7-dimethoxy-

quinazoline (VIxiii). 

 

M.P. : 162-164oC; Yield: 90% 

Mol. Formula  : C11H10Cl2N2O2; Mol. Wt. 273.12 

IR (KBr) cm-1 : 2963(γC-H), 1502(γC=C), 743(γC-Cl). 
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5.7 Synthesis of condensed 4-chloro-2-chloroethylpyrimidines under Microwave 

Irradiation (MWI) (VI xiv-xvii) 

 

44. Synthesis of 4-chloro-2-(2-chloroethyl)-5-(4-methylphenyl)thieno[2,3-d]-

pyrimidine (VI xiv) 

A mixture of 2-(2-chloroethyl)-5-(4-methylphenyl)thieno[2,3-d]pyrimidin-4(3H)-one 

(Vxviii, 6.0 gm; 0.02 mole) and phosphorus oxychloride (5.3 gm; 0.04 mole) were reacted 

under microwave irradiation (5 min) as per procedure described for the compound VI i. 

The crude product on recrystallization from hexane that yielded 4-chloro-2-(2-

chloroethyl)-5-(4-methyl-phenyl)thieno[2,3-d]pyrimidine (VIxiv). 

 

M.P. : 160-162oC (160-162oC)9; Yield: 81% 

Mol. Formula : C15H12Cl2N2S; Mol. Wt. 323.24 

IR (KBr) cm-1 : 2923(γC-H), 1496(γC=C), 794(γC-Cl). 

 

45. Synthesis of 4-chloro-2-(2-chloroethyl)-5,6-dimethylthieno[2,3-d]pyrimidine 

(VI xv) 

A mixture of 2-(2-chloroethyl)-5,6-dimethylthieno[2,3-d]pyrimidin-4(3H)-one (Vxix, 4.8 

gm; 0.02 mole) and phosphorus oxychloride (5.3 gm; 0.04 mole) were reacted under 

microwave irradiation (4 min) as per procedure described for the compound VI i. The 

crude product on recrystallization from hexane that yielded 4-chloro-2-(2-chloroethyl)-

5,6-dimethylthieno[2,3-d]pyrimidine (VIxv). 

 

M.P. : 40-42oC; Yield: 70% 

Mol. Formula : C10H10Cl2N2S; Mol. Wt. 261.17 

IR (KBr) cm-1 : 2930(γC-H), 1478(γC=C), 841(γC-Cl). 

 

46. Synthesis of 4-chloro-2-(2-chloroethyl)-5-phenylthieno[2,3-d]pyrimidine (VI xvi) 

A mixture of 2-(2-chloroethyl)-5-phenylthieno[2,3-d]pyrimidin-4(3H)-one (Vxx, 5.8 gm; 

0.02 mole) and phosphorus oxychloride (5.3 gm; 0.04 mole) were reacted under 

microwave irradiation (6 min) as per procedure described for the compound VI i. The 

crude product on recrystallization from hexane that yielded 4-chloro-2-(2-chloroethyl)-5-

phenylthieno[2,3-d]pyrimidine (VIxvi). 
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M.P. : >300oC (>300oC)9; Yield: 67% 

Mol. Formula  : C14H10Cl2N2S; Mol. Wt. 309.21 

IR (KBr) cm-1 : 2940 (γC-H), 1553(γC=C), 759(γC-Cl). 

 

47. Synthesis of 4-chloro-2-(2-chloroethyl)-5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-

d]pyrimidine (VI xvii) 

A mixture of 2-(2-chloroethyl)-5,6,7,8-tetrahydro-3H-benzo[4,5]thieno[2,3-d]pyrimidin-

4-one (Vxxii, 5.3 gm; 0.02 mole) and phosphorus oxychloride (5.3 gm; 0.04 mole) were 

reacted under microwave irradiation (4 min) as per procedure described for the compound 

VI i. The crude product on recrystallization from hexane that yielded 4-chloro-2-(2-

chloro-ethyl)-5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidine (VIxvii). 

 

M.P. : 62-64oC (68-70oC)9; Yield: 90% 

Mol. Formula          : C12H12Cl2N2S; Mol. Wt. 287.21 

IR (KBr) cm-1 : 2939 (γC-H), 1528(γC=C), 735(γC-Cl). 
1H NMR (CDCl3)δppm : 1.94 (4H, s, CH2 at 6 & 7), 2.92 (2H, s, CH2 at 5), 3.05(2H, s, 

CH2 at 8), 3.42 (2H, 7, CH2CH2Cl, J = 6.9 & 7.1), 4.05 (2H, 7, 

CH2CH2Cl, J = 6.9 & 7.1). 

MS m/e : 287(M+), 286(M-1), 253, 251, 225, 209. 

 

 

5.8 Synthesis of condensed 4-chloro-2-methylpyrimidines under Microwave 

Irradiation (MWI) (VI xviii-xxii) 

 

48. Synthesis of 4-chloro-2-methyl-5-(4-methylphenyl)thieno[2,3-d]pyrimidine 

(VI xviii) 

A mixture of 2-methyl-5-(4-methylphenyl)thieno[2,3-d]pyrimidin-4(3H)-one (Vxxv, 5.1 

gm; 0.02 mole) and phosphorus oxychloride (5.3 gm; 0.04 mole) were reacted under 

microwave irradiation (3 min) as per procedure described for the compound VI i. The 

crude product on recrystallization from hexane that yielded 4-chloro-2-methyl-5-(4-

methylphenyl)thieno[2,3-d]pyrimidine (VIxviii). 

 

M.P. : 97-99oC; Yield: 65% 

Mol. Formula          : C14H11ClN2S; Mol. Wt. 274.77 
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IR (KBr) cm-1 : 1553(γC=C), 791(γC-Cl). 
1H NMR (CDCl3)δppm : 2.47 (3H, s, CH3), 4.82 (2H, s, CH2 at 2), 7.18-7.50 (5H,  m, 4-

Ar-H and 1H at 6) 

  

49. Synthesis of 4-chloro-2,5,6-trimethylthieno[2,3-d]pyrimidine (VI xix) 

A mixture of 2,5,6-trimethylthieno[2,3-d]pyrimidin-4(3H)-one (Vxxvi, 3.8 gm; 0.02 

mole) and phosphorus oxychloride (5.3 gm; 0.04 mole) were reacted under microwave 

irradiation (4 min) as per procedure described for the compound VI i. The crude product 

on recrystallization from hexane that yielded 4-chloro-2,5,6-trimethylthieno[2,3-d]-

pyrimidine (VIxix). 

 

M.P. : 102-104oC; Yield: 90% 

Mol. Formula : C9H9ClN2S; Mol. Wt. 212.7 

IR (KBr) cm-1 : 1560(γC=C), 841(γC-Cl). 

 

50. Synthesis of 4-chloro-2-methyl-5-phenylthieno[2,3-d]pyrimidine (VI xx) 

A mixture of 2-methyl-5-phenylthieno[2,3-d]pyrimidin-4(3H)-one (Vxxvii, 4.8 gm; 0.02 

mole) and phosphorus oxychloride (5.3 gm; 0.04 mole) were reacted under microwave 

irradiation (6 min) as per procedure described for the compound VI i. The crude product 

on recrystallization from hexane that yielded 4-chloro-2-methyl-5-phenylthieno[2,3-

d]pyrimidine (VIxx). 

 

M.P. : 235-237oC; Yield: 90% 

Mol. Formula  : C13H9ClN2S; Mol. Wt. 260.74 

IR (KBr) cm-1 : 2932(γC-H), 1510(γC=C), 818(γC-Cl). 

 

51. Synthesis of ethyl 4-chloro-2,5-dimethylthieno[2,3-d]pyrimidine 6-carboxylate 

(VI xxi) 

A mixture of ethyl 3,4-dihydro-2,5-dimethyl-4-oxo-thieno[2,3-d]pyrimidine 6-

carboxylate (Vxxviii, 5.0 gm; 0.02 mole) and phosphorus oxychloride (5.3 gm; 0.04 

mole) were reacted under microwave irradiation (4 min) as per procedure described for 

the compound VI i. The crude product on recrystallization from hexane that yielded ethyl 

4-chloro-2,5-dimethylthieno[2,3-d]pyrimidine 6-carboxylate (VIxxi). 
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M.P. : 280-282oC; Yield: 90% 

Mol. Formula          : C11H11ClN2O2S; Mol. Wt. 270.74 

IR (KBr) cm-1 : 1718(γC=O), 1534(γC=C). 
1H NMR (CDCl3)δppm : 2.43 (3H, t, CH3CH2COO, J = 6.9), 3.05 (3H, s, CH3 at 5), 4.35 

(2H, q, CH3CH2COO, J = 6.9, 7.2), 4.82 (2H, s, CH2 at 2). 

 

52. Synthesis of 4-chloro-2-methyl-5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]-

pyrimidine (VI xxii) 

A mixture of 2-methyl-5,6,7,8-tetrahydro-3H-benzo[4,5]thieno[2,3-d]pyrimidin-4-one 

(Vxxix, 4.4 gm; 0.02 mole) and phosphorus oxychloride (5.3 gm; 0.04 mole) were reacted 

under microwave irradiation (5 min) as per procedure described for the compound VI i. 

The crude product on recrystallization from hexane that yielded 4-chloro-2-methyl-

5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidine (VIxxii). 

 

M.P. : 157-159oC; Yield: 90% 

Mol. Formula : C11H11ClN2S; Mol. Wt. 238.74 

IR (KBr) cm-1 : 2939(γC-H), 1413(γC=C). 

 

 



Part-II 
Experimental 

 385 

5.9 Protocol for MDR Reversal Activity of Condensed Pyrimidines 

MDR reversal effects of this series on MDR1-gene transfected mouse lymphoma cell line 

(l 5178 y) was carried out by Prof. Joseph Molnár at Department of Medical 

Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Hungary. 

 

MDR reversal effects of V and VI series on MDR1-gene transfected mouse 

lymphoma cell line (l 5178 y) by flow cytometry. 

 

Assay for reversal of MDR in tumour cells13,14: 

The cells were adjusted to a density of 2×106/ml, resuspended in serum-free McCoy’s 5A 

medium and distributed in 0.5-ml aliquots into Eppendorf centrifuge tubes. The tested 

compounds were added at various concentrations in different volumes (2.0-20.0 µl) of the 

1.0-10.0 mg/ml stock solutions, and the samples were incubated for 10 min at room 

temperature. Next, 10 µl (5.2 µM final concentration) of the indicator rhodamine 123 was 

added to the samples and the cells were incubated for a further 20 min at 37°C, washed 

twice and resuspended in 0.5 ml PBS for analysis. The fluorescence of the cell population 

was measured with a Beckton Dickinson FACScan flow cytometer. Verapamil was used 

as a positive control in the rhodamine 123 exclusion experiments. The percentage mean 

fluorescence intensity was calculated for the treated MDR and parental cell lines as 

compared with the untreated cells. An activity ratio R was calculated via the following 

equation, on the basis of the measured fluorescence values: 

controlparentaltreatedparental

controlMDRtreatedMDR
R =
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1. Advanced Dihydropyridines and Dihydropyrimidines as Novel Multidrug 

Resistance Modifiers and Reversing Agents in Cancer Chemotherapy 

 

1.1 Cancer and the Current Status in World 

With more than 10 million new cases every year, cancer has become one of the most 

devastating diseases worldwide. The disease burden is immense, not only for affected 

individuals but also for their relatives and friends. At the community level, cancer has 

posed considerable challenges for the health care systems in poor and rich countries alike. 

World Cancer Report (WCR) of 2007 provides a unique global view of cancer. It 

documents the frequency of cancer in different countries and trends in cancer incidence 

and mortality as well as describing the known causes of human cancer1 (Table 43). 

 

Table 43: The estimated numbers of new cases and deaths for each common cancer 

type2,3:  

Cancer Type Estimated New Cases Estimated Deaths 

Bladder 67,160 13,750 

Breast (Female -- Male) 178,480 -- 2,030 40,460 -- 450  

Colon and Rectal (Combined) 153,760 52,180 

Endometrial 39,080 7,400 

Kidney (Renal Cell) Cancer  43,512  10,957  

Leukemia (All) 44,240 21,790 

Lung (Including Bronchus) 213,380 160,390 

Melanoma 59,940 8,110 

Non-Hodgkin's Lymphoma 63,190 18,660 

Pancreatic 37,170 33,370 

Prostate 218,890 27,050 

Skin (Non-melanoma) >1,000,000 <2,000 

Thyroid 33,550 1,530  

 

1.2 Role of ABC Transporters 

Cancer chemotherapy is the treatment of choice in many malignant diseases. A major 

form of resistance against a variety of the antineoplastic agents currently used involves 

the function of a group of membrane proteins that extrude cytotoxic molecules, thus 

keeping intracellular drug concentration below a cell-killing threshold. Multidrug 

transporters belong to the superfamily of ATP Binding Cassette (ABC) proteins, present 

in organisms from bacteria to humans. The medical significance of ABC proteins exceeds 
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their role in cancer chemotherapy resistance; the transport function of several members 

was found to hinder the effective therapy of anticancer agents for many other widespread 

diseases (e.g. malaria, AIDS), and inherited diseases were also linked to mutations in 

these genes. The transport activity of ABC proteins has an important effect in general 

pharmacology, that is, in modulating the absorption, distribution and excretion of 

numerous pharmacological cancer agents.4  

 

These substrate molecules exhibit a wide variety of chemical structures. Some ABC 

proteins facilitate the transport of inorganic ions, whereas others pump various organic 

compounds, including lipids, bile acids, glutathione and glucuronide conjugates, or even 

short peptides. Most ABC family proteins utilize the energy of ATP hydrolysis for this 

transport activity (active transporters), but some ABC transporters form specific 

membrane channels.4  

 

1.3 Structure of ABC Proteins 

The typical structure of an ABC protein consists of membrane-embedded transmembrane 

domains (TMD) and ATP binding domains. Typically, the transmembrane regions anchor 

the protein to the membrane and form a pore through which the transport of a surprisingly 

large variety of substrates occurs. The cytoplasmic nucleotide binding domains provide 

the molecular compartment, where the energy of ATP is released. It is not known how the 

energy is conveyed from the ABC domains to the site of the transport and the precise 

mechanism of transport also remains elusive.4  

 

1.4 Role of Resistance in Cancer-The Players 

Numerous clinical data revealed that the multidrug resistance (MDR) phenotype in 

tumors is associated with the overexpression of certain ABC transporters, termed as MDR 

proteins. The P-glycoprotein (Pgp, MDR1, ABCB1)-mediated MDR was the first 

discovered5-7 and probably still is the most widely observed mechanism in clinical 

MDR.8-11 Soon after the cloning and characterization of MDR1, it became evident that 

other efflux-pumps may also play a significant role in the transport-associated drug 

resistance. There are two other ABC transporters, which have been definitively 

demonstrated to participate in the MDR of tumors: the MDR protein 1 (MRP1, ABCC1), 

and the mitoxantrone resistance protein11-15 (MXR/BCRP, ABCG2). Furthermore, other 

human ABC proteins capable of actively transporting various compounds out of cells may 
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also be their players in selected cases of MDR. These include ABCB4 (MDR3) and 

ABCB11 (sister Pgp or BSEP), two proteins residing predominantly in the liver with a 

function involved in the secretion of phosphatidyl choline and bile acids, respectively.16-18 

MDR3 has been already shown to transport certain drugs as well.19 In addition to MRP1, 

five homologues (MRP2-MRP6) have been cloned. Overexpression of MRP2 (an organic 

anion transporter which can also extrude hydrophobic compounds) was definitively 

shown to confer cancer MDR.13,20 MRP3, an organic conjugate transporter, and MRP5, a 

nucleoside transporter, are also candidate proteins for causing certain forms of drug 

resistance.13  

 

1.4.1 Basic Mechanism of MDR in Cancer  

The generally accepted mechanism of MDR is that the MDR proteins actively expel the 

cytotoxic drugs from tumor cells, maintaining the anticancer drug level below a cell-

killing concentration. Drug extrusion mediated by these primary active transporters is 

driven by the energy of ATP hydrolysis. The most intriguing characteristic distinguishing 

the MDR proteins from other mammalian transporters is their wide substrate specificity. 

Unlike other selective (classical) transport proteins, multidrug transporters have been 

recognized and handled as a wide range of substrates. This wide substrate specificity 

explains the cross-resistance to several chemically unrelated compounds, the 

characteristic feature found in the MDR phenotype.8-11  

 

Different tumors with MDR protein overexpression (e.g. hepatomas, lung or colon 

carcinomas) often show primary (or intrinsic) resistance to cancer chemotherapy. In 

addition, cancer chemotherapy itself might induce the overexpression of these proteins, so 

that the MDR clones become less sensitive to chemotherapy (secondary drug resistance). 

Treatment failure due to MDR is also found in connection with conditions other than 

cancer, including some autoimmune disorders and infectious diseases.21-23  

 

1.4.2 Nomenclature, Basic Structure and Membrane Topology of MDR Proteins 

The ABC superfamily is one of the largest families in proteins. The most recent 

annotation of the human genome sequence revealed 48 genes for ABC proteins. The ABC 

proteins were grouped into seven sub-classes, ranging from ABCA to ABCG24-28 based 

on genomic organization, order of domains and sequence homology. The phylogenetic 

tree of the ABC transporters involved in cancer MDR is presented in Figure 1. A thick 
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line and a circle label the three definite players, while the close relatives, which may have 

a role in drug resistance, are also indicated on this evolutionary diagram. 

 

Figure-1. Phylogenic tree of the MDR- related ABC transporters. The thick lines 
represent the proteins definitively involved in multi-drug resistance. 
(Reproduced from reference-4) 

 

All ABC proteins contain at least three characteristic peptide sequences: the Walker A 

and B motifs and the so-called ABC-signature sequence. Whereas the Walker motifs are 

present in several classes of ATP binding proteins, the presence of the signature region is 

diagnostic for the ABC proteins. It is generally accepted that the minimum functional unit 

requirement for an ABC transporter is the presence of two transmembrane domains 

(TMDs) and two ATP Binding Cassette (ABC) units. These may be present within one 

polypeptide chain ("full transporters"), or within a membrane-bound homo- or 

heterodimer of "half transporters".8-11,27,28 There are no high-resolution structural data 

presently available for any mammalian ABC transporter; therefore computer modeling 

and laborious biochemical experiments are necessary to elucidate the position and 

orientation of membrane spanning segments and other domains within the polypeptide 

chain. Figure 2 presents the most plausible membrane topology models for the key MDR-

ABC transporters. As shown in Figure 2, Pgp-MDR1 (ABCB1) is a "full transporter" with 

six TM helices in both TMDs of the protein, each followed by an ABC domain. A similar 

membrane topology has been predicted for ABCB4 (MDR3), and ABCB11 (sister Pgp) 

as well.24-28  
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MRPs belong to the ABCC-subfamily, comprising eleven members in the human 

genome. Most of these proteins (ABCC1-6) have been identified as active, ATP-

dependent membrane transporters for various anticancer agents and organic anions.12-14,17 

In contrast to these active transporters, the cystic fibrosis transmembrane conductance 

regulator, ABCC7 (CFTR) is a regulated chloride channel, while ABCC8 (SUR1) and 

ABCC9 (SUR2) are called sulfonylurea receptors and best described as intracellular ATP 

sensors, regulating the permeability of specific K+ channels. Nothing is currently known 

about the function of ABCC10 and ABCC11.11,13,27,28  

 

The predicted membrane topology of MRP1 is shown in Figure 2. According to current 

notion, in addition to an MDR1-like core, MRP1 contains an additional N-terminal 

segment of about 280 amino acids. A major part of this region is membrane-embedded 

with five transmembrane helices (TMD0), while a small cytoplasmic loop of about 80 

amino acids (L0) connects this area to the core region.29-32 Recent studies revealed that 

the TMD0 domain of ABCC1 does not play a crucial role in either the transport activity 

or the proper routing of the protein. However, the presence of the membrane-associated 

cytoplasmic L0 region (together with the core region) is necessary for both the transport 

activity and the proper intracellular routing of the protein. These studies indicate that the 

L0 region forms a distinct structural and functional domain, which interacts with the 

membrane and the core region of the MRP1 transporter.33 
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Figure-2. Membrane topology models for the MDR-related ABC transporters. Green 
Bars represents predicted transmembrane helices, the purple circles represents 
the ABC domains, the gold tree are glycosylation sites at the extra cellular 
surface. (Reproduced from reference-4) 

 

The third ABC protein believed to play a role in clinical MDR, ABCG2 (MXR/BCRP) is 

a half transporter15,34, with a unique domain arrangement, where the ABC is located at the 

N-terminus (Figure-2). This protein performs an active extrusion of hydrophobic, 

positively charged molecules from the cells in an N-glycosylated mature form, and in 

contrast to many other ABC half-transporters is probably localized in the plasma 

membrane. Recently, it has been shown that the human ABCG2 MDR protein forms an 

active homodimer for its transport function.35,36  

 

There is no high-resolution three-dimensional structure available for any of the 

mammalian ABC transporters, thus the structural background of the MDR molecular 

mechanism is currently unresolved. A low-resolution structure of the MDR137 indicates 



Part-III 
Advances Dihydropyridines and … 

 393 

that the protein is embedded into the membrane as a cylinder with a large central pore, 

which is closed at the inner (cytoplasmic) face of the membrane. This structure also 

included an opening of this cylinder to the lipid phase.  

 

The structure of a bacterial ABC transporter, MsbA of E. coli, has recently been 

determined by X-ray crystallography.38 MsbA is a half-transporter with a TMD-ABC 

domain arrangement, organized as a homodimer. The structure reveals that each MsbA 

subunit contains a transmembrane domain with six transmembrane helices, an ABC-

domain, and an "intracellular domain" which is composed of the three intracellular loops 

connecting the transmembrane segments to the ABC-domain. One of the most important 

conclusions of the MsbA structure is that the membrane-spanning segments of the 

polypeptide are indeed α-helices. The organization and interactions of these peptide 

domains will probably be a valuable foundation towards elucidating the structures of 

mammalian multidrug transporter ABC proteins.  

 

1.4.3 Substrate Specificity of MDR-ABC Transporter 

The three major MDR proteins are highly promiscuous transporters; they share the ability 

of recognizing and translocating a large number of structurally diverse, mainly 

hydrophobic compounds. In addition to their overlapping substrate specificity, each 

transporter can handle unique compounds.  

 

Pgp is a transporter for large hydrophobic, either uncharged or slightly positively charged 

compounds, while the MRP family primarily transports hydrophobic anionic conjugates 

and extrudes hydrophobic uncharged anticancer drugs. The MRP1-related uncharged drug 

transport is quite an enigma, and is somehow linked to the transport or allosteric effect of 

cellular free reduced glutathione13. The exact spectrum of the MXR (ABCG2) transported 

substrates has not yet been explored in detail, and these studies are complicated by the 

variable substrate-mutants of MXR observed in the most recent studies.39  

 

In order to put the MDR substrates in their medical and pharmacological context, we 

present some of the key molecules in separate figures. Figure 3A shows anticancer drugs, 

which are, unfortunately for the patients, also MDR substrates. Figure 3B shows the 

chemical MDR modulators used experimentally or in clinical trials, while Figure 3C 
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compiles the best-known MDR substrates used for functional diagnosis of the proteins.8-

11,40-43 

 

3A: MDR-substrate anticancer agents. Abbreviations: VCR: vincristine, VP-16: 
etoposide, STER: steroids, TAM: tamoxiphen, TKI-INHIB: tyrosin kinase inhibitors 
e.g. STI-571, DOX: doxorubicine or adriamycin, DNR: daunorubicin, , EPIR: 
epirubicin, MX: mitoxantrone, TOPOT: topotecan, iridotecan, BISANT: 
bisanthrone, COLCH: colchicin, ACT-D: actinomycin D, MYTOM: mytomycin, 
TX: methotrexate, CPHAM: cyclophosphamide, CHLB: chlorambucil, CARM: 
carmustine, LCV: leucovorin, HUR: hydroxy urea, CISPL: cisplatin, TAXOL: 
paclitaxel. (Reproduced from reference-4) 

 

 
3B: MDR-Modulating agents. Abbreviations: CSA: cyclosporin A, VERAP: verapamil 

STAURO: staurosporine, ECON: econazole, PRAZ: prazosine, FTC: fumitremorgin 
C, PROB: probenecide, BBR: benzbromarone, SUPYR: sulfinpyrazone, INDOM: 
indomethacin, GENIS: genistein, PGA2: prostaglandin A2, CCCP: chlorocarbonyl 
cyanide phenylhydrazine. (Reproduced from reference- 4) 
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3C: Fluorescent Compounds for the functional detection of multi drug resistance. 

Abbreviations: CA-AM: calcein AM, FL-3-AM: fluo-3AM, Pot. Dyes: 
potentiomeric dyes, RH123: rhodamine123, HST: Hoechst dye No. 33342, GS-N-
PM: N-Pyrenemaleimide glutathione conjugate, BOD-VER: BODIPY verapamil, 
BOD-PRAS: BODIPY prazosin, MX: mitoxantrone, LYS: LysoTracker dye. 
(Reproduced from reference-4) 

Figure-3. Venn-diagram for selected compounds interacting with the key MDR-related 

ABC transporters. 

 

1.4.4 Cellular and Tissue Distribution of MDR-ABC Transporter 

The tissue distribution of the MDR-ABC proteins is as varied as their substrate 

specificity. MRP1 is almost ubiquitously expressed, while the expression of Pgp is more 

restricted to tissues involved in absorption and secretion.8-11 High level MDR1 expression 

has also been shown in certain pharmacological barriers of the body, such as the blood-

brain barrier (BBB) and the choroid plexus.44,45 It has been reported that MXR is highly 

expressed in the placenta, liver, and most interestingly, in various stem cells.34-46 All 

multidrug transporters are localized predominantly in the plasma membrane. In polarized 

cells, Pgp-MDR1 is localized in the apical (luminal) membrane surface (e.g. in the 

epithelial cells of the intestine and the proximal tubules of kidney, or in the biliary 

canalicular membrane of hepatocytes).47-49 In contrast, MRP1 expression in polarized 

cells is restricted to the basolateral membrane. The expression of MRP2, MDR3, and of 

Sister Pgp (BSEP) is predominant in the canalicular membrane of hepatocytes, while 

MRP3 and MRP5 are expressed in the basolateral membranes of these cells (Figure 4). 

MRP2 is also highly expressed in the apical membranes of kidney proximal tubules. In 

polarized cells, the MXR expression was reported to be mostly apical.50 
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Figure-4. Multi-drug transporters in the human liver hepatocytes. Abbreviations: TJ, tight 

junction. (Reproduced from reference- 4) 

 

1.4.5 Molecular Mechanism of the Multidrug Pumps 

Drug transport by MDR proteins requires the energy of ATP-hydrolysis, controlled by 

drug interaction, and closely coupled to the actual drug translocation. Interaction with the 

drug-substrate significantly enhances the basal ATPase activity of the multidrug 

transporters, that is, the transported drug-substrates increase the rate of ATP cleavage.51-53 

The schematic pictures of the proposed molecular mechanisms of the MDR1 and MRP1 

proteins, as depicted in Figure-5.  

 

The site(s) in multidrug transporters interacting with the drug-substrates are probably 

encoded in the transmembrane domains. Detailed mutagenesis studies of MDR1 and 

photochemical labeling with the reactive drug-derivatives revealed that transmembrane 

helices 5 and 6 (in the N-proximal transmembrane domain), helices 11 and 12 (in the C-

proximal transmembrane domain), as well as the short cytoplasmic loops connecting 

these helices, are involved in the formation of an extended drug-binding site(s).54 There 

are strong indications that the hydrophobic substrates of MDR1 are recognized within the 

membrane bilayer or in its vicinity, and this type of recognition makes the MDR1 protein 

a highly effective pump, preventing the cellular entry of toxic compounds.55 In the case of 

MRP1 a similar picture has emerged. Recent studies have explored some parts of the 

transmembrane domains involved in drug interactions.56 
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5A: MDR1-P-glycoprotein (substrates are recognized in, or near to the membrane lipid 
phase). Abbreviations: hD: hydrophobic drugs, PL: Phospholipids. (Reproduced 
from reference- 4) 

 

5B: MRP1. Both hydrophobic drugs and anionic conjugates, such as glutathione, are 
transported. The transport of some hydrophobic drugs may be coupled to reduced 
gluthatione (GSH) as GS-X molecules. (Reproduced from reference- 4) 

Figure-5. Possible model for the molecular mechanism of multidrug transporters. 
 

Based on the three-dimensional structures of bacterial ABC-units, the nucleotide binding 

sites appear as shallow, more or less open grooves, forming atypical active sites. The 

close interaction of the two ABC units' likely results in the formation of a fully competent 

catalytic site. The regions connecting the ABC units to the transmembrane domains have 
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an active key role in the transfer of conformational information within the protein, and the 

ABC signature region may have a special function in this regard.57  

 

The transport and ATPase cycle of the MDR proteins is blocked by vanadate, a 

phosphate-mimicking inhibitory anion, which stabilizes a transition state intermediate of 

the ATPase cycle. An occluded nucleotide in the catalytic sites is locked within the ABC 

protiens in this interaction. Similar to their ATPase activity, the rate of the vanadate-

dependent nucleotide occlusion in MDR-ABC proteins is greatly accelerated by the 

transported drug-substrates.58 It has recently been shown, that in the case of MDR1 the 

MDR1*MgADP*Vi complex exhibits a dramatically reduced binding affinity for the 

transported drug substrate, as compared to the MDR1*MgATP complex.59 This 

observation suggests that the hydrolytic step triggers conformational changes, which 

reduce drug binding to the binding site (and presumably makes drug binding to another 

site favorable, from which the drug can be released to the extracellular space).  

 

1.5 MDR Modulators 

Considerable interest exists in circumventing MDR by a variety of strategies. The 

pharmacological approach began with the report by Tsuruo that the calcium channel 

blocker verapamil and a phenothiazine derivative trifluperazine potentiate the activity of 

vincristine.60 MDR modulators (MDR reversal agents, MDR inhibitors, chemosensitizers) 

can be defined as compounds that permit the anticancer drug to reenter the cell by 

occupying the protein active or allosteric site(s), or by altering the physicochemical 

properties of the biomembranes. 

 

The very heterogeneous chemical structure of the compounds with MDR reversal activity 

has prevented structure-activity studies, although most MDR inhibiting molecules share a 

basic structural pattern comprising a cationic protonable site linked to an aromatic 

lipophilic part by a spacer of variable length.61 Structure-activity relationship (SAR) 

studies yielded only qualitative indications62-64 unless very homogeneous series of 

molecules are studied.65  

 

Most modulators identified interfere with Pgp by competitive or noncompetitive 

inhibition66 of its drug effluxing activity. The modulators are normally Pgp substrates, but 

some of them can only bind to the protein but are not effluxed from the cells, and can thus 
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be considered as pure antagonists. At least two other types of binding sites have been 

identified in the Pgp in addition to the ATP site, one for transport and other for 

modulation. It is, therefore, unknown whether one or more pharmacophores exist in the 

Pgp. The problem is complicated by the possible existence of mutant forms of the Pgp in 

different tumors with modified responses to modulators.  

 

Furthermore, the expression and function of the Pgp can be modulated by indirect 

mechanisms, such as interactions with membrane lipids67 or inhibition of protein kinase 

C.  The reversal of MDR is established using tumor cells lines that are made resistant by 

the exposure to an anticancer agent or by transfection of the mdr1 or mrp1 genes. The 

parameter most widely used to show the activity of MDR reversal agents is reversal factor 

(RF). This type of assay assumes that the reversal agent does not show inherent 

cytotoxicity at the concentrations tested.  

 

The function and structure of ABC transporters along with their role and also in acquired 

immunodeficiency syndrome (AIDS) related lymphoma has been reviewed recently.68-72 

The MDR modulators according to their chemical structures includes the arylalkylamines 

including verapamil and its analogs (verapamil 1, devapamil 2 etc.), tiapamil and its 

analogs (tiapamil 3 and DMDP 4) and miscellaneous arylalkylamines (SR33557) 5, 

aryloxypropanolamines (propafenone-related compound 6, quinolyloxypropanolamine 

derivatives (MS-073) 7, anthranylamides (XR9576) 8, salicylamides 9 and related 

derivatives, nitrogen heterocycles including pyrrole derivatives (A-30312 10, HWL-12 

11), staurosporine and analogs (NA-381 12, NA-382 13 and SF-2370 14), indole 

derivatives (yohimbine 15 and reserpine 16), quinoline and isoquinoline derivatives 

(chloroquine 17, mefloquine 18 and quinine 19), acridin-9-ones and related compounds 

(GF-120918 (GG-918)) 20, quinazolines (AV-200) 21, phenothiazines and related 

heterocycles73 (flupentixol 22 and trifluoperazine 23, pteridines and related condensed 

heterocycles (BIBW22BS) 24, 1,3,5-triazines and related compounds (S-9788) 25, 

oxygen heterocycles includes pyran derivatives 26, flavonoids (kaempferol 27 and 

quercetin 28 and coumarin derivatives (novobiocin 29), glutathione-related compounds as 

MRP reverters (MK-571) 30, cyclic peptides (cyclosporin A 31, SDZ PSC 833 32), 

depsipeptides (SDZ 280-446) 33 and  macrolactones and macrolactams (FK506 34 and 

VX-710 35, steroids and related derivatives (megestrol acetate 36, medroxyprogesterone 

acetate 37), terpenes and miscellaneous lipophilic compounds (taxuspine 38 and taxinine 
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derivatives 39) and most important dihydropyridines.74 Structures of representing 

molecules from each class are given in Figure 6.  
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Figure-6. Structures of various classes of drugs used as MDR reversal agents (contd.1) 
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Figure-6. Structures of various classes of drugs used as MDR reversal agents (contd.1) 

 



Part-III 
Advances Dihydropyridines and … 

 402 

N
H

Ph

OH

N
O

N
O

O

N N

H
N

X O

O

H3CO

N

RH3C

H3C CH3

NA-381 12
NA-382 13

Compound              R          X

CO2Et
CO2Et

H
O

N N

H
N

O

O

H3C

H3CO2C OH

SF-2370 (K-252a) 14

N
H

H3CO

H

H

H

OCH3

O

O

OCH3

OCH3

OCH3

H3COOC

N
N
H

H

H

H

OH

H3COOC

Reserpine 16

Yohimbine 15

HWL-12 11

N

HN NEt2

CH3

Cl

Chloroquine 17

N

HO

N
H

CF3
Mefloquine 18 N

HO

Quinine 19

H3CO

H
H2C

H

 
Figure-6. Structures of various classes of drugs used as MDR reversal agents (contd.) 
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Figure-6. Structures of various classes of drugs used as MDR reversal agents (contd.) 
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Figure-6. Structures of various classes of drugs used as MDR reversal agents (contd.) 
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Figure-6. Structures of various classes of drugs used as MDR reversal agents 

 
 

1.6 DHPs as Potential MDR Reversal Agents 

Historical Background:  

Some members of calcium channel blockers, such as nicardipine 40 and nimodipine 41, 

were identified as potent MDR antagonists. This early work stressed the lack of 

correlation between the calcium channel blocking and anti-MDR potencies.75 It has been 

reported that DHPs bind to a site which is allosterically coupled to the receptor site which 

binds anticancer agents and other MDR reversal agents.76,77 DHPs are well recognized as 

“privileged structure” for their multi receptor affinity.78,79  

 

In the derivatives bearing a stereogenic center at C-4, such as nicardipine, nimodipine, 

nitrendipine 42, felodipine 43, isradipine 44 and niguldipine 45, both stereoisomers differ 

markedly in their potencies as calcium channel blockers but they are about equally 
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effective as MDR reversal modulators.80,81 This has led to use of the R isomers as MDR 

modulators, as in the case of dexniguldipine 45. 

 

The ability to overcome MDR in many 1,4-DHPs varies considerably with the nature of 

the 3,5-substituents. The pyridylalkyl esters are specially suitable, as in the case of NIK-

250 4682,83 and related derivatives bearing dihydro-1,4-dioxene, dihydro-1,4-dithiane or 

dihydropyran substituents at C-4.84 Other representatives of this group that contain an 

alkyl group at C-4 47 have also shown potent and selective anti-MDR activity.85 

Compounds PAK-200 4886,87 and PAK 104P 4988 exemplify the absence of correlation 

between calcium channel and MDR antagonism, since neither N-alkyl-1,4- DHPs nor 

pyridines have significant calcium channel blocking activity.  

 

A systematic study of N-alkylated DHPs as MDR modulators has shown that the 

derivatives with an arylalkyl substituent on the nitrogen atom were more active than 

verapamil in potentiating the anticancer activity of vincristine in in vitro, but not in in 

vivo. However, the additional introduction of basic substituents in the C-3 ester group led 

to DHPs with in vivo activity89 (e.g. compound 50). 

 

The most widely studied anti-MDR DHPs is dexniguldipine hydrochloride 45 

(DNIG).90,91 In preclinical studies, it was particularly effective in taxane resistances of 

ovariam carcinoma MDR cell lines, where other chemosensitizers were rather 

ineffective.92 Besides its ability to reverse the MDR, dexniguldipine is a potent anticancer 

agent with well-documented anti-protein kinase C activity93,94 and it inhibits cleavage and 

relegation reactions of eukaryotic DNA topoisomerase I in a similar fashion to 

campothecin.95 
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Figure-7. Structures of various DHPs known as MDR reversal agents (contd.) 
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Figure-7. Structures of various DHPs known as MDR reversal agents (contd.) 
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Figure-7. Structures of various DHPs known as MDR reversal agents 

 

Over and above, these clinically established molecules, some other DHPs could also 

highlight themselves for their potent MDR reversal property.  

 

[3H]azidopine 51, a radioactive photoactive DHPs calcium channel blocker, photolabels 

Pgp in membrane vesicles from KBCl cells. This photolabeling was almost completely 

inhibited by the excess DHPs analogues that reversed or lowered drug resistance. In 

contrast, the labeling was not significantly inhibited by analogues that do not reverse 

resistance. Inferencing from this Kamiwatari et al., screened a series of DHPs analogues 
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for their MDR reverting ability in human KB cells.  PAK-1 52 was found to be a weaker 

calcium channel-blocking activity, when compared with other members of the series 

including the standard nifedipine but completely reverses the drug resistance. Though, 

nifedipine 53 and other analogs are better at blocking calcium channels than PAK-1, but 

they only partially reverse the resistance.96  

 

Two isomers of teludipine 54, R-enantiomer (GR66234A) and L-enantiomer (GR66235 

A) which were originally developed as a new lipophilic calcium channel blocker by 

Glaxo were evaluated for daunorubicin resistance reversal activity and found to be more 

effective than verapamil. Additionally, the difference in activity was also found on 

different cells. Verapamil and the enantiomers of teludipine are more active in ARNII 

cells than in MCF 7/R cells. There were no apparent differences in cellular daunorubicin 

accumulation between ARNII and MCF 7/R following exposure to teludipine, no 

differences in intracellular daunorubicin distribution in the presence of either MDR 

reversing agent was observed.97  

 

In an attempt to characterize chemosensitizer domains on Pgp, Boer et al., found that 

DHPs label multiple chemosensitizer domains on Pgp, distinct from the vinblastine 

interaction site. (-)-[3H]BZDC-DHPs 55 represents a valuable tool to characterize the 

molecular organization of chemosensitizer binding domains on Pgp by both reversible 

binding and photo-induced covalent modification. It provides a novel simple screening 

assay for Pgp active drugs. Photoreactive DHPs, BZDC-DHPs (2,6-dimethyl-4-(2-

(trifluoromethyl)-phenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid {2-[3-(4-benzoyl-

phenyl)propionylamino]ethyl} ester ethyl ester), and its tritiated derivative were 

synthesized as novel probes for human Pgp. (-)-[3H]BZDC-DHPs specifically 

photolabeled Pgp in membranes of multidrug-resistant CCRF-ADR5000 cells. In 

reversible labeling experiments a saturable, vinblastine-sensitive and high-affinity 

binding component was present in CCRF-ADR5000 membranes but absent in the 

sensitive parent cell line. Binding was inhibited by cytotoxics and known 

chemosensitizers with a Pgp. The DHPs such as niguldipine and a structurally related 

pyrimidine stereoselectively stimulated reversible (-)-[3H]BZDC-DHPs binding, 

suggesting that more than one DHPs molecule can bind to Pgp at the same time.98-99  
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B859-35, a DHP, which was previously shown in vitro to be highly effective in reversing 

MDR of Pgp positive tumor cell lines, such as the adriamycin (ADR) resistant 

erythroleukemia F4-6RADR cells.  In in vivo studies, B859-35 was highly active in 

reducing the number of viable cells in the resistant tumor nodule by 67±9%. This model 

provides evidence that even in vivo, MDR modulators can be effective in reversing drug 

resistance. In addition, it presents a potentially useful and rapid preclinical system for in 

vivo studies on the modification of drug resistance.100  

 

The modulatory activity of the novel pyridine analogue PAK-104P on MRP-mediated 

resistance to doxorubicin and paclitaxel was investigated in two doxorubicin-selected 

human tumor cells [HT1080/DR4 (sarcoma) and HL60/ADR (leukemia)]. The 

experiment demonstrated that PAK-104P was effective in restoring cellular doxorubicin 

concentrations in resistant cells to levels comparable to those obtained in parental cells. In 

addition to reversing Pgp-mediated MDR, the pyridine analogue provides an example of 

an effective in vivo modulator of MRP-mediated MDR.101  

 

From QSAR studies of several hundreds of DHPs, seven DHPs were found to be very 

active.  From these predictions, manidipine (CV-4093) 56, a newly synthesized DHPs 

calcium channel blocker, were predicted to be an extremely active MDRR agent. The 

probability for the DHP to show MDRR activity is very high (99%), owing to the 

presence of several biophores.102  
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Figure-8. Structures of new DHPs 

 

Earlier, N-alkylated 1,4-DHPs of general formula 57 & 58 were synthesized which were 

found to possess a remarkable activity for overcoming resistance to anticancer agents. 

The DHPs were used in combination with anticancer agents. The DHPs were also found 

very potent in enhancing the therapeutic activity of anticancer agents.103  
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Figure-9. Structures of 57 and 58 DHPs. 

 

In continuation to this, new N-alkylated 1,4- DHPs derivatives were synthesized and their 

ability to overcome MDR was examined in vincristine-resistant P388 cells (P388/VCR 

cells). DHPs that possessed an arylalkyl substituent on the DHPs ring nitrogen 59, 60, 61 

were more potent than verapamil in potentiating the cytotoxicity of vincristine against 

P388/VCR cells. However, neither drug effectively enhanced the antitumor activity of 

vincristine in tumor-bearing mice. Introduction of basic nitrogen-containing substituents 

on the side chain of 1,4- DHPs gave improved activity in vitro and in vivo. The piperazine 

derivative 62 and 63 were more than 10 times as potent as verapamil in vitro. Four 

compounds 64, 65, 66 and 67 selected for in vivo testing showed superior antitumor 

activity in P388/VCR-bearing mice in combination with vincristine. The SARs of the 

compounds are discussed.89 
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 Figure-10. Structures of various N-substituted DHPs (contd.2) 
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Figure-10. Structures of various N-substituted DHPs (contd.3) 
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Figure-10. Structures of various N-substituted DHPs 

 

Further, eleven 4-phenyl-3,5-diacetyl- 1,4- DHPs substituted at the C-4 phenyl ring (G 

series) were synthesized and compared for their cytotoxic activity and MDR reversing 

activity in in vitro assay systems. Among them, compound 68 showed the highest 

cytotoxic activity against human promyelocytic leukemia HL-60 and human squamous 

cell carcinoma HSC-2 cells. However, no compounds tested produced radicals at pH 7.4-

12.5. The activity of Pgp responsible for MDR in tumor cells was reduced by compounds 

69, 70, 71, 72, 73, 74 and 75. However, compounds 76, 68 and 77 were hardly active, 

while 78 did not show a MDR reversing effect at 2.0-20 µg/mL104. These DHPs also 

showed synergistic interaction with ampicillin and erythromycin on E. coli 
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K12LE140/F’lac. The antibacterial effect of ampicillin was enhanced by most analogues. 

But none of the DHPs had any effect on a MDR clinical isolate of E.coli Gy-1/AresErres.
105
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Figure-11. Structure of G series DHPs 
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When the acetyl group of G series was replaced with the benzoyl group (3, 5-dibenzoyl-

1,4-DHPs) for GB series and test for their antibacterial effect along with Erythromycin, 

the MIC values are reduced  against clinical isolates of E.coli Gy-1/AresErres. Compound 

79 was the most effective in enhancing the activity of erythromycin.106 Fifteen 4-phenyl-

3,5-dibenzoyl-1,4-dihydropyridines substituted at the 4-phenyl ring were synthesized and 

compared for their cytotoxic activity and MDR reversing activity in in vitro assay 

systems. Among them, 2-CF3, 2-Cl and 3-Cl derivatives showed the highest cytotoxic 

activity against human oral squamous carcinoma (HSC-2) cells. The activity of Pgp 

response for MDR in tumor cells was reduced by some of new derivatives, verapamil and 

nifedipine. These data suggest that 3,5-dibenzoyl-4-(3-chlorophenyl)-1,4-dihydro-2,6-

dimethylpyridine 79 can be recommended as a new drug candidate for MDR cancer 

treatment.107  

 

Further, it was found that 4-(2'trifluoromethylphenyl)-80 and 4-(3'chlorophenyl)-3,5-

dibenzoyl-2,6-dimethyl-1,4-dihydropyridine 79 showed not only MDR reversal activity, 

but also markedly higher cytotoxicity against two human oral tumor cell lines than one 

normal cell (human gingival fibroblast). In this report, tumor-specificity of 80 and 79 was 

first confirmed using a total of seven human cells, including four tumor cell lines 

(squamous cell carcinoma HSC-2, HSC-3, submandibular carcinoma HSG, 

promyelocytic leukemia HL-60) and three normal cells (gingival fibroblast HGF, pulp 

cells HPC and periodontal ligament fibroblast HPLF). Compound 80 and 79 were also 

capable to  induce apoptotic cell death in HL-60 and HSC-2 cells,  monitored by using 

several apoptosis associated markers, such as internucleosomal DNA fragmentation, 

activation of caspases -3, -8 and -9 and expression of pro-apoptotic proteins and an anti-

apoptotic protein (Bcl-2). It was proposed that cell death was induced by 80 and 79 via 

radical-mediated reaction.108  
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Figure-12. Structures of active GB DHPs 
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When the effects of DP series (selective molecules from G and GB series) namely 3,5-

diacetyl and 3,5-dibenzoyl-1,4- DHPs were investigated on vascular functions in vitro, by 

comparing their mechanical and electrophysiological actions in rat aorta rings and single 

rat tail artery myocytes, respectively, along with their MDR reversing activity in L5178 Y 

mouse T-lymphoma cells transfected with MDR1 gene, DP7 81 was found to inhibit L-

type Ca2+ current recorded in artery myocytes in a concentration-dependent manner, with 

IC50 (M) values ranging between 1.12 10-6 and 6.90 10-5. Other derivatives which are 

tested for MDR reveritng activity tested in L5178 MDR cell line,  compound 75, 69 and 

DP7, exhibited an MDR reversal activity, with IC50 values ranging between 3.02 10-7 

and 4.27×10-5, DP7 being the most potent. From this study, DP7 represent a lead 

compound for the development of potent DHPs MDR chemosensitizers devoid of 

vascular effects.109 DP7 has been shown to be a powerful Pgp inhibitor, almost devoid of 

cardiovascular effects, but capable of inhibiting liver CYP3A. DP7 is now considered a 

lead compound for the development of novel DHPs which do not affect CYP enzyme 

system but still retain the activity towards ABC-efflux transporters.110 Cardiac effects of 

DP7 using Langendorff-perfused rat heart have been investigated and compared to that of 

nifedipine. Nifedipine decreased concentration-dependent (IC50 = 8.89 ± 1.09×10−8 M) 

left ventricular pressure leaving unaltered coronary perfusion pressure, whereas DP7 did 

not affect these parameters. Nifedipine did not modify QRS and QT intervals of ECG.111 

It has also been investigated that neither pyruvate kinase nor lactate dehydrogenase was 

inhibited by DP7 which, however, inhibited concentration-dependently both Pgp ATPase 

activities, with IC50 value of 1µM.112  
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Figure-13. Structures of active DP DHPs 

 

In an attempt to further modify the DP7, various modifications were done, particularly on 

C-5 benzoyl group and C-4 phenyl ring as in HK series 82.113  
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Figure-14. Common structure of HK series DHPs 

In a recent study by Azizi E et al., the work apparently initiated on basis of results from 

DP series, new series of DHPs modified at C-4 position carrying 1,3-thiazole substituted 

at C-2 has been investigated for inhibitory effects on cell proliferation of parental and 

moderately resistant T47D breast cancer cells. New DHPs were also studied for their 

effects on MDR1 reversal agent in these breast cancer cells and compared to verapamil as 
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standard. Two DHPs of 83 and 84 showed noticeable potentiation of doxorubicin 

cytotoxicity compared to doxorubicin alone, particularly in resistant cells. This effect was 

similar to that of verapamil. Compound 83 showed the highest effect on resistant cells. 

Two newly synthesized DHPs derivatives, 83 and 83, are promising potential new MDR1 

reversal agents.114  
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Figure-15. Structure of 83 and 84 
 
 
Some new hybridized derivatives of 1,4-DHPs (DL series) having m-nitrophenyl group at 

C-4 and changing variable substitutions at C-3 and C-4 were investigated for their 

inhibitory activity for Pgp by flow cytometry in the MDR human colon cancer cell lines 

(COLO320) and in human MDR1 gene-transfected mouse lymphoma cells (L 5178 Y). 

The cytotoxicities of the DHPs were also examined against human normal and cancer cell 

lines. The majority of the tested DHPs proved to be effective inhibitors of rhodamine 123 

outward transports. Some DHPs displayed higher cytotoxic activity against four human 

oral tumour cell lines against three normal human oral cell lines. New ring substituents 

could well prevent the oxidation of the ring of the aromatic compound. Some DHPs at the 

higher concentration was found to be toxic as indicated by deformation in the cell size 

and the intracellular structures of the cells were changed during the short-term 

experiments. The majority of the DHPs tested were shown to enhance the drug retention 

in the cells by inhibiting the efflux-pump activity. Among the DHPs, 85, 86, 87, 88, 89 

and 90 were found to be the most effective MDR modulators. These DHPs caused a dose-

dependent inhibition of the MDR Pgp.115  
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Figure-16. Structure of active DL series of DHPs 

 
Further, symmetrical di-carbamoyl and di-carboxamide derivatives 91, 92 & 93 series 

were synthesized and studied for their anti Pgp activity, most of the studied compounds 

were moderately active against L-5178 cells.116  
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Figure-17. Structure of 91, 92 and 93 series DHPs 
 
The structures of the DHPs reported from our research group were proved by X-ray 

crystallographic studies.117-119 Some of similar DHPs were also found very potent against 

M. tuberculosis.120,121  

 

New C-4 fused heterocyclic systems in DHPs, AHC-52 94 (methyl 2-(N-benzyl-N-

methylamino)ethyl-2,6-dimethyl-4-(2-isopropyl-pyrazolo[1,5-a]pyridine-3-yl)-1,4-

dihydropyridine-3,5-dicarboxylate) and its pyridine analog AHC-93 95 has also been 

reported to reverse MDR by inhibiting Pgp.122-124  
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Figure-18. Structure of AHC-52 and AHC-93 

 

A series of 4-aryl-1,4-DHPs and corresponding aromatized 4-arylpyridines has been 

synthesized aimed to enhance MDR activity, while minimizing Ca2+ channel binding. 

Synthesized DHPs were evaluated for [3H]vinblastine accumulation studies. 4-Aryl-1,4- 

DHPs and all 4-arylpyridines can successfully restore intracellular accumulation of 

vinblastine in a resistant human breast adenocarcinoma cell line, MCF-7/adr, which over 

expresses Pgp. The most potent DHPs 96, 97 and 98 led to an approximately 15-fold 

increase of vinblastine accumulation. All of the DHPs tested were also able to 

substantially reduce IC50 values of daunomycin and increase its cytotoxicity in MCF-

7/adr-resistant cells, confirming the results of the vinblastine accumulation studies. Out of 

these DHPs, eight DHPs have negligible effect on calcium channel binding over the 

concentration range from 15 to 2500 nM.125  
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Figure-19. Structures of active DHPs 96, 97 and 98 

 

(±)3-(3-(4,4-Diphenylpiperidin-1-yl)propyl) 5-methyl 4-(3,4-dimethoxyphenyl)-2,6-

dimethyl-1,4-dihydropyridine-3,5-dicarboxylate ((±)-DHPs-014) 99, is a new 4-aryl-1,4- 

DHPs that can reverse MDR mediated by the ATP-binding cassette (ABC) transport 

proteins, Pgp, MDR1 and breast cancer resistance protein; This DHP exhibits negligible 
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calcium channel blocking activity. Three intravenous (1, 2 and 5 mg/kg) and two oral (25 

and 50 mg/kg) doses were administered to female Sprague-Dawley rats. A two-

compartment model with nonlinear elimination best characterized the pharmacokinetic 

profiles after intravenous and oral administration in rats. The terminal half-life of 99 

increased and the systemic clearance significantly decreased at higher doses, indicating 

nonlinear elimination. The dose-dependent clearance is likely due to saturation of 

metabolism. The apparent volume of distribution of this DHP was 2.0 L/kg in rats and 

was unchanged with increasing intravenous doses. The estimated oral bioavailability was 

8.2%. The poor bioavailability is likely due to the poor solubility of the compound, as 

well as to substantial first-pass elimination.126  

 

While comparing 99 with niguldipine, nicardipine, nifedipine, and nitrendipine for their 

effects on breast cancer resistance protein (BCRP) mediated efflux and on the 

cytotoxicity of the BCRP substrate and chemotherapeutic agent mitoxantrone, 99 was 

found to be a potent BCRP and Pgp inhibitor in vitro. This DHP may be promising agents 

for clinical application due to their potent inhibition of both BCRP and Pgp. This study 

represents the first report that DHPs and pyridines as potent inhibitors of BCRP.127 
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Figure-20. Structure of DHPs-014  

 

Quantitative structure–activity/pharmacokinetic relationships (QSAR/QSPKR) for a 

series of synthesized DHPs and pyridines as Pgp 100 & 101 inhibitors was generated by 

3D molecular modeling using SYBYL and KowWin programs. A multivariate statistical 

technique, partial least square (PLS) regression, was applied to derive a QSAR model for 
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Pgp inhibition and QSPKR models. Cross-validation using the “leave-one-out” method 

was performed to evaluate the predictive performance of models. For Pgp reversal, the 

model obtained by PLS could account for most of the variation in Pgp inhibition (R2 = 

0.76) with fair predictive performance (Q2 = 0.62). Nine structurally related 1,4-DHPs 

drugs were used for QSPKR analysis. The models could explain the majority of the 

variation in clearance (R2 = 0.90), and cross-validation confirmed the prediction ability 

(Q2 = 0.69)128.  
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Figure-21. Structure of Type-I 100 and Type-II 101 DHPs 

 

Optically pure DHPs substituted at C-4 with 3-nitro phenyl as shown in structure 102 are 

capable of potentiating the activity of anticancer agents in tumor cell (synergism). This 

overcoming of resistance is not only limited to resistance to cytostatics but also to other 

therapeutics such as for the treatment of malaria.129  
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Figure-22. Structure of 102 

 

In a similar vein, several newly synthesized 4-aryl-1,4-DHPs and respective aromatized 

pyridines on drug efflux mediated by MDR associated protein 1 (MRP1, ABCC1) in 

human small cell lung cancer H69AR (overexpressing MRP1) and wild type H69 cells, 

five out of sixteen DHPs and six out of nine pyridines were found to significantly 

increase the intracellular accumulation of vinblastine in resistant H69AR cells (p<0.01) at 

a concentration of 2.5 µM. Four DHPs, which significantly increased vinblastine 

accumulation, were tested for their effect on daunomycin cytotoxicity in H69AR cells and 

found to significantly decrease the IC50 of daunomycin, confirming the accumulation 

study results. The DHPs were also tested for their effect on intracellular glutathione 

(GSH) concentrations, a co-substrate for MRP1-mediated efflux in H69AR and Panc-1 

cells. After 2-hr and 24-hr incubation with a DHP compound, 103 and its pyridine 

derivative 104 there was a small (20%) but statistically significant decrease in 

intracellular GSH in Panc-1 cells.130  
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Figure-23. Structures of 103 and 103 DHPs 

 

A series of N-substituted cage dimeric 1,4-DHPs was also evaluated as inhibitors of 

membrane efflux pump Pgp in MDR cancer cells. Some of the reported 1,4-DHPs  have 

MDR modulating effect on Pgp, significantly superior to that of verapamil. The most 

active 1,4-DHPs are lipophilic substituted N-benzyl and -phenyloxycarbonyl derivatives 

105 and 106. Some P-gp substrate properties have been suggested only for the N-

phenyloxycarbonyl compound 106. Competitive studies with cytotoxic Pgp substrate 

epirubicin indicated the overcoming of MDR in comparison of the cell line at 

concentrations below cytotoxic ranges of the most effective MDR-modulating 

concentrations of the compounds themselves. The N-benzyl DHPs exhibited the highest 

activity and practically no Pgp substrate properties. It could be a promising lead candidate 

for further clinical studies and structural improvement for the overcoming of MDR131.  
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Figure-24. Structure of 105 and 106 DHPs 

 

Additional study on quantitative structure activity relationships of newly synthesized 1,4 

DHPs possessing a 1-pentyl group at the 4-position  was carried out. 3-Pyridylpropylester 

was found to be one of the effective fragments for overcoming Pgp mediated MDR in 

cultured human cancer cells, in vitro.  It was found to increase the life span of mice 

having Pgp over expressing MDR P388 leukemia. All 1,4-DHPs had weak calcium 

antagonistic activities, but there appeared no relationship between MDR reversing effect 

and calcium antagonistic activity. Some 1,4-DHPs  such as 107 and 108 with weak 

calcium antagonistic activities showed effective MDR reducing activities both in vitro 

and in vivo. In particular, compound 108 was expected to be the most suitable compound 

to overcome MDR.132 
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Figure-25. Structures of 107 and 108 

 

Two other DHPs, 109 and 110 were also found to be potent antagonist against cancer 

cells with potentiation of anticancer agents.133,134  
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Figure-26. Structures of 109 and 110 

 

Additionally, a series of novel N-acyloxy-1,4-DHPs 111 have been synthesized and 

evaluated as Pgp inhibitors in an in vitro. QSAR were also established to identify 

significance and regiospecific influence of certain functional groups.135  
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Figure-27. Structure of compound 111 
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Modification at position 2 of 1,4-DHP such as in DHPs of formula 112, 113 and 114 

increases very significantly the sensitivity of cancer cells to anticancer agents as well as 

the sensitivity of cancer cell that have acquired a resistance to different anticancer agents, 

but at the same time exhibits only weak calcium channel blocking properties, which 

suppress their pharmacological hypotensive effect and make it possible for them to be 

used in anticancer therapy without causing undesirable side effects.136  
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Figure-28. Structures of 112, 113 and 114 DHPs 
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1.7 Mitotic Kinase Egs5 Inhibitors as Anticancer Agents: 

Drugs that target the mitotic spindle are among the most effective cancer therapeutics 

currently in use. Vinca alkaloids, which promote microtubule depolymerization, and 

taxanes (paclitaxel and taxotere), which stabilize microtubules, inhibit spindle function by 

disrupting microtubule dynamics, leading to mitotic arrest and apoptosis.137,138 Mitotic 

arrest is mediated by the spindle checkpoint, which is activated by microtubule-targeted 

drugs.  

 

Recently, inhibiting the mitotic kinesin Eg5 [also known as kinesin spindle protein 

(KSP)], which is required for the formation of a bipolar spindle, has gained significant 

attention as an alternative strategy to interfere with spindle function.139-141 Blockage of 

Eg5 function with selective inhibitors, results in the characteristic monoastral phenotype, 

mitotic arrest, and apoptosis in various tumor cell lines142-144 (Figure-29). Similar to 

microtubule poisons, inhibition of Eg5 leads to activation of the spindle checkpoint.145 

The spindle checkpoint prevents chromosome missegregation and aneuploidy by ensuring 

the accurate segregation of sister chromatids to the dividing daughter cells during 

mitosis.146-149 The spindle checkpoint remains active until all chromosome kinetochores 

are properly attached to the bipolar spindle and chromosomes are aligned at the 

metaphase plate. Proper function of the spindle checkpoint requires the concerted action 

of several checkpoint proteins, which include BubR1, Bub1, Bub3, Mad1, and Mad2. 

Several of these components have been shown to preferentially localize to unattached 

chromosomes. The active checkpoint generates a ‘wait anaphase signal’ to inhibit the 

anaphase-promoting complex. Inhibition of the anaphase-promoting complex prevents the 

degradation of several key mitotic proteins, which must be degraded for anaphase 

initiation to occur. The presence of unattached chromosomes or a lack of spindle tension 

that is normally generated by bipolar chromosome attachment results in continued 

checkpoint activation, mitotic arrest, and eventually programmed cell death.150-153 
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Figure-29. Immunolocalization of Eg5 in bipolar and monoastral spindles. At the 
completion of the cycled spindle assembly reaction, the spindles were 
diluted, fixed, layered over glycerol cushions, and spun onto coverslips. The 
samples were then processed for immunofluorescence. (A) An overlay 
shows the chromatin (blue), tubulin (red), and Eg5 (green) in a bipolar 
spindle assembled in vitro. (B) Eg5 alone. The protein is localized along 
microtubules and shows enrichment at the spindle poles. (C) Addition of 50 
mM monastrol to assembly reactions results in the formation of monoastral 
spindles. An overlay of the chromatin (blue), tubulin (red), and Eg5 (green) 
is shown. (D) Eg5 is immunolocalized along microtubules and is 
concentrated at the center of the monoaster. Bars: 5 mm. 

 

Recent studies have shown a correlation between defects in the spindle checkpoint and 

chromosomal instability, which is frequently observed in tumor cell lines.154-160 In 

addition to an association between defects in the spindle checkpoint and chromosomal 

instability, spindle checkpoint defects are also associated with the susceptibility of tumor 

cells to induction of mitotic arrest and apoptosis by microtubule-targeted agents, such as 

paclitaxel and nocodazole. Several studies have shown that impairment of spindle 

checkpoint function leads to a reduction in the level of mitotic arrest and apoptosis 

normally induced by antimicrotubule drugs.161-163  
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Other studies, however, have concluded that inactivation of the spindle checkpoint 

sensitizes cells to apoptosis induced by antimicrotubule drugs.164-165 The relationship 

between the spindle assembly checkpoint and inhibition of the mitotic kinesin motor 

protein Eg5 is just beginning to be elucidated. In a recent study, Tao et al.,166 and Gregory 

et al.,167 suggest that induction of apoptosis by an Eg5 inhibitor requires sustained mitotic 

arrest, followed by adaptation and slippage into the next G1 phase. 

 

In recent years, dihydropyrimidinones and their derivatives have occupied an important 

place in natural and synthetic organic chemistry mainly due to their wide range of 

biological activities168-169, notably as calcium channel blockers.170,171 Additionally, the 

structurally related marine alkaloids batzelladine A 115 and B 116 were shown to be the 

first low molecular weight natural products to inhibit the binding of HIV gp-120 to CD4 

cells, so disclosing new vistas towards the development of AIDS therapy.172 
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More recently, ethyl 4-(3-hydroxyphenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydro-

pyrimidine-5-carboxylate, also known as monastrol 117, was identified as a novel low 

molecular weight cell-permeable molecule for the development of potentially new 

anticancer drugs.173 This compound specifically affects the cell division (mitosis) by a 

new mechanism, which does not involve the binding to tubulin in contrast with the 

natural taxanes, vinca alkaloids and epothilones. It has been established that the activity 

of monastrol is based on the specific and reversible inhibition of the motility of mitotic 

kinesin Eg5, a motor protein required for bipolar spindle formation during mitosis.174-178 

Moreover, Maliga et al.,179 have demonstrated that monastrol inhibits the motor activity 

of Eg5 by inhibiting ATP hydrolysis through an allosteric mechanism, whereas the 

corresponding 4-hydroxyphenyl derivative is a weak Eg5 inhibitor and that (S)- monastrol 
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[(S)] is the biologically active enantiomer, indicating a more potent and specific Eg5 

inhibitor. 
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Monastrol 117  

Although many reports have been dedicated to elucidate the mechanism of action of 

monastrol as mitotic inhibitor in the cell cycle,180-182 few examples concerning the 

anticancer activity183-186 were reported. Recently, Leizerman and coworkers described the 

differential effects of monastrol on AGS and HT-29 cell lines in comparison with taxol.187 

 
Further, Russowsky et al.,188 investigated firstly the differential anti-proliferative activity 

of monastrol 117 and its oxo-analogue, named oxo-monastrol 118, as well as the thio-

analogues 119a-123a and the corresponding oxo-analogues 119b-123b (all compounds in 

the racemic form) on seven human cancer cell lines. 

 

Monastrol and the thio-derivatives 120a, 121a and 123a displayed relevant 

antiproliferative properties with 3,4-methylenedioxy derivative 123a being approximately 

more than 3 times more potent than monastrol against colon cancer (HT-29) cell line. 
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Figure-30. Monastrol 117, oxo-Monastrol 118, thio-analogues 119a-123a and oxo-

analogues 119b-123b. 

 

Further, Lopez et al.,189 has synthesized some novel derivatives 124 of monastrol and 

describe their anticancer activity. Most of the synthesized compounds were very potent in 

inhibition of Eg5 by inhibiting ATP hydrolysis through an allosteric mechanism.  
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Figure. 31. Structure of some anticancer DHPM derivatives. 
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Some of the 5-benzoyl substituted derivatives in particular 125, 126, 127, 128, 129 and 

130 were very potent cytotoxic agents with IC50 values of 14.7, 1.10, 0.25, 0.15, 5.0 and 

0.8 respectively.  

N
H

NH

O

S

OH

125

N

NH

O

S

126

N
H

NH

O

S

127

OH

N

NH

O

S

OH

N

NH

O

O

128 129

N

NH

O

O

OH

130

 

Figure-32. Structure of some potent 5-benzoyl substituted DHPM derivatives. 
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2. Aim of the Present Work 

Literature survey reveals that DP-7 1 (dihydropyridine derivative) is a potent multi drug 

reverting agent1-3 and on the other hand, monastrol 2 (dihydropyrimidine derivative) is 

potent inhibitor of Eg5, that inhibits ATP hydrolysis through an allosteric mechanism.4-5 

Thus, it was thought to hybridize the structural features of these two potent anticancer 

molecules so that multidrug reverting activity as well as Eg5 inhibitor activity can be 

obtained by a single molecule. The structure of the hybridized molecule is given in 

Scheme-1. These hybridized molecules are aza analogues of the DP-7, bearing various 

substitutions on the 4th position of the dihydropyrimidine ring. 

N
H

O

OO

N
H

NH

OH

O

O

S

N
H

NH

O

X

R

X=S, O

R=Various substituents

DP-7 1 Monastrol 2

Scheme-1
 

Dihydropyrimidines (aza analogues of dihydropyridines) are well documented in the 

literature and various methods of their synthesis have been reported through Biginelli’s 

reaction. The original Biginelli’s reaction is a three-component reaction between ethyl 

acetoacetate, urea or thiourea and an aldehyde, under Bronsted acidic catalysis that 

affords 3,4-dihydropyrimidin 2(1H)-ones.6 However, this reaction suffers from the harsh 

conditions, long reaction times and frequently low yields. Although there are many 

methods for the preparation of dihydropyrimidinones7,8, we were particularly interested in 

multicomponent process which allows rapid access to large number of derivatives in very 
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short time period. Chiral versions of multi-step9 or multicomponent10-13 synthesis of 

dihydropyrimidinones were recently reported. The use of Lewis acids as catalyst has been 

extensively explored.14-20 Recently, it has been demonstrated that the 3,4-

dihydropyrimidin-2(1H)-ones can be easily synthesized by the multicomponent 

cyclocondensation of ethyl acetoacetate, urea and aldehydes under SnCl2.2H2O
21 and 

In(OTf)3 catalysis.22 

 

In the present report, we had used conc. HCl as catalyst for the synthesis of 

dihydropyrimidine derivatives (VIIi-xxx), using simple protocol and avoiding used of 

expensive catalysts. 

HN

N
H

R O

X

R = Ph, 4-Cl Ph, 3-Cl Ph, 2-Cl Ph, 4-CN Ph, 
       3-Br Ph, 3-OH Ph, 3-NO2
X = O, S

VIIi-xxx  

 

The newly synthesized derivatives have been evaluated for their Multi Drug Reverting 

activity on MDR1-gene transfected mouse lymphoma cell line (l 5178 y) by flow 

cytometry. 
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3. Results and Discussion 

3.1 Synthesis of Starting Material: Benzoylacetone 

Benzoylacetone was synthesized as per literature method1 by reacting acetophenone and 

ethylacetate in the presence of strong alkali such as sodium hydride or freshly prepared 

sodium methoxide under chilling conditions as given in the Scheme 1.    

O

O

+

O

EtONa

0-2oC

O O

Ethyacetate Acetophenone Benzoylacetone
Scheme-1  

 

Acylation of ketones with esters requires the presence of a strong base under anhydrous 

conditions. Ketones, where only one unique mesomeric carbanion formed (e.g. 

symmetrical ketones or alkyl aryl ketones) yield a single regioisomer. The reaction is 

illustrated by the formation of benzoylacetone from acetophenone and ethyl acetate and 

may be outlined mechanistically in Scheme-2. 

Ph

O

H
Ph CH2

O

Ph CH2

O

+ EtOH

mesomeric anion

OEt

O

H2C Ph

O
O

Ph

O

+

-EtOH

O

Ph

O

H3O

O

Ph

O

Scheme-2: Proposed mechanis for the synthesis of bezoylacetone

OEt

OEt

 

 

3.2 Synthesis of Target Dihydropyrimidine Compounds (VIIi-xxx) 

The target compounds were synthesized following classical Biginelli reaction by reacting 

1,3-diketon (benzoylacetone), urea or thiourea and substituted aromatic aldehyde as a 

single pot reaction in the presence of catalytic amount of conc. HCl as given in the 

Scheme-2. 
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O O

H2N NH2

X

+

X = S or O

HN

N
H

O

X

R
O H

+ Ethanol

Reflux
R

Scheme-3. Synthesis of 4-phenyl(sub)dihydropyrimidines

(VII i-xxx)

 

 

The mechanism of the Biginelli reaction has been the subject of some debate over the past 

decades. Early work by Folkers and Johnson suggested that bisureide 14, i.e., the primary 

bimolecular condensation product of benzaldehyde 2 and urea 3, is the first intermediate 

in this reaction.2 In 1973, Sweet and Fissekis proposed a different pathway and suggested 

that carbenium ion 12, produced by an acid-catalyzed aldol reaction of benzaldehyde 2 

with ethyl acetoacetate 1, is formed in the first and limiting step of the Biginelli 

condensation (2→12→13).3 In 1997, mechanism was reinvestigated using 1H/13C NMR 

spectroscopy and trapping experiments and it has been established that the key step in this 

sequence involves the acid-catalyzed formation of an N-acyliminium ion intermediate of 

type 11 from the aldehyde 2 and urea 3 precursors.4 Interception of the iminium ion 11 by 

ethyl acetoacetate 1, presumably through its enol tautomer, produces an open-chain 

ureide 13 which subsequently cyclizes to hexahydropyrimidine 16. Acid-catalyzed 

elimination of water from 16 ultimately leads to the final DHPM product 4. The reaction 

mechanism can therefore be classified as an R-amidoalkylation, or more specifically as an 

R-ureidoalkylation.5 The alternative “carbenium ion mechanism” 2→12→133 does not 

constitute a major pathway; however, small amounts of enone 15 are sometimes observed 

as byproduct.4    Although the highly reactive N-cyliminium ion species 11 could not be 

isolated or directly observed, further evidence for the proposed mechanism was obtained 

by isolation of intermediates 17 and 18, employing sterically bulky6 or electron-deficient 

acetoacetates,7 respectively. The relative stereochemistry in hexahydropyrimidine 18 was 

established by an X-ray analysis.7 In fact, a number of hexahydropyrimidines closely 

related to 18 could be synthesized by using perfluorinated 1,3-dicarbonyl compounds or 

β-keto esters as building blocks in the Biginelli condensation.8 
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HN

OH
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O
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3
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H
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Scheme-4. Mechanism of Biginelli reaction  
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Using Biginelli protocol following hybridized DHPM derivatives has been synthesized.  

Table-44. Physical data of the newly synthesized derivatives 

HN

N
H

R O

X

(VII i-xxx)  
 

S. No R X Mol 
Formula 

(Sol. of Recryst.) 

M.P. 
(oC) 

IR (cm-1) 
(KBr) 

Mass 
(m/e) 

NMR (δppm) 
(DMSO-d6) 

VII i 

 

O C18H16N2O2 

(E) 
190-192 3269(γNH), 

2915(γC-H), 
1710(γCO), 
1680(γCONH). 

-- -- 

VII ii Cl

 

O C18H15ClN2O2 

(E) 
228-230 3307(γNH), 

1706(γCO), 
1677(γCONH), 
1586(γCH). 
 

326[M+], 
311, 215, 
185. 

1.72 (s, 3H, CH3), 5.46 (d, 1H, H at 4, J = 2.96), 7.34 
(br, s, 1H, NH of 1), 7.22-7.49 (m, 9H, Ar-H), 8.94 (s, 
1H, NH at 3). 

VII iii Cl

 

O C18H15ClN2O2 

(E) 
214-216 3273(γNH), 

1712(γCO), 
1674(γCONH), 
1600(γCH). 

326[M+], 
311, 307, 
291, 215, 
185. 

1.72 (s, 3H, CH3), 5.43 (d, 1H, H at 4, J = 3.04), 7.59 
(br, s, 1H, NH at 1), 7.17-7.50 (m, 9H, Ar-H), 9.06 (s, 
1H, NH at 3). 

VII iv 

Cl

 

O C18H15ClN2O2 

(E) 
248-250 3284(γNH), 

2951(γCH), 
1650(γCONH). 
 

-- 1.79 (s, 3H, CH3), 5.87 (d, 1H, H at 4, J = 2.56), 7.02 
(br, s, 1H, NH at 1), 7.19-7.50 (m, 9H, Ar-H), 9.04 (s, 
1H, NH at 3). 
 

II v 

 

O C26H20N2O2 

(E) 
232-234 2986(γCH), 

1652(γCONH). 
 

-- -- 
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S. No R X Mol 
Formula 

(Sol. of Recryst.) 

M.P. 
(oC) 

IR (cm-1) 
(KBr) 

Mass 
(m/e) 

NMR (δppm) 
(DMSO-d6) 

VII vi 
O

 

O C16H14N2O3 

(E) 
>280 3411(γNH), 

2965(γCH), 
1710(γCO), 
1652(γCONH). 

-- -- 

VII vii 

 
 

O C22H18N2O2 

(E) 
226-228 3369(γNH), 

2990(γCH), 
1714(γCO). 

-- -- 

VII viii O

 
 

O C24H20N2O3 

(E) 
168-170 3278(γNH), 

2920(γCH), 
1697(γCO), 
1674(γCONH). 

-- 1.72 (s, 3H, CH3), 5.53 (d, 1H, H at 4, J = 2.68), 6.71 (s, 
1H, NH at 1), 6.81-7.49 (m, 14 H, Ar-H), 8.60 (s, 1H, 
NH at 3). 

VII vix 

O

O

 
 

O C20H20N2O4 

(E) 
206-208 3233(γNH), 

2941(γCH, 
1697(γCO). 

-- -- 

VII x H
N

 
 

O C20H17N3O2 

(E) 
268-270 3405(γNH), 

3099(γCH), 
1706(γCO). 

-- -- 

VII xi CN

 

O C19H15N3O2 

(E) 
192-194 3296(γNH), 

2232(γCN), 
1677(γCONH). 

-- 1.70 (s, 3H, CH3), 5.50 (d, 1H, H at 4, J = 3.24), 7.71 
(br., 1H, NH at 1), 7.37-7.63 (m, 9H, Ar-H), 9.16 (s, 
1H, NH at 3). 

VII xii NO2

 
 

O C18H15N3O4 

(E) 
240-242 3229(γNH), 

1710(γCO), 
1685(γCONH). 

-- -- 
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S. No R X Mol 
Formula 

(Sol. of Recryst.) 

M.P. 
(oC) 

IR (cm-1) 
(KBr) 

Mass 
(m/e) 

NMR (δppm) 
(DMSO-d6) 

VII xiii 

Br

Br

OH

 

O C18H14Br2N2O3 

(E) 
240-242 3383(γNH), 

2955(γCH), 
1712(γCO), 
1689(γCONH). 

-- -- 

VII xiv 

O

O

 

O C20H20N2O4 

(E) 
234-236 3372(γNH), 

1656(γCONH). 
-- -- 

VII xv Br

 

O C18H15BrN2O2 

(E) 
218-220 3290(γNH), 

2946(γCH), 
1708(γCO), 
1673(γCONH). 

-- -- 

VII xvi 

 
 

O C20H18N2O2 

(E) 
184-186 3232(γNH), 

2933(γCH), 
1721(γCO), 
1678(γCONH). 

-- -- 

VII xvii 

NO2

 
 

O C18H15N3O4 

(E) 
222-224 3297(γNH), 

1691(γCO), 
1657(γCONH). 
 

-- -- 

VII xviii 

O

O

O

 
 

O C21H22N2O5 

(E) 
222-224 3297(γNH), 

2940(γCO), 
1702(γCO). 

-- 1.78 (s, 3H, CH3), 3.75 (s, 9H, (OCH3)3), 5.48 (d, 1H, H 
at 4, J = 2.90), 6.48 (s, 2H, Ar-H of Phenyl), 6.96 (br, 
1H, NH at 1), 7.39-7.52 (m, 5H, Ar-H), 8.76 (s, 1H, NH 
at 3). 
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S. No R X Mol 
Formula 

(Sol. of Recryst.) 

M.P. 
(oC) 

IR (cm-1) 
(KBr) 

Mass 
(m/e) 

NMR (δppm) 
(DMSO-d6) 

VII xix OH

 
 

O C18H16N2O3 

(E) 
256-258 3378(γOH), 

3282(γNH), 
1715(γCO), 
1644(γCONH). 

-- -- 

VII xx Cl

 
 

S C18H15ClN2OS 
(E) 

244-245 3280(γNH), 
2935(γCH), 
1588, 
1550(γCH). 
 

342[M+], 
337, 231, 
105. 

1.76 (s, 3H, CH3), 5.46 (d, 1H, H at 4, J = 3.36), 7.21-
7.59 (m, 9H, Ar-H), 9.29 (s, 1H, NH at 1), 9.98 (s, 1H, 
NH at 3). 

VII xxi Br

 
 

S C18H15BrN2OS 
(E) 

198-200 3282(γNH), 
3070(γCH), 
1606, 
1575(γCH). 

388[M+], 
371, 281, 
231, 172, 
144. 

1.78 (s, 3H, CH3), 5.49 (d, 1H, H at 4, J = 3.2), 7.15-
7.51 (m, 9H, Ar-H), 8.90 (s, 1H, NH at 1), 9.61 (s, 1H, 
NH at 3). 

VII xxii 

Cl

 
 

S C18H15ClN2OS 
(E) 

202-203 3289(γNH), 
3020(γCH), 
1585(γCH). 

-- 1.82 (s, 3H, CH3), 5.88 (d, 1H, H at 4, J = 2.76), 7.19-
7.55 (m, 9H, Ar-H), 8.73 (s, 1H, NH at 1), 10.04 (s, 1H, 
NH at 3) 

VII xxiii 

 
 

S C20H18N2OS 
(E) 

220-222 3207(γNH), 
3081(γCH), 
1587(γCH). 

-- 1.76 (s, 3H, CH3), 5.01 (dd, 1H, H at 4, J = 3.7), 6.20 
(dd., 1H, H at a, J = 6.2), 6.39 (dd., 1H, H at b, J = 
15.88), 7.21-7.62 (m, 10H, Ar-H), 8.84 (s, 1H, NH at 
1), 9.77 (s, 1H, NH at 3). 

VII xxiv NO2

 
 
 

S C18H15N3O3S 
(E) 

236-238 3286(γNH), 
3008(γCH), 
1602(γCH). 

-- -- 
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S. No R X Mol 
Formula 

(Sol. of Recryst.) 

M.P. 
(oC) 

IR (cm-1) 
(KBr) 

Mass 
(m/e) 

NMR (δppm) 
(DMSO-d6) 

VII xxv 

O

O

 

S C20H20N2O3S 
(E) 

240-242 3288(γNH), 
2991(γCH), 
1612, 
1571(γCH). 

-- 1.78 (s, 3H, CH3), 3.78 (s, 3H, -OCH3), 3.81 (s, 3H, -
OCH3), 5.42 (d, 1H, H at 4, J = 3.12), 6.77-6.80 (m, 3H, 
Ar-H phenyl at 4), 7.37-7.51 (m, 5H, Ar-H of benzoyl), 
9.16 (s, 1H, NH at 1), 9.90 (s, 1H, NH at 3) 

VII xxvi Cl

 

S C18H15ClN2OS 
(E) 

188-190 3250(γNH), 
3009(γCH), 
1524(γCH). 

-- -- 

VII xxvii O

 

S C24H20N2O2S 
(E) 

208-210 3287(γNH), 
3092(γCH), 
1573(γCH). 

-- 1.75 (s, 3H, CH3), 5.46 (d, 1H, H at 4, J = 3.24), 6.68-
7.61 (m, 14H, Ar-H ), 9.25 (s, 1H, NH at 1), 9.95 (s, 
1H, NH at 3). 

VII xxviii 

O

O

O

 
 

S C21H22N2O4S 
(E) 

228-230 3282(γNH), 
2994(γCH), 
1608(γCH). 
 

-- -- 

VII xxix 

OH

 

S C18H16N2O2S 
(E) 

248-250 3206(γNH), 
2991(γCH), 
1514(γCH). 
 

-- -- 

VII xxx 

 

S C18H16N2OS 
(E) 

221-220 3283(γNH), 
3170(γCH), 
1587(γCH). 

-- -- 

     E = Ethanol
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3.3 Spectral Discussion: 

The 4-phenyl(substituted)dihydropyrimidinones are colored solid (some dark brown, 

yellow, bright orange and buff white), with high melting points generally above 200oC. 

These compounds are soluble in DMF and practically insoluble in methanol, hexane or 

cold ethanol. 

 

Infra Red (IR) Spectra 

The NH stretch in dihydropyrimidines was observed at 3400-3200 cm-1. The 

characteristic carbonyl group (C=O) was observed between 1720-1660 cm-1. The 

dihydropyrimidinones showed the ring skeleton vibrations at 1630-1600, 1590-1550, 

1520-1550, 1495-1470 cm-1.  

 

The 1H NMR Spectra 

The 1H NMR spectra of dihydropyrimidines were taken in DMSO-d6. The compounds 

studies, showed characteristic peaks corresponding to the protons of different groups and 

functionalities in the molecules. The 2-methylene protons appear as a singlet at around 1 

to 2 ppm. The NH protons present in all the compounds were observed as a singlet above 

9 ppm. All the aromatic protons present in the molecules were observed as a multiplet at 

7-8 ppm. The chiral proton at postion-4 was observed as a doublet between 5 to 6 ppm. 

 
13C NMR Spectra: 
13C NMR spectra were recorded on Bruker AC 400 MHz instrument using DMSO-d6 as 

the solvent and TMS (Tetramethyl silane) as respective internal standard. All the 

compounds showed characteristic peaks corresponding to the different carbons present in 

the molecules. 

 

The Mass Spectra 

The fragmentation pattern of the synthesized DHPM, under electron impact ionization has 

been studied. Many prominent fragment ion peaks were revealed in the mass spectra of 

these compounds. The mass spectrum DHPM clearly showing the molecular ion peak (a), 

corresponding to their molecular weight. The major mode of fragmentation is loss of 

methyl ion to give daughter ion (b) and ejection of 3-bezoyl group to give second 

daughter ion (c). The daughter ion (c) loses substitutions of 4-phenyl group to give 

fragment (d). Molecular ion (a) also gives third daughter ion (e) by the ejaculation of 4-
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phenyl ring. The common fragmentation pattern of newly synthesized DHPM derivatives 

is given in Scheme-5 (Table-1).   

HN

N
H

X

R

O

VIIii = [M+] m/e 326
VIIiii = [M+] m/e 326
VIIxx = [M+] m/e 342
VIIxxi = [M+] m/e 388

-
.
CH3

HN

N
H

X

R

O

VIIii = m/e 311
VIIiii = m/e 311
VIIxx = m/e 327
VIIxxi = m/e 371

HN

N
H

X

O

VIIii = m/e 215
VIIiii = m/e 215
VIIxx = m/e 231
VIIxxi = m/e 231

R

HN

N
H

X

R

O

VIIxx = m/e 237
VIIxxi = m/e 281

HN

N
H

O

-R

VIIii = m/e 185
VIIiii = m/e 185

Scheme-5

a

b

c d

e

+.

_

+.
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Specimen IR spectra of some DHPMs: 

1. IR spectrum of 5-benzoyl-4-(4-chlorophenyl)-6-methyl-3,4-dihydropyrimidin-2(1H)-

one (VIIii) 

 

IR (KBr) cm-1: 3307(γNH), 1706(γCO), 1677(γCONH), 745(γC-Cl). 

 
2. 1H NMR spectrum of 5-benzoyl-4-(4-chlorophenyl)-6-methyl-3,4-dihydro-pyrimidin-

2(1H)-one (VIIii) 

 
1H NMR 400 MHz (DMSO-d6, δppm): 1.72 (s, 3H, CH3), 5.46 (d, 1H, H at 4, J = 2.96), 

7.34 (br, s, 1H, NH of 1), 7.22-7.49 (m, 9H, Ar-

H), 8.94 (s, 1H, NH at 3). 

N
H

NH

O

Cl

O CH3

Molecular Formula  = C18H15ClN2O2

Formula Weight  = 326.7769

JB-2003

N
H

NH

O

Cl

O CH3

Molecular Formula  = C18H15ClN2O2

Formula Weight  = 326.7769

JB-2003
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Specimen 13C NMR spectra of some DHPMs: 

3. 13C NMR spectrum of [4-(4-chlorophenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydro-

pyrimidin-5-yl](phenyl)methanone  (VII xx) 

 
13C NMR 400 MHz (DMSO-d6, δppm): 17.81, 54.98, 76.87, 77.19, 77.51, 127.42, 

127.52, 128.06, 131.37, 140.92. 

Specimen Mass spectra of some DHPMs: 

4. Mass spectrum of 5-benzoyl-4-(4-chlorophenyl)-6-methyl-3,4-dihydropyrimidin-

2(1H)-one (VII ii) 

 

Mass m/e: [M+] 326, 311, 215, 185, 105, 77. 

N
H

NH

O

S CH3

Cl

JB-101

Molecular Formula  = C18H15ClN2OS

Formula Weight  = 342.8425

N
H

NH

O

Cl

O CH3

Molecular Formula  = C18H15ClN2O2

Formula Weight  = 326.7769

JB-2003
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3.4 MDR reversal effects of Newly Synthesized DHPM Series (VIIi-xxx) 

 

MDR reversal effects of DHPM Series (VIIi-xxx) on MDR1-gene transfected mouse 

lymphoma cell line (l 5178 y) by flow cytometry.9-10 

The cells were adjusted to a density of 2×106/ml, resuspended in serum-free McCoy’s 5A 

medium and distributed in 0.5 ml aliquots into Eppendorf centrifuge tubes. The tested 

compounds were added at various concentrations in different volumes (2.0-20.0 µl) of the 

1.0-10.0 mg/ml stock solutions, and the samples were incubated for 10 min at room 

temperature. Next, 10 µl (5.2 µM final concentration) of the indicator rhodamine 123 was 

added to the samples and the cells were incubated for a further 20 min at 37°C, washed 

twice and resuspended in 0.5 ml PBS for analysis. The fluorescence of the cell population 

was measured with a Beckton Dickinson FACScan flow cytometer. Verapamil was used 

as a positive control in the rhodamine 123 exclusion experiments. The percentage mean 

fluorescence intensity was calculated for the treated MDR and parental cell lines as 

compared with the untreated cells. An activity ratio R was calculated via the following 

equation, on the basis of the measured fluorescence values: 

controlparentaltreatedparental

controlMDRtreatedMDR
R =  

Results of this protocol have been elucidated in the Table-45. 
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Table-45. Antiproliferative activity results of newly synthesized DHPM derivatives 

(VII i-xxx). 

HN

N
H

R O

O
VIIi-xix

 
 Samples µM dye FSC SSC FL-1 FAR 

Peak  
Ch 

1 PAR - R123 458,30 172,15 941,45 - 865 

2 PAR - R123 459,37 173,16 970,00 - 1036 

3 MDR - R123 514,50 220,60 9,56 - 8 

MDR mean 484,91 213,55 8,91 - - 

 Verapamil 21,99 R123 510,85 222,13 27,43 3,07 16 

VII i 

 

4 R123 512,10 212,07 9,78 1,09 9 

VII ii Cl

 

4 R123 520,45 220,83 8,58 0,96 8 

VII iii Cl

 

4 R123 502,01 219,11 7,98 0,89 7 

VII iv 

Cl

 

4 R123 503,71 210,74 8,74 0,98 7 

VII v 

 

4 R123 494,06 212,48 40,75 4,57 31 

VII vi 
O

 

4 R123 481,11 206,48 11,29 1,26 10 

VII vii 

 

4 R123 461,05 207,98 266,15 29,87 257 

VII viii O

 

4 R123 478,71 203,54 10,96 1,23 10 
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VII ix 

O

O

 

4 R123 471,36 201,90 328,41 36,85 302 

VII x H
N

 

4 R123 456,30 199,22 699,99 78,56 661 

VII xi CN

 

4 R123 470,90 200,91 18,83 2,11 18 

VII xii NO2

 

4 R123 448,05 201,36 12,40 1,39 10 

VII xiii 
Br

OH

Br

 

4 R123 463,37 204,56 7,35 0,82 6 

VII xiv 

O

O

 

4 R123 455,91 202,17 10,28 1,15 8 

VII xv Br

 

4 R123 458,85 201,31 10,30 1,15 9 

VII xvi 

 

4 R123 467,70 202,83 8,90 0,99 8 

VII xvii 

NO2

 

4 R123 464,03 198,74 8,44 0,94 7 

VII xviii 

O

O

O

 

4 R123 459,71 201,39 8,62 0,96 7 

VII xix OH

 

4 R123 563,26 221,33 6,38 0,97 6 

 DMSO control 20 µl  R123 473,83 205,24 8,65 0,97 8 

 MDR - R123 455,32 206,50 8,25 - 8 

FAR: Fluorescence Activity Ratio 
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Table-45. Antiproliferative activity results of newly synthesized DHPM derivatives 

(VII i-xxx) (Contd.) 

HN

N
H

R O

S
VIIxx-xxx  

 

 Samples µM dye FSC SSC FL-1 FAR 
Peak  
Ch 

1 PAR - R123 509,50 196,92 963,39 - 956 

2 PAR - R123 517,57 201,82 979,59 - 1074 

3 MDR - R123 568,14 234,98 6,93 - 7 

MDR mean 571,32 237,35 6,56 - - 

 Verapamil 21,99 R123 568,16 234,96 27,99 4,26 14 

VII xx Cl

 

4 R123 569,75 226,45 6,79 1,03 6 

VII xxi Br

 

4 R123 568,15 227,89 7,25 1,11 6 

VII xxii 

Cl

 

4 R123 571,86 226,69 7,67 1,17 6 

VII xxiii 

 

4 R123 559,66 224,18 8,44 1,28 7 

VII xxiv NO2

 

4 R123 562,04 226,11 5,79 0,88 5 

VII xxv 

O

O

 

4 R123 557,19 221,92 8,40 1,28 6 



Part-III 
Results and Discussion 

 470 

VII xxvi Cl

 

4 R123 565,01 225,60 7,95 1,21 7 

VII xxvii O

 

4 R123 567,04 221,23 24,17 3,68 11 

VII xxviii 

O

O

O

 

4 R123 564,75 222,69 6,11 0,93 5 

VII xxix 

OH

 

4 R123 568,09 225,82 6,78 1,03 6 

VII xxx 

 

4 R123 571,58 222,31 6,39 0,97 5 

 DMSO control 20 µl R123 580,10 226,24 6,52 0,99 5 

 MDR - R123 574,51 239,73 6,19 - 5 

FAR: Fluorescence Activity Ratio 
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3.5 Discussion 

In the present report, hybrid derivatives (thio and oxo analogues) of DP-7 

(dihydropyridine) and monastrol (dihydropyrimidines) were synthesized to get the dual 

action in cancer chemotherapy. The newly synthesized molecules were screened on 

MDR1-gene transfected mouse lymphoma cell line (l5178 y) for MDR reversal effects at 

non toxic concentrations. 

 

MDR reversal assay has gained importance in view of many cancerous cells developing 

multiple drug resistance (MDR) due to incorporation of MDR-1 gene coding of Pgp, a 

glycoprotein involved in MDR. The glycoprotein Pgp is driven by ATP and is responsible 

for efflux of drug from the cancerous cells leading to MDR. Therefore, MDR reversal 

agents are being exploited as potential anticancer agents.9-10 

 

The four compounds from this series were very effective, namely 5-benzoyl-6-methyl-4-

(1-naphthyl)-3,4-dihydropyrimidin-2(1H)-one (VII vii), 4-(2,5-dimethoxyphenyl)-6-

methyl-5-(1-phenylvinyl)-3,4-dihydropyrimidin-2(1H)-one (VII ix), 5-benzoyl-4-(3H-

indol-3-yl)-6-methyl-3,4-dihydropyrimidin-2(1H)-one (VII x) and [6-methyl-4-(3-

phenoxyphenyl)-2-thioxo-1,2,3,4-tetrahydropyrimidin-5-yl](phenyl)methanone 

(VII xxvii) when measured in 4 micromol/ml/1million cells. These compounds had 

moderate effect on the MDR reversal efflux pump activity.    

 

The substitution of 3-phenyloxy ring on 4th phenyl ring in case of (VII viii) resulted an 

ineffective compounds while dimethoxy, indolyl and napthyl substituents are very active 

as resistance modifiers The differences in biological effects can be explained by steric 

differences in binding abilities of compounds to Pgp. Direct evidence of the nature of 

effective binding of the four most effective compounds to Pgp could be obtained by X-ray 

diffraction of co-crystallizations.  
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4. Experimental 

All the chemicals used in the synthesis were of laboratory grade. The melting points were 

determined in open capillary method on Veego (VMP-D) electronic apparatus and are 

uncorrected.  

 

The IR spectra of synthesized compounds were recorded on Shimadzu 8400-S FT-IR, as 

well as, Perkin Elmer BX2 FT-IR Spectrophotometer in potassium bromide discs.  
 

1H NMR spectra were recorded on a Bruker AC 400 MHz FT-NMR spectrometer using 

TMS (Tetramethyl silane) as an internal standard and DMSO-d6 as a solvent at SAIF, 

Punjab University, Chandigarh.  

 

Mass spectra were obtained by Electron Impact method on (GCMS-QP2010 

spectrometer) using 70 eV ionizing beam and using direct insertion probe. 

 

To monitor the reactions, as well as, to establish the identity and purity of reactants and 

products, thin layer chromatography was performed on precoated silica plates (Merck 

Silicagel F254) using hexane-ethyl acetate-glacial acetic acid  as the solvent systems and 

the spots were visualized by exposure to iodine vapors or under ultra violet (UV) light at 

254 nm and 360 nm. 

 

4.1 Synthesis of Starting Materials 

 

4.1.1 Preparation of preparation of benzoylacetone1 

A suspension of 11.0 gm (0.5 mole) of granulated sodium metal in dry xylene (50 ml) 

was prepared and was transferred to a 1-litre three neck flask and the xylene was 

decanted. The flask was kept in water bath with a stirrer and 100 ml of ethanol was added 

to the flask. The mixture was continued to reflux till all the sodium was reacted. The 

residual sodium ethoxide containing flask was then surrounded with ice and 176.0 gm 

(2.0 mole) of pure, dry ethyl acetate was added. The stirring was started and 60.0 gm (0.5 

mole) of acetophenone was added drop wise. The reaction commences with the 

precipitation of sodium salt of benzoylacetone. The stirring was continued for 2 hrs and 

was kept in ice box overnight; the ppt. obtained were filtered and washed with diethyl 

ether and dried. The dried solid was dissolved in cold water and finally acidified with 
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glacial acetic acid to get crude benzoylacetone. Crude benzoylacetone was purified by 

distillation under reduced pressure and obtained as colorless crystalline needles. m.p. 

61oC, (m.p. 62oC)1, 100.0 gm, yield 62%.  

 

4.1.2 Synthesis of target Dihydropyrimidines 

 

1. Synthesis of 5-benzoyl-6-methyl-4-phenyl-3,4-dihydropyrimidin-2(1H)-one (VIIi) 

from benzyolacetone 

A mixture of benzoylacetone (0.0094 mole; 1.0 gm), benzaldehyde (0.0092 mole; 1.5 

gm), urea (0.0111 mole; 0.67gm) and ethanol (10 ml) were taken in a round bottom flask 

and the contents were dissolved by gently heating the flask. Conc. HCl (1-2 drops) was 

added to the flask and then refluxed for 6 hrs. After cooling at room temperature, the 

precipitated solid product was filtered and washed with methanol and then recrystallized 

from ethanol to afford 5-benzoyl-6-methyl-4-phenyl-3,4-dihydropyrimidin-2(1H)-one 

(VIIi).  

 

M.P. : 190-192oC; Yield: 73%. 

Mol. Formula : C18H16N2O2; Mol. Wt. 292.12 

IR (KBr) cm-1 : 3269(γNH), 2915(γC-H), 1710(γCO), 1680(γCONH).  

 

2. Synthesis of 5-benzoyl-4-(4-chlorophenyl)-6-methyl-3,4-dihydropyrimidin-2(1H)-

one (VIIii) from benzyolacetone 

A mixture of benzoylacetone (0.00852 mole; 1.38 gm), 4-chlorobenzaldehyde (0.0071 

mole; 1 gm) and urea (0.0106 mole; 0.639 gm) in ethanol (10 ml) were reacted as per 

procedure for the compound (VIIi) to get 5-benzoyl-4-(4-chlorophenyl)-6-methyl-3,4-

dihydropyrimidin-2(1H)-one (VIIii). 

 

M.P.    : 228-230oC; Yield 64%. 

Mol. Formula : C18H15ClN2O2; Mol. Wt. 326.78 

IR (KBr) cm-1   : 3307(γNH), 1706(γCO), 1677(γCONH), 1586(γCH). 
1H NMR(DMSO-d6)δppm : 1.72 (s, 3H, CH3), 5.46 (d, 1H, H at 4, J = 2.96), 7.34 (br, 

s, 1H, NH of 1), 7.22-7.49 (m, 9H, Ar-H), 8.94 (s, 1H, NH 

at 3). 
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MS m/e   : 326[M+], 311, 215, 185. 

 

3. Synthesis of 5-benzoyl-4-(3-chlorophenyl)-6-methyl-3,4-dihydropyrimidin-2(1H)-

one (VIIiii) from benzyolacetone 

A mixture of benzoylacetone (0.00852 mole; 1.38 gm), 3-cholrobenzaldehyde (0.0071 

mole; 1 gm) and urea (0.0106 mole; 0.639 gm) in ethanol (10 ml) were reacted as per 

procedure for the compound (VIIi) to get 5-benzoyl-4-(3-chlorophenyl)-6-methyl-3,4-

dihydro-pyrimidin-2(1H)-one (VIIiii). 

 

M.P. : 214-216oC; Yield 67%. 

Mol. Formula : C18H15ClN2O2; Mol. Wt. 326.78 

IR(KBr) cm-1 : 3273(γNH), 1712(γCO), 1674(γCONH), 1600(γCH) 
1H NMR (DMSO-d6)δppm  : 1.72 (s, 3H, CH3), 5.43 (d, 1H, H at 4, J = 3.04), 7.59 (br, s, 

1H, NH at 1), 7.17-7.50 (m, 9H, Ar-H), 9.06 (s, 1H, NH at 3). 

MS m/e : 326[M+], 311, 307, 291, 215, 185. 

 

4. Synthesis of 5-benzoyl-4-(2-chlorophenyl)-6-methyl-3,4-dihydropyrimidin-2(1H)-

one (VIIiv) from benzoylacetone. 

A mixture of benzoylacetone (0.00852 mole; 1.38 gm), 2-cholrobenzaldehyde (0.0071 

mole; 1 gm) and  urea (0.0106 mole; 0.639 gm) in ethanol (10 ml) were reacted as per 

procedure for the compound (VIIi) to get 5-benzoyl-4-(2-chlorophenyl)-6-methyl-3,4-

dihydro-pyrimidin-2(1H)-one (VIIiv). 

 

M.P.  : 248-250oC; Yield: 71%. 

Mol. Formula   : C18H15ClN2O2; Mol. Wt. 326.78 

IR(KBr) cm-1  : 3284(γNH), 2951(γCH), 1650(γCONH) 
1H NMR(DMSO-d6)δppm  : 1.79 (s, 3H, CH3), 5.87 (d, 1H, H at 4, J = 2.56), 7.02 (br, 

s, 1H, NH at 1), 7.19-7.50 (m, 9H, Ar-H), 9.04 (s, 1H, NH 

at 3). 
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5. Synthesis of 4-(9-anthryl)-5-benzoyl-6-methyl-3,4-dihydropyrimidin-2(1H)-one 

(VIIv) from benzyolacetone 

A mixture of benzoylacetone (0.0058 mole; 0.94 gm), anthrylaldehyde (0.0048 mole; 1 

gm) and urea (0.0048 mole; 0.43 gm) in ethanol (10 ml) were reacted as per procedure for 

the compound (VIIi) to get 4-(9-anthryl)-5-benzoyl-6-methyl-3,4-dihydropyrimidin-

2(1H)-one (VIIv). 

 

M.P. : 232-234oC (decompose); Yield: 74%. 

Mol. Formula : C26H22N2O2; Mol. Wt.  394.47 

IR(KBr) cm-1 : 2986(γCH), 1652(γCONH). 

 

6. Synthesis of 5-benzoyl-4-(2-furyl)-6-methyl-3,4-dihydropyrimidin-2(1H)-one 

(VIIvi) from benzoylacetone 

A mixture of benzoylacetone (0.0124 mole; 2.02 gm), furfurylaldehyde (0.0104 mole; 1 

gm) and urea (0.015 mole; 0.93 gm) in ethanol (10 ml) were reacted as per procedure for 

the compound (VIIi) to get 5-benzoyl-4-(2-furyl)-6-methyl-3,4-dihydropyrimidin-2(1H)-

one (VIIvi). 

 

M.P. :  > 280oC; Yield: 56%. 

Mol. Formula : C16H14N2O3; Mol. Wt. 282.29 

IR(KBr) cm-1 : 3411(γNH), 2965(γCH), 1710(γCO), 1652(γCONH). 

 

7. Synthesis of 5-benzoyl-6-methyl-4-(1-naphthyl)-3,4-dihydropyrimidin-2(1H)-one 

from benzoylacetone (VIIvii). 

A mixture of benzoylacetone (0.0076 mole; 1.2 gm), naphthaldehyde (0.0064 mole; 1 

gm) and urea (0.0096 mole; 0.57 gm) in ethanol (10 ml) were reacted as per procedure for 

the compound (VIIi) to get 5-benzoyl-6-methyl-4-(1-naphthyl)-3,4-dihydropyrimidin-

2(1H)-one (VIIvii). 

 

M.P. : 226-228oC; Yield 62%. 

Mol. Formula : C22H18N2O2; Mol. Wt. 342.39 

IR(KBr) cm-1 : 3369(γNH), 2990(γCH), 1714(γCO). 
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8. Synthesis of 5-benzoyl-6-methyl-4-(3-phenoxyphenyl)-3,4-dihydropyrimidin-

2(1H)-one from benzoylacetone (VIIviii). 

A mixture of benzoylacetone (0.0060 mole; 0.98 gm), 3-phenoxybenzaldehyde (0.0050 

mole; 1 gm) and urea (0.0075 mole; 0.45 gm) in ethanol (10 ml) were reacted as per 

procedure for the compound (VIIi) to get 5-benzoyl-6-methyl-4-(3-phenoxyphenyl)-3,4-

dihydro-pyrimidin-2(1H)-one (VIIviii). 

 

M.P. : 168-170oC; Yield: 68%. 

Mol. Formula : C24H20N2O3; Mol. Wt.: 384.43 

IR(KBr) cm-1 : 3278(γNH), 2920(γCH), 1697(γCO), 1674(γCONH). 
1H NMR(DMSO-d6)δppm : 1.72 (s, 3H, CH3), 5.53 (d, 1H, H at 4, J = 2.68), 6.71 (s, 1H, 

NH at 1), 6.81-7.49 (m, 14 H, Ar-H), 8.60 (s, 1H, NH at 3). 

 

9. Synthesis of 4-(2,5-dimethoxyphenyl)-6-methyl-5-(1-phenylvinyl)-3,4-dihydro-

pyrimidin-2(1H)-one,  (VIIix) from benzoylacetone. 

A mixture of benzoylacetone (0.0072 mole; 1.17 gm), 2-5-dimethoxybenzaldehyde 

(0.0060 mole; 1 gm) and urea (0.009 mole; 0.54 gm) in ethanol (10 ml) were reacted as 

per procedure for the compound (VIIi) to get 4-(2,5-dimethoxyphenyl)-6-methyl-5-(1-

phenylvinyl)-3,4-dihydropyrimidin-2(1H)-one (VIIix). 

 

M.P. : 206-208oC; Yield: 72%. 

Mol. Formula : C20H20N2O4; Mol. Wt. 352.38 

IR(KBr) cm-1 : 3233(γNH), 2941(γCH, 1697(γCO). 

 

10. Synthesis of 5-benzoyl-4-(3H-indol-3-yl)-6-methyl-3,4-dihydropyrimidin-2(1H)-

one (VIIx)  from benzoylacetone 

A mixture of benzoylacetone (0.0068 mole; 1.32 gm), indol-3-carboxylaldehyde (0.0068 

mole; 1 gm) and urea (0.0103 mole; 0.61 gm) in ethanol (10 ml) were reacted as per 

procedure for the compound (VIIi) to get 5-benzoyl-6-methyl-4-(3H-indol-3-yl)-3,4-

dihydropyrimidin-2(1H)-one (VIIx). 

 

M.P. : 268-270oC; Yield 76%. 

Mol. Formula : C20H17N3O2; Mol. Wt.: 331.37 
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IR(KBr) cm-1 : 3405(γNH), 3099(γCH), 1706(γCO). 

 

11. Synthesis of 4-(5-benzoyl-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidin-4-yl)-

benzonitrile (VIIxi)   from benzoylacetone 

A mixture of benzoylacetone (0.0091 mole; 1.48 gm), 4-cynobenzaldehyde (0.0076 mole; 

1 gm) and urea (0.011 mole; 0.68 gm) in ethanol (10 ml) were reacted as per procedure 

for the compound (VIIi) to get 4-(5-benzoyl-6-methyl-2-oxo-1,2,3,4-

tetrahydropyrimidin-4-yl)benzonitrile (VIIxi). 

 

M.P. : 192-194oC; Yield 59%. 

Mol. Formula : C19H15N3O2; Mol. Wt.: 317.34 

IR(KBr) cm-1 : 3296(γNH), 2232(γCN), 1677(γCONH). 
1H NMR(DMSO-d6)δppm : 1.70 (s, 3H, CH3), 5.50 (d, 1H, H at 4, J = 3.24), 7.71 (br., 

1H, NH at 1), 7.37-7.63 (m, 9H, Ar-H), 9.16 (s, 1H, NH at 3). 

 

12. Synthesis of 5-benzoyl-6-methyl-4-(3-nitrophenyl)-3,4-dihydropyrimidin-2(1H)-

one from benzoylacetone (VIIxii)  

A mixture of benzoylacetone (0.0079 mole; 1.28 gm), 3-nitrobenzaldehyde (0.0066 mole; 

1 gm) and urea (0.009 mole; 0.59 gm) in ethanol (10 ml) were reacted to as per procedure 

for the compound (VIIi) to  get 5-benzoyl-6-methyl-4-(3-nitrophenyl)-3,4-

dihydropyrimidin-2(1H)-one (VIIxii). 

 

M.P. : 240-242oC; Yield 68%. 

Mol. Formula : C18H15N3O4; Mol. Wt. 337.33 

IR(KBr) cm-1 : 3229(γNH), 1710(γCO), 1685(γCONH). 

 

13. Syntheis of 5-benzoyl-4-(3,5-dibromo-4-hydroxyphenyl)-6-methyl-3,4-dihydro-

pyrimidin-2(1H)-one (VIIxiii)  from benzoylacetone 

A mixture of benzyolacetone (0.0043 mole; 0.69 gm), 3,5-dibromo-4-hydroxy-

benzaldehyde (0.0035 mole; 1 gm) and urea (0.0052 mole; 0.315 gm) in ethanol (10 ml) 

were reacted as per procedure for the compound (VIIi) to get of 5-benzoyl-6-methyl-4-

(3,5-dibromo-4-hydroxyphenyl)-3,4-dihydropyrimidin-2(1H)-one (VIIxiii). 

 



Part-III 
Experimental 

 479 

M.P. : 240-242oC; Yield 66%. 

Mol. Formula : C18H14Br2N2O3; Mol. Wt. 466.12 

IR(KBr) cm-1 : 3383(γNH), 2955(γCH), 1712(γCO), 1689(γCONH).  
 
 
14. Synthesis of 5-benzoyl-4-(3,4-dimethoxyphenyl)-6-methyl-3,4-dihydro-pyrimidin-

2(1H)-one from benzoylacetone (VIIxiv) 

A mixture of benzoylacetone (0.0072 mole; 1.1 gm), 3,4-dimethoxybenzaldehyde (0.0060 

mole; 1 gm) and urea (0.009 mole; 0.54 gm) in ethanol (10 ml) were reacted as per 

procedure for the compound (VIIi) to get 5-benzoyl-6-methyl-4-(3,4-dimethoxyphenyl)-

3,4-dihydropyrimidin-2(1H)-one (VIIxiv). 

 

M.P. : 234-236oC; Yield 77%. 

Mol. Formula : C20H20N2O4; Mol. Wt. 352.38 

IR(KBr) cm-1 : 3372(γNH), 1656(γCONH).  

 

15. Synthesis of 5-benzoyl-4-(3-bromophenyl)-6-methyl-3,4-dihydropyrimidin-

2(1H)-one (VIIxv) from benzoylacetone 

A mixture of benzoylacetone (0.0064 mole; 1.05 gm), 3-bromobenzaldehyde (0.0054 

mole; 1 gm) and urea (0.0081 mole; 0.48 gm) in ethanol (10 ml) were reacted as per 

procedure for the compound (VIIi) to get 5-benzoyl-6-methyl-4-(3-bromophenyl)-3,4-

dihydropyrimidin-2(1H)-one (VIIxv). 

 

M.P. : 218-220oC; Yield 69%. 

Mol. Formula : C18H15BrN2O2; Mol. Wt. 371.23 

IR(KBr) cm-1 : 3290(γNH), 2946(γCH), 1708(γCO), 1673(γCONH). 

 

16. Synthesis of 5-benzoyl-6-methyl-4-[(E)-2-phenylvinyl]-3,4-dihydropyrimidin-

2(1H)-one (VIIxvi) from benzoylacetone 

A mixture of benzoylacetone (0.0090 mole; 1.47 gm), cinnamaldehyde (0.0075 mole; 1 

gm) and urea (0.0112 mole; 0.67 gm) in ethanol (10 ml) were reacted as per procedure for 

the compound (VIIi) to get 5-benzoyl-6-methyl-4-[(E)-2-phenylvinyl]-3,4-

dihydropyrimidin-2(1H)-one (VIIxvi). 
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M.P. : 184-186oC; Yield 71%. 

Mol. Formula : C20H18N2O2; Mol. Wt. 318.37 

IR(KBr) cm-1 : 3232(γNH), 2933(γCH), 1721(γCO), 1678(γCONH).  

 

17. Synthesis of 5-benzoyl-4-(2-nitrophenyl)-6-methyl-3,4-dihydropyrimidin-2(1H)-

one  (VIIxvii) from benzoylacetone 

A mixture of benzoylacetone (0.0072 mole; 1.17 gm), 2-nitrobenzaldehyde (0.0060 mole; 

1 gm) and urea (0.006 mole; 0.54 gm) in ethanol (10 ml) were reacted as per procedure 

for the compound (VIIi) to 5-benzoyl-4-(2-nitrophenyl)-6-methyl-3,4-dihydropyrimidin-

2(1H)-one (VIIxvii). 

 

M.P. : 222-224oC; Yield 72%. 

Mol. Formula : C18H15N3O4; Mol. Wt. 337.33 

IR(KBr) cm-1 : 3297(γNH), 1691(γCO), 1657(γCONH). 

 

18. Synthesis of 5-benzoyl-6-methyl-4-(3,4,5-trimethoxyphenyl)-3,4-dihydro-

pyrimidin-2(1H)-one (VIIxviii) from benzoylacetone 

A mixture of benzoylacetone (0.006 mole; 0.97 gm), 3,4,5-trimethoxybenzaldehyde 

(0.0050 mole; 1 gm) and urea (0.0075 mole; 0.45 gm) in ethanol (10 ml) were reacted as 

per procedure for the compound (VIIi) to get of 5-benzoyl-6-methyl-4-(3,4,5-

trimethoxyphenyl)-3,4-dihydropyrimidin-2(1H)-one (VIIxviii). 

 

M.P. : 222-224oC; Yield 57%. 

Mol. Formula : C21H22N2O5; Mol. Wt. 382.41 

IR(KBr) cm-1 : 3297(γNH), 2940(γCO), 1702(γCO). 
1H NMR(DMSO-d6)δppm : 1.78 (s, 3H, CH3), 3.75 (s, 9H, (OCH3)3), 5.48 (d, 1H, H at 

4, J = 2.90), 6.48 (s, 2H, Ar-H of Phenyl), 6.96 (br, 1H, NH 

at 1), 7.39-7.52 (m, 5H, Ar-H), 8.76 (s, 1H, NH at 3). 

 

19. Synthesis of 5-benzoyl-4-(3-hydroxyphenyl)-6-methyl-3,4-dihydro-1H-pyrimidin-

2-one (VIIxix) from benzoylacetone 

A mixture of benzoylacetone (0.006 mole; 0.97 gm), 3-hydroxybenzaldehyde (0.0050 

mole; 1 gm) and urea (0.0075 mole; 0.45 gm) in ethanol (10 ml) were reacted as per 
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procedure for the compound (VIIi) to get of 5-benzoyl-4-(3-hydroxyphenyl)-6-methyl-

3,4-dihydro-1H-pyrimidin-2-one (VIIxix). 

 

M.P. : 256-2258oC; Yield 57%. 

Mol. Formula : C18H16N2O3; Mol. Wt. 308.33 

IR(KBr) cm-1 : 3378(γOH), 3282(γNH), 1715(γCO), 1644(γCONH). 

 

20. Synthesis of [4-(4-chlorophenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydro-pyrimidin-

5-yl](phenyl)methanone  (VIIxx) from benzoylacetone 

A mixture of benzoylacetone (0.0087 mole; 1.38 gm), 4-chlorobenzaldehyde (0.0071 

mole; 1 gm) and  thiourea (0.010 mole; 0.80 gm) in ethanol (10 ml) were reacted as per 

procedure for the compound (VIIi) to get of [4-(4-chlorophenyl)-6-methyl-2-thioxo-

1,2,3,4-tetrahydro-pyrimidin-5-yl](phenyl) methanone  (VIIxx). 

 

M.P. : 244-245oC; Yield 81%. 

Mol. Formula : C18H15ClN2OS; Mol. Wt. 342.84 

IR(KBr) cm-1 : 3280(γNH), 2935(γCH), 1588, 1550(γCH).  
1H NMR(DMSO-d6)δppm : 1.76 (s, 3H, CH3), 5.46 (d, 1H, H at 4, J = 3.36), 7.21-7.59 

(m, 9H, Ar-H), 9.29 (s, 1H, NH at 1), 9.98 (s, 1H, NH at 3). 
13C NMR(DMSO-d6)δppm : 17.81, 54.98, 76.87, 77.19, 77.51, 127.42, 127.52, 128.06, 

131.37, 140.92. 

MS m/e : 342[M+], 327, 231, 105. 

 

21. Synthesis of [4-(3-bromophenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydro-

pyrimidin-5-yl](phenyl) methanone (VIIxxi) from benzoylacetone. 

A mixture of benzoylacetone (0.0064 mole; 1.05 gm), 3-bromobenzaldehyde (0.0054 

mole; 1 gm) and thiourea (0.0081 mole; 0.61 gm) in ethanol (10 ml) were reacted as per 

procedure for the compound (VIIi) to get of [4-(3-bromophenyl)-6-methyl-2-thioxo-

1,2,3,4-tetrahydro-pyrimidin-5-yl](phenyl) methanone (VIIxxi). 

 

M.P. : 198-200oC; Yield 64%. 

Mol. Formula : C18H15BrN2OS; Mol. Wt. 387.29 

IR(KBr) cm-1 : 3282(γNH), 3070(γCH), 1606, 1575(γCH). 
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1H NMR(DMSO-d6)δppm : 1.78 (s, 3H, CH3), 5.49 (d, 1H, H at 4, J = 3.2), 7.15-7.51 

(m, 9H, Ar-H), 8.90 (s, 1H, NH at 1), 9.61 (s, 1H, NH at 3). 
13C NMR(DMSO-d6)δppm : 17.88, 55.44, 110.21, 124.80, 127.51, 128.04, 129.14, 

130.37, 131.50, 144.50. 

MS m/e : 388[M+], 371, 281, 231, 172, 144. 

 

22. Synthesis of [4-(2-chlorophenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidin-

5-yl](phenyl) methanone (VIIxxii) from benzoylacetone 

A mixture of benzoylacetone (0.0085 mole; 1.38 gm), 2-chlorobenzaldehyde (0.0071 

mole; 1 gm) and thiourea (0.0106 mole; 0.80 gm) in ethanol (10 ml) were reacted as per 

procedure for the compound (VIIi) to get of [4-(2-chlorophenyl)-6-methyl-2-thioxo-

1,2,3,4-tetrahydro-pyrimidin-5-yl](phenyl) methanone (VIIxxii). 

 

M.P. : 202-203oC; Yield 72%. 

Mol. Formula : C18H15ClN2OS; Mol. Wt. 342.84 

IR(KBr) cm-1 : 3289(γNH), 3020(γCH), 1585(γCH). 
1H NMR(DMSO-d6)δppm : 1.82 (s, 3H, CH3), 5.88 (d, 1H, H at 4, J = 2.76), 7.19-7.55 

(m, 9H, Ar-H), 8.73 (s, 1H, NH at 1), 10.04 (s, 1H, NH at 3). 

 
23. Synthesis of {6-methyl-4-[(E)-2-phenylvinyl]-2-thioxo-1,2,3,4-tetrahydro-

pyrimidin-5-yl}(phenyl)methanone (VIIxxiii) from benzoylacetone  

A mixture of benzoylacetone (0.0090 mole; 1.47 gm), cinnamaldehyde (0.0075 mole; 

1gm) and thiourea (0.011 mole; 0.85 gm) in ethanol (10 ml) were reacted as per 

procedure for the compound (VIIi) to get {6-methyl-4-[(E)-2-phenylvinyl]-2-thioxo-

1,2,3,4-tetrahydro-pyrimidin-5-yl}(phenyl)-methanone (VIIxxiii). 

 

M.P. : 220-222oC; Yield 78%. 

Mol. Formula : C20H18N2OS; Mol. Wt. 334.43 

IR(KBr) cm-1 : 3207(γNH), 3081(γCH), 1587(γCH). 
1H NMR(DMSO-d6)δppm : 1.76 (s, 3H, CH3), 5.01 (dd, 1H, H at 4, J = 3.7), 6.20 (dd., 

1H, H at a, J = 6.2), 6.39 (dd., 1H, H at b, J = 15.88), 7.21-

7.62 (m, 10H, Ar-H), 8.84 (s, 1H, NH at 1), 9.77 (s, 1H, NH 

at 3). 
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24. Synthesis of [6-methyl-4-(3-nitrophenyl)-2-thioxo-1,2,3,4-tetrahydropyrimidin-5-

yl](phenyl)methanone (VIIxxiv) from benzoylacetone 

A mixture of benzoylacetone (0.0079 mole; 1.28 gm), 3-nitrobenzaldehyde (0.0066 mole; 

1 gm) and thiourea (0.009 mole; 0.75 gm) in ethanol (10 ml) were reacted as per 

procedure for the compound (VIIi) to get [6-methyl-4-(3-nitrophenyl)-2-thioxo-1,2,3,4-

tetrahydro-pyrimidin-5-yl](phenyl) methanone (VIIxxiv). 

 

M.P. : 236-238oC; Yield: 64%. 

Mol. Formula : C18H15N3O3S; Mol. Wt. 353.39 

IR(KBr) cm-1 : 3286(γNH), 3008(γCH), 1602(γCH). 

 

25. Synthesis of [4-(3,4-dimethoxyphenyl)-6-methyl-2-thioxo-1,2,3,4-tetra-hydro-

pyrimidin-5-yl](phenyl)methanone (VIIxxv)  from benzoylacetone. 

A mixture of benzoylacetone (0.0072 mole; 1.16 gm), 3,4-dimethoxybenzaldehyde 

(0.0060 mole; 1gm) and thiourea (0.009 mole; 0.68 gm) in ethanol (10 ml) were reacted 

as per procedure for the compound (VIIi) to get of [4-(3,4-dimethoxyphenyl)-6-methyl-2-

thioxo-1,2,3,4-tetrahydropyrimidin-5-yl](phenyl)methanone (VIIxxv)  . 

 

M.P. : 240-242oC; Yield: 61%. 

Mol. Formula : C20H20N2O3S; Mol. Wt. 368.45 

IR(KBr) cm-1  : 3288(γNH), 2991(γCH), 1612, 1571(γCH). 
1H NMR(DMSO-d6)δppm : 1.78 (s, 3H, CH3), 3.78 (s, 3H, -OCH3), 3.81 (s, 3H, -

OCH3), 5.42 (d, 1H, H at 4, J = 3.12), 6.77-6.80 (m, 3H, Ar-

H phenyl at 4), 7.37-7.51 (m, 5H, Ar-H of benzoyl), 9.16 (s, 

1H, NH at 1), 9.90 (s, 1H, NH at 3). 

 

26. Synthesis of [4-(3-chlorophenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydro-pyrimidin-

5-yl](phenyl)methanone (VIIxxvi)   from benzoylacetone. 

A mixture of benzoylacetone (0.0085 mole; 1.38 gm), 3-chlorobenzaldehyde (0.0071 

mole; 1 gm) and thiourea (0.010 mole; 0.80 gm) in ethanol (10 ml) were reacted as per 

procedure for the compound (VIIi) to get of [4-(3-chlorophenyl)-6-methyl-2-thioxo-

1,2,3,4-tetrahydro-pyrimidin-5-yl](phenyl) methanone (VIIxxvi). 
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M.P. : 188-190oC; Yield 57%. 

Mol. Formula : C18H15ClN2OS; Mol. Wt. 342.84 

IR (KBr) cm-1 : 3250(γNH), 3009(γCH), 1524(γCH). 

 

27. Synthesis of [6-methyl-4-(3-phenoxyphenyl)-2-thioxo-1,2,3,4-tetrahydro-

pyrimidin-5-yl](phenyl)methanone (VIIxxvii) from benzoylacetone. 

A mixture of benzoylacetone (0.0060 mole; 0.98 gm), 3-phenoxyphenylbenzaldehyde 

(0.0050 mole; 1 gm) and thiourea (0.0075 mole; 0.57 gm) in ethanol (10 ml) were reacted 

as per procedure for the compound (VIIi) to get of [4-(3-phenoxyphenyl)-6-methyl-2-

thioxo-1,2,3,4-tetrahydropyrimidin-5-yl](phenyl) methanone (VIIxxvii). 

 

M.P. : 208-210oC; Yield 57%. 

Mol. Formula : C24H20N2O2S; Mol. Wt. 400.49 

IR(KBr) cm-1 : 3287(γNH), 3092(γCH), 1573(γCH). 
1H NMR(DMSO-d6)δppm : 1.75 (s, 3H, CH3), 5.46 (d, 1H, H at 4, J = 3.24), 6.68-7.61 

(m, 14H, Ar-H ), 9.25 (s, 1H, NH at 1), 9.95 (s, 1H, NH at 3). 

 
28. Synthesis of [6-methyl-2-thioxo-4-(3,4,5-trimethoxyphenyl)-1,2,3,4-tetra-hydro-

pyrimidin-5-yl](phenyl)methanone (VIIxxviii) from benzoylacetone. 

A mixture of benzoylacetone (0.0061 mole; 0.99 gm), 3,4,5-trimethoxybenzaldehyde 

(0.0051 mole; 1 gm) and thiourea (0.0091 mole; 0.69 gm) in ethanol (10 ml) were reacted 

as per procedure for the compound (VIIi) to get of [4-(3,4,5-trimethoxyphenyl)-6-methyl-

2-thioxo-1,2,3,4-tetrahydro-pyrimidin-5-yl](phenyl) methanone (VIIxxviii). 

 

M.P. : 228-230oC; Yield 76%. 

Mol. Formula : C21H22N2O4S; Mol. Wt. 398.48 

IR(KBr) cm-1 : 3282(γNH), 2994(γCH), 1608(γCH). 

 

29. Synthesis of [4-(2-hydroxyphenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydro-

pyrimidin-5-yl](phenyl)methanone (VIIxxix) from benzoylacetone. 

A mixture of benzoylacetone (0.0098 mole; 1.59 gm), 2-hydroxybenzaldehyde (0.0081 

mole; 1 gm) and thiourea (0.012 mole; 0.92 gm) in ethanol (10 ml) were reacted as per 

procedure for the compound (VIIi) to get of [4-(2-hydroxyphenyl)-6-methyl-2-thioxo-

1,2,3,4-tetrahydropyrimidin-5-yl]-(phenyl)methanone (VIIxxix). 
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M.P. : 248-250oC; Yield 61%. 

Mol. Formula : C18H16N2O2S; Mol. Wt. 324.4 

IR(KBr) cm-1 : 3206(γNH), 2991(γCH), 1514(γCH). 

 

30. Synthesis of (6-methyl-4-phenyl-2-thioxo-1,2,3,4-tetrahydropyrimidin-5-yl)-

(phenyl)methanone  (VIIxxx)  from benzoylacetone. 

A mixture of benzoylacetone (0.011 mole; 1.83 gm), benzaldehyde (0.0094 mole; 1 gm) 

and thiourea (0.014 mole; 1.07 gm) in ethanol (10 ml) were reacted as per procedure for 

the compound (VIIi) to get of (6-methyl-4-phenyl-2-thioxo-1,2,3,4-tetrahydropyrimidin-

5-yl)(phenyl)methanone (VIIxxx). 

 

M.P. : 218-220oC; Yield 61%. 

Mol. Formula : C18H16N2OS; Mol. Wt. 308.4 

IR(KBr) cm-1 : 3283(γNH), 3170(γCH), 1587(γCH). 
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4.2 MDR reversal effects of DHPM series on MDR1-gene transfected mouse 

lymphoma cell line (l 5178 y) by flow cytometry. 

Assay for reversal of MDR in tumour cells2,3: 

The cells were adjusted to a density of 2×106/ml, resuspended in serum-free McCoy’s 5A 

medium and distributed in 0.5-ml aliquots into Eppendorf centrifuge tubes. The tested 

compounds were added at various concentrations in different volumes (2.0-20.0 µl) of the 

1.0-10.0 mg/ml stock solutions, and the samples were incubated for 10 min at room 

temperature. Next, 10 µl (5.2 µM final concentration) of the indicator rhodamine 123 was 

added to the samples and the cells were incubated for a further 20 min at 37°C, washed 

twice and resuspended in 0.5 ml PBS for analysis. The fluorescence of the cell population 

was measured with a Beckton Dickinson FACScan flow cytometer. Verapamil was used 

as a positive control in the rhodamine 123 exclusion experiments. The percentage mean 

fluorescence intensity was calculated for the treated MDR and parental cell lines as 

compared with the untreated cells. An activity ratio R was calculated via the following 

equation, on the basis of the measured fluorescence values: 

 

controlparentaltreatedparental

controlMDRtreatedMDR
R =  
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Summary and Conclusion 
 
Part-I of this thesis deals with “Synthesis, Pharmacological Evaluation and QSAR of 

some pyrimidylmethylsulfinylbenzimidazoles as potential reversible Proton Pump 

Inhibitors (PPIs)”.  

 

A careful study of the literature on the currently used PPI’s especially of the PMSB types 

indicates some important drawbacks associated with their usage. An investigation into the 

mechanism of action of these PPI’s can throw some light on the probable reasons for 

these drawbacks. These molecules rearrange in the strongly acidic environment of the 

parietal cells. Covalent binding of the rearranged inhibitor to the H+/K+-ATPase results in 

inactivation of proton pump.  In the covalent binding, a disulfide linkage of the drug is 

formed with the active site of the cystine-rich H+/K+-ATPase (Proton Pump).  One of 

these sites has been identified as cystine-813 (and probably cystine-822) of H+/K+-

ATPase. 

 

Therefore, it was realized to develop better analogs of the existing PPI’s in which the 

formation of this disulfide intermediate can be avoided, so as to attain reversible proton 

pump inhibition & thus overcome the drawbacks of the currently available PPI’s.  

 

One of the options that has not been tried is the 3-aza analog of pyridine i.e. pyrimidine, 

(which is it’s logical bioisoster) in the PMSB nucleus. Thus, one can envisage that this 

system though can bind to the proton pump; the binding may not as strong as the PMSB 

pyridine system and may be even loose and reversible. Therefore, a series of pyrimidine 

analogues of the existing drug PMSB skeleton was planned to be synthesized and 

evaluated for the proposed work. 

 

Thus, a series of 2-(1H-benzimidazol-2-ylsulfinyl)-3H-pyrimidin-4-ones and 2-(5-

methoxy-1H-benzimidazol-2-ylsulfinyl)-3H-pyrimidin-4-ones was planned to be  

synthesized, characterized and evaluated for antiulcer activity, using a suitable animal 

model.  

 

In all 35 derivatives have been synthesized in this part which are characterized by spectral 

data. These derivatives were evaluated preliminary for anti-secretary and antiulcer 
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activity in Pylorus Ligation methods on Wistar rats using method reported by Shay et al.  

Four compounds from this series namely 2-(1H-benzimidazol-2-yl)methyl-sulfinyl 

5,6,7,8-tetrahydro-benzo-(b)sulfinyl[2,3-d]pyrimidin-4-(3H)-one IVi, 2-((1H-

benzo[d]imidazol-2-ylsulfinyl)methyl)5,6-dimethyl-thieno[2,3-d]pyrimidin-4(3H) one 

IVvii, 2-{[(5-methoxy-1H-benzimidazol-2-yl)sulfinyl]methyl}-5-phenyl-thieno[2,3-d]-

pyrimidin-4(3H)-one IVx and 2-{[(5-methoxy-1H-benzimidazol-2-yl)sulfinyl]methyl}-

3,5,6,7,8,9-hexahydro-4H-cyclohepta[4,5]thieno[2,3-d]pyrimidin-4-one IVxxiii were 

found very potent inhibitors of gastric juice and were able to protect the stomach from the 

ulcers at the dose of 30 mg/kg. Omeprazole (30 mg/kg) was taken as the standard drug in 

this study. 

 

QSAR studies of this series reveal that electronic and stearic properties are governing the 

activities of newly synthesized proton pump inhibitors. Among electronic parameters, 

Quadrupole2, XCompDipole and Dipole Moment are responsible for governing the 

activity, while chi4pathcluster, chivV6chain and chi3cluster are the stearic parameters 

responsible for the activity. Apart from these some alignment independent (AI) 

descriptors like T_C_O_2, T_2_O_6 and T_O_S_3 are also responsible for the activities 

of proton pump inhibitors under study. 

 

Part-II of this thesis deals with the “Novel Microwave Assisted Green Chemical 

Synthesis of Condensed 2-Substitutedpyrimidin-4(3H)-ones Under Solvent Free 

Conditions, their MWI Assisted Facile and Rapid Chlorination and their Multidrug 

Reverting Activity”.  

 

Condensed pyrimidines and quinazolines have shown a wide spectrum of biological 

activities and have been reported in the literature. Thieno[2,3-d]pyrimidines are 

considered to be bioisosteres of quinazolines. This has lead to the synthesis of various 

types of condensed pyrimidines, which show a wide range of biological activities.  

 

The synthesis of condensed pyrimidines is a very important process which is subject to 

improvement, routinely. The regularly employed synthetic methodology involves 

annulation of the pyrimidine ring on an appropriately substituted heterocycles in which a 

variety of o-aminocarbonyl heterocycles have been cyclocondensed with a host of 

reagents namely amides, thioamodes, imidates, amidines, etc., mostly under basic 
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conditions to afford variety of condensed pyrimidines, quinazolines, thienopyrimidines, 

furanopyrimidines, purines, pteridines, pyridopyrimidines,  pyrrolopyrimidines, 

pyrazolopyrimidines, etc. 

 

Shishoo et al., have exploited the reactions of a variety of nitriles with a host of o-

aminocarbonyl substrates, under the influence of dry HCl gas to obtain a wide range of 2-

substituted-4-oxo/4-amino/4-chloro & 4-aryl condensedpyrimidines.  

 

Reactions that are adaptable for high speed and throughput syntheses have become an 

important component of the modern medicinal chemist’s library, as a great number of 

compounds can be produced through such rapid parallel synthetic programs. Synthetic 

methods that enable the rapid production of an array of heterocycles, useful for the 

identification of new lead structures are of critical importance to the pharmacological 

activity. 

 

Encouraging results in the MWI based syntheses of thiophene o-aminoesters involving 

Gewald reaction, as well as, thienopyrimidine bioisosteres of gefitinib under microwave 

conditions gave an impetus to assess whether, these could be extended to the single pot 

cyclocondensation of the nitriles with various o-aminoester substrates under solvent free 

conditions using MWI. This was particularly of interest, especially for quickly generating 

compound libraries of increasing molecular diversity, through the development of 

synthetic methods that could combine the expediency of microwave energy. 

 

Thus, the aim of the this part was to use microwave irradiation for the synthesis of 

condensed 2-substitutedpyrimidin-4(3H)-ones involving the condensation of variety of 

nitriles with o-aminoesters of thiophene, benzene, dimethoxybenzene and quinazolinone 

in the presence of catalytic amount of HCl alone or with the Lewis acid, AlCl3 under 

solvent free conditions for the first time. Further, it was decided to synthesize 4-chloro 

derivatives of these condensed 2-substituted pyrimidines-4-ones through MWI assisted 

facile and rapid chlorination and also evaluated them for multi drug reverting activity on 

resistant cancer cell lines. 

 

In all 52 compounds has been synthesized in this part which were characterized by 

spectral data. The synthesized derivatives have been screened for their multi drug 
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reverting activity on MDR1-gene transfected mouse lymphoma cell line (l5178 y). 

Verapamil was taken as a positive control.  Few derivatives, namely 4-chloro-2-(2-

chloroethyl)-5-(4-methylphenyl)thieno[2,3-d]-pyrimidine VIxiv, 2,5,6-trimethyl-

thieno[2,3-d]pyrimidin-4(3H)-one Vxxvi, 4-chloro-2-(2-chloroethyl)-5,6-dimethyl-

thieno[2,3-d]pyrimidine VIxv, 4-chloro-2-(2-chloroethyl)-5,6,7,8-tetrahydro-benzo[4,5]-

thieno[2,3-d]pyrimidine VIv, 2-methylquinazolin-4(3H)-one Vxxx, 2-chloro-methyl-3H-

benzo[4,5]thieno[3,2-d]pyrimidin-4-one Vxiv,  9-methoxy-2-chloromethyl-3H-benzo-

[4,5]thieno[3,2-d]pyrimidin-4-one Vxv, 2-chloromethyl-3,5,6,7,8,9-hexahydro-10-thia-

1,3-diaza-benzo[a]azulen-4-one Vvii, 7-benzyl-2-chloromethyl-5,6,7,8-tetra-hydro-3H-9-

thia-1,3,7-triaza-fluoren-4-one Vx, 4-chloro-2-chloromethyl-6,7,8,9-tetra-hydro-5H-10-

thia-1,3-diaza-benzo[a]azulene VIvi and 4-chloro-2-(chloromethyl)-5-(4-methoxy 

phenyl)thieno[2,3-d]pyrimidine VIvii showed moderate activity in inhibiting the Pgp, 

which is reflected by fluorescence activity ratio. None of the compounds showed 

cytotoxic effect in the when measure at 4 micromol/ml/1million cells concentration, 

which is desirable. This means that the above stated compounds were moderately 

effective in reversal of MDR efflux pump activity. Verapamil was taken as a standard in 

this study. 

 

Part-III of the thesis deals with “Synthesis, Characterization and Anticancer Activity of 

some Aza-analogue of DP-7”.  

Literature survey reveals that DP-7 (dihydropyridine derivative) is a potent multi drug 

reverting agent and on the other hand, monastrol (dihydropyrimidine derivative) is potent 

inhibitor of Eg5 that inhibits ATP hydrolysis through an allosteric mechanism. Thus, it 

was thought to hybridize the structural features of these two potent anticancer molecules 

so that multidrug reverting activity as well as Eg5 inhibitor activity can be obtained by a 

single molecule. These hybridized molecules are aza analogues of the DP-7, bearing 

various substitutions on the 4th position of the dihydropyrimidine ring. 

 

In all 30 dihydropyrimidine derivatives has been synthesized in this part which were 

characterized by spectral data. The newly synthesized derivatives were screened on 

MDR1-gene transfected mouse lymphoma cell line (l5178 y) for MDR reversal effects at 

non toxic concentrations taking verapamil as a standard. The four compounds namely 5-

benzoyl-6-methyl-4-(1-naphthyl)-3,4-dihydropyrimidin-2(1H)-one VIIvii, 4-(2,5-

dimethoxy phenyl)-6-methyl-5-(1-phenylvinyl)-3,4-dihydro-pyrimidin-2(1H)-one VIIix, 
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5-benzoyl-4-(3H-indol-3-yl)-6-methyl-3,4-dihydro-pyrimidin-2(1H)-one VIIx and [6-

methyl-4-(3-phenoxyphenyl)-2-thioxo-1,2,3,4-tetrahydro-pyrimidin-5-yl](phenyl) 

methanone VIIxxvii were very effective in inhibiting the Pgp mediated resistance of 

cancer cell line, when measured in 4 micromol/ml/1million cells. Verapamil was taken as 

a standard in this study. 
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