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Abstract 

 

 

This dissertation describes the development of three novel variants of the 

zwitterionic Claisen rearrangement.  Initial studies demonstrate an efficient and 

diastereoselective ketene-Claisen rearrangement catalyzed by metal salts.  This process 

involves the condensation of ketenes and allylic amines to form zwitterionic enolates 

which undergo [3,3]-sigmatropic rearrangements to afford α,β-disubstituted-γ,δ-

unsaturated amides.  The scope of this chemistry is further expanded through the 

development of a Lewis acid–catalyzed acyl-Claisen rearrangement which employs acid 

chlorides as ketene surrogates.  Based on these studies, a new tandem acyl-Claisen 

rearrangement for the construction of structurally complex 1,7-dioxo-acyclic 

architectures is achieved.  The versatility of this tandem transformation for macrolide 

antibiotic synthesis is demonstrated through a concise total synthesis of erythronolide B, 

in 24 linear steps. 
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Chapter 1 
 

The Lewis Acid–Catalyzed Ketene-Claisen Rearrangement 
 

 

Introduction 

In 1912, Claisen discovered that, at elevated temperatures, allyl vinyl ethers 

undergo a [3,3]-sigmatropic rearrangement to form γ,δ-unsaturated carbonyl compounds 

(equation 1).1  Many elegant versions of this rearrangement have since been developed by 

Caroll, Eschenmoser, Johnson, Ireland, Bellus and others.2  Consequently, the Claisen 

rearrangement now represents one of the most well-characterized and efficient methods 

available for the diastereoselective synthesis of structurally complex organic molecules.  

However, the development of enantioselective catalytic Claisen variants remains a 

valuable and challenging goal in synthetic chemistry.3 

 
O ∆ O (eq. 1)

 

Asymmetric induction in the Claisen rearrangement has been achieved by the use 

of remote stereocontrol in chiral precursors or chiral auxillaries attached at various 

positions on the allyl vinyl ether.2  In recent years, noteworthy enantioselective variants 

of the Claisen process involving external sources of chirality have also been achieved, by 

exploiting charge accelerated Claisen rearrangements.3  While the thermal sigmatropic 

rearrangement of ally vinyl ethers require high temperatures (150 to 200 °C), charge 

accelerated rearrangements occur at temperatures as low as –78 °C.  Incorporation of 



 2

either negative charge (at position 2a) or positive charge (at position 3) has been shown 

to facilitate this pericylic process (Figure 1).2 

 

O

O
MLn

O
MLn

3

2

2a

δ

anion-accelerated
Ireland Claisen

cation accelerated
oxonia-Claisen  

Figure 1.  Charge-acceleration in the Claisen rearrangement 

 

Despite the efforts of many research groups, only one asymmetric catalytic 

variant of the Claisen rearrangement has been demonstrated to date.  In 2002, 

Hiersemann achieved the first enantioselective cation-accelerated Claisen rearrangement 

of allyl vinyl ethers (1) catalyzed by the copper bisoxazaline (2) to provide esters (3) 

(Scheme 1).4  For acceptable levels of enantioselectivity to be obtained (72 to 88% e.e.), 

a chelating ester at the 2-position in the allyl vinyl ether substrates (1) is required.  

Although a breakthrough achievement, the inherent substrate limitation and the non-

trivial synthesis of these precursors hinder the generality and synthetic utility of this 

method. 
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Scheme 1.  First enantioselective catalytic Claisen rearrangement (Hiersemann, 2002) 
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Notably, a highly enantioselective and diastereoselective version of the Ireland-

Claisen rearrangement of achiral esters has been developed by Corey (Scheme 2).5  In the 

presence of the stillbenediamine derived bis(sulfonamide)boron Lewis acid 4, crotyl 

propionate 5 is deprotonated by i-Pr2NEt at –78 °C to furnish the (Z)-enolate 6 which 

upon warming rearranges to the syn-2,3-dimethyl-5-hexenoic acid 7 (97% e.e. and 99:1 

dr).  By simply changing the solvent system and the tertiary amine used for enolate 

formation, the (E)-enolate 8 can be accessed which subsequently rearranges to afford the 

anti isomer 9 in excellent enantio- and diastereoselectivity. 



 4

 
Scheme 2.  Corey’s enantioselective Ireland-Claisen promoted by boron complex 4 
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Corey successfully applied this transformation in the total syntheses of natural 

products (+) fuscol6 and dolabellatrienone.7  Unfortunately, in addition to extended 

reaction times required (14 days), this methodology requires stoichiometric amounts of 

the chiral complex 4.  Turnover of the complex in this process is most likely inhibited by 

the formation of a stable boron-carboxylate complex 10 as the immediate product of the 

rearrangement (Figure 2). 
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Figure 2.  Carboxylate 10 inhibits catalytic turnover 
 

The development of enantioselective catalytic Claisen rearrangements with 

general synthetic versatility remains a valuable, yet unrealized goal.  Our approach to this 

challenge begins with the design of a novel Claisen rearrangement that is amenable to 

Lewis acid catalysis (in contrast to the Ireland-Claisen reaction), and has greater substrate 

scope and a more facile starting material synthesis than the metal-catalyzed oxonia-

Claisen methodology. 

 

 

Reaction Design 

This research program was inspired by the conceptually novel ketene-Claisen 

rearrangement reported by Bellus in 1978 (Scheme 3).8  Although expecting 

dichloroketene (11) and allyl ether (12) to participate in a [2+2] cycloaddition, the 

authors found instead that these reagents condense to form a zwitterionic enolate (13) 

which subsequently undergoes [3,3]-sigmatropic rearrangement to form γ,δ-unsaturated 

esters (14).  The range of ketenes that could be used was reported to be limited to only 



 6

highly electron deficient ketenes, such as dichloroketene and 

chloro(trichloroethyl)ketene. 

 
Scheme 3.  Ketene-Claisen rearrangement by Bellus (1978) 
 

C O
Cl

Cl

R OMe

O

O

Me
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Me OMe
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Me
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However, detailed inspection of these reports revealed that the desired Claisen 

process occurred only when ketenes were generated in situ by the zinc-promoted 

dehalogenation of α-chloro acid chlorides, forming zinc(II) chloride as a byproduct 

(equation 2).  For example, the highly electron deficient chlorocyanoketene (15) 

generated by thermolysis of lactone 16, fails to participate in the ketene-Claisen 

rearrangement, even at elevated temperatures (equation 3). 

 
O

Cl
Cl

Cl Cl

Zn0
C O

Cl

Cl
ZnCl2

O

N3

Cl

OMe

O

C O
Cl

NC

23 °C

85 °C unreactive

16 15

(eq. 2)

(eq. 3)

 

Based on these observations, we speculated that zinc chloride was a key 

component in this process, possibly activating the ketene towards nucleophilic attack.  As 

such, we recognized the potential to use chiral Lewis acids as an attractive platform to 

induce asymmetry in the ketene-Claisen rearrangement.  In contrast to Corey’s boron-
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mediated ester enolate Claisen reaction, where the anionic carboxylate product binds 

irreversibly to the boron Lewis acid, the product of the ketene-Claisen reaction is a 

neutral ester species which should therefore readily dissociate from a variety of Lewis 

acidic metals  

As shown in Scheme 4, we envisioned that a range of ketenes 9 could undergo 

Lewis-acid activation (see 17) and condense with allyl vinyl ethers 18 to produce 

zwitterionic allyl–vinyl oxonium complexes 19 which would subsequently undergo [3,3]-

sigmatropic rearrangement to afford the metal-bound ester 20.  Dissociation of the neutral 

ester product 21 would regenerate the catalytically active Lewis acid species. 

 
Scheme 4.  Proposed Lewis acid–catalyzed ketene-Claisen rearrangement 
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Results and Discussion 

In order to test whether or not the Lewis acid plays a catalytic role in the ketene-

Claisen rearrangement, the ketene component needed to be isolated free from any salt 

byproducts prior to use.  This was accomplished by Ward’s procedure;9 treatment of 

bromoacetyl bromide (22) with zinc produces methylketene (23) which can be co-

distilled to provide a methylketene solution in THF (Scheme 5). 

 
Scheme 5.  Ward procedure for synthesizing methyl ketene 
 

O

Br
Br

Br
THF

Zn0

C
Me

O
ZnBr2

distill
C

Me
O

(23 in THF)22 23  

 

Our proposed ketene-Claisen rearrangement was first examined using cinnamyl 

methyl ether 24 and methylketene 23 (Scheme 6).  In the presence of a variety of Lewis 

acids, the ether 24 failed to react with methylketene to produce the desired Claisen 

product 25 (Scheme 6).10 

 
Scheme 6.  Attempted Lewis acid–catalyzed ketene-Claisen rearrangement of 24 
 

Ph OMe C
Me

O OMe

O
Me

Me

Lewis acid

THF

not observed24 23 25  

 

We reasoned that the allyl ether was not nucleophilic enough to condense with 

methyl ketene—a less electrophilic ketene than the halogenated ketenes used by Bellus.  

As a result, we considered using a more reactive nucleophile, such as an allylic amine.  



 9

The ability of allylic tertiary amines to participate in the ketene-Claisen has been 

previously studied by several groups.11 

To our delight, we observed that cinammyl pyrrolidine 26 and methylketene 23 

undergo an efficient ketene-Claisen rearrangement at room temperature under the 

influence of Lewis acids to provide Claisen adducts 27 (Table 1).  A variety of oxophilic 

metal salts efficiently promote this transformation when used in stoichiometric amounts, 

including ZnBr2, AlMeCl2, MgBr2, and Yb(OTf)2 (entries 6–9).  Moreover, this 

procedure can indeed be performed using catalytic quantities of Lewis acid with AlCl3, 

Ti(Oi-Pr)2Cl2, TiCl4, and ZnBr2 (entries 2-5). 

 
Table 1.  Lewis acid–promoted ketene-Claisen rearrangement between cinnamyl pyrrolidine and 
methyl ketene 
 

Ph N C
Me

O
Lewis acid

THF, 23 °C N

Ph

Me

O

entry Lewis acid equiv % conva syn:antib

1 

2
3
4
5
6
7
8
9

--
AlCl3   

TiCl2(Oi-Pr)2
TiCl4
ZnBr2
ZnBr2

AlMeCl2
MgBr2

Yb(OTf)2

--
0.20
0.20
0.10
0.20
1.0 

1.0
1.0
1.0

NR
90
88
80c

60
89
80
80  

90

--
>99:1
>99:1 

>99:1
>99:1
>99:1
>99:1
>99:1
>99:1

26 23 27

 
a Conversion based on 1H NMR analysis of the unpurified reaction mixture.  b Product ratios determined 
by GLC using a Bodman CC1701 column. 

 

Role of the Lewis acid.  The success of the ketene-Claisen rearrangement is 

contingent on the use of Lewis acids.  In experiments conducted without metal salts, 

Claisen product 27 was not observed (Table 1, entry 1).  Instead, these experiments 
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resulted in the recovery of the starting amine 26 and isolation of a β-lactone product 28 

(equation 4). 

 
Ph N

C
Me

O
 23 °C

THF O
O

Me Me

26

26 23 28

(eq. 4)

 

Product 28 presumably arises from the dimerization of methylketene, by a 

pathway known to be catalyzed by tertiary amines.12  As shown in Figure 3, in the 

absence of Lewis acids, allyl amine 26 condenses with ketene 23 to form a zwitterionic 

enolate 29 which adds to a second equivalent of ketene 23.  The resulting zwitterionic 

intermediate 30 eventually undergoes intramolecular cyclization via 31 to form the 

observed ketene dimer 28. 

NR2

O
Me

Ph
29

Me
NR2

O

Me

O

Ph

NR2

Ph
26

O
O

NR2

MeMe Ph

OC
Me

OC
Me

O
O

Me Me

28

23 15

30

31  

Figure 3.  Amine catalyzed ketene dimerization pathway 
 

As such, contrary to what we had previously speculated, the Lewis acid does not 

appear necessary for activation of ketene towards nucleophilic addition by allyl 

pyrrolidine.  What role then does the Lewis acid play in catalyzing the ketene-Claisen 
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rearrangement? We proposed that binding of the Lewis acid to the resulting allyl-vinyl 

ammonium complex 29 helps deter ketene dimerization by attenuating the nucleophilicity 

of this zwiterrionic enolate (Figure 4).  In addition, the Lewis acid bound zwitterion 32 is 

presumably more activated towards [3,3]-sigmatropic rearrangement than zwitterions 29 

because 32 posses greater cationic character at the 3 position.  This increased positive 

charge should accelerate rearrangement, as in the cation-accelerated oxonia Claisen (see 

Figure 1). 

 

NR2

O
R1

R2

NR2

O
R1

R2

LAδ

29  favors ketene
dimerization

32  favors [3,3]
rearrangement

vs.
3

 

Figure 4.  Role of the Lewis acid (LA) in catalyzing the ketene-Claisen rearrangement 
 

Origins of stereoselectivity.  This new Lewis acid–catalyzed ketene-Claisen 

rearrangement was found to be highly stereoselective (Table 1, entries 2–9).  Based on 

GC and 1H NMR analysis, the syn diastereomer was observed to be favored over the anti 

isomer with >99:1 diastereoselectivity in the presence of every Lewis acids that was 

successful in this rearrangement.  The high levels of stereoselectivity observed result 

from two sequential and highly selective steps. 

First, addition of nucleophiles to monosubstituted ketenes usually results in 

exclusive formation of the (Z)-enolate (Figure 5).13  As the lowest unoccupied molecular 

orbital (LUMO) is the C=O π* orbital that lies in the plane defined by the ketene,14 

nucleophiles encounter a destabilizing steric interaction with the bulky R substituent on 
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the terminal carbon.  Consequently, approach of the nucleophile occurs preferentially 

from the opposite side to the bulkier substituents, resulting in selective formation of the 

(Z)-enolate. 

C O
H

R
C O

R

H
Nu

O

R

H

Nu Nu

Nu

O

H

R

(E)-enolate (Z)-enolate

disfavored favored

 

Figure 5.  Origins of (Z)-enolate geometry control in additions to monosubstituted ketenes 
 

Second, based on previous Claisen studies,2 we predict that the zwitterionic 

enolate undergoes rearrangement through a highly ordered chair-like transition state to 

form the carbon-carbon σ bond in a diastereoselective fashion (Figure 6).  The sense of 

diastereoselectivity is consistent with the model depicted.  Notably, as the ketene-Claisen 

rearrangement proceeds at lower temperatures (room temperature) than a typical thermal 

aliphatic Claisen rearrangement (150 to 200 °C), higher levels of stereocontrol are 

achieved (>99:1 syn:anti). 

 

R1 N
C

R
O

Lewis acid, 23 °C

THF

N

R1

R

O
N

LAO R

+

R1

(Z)-enolate

δ

> 99:1 syn:anti  

Figure 6.  Origins of diastereoselectivity in the ketene-Claisen rearrangement 
 

Scope of the ketene-Claisen rearrangement.  Experiments that probe the scope of 

the ketene-Claisen rearrangement are outlined in Table 2.  Variation in the allyl 

substituent (R = hydrogen, alkyl, aryl or halogen) was possible without loss in yield or 

diastereoselectivity (> 75% yield, > 99:1 syn:anti).  Notably, access to quaternary carbons 
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at both the α and β positions to the amide moiety in the Claisen adduct are possible (entry 

6 and 5, respectively). 

 

 
Table 2.  Ketene-Claisen rearrangement of representative allyl pyrrolidines 
 

N

R1
C O

R2

N

R1

R2

O

R2N
R2N

Me

O

C O
Me

R2N

Me
R2N

Me

Me

O

C O
Me

R2N

Ph
R2N

Ph

Me

O

C O
Me

R2N

Cl
R2N

Cl

Me

O

C O
Me

R2N

Me
R2N

Me

O

C O
Me

R2N

Ph
R2N

PhO

C O
Me

Me

Me Me

Me Me Me

entry aminea ketene producta yield syn:antib,c

20 mol%
TiCl4(THF)2

THF, 23  °C

84

84

85

77

68

86

>99:1

>99:1

>99:1

1

2

3

4

5

6

--

--

--

 
a NR2 = N-pyrrolidine.  b Product ratios determined by GLC using a Bodman CC1701 column.  c Relative 
configurations assigned by chemical correlation to known compounds (See experimental methods). 

 

While excellent levels of syn stereoselection and reaction efficiency were 

observed with trans-allyl pyrrolidines (Table 2, entries 2–4, and 6), the cis-allylic 

pyrrolidines react less efficiently.  For example, subjecting the (Z)-N-2-pentenyl-



 14

pyrrolidine 33 to the standard reaction conditions resulted in only trace amounts of 

rearrangement product 34 as detected by 1H NMR (equation 5).  

 

N

Et

N
Me

O

C O
Me 20 mol%

TiCl4(THF)2

Et

< 10% conversion
85:15 anti-syn

33 23 34
THF, 24 hr

(eq. 5)

 

These results can be understood by examining the transition states involved in the 

rearrangement of the trans- versus cis- allylic pyrrolidines (Figure 7).  In the case of the 

trans-crotyl pyrrolidine 35, a low-energy chair-like transition state 36 is accessible that 

places all substituents in pseudo-equatorial orientations.  However, for the cis isomer 37, 

the corresponding chair-like transition state 38 positions the R substituent in a 

pseudoaxial orientation, resulting in destabilization from the resulting 1,3-diaxial 

interaction of this substituent with the metal-bound enolate oxygen.  As such, the rate of 

rearrangement for 37 to product 39 would be expected to be slower than the rate of 

rearrangement for the 35 to product 40.  As a consequence, ketene dimerization can 

compete with the desired rearrangement process, resulting in diminished yields of the 

desired 39. 
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THF, 23 °C

TiCl4(THF)2

 

Figure 7.  Rationale for relative rates of rearrangement for the trans vs. cis  allyl amines 

 

 

Concluding Remarks 

A novel Lewis acid–catalyzed ketene Claisen rearrangement has been 

accomplished.  A variety of allylic pyrrolidines can be tolerated by this methodology.  

However, demonstrating diversity in the ketene component was difficult to achieve.  In 

the Ward procedure for generating ketenes, ketenes are isolated by codistillation with 

ethereal solvents.  As such, only ketenes of low molecular weight, such as methylketene 

or dimethylketene can be accessed by this protocol.  This limitation prompted us to 

explore a new strategy that generates ketenes in situ from readily available and bench-

stable precursors (Chapter 2). 
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Experimental Methods 

General Information.  All non-aqueous reactions were performed using flame- or 

oven-dried glassware under an atmosphere of dry nitrogen.  Commercial reagents were 

purified prior to use following the guidelines of Perrin and Armarego.15  Non-aqueous 

reagents were transferred under nitrogen via syringe or cannula.  Organic solutions were 

concentrated under reduced pressure on a Büchi rotary evaporator.  Tetrahydrofuran and 

diethyl ether were distilled from sodium benzophenone ketyl prior to use.  N,N-

diisopropylethylamine and dichloromethane were distilled from calcium hydride prior to 

use.  Air sensitive solids were dispensed in an inert atmosphere glovebox.  

Chromatographic purification of products was accomplished using forced-flow 

chromatography on ICN 60 32–64 mesh silica gel 63 according to the method of Still.16  

Thin-layer chromatography (TLC) was performed on EM Reagents 0.25 mm silica gel 

60-F plates.  Visualization of the developed chromatogram was performed by 

fluorescence quenching or KMnO4 stain. 

1H and 13C NMR spectra were recorded on Bruker DRX-500 (500 MHz and 125 

MHz, respectively), AMX-400 (400 MHz and 100 MHz), or AMX-300 (300 MHz and 75 

MHz) instruments, as noted, and are internally referenced to residual protio solvent 

signals.  Data for 1H are reported as follows: chemical shift (δ ppm), multiplicity (s = 

singlet, d = doublet, t = triplet, q = quartet, m = multiplet), integration, coupling constant 

(Hz) and assignment.  Data for 13C are reported in terms of chemical shift.  IR spectra 

were recorded on an ASI React-IR 1000  spectrometer and are reported in terms of 

frequency of absorption (cm-1).  Mass spectra were obtained from the UC Berkeley Mass 

Spectral facility. Gas chromatography was performed on Hewlett-Packard 5890A and 
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6890 Series gas chromatographs equipped with a split-mode capillary injection system 

and flame ionization detectors using the following columns: Bodman Chiraldex Γ-TA (30 

m x 0.25 mm) and C&C Column Technologies CC-1701 (30 m x 0.25 mm). 

 

Methyl ketene (23):  Methyl ketene was freshly prepared for each use according to the 

procedure of Ward.9  Zinc powder was activated by washing with aqueous 1 N HCl, 

water, methanol and ether, followed by drying in vacuo.  The activated zinc powder (1.00 

g, 15.3 mmol) was suspended in THF in a 100 mL receiving flask and attached to a short 

path distillation apparatus with a 50 mL Schlenk flask connected to the receiving end.  

The pressure within the apparatus was reduced to 110 torr.  A solution of freshly distilled 

2-bromopropionyl bromide (0.52 mL, 5.0 mmol)  in THF (3.5 mL) was added dropwise 

via a 22 gauge Teflon cannula tightened with a metal clamp.  The ketene formed 

immediately and codistilled with the THF.  The distillate was collected in the N2 (l) 

cooled Schlenk flask.  After addition of acid bromide was complete (8–10 minutes), the 

distillation was continued for another 5 minutes.  The distillate was then warmed to –78 

oC in a CO2/acetone bath under N2 (g) resulting in a bright yellow solution which was 

used without further purification.  The IR spectrum of the solution displays an intense 

ketene band at 2130 cm-1. 

 

General Procedure:  A round-bottomed flask containing TiCl4(THF)2 was charged with 

THF and the allyl pyrrolidine.  The solution was stirred for 10 min before the ketene was 

added in portions of approximately 30 drops every 15 min via a 22 gauge Teflon cannula.  

Addition of ketene (5–7 mL) was continued (1.5–2 h) until the allyl pyrrolidine was 
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completely consumed (1.5–2 h) as determined by TLC (5 % Et3N:EtOAc).  The resulting 

dark red solution was then diluted with ether and aqueous 1 N NaOH.  The aqueous layer 

was then extracted with ether, and the combined organic layers were washed with brine, 

dried and concentrated.  The resulting residue was purified by flash chromatography with 

50% Et2O/hexanes to provide the title compounds. 

 

N-(2-Methyl-4-pentenoyl)-pyrrolidine  (Table 2, entry 1).  Prepared  according to the 

general procedure from (E)-N-2-Propenyl pyrrolidine (76 mg, 0.68 mmol), TiCl4(THF)2, 

(44 mg, 130 µmol), and methyl ketene to provide the pure product as a yellow oil in 84 % 

yield (96 mg, 0.57 mmol);  IR 2980, 2880, 1629, 1463, 1440, 919 cm-1;  1HNMR (500 

MHz) δ 5.76 (m, 1H, CHCH2), 5.05 (dd, J = 1.5, 3.4 Hz, 1H, CHCH2), 5.01 (dd, J = 1.5, 

3.4 Hz, 1H, CHCH2), 3.40–3.49 (m, 4H, (CH2)2N), 2.57 (m, 1H, CHC=O), 2.43 (m, 1H, 

CH2CH=CH2), 2.11 (m, 1H, CH2CH=CH2), 1.93 (m, 2H, CH2CH2N), 1.83 (m, 2H, 

CH2CH2N), 1.10 (d, J = 6.8 Hz, 3H, CH3CH=O); 13C NMR (125  MHz) δ 174.49, 

136.27, 116.30, 46.38, 45.62, 38.02, 37.88, 26.08, 24.26, 16.86;  LRMS (FAB) m/z 168 

(MH)+;  HRMS (FAB) exact mass calcd for (C10H17NO)+ requires m/z 167.1310, found 

m/z 167.1308. 

 

N-(2,3 Dimethyl-4-pentenoyl)-pyrrolidine (Table 2, entry 2).   Prepared according to 

the general procedure from (E)-N-2-butenyl pyrrolidine (94.4 mg, 0.753 mmol), 

TiCl4(THF)2, (50 mg, 150 µmol), and methyl ketene to provide the pure product as a 

yellow oil in  84 % yield (114 mg, 0.628 mmol).  All spectral data were in complete 

agreement with those previously reported.17 
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(2R*, 3R*)-N-(3-Phenyl-2-methyl-4-pentenoyl)-pyrrolidine (Table 2, entry 3).  

Prepared according to the general procedure from (E)-N-3-Phenyl-2-propenyl pyrrolidine 

(107 mg, 0.571 mmol), TiCl4(THF)2, (19 mg, 57 µmol), and methyl ketene to provide 

80% yield of the pure product (111 mg, 0.46 mmol) as a white solid: mp 85–86 oC;  IR 

2980, 2880, 1629, 1459, 1440, 923 cm-1;  1H NMR (400 MHz) δ 7.16–7.30 (m, 5H, Ph), 

5.95–6.04 (ddd, J = 8.05, 10.9, 16.5 Hz, 1H, CHCH2), 4.97 (d, J = 0.8 Hz, 1H, CHCH2), 

4.93–4.94 (m, 1H, CHCH2), 3.56 (t, J = 9.0 Hz, 1H, CHCH=CH2), 3.40–3.47 (m, 4H, 

(CH2)O), 2.87 (m, 1H, CHC=O), 1.78–1.91 (m, 4H, CH2CH2N), 0.90 (d, J = 6.8 Hz, 3H, 

CH3);  13C NMR (100 MHz) δ 173.79, 141.90, 139.76, 128.45, 128.30, 126.44, 115.43, 

53.46, 46.59, 45.60, 42.99, 26.01, 24.28, 16.14;  LRMS (FAB) m/z 244 (MH)+; HRMS 

(FAB) exact mass calcd for (C16H21NOH)+ requires m/z 244.1702, found m/z 244.1702; 

Anal. Calcd for C16H21NO: C, 78.97; H, 8.70; N, 5.76.  Found C, 79.02; H, 8.41; N, 5.71. 

 

N-3-Chloro-2-propenylpyrrolidine (Table 2, entry 4).  Prepared according to the 

procedure of Butler.18  (E)-1,3 dichloropropene was added dropwise to a refluxing 

mixture of pyrrolidine (6.3 mL, 110 mmol), NaHCO3 (6.4 g, 76 mmol) and water (6 mL).  

After stirring the reaction at reflux for 3 h, the organic layer was separated from the 

aqueous layer and distilled to provide pure product as a colorless oil in 20 % yield (2.2 g, 

15 mmol): bp (72 oC, 10 torr);  IR 2814, 1637, 1455, 1297, 116, 907 cm-1; 1HNMR (400 

MHz) δ 6.15 (dt, J = 13.2, 1.2 Hz, 1H, ClCH), 6.03 (m, 1H, ClCH=CH), 3.10 (d, J = 7.0 

Hz, 1H, CH2CH=CH), 2.50 (m, 4H, (CH2)2N), 1.80 (m, 4H, (CH2CH2)N);  13C NMR 
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(100 MHz) 131.20, 119.86, 55.71, 53.85, 23.46;  δ Anal. Calcd for C7H12ClN: C, 57.73; 

H, 8.31; N, 9.62.  Found C, 57.41; H, 8.66; N, 9.85. 

 

(2R*, 3R*)-N-(3-Chloro-2-methy-4-pentenoyl)-pyrrolidine (Table 2, entry 4).  

Prepared according to the general procedure from (E)-N-3-chloro-2-propenyl pyrrolidine 

(81.1 mg, 0.557 mmol), TiCl4(THF)2, (36 mg, 11 µmol), and methyl ketene to provide 

77% yield of the pure product (86.4 mg, 0.431 mmol) as a yellow oil;  IR 2980, 2880, 

1633, 1459, 1440, 934 cm-1;  1H NMR (500 MHz) δ 5.90 (ddd, J = 8.4, 10.2, 16.9 Hz, 

1H, CH=CH2), 5.29 (dt, J = 16.9, 0.9 Hz, 1H, CH=CH2), 5.14 (dd, J = 10.3, 19.7 Hz, 1H, 

CH=CH2), 4.50 (t, J = 8.8 Hz, 1H, CHCCl), 3.38–3.59 (m, 4H, (CH2)2N), 2.83 (m, 1H, 

CHC=O), 1.79–1.98 (m, 4H, (CH2CH2) N, 1.29 (d, J = 6.8 Hz, 3H, CH3);  13C NMR (125 

MHz) δ 171.47, 136.37, 117.83, 65.29, 46.74, 45.68, 45.53, 25.97, 24.25, 15.95;  LRMS 

(FAB) m/z 201 (M)+; HRMS (FAB) exact mass calcd for (C10H16ClNO)+ requires m/z 

201.0920, found m/z 201.0917. 

 

(2-Methyl-3,3-dimethyl-4-pentenoyl)-pyrrolidine (Table 2, entry 5).  Prepared 

according to the general procedure from (E)-N-3-methyl-2-butenyl pyrrolidine (87 mg, 

0.62 mmol), TiCl4(THF)2, (42.0 mg, 126 µmol), and methyl ketene to provide 68% yield 

of the pure product (81 mg, 0.42 mmol) as a yellow oil;  IR 2976, 2880, 1725, 1629, 

1455, 1436, 1193, 919 cm-1;  1H NMR (500 MHz) δ 5.93 (dd, J = 10.3, 17.9 Hz, 1H, 

CH=CH2), 4.95 (dd, J  = 1.4, 6.2 Hz, 1H, CH=CH2),  4.92 (s, 1H, CH=CH2), 3.38–3.52 

(m, 4H, (CH2)2N), 2.44 (q, J = 7.0 Hz, 1H, (CH)C=O), 2.26 (m, 2H, CH2CH2N), 1.86 (m, 

2H, CH2CH2N), ), 1.07 (s, 3H, (CH3)2C), 1.03 (d, J = 5.6 Hz, 6H, (CH3)2CH=O);  13C 
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NMR (100 MHz) δ 174.04, 146.77, 111.25, 47.25, 45.91, 45.52, 39.35, 26.21, 24.71, 

24.38, 23.80, 13.06;  LRMS (FAB) m/z 195 (M)+; HRMS (FAB) exact mass calcd for 

(C12H21NO)+ requires m/z 195.1623, found m/z 195.1626. 

 

(2,2 Dimethyl-3-phenyl-4-pentenoyl)-pyrrolidine (Table 2, entry 6).  Prepared 

according to the general procedure from (E)-N-3-phenyl-2-propenyl pyrrolidine (68 mg, 

0.36 mmol), TiCl4(THF)2, (22 mg, 66 µmol), and dimethyl ketene to provide 86% yield 

of the pure product (110 mg, 0.46 mmol) as a colorless oil;  IR 3057, 2980, 2883, 1602, 

1471, 1409 cm-1;  1H NMR (500 MHz) δ 7.18–7.27 (m, 5H, Ph), 6.30 (m, 1 H, CHCH2), 

5.13 (d, J = 10.1 Hz, 1H, CH=CH2), 5.09 (d, J = 16.9 Hz, 1H, CH=CH2), 3.64 (d, J = 9.6 

Hz, 1H, CHCH=CH2), 3.07–3.48 (m, 4H, (CH2)2O), 1.65 (m, 4H, (CH2CH2)2N), 1.27 (s, 

3H, (CH3)2CC=O), 1.22 (s, 3H, (CH3)2CC=O);  13C NMR (125 MHz) δ 174.86, 141.08, 

137.16, 129.09, 127.89, 126.56, 117.09, 57.17, 48.56, 47.36, 27.18, 25.22, 23.61, 22.87;  

LRMS (FAB) m/z 257 (M)+; HRMS (FAB) exact mass calcd for (C17H23NO)+ requires 

m/z 257.1780, found m/z 258.1775; Anal. Calcd for C17H23NO: C, 79.33; H, 9.01; N, 

5.44.  Found C, 79.01; H, 9.28; N, 5.40.  
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Chapter 2 
 

The Lewis acid–Catalyzed Acyl-Claisen Rearrangement1 
 

 

Reaction Design 

 In the previous chapter, we developed a ketene-Claisen rearrangement that was 

susceptible to Lewis acid catalysis, and effective with a range of allylic pyrrolidines.  The 

synthetic utility of this method, however, was hampered by difficulties associated with 

preparing, storing and isolating the inherently unstable ketene.  Therefore, we decided to 

investigate an alternative strategy by generating the ketenes in situ.  In 1911, Staudinger 

demonstrated the amine-promoted dehydrohalogenation of acid chlorides to form 

ketenes.2,3  We reasoned that acid chlorides could be advantageous as ketene surrogates 

as they are more readily available and bench-stable precursors.4  Furthermore, the Ward 

procedure (Chapter 1) resulted in ethereal ketene solutions, while the Staudinger method 

would permit the use of non-coordinating solvents less likely to buffer the Lewis acidity 

of catalytic metal salts. 

As illustrated in Scheme 1, we envisioned that a range of acid chlorides (1) would 

undergo amine-promoted dehydrohalogenation to form ketenes (2) in situ.  In the 

presence of Lewis acids, ketenes (2) would undergo addition by tertiary allyl amines (3), 

forming the metal-bound zwitterionic intermediates (4).  Complex 4 would subsequently 

undergo [3,3]-sigmatropic rearrangement to afford Claisen products (5). 
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Scheme 1.  Proposed Lewis–acid catalyzed acyl-Claisen rearrangement 
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Results and Discussion 

Initial investigations of our proposed Lewis acid–catalyzed acyl-Claisen 

rearrangement was conducted using crotyl pyrrolidine 6 and propionyl chloride 7 in the 

presence of Hünig’s base and a variety of metal salts (Table 1).  This process produces 

rearrangement product 8 efficiently using one equivalent of Me2AlCl.  Unfortunately, 

poor efficiency was observed using catalytic amounts of various Lewis acids, with 

Yb(OTf)3 being the only exception (87% yield, entry 7).5 
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Table 1.  Effect of Lewis acid on the acyl–Claisen rearrangement of cinnamyl pyrrolidine 
 

Me N O

Cl
Me N

OPh

Me

entry Lewis acid equivalents % conversiona syn:antib

6 7 8

Lewis acid

i-Pr2EtN, CH2Cl2
23 ºC

1
2
3
4
5
6
7

--
AlMe2Cl
AlMe2Cl
MgBr2
Zn(OTf)2
TiCl4(THF)2
Yb(OTf)3

--
1.0
0.1
0.1
0.1
0.1
0.1

--
94
34
20
<5
13
84

--
>991:
>99:1
>99:1
>90:1
>99:1
>99:1  

a Conversion based on 1H NMR analysis of the unpurified reaction mixture.  b Product ratios 
determined by GLC using a Bodman CC1701 column. 
 

With these initial reaction parameters, competitive consumption of ketene occurs 

by the pyrrolidine-catalyzed dimerization pathway, resulting in poor conversion to the 

desired products (see Chapter 1).  In the Lewis acid–catalyzed ketene-Claisen 

rearrangement, the ketene component was used in large excess.  As such, ketene 

dimerization was not detrimental to the efficiency of the reaction with respect to the 

limiting pyrrolidine reagent.  Concerns over the ability of pyrrolidines to dimerize 

ketenes prompted us to investigate allyl morpholines which might better participate in the 

acyl-Claisen rearrangement without significantly promoting the nonproductive ketene 

dimerization process. 

N-allyl morpholines appeared to be attractive substrates for further investigation 

based on many reasons (Scheme 2).  First, in comparison to pyrrolidine, the morpholine 

nitrogen has reduced basicity and nucleophilicity.6  Consequently, allyl morpholines 

should be less efficient nucleophilic catalysts for ketene dimerization.  Second, the 

electron-withdrawing effect of the oxygen in the morpholine ring should destabilize the 
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cationic charge on the nitrogen in the zwitterionic intermediate, and thereby increase the 

rate of sigmatropic rearrangement.  Third, because the resulting morpholine amide 

products are less Lewis basic than pyrrolidine amides, dissociation of the product from 

the metal center should be more facile, thus improving catalyst turnover.  Finally, 

morpholine amides own greater synthetic utility than their pyrrolidine counterparts.  

Similar to Weinreb amides,7 morpholine-derived amides can be converted to ketones by 

treatment with alkylmetal nucleophiles,8 and to aldehydes by reduction with LAH.9 

 
Scheme 2.  N-allyl morpholines for the acyl-Claisen rearrangement 
 

O
N R1 O C

R2
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N
O

O
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O

N
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O
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O
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O
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catalyst
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- LA

δ

δ

 

 

In contrast to our results with allyl pyrrolidines, the acyl-Claisen strategy was 

successful using propionyl chloride (7) and (E)-crotyl morpholine (9) in the presence of i-

Pr2EtN and catalytic amounts of Lewis acids, including Yb(OTf)3, AlCl3, Ti(Oi-Pr)2Cl2 

and TiCl4(THF)2 (cf. Table 1 and Table 2).  In all cases the 1,2-disubstituted Claisen 
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adduct 10 was formed in high yield (>75%, entries 2–5) and with excellent levels of 

stereocontrol (>99:1 syn:anti).  The excellent levels of diastereoselectivity and catalyst 

efficiency displayed by TiCl4(THF)2 defined this metal salt as the optimal catalyst for 

exploration of this new acyl-Claisen rearrangement. 

 
Table 2.  Catalyzed acyl-Claisen rearrangement between crotyl morpholine and propionyl 
chloride 
 

O
N

Me

O

Cl
Me

N

O

O Me

Me

entry Lewis acid mol% cat % yield syn:antia

1
2
3
4
5

--
Yb(OTf)3

AlCl3
Ti(Oi-Pr)2Cl2
TiCl4(THF)2

10
10
10
10
5

NR
80
90
76
92

--
>99:1
>99:1
>99:1
>99:1

9 7 10

Lewis acid

i-Pr2EtN, CH2Cl2
23 °C

 
a Conversion based on 1H NMR analysis of the unpurified reaction mixture. 

 

 

Scope of the Acyl-Claisen Rearrangement 

Allyl morpholine components.  Experiments that probe the scope of the allyl 

morpholine reaction component are summarized in Table 3.  Significant structural 

variation in the allyl substituent (R1 = H, alkyl, aryl or halogen, entries 1–4) is possible 

without loss in yield or diastereoselectivity (>76% yield, >99:1 syn:anti). 
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Table 3.  Catalyzed acyl–Claisen rearrangement between representative allyl morpholines and 
propionyl chloride 
 

O
N

R

O

Cl
Me i-Pr2EtN, CH2Cl2

23 ºC

N

O

O Me

R
TiCl4(THF)2

entry amine mol% cat producta yield syn:anti b,c

1

2

3

4

O
N

Me

O
N

Ph

O
N

Cl

O
N

5

10

10

10

R2N

O

Me

Me

R2N

O

Me

Ph

R2N

O

Me

Cl

R2N

O

Me

92

76

95

95

>99:1

>99:1

>99:1

>99:1

5
O

N 10 R2N

O

Me

NR --

6
O

N 100 R2N

O

Me

>95d <5:95d

Me

Me

Me

Me

10

11

12

13

14

14

15

15

 
a NR2 = N-morpholine.  b Product ratios determined by GLC using a Bodman CC1701 column.  c Relative 
configurations assigned by single crystal X-ray analysis or chemical correlation to a known compound (See 
Experimental Methods). d Conversion and diastereoselectivity determined by 1H NMR analysis of 
unpurified reaction mixture. 

 

While trans-disubstituted allylic morpholines reacted efficiently with propionyl 

chloride under catalysis of TiCl4(THF)2, our initial experiment with the corresponding cis 

isomer was unsuccessful (cf. entry 1 and entry 5).  However, the desired anti-1,2-
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dimethyl- substituted Claisen product 14 could be formed when stoichiometric amounts 

of TiCl4(THF)2 was used to promote the reaction (entry 6). 

The underlying reason for the failure of the Lewis acid–catalyzed rearrangement 

of cis-crotyl morpholine substrates is non-productive ketene dimerization.  We speculated 

that the ketene-Claisen rearrangement for cis-crotyl morpholine could be rendered 

catalytic in TiCl4(THF)2, if the rate of ketene dimerization was significantly decelerated.  

Because ketene dimerization is presumably second-order with respect to ketene, we 

expected that maintaining a lower concentration of ketene in the reaction solution would 

inhibit dimerization.  Furthermore, we reasoned this could be achieved by slower addition 

of the acid chloride (i.e., ketene precursor) to the reaction mixture.  Indeed, when 

propionyl chloride is added by syringe pump over the course of 10 h, the reaction of 15 

proceeds to give the desired 14 in 74% yield (95:5 anti:syn) using 20 mol% TiCl4(THF)2 

(equation 1). 

 

(eq. 1)
N

20 mol%
TiCl4(THF)2

O

O

Cl
Me

i-Pr2NEt, CH2Cl2Me
23 °C

N
O

O

Me

Me

10 h
addition15 6 14  95:5 anti:syn(74%)  

 

Acid chloride components.  As shown in Table 4, a variety of sterically 

unhindered alkyl substituted acid chlorides, such as acetyl chloride, propionyl chloride, 

and hexenoyl chloride, reacted successfully (entries 1–3).  Acid chlorides which are 

sterically more encumbered were not well tolerated by this process.  Isovaleroyl chloride 

reacts more sluggishly (entry 4), and the α-disubstituted isobutyroyl chloride produced 

no observable Claisen products (entry 5). 
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Table 4.  Acyl-Claisen rearrangement of allyl morpholines and representative acid chlorides 
 

O
N

Me

O

Cl
R2 i-Pr2EtN, CH2Cl2

23 ºC

N

O

O R2

R1
TiCl4(THF)2

entry acid-Cl product yield syn:antia,b

O

Cl Me

O

Cl
Me

O

Cl
n-Bu

O

Cl
i-Pr

O

Cl
Me

N

O

O

Me

N

O

O Me

Me

N

O

O n-Bu

Me

N

O

O i-Pr

Me

N

O

O

81

92

93

28d

NR

--

>99:1

>99:1

>99:1

--

1

2c

3

4

5 Me

Me

Me Me

 
a Product ratios determined by GLC using a Bodman CC1701 column.  b Relative configurations assigned 
by analogy to results summarized in Table 4.  c Reaction conducted with 5 mol% TiCl4(THF)2.  d 
Conversion determined by 1H NMR analysis of unpurified reaction mixture. 

 

Heteroatom-substituted acid chlorides were also examined and were found to 

participate in the acyl-Claisen rearrangement (Table 5). This process provides a new 

Lewis acid–catalyzed strategy for the production of unnatural β-substituted α-amino 

acids using α-phthalylglycyl chloride (77% yield, 99:1 syn:anti, entry 1).  This reaction is 

also tolerant of oxygen10 and sulfur substituents on the acyl chloride component (>81% 

yield, >86:14 syn:anti, entries 2–3).  A powerful feature of this new Claisen 
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rearrangement is the capacity to build diverse functional and stereochemical arrays that 

are not readily available using conventional catalytic methods.  For example, both the syn 

and anti-α-oxy-β-chloro Claisen isomers and can be accessed in high yield and 

stereoselectivity from chloro-substituted allyl morpholines and α-benzyloxyacetyl 

chloride (entries 4–5).11 

 
Table 5.  Catalyzed Acyl–Claisen rearrangement between allyl morpholines and representative 
acid chlorides 
 

O
N

R1

O

Cl
R2 i-Pr2EtN, CH2Cl2

23 ºC

N

O

O R2

R1

TiCl4(THF)2

entry aminea acid-Cl producta yield syn:antib,c

1

2

3

4

R2N

Me

R2N

Me

R2N

Me

R2N

R2N

O

NPht

Me

R2N

O

SPh

Me

R2N

O

OBn

Me

R2N

O

OBn

77

81

91

83

>99:1

92:8

86:14

90:10

O

Cl
NPht

O

Cl
SPh

O

Cl
OBn

O

Cl
OBn

O

Cl
OBn

Cl

R2N

Cl
5

Cl

R2N

O

OBn

Cl

70 10:90

 
aNR2 = N-morpholine.  b Product ratios determined by GLC using a Bodman CC1701 column.  c Relative 
configurations assigned by single crystal X-ray analysis or chemical correlation to a known compound (see 
Experimental Methods). 
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A further illustration of the ability of this methodology to access elusive structural 

motifs is presented in the rearrangement of 3,3-disubstituted allyl morpholines 16 and 17 

(equations 2 and 3).  The key issue in these reactions is π-facial discrimination in the 

transition state to selectively build quaternary carbon stereocenters on both cyclic and 

acyclic architecture.  The reaction of propionyl chloride with 1-methyl-3-N-morpholino-

cyclohexene 16 provides excellent levels of diastereocontrol in the formation of the 

quaternary carbon bearing cyclic adduct 18 (equation 2).  As illustrated in equation 3, the 

methyl versus ethyl substitution pattern on morpholine 17 can be distinguished in the 

reaction to furnish the acyclic product 19 with complete diastereselectivity (>99:1 

syn:anti). 

 

O N

Me O

Cl
Me

N

O

O Me
Mei-Pr2EtN, CH2Cl2

23 ºC

TiCl4(THF)2

O
N

O

Cl
Me

N

O

O

Me

Et

Et Me

(eq. 2)

(eq. 3)

Me
i-Pr2EtN, CH2Cl2

23 ºC

TiCl4(THF)2

16 6

17 19  >99:1 syn:anti

18  95:5 anti:syn

6

(75%)

(72%)  

 

 

Concluding Remarks 

A new Lewis acid–catalyzed acyl-Claisen rearrangement that tolerates a range of 

alky, aryl and heteroatom-substituted acid chloride and allylic morpholine reaction 

partners has been achieved.  Based on these studies, we have subsequently accomplished 
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two novel enantioselective variants of the zwitterionic-Claisen rearrangement: (1) a chiral 

magnesium (II)-bis(oxazoline) Lewis acid promoted enantioselective acyl-Claisen 

rearrangement with chelating acid chlorides, and (2) a chiral boron Lewis acid promoted 

enantioselective acyl-Claisen rearrangement (for details, see Tehshik Yoon’s Ph.D. 

thesis).12  Furthermore, these fundamental studies established a foundation for the design 

of a novel tandem acyl-Claisen rearrangement presented in the following chapter. 
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Experimental Method 

General Information.  All non-aqueous reactions were performed using flame- 

or oven-dried glassware under an atmosphere of dry nitrogen.  Commercial reagents were 

purified prior to use following the guidelines of Perrin and Armarego.13  Non-aqueous 

reagents were transferred under nitrogen via syringe or cannula.  Organic solutions were 

concentrated under reduced pressure on a Büchi rotary evaporator.  Tetrahydrofuran and 

diethyl ether were distilled from sodium benzophenone ketyl prior to use.  N,N-

diisopropylethylamine and dichloromethane were distilled from calcium hydride prior to 

use.  Air sensitive solids were dispensed in an inert atmosphere glovebox.  

Chromatographic purification of products was accomplished using forced-flow 

chromatography on ICN 60 32–64 mesh silica gel 63 according to the method of Still.14  

Thin-layer chromatography (TLC) was performed on EM Reagents 0.25 mm silica gel 

60-F plates.  Visualization of the developed chromatogram was performed by 

fluorescence quenching or KMnO4 stain. 

1H and 13C NMR spectra were recorded on Bruker DRX-500 (500 MHz and 125 

MHz, respectively), AMX-400 (400 MHz and 100 MHz), or AMX-300 (300 MHz and 75 

MHz) instruments, as noted, and are internally referenced to residual protio solvent 

signals.  Data for 1H are reported as follows: chemical shift (δ ppm), multiplicity (s = 

singlet, d = doublet, t = triplet, q = quartet, m = multiplet), integration, coupling constant 

(Hz) and assignment.  Data for 13C are reported in terms of chemical shift.  IR spectra 

were recorded on an ASI React-IR 1000 spectrometer and are reported in terms of 

frequency of absorption (cm-1).  Mass spectra were obtained from the UC Berkeley Mass 

Spectral facility.  Gas chromatography was performed on Hewlett-Packard 5890A and 
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6890 Series gas chromatographs equipped with a split-mode capillary injection system 

and flame ionization detectors using the following columns: Bodman Chiraldex Γ-TA (30 

m x 0.25 mm) and C&C Column Technologies CC-1701 (30 m x 0.25 mm). 

 

General Procedure A:  A round-bottomed flask containing TiCl4(THF)2 was 

charged with CH2Cl2, then treated with the allyllic morpholine, followed by i-Pr2NEt.  

The solution was stirred for 5 min before a solution of the acid chloride in CH2Cl2 was 

added dropwise over 1 min.  The resulting dark red solution was stirred until the allyllic 

morpholine was completely consumed (2–6 h) as determined by TLC (EtOAc).  The 

reaction mixture was then diluted with an equal volume of Et2O and washed with 

aqueous 1 N NaOH (5 mL).  The aqueous layer was then extracted with ether, and the 

combined organic layers washed with brine, dried (Na2SO4), and concentrated.  The 

resulting residue was purified by silica gel chromatography (Et2O) to afford the title 

compounds. 

 

General Procedure B: A round-bottomed flask containing TiCl4(THF)2 was 

charged with CH2Cl2, then treated with the allyllic morpholine, followed by i-Pr2NEt.  

The solution was stirred for 5 min before a solution of the acid chloride in CH2Cl2 was 

added slowly by syringe pump over 4–10 h.  The resulting dark red solution was stirred 

until the allyllic morpholine was completely consumed (2–6 h) as determined by TLC 

(EtOAc).  The reaction mixture was then diluted with an equal volume of Et2O and 

washed with aqueous 1 N NaOH (5 mL).  The aqueous layer was then extracted with 

ether, and the combined organic layers washed with brine, dried (Na2SO4), and 
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concentrated.  The resulting residue was purified by silica gel chromatography (Et2O) to 

afford the title compounds. 

 

 (2R*,3S*)-N-(2,3-Dimethyl-4-pentenoyl)-morpholine (10).  Prepared according 

to general procedure A from (E)-N-but-2-enyl morpholine (9) (115 mg, 0.81 mmol), 

TiCl4(THF)2 (27 mg, 81 µmol), i-Pr2NEt (213 µL, 1.22 mmol), and propionyl chloride 

(980 µL, 1 M solution in CH2Cl2, 0.98 mmol) in CH2Cl2 (8.1 mL) to provide the purified 

product as a colorless oil in 92% yield (148 mg, 0.75 mmol); >99:1 syn:anti.  Syn isomer: 

IR (CH2Cl2) 2972, 2926, 2860, 1633, 1459, 1436 cm-1; 1H NMR (300 MHz, CDCl3) δ 

5.68 (ddd, J = 7.3, 10.4, 17.5 Hz, 1H, CH=CH2), 4.87–4.96 (m, 2H, CH=CH2), 3.34–3.60 

(m, 8H, N(CH2CH2)2), 2.52 (dq, J = 7.1, 7.1 Hz, 1H, CHCH3), 2.37 (q, J = 7.1 Hz, 1H, 

CHCH3), 1.01 (d, J = 6.7 Hz, 3H, CH3), 0.94 (d, J = 6.8 Hz, 3H, CH3); 13C NMR (75 

MHz, CDCl3) δ 174.7, 142.3, 114.3, 67.3, 67.0, 46.5, 42.3, 40.5, 40.3, 16.3, 14.8; LRMS 

(FAB) m/z  197 (M)+; HRMS (FAB) exact mass calcd for (C11H19NO2)+ requires m/z 

197.1416, found m/z 197.1414.  Product ratio was determined by GLC with a Bodman Γ-

TA column (70 °C, 2 °C/min gradient, 23 psi); syn adduct (2R,3S and 2S,3R) tr = 39.7 

min and 40.8 min, anti adduct (2R,3R and 2S,3S) tr = 39.9 min and 40.5 min. 

 

 Determination of the Relative Configuration of (2R*,3S*)-N-(2,3-Dimethyl-4-

pentenoyl)-morpholine (5) by Correlation with (2R*,3S*)-2,3-Dimethyl-4-pentenoic 

acid.  A solution of (2R*,3S*)-N-(2,3-dimethyl-4-pentenoyl)-morpholine (10) (22 mg, 

0.11 mmol) in 1,2-DME (0.25 mL) and H2O (0.25 mL) was placed in an 8 mL 

scintillation vial equipped with a magnetic stir bar.  The solution was treated with iodine 
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(61 mg, 0.24 mmol) and was stirred in the absence of light.   After 30 min, the reaction 

was diluted with Et2O (1 mL) and washed sequentially with 10% aqueous Na2S2O3 (1 

mL) and brine (1 mL).  The resulting organic layer was dried (Na2SO4) and concentrated 

to give (2S*,3S*,4R*)-4-iodomethyl-2,3-dimethyl-γ-butyrolactone as a yellow oil.  This 

crude residue was dissolved in glacial AcOH (1 mL) and placed in an 8 mL scintillation 

vial equipped with a magnetic stir bar.  The solution was treated with zinc dust (65 mg, 

1.0 mmol) and stirred at 65 °C for 3 h.  After allowing the reaction to cool to rt, 1 N HCl 

(aq) (1 mL) was added, and the mixture was extracted with ether (3 x 1 mL).  The organic 

extracts were combined, dried (Na2SO4), and concentrated to give a light pink oil that 

exhibited spectral data identical in all respects to those reported for (2R*,3S*)-2,3-

dimethyl-4-pentenoic acid.15 

 

N

O

O

Me

Me

1.  I2, 1:1 DME:H2O

2.  Zn, AcOH, 65 °C

HO

O Me

Me  

 

 (2S*,3S*)-N-(2-Methyl-3-phenyl-4-pentenoyl)-morpholine (11).  Prepared 

according to general procedure A from (E)-N-(3-phenyl-2-propenyl)-morpholine (201 

mg, 0.99 mmol), TiCl4(THF)2 (33 mg, 99 µmol), i-Pr2NEt (258 µL, 1.43 mmol), and 

propionyl chloride (1.48 mL, 1 M solution in CH2Cl2, 1.48 mmol) in CH2Cl2 (10 mL) at 

0 °C to provide the pure product as white needles in 74% yield (194 mg, 0.75 mmol); 

>99:1 syn:anti.  Syn isomer: IR (CH2Cl2) 3057, 2988, 2968, 2930, 1637, 1436 cm-1; 1H 

NMR (400 MHz, CDCl3) δ 7.15-7.31 (m, 5H, Ph), 5.99 (ddd, J = 7.8, 10.4, 17.9 Hz, 1H, 

CH=CH2), 4.95–5.02 (m, 2H, CH=CH2), 3.48–3.66 (m, 9H, N(CH2CH2)2, CHPh), 3.04 

(dq, J = 6.8, 9.9 Hz, 1H, CHCH3), 0.90 (d, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ 
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174.0, 141.7, 139.8, 128.6, 128.3, 126.7, 115.7, 67.0, 66.7, 53.4, 46.2, 42.1, 39.7, 16.7; 

LRMS (FAB) m/z 259; HRMS (FAB) exact mass calcd for (C16H21NO2) requires m/z 

259.1572, found m/z 259.1569. Diastereomer ratio was determined by GLC with a CC-

1701 column (70 °C, 5 °C/min gradient, 25 psi); syn adduct tr = 31.3 min, anti adduct tr = 

30.2 min. 

 

 (2R*,3S*)-N-(3-Chloro-2-methyl-4-pentenoyl)-morpholine (12).  Prepared 

according to general procedure A from (E)-N-(3-chloro-2-propenyl) morpholine (112 mg, 

0.69 mmol), TiCl4(THF)2 (23 mg, 69 µmol), i-Pr2NEt (181 µL, 1.04 mmol), and 

propionyl chloride (1.04 mL, 1 M solution in CH2Cl2, 1.04 mmol) in CH2Cl2 (7 mL) to 

provide the pure product as a pale yellow oil in 95% yield (143 mg, 0.66 mmol); >99:1 

syn:anti .  Syn isomer: IR (CH2Cl2) 3057, 2976, 2864, 1640, 1463, 1440 cm-1; 1H NMR 

(300 MHz, CDCl3) δ 5.87 (ddd, J = 8.3, 10.2, 18.5 Hz, 1H, CH=CH2), 5.12–5.31 (m, 2H, 

CH=CH2), 4.51 (t, J = 8.4 Hz, 1H, CHCl), 3.50–3.65 (m, 8H, N(CH2CH2)2), 2.98 (dq, J 

= 6.8, 8.8 Hz, 1H, CHCH3), 1.27 (d, J = 6.8, 3H, CH3); 13C NMR (75 MHz) δ 172.0, 

136.6, 118.4, 67.2, 67.0, 65.4, 46.7, 42.7, 42.5, 16.7; LRMS (FAB) m/z 217 (M)+; HRMS 

(FAB) exact mass calcd for (C10H16ClNO2) requires m/z 217.0870, found m/z 217.0868. 

Product ratio was determined by GLC with a Bodman Γ-TA column (70 °C, 7 °C/min 

gradient, 23 psi); syn adduct (2R,3S and 2S,3R) tr = 18.7 min and 19.2 min, anti adduct 

(2R,3R and 2S,3S) tr = 19.6 min and 19.8 min.  Relative configuration assigned by 

analogy. 
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 N-(2-Methyl-4-pentenoyl)-morpholine (13).  Prepared according to general 

procedure A from N-allyl morpholine (161 mg, 1.3 mmol), TiCl4(THF)2 (42 mg, 0.13 

mmol), i-Pr2NEt (336 µL, 0.94 mmol), and propionyl chloride (1.5 mL, 1 M solution in 

CH2Cl2, 1.5 mmol) in CH2Cl2 (13 mL) to provide the pure product as a clear oil in 95% 

yield (221 mg, 1.2 mmol); IR (CH2Cl2) 2976, 2864, 1640, 1467, 1436 cm-1; 1H NMR 

(400 MHz) δ 5.66–5.77 (m, 1H, CH=CH2), 4.96–5.05 (m, 2H, CH=CH2), 3.47–3.64 (m, 

8H, N(CH2CH2)2), 2.64–2.72 (m, 1H, CHCH3), 2.35–2.42 (m, 1H, CH2CH=CH2), 2.06–

2.13 (m, 1H, CH2CH=CH2), 1.08 (d, 3H, CH3); 13C NMR (100 MHz) δ 174.5, 136.0, 

116.7, 67.0, 66.8, 46.0, 42.1, 38.1, 35.1, 17.3; LRMS (FAB) m/z 183 (M)+; HRMS (FAB) 

exact mass calcd for (C10H17NO2) requires m/z 183.1259, found m/z 183.1253. 

 

 (2R*,3R*)-N-(2,3-Dimethyl-4-pentenoyl)-morpholine (14).  Prepared according 

to general procedure B from (Z)-N-but-2-enyl morpholine (15) (88 mg, 0.62 mmol), 

TiCl4(THF)2 (42 mg, 0.13 mmol), i-Pr2NEt (163 µL, 0.94 mmol), and propionyl chloride 

(750 µL, 1 M solution in CH2Cl2, 0.75 mmol), added over 8h, in CH2Cl2 (4.2 mL) to 

provide the pure product as a clear oil  in 74% yield (91 mg, 0.46 mmol); 95:5 anti:syn.  

Anti isomer: IR (CH2Cl2) 2976, 2864, 1637, 1463, 1436 cm-1; 1H NMR (400 MHz, 

CDCl3) δ 5.61 (ddd, J = 8.2, 10.2, 18.3 Hz, 1H, CH=CH2), 4.96–5.12 (m, 2H, CH=CH2), 

3.44–3.66 (m, 8H, N(CH2CH2)2), 2.36–2.49 (m, 2H, CHCH3), 1.02 (d, J = 6.5 Hz, 3H, 

CH3), 0.94 (d, J = 6.3 Hz, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ 174.9, 141.6. 115.4, 

67.4, 67.1, 46.5, 42.4, 41.8, 40.4, 19.3; LRMS (FAB) m/z 197 (M)+; HRMS (FAB) exact 

mass for (C11H19NO2) requires m/z 197.1416, found 197.1414. Product ratio was 

determined by GLC with a Bodman Γ-TA column (70 °C, 2 °C/min gradient, 23 psi); syn 
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adduct (2R,3S and 2S,3R) tr = 39.7 min and 40.8 min, anti adduct (2R,3R and 2S,3S) tr = 

39.9 min and 40.5 min. 

 

 (2R*,3S*)-N-(Methyl-2-phthalimido-4-pentenoyl)-morpholine (Table 5, entry 

1).  Prepared according to general procedure B from (E)-N-but-2-enyl morpholine (75 

mg, 0.53 mmol), TiCl4(THF)2 (17.7 mg, 53 µmol), i-Pr2NEt (139 µL, 0.80 mmol), and 

phthalylglycyl chloride (1.3 mL, 0.5 M solution in CH2Cl2, 0.64 mmol), added over 3h, 

in CH2Cl2 (10.6 mL) to provide the pure product as white crystals in 77% yield (134 mg, 

0.41 mmol); 98:2 syn:anti.  Syn isomer:  IR (CH2Cl2) 3065, 2976, 2864, 1776, 1718, 

1660, 1459, 1436, 1382, 1359 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.69–7.81 (m, 4H, 

PhH), 5.79 (ddd, J = 7.6, 10.4, 17.5 Hz, 1H, CH=CH2), 5.04–5.18 (m, 2H, CH=CH2), 

4.76 (d, J = 10.2 Hz, 1H, CHNR2), 3.63–3.71 (m, 1H, CHCH3), 3.39–3.56 (m, 8H, 

N(CH2CH2)2), 0.95 (d, J = 6.8 Hz, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ 167.8, 

166.5, 139.6, 134.4, 131.3, 123.6, 116.6, 66.8, 66.5, 54.5, 46.3, 42.5, 36.5, 16.5; LRMS 

(FAB) m/z 329 (MH)+; HRMS (FAB) exact mass calcd for (C18H21N2O4)+ requires m/z 

329.1501, found m/z 329.1504. Diastereomer ratio was determined by GLC with a CC-

1701 column (50 °C, 5 °C/min gradient, 25 psi); syn adduct tr = 51.8 min, anti adduct tr = 

49.2 min. 

 

 (2R*,3S*)-N-(3-Methyl-2-phenylthio-4-pentenoyl)-morpholine (Table 5, entry 

2).  Prepared according to general procedure B from (E)-N-but-2-enyl morpholine (67 

mg, 0.48 mmol), TiCl4(THF)2 (15.9 mg, 47.5 µmol), i-Pr2NEt (124 µL, 0.71 mmol), and 

phenylthioacetyl chloride (569 µL, 1 M solution in CH2Cl2, 0.57 mmol), added over 4 h, 
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in CH2Cl2 (9.5 mL) to provide the pure product as a light orange oil in 81% yield (107 

mg, 0.39 mmol); syn:anti 92:8.  Syn isomer: IR (CH2Cl2) 3053, 2976, 2864, 1640, 1436 

cm-1; 1H NMR (400 MHz, CDCl3) δ 7.47–7.49 (m, 2H, Ph), 7.28–7.30 (m, 3H, Ph), 5.75 

(ddd, J = 7.5, 8.8, 16.3 Hz, 1H, CH=CH2), 4.99–5.10 (m, 2H, CH=CH2), 3.73 (d, J = 9.7 

Hz, 1H, CHSPh), 3.11–3.58 (m, 8H, N(CH2CH2)2), 2.76–2.82 (m, 1H, CHCH3), 1.28 (d, 

J = 6.8 Hz, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ 169.7, 140.3, 134.0, 129.1, 128.4, 

115.6, 78.3, 66.9, 66.4, 53.9, 46.4, 42.3, 39.7, 17.9; LRMS (FAB) m/z 292 (MH)+; 

HRMS (FAB) exact mass calcd for (C16H22NO2S) requires m/z 292.1371, found m/z 

292.1373.  Diastereomer ratios were determined by 1H NMR analysis. Relative 

configuration assigned by analogy. 

 

 (2R*,3S*)-N-(2-Benzyloxy-3-methyl-4-pentenoyl)-morpholine (Table 5, entry 

3).  Prepared according to general procedure B from (E)-N-but-2-enyl morpholine (9) (60 

mg, 0.43 mmol), TiCl4(THF)2 (14 mg, 43 µmol), i-Pr2NEt (111 µL, 0.64 mmol), and 

benzyloxyacetyl chloride (0.51 mL, 1 M solution in CH2Cl2, 0.51 mmol), added over 2h, 

in CH2Cl2 (8.5 mL) to provide the pure product as a pale yellow oil in 91% yield (112 

mg, 0.39 mmol); 86:15 syn:anti.  Syn isomer: IR (CH2Cl2) 3068, 2746, 2864, 1640, 1455 

cm-1; 1H NMR (400 MHz, CDCl3) δ 7.27–7.36 (m, 5H, Ph), 5.68 (ddd, J = 8.3, 10.2, 18.5 

Hz, 1H, CH=CH2), 5.00–5.08 (m, 2H, CH=CH2), 4.62 (d, J = 11.7,  1H, CH2Ph), 4.43 (d, 

J = 11.7, 1H, CH2Ph), 3.92 (d, J = 8.9, 1H, CHOCH2Ph), 3.55–3.70 (m, 8H, 

N(CH2CH2)2), 2.55–2.62 (m, 1H, CHCH3), 1.15 (d, J = 6.6 Hz, 3H, CH3); 13C NMR (100 

MHz, CDCl3) δ 169.5, 138.9, 137.3, 128.5, 128.0, 115.8, 84.2, 72.2, 67.1, 66.8, 45.7, 

42.5, 41.5, 17.0; LRMS (FAB) m/z 290 (MH)+; HRMS (FAB) exact mass calcd for 
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(C17H24NO3) requires m/z 289.1756, found m/z 290.1755.  Diastereomer ratios were 

determined by 1H NMR analysis.  Relative configuration assigned by analogy. 

 

(2R*,3S*)-N-(2-Benzyloxy-3-chloro-4-pentenoyl)-morpholine (Table 5, entry 

4).  Prepared according to the general procedure A from (E)-N-(3-chloro-2-propenyl)-

morpholine (100 mg, 0.62 mmol), TiCl4(THF)2, (21 mg, 62 µmol), i-Pr2NEt (151 µL, 

86.7 mmol), and propionyl chloride (0.74 mL, 1 M solution in CH2Cl2, 0.74 mmol) in 

CH2Cl2 (12 mL) to provide the pure product as a yellow oil in 84% yield (160 mg,  0.52 

mmol); 90:10 syn:anti.  Syn isomer: IR (CH2Cl2) 3053, 2976, 2907, 2864, 1648, 1444, 

1274, 1247, 1116 cm-1;  1H NMR (400 MHz) δ 7.30–7.40 (m, 5H, Ph), 5.92 (ddd, J = 8.5 

Hz, J = 10.1 Hz, J = 16.9 Hz, 1H, CH=CH2) 5.39 (d, J = 16.9 Hz, 1 H, CH=CH2), 5.26 

(d, J = 10.2 Hz, 1 H, CH=CH2), 4.72–4.73 (m, 1H, CHCl), 4.71 (d, J = 11.7 Hz, 1H, 

CH2Ph), 4.57 (d, J = 11.7 Hz, 1H, CH2Ph), 4.33 (d, J = 7.4 Hz, 1H, CHOCH2Ph), 3.50–

3.65 (m, 8H, N(CH2CH2)2);  13C NMR (100 MHz) δ 167.0, 136.5, 134.4, 128.5, 128.3, 

128.1, 119.5, 82.4, 72.5, 66.9, 66.7, 62.4, 45.8, 42.8;  LRMS (FAB) m/z 310 (MH)+;  

HRMS (FAB) exact mass calcd for (C16H21ClNO3)+ requires m/z 310.1210, found m/z  

310.1213. Diastereomer ratio was determined by GLC with a CC-1701 column (80 °C, 

20 °C/min gradient for 1 min, then 10 °C/min, 23 psi); syn adduct tr = 19.2 min, anti 

adduct tr = 19.3 min. 

 

(2R*,3R*)-N-(2-Benzyloxy-3-chloro-4-pentenoyl)-morpholine (Table 5, entry 

5).  Prepared according to the general procedure A from (Z)-N-(3-chloro-2-propenyl)-

morpholine (82 mg, 0.51 mmol), TiCl4(THF)2, (17 mg, 51 µmol), i-Pr2NEt (290 µL,  1.66 
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mmol), and propionyl chloride (1.52 mL, 1 M solution in CH2Cl2, 1.52 mmol) in CH2Cl2 

(10 mL) to provide the pure product as a yellow oil in 71% yield (110 mg, 0.36 mmol); 

90:10 anti:syn.  Anti isomer: IR (CH2Cl2) 3057, 2976, 2907, 1652, 1444, 1239, cm-1;  1H 

NMR (400 MHz) δ 7.29–7.38 (m, 5H, Ph), 6.00 (ddd, J = 8.4 Hz, J = 10.1 Hz, J = 16.9 

Hz, 1H, CH=CH2), 5.48 (dd J = 0.9 Hz, J = 16.0 Hz, 1 H, CH=CH2), 5.35 (d, J = 10.2 

Hz, 1 H, CH=CH2), 4.75  (t, J = 8.3 Hz, 1H, CHCl), 4.63 (d, J = 12.0 Hz, 1H, CH2Ph), 

4.51 (d, J = 12.0 Hz, 1H, CH2Ph), 4.33 (d, J = 8.3 Hz, 1H, CHOCH2Ph), 3.50–3.70 (m, 

8H, N(CH2CH2)2);  13C NMR (100 MHz) δ 167.3, 136.7, 134.5, 128.6, 128.3, 128.1, 

119.8, 78.5, 71.9, 66.9, 66.6, 60.5, 46.0, 42.7;  LRMS (FAB) m/z 310 (MH)+; HRMS 

(FAB) exact mass calcd for (C16H21ClNO3)+ requires m/z 310.1210, found m/z 310.1213. 

Diastereomer ratio was determined by GLC with a CC-1701 column (80 °C, 20 °C/min 

gradient for 1 min, then 10`°C/min, 23 psi); syn adduct tr = 19.2 min, anti adduct tr = 19.3 

min. 

 

(E)-N-(3-Ethyl-3-methyl-2-propenyl)-morpholine (17).  2-Methyl-3-penten-1-

ol was prepared using a modification of the procedure outlined by Corey and 

coworkers:16 To a solution of 2-pentyn-1-ol (2.5 mL, 27 mmol) in THF (100 mL) was 

added Red-Al (8.1 mL of a 3.5 M solution in toluene, 28 mmol).  The resulting solution 

was warmed to reflux for 3.5 h and then cooled to –78 oC, before a solution of iodine 

(20.5 g, 81.0 mmol) in THF (50 mL) was added dropwise by syringe.  The resulting 

solution was then allowed to warm to rt before Et2O (200 mL) was added, and the 

reaction mixture washed with 5% Na2SO4 (3 x 200 mL), dried (Na2SO4), and 



 45

concentrated to afford 3-iodo-2-penten-1-ol as a crude product that was used without 

further purification. 

To a solution of copper (I) iodide (20.1 g, 0.11 mol) and methyl lithium (162 mL 

of a 1.3 M solution in Et2O, 0.21 mol) in Et2O (60 mL) at 0 °C was added a solution of 

the crude 3-iodo-2-penten-1-ol.  The reaction mixture was stirred at 0 oC for 62 h and 

then washed with sat. aq. NH4Cl (3 x 200 mL), dried (Na2SO4), and concentrated to 

provide 2-methyl-3-penten-1-ol in 91% yield (2.1 g, 21 mmol) as a pure oil by 1H NMR 

analysis.  Spectroscopic data of this material were in complete agreement with reported 

literature values.17 

Morpholine 17 was prepared using a modification of the procedure outlined by 

Froyen and coworkers:18  To a solution of 2-methyl-3-peten-1-ol (1.3 g, 13 mmol) and 

triphenylphosphine (3.6 g, 14 mmol) in THF (10 mL) was added N-bromosuccinimide 

(2.5 g, 14 mmol).  After 15 min, morpholine (2.7 mL, 31 mmol) was added dropwise and 

the resulting brown solution was heated to 70 °C for 2.5 h.  Upon cooling to rt, the 

reaction mixture was diluted with Et2O (25 mL) and filtered through a pad of Celite©.  

The filtrate was then extracted with aqueous 1N  HCl (100 mL).  The product containing 

aqueous layer was then washed with Et2O (3 x 100 mL), and then made alkaline by the 

addition of NaOH (4 g).  The aqueous solution was then extracted with Et2O (3 x 100 

mL), the combined organic layers dried (Na2SO4), and then concentrated by rotary 

evaporation at 0 oC under reduced pressure.  The resulting residue was then distilled (110 

°C, 20 mm) to afford (E)-N-(3-ethyl-3-methyl-2-propenyl)-morpholine (17) as a colorless 

oil in 49% yield (1.0 g, 6.0 mmol); IR 2968, 1455, 1293, 1116, 1004, 907 cm-1;  1H NMR 

(400 MHz) δ 5.21–5.25 (m, 1H, CH=CCH3), 3.65–3.77 (m, 4H, O(CH2)2), 2.96 (d, J = 
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7.0 Hz, 2H, CH2C=CH), 2.44 (m, 4H, N(CH2)2), 2.01 (q, J = 7.3 Hz, 2H, CH3CH2), 1.63 

(s, 3H, CH3C=CH), 0.97–1.04 (m, 3H, CH3CH2);  13C NMR (100 MHz) δ 141.1, 118.7, 

67.0, 56.0, 53.5, 32.4, 16.4, 12.5;  LRMS (FAB) m/z 169 (M)+; HRMS (FAB) exact mass 

calcd for (C10H19NO)+ requires  m/z 169.1467, found m/z 169.1464. 

 

(1´S*,2R)-N-(2-(1´-Methylcyclohex-2´-enyl)-propanoyl)-morpholine (18).  

Prepared according to general procedure A from 1-methyl-3-N-morpholino-cycohexene19 

(16) (50 mg, 0.28), TiCl4(THF)2, (9 mg, 27 µmol), i-Pr2NEt (71 µL, 0.41 mmol), and 

propionyl chloride (0.41 mL, 1M solution in CH2Cl2, 0.41 mmol) in CH2Cl2 (3 mL) to 

provide the product as a yellow oil in 72% yield (45 mg, 0.36 mmol); 95:5 dr.  Major 

isomer: IR (CH2Cl2) 2968, 2934, 2864, 1633, 1459, 1432, 1239, 1116 cm-1; 1H NMR 

(400 MHz) δ 5.72 (d, J = 10.2 Hz, 1H, CH2CH=CH), 5.64 (m, 1H, CH2CH=CH), 3.54–

3.70 (m, 8H, N(CH2CH2)2), 2.62 (q, J  = 6.9 Hz, 1H CHC=O), 1.92 (m, 2H, 

CH2CH=CH), 1.68–1.73 (m, 1H, CH2), 1.53–1.67 (m, 2H, CH2), 1.34–1.39 (m, 1H, 

CH2),  1.09 (d, J  = 6.9Hz, 3H, CH3CHC=O), 1.06 (s, 3H, CH3CCH=CH); 13C NMR 

(100 MHz) δ 174.5, 134.1, 126.4, 67.1, 66.8, 50.1, 46.9, 42.1, 37.4, 33.2, 25.0, 24.7, 19.2, 

13.3;  LRMS (FAB) m/z  237 (M)+;  HRMS (FAB) exact mass calcd for (C14H23NO2) 

requires m/z  237.1729, found m/z 237.1731.  Diastereomer ratios were determined by 1H 

NMR analysis. 

 

 (2R*,3R*)-N-(2,3-Dimethyl-3-ethyl-4-pentenoyl)-morpholine (19). Prepared 

according to general procedure B from (E)-N-(3-ethyl-3-methyl-2-propenyl)-morpholine 

(135 mg, 0.80 mmol), TiCl4(THF)2, (27 mg, 81 µmol), i-Pr2NEt (0.56 mL,  3.2 mmol), 
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and propionyl chloride (2.4 mL, 1 M solution in CH2Cl2, 2.4 mmol) in CH2Cl2 (2.7 mL) 

to provide the pure product as a yellow oil in 72% yield (130 mg,  0.58 mmol); >99:1 

syn:anti.  Syn isomer: IR (CH2Cl2) 2972, 1633, 1459, 1432, 1235 cm-1;  1H NMR (400 

MHz) δ 5.88 (dd, J = 10.9 Hz, 17.6 Hz, 1H, CH=CH2), 5.03 (dd, J = 1.5, 10.9 Hz, 1H, 

CH=CH2), 4.88 (dd, J = 1.4, 17.6 Hz, 1H, CH=CH2), 3.49–3.64 (m, 8H, N(CH2CH2)2), 

2.63 (q, J = 6.9 Hz, 1H, CHC=O), 1.32–1.49 (m, 2H, CH2CH3), 1.02 (d, J = 6.9 Hz, 3H, 

CH3CHC=O), 0.99 (s, 3H, CH3C), 0.73 (t, J = 7.5 Hz, 3H, CH3CH2);  13C NMR (100 

MHz) δ 174.1, 143.8, 67.0, 66.7, 66.6, 46.8, 42.7, 42.2, 41.8, 30.9, 18.7, 13.3, 8.3;  

LRMS (FAB) m/z 225 (M)+; HRMS (FAB) exact mass calcd for (C13H23NO2)+ requires 

m/z 225.1710, found m/z 225.1727. 
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X-ray Crystal Data 

(2R*,3R*)-N-(2-Benzyloxy-3-chloro-4-pentenoyl)-morpholine (Table 5, entry 5) 
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Chapter 3 
 

Design of a New Cascade Reaction for the Construction of 
Complex Acyclic Architecture:  The Tandem Acyl-Claisen 

Rearrangement 
 

Introduction 

Synthetic chemists typically form the individual bonds of a target molecule in a 

stepwise fashion.  Chemical tools which enable the construction of several bonds in one 

sequence, importantly, bypass the need to isolate intermediates and change the reaction 

conditions.  Consequently, these tandem1 or domino methods reduce the amount of waste 

generated (e.g., solvents, reagents, adsorbents), and the amount of labor required to make 

complex molecules.2  Tandem transformations have been well established for the 

synthesis of cyclic or polycyclic systems.2  However, few tandem strategies have been 

developed for the synthesis of structurally complex acyclic motifs.  The Claisen 

rearrangement is a remarkable method for constructing stereocenters in acyclic 

architectures.3  As such, developing tandem methods based on the Claisen transformation 

will result in powerful chemical tools for addressing stereochemistry on acyclic 

frameworks. 

 

Representative tandem reactions involving the Claisen rearrangement.  The 

majority of tandem strategies based on the Claisen rearrangement fall into one of two 

categories: those that involve the in situ generation of allyl vinyl ethers followed by 

subsequent Claisen rearrangement,4 or those that involve Claisen rearrangement 

combined in sequence with other carbon-carbon bond forming reactions.  The former 
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class has been quite useful considering that allyl vinyl ethers are often acid sensitive and 

difficult to isolate.  In particular, the classical aliphatic Claisen reaction has found only 

limited application in synthesis, compared to other Claisen variants, due to a lack of 

general methods for the stereoselective synthesis of these sensitive precursors.  An 

advance in this area was recently made by Stoltz through his development of a tandem 

Bamford-Stevens/thermal aliphatic Claisen rearrangement sequence (Scheme 1).5 

 
Scheme 1.  Tandem rhodium-catalyzed Bamford-Stevens/thermal aliphatic Claisen 
rearrangement sequence 
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In addition, Buchwald recently reported the copper-catalyzed C-O 

coupling/Claisen rearrangement, a cascade process which also addresses the 

stereoselective synthesis of simple allyl vinyl ethers (Scheme 2).6 

 
Scheme 2.  Domino copper-catalyzed C-O Coupling-Claisen rearrangement 
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Notably, our acyl-Claisen methodology (Chapter 2) is also considered a tandem 

transformations; a transient zwitterionic intermediates is generated in situ which then 

undergoes [3,3]-bond reorganization (Scheme 3).7 

 
Scheme 3.  Acyl-Claisen rearrangement 
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The combination of Claisen rearrangements with other carbon-carbon bond 

forming methods have resulted in powerful methods for synthesizing complex cyclic or 

polycyclic systems.  For example, tandem Cope-Claisen sequences have been shown to 

build molecules with three contiguous stereocenters on a carbocycle (Scheme 4).4  Other 

noteworthy tandem methods of this sort involve merging the Claisen rearrangement with 

ring closing methods, such as the intramolecular ene,8 Diels Alder,9 Bergman 

cyclization,10 and exo-dig cyclization.11 

 
Scheme 4.  Example of a tandem Cope/Claisen rearrangement 
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Of particular note, the tandem reaction based upon two successive aromatic 

Claisen rearrangements was developed by Hiratani et al. (Scheme 5).12 By heating 

bisallylic ether to approximately 200 °C, the “double Claisen” rearrangement occurs to 

provide an aromatic product containing two new carbon-carbon bonds.  This 

methodology has been used by Hiratani and coworkers for the synthesis of novel 

materials including calixarenes,13 rotaxanes14 and polymers.15  However, this 

methodology has not been applied for stereoselective synthesis. 

 
Scheme 5.  Double-Claisen rearrangement 
 

O

O
Me

Me

Me
Me

HO

Me
Me

O
Me

Me

HO

Me
Me

OH
Me

Me

200 °C

[,3,3]

200 °C

[,3,3]

 

 

Herein we describe a novel cascade process based on our acyl-Claisen 

rearrangement.  Our proposed tandem acyl-Claisen rearrangement combines the 

convenience of generating allyl vinyl ethers in situ, with the power of performing two 

carbon-carbon bond forming reactions in sequence (Scheme 6).  Importantly, this 

proposed three component coupling enables the construction of complex acyclic systems 

in the context of the 2,3,6-trisubstituted-1,7-dioxo-heptane architecture.  In addition, this 

cascade Claisen sequence uses simple allyl diamines and acid chloride precursors— 

chemicals that are readily available in a diverse range of structural formats.  As such, we 

expect our tandem process to be broadly useful for both the fields of natural product 

synthesis and medicinal chemistry. 
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Scheme 6.  Proposed tandem-acyl Claisen rearrangement for the rapid construction of 
stereochemically complex acyclic frameworks 
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Reaction Design 

Based on our acyl-Claisen studies,16 we envisioned that a variety of ketenes 1, 

generated in situ from acid chloride 2, would participate in a tandem acyl-Claisen 

rearrangement with allyl diamines 3 (Scheme 7 and Scheme 8).  Addition of the (Z)- or 

(E)-amine component of diamine 3 to ketene 1 would provide the regioisomeric allyl 

vinyl ammonium complexes 4 and 5, respectively (Scheme 7).  Given that the (Z)-amine 

derived conformation 5 should be destabilized on the basis of 1,3 diaxial interactions, and 

that the ketene-addition step is likely reversible,17 the first Claisen rearrangement was 

expected to proceed selectively via (E)-ammonium complex 4.  As a central design 

element, this regioselective addition-rearrangement would provide the 2,3-disubstituted 

intermediate 6 with high levels of syn selectivity while revealing an allyl amine 

component that can participate in a second acyl-Claisen transformation. 
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Scheme 7.  Mechanistic rationale for predicted stereochemistry in the first Claisen event 
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In this context, the addition of a second equivalent of ketene 1 to intermediate 6 

would result in an ammonium enolate that can adopt two chair rearrangement 

topographies 7 and 8.  Minimization of A1,2 strain18 about the C(5)–C(5a) bond of 

conformer 8 was expected to enforce transannular interactions between the C(5a)-amide 

moiety and the axial methylene group.  In contrast, the same torsional constraints in 

topography 7 positions the bulky C(5a)-amide chain away from the [3,3]-isomerization 

event.  As such, the second Claisen step was anticipated to proceed via conformer 7 to 

furnish the structurally complex 2,3,6-trisubstituted-1,7-diamido-heptane 9 with 2,3-syn-

3,6-anti diastereocontrol. 
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Scheme 8.  Mechanistic rationale for predicted stereochemistry in the second Claisen event 
 

Cl
R2

Oi-Pr2EtN

C O
R2

–i-Pr2EtN•HCl+

Lewis acid
(LA)

1 2

[3,3]

N

O

R2

R1

O
N

O

6 syn intermediate

E Z

5aN

LAO R2

+
O

non-productiveproductive

H
R1

R2

O

NR2

N

OLAR2

+
O

R1

H

NR2O

R2

H

8

5a

7

5

5

N N

O

R2

R1

R2

O

OO

9 syn-anti  expected

minimization of A1,2 strain
and transanular interactions

conformer 7 favored

 

 

 
Results and Discussion 

Our tandem acyl-Claisen strategy was first evaluated using allyl dimorpholine 10 

with propionyl chloride in the presence of i-Pr2EtN and a series of metal salts.  As 

revealed in Table 1, this tandem sequence was successful with a variety of Lewis acids 

including Yb(OTf)3, TiCl4(THF)2, MgI2 and AlCl3.  In all cases, the major constituent 12 

was determined to be the 2,3-syn-3,6-anti isomer,19 as predicted in our design plan. The 

superior levels of diastereocontrol (98:2 dr) and reaction efficiency (97% yield) exhibited 
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by Yb(OTf)3 (entry 1) defined this Lewis acid as the optimal catalyst for further 

exploration. 

 

Table 1.  Lewis Acid Promoted Tandem Acyl-Claisen Rearrangement between Propionyl Chloride 
and Allyl Dimorpholine 12a 
 

N

N

Me

O

Cl
Me

N N

O O

Me

Me

Me

Lewis acid

23 °C, CH2Cl2

i-Pr2NEt

synanti/
anti-antib,c

Yb(OTf)3
TiCl4(THF)2

MgI2
AlCl3

Lewis acid

98:2
98:2d

98:2
64:36

entry

1
2
3
4

% yield of 12

97
93
70
93

2.0
2.0
4.0
2.0

equiv of LA

10 11 12  syn-anti isomer

O

O

O O

 
a Reactions performed in CH2Cl2 at 23 °C.  b Ratios determined by GLC.  c The syn-syn and anti-syn 
isomers were isolated in <1% yield.  d Reaction performed at –20 °C. 

 

Allyl dimorpholine component.  Experiments that examine the scope of the allyl 

dimorpholine substrate are summarized in Table 2.  The reaction appears quite general 

with respect to the nature of the tertiary amine component (entries 1–3, 82–93% yield, 

≥95:5 dr).  Considerable variation in the olefin substituent can also be tolerated to afford 

acyclic arrays that incorporate alkyl, halo, cyano, alkoxy and sulfanyl substituents in 

excellent yield and diastereoselectivity (entries 4–7, 74–93% yield, 90:10 to 99:1 syn-

anti:anti-syn).  As revealed with the cyano- and phenylthio-substituted amines (cf. entries 

6 and 7), the reaction exhibits broad latitude with respect to the electronic contribution of 

the olefin substituent (≥70% yield, ≥93:7 dr). 
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Table 2.  Tandem Acyl-Claisen Rearrangement between Propionyl Chloride and Representative 
Allyl Dimorpholines 
 

R2N

NR2

R1

O

Cl
Me

R2N NR2

O O

Me

R1

Me

Lewis acid

23 °C, CH2Cl2

i-Pr2NEt

allyl diamine

entry % yield
syn–anti/
syn–syna,bNR2 olefin–R1

1
2
3
4
5
6
7
8
9

morpholine
pyrrolidine
piperidine
morpholine
morpholine
morpholine
morpholine
morpholine
morpholine

Me (10)
Me (13)
Me (14)
Cl  (15)
OBz (16)
CN (17)
SPh (18)
H (19)
Ph (20)

97
90
99
98
86
78
70
92
70

98:2c

95:5
96:4
99:1
91:9c

97:3c,d

93:7d

55:45
55:45

 
a Ratios determined by GLC or HPLC.  b The syn-syn and anti-syn isomers were isolated in <1% 
yield.  c Relative configurations assigned by X-ray analysis.  d Using TiCl4(THF)2. 

 

Use of the unsubsituted allyl diamine 20 (R1 = H) with propionyl chloride, 

however, afforded the tandem adduct without any diastereocontrol (92% yield, 55:45 dr, 

entry 6).  In this case, the Claisen event occurs without stereochemical bias because a β 

stereocenter is not evolved from the first Claisen transformation.  As a result, 

rearrangement through both conformers 4 and 5 should be equally favorable (see Scheme 

7).  When R1 = Ph, poor diastereocontrol was also observed presumably for a different 

reason (70% yield, 55:45 dr, entry 7).20  Here, we speculate that the phenyl substituent 

must be as sterically demanding as the β-substituted amide side chain.  Consequently, 

diastereocontrol is impaired as chair transition states 7 and 8 become energetically similar 

(see Scheme 8). 

Acid chloride component.  The effect of the acid chloride component on the 

tandem acyl-Claisen rearrangement has also been examined (Table 3).  Significant 
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structural variation in the ketene surrogate (R2 = Me, Bn, NPhth, or OPiv) is possible 

without loss in yield or diastereoselectivity (74–99% yield, 83:17 to 97:3 syn-anti:anti-

syn, entries 1–6).  A powerful feature of this cascade reaction is the capacity to build 

functional and stereochemical arrays that are not readily available using conventional 

chemical methods.  As demonstrated in entry 3, implementation of α-phthalylglycyl 

chloride allows the rapid construction of carbon tethered α-amino carbonyls.  This 

tandem strategy also provides an attractive alternative to iterative aldol processes.  

Indeed, the synthesis of a variety of divergently substituted polyol systems can be 

achieved using α-pivaloxy chloride with alkyl, halo, or alkoxy-substituted diamines 

(entries 4–6, 74–95% yield, ≥95:5 dr).21 
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Table 3.  Tandem Acyl-Claisen Rearrangement between Representative Allyl Dimorpholines and 
Acid Chlorides.a 
 

acid-Cl % yield productb

98:2e

92:8

95:5e

 amine

10

10

10

97:3f10

92:8f,g16

R2N NR2

O

Me

Me

Me

O

R2N NR2

O

Bn

Me

Bn

O

R2N NR2

O

NPhth

Me

NPhth

O

R2N NR2

O

OPiv

Me

OPiv

O

R2N NR2

O

OPv

OBz

OPv

O

syn–anti/
syn–sync,d

Cl

O

Me

Cl

O

Bn

Cl

O

NPhth

Cl

O

OPiv

Cl

O

OPiv

95:5f8415 R2N NR2

O

OPiv

Cl

OPiv

O

Cl

O

OPiv

entry

1

2

3

4

5

6

97

99

98

97

71

 
a With 2 equiv. of Yb(OTf)3 and i-Pr2NEt at 23 °C in CH2Cl2.  b NR2 = N-morpholine.  c Ratios determined by GLC.  
d The syn-syn and anti-syn isomers were isolated in <1% yield.  eRelative configurations assigned by X-ray 
analysis.  f Ratios determined by 1H NMR.  g Using TiCl4(THF)2. 

 

Applications for macrolide synthesis 

 A stereochemical pattern commonly found in polyketide natural products (e.g., 

methynolide, erythronolide, tylonolide) is the 2,3-syn-3,6-anti-2,6-dimethyl-1,7-diox-

heptane (Figure 1).22  Notably, this stereochemical array can be accessed in one step from 

diamine 16 and propionyl chloride by our tandem acyl-Claisen rearrangement.  

Moreover, the C(4) olefin functionality renders these Claisen adducts versatile substrates 
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for subsequent transformations (e.g., oxidative or reductive elaboration).  Consequently, 

our tandem acyl-Claisen technology should enable the design of flexible and convergent 

synthetic routes, easily adaptable to a variety of macrolide antibiotics, and their 

analogues. 
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Figure 1.  Applications of the tandem acyl-Claisen rearrangement for macrolide synthesis 

 

Regioselective hydrolysis 

Finally, it is important to note that the regioselective hydrolysis of the α,β-

disubstituted amide of these dicarbonyl Claisen adducts is possible with the use of an 

iodolactonization-ring opening sequence23 (Table 4).  The regioselectivity of this 

hydrolysis generally increases with the increasing steric demands of the β-substituent (cf. 

entries 1–5). 
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Table 4.  Regioselective hydrolyisis of the tandem Claisen bisamides 
 

N N

O

R2

R1

R2

O

OO

1) I2, DME:H2O

2) Zn/AcOH

HO N

O

R2

R1

R2

O

O

entry

bis-amide

R2 % yield regioselectivity

1
2
3
4
5

R1

Me
Bn
Me
Me
Me

Me
Me
p-ClPh
BzO
CN

83
82
80
88
89

92:8
92:8
90:10
83:17
1:1  

 

Mechanistic considerations.  In initial experiments, we observed that treatment of 

21 with I2, provided lactone 22 as the major isomer in (90:10 dr, 100% yield) (Scheme 9).  

Single crystal X-ray analysis of this product revealed its three dimensional structure, and 

thus, the regio- and stereochemical bias of the iodolactonization.  Based on these 

observations, we propose that minimization of A1,2 strain24 about the alkene results in 

stereoselective iodine addition to the sterically less hindered face of the alkene (the re 

face as shown in Figure 1).  The α,β-amide group must be conformationally pre-

organized,25 and as such kinetically favored, to attack the resulting iodonium 23, 

producing iminium ion 24, which is then hydrolyzed to the observed lactone 22.  

Reductive opening of lactone 22 by zinc affords the corresponding acid. 
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Scheme 9.  Rationale for regioselectivity in the iodolactonization 
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Concluding Remarks 

We have designed and studied a new tandem acyl-Claisen rearrangement that 

tolerates a range of alkyl-, aryl-, and heteroatom-substituted acid chloride and allyl 

dimorpholine reaction partners.  The reaction efficiently furnishes the complex 2,3,6-

trisubstituted-1,7-diamido-heptane structures with excellent 2,3-syn-3,6-anti 

diastereocontrol.  In the next chapter, work aimed at demonstrating the applicability of 

this new tandem acyl-Claisen rearrangement for natural product synthesis is presented. 
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Experimental Methods 

 General Information.  Commercial reagents were purified prior to use following 

the guidelines of Perrin and Armarego.26  Non-aqueous reagents were transferred under 

nitrogen or argon via syringe or cannula.  Organic solutions were concentrated under 

reduced pressure on a Büchi rotary evaporator.  Chromatographic purification of products 

was accomplished using forced-flow chromatography on ICN 60 32–64 mesh silica gel 

63 according to the method of Still.27  Thin-layer chromatography (TLC) was performed 

on EM Reagents 0.25 mm silica gel 60-F plates.  Visualization of the developed 

chromatogram was performed by fluorescence quenching or KMnO4 stain.  1H and 13C 

NMR spectra were recorded on Bruker DRX-500 (500 MHz and 125 MHz, respectively), 

Bruker AMX-400 (400 MHz and 100 MHz, respectively), Varian Mercury-300 (300 

MHz and 75 MHz, respectively), or Varian I-500 (500 MHz and 125 MHz, respectively) 

instruments, as noted, and are internally referenced to residual protio solvent signals.  

Data for 1H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = 

singlet, d = doublet, t = triplet, q = quartet, m = multiplet), integration, coupling constant 

(Hz), and assignment.  Data for 13C NMR are reported in terms of chemical shift. (δ 

ppm).  IR spectra were recorded on an ASI React-IR 1000 spectrometer and are reported 

in terms of frequency of absorption (cm-1).  Mass spectra were obtained from the UC 

Irvine Mass Spectral facility. Gas liquid chromatography (GLC) was performed on 

Hewlett-Packard 6850 and 6890 Series gas chromatographs equipped with a split-mode 

capillary injection system and flame ionization detectors using a CC-1701 (30 m x 0.25 

mm) column from C&C Column Technologies.  High-performance liquid 
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chromatography (HPLC) was performed on the Hewlett-Packard 1100 Series 

chromatographs using a 4.6 x 250 mm Zorbax Sil column. 

 

Morpholin-4-yl-acetic acid ethyl ester (25).  Morpholine (13.0 mL, 0.15 mol) was 

added dropwise to a solution of ethyl bromoacetate (10.5 g, 63.8 mmol) in toluene (100 

mL).  After 8 h, the resulting mixture was filtered through a plug of Celite® with Et2O 

and concentrated to provide 25 (10.2 g, 58.9 mmol) in 92% yield as a yellow oil, which 

was used without further purification.  IR (CH2Cl2) 1745, 1455, 1297, 1197, 1166, 1034 

cm-1; 1H NMR (400 MHz, CDCl3) δ 5.75 (q, J = 9.5 Hz, 2H, CH2CH3), 3.75 (t, J = 6.2 

Hz, 4H, O(CH2)2), 3.19 (s, 2H, CH2CO), 2.57 (t, J = 6.2 Hz, 4H, N(CH2)2, 1.27 (dt, J = 

8.9, 0.8 Hz, 3H, CH2CH3); 13C NMR (100 MHz, CDCl3) δ 169.9, 66.6, 60.5, 59.6, 53.2, 

14.1; LRMS (FAB) m/z 174 (MH)+; HRMS (FAB) exact mass calcd for (C8H15NO3H)+ 

requires m/z 174.4113, found m/z  174.1135. 

 

1,3-Di-morpholin-4-yl-propan-2-one (26).  Following a modified version of the 

procedure described by McElvain,28 a round bottom flask charged with 25 (10.0 g, 58.0 

mmol) and NaOEt (2.0 g, 29.0 mmol) was heated to 100 °C under reduced pressure (40 

torr) with removal of EtOH by short path distillation.  After the evolution of EtOH had 

ceased (2 h), the resulting black solid residue was dissolved in a hot solution of NaOH 

(64 g, 1.6 mol) and EtOH (240 mL) in H2O (320 mL) and then heated to reflux.  After 1.5 

h, the resulting solution was cooled to 23 °C and the aqueous layer was removed, 

extracted with Et2O (3 x 200 mL).  The combined organic layers were then washed with 

brine (200 mL), dried (Na2SO4) and concentrated to afford (11.7 g, 51.3 mmol) of 26 as a 
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yellow solid in 60% yield which was used without further purification: mp 62 °C; IR 

(CH2Cl2) 1455, 1366, 1293, 1116, 1004, 869 cm-1; 1H NMR (400 MHz, CDCl3) δ 3.74 (t, 

J = 6.2 Hz, 8H, 2 x O(CH2)2), 3.26 (s, 4H, (CH2)2CO), 2.50 (t, J = 6.2 Hz, 8H, 2 x 

N(CH2)2); 13C NMR (100 MHz) 205.4, 66.8, 66.2, 53.9; LRMS (FAB) m/z 229 (MH)+; 

HRMS (FAB) exact mass calcd for (C11H20N2O3H)+ requires m/z 229.1552, found m/z  

229.1555. 

 

General Procedure A:  Preparation of the allylic diamines (unoptimized reaction 

conditions).  According to a modified procedure of Werner,29 to a solution of the 

triphenylphosphonium halide salt in THF was added t-BuOK portionwise.  After 1 h, a 

solution of the ketone 26 in THF was added to the resulting orange mixture and heated to 

reflux.  After 12 h, the crude reaction mixture was washed with 1 N HCl (50 mL).  The 

resulting aqueous layer was then separated and washed with Et2O (3 x 50 mL) and then 

carefully adjusted to pH 12 with 1 N NaOH (50 mL).  The aqueous layer was then 

extracted with Et2O (3 x 50 mL) and the organic layers combined, washed with brine (20 

mL), dried (Na2SO4) and concentrated.  The resulting residue was purified by 

chromatography on grade I alumina (Et2O) to furnish the title compounds. 

 

1,3-Dimorpholin-4-yl-2-ethylidene-propane (10). Prepared according to general 

procedure A from ethyltriphenylphosphonium bromide (11.3 g, 30.3 mmol), t-BuOK (3.4 

g, 30.0 mmol) and ketone 26 (1.40 g, 6.00 mmol) in THF (30 mL) to provide 10 as a 

white solid (0.83 g, 3.5 mmol) in 58% yield: mp 41 °C; IR (CH2Cl2) 1455, 1366, 1293, 

1116, 1004, 869 cm-1; 1H NMR (400 MHz, CDCl3) δ 5.60 (q, J = 6.9 Hz, 1H, CH=C), 



 73

3.67 (m, 8H, 2 x N(CH2)2), 2.94 (s, 2H, CH2C=CH), 2.88 (s, 2H, CH2C=CH), 2.37 (bs, 

8H, 2 x O(CH2)2), 1.66 (d, J = 6.9 Hz, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ 132.7, 

126.3, 67.1, 67.1, 64.0, 55.7, 53.7, 53.6, 13.2; LRMS (FAB) m/z 240 (M)+; HRMS (FAB) 

exact mass calcd for (C13H24N2O2)+ requires m/z 240.1838, found m/z 240.1907. 

 

2-Chloromethylene-1,3-dimorpholin-4-yl-propane (15). Prepared according to general 

procedure A from chloromethyltriphenylphosphonium chloride (6.68 g, 22.1 mmol), t-

BuOK (2.46 g, 21.9 mmol) and ketone 26 (1.00 g, 4.38 mmol) in THF (30 mL) to 

provide 15 as a yellow oil (0.79 g, 3.0 mmol) in 68% yield; IR (CH2Cl2) 2866, 2819, 

1452, 1352, 1298, 1120, 1004, 865 cm-1; 1H NMR (400 MHz, CDCl3) δ 6.21 (s, 1H, 

CH=C), 3.69 (t, J = 4.6 Hz, 8H, 2 x O(CH2)2), 3.25 (s, 2H, CH2C=C), 3.01 (s, 2H, 

CH2C=C), 2.18–2.45 (m, 8H, 2 x N(CH2)2; 13C NMR (100 MHz, CDCl3) δ 138.9, 118.2, 

55.6, 53.6, 67.1, 61.1; LRMS (CI) m/z 261 (M)+; HRMS (CI) exact mass calcd for 

(C12H21ClN2O2H)+ requires m/z 261.2369, found m/z 261.1370. 

 

1,3-Dimorpholin-4-yl-2-phenylthiomethylene-propane (18). Prepared according to 

general procedure A from phenylthiomethyltriphenylphosphonium chloride (3.92 g, 9.31 

mmol), t-BuOK (1.04 g, 9.31 mmol) and ketone 26 (1.00 g, 4.38 mmol) in THF (20 mL) 

to provide 18 as a yellow oil (0.10 g, 3.0 mmol) in 7% yield; IR (CH2Cl2) 2814, 2250, 

1583, 1455, 1293, 1116, 1007, 865 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.22–7.32 (m, 

4H, Ph), 7.15–7.19 (m, 1H, Ph), 6.35 (s, 1H, CH=C), 3.63–3.66 (m, 8H, 2 x O(CH2)2), 

3.09 (s, 2H, CH2C=C), 2.87 (s, 2H, CH2C=C), 2.38–2.43 (m, 8H, 2 x N(CH2)2; 13C NMR 

(100 MHz, CDCl3) δ 136.6, 134.9, 129.0, 128.9, 126.3, 124.9, 67.0, 63.3, 57.8, 53.6, 



 74

53.5; LRMS (CI) m/z 335 (MH)+; HRMS (CI) exact mass calcd for (C18H26N2O2SH)+ 

requires m/z 335.1793, found m/z 335.1784. 

 

3-(-N-methyl-morpholinyl)-4-(-N-morpholinyl)-but-2-enenitrile (17). Prepared 

according to general procedure A from cyanomethyltriphenylphosphonium chloride (3.30 

g, 11.0 mmol) and ketone 26 (500 mg, 2.19 mmol) in THF (22 mL) to provide 17 as a 

yellow oil (120 mg, 3.0 mmol) in 22% yield; IR (CH2Cl2) 2980, 2872, 2247, 1710, 1112, 

1116, 730 cm-1; 1H NMR (400 MHz) δ 5.75 (s, 1H, CH=C), 3.69–3.72 (m, 8H, 2 x 

O(CH2)2), 3.25 (s, 2H, CH2C=C), 3.13 (s, 2H, CH2C=C), 2.45–2.46 (bs, 8H, 2 x N(CH2)2; 

13C NMR (100 MHz) δ 160.6, 116.3, 98.3, 66.7, 66.6, 61.1, 59.8, 53.5, 53.4; LRMS (CI) 

m/z 252 (MH)+; HRMS (CI) exact mass calcd for (C13H21N3O2H)+ requires m/z 

252.1712, found m/z 252.1712. 

 

Benzoic acid-2-(-N-methyl-morpholinyl)-3-(-N-morpholinyl)-propenyl ester (16).  

Based upon a modified procedure of Boeckman30, a solution of benzoic acid 2-methyl-

propenyl ester31 (64.3 g, 0.365 mol) and NBS (136.4 g, 0.766 mol) in CCl4 (730 mL) at 

reflux was added benzoyl peroxide (1.06 g, 4.38 mmol).  After 2 h, the reaction mixture 

was filtered through a plug of Celite® and concentrated to yield the dibromide, which 

was used without further purification.  A solution of the crude dibromide in CH2Cl2 (3.2 

L) was treated with i-Pr2EtN (127 mL, 0.729 mol), followed by dropwise addition of 

morpholine (64 mL, 0.73 mol) at 4 °C.  The reaction was then allowed to warm to 23 °C.  

After 1.3 h, the reaction mixture was washed with H2O (3 x 600 mL), dried (Na2SO4), 

filtered, concentrated and purified on with grade I alumina (Et2O) to afford the product 
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16 as a yellow solid (62.0 g, 9.24 mmol) in 50% yield; mp 80 °C; IR (CH2Cl2) 1729, 

1455, 1293, 1274, 1251, 1116, 1004, 865 cm-1; 1H NMR (400 MHz) δ (d, J = 7.2 Hz, 2H, 

Ar), 7.63 (app t, J = 7.4 Hz, 1H, Ar), 7.50 (app t, J = 7.6 Hz, 2H, Ar), 7.42 (s, 1H, 

CH=C), 3.68–3.72 (m, 8H, 2 x O(CH2)2), 3.21 (s, 2H, CH2C=C), 3.02 (s, 2H, CH2C=C), 

2.46–2.49 (m, 8H, 2 x N(CH2)2); 13C NMR (100 MHz) δ 163.4, 135.3, 133.7, 129.9, 

129.0, 128.6, 119.4, 67.1, 58.8, 54.0, 53.8, 53.6; LRMS (FAB) m/z 347 (MH)+; HRMS 

(FAB) exact mass calcd for (C19H26N2O4H)+ requires m/z 347.1971, found m/z 347.1971. 

 

1,3-Dipiperidin-2-ethylidene-1-yl-propane (14).  According to Werner,3 to a solution of 

the (ethyl)triphenylphosphonium bromide (5.00 g, 13.5 mmol) in Et2O (50 mL) was 

added dropwise n-BuLi (5.50 mL of a 2.47 M solution in hexanes, 13.5 mmol).  After 1 

h, the resulting orange mixture was cooled to –78 °C and 1,3-dichloroacetone (1.70 g, 

13.5 mmol) in Et2O (50 mL) was added dropwise at which time a color change from dark 

orange to yellow was observed.  The reaction mixture was then allowed to warm to 23 °C 

over 15 h and then Et2O (100 mL) was added.  The resulting mixture was then filtered 

through a pad of Celite© with Et2O (200 mL).  The organic layer was then separated, 

dried (Na2SO4), and then concentrated at 0 °C to provide 1-chloro-2-(chloromethyl)-2-

butene (27) (0.70 g, 2.68 mmol) in 37% yield which was used without further 

purification.  To a refluxing mixture of piperidine (0.70 mL, 6.71 mmol ) and NaHCO3 

(300 mg, 5.36 mmol) in H2O (1.0 mL) was added 27.  After 2.5 h, the resulting mixture 

was washed with 1 N HCl (20 mL).  The aqueous layer was then separated and washed 

with Et2O (3 x 20 mL) and then carefully adjusted to pH 12 with 1 N NaOH (20 mL).  

The aqueous layer was then extracted with Et2O (3 x 50 mL) and the organic layers 
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combined, washed with brine (20 mL), dried (Na2SO4), and then concentrated.  The 

resulting residue was purified by chromatography on grade I alumina (Et2O) to furnish 14 

as a yellow oil (300 mg, 1.27 mmol) in 47% yield. IR (film) 2935, 2757, 1444, 1298, 

1151, 989 cm-1; 1H NMR (300 MHz, CDCl3) δ 5.57 (q, J = 6.9 Hz, 1H, CH=C), 2.89 (s, 

2H, CH2C=CH), 2.86 (s, 2H, CH2C=CH), 2.31 (bs, 8H, 2 x N(CH2)2), 1.66 (d, J = 6.9 

Hz, 3H, CH3), 1.28–1.58 (m, 3.67, 8H, (CH2CH2)2N), 1.39–1.42 (m, 2H, CH2CH2CH2N); 

13C NMR (100 MHz, CDCl3) δ 64.6, 56.9, 55.1, 54.9, 26.5, 25.0, 24.9 13.7. 

 

1,3-Dipyrrolin-1-yl-2-ethylidene-propane (13). To a solution of pyrrolidine (7.75 mL, 

93.0 mmol ) in THF (40.0 mL) at 23 °C was added 27  (2.85 g, 18.56 mmol).  After 5 h, 

the resulting mixture was extracted with 1 N HCl (aq) (40 mL).  The resulting aqueous 

layer was washed with Et2O (3 x 40 mL) and then carefully adjusted to pH 12 with 1 N 

NaOH (40 mL).  The aqueous layer was then extracted with Et2O (3 x 50 mL) and the 

organic layers combined, washed with brine (20 mL), dried (Na2SO4), and concentrated.  

The resulting residue was purified by chromatography on grade I basic alumina (Et2O) to 

furnish 13 as a colorless oil (600 mg, 2.88 mmol) in 16% yield.  IR (film) 2966, 2781, 

1630, 1267, 1197 cm-1; 1H NMR (300 MHz) δ 5.58 (q, J = 6.9 Hz, 1H, CH=C), 3.09 (s, 

2H, CH2C=CH), 3.07 (s, 2H, CH2C=CH), 2.46–2.47 (m, 8H, 2 x N(CH2)2), 1.71–1.80 

(m, 8H, (CH2CH2)2N), 1.71 (d, J = 4.2 Hz, 3H, CH3); 13C NMR (75 MHz) δ 64.6, 56.9, 

55.1, 54.9, 26.5, 25.0, 24.9 13.7; LRMS (FAB) m/z 209 (MH)+; HRMS (FAB) exact mass 

calcd for (C13H24N2H)+ requires m/z 209.2015, found m/z 209.2018. 
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General Procedure B:  To a flask charged with TiCl4(THF)2 was added the allyl 

dimorpholine in CH2Cl2, followed by i-Pr2NEt.  The resulting solution was then cooled to 

–20 °C for 5 min before the acid chloride in CH2Cl2 was added dropwise over 1 min, 

unless noted otherwise.  The resulting dark red solution was maintained at –20 °C until 

the allyl dimorpholine was consumed (4–6 h) as determined by TLC analysis (EtOAc).  

The resulting solution was then diluted with EtOAc (20 mL) and then washed with 

aqueous 1N NaOH (20 mL).  The aqueous layer was then extracted with EtOAc (3 x 20 

mL), and the combined organic layers washed with brine, dried (Na2SO4), and 

concentrated.  The resulting residue was purified by silica gel chromatography (EtOAc) 

to afford the title compounds. 

 

General Procedure C:  To a flask containing Yb(OTf)3 was added the allyl 

dimorpholine in CH2Cl2, followed by i-Pr2NEt at 23 °C.  After 5 min a solution of the 

acid chloride in CH2Cl2 was added dropwise over 1 min. The resulting solution was 

maintained at 23 °C until the allyl dimorpholine was consumed (4–6 h) as determined by 

TLC analysis (EtOAc).  The reaction mixture was then diluted with EtOAc (20mL) and 

washed with aqueous 1N NaOH (20 mL).  The aqueous layer was then extracted with 

EtOAc (3 x 20 mL), and the combined organic layers washed with brine, dried (Na2SO4), 

and concentrated.  The resulting residue was purified by silica gel chromatography 

(EtOAc) to afford the title compounds. 

 

(2R*,3R*,6R*)-1,7-Dimorpholin-4-yl-4-methylene-2,3,6-trimethyl-heptane-1,7-dione 

(12).  Prepared according to the general procedure C from 10 (50.0 mg, 0.208 mmol), 
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Yb(OTf)3  (258mg, 0.416 mmol), i-Pr2NEt (0.15 mL, 0.83 mmol), and propionyl chloride 

(0.75 mL, 1 M solution in CH2Cl2, 0.75 mmol) in 4.0 mL of CH2Cl2 to provide 

compound 12 as a colorless oil in 97% yield (71.4 mg, 0.203 mmol); 98:2 syn-anti:anti-

anti.  Syn-anti isomer: IR (CH2Cl2) 2976, 2864, 1733, 1637, 1463, 1436, 1374, 1247, 

1116, 1046 cm-1; 1H NMR (400 MHz, CDCl3) δ 4.72 (s, 2H, CH2=C), 3.43–3.68 (m, 

16H, 2 x O(CH2CH2)2N), 2.90 (m, 1H), 2.72 (m, 1H), 2.49 (dd, J = 7.3, 14.6 Hz, 1H, 

CH(H)C=CH2), 2.36 (m, 1H), 2.0 (dd, J = 6.4, 14.6, 1H, CH(H)C=CH2), 1.07 (d, J = 6.5 

Hz, 3H, CH3), 1.04 (d, J = 4.5 Hz, 3H, CH3), 1.00 (d, J = 6.3 Hz, 3H, CH3); 13C NMR 

(100 MHz) δ 174.7, 174.7, 152.2, 109.5, 67.0, 66.8, 46.1, 45.9, 42.1, 41.9, 40.6, 40.2, 

40.0, 39.6, 33.4, 17.7, 17.3, 17.2, 15.3; LRMS (FAB) m/z 353 (MH)+; HRMS (FAB) 

exact mass calcd for (C19H32N2O4H)+ requires m/z 353.2440, found m/z 353.2444.  

Diastereomer ratio was determined by GLC with a CC-1701 column (100 °C, 20 °C/min 

gradient, 25 psi); syn-anti adduct tr = 43.0 min, syn-syn adduct tr = 44.0 min, and anti-anti 

adduct tr = 51.8 min. 

 

(2R*,3R*,6R*)-1,7-Dipiperidin-1-yl-4-methylene-2,3,6-trimethyl-heptane-1,7-dione 

(Table 2, entry 3).  Prepared according to the general procedure C from 14 (50.0 mg, 

0.212 mmol), Yb(OTf)3  (258mg, 0.416 mmol), i-Pr2NEt (0.15 mL, 0.85 mmol), and 

propionyl chloride (0.80 mL, 1 M solution in CH2Cl2, 0.80 mmol) in 4.0 mL of CH2Cl2 to 

provide the title compound as a colorless oil in 99% yield (73.4mg, 0.203 mmol); 96:4 

syn-anti:anti-anti.  Syn-anti isomer: IR (film) 3059, 2989, 2943, 2866, 2309, 1622, 1444, 

1267, 911, 703 cm-1; 1H NMR (300 MHz, CDCl3) δ 4.71 (s, 1H, CH(H)=C), 4.69 (s, 1H, 

CH(H)=C), 3.33–3.58 (m, 8H, 2 x N(CH2)2), 2.71–2.81 (m, 1H, CH(CO)), 2.47 (dd, J = 
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7.1, 14.6 Hz, 1H, CH(H)C=CH2), 2.32–2.51 (m, 1H), 1.98 (dd, J = 6.6, 14.7, 1H, 

CH(H)C=CH2), 1.41–1.63 (m, 12 H, 2 x CH2CH2CH2), 1.04 (d, J = 6.9 Hz, 3H, CH3), 

1.00 (d, J = 4.8 Hz, 3H, CH3), 0.98 (d, J = 5.1 Hz, 3H, CH3); 13C NMR (75 MHz) δ 

174.5, 174.3, 152.4, 109.5, 43.2, 43.1, 41.0, 40.3, 39.9, 26.1, 27.1, 26.1, 26.0, 25.0, 18.1, 

17.3, 15.3; LRMS (FAB) m/z 350 (MH)+; HRMS (FAB) exact mass calcd for 

(C21H36N2O2H)+ requires m/z 349.2855, found m/z  349.2854.  Diastereomer ratio was 

determined by GLC with a CC-1701 column (100 °C, 20 °C/min gradient, 25 psi); syn-

anti adduct tr = 30.1min, syn-syn adduct tr = 31.1min, and anti-anti adduct tr = 36.6 min. 

 

(2R*,3R*,6R*)-1,7-Dipyrrolidin-1-yl-4-methylene-2,3,6-trimethyl-heptane-1,7-dione 

(Table 2, entry 2).  Prepared according to the general procedure C from 13 (43.3mg, 

0.208 mmol), Yb(OTf)3  (258mg, 0.416 mmol), i-Pr2NEt (0.30 mL, 1.72. mmol), and 

propionyl chloride (1.04 mL, 1 M solution in CH2Cl2, 0.80 mmol) added by syringe 

pump over 1 h in 4.0 mL of CH2Cl2 to provide the title compound as a colorless oil in 

90% yield (65.3mg, 0.203 mmol); 95:5 syn-anti:anti-anti.  Syn-anti isomer: IR (film) 

3059, 2989, 2943, 2866, 2309, 1622, 1444, 1267, 911, 703 cm-1; 1H NMR (300 MHz, 

CDCl3) δ 4.71 (s, 1H, CH(H)=C), 4.69 (s, 1H, CH(H)=C), 3.33–3.58 (m, 8H, 2 x 

N(CH2)2) 2.71–2.81 (m, 1H, CH(CO)), 2.47 (dd, J = 7.1, 14.6 Hz, 1H, CH(H)C=CH2), 

2.32–2.51 (m, 1H), 1.98 (dd, J = 6.6, 14.7, 1H, CH(H)C=CH2), 1.41–1.63 (m, 12 H, 2 x 

CH2CH2CH2), 1.04 (d, J = 6.9 Hz, 3H, CH3), 1.00 (d, J = 4.8 Hz, 3H, CH3), 0.98 (d, J = 

5.1 Hz, 3H, CH3); 13C NMR (75 MHz) δ 174.5, 174.3, 152.4, 109.5, 43.2, 43.1, 41.0, 

40.3, 39.9, 26.1, 27.1, 26.1, 26.0, 25.0, 18.1, 17.3, 15.3; LRMS (FAB) m/z 350 (MH)+; 

HRMS (FAB) exact mass calcd for (C21H36N2O2H)+ requires m/z 349.2855, found m/z  
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349.2854.  Diastereomeric ratios were determined by GLC with a CC-1701 column (100 

°C, 20 °C/min gradient, 25 psi); syn-anti adduct tr = 30.1min, syn-syn adduct tr = 

31.1min, and anti-anti adduct tr = 36.6 min. 

 

(2S*,3R*,6R*)-3-Chloro-2,6-dimethyl-1,7-dimorpholin-4-yl-4-methylene-heptane-

1,7-dione (Table 2, entry 4).  Prepared according to the general procedure C from 15 

(57.0 mg, 0.219 mmol), Yb(OTf)3 (258 mg, 0.416 mmol), i-Pr2NEt (0.15 mL, 0.83 

mmol), and propionyl chloride (0.75 mL, 1 M solution in CH2Cl2, 0.75 mmol) in 4.0 mL 

of CH2Cl2 to provide the title compound as a yellow oil in 98% yield (80.1 mg, 0.215 

mmol); 99:1 syn-anti:syn-syn by GLC analysis.  Syn-anti isomer: IR (CH2Cl2) 1640, 

1463, 1436, 1235, 1116, 1031, 911 cm-1; 1H NMR (400 MHz, CDCl3) δ 5.06 (s, 1H, 

CH(H)=C), 4.89 (s, 1H, CH(H)=C), 4.58 (d, J = 10.0 Hz, 1H, CHCl), 3.46–3.68 (m, 

16H, 2 x O(CH2CH2,)2N), 3.14 (m, 1H, CHCHCl), 2.98 (m, 1H, COCHCH2), 2.58 (dd, J 

= 8.4, 14.8 Hz, 1H, CH(H)C=CH2), 2.16 (dd, J = 5.2, 14.8, 1H, CH(H)C=CH2), 1.34 (d, 

J = 12.4 Hz, 3H, CH3), 1.11 (d, J = 6.8 Hz, 3H, CH3); 13C NMR (100 MHz) δ 174.3, 

172.0, 146.1, 114.5, 67.0, 66.9, 66.8, 66.6, 46.1, 46.0, 42.1, 42.0, 40.9, 37.0, 36.6, 33.8, 

18.2, 16.9; LRMS (FAB) m/z 373 (M)+; HRMS (FAB) exact mass calcd for 

(C18H29ClN2O4)+ requires m/z 372.8868, found m/z 373.1901. 

 

(2S*,3R*,6R*)-2,6-Dimethyl-1,7-dimorpholin-4-yl-4-methylene-3-phenylsulfanyl-

heptane-1,7-dione (Table 2, entry 7).  Prepared according to the general procedure B 

from 18 (51.0 mg, 0.152 mmol), TiCl4(THF)2  (102 mg, 0.305 mmol), i-Pr2NEt (0.11 mL, 

0.61 mmol), and propionyl chloride (0.46 mL, 1 M solution in CH2Cl2, 0.46 mmol) in 1.5 
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mL of CH2Cl2 to provide the title compound as a yellow oil in 70% yield (47.8 mg, 0.107 

mmol); 93:7 syn-anti:anti-anti by 1H NMR analysis.  Syn-anti isomer: IR (film) 3491, 

2974, 2858, 1637, 1437, 1359, 1305, 1236, 1112, 1027, 896, 742 cm-1; 1H NMR (400 

MHz, CDCl3) δ 7.37–7.40 (m, 2H, Ar), 7.21–7.29 (m, 3H, Ar), 4.73 (s, 1H, CH(H)=C), 

4.47 (s, 1H, CH(H)=C), 3.84 (d, J = 10.8 Hz, 1H, CHSPh), 3.39–3.68 (m, 16H, 2 x 

O(CH2CH2,)2N), 3.14 (m, 1H, CHCHSPh), 2.98 (m, 1H, (CO)CHCH2), 2.58 (dd, J = 8.4, 

14.8 Hz, 1H, CH(H)C=CH2), 2.16 (dd, J = 5.2, 14.8, 1H, CH(H)C=CH2), 1.34 (d, J = 

12.4 Hz, 3H, CH3), 1.11 (d, J = 6.8 Hz, 3H, CH3); 13C NMR (100 MHz) δ 174.2, 173.2, 

146.3, 134.7, 132.7, 128.7, 127.3, 112.2, 66.8, 66.6, 57.0, 45.9, 41.9, 38.7, 38.6, 33.6, 

18.4, 17.2; LRMS (FAB) m/z 447 (MH)+; HRMS (FAB) exact mass calcd for 

(C24H34N2O4SH)+ requires m/z 447.2318, found m/z 447.2315. 

 

(2R*,3R*,6R*)-3-Cyano-2,6-dimethyl-1,7-dimorpholin-4-yl-4-methylene-heptane-

1,7-dione (Table 2, entry 6).  Prepared according to the general procedure B from 17 

(45.0 mg, 0.179 mmol), TiCl4(THF)2  (120 mg, 0.359 mmol), i-Pr2NEt (0.13 mL, 0.72 

mmol), and propionyl chloride (0.54 mL, 1 M solution in CH2Cl2, 0.54 mmol) in 1.8 mL 

of CH2Cl2 to provide the title compound in 78% yield (50.7 mg, 0.139 mmol) as a white 

solid; mp 92–94 °C; 97:3 syn-anti:anti-anti by 1H NMR and 13C NMR analysis.  Syn-anti 

isomer: IR (film) 2794, 2920, 2858, 1637, 1444, 1359, 1267, 1112, 1035, 911 cm-1; 1H 

NMR (400 MHz, CDCl3) δ 5.11 (s, 1H, CH(H)=C), 4.95 (s, 1H, CH(H)=C), 3.75 (d, J = 

9.2 Hz, 1H, CHCN), 3.47–3.67 (m, 16H, 2 x O(CH2CH2,)2N), 3.10 (m, 1H, (CHCHCN), 

2.92 (m, 1H, (CO)CHCH2), 2.54 (dd, J = 8.6, 15.0 Hz, 1H, CH(H)C=CH2 ), 2.14 (dd, J = 

5.6, 15.2 Hz, 1H, CH(H)C=CH2), 1.30 (d, J = 6.8 Hz, 3H, CH3), 1.10 (d, J = 6.8 Hz, 3H, 
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CH3); 13C NMR (100 MHz) δ 173.7, 171.0, 140.8, 116.1, 112.2, 66.8, 66.7, 66.6, 46.0, 

45.9, 42.2, 42.0, 40.5, 37.8, 37.2, 33.6, 17.9, 16.4; LRMS (CI) m/z 363 (M)+; HRMS (CI) 

exact mass calcd for (C19H29N3O4)+ requires m/z 363.2158, found m/z 363.2162.  See X-

ray data. 

 

(2R*,3R*,6R*)-3-Benzoate-2,6-dimethyl-1,7-dimorpholin-4-yl-4-methylene-heptane-

1,7-dione (Table 2, entry 5).  Prepared according to the general procedure C from 16 

(72.1 mg, 0.208 mmol), Yb(OTf)3 (258 mg, 0.416 mmol), i-Pr2NEt (0.15 mL, 0.83 

mmol), and propionyl chloride (0.75 mL, 1 M solution in CH2Cl2, 0.75 mmol) in 4.0 mL 

of CH2Cl2 to provide the title compound as a yellow oil in 86% yield (81.7 mg, 0.178 

mmol); 91:9 syn-anti:syn-syn.  Syn-anti isomer: IR (CH2Cl2) 2247, 1722, 1637, 1440, 

1274, 1116, 1031, 703 cm-1; 1H NMR (400 MHz, CDCl3) δ 8.06 (d, J = 9.0 Hz, 2H, Ar), 

7.58 (t, J = 9.3, 1H, Ar), 7.45 (t, J = 9.5 Hz, 2H, Ar), 5.69 (d, J = 9.5 Hz, 1H, CHOBz), 

5.19 (s, 1H, CH(H)=C), 4.98 (s, 1H, CH(H)=C), 3.47–3.70 (m, 16H, 2 x O(CH2CH2,)2N), 

3.25 (dt, J = 8.5, 17.5 Hz, 1H, CHCHOBz), 3.02 (app dt, J = 8.5, 20.4 Hz, 1H, 

(CO)CHCH2), 2.55 (dd, J = 9.0, 18.0 Hz, 1H, CH(H)C=CH2 ), 2.14 (dd, J = 8.5, 18.0 Hz, 

1H, CH(H)C=CH2), 1.24 (d, J = 8.5 Hz, 3H, CH3), 1.07 (d, J = 8.5 Hz, 3H, CH3); 13C 

NMR (100 MHz) δ 174.6, 171.7, 165.3, 145.1, 133.0, 130.0, 129.5, 128.4, 114.2, 76.0, 

66.8, 46.2, 45.9, 42.1, 38.8, 37.4, 33.9, 17.7, 13.8; LRMS (CI) m/z 459 (MH)+; HRMS 

(CI) exact mass calcd for (C25H34N2O6H)+ requires m/z 459.2495, found m/z 459.2481.  

Diastereomer ratio was determined by HPLC with a Zorbax SIL column (75:25 

hexane:EtOH, 1.0 mL/min); syn-anti adduct tr = 14.5 min, anti-anti adduct tr = 16.8 min. 
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(2R*,3S*,6R*)-1,7-Dimorpholin-4-yl-2,6-diphthalamido-4-methylene-3-methyl-

heptane-1,7-dione (Table 3, entry 3).  Prepared according to the general procedure C 

from 10 (106 mg, 0.441 mmol), Yb(OTf)3 (516 mg, 0.882 mmol), i-Pr2NEt (0.31 mL, 1.8 

mmol), and phthalylglycyl chloride (1.5 mL, 1 M solution in CH2Cl2, 1.5 mmol) added 

over 2 h via syringe pump in 8.0 mL of CH2Cl2 to provide the title compound as a light 

yellow solid in 98% yield (266 mg, 0.432 mmol); 95:5 syn-anti:anti-anti.  Syn-anti 

isomer: IR (CH2Cl2) 2972, 2864, 2254, 1776, 1718, 1656, 1382, 1116, 923 cm-1; 1H 

NMR (400 MHz, CDCl3) δ 7.86 (dd, J = 3.2, 5.6 Hz, 2H, Phth), 7.84 (dd, J = 3.0, 5.6 Hz, 

2H, Phth), 7.72 (d, J = 3.0 Hz, 2H, Phth), 7.70 (d, J = 3.2 Hz, 2H, Phth), 5.42 (dd, J = 

4.2, 11.3 Hz, 1H, CH2CHNPhth), 5.09 (s, 1H, CH(H)=C), 5.02 (s, 1H, CH(H)=C), 4.95 

(d, J = 10.4 Hz, 1H, CHCHNPhth), 3.40–3.90 (m, 16H, 2 x O(CH2CH2,)2N), 2.98 (dd, J 

= 3.7, 14.3 Hz, 1H, CHCHNPhth), 0.89 (d, J = 7.0 Hz, 3H, CH3 );  13C NMR (100 MHz) 

δ; 173.9, 171.0, 140.8, 116.1, 112.2, 66.8, 66.7, 66.6, 46.0, 45.9, 42.2, 42.0, 40.5, 37.8, 

37.2, 33.6, 17.9, 16.4; LRMS (FAB) m/z 615 (MH)+; HRMS (FAB) exact mass calcd for 

(C33H34N4O8)+ requires m/z 615.2455, found m/z 615.2453.  Diastereomer ratio was 

determined by HPLC with a Zorbax SIL column (75:25 hexane:EtOH, 1.0 mL/min); syn-

anti adduct tr = 18.7 min, anti-anti adduct tr = 21.0 min.  Recrystallization from 

toluene/hexane afforded crystals suitable for single crystal X-ray diffraction (vide infra). 

 

(2S*,3R*,6S*)-2,6-Dibenzyl-1,7-dimorpholin-4-yl-3-methyl-4-methylene-heptane-

1,7-dione (Table 3, entry 2).  Prepared according to the general procedure C from 10 

(54.0 mg, 0.225 mmol), Yb(OTf)3  (258 mg, 0.416 mmol), i-Pr2NEt (0.15 mL, 0.86 

mmol), and hydrocinnamoyl chloride (0.73 mL, 1 M solution in CH2Cl2, 0.73 mmol) in 
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4.0 mL of CH2Cl2 to provide the title compound as a white solid in 99% yield (113 mg, 

0.224 mmol); mp 125–126 °C; 92:8 syn-anti:anti-anti.  Syn-anti isomer: IR (CH2Cl2) 

2974, 1637, 1444, 1236, 1120, 1035, 888 cm-1; 1H NMR (500 MHz, CDCl3) δ 7.15–7.32 

(m, 10H, Ph), 4.75(s, 1H, CH(H)=C), 4.73 (s, 1H, CH(H)=C), 3.71–3.78 (m, 1H), 3.60–

3.66 (m, 1H), 3.53–3.57 (m, 1H), 3.45–3.49 (m,1H), 3,36–3.40 (m,1H), 3.18–3.34 (m, 

5H), 3.06–3.15 (m, 3H), 2.90–3.06 (m,1H), 2.96 (m,1H), 2.75–2.91 (m, 5H), 2.62–2.70 

(m, 1H), 2.54–2.61 (m, 2H), 2.46–2.51 (m, 1H), 2.23 (dd, J = 5.5, 15.0 Hz, 1H), 1.23 (d, 

J = 7.0 Hz, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ 173.1, 172.7, 151.7, 139.6, 139.5, 

129.1, 129.0, 128.4, 128.3, 126.5, 126.4, 109.7, 66.6, 66.4, 66.1, 65.9, 48.1, 45.9, 45.8, 

41.9, 41.6, 41.5, 41.0, 39.6, 38.8, 37.2, 18.2; LRMS (FAB) m/z 505 (MH)+; HRMS 

(FAB) exact mass calcd for (C31H40N2O4H)+ requires m/z 505.3066, found m/z 505.3069.  

Diastereomer ratio was determined by HPLC with a Zorbax SIL column (82:18 

hexane/EtOH, 1.0 mL/min); syn-anti adduct tr = 9.8 min, anti-anti adduct tr = 9.2 min. 

 

(2R*,3S*,6R*)-3-Benzoate-1,7-dimorpholin-4-yl-2,6-dipivaloate-4-methylene-

heptane-1,7-dione (Table 3, entry 5).  Prepared according to the general procedure B 

from 16 (74.0 mg, 0.214 mmol), TiCl4(THF)2  (271 mg, 0.812 mmol), i-Pr2NEt (0.30 mL, 

1.7 mmol), and α-pivaloxyacetylchloride (0.75 mL, 1 M solution in CH2Cl2, 0.75 mmol) 

in 4.2 mL of CH2Cl2 at 23 °C to provide the title compound as a colorless oil in 71% 

yield (95.9 mg, 0.152 mmol); 92:8 syn-anti:anti-anti by 1H and 13C NMR analysis.  Syn-

anti isomer: IR (film) 3059, 2981, 2255, 1730, 1661, 1452, 1267, 1151, 911, 718 cm-1; 1H 

NMR (400 MHz, CDCl3) δ 7.98 (d, J = 8.4, 2H, Ar), 7.57 (m, 1H, Ar), 7.44 (m, 2H, Ar), 

5.77 (dd, J = 8.0, 24.8 Hz, 2H), 5.56 (dd, J = 6.0, 8.0 Hz, 1H), 5.46 (s, 1H, CH(H)=C), 
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5.31 (s, 1H, CH(H)=C), 3.53–3.82 (m, 16H, 2 x O(CH2CH2,)2N), 2.63–2.65 (m, 2H), 

1.11 (s, 18H, 2 x C(CH3)3); 13C NMR (125 MHz) δ 177.6, 177.5, 168.1, 165.0, 164.8, 

140.2, 133.4, 129.6, 129.2, 128.4, 118.9, 73.2, 69.8, 67.6, 66.7, 66.6, 46.2, 45.9, 42.4, 

38.7, 38.4, 36.2, 26.8; LRMS (FAB) m/z 631 (MH)+; HRMS (FAB) exact mass calcd for 

(C33H46N2O10H)+ requires m/z 631.3231, found m/z 631.3237.  

 

(2R*,3S*,6R*)-1,7-Dimorpholin-4-yl-2,6-dipivaloate-3-methyl-4-methylene-heptane-

1,7-dione (Table 3, entry 4).  Prepared according to the general procedure B from 10 

(59.4 mg, 0.247 mmol), TiCl4(THF)2  (316 mg, 0.946 mmol), i-Pr2NEt (0.34 mL, 2.0 

mmol), and α-pivaloxyacetylchloride (0.86 mL, 1 M solution in CH2Cl2, 0.86 mmol) in 

4.9 mL of CH2Cl2 at 23 °C to provide the title compound after purification by silica gel 

chromatography (85:15 EtOAc/Hexane) as a yellow oil in 97% yield (126 mg, 0.240 

mmol); >97:3 syn-anti:anti-anti by 1H NMR and 13C NMR analysis.  Syn-anti isomer: IR 

(film) 3059, 2981, 1730, 1653, 1444, 1267, 1159, 911, 718 cm-1; 1H NMR (400 MHz, 

CDCl3) δ 5.35 (dd, J = 4.0, 9.6 Hz, 1H, CH2CHOPv), 5.07 (d, J = 8.0 Hz, 1H, 

CHCHOPv), 5.01 (s, 1H, CH(H)=C), 4.99 (s, 1H, CH(H)=C ), 3.39–3.61 (m, 16H, 2 x 

O(CH2CH2,)2N), 2.68 (app t, J = 7.4 Hz, 1H, CHCH3), 2.47 (dd, J = 9.8, 14.2 Hz, 1H, 

CH2=C CH(H)), 2.37 (dd, J = 3.8, 14.6 Hz, 1H, CH2=C CH(H)), 1.15 (s, 9H, C(CH3)3), 

1.14 (s, 9H, C(CH3)3), 1.06 (d, J = 7.2 Hz, 3H, CH3); 13C NMR (100 MHz) δ 177.9, 

177.7, 167.7, 167.7, 144.8, 115.4, 72.2, 67.4, 66.7, 46.3, 45.9, 42.4, 38.9, 38.6, 38.5, 38.1, 

27.0, 26.9, 16.3; LRMS (FAB) m/z 525 (MH)+; HRMS (FAB) exact mass calcd for 

(C27H44N2O8H)+ requires m/z 525.3176, found m/z 525.3175. 
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(2R*,3S*,6R*)-3-Chloro-1,7-dimorpholin-4-yl-2,6-dipivaloate-4-methylene-heptane-

1,7-dione (Table 3, entry 6).  Prepared according to the general procedure B with 15 

(77.0 mg, 0.295 mmol), TiCl4(THF)2  (374 mg, 1.12 mmol), i-Pr2NEt (0.41 mL, 2.4 

mmol), and α-pivaloxyacetylchloride (1.0 mL, 1 M solution in CH2Cl2, 1.0 mmol) in 6.0 

mL of CH2Cl2 at 23 °C to provide the title compound as an orange oil in 84% yield (135 

mg, 0.248 mmol); >95:5 syn-anti:anti-anti by 1H NMR and 13C NMR.  Syn-anti  isomer: 

IR (film) 2974, 2927, 2866, 1730, 1653, 1452, 1274, 1151, 1074, 1027 cm-1; 1H NMR 

(300 MHz) δ 5.62 (d, J = 9.2 Hz, 1H, CHCHCl), 5.49 (t, J = 7.0 Hz, 1H, (CO)CHCH2), 

5.39 (s, 1H, CH(H)=C), 5.25 (s, 1H, CH(H)=C), 4.83 (d, J = 9.2 Hz, 1H, CHCl), 3.40–

3.70 (m, 16H, 2 x O(CH2CH2)2N), 2.63 (d, J = 6.9 Hz, 2H, H2C=CCH2), 1.24 (s, 9H, 

C(CH3)3), 1.21 (s, 9H, C(CH3)3); 13C NMR (125 MHz) δ 177.8, 177.4, 167.5, 165.2, 

139.9, 120.1, 70.7, 67.4, 66.7, 66.6, 61.2, 59.8, 46.0, 42.6, 42.5, 38.9, 38.6, 36.0, 35.8, 

27.0, 20.9, 20.3; LRMS (FAB) m/z 545 (MH)+; HRMS (FAB) exact mass calcd for 

(C26H41ClN2O8H)+ requires m/z 545.2630, found m/z 545.2736. 

 

General Procedure D: Regioselective hydrolysis of the α,β-disubstituted amide 

carbonyl of the tandem adducts by iodolactonization-reductive ring opening.  

Following the Metz protocol,23 to a solution of the 1,7-di-morpholin-1,7-dione in 1:1 

DME/H2O at 23 °C was added I2 and the resulting solution maintained in the absence of 

light for 3 h.  At this point the solution was diluted with EtOAc (30 mL), and the 

resulting mixture was washed successively with Na2S2O3 (10 % aq., 20mL), and brine 

(20 mL), and then dried (Na2SO4) and concentrated to provide the corresponding 

iodolactone which was used without further purification.  The resulting residue was 
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dissolved in AcOH, treated with Zn dust and then heated at 65 °C for 2 h.  At this pont 

the reaction mixture was cooled to 23 °C and 1 N HCl (20 mL) was added.  After 

extraction with EtOAc (3 x 30 mL), the combined organic layers were dried (Na2SO4) 

and concentrated.  The resulting residue was purified by chromatography on silica gel 

(99:1 EtOAc/AcOH) to furnish the title compounds.  

 

(2R*,3R*,6R*)-4-Methylene-7-morpholin-4-yl-2,3,6-trimethyl-heptanoic acid (Table 

4, entry 1).  Prepared according to the general procedure D from 12 (49.0 mg, 0.139 

mmol), I2 (100 mg, 0.42 mmol), and 0.70 mL 1:1 DME/H2O followed by Zn (91 mg, 

1.39 mmol) and AcOH (0.30 mL) to yield 19 as a white solid (32.8 mg, 0.115 mmol) in 

83% yield; 92:8 regioselectivity by GLC analysis.  Major isomer (α,β-disubstituted acid): 

IR (film) 2974, 2927, 1722, 1614, 1452, 1375, 1236, 1112, 1035, 904 cm-1; 1H NMR 

(400 MHz, CDCl3) δ 4.86 (s, 1H, CH(H)=C), 4.77 (s, 1H, CH(H)=C), 3.57–3.69 (m, 8H, 

2 x O(CH2CH2)2N), 2.89–2.96 (m, 1H, CH(COOH)), 2.60–2.67 (m, 1H, CH(CON)), 

2.41–2.53 (m, 2H), 2.05–2.12 (dd, J = 7.3, 14.6 Hz, 1H, CH(H)C=CH2), 1.13 (d, J = 5.2 

Hz, 3H, CH3), 1.09 (d, J = 5.6 Hz, 3H, CH3), 1.02 (d, J = 5.6 Hz, 3H, CH3); 13C NMR 

(125 MHz) δ 180.3, 149.5, 111.0, 66.9, 66.7, 46.1, 42.8, 42.3, 41.6, 37.8, 33.5, 29.6, 17.5, 

15.0, 12.7; LRMS (CI) m/z 284 (MH)+; HRMS (CI) exact mass calcd for (C15H25NO4H)+ 

requires m/z 284.1862, found m/z  284.1868.  

 

(2S*,3R*,6S*)-2,6-Dibenzyl-3-methyl-4-methylene-7-morpholin-4-yl-heptanoic acid 

(Table 4, entry 2).  Prepared according to the general procedure D from (2S*,3R*,6S*)-

2,6-Dibenzyl-4-methylene-3-methyl-1,7-dimorpholin-4-yl-heptane-1,7-dione (Table 3, 



 88

entry 2), (47.1 mg, 0.108 mmol), I2 (88.0 mg, 0.373 mmol), and 0.70 mL 1:1 DME/H2O 

followed by Zn (53.0 mg, 0.811 mmol) and AcOH (1.0 mL) to yield the title compound 

as a white solid (35.8 mg, 0.095 mmol) in 82% yield: 92:8 regioselectivity by 1H NMR 

analysis.  Major isomer (α,β-disubstituted acid): IR (film) 3028, 2943, 2866, 2248, 1730, 

1599, 1452, 1112, 911, 726 cm-1; 1H NMR (300 MHz, CDCl3) δ 7.06–7.23 (10 H, Ar), 

4.87 (s, 1H, CH(H)=C), 4.76 (s, 1H, CH(H)=C), 3.42–3.57 (m, 2H), 3.18–3.28 (m, 2H), 

3.03–3.13 (m, 2H), 2.46–2.86 (m, 10H), 2.23 (dd, J = 5.3, 15.5 Hz, 1H, CH2=C CH(H)), 

1.07 (d, J = 7.2 Hz, 3H, CH3); 13C NMR (125 MHz) δ 178.0., 174.1, 149.3, 139.9, 139.4, 

129.5, 129.3, 129.0, 128.8, 128.5, 128.3, 127.2, 126.7, 126.2, 109.7, 66.8, 66.2, 51.9, 

46.6, 42.4, 42.8, 40.0, 37.6, 34.0, 33.7, 30.1, 16.7; LRMS (ES) m/z 458 (M+Na)+; HRMS 

(ES) exact mass calcd for (C27H33NO4+Na)+ requires m/z 458.2307, found m/z  458.2318.  

 

(2S*,3R*,6R*)-3-Benzoate-2,6-dimethyl-4-methylene-7-morpholin-4-yl-heptanoic 

acid (Table 4, entry 3).  Prepared according to the general procedure D from 

(2R*,3R*,6R*)-3-Benzoate-2,3-dimethyl-4-methylene-1,7-di-morpholin-4-yl-heptane-

1,7-dione (Table 2, entry 5), (27.8 mg, 60.6 µL), I2 (60.0 mg, 0.254 mmol), and 1.2 mL 

1:1 DME/H2O, followed by Zn (40 mg, 0.61 mmol) and AcOH (1 mL) to yield 21 as a 

white solid (20.7 mg, 53.3 µmol) in 88% yield: 83:17 regioselectivity by 1H NMR 

analysis.  Major isomer (α,β-disubstituted acid): IR (film) 2981, 2935, 2866, 1722, 1637, 

1452, 1274, 1112, 1027, 966, 850 cm-1; 1H NMR (500 MHz, CDCl3) δ 8.06 (d, J = 9.0 

Hz, 2H, Ar), 7.58 (app t, J = 9.3, 1H, Ar), 7.45 (app t, J = 9.5 Hz, 2H, Ar), 5.69 (d, J = 

5.0 Hz, 1H, CHOBz), 5.09 (s, 1H, CH(H)=C), 4.98 (s, 1H, CH(H)=C), 3.49–3.76 (m, 8H, 

2 x O(CH2CH2,)2N), 2.99–3.05 (m, 2H), 2.61 (dd, J = 7.0, 14.5 Hz, 1H, CH(H)C=CH2 ), 
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2.18 (dd, J = 6.5, 15.0 Hz, 1H, CH(H)C=CH2), 1.28 (d, J = 7.0 Hz, 3H, CH3), 1.13 (d, J = 

8.5 Hz, 3H, CH3); 13C NMR (125 MHz) δ 176.8, 175.2, 165.3, 143.5, 133.2, 129.6, 

128.5,128.4, 113.9, 75.6, 66.8, 66.7, 46.1, 42.4, 41.8, 36.9, 34.0, 17.8, 10.9; LRMS (CI) 

m/z 389.1 (M)+; HRMS (CI) exact mass calcd for (C21H27NO6)+ requires m/z 389.1838, 

found m/z 389.1845.  The solid was recrystallized from toluene/hexanes to afford crystals 

suitable for single crystal X-ray diffraction (vide infra). 
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X-ray Crystal Data 

(2R*,3R*,6R*)-3-Cyano-2,6-dimethyl-1,7-dimorpholin-4-yl-4-methylene-heptane-
1,7-dione (Table 2, entry 6) 
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(2R*,3S*,6R*)-1,7-Dimorpholin-4-yl-2,6-diphthalamido-4-methylene-3-methyl-heptane-1,7-dione 
(Table 3, entry 3) 
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(2R*,3R*,6R*)-4-Methylene-7-morpholin-4-yl-2,3,6-trimethyl-heptanoic acid (Table 4, entry 1) 
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(2S*,3R*,6R*)-3-Benzoate-2,6-dimethyl-4-methylene-7-morpholin-4-yl-heptanoic acid (Table 4, entry 
3) 
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4-(4-Chloro-phenoxy)-5-iodomethyl-3-methyl-5-(2-methyl-3-morpholin-4-yl-3-oxo-propyl)-dihydro-
furan-2-one (22) 
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Chapter 4 
 

Erythronolide B and the Erythromycins 
 

 

Isolation and Structure 

Isolated in 1952 from the soil bacteria actinomycetes,1 the erythromycins are a 

distinguished family of natural products by virtue of their clinically useful antibacterial 

properties and complex structures.  Soon after their discovery, scientists elucidated the 

structure of erythromycin A (1),2 and then erythromycin B (2),3,4 through extensive 

degradation studies (Figure 1).5  X-ray crystallography studies have established the three 

dimensional structure of these natural products.6  The erythromycins are characterized by 

14-membered macrolactones with glycosidic linkages at C(3) and C(5) to 6-deoxysugars, 

L-cladinose and D-desosamine, respectively.  The name “erythronolide” refers to the 

polyketide derived-aglycone (e.g., 3 and 4, Figure 1), while the letter codes (i.e., A, B, 

etc.) reflect each isomer and its order of discovery.  In contrast to erythronolide A (3), 

erythronolide B (4) is a natural product and more importantly, the biogenic precursor of 

all the erythromycin isomers. 
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Figure 1.  Representative members of the erythromycin macrolide family of antibiotics 
 

 

Biosynthesis of Erythronolide B 

Our understanding on the biosynthesis of polyketides derives mainly from 

extensive studies conducted on the biosynthetic mechanism of the erythromycins.7  The 

first polyketide synthase genome sequenced was that of 6-deoxyerythronolide B synthase 

(DEBS).8  Many Streptomyces polyketide synthases sequenced thereafter proved similar 

in structure and function to DEBS.  The genes directing the synthesis of erythronolide B 

encode for three large multifunctional proteins: DEBS1, DEBS 2, and DEBS 3.  Through 

a stepwise process, polyketide synthase (PKS) builds erythronolide B from simple carbon 

building blocks, as illustrated in Figure 2.  The enzyme KS (ketosynthase) anchors the 

growing polyketide chain via a disulfide linkage to a cysteine residue.  In one cycle of the 

biosynthesis, AT (acyltransferase) transfers an α-carboxylated nucleophile from the acyl-

CoA to the ACP (acyl carrier protein), and acyl-KS and acyl-ACP catalyze the adol bond 

formation.  This process can then repeat itself until the enzyme TE (thioesterase) 

terminates chain elongation and forms the macrocycle.  Cytochrome P-450 uses 
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molecular oxygen to oxidize the C(6) position of the macrolactone (6-deoxyerythronolide 

B) to form erythronolide B.  Subsequent steps involve attachment of the sugars to make 

the erythromycins.  Fundamental mechanistic studies of these enzymes are ongoing, with 

recent efforts in this area aimed at eventually exploiting the biosynthesis of polyketides to 

make new macrolides because of their potential for fighting infectious diseases.9 
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Figure 2.  Predicted domain organization and biosynthetic intermediates of the erythromycin 
synthase.  Each circle represents an enzymatic domain as follows:  ACP, acyl carrier protein; AT, 
acyltransferase; DH, dehydratase; ER, β-ketoacyl-ACP enoyl reductase; KR, β-ketoacyl-ACP 
reductase; KS, β-ketoacyl-ACP synthase; TE, thioesterase 
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Comparison to fatty acid synthesis. Notably, the biosynthesis of polyketides 

bears mechanistic similarities to vertebrate fatty acid synthesis.7  Both pathways are 

triggered by the Claisen condensation reaction between a starter carboxylic acid and a 

dicarboxylic acid (e.g., malonic or methylmalonic acid).  In addition, both pathways 

involve the multifunctional polypetide-enzymes, KS (ketosynthases) and ACP (acyl 

carrier protein).  Furthermore, both pathways are inhibited by a fungal product called 

cerulenin.7 

Polyketide architectures, however, far exceed fatty acid structures in complexity 

as a result of two distinctions in their biosynthesis.  First, in fatty acid synthesis three 

enzymatic, three steps operate in sequence to eventually form the saturated carbon chain: 

ketoreduction by KR (ketoacylACP reductase), dehydration by DH (dehydratase) and 

enoyl reduction by ER (enoyl reductase) (Figure 3).  In contrast, these enzymatic steps 

function at various points in polyketides synthesis, resulting in greater functional group 

variety.  Second, fatty acid synthesis uses only malonly pieces, whereas polyketide 

synthases incorporate more varied materials: malonly, methylmalonyl and ethylmalony 

extender units. 
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Figure 3.  Biosynthesis of fatty acids involves the three enzymatic steps by KR (ketoacylACP 
reductase), DH (dehydratase) and ER (enoyl reductase) 
 

 

Clinical Usage  

 Over the past forty years, erythromycin A, commonly referred to as erythromycin, 

has been used to fight a variety of infections including pneumonia, diphtheria, pertussis, 

chlamydia, trachomatis, and conjunctivitis.10  As one of the oldest and safest antibiotics, 

erythromycin continues to be a useful alternative to penicillin.  This antibiotic acts by 

reversibly binding the 50S ribosomal subunit of a susceptible microorganism.11  Because 

ribosomes are responsible for protein synthesis in a cell, binding to the 50S ribosome 

inhibits the microorganism’s growth.  Recently, the structural basis for this binding event 

was reported; an X-ray crystal structure of eythromycin bound to the ribosome reveals 

that the antibiotic participates in hydrogen bonding to six adjacent nitrogenous bases of 

the nucleotides in the 23S RNA ribozyme (a subunit of the 50S ribosome).12  

 Although erythromycin has been widely used over the past four decades, 

improvement in its biological and chemical properties is still needed and pursued.  The 
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current drawbacks of erythromycin include acid sensitivity, poor intestinal absorption, 

low tissue and cellular penetration, poor digestive tolerance, and undesirable interactions 

with other drugs.  Under acidic conditions (e.g. in the stomach), erythromycin 

decomposes to two weaker antibiotics.  As such, absorption of the drug is variable and 

difficult to predict.  Because of its acid sensitivity and complex structure, modification of 

erythromycin has been difficult.   

 

 

Concluding Remarks 

 Antibiotic-resistant strains of bacteria are still a major concern to public health.  

Unfortunately, the erythromycin structures are complex and difficult to modify.  As such, 

chemical tools that facilitate the production of erythromycin-like antibiotics will increase 

our ability to treat resistant bacterial strains. 
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Chapter 5 
 

Synthetic Strategies towards Erythronolide B and 
Erythromycin B 

 

 

Introduction 

Due to their fascinating structures and important biological activity, macrolide 

natural products, especially the erythromycins, have been popular targets for total 

synthesis and thus, an inspiration for discovering new synthetic methods with wide 

applications.1  As synthetic targets, macrolides pose various challenges, such as installing 

the numerous chiral stereocenters, closing a macrocycle and selectively attaching sugars 

to the macrolactone.  In 1956, R. B. Woodward acknowledged these challenges, stating 

“Erythromycin, with all our advantages, looks at present quite hopelessly complex, 

particularly in view of its plethora of asymmetric centers.”2  Woodward and coworkers 

eventually addressed the stereochemical issues, identified elements crucial for forming 

macrocycles, and solved the glycosylation problem in elegant studies culminating in the 

total synthesis of erythromycin A, published after Woodward’s death in 1981.3 

For more than two decades since Woodward’s achievement, synthesizing 

members of the erythromycin family has been the focus of at least twenty research groups 

worldwide and thus, hailed as the “most extensive single project in the history of 

synthetic organic chemistry.”1c  To date, there are three total syntheses of the 

digylcosides (one of erythromycin A (1)3 and two of erythromycin B (2)4), and several 

syntheses of the aglycones, erythronolide A (3),5 erythronolide B (4),6 6-
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deoxyerythronolide B (5),7 and 9-(S)-dihydroerythronolide A (6)8 (Figure 1).  In addition, 

researchers have also reported various seco-acids syntheses.1b 
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Figure 1.  Erythromycin family: popular targets in total synthesis for more than two decades 
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All these strategies, however, can be classified into three main approaches 

(defined below) for addressing the polyketide’s stereochemical challenges.1b 

 (1) ring cleavage approach: involves exploiting a medium ring’s 

conformational bias to stereoselectively form chiral centers on the ring, 

followed by cleavage of the ring to achieve the desired acyclic 

architecture; 

(2) carbohydrate approach: involves manipulating existing stereocenters and 

functionality from the chiral pool, namely sugars, to form the desired 

acyclic frameworks; 

(3) acylic approach: involves using stereoselective methods to form new 

asymmetric centers in acyclic systems. 

 

 

Approaches to Erythronolide B and Erythromycin B  

Erythronolide B (4) holds a central position in the erythromycin family as a 

biosynthetic precursor to the other members of this antibiotic clan.9  Notably, this natural 

product has been previously synthesized by all three of the main strategies defined above, 

by three different research groups (Corey,6a Kotchetkov,6b and Mulzer6c).  In addition, 

Martin and coworkers have recently reported a new approach to closely related 

erythromycin B (2).4  The following discussion aims to summarize key aspects of these 

four syntheses.  In particular, the strategy used to address the stereogenic centers on the 

C(1) to C(9) fragment of erythronolide B will be stressed to establish appropriate context 

for our work in this field. 
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Corey’s synthesis 

In 1978, E. J. Corey achieved the landmark first total synthesis of erythronolide B 

(Figure 2).6a  Corey’s plan involves a ring closing lactonization of seco-acid 7 using a 

general method developed in his lab for forming macrolactones.  Treatment of 7 with 

disulfide 8, forms an activated ester 9 which cyclizes in refluxing toluene to 10 in 50% 

yield (Scheme 1).  The success of this ring-closing strategy has had a tremendous impact; 

all subsequent erythromycin syntheses contain the same C-O lactone bond 

disconnection.1  
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Figure 2.  Corey’s synthesis (thirty steps from 14, < 0.5% yield) 
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Scheme 1.  Corey’s general macrolactonization method 
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One current drawback of Corey’s route involves the chiral resolution of advanced 

intermediate 11, by the coupling of enantiopure 12 (which was also obtained by chiral 

resolution) to a racemic mixture of 13 (Figure 2).  As a result of these resolution steps, 

Corey’s synthesis suffers a significant loss in efficiency (> 25%).  This historic synthesis 

of erythronolide B requires thirty transformations from 14, and has an approximate 

overall yield of less than 0.5%.  

Ring cleavage approach.  Corey successfully installs the six chiral centers on the 

C(1) to C(9) fragment 13 of erythronolide B by a ring cleavage approach (see Schemes 2 

and 3).  Essential to his strategy is the bromolactonization of symmetrical intermediate 14 

to create three stereocenters in a diastereoselective fashion, yielding lactone 15.  Upon 

saponification to epoxide 16, a second bromolactonization gives intermediate 17, creating 
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two additional stereocenters in the process.  The carbon-bromide bond can then be 

reduced by radical cleavage providing 18 as a 83:17 mixture. 

 
Scheme 2.  Corey’s ring-cleavage approach to C(1)–C(9) segment of erythronolide B 
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The epoxide 18 is reductively opened by aluminum amalgam to form a hydroxyl 

ketone 19 (Scheme 3).  Importantly, the diastereoselective hydrogenation of ketone 19 

installs the requisite C(3) hydroxyl stereocenter.  After protection of 20 with benzoyl 

chloride, critical introduction of the C(8)-methyl stereocenter was achieved by alkylation 

of 21 with methyl iodide to provide 22.  Jones oxidation of 22 provides ketone 23— 

properly functionalized to undergo ring cleavage.  A Bayer-villager oxidation of the 

carobocyclic ring or 23 enables ring cleavage to lactone 24, installing the key C(6) 

tertiary alcohol stereocenter.  Esterification of 24 provides 13 which contains the key 

stereocenters in the C(1)–C(9) segment, and is activated for coupling to iodide 12 (see 

Figure 2). 
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Scheme 3.  Corey’s ring-cleavage to install the C(6) stereocenter 
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Kotchetkov’s synthesis  

In 1974, Miljkovic et al. proposed using sugars as the basic building blocks for 

the synthesis of polyketides.10  Five years later, Hannessian realized this idea by 

synthesizing a seco-acid of erythronolide A from glucose.11  Aside from a different 

protecting group plan, Kotchetkov essentially mimics Hannesian’s scheme to make 

erythronolide B (Figure 3).  Based on Woodward’s seco-acid cyclization precedence,3 

Kotchetkov prepared the seco-acid 25 containing the presumably critical 3,5;9,11-

bis(cyclo)acetal protecting groups.  (Indeed, with the Corey-Nicolaou double activation 

method, 25 lactonizes to form the corresponding macrolactone in 50% yield.)  The key 
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fragments in Kotchetkov’s synthesis, sulfoxide 26 and  ketone 27 were both derived from 

levoglucosan 28. 
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Figure 3.  Kotchetkov’s synthesis (thirty-six steps from 28) 
 

Sugar approach.  Unfortunately, using levoglucosan as the chiral source 

necessitates many protecting group and functional group manipulations which  

diminishes the efficiency of this route.  For example, Scheme 4 outlines the sixteen 

functional group and protecting group interchanges required for elaborating the sugar 28 

to the C(1)–C(6) segment 27 of erythronolide B.  In spite of starting with chiral building 

blocks which already contain most of the required asymmetric centers, Kotchetkov’s 
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synthesis requires thirty-six transformations from 28.  Furthermore, a sugar approach 

hampers the design of flexible syntheses, and as such limits access to clinical analogues. 

 
Scheme 4.  Kotchetkov’s derivitization of levoglucason to C(1) to C(6) fragment 27 
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Mulzer’s Synthesis 

In 1991, Mulzer and coworkers completed the total synthesis of erythronolide B 

in twenty-five linear steps from (R)-2,3-O-isopropylideneglyceraldehyde 29, in an 

approximate overall yield of 0.8% (Figure 4).6c  Mulzer speculated that reducing the 

number of tetrahedral centers on the seco-acid, especially in the region surrounding C(9), 

could aid cyclization.  Indeed, the 8,9 anhydro seco acid 30 smoothly formed 

macrolactone 31, under Yamaguchi’s conditions (> 85% yield).  The key coupling in this 

route involves the Cram-chelate12 selective addition of the allyl sulfide anion 32 to ketone 

33 installing the requisite C(6) tertiary alcohol center (96% yield, 88:12 dr).   Fragments 

32 and 33 were both derived from 29. 
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Figure 4.  Mulzer synthesis (twenty-five steps from 29, 0.8% yield) 
 

Acyclic approach.  As shown in Scheme 5, Mulzer’s synthesis of the C(1)–C(6) 

fragment 33 involves allylation of aldehyde 29 to produce a mixture of  34 and 35 in 45% 

and 55% yield, respectively.13  The alcohol 34 was then transformed via intermediates 36, 

and 37 to epoxy alcohol 38, which upon treatment with Lipshutz’ methylcuprate 

regiospecifically furnished the 1,3-diol 39 in about 40% yield overall.14  (Notably, 

alcohol 35 also obtained from the allyation of aldehyde 29 was transformed to sulfoxide 

32). 
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Scheme 5.  Mulzer’s acyclic approach to C(1)–C(6) fragment of erythronolide B 
 

MgBr
OH

O
O

Me Me

Me

OTs

O
O

Me Me

Me

TsCl
DMAP

pyridine
(90%)

MeOH:H2O

TFA

(94%)

OTs

OH Me
HO CH2Cl2

Na

(70%)

CuCN
MeLi

Et2O

(80%)

HO
Me

OH

Me

HO
Me

O

OH

O
O

Me Me

Me

(45%) (53%)

O O

CHO

Me Me

29 34 35

36 37

38 39

Me

 

 

As shown in Scheme 6, compound 39 was then monbenzylated at the primary position, 

and silylated to give 40, which was subjected to ozonolysis to form an aldehyde that was 

treated with isopropenylmagnesium bromide.  The silyl group suppresses a 1,3-chelate 

mechanism, enabling a Felkin-Anh pathway to occur and form 41 as a 5:1 mixture of 

diastereomers.  Subsequent deprotection, acetonide protection and ozonolysis yields 33, 

which can be epimerized at C(6) to enrich the diasteromeric ratio to 94:6. 
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Scheme 6.  Felkin selective allylation to install the C(5) hydroxyl stereocenter 
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Martin’s synthesis of erythromycin B 

In 2003, Martin and coworkers reported their second-generation approach to 

erythromycin B which involves twenty-seven transformations and an approximate overall 

yield of 0.8% from furan-aldehyde 42 (Figure 5).  For the first time in a macrolide 

synthesis, the sugar residue is appended prior to the macrolactonization step.  Under 

Yamaguchi’s protocol, 43 cyclizes to form the corresponding macrocycle in excellent 

yield (85%).  Two key disconnections, a crotyllation and an aldol transformation, reveal 

alehdyde  44, 45, and the C(3) to C(9) fragment 46. 
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Figure 5.  Martin’s synthesis (twenty-seven steps from 42, 0.8% yield) 
 

Synthesis of the C(3)–C(9) fragment.  Martin developed an elegant six-step 

synthesis of the C(3) to C(9) fragment 46, starting from the known aldehyde 42, which 

was prepared by a Vilsmeier-Haack formylation of 2-ethylfuran.15  As shown in Scheme 

7, aldehyde 42 was subjected to a diastereoselective Evan’s aldol protocol to provide 47 

in 81% yield as one diastereomer.  Reductive removal of the auxiliary with lithium 

borohydride affords 48 in 90% yield.  Oxidation of diol 48 with bromine, forms an 

intermediate dihydroxy enedione 49 which in situ undergoes acid-catalyzed 

bicycloketalization to provide 50 in 69% yield.  Importantly, the conformation of this 

bicycle enables highly stereoselective 1,4-addition of lithium dimethylcuprate, followed 

by stereoselective 1,2-addition of methyl lithium to furnish 51 in 85% overall yield.  



 

 

146

Treatment of 51 with an ethanedithiol protecting group opens the bicycle, affording the 

acyclic C(3)–C(9) backbone 46. 

 
Scheme 7.  Martin’s approach to the C(3)–C(9) segment of erythromycin 
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Concluding Remarks 

Arguably, the most effective strategy for addressing stereochemistry in the 

erythromycins rely on the acyclic approach, applying, namely, aldol or allylation 

reactions iteratively.16  In contrast to the sugar or ring-cleavage strategies, applying 

stereoselective bond forming methods also enable the development of more convergent 

and flexible synthetic routes.  Remarkably, the Claisen rearrangement,17 has not been 

exploited in the synthesis of the erythromycin family, despite its efficacy for constructing 
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stereocenters on acyclic architectures.  The next chapter presents our contributions to the 

field of macrolide antibiotic synthesis through a novel synthesis of erythronolide B based 

on our tandem acyl-Claisen rearrangement.18  
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Chapter 6 
 

Applications of the Tandem Acyl-Claisen Rearrangement in 
Macrolide Synthesis: ATotal Synthesis of Erythronolide B 

 

 

Synthesis Plan 

Our retrosynthesis for erythronolide B (1) involves three key disconnections 

leading to known aldehyde 2,1 propionate fragment 3, and ketone 4 (Figure 1).  This route 

relies on a macrolactonization to form the 14-membered ring, and standard aldol 

technology to establish the requisite links between fragments 4 and 2, and fragments 4 

and 3.  The structurally complex C(3)–C(9) backbone (4) will be accessed by an 

asymmetric tandem acyl-Claisen rearrangement2 between diamine 5 and propionyl 

chloride (6). 
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Figure 1.  A novel synthesis of erythronolide B 
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Tandem Acyl-Claisen Rearrangement 

Our studies began with the Wittig olefination of bismorpholino-ketone 73 with 

ylide 8 to prepare the methoxy substituted diamine 9 (62% yield, equation 1). 
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(eq. 1)
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Subjecting diamine 9 and propionyl chloride (6) to representative conditions for the 

tandem acyl-Claisen rearrangement2 yielded the desired product 10 with poor efficiency 

(<10% yield), in conjunction with an elaborate mix of byproducts 11, 12, 13, and 14 

(Scheme 1). 

 
Scheme 1.  Tandem acyl-Claisen rearrangement with diamine 9 
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These results indicated diamine 9 was decomposing via von Braun cleavage.4  As 

illustrated in Scheme 2, diamine 9 condenses with ketene to form an ammonium 

intermediate 15, which was expected to smoothly undergo rearrangement to Claisen 
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product 10.  However, the competing nucleophilic attack of chloride ion on C(4) cleaves 

the C(4)–N(3) σ bond, and expels by-products 12 and 11.  An analogous degradation of 

amine 11 can be envisioned to from the dichloride 13, which subsequently hydrolyzes to 

the observed aldehyde 14. 

 
Scheme 2.  Von Braun cleavage of diamine 9 
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Electronic considerations for the protecting group in diamine 5.  The methoxy 

substituent of diamine 9 supplies significant electron density to the C(5)–C(6) π system.  

This electron donation stabilizes the partial positive charge that develops on C(4) as this 

carbon center undergoes SN2 attack by chloride ion (Scheme 2).  As a result, electron 

donating substituents accelerate von Braun cleavage.  We reasoned that the Claisen 

rearrangement could thus be favored by using protecting groups on the oxygen atom 

which are relatively electron-withdrawing (e.g., R2
 = p-ClPh or Bz) (Table 1).  Indeed, 

diamine 16, undergoes Claisen rearrangement over von Braun cleavage to a greater 

extent than 9, affording the corresponding tandem Claisen product in moderate yield and 

excellent selectivity (55% yield, 94:6 dr, Table 1, entry 2).  However, as the p-

chlorophenyl ether linkage is not readily cleavable,5 we decided to test diamine 17.  This 
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substrate (17) efficiently undergoes Claisen rearrangement with acceptable levels of 

diastereocontrol (75% yield, 83:17 dr, entry 3).  To our delight, by changing the Lewis 

acid from TiCl4 to Yb(OTf)2, further improvements in the both efficiency and selectivity 

were observed (86%, 91:9 dr entry 4).  Importantly, the benzoate group is readily 

removable under basic conditions.6 

 
Table 1.  Effects of representative protecting groups (R2) on the tandem-Claisen rearrangement 
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a Diastereomeric ratio determined by 1H NMR analysis. 

 

We developed an efficient route to access diamine 17 on preparative scale (ca >50 

grams) from readily available isobuterylaldehyde 18 (Scheme 3).  Treatment of 18 with 

KF, and benzoyl fluoride in DMSO furnishes known 197 in 96% yield.  Bis-allylic 

bromination of 19 followed by treatment of the resulting dibromide 20 with morpholine 
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affords diamine 17 in 70% yield.8  As summarized in Scheme 3, subjection of diamine 17 

with propionyl chloride under optimal rearrangement conditions provides the C(3)–C(9) 

segment 21 of erythronolide B in excellent yield and selectivity (86% yield, 91:9 syn-

anti:syn-syn).  Regioselective hydrolysis of bisamide 21 was achieved by 

iodolactonization with I2, followed by reductive opening of the lactone with zinc to 

provide acid 22 in 88% yield with good regioselectivity (88:17).9 

 
Scheme 3.  Synthesis of the C(3)–C(9) fragment 22 
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Initial Attempts to Stereoselectively Oxidize C(6) 

  With 22 in hand, we proceed to install the final stereocenter on this C(3) to C(9) 

fragment.  However, stereoselectively oxidization of the C(6) position proved more 

difficult than anticipated.  Our efforts began with deprotection of 22 to alcohol 23 

(Scheme 4).  Directed epoxidation with VO(acac)2
10 on 23 was expected to provide 

oxirane 24, however, lactone 25 was isolated instead.  Presumably, the intramolecular 

addition of the amide carbonyl to the oxirane ring of 24 produces an imminium 

intermediate which affords 25 upon aqueous treatment.  Unfortunately, this epoxide 

opening could not be suppressed in the presence of VO(acac)2. 

 
Scheme 4.  Directed epoxidation of amide 23 with VO (acac)2 
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As the amide functionality appeared problematic, we decided to delay epoxidation 

of the double bond until after the conversion of the morpholine-amide 22 to ethyl ketone 

26 (Scheme 5).  Treatment of 22 with freshly prepared EtLi, cleaves the benzoate ester 

and functionalizes the amide ester to afford 26 (80% yield).11  Unfortunately, exposure of 
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26 to VO(acac)2 resulted in facile intramolecular cyclization to ketal 27,12 and not the 

desired epoxide 28. 

 
Scheme 5.  Directed epoxidation of ketone 26 with VO(acac)2 
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In contrast to the VO(acac)2 epoxidation, we found that the m-CPBA epoxidation 

of 23 resulted in quantitative oxidation to desired product 24.  However, this oxidation 

was non-diastereoselective (1:1 dr) (equation 2). 
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(eq. 2)

 

As an alternative to epoxidation, we explored the Felkin-selective13 grignard 

addition.  Transformation of alkene 22 to ketone 29 by ozonolysis, followed by addition 

of methylmagnesium bromide to provide 30 was also unsuccessful (Scheme 6).  In this 

case, the grignard reagent reacts with the morpholine-amide in preference to the ketone 

functionality to produce methyl ketone 31. 
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Scheme 6.  Ozonolysis/grignard strategy on 22 
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As stereoselective oxidation of the C(6) position proved difficult in the presence 

of the both the amide and ketone carbonyls, we decided to delay installing this 

stereocenter to a later stage of the synthesis.  To prepare fragment 4 which was properly 

elaborated for the key aldol coupling (Figure 1), we treated amide 22 with EtLi to form 

ketone 26 (Scheme 7). As 26 proved acid labile and prone to intramolecular hemi-ketal 

formation, it was immediately treated with TBSCl to produce silylester 27.  This ester 

was treated with aqueous base to provide the desired ketone 4 in 54% overall yield from 

22. 

 
Scheme 7.  Elaboration of racemic bisamide 22 to racemic ketone 4 
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Chiral Resolution of Ketone 4 by Aldol Coupling to Aldehyde 2 

We sought to explore the final stages of our synthesis plan prior to investing 

efforts on developing an asymmetric route to 4.  As such, ketone 4 was optically resolved 

by coupling to 2 based on Martin’s reported aldol coupling of an analogous substrate.14  

As shown in Scheme 8, treatment of the racemic mixture of ketone 4 with lithium 

hexamethyldisilazide, followed by addition of aldehyde 2 affords products 33 and 34 as 

an inseparable equimolar mixture in 70% yield (6:1 syn:anti).  The stereochemical 

relationship between the newly formed centers was assigned by analogy to Martin’s 

system.14 

Next, we installed the critical C(9), C(11) cyclic protecting group to ensure 

efficient ring-closing.16  Although, the C(9) hydroxyl stereocenter would ultimately be 

lost through oxidation, the 9-(S) configuration at this center has proven instrumental in 

previous seco acid marcocylizations.21  Treatment of 33 and 34 with Me4NB(OAc)3H 

affords an anti-selective reduction to provide the desired 9-(S) diastereomer which was 

converted to the para-methoxybenzilydene acetals 35 and 36 in 75% overall yield.14  

These diastereomers were separated by chromatography and individually characterized.  

With the identity of the desired diastereomer 35 secured by Mosher ester analysis,15 we 

proceeded to elaborate this material to the seco-acid of erythronolide B through the 

Evan’s aldol transformation. 
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Scheme 8.  Synthesis of the C(3)–C(15) fragment 35 and 36 
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Synthesis of Seco Acid 42 

As outlined in Scheme 9, esterification of 35 with trimethylsilyl diazomethane 

provides 36, which undergoes LiBEt3H reduction to afford alcohol 37 in 83% yield.  

Subjecting 37 to TPAP oxidation quantitatively furnishes aldehyde 38. 

 
Scheme 9.  Transformation of the acid 35 to aldehyde 38 
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To establish the final carbon atoms and install the critical C(2) and C(3) 

asymmetric centers, we pursued the aldol reaction between (R)-(-)-4-benzyl-3-propionyl-

2-oxazolidinone (39) and freshly prepared aldehyde 38 (Scheme 10).  By Evan’s 

protocol,21 40 was furnished in 85% yield as one diastereomer.  Next, to ensure pre-

organization of our seco acid for ring closing, we installed the critical C(3),C(5) cyclic 

protecting group.16  Deprotection of the silyl moiety in 41 by TBAF at 50 ºC provided a 
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diol, which was transformed into acetonide 42 (71% overall yield from 40).  The desired 

stereochemistry obtained from the syn-Felkin selective aldol coupling was confirmed by 

two key NMR experiments: (1) observation of nOe coupling between H-3 and H-5, and 

(2) 13C NMR analysis by the Rychnovsky acetonide method (experimental methods).17 

 
Scheme 10.  Elaboration of aldehyde 38 to the seco acid 42 
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At this junction in our route, the two cyclic protecting groups critical for 

macrocyclization were in place.  Furthermore, we had successfully installed nine of the 

ten requisite asymmetric stereocenters of the erythronolide B (1) skeleton.  With 42 in 

hand, the final stereochemical challenge that remained was the tertiary alcohol 

stereocenter.  As such, we returned to pursuing a stereoselective oxidation of C(6). 
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Late-Stage Attempts to Stereoselective Oxidize C(6) 

Felkin-selective organolithium approach.  Ozonolysis of alkene 42 to ketone 43 

proceeded in good yield, contingent upon the presence of pyridine as a buffer in the 

oxidation (80% yield) (Scheme 11).  The addition of methyllithium to ketone 43 at low 

temperature provided 44 with the tertiary alcohol stereocenter in >5:1 diastereoselectivity 

and 98% yield. 

 
Scheme 11.  Installing the C(6) stereocenter by an organolithium addition 
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To establish the configuration of the C(6) stereogenic center, we needed to 

elaborate 44 for comparison to an intermediate in Kotchetkov’s synthesis.18  As shown in 

Scheme 12, hydrogenating 44 with Pd/C and ammonium formate yields 45.  Subjection 



 164

of seco acid 45 under Yamaguchi’s macrolactonization conditions resulted in formation 

of the macrocycle 46 in 66 % yield.  To our surprise, this material did not correlate to the 

published 1H NMR data reported by Kotchetkov.18  This result indicated that contrary to 

our predictions based on the Felkin-Anh model,13 and contrary to precedence based on an 

analogous substrate,19 the undesired epimer was obtained in this MeLi addition.20 

 
Scheme 12.  Synthesis of the C(6) epi-macrolactone 46 
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Directed epoxidation approach.  As depicted in Scheme 13, TBAF deprotection 

of silylester 41 provides an allylic alcohol 47 which appeared to be an attractive substrate 

for directed epoxidation by VO(acac)2 to provide 48.  Subjection of 47 to VO(acac)2 

results in a complex mixture of products as observed by 1H NMR analysis.  Previous 

reports indicate that diol-epoxide functionalities analogous to the desired oxirane 48 are 
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extremely labile.21  As such, we treated 48 (without further purification) to 2,2 dimethoxy 

propane/CSA in an attempt to produce the corresponding acetonide.  However, under 

these conditions, formation of the tetrahydrofuran protected acetonide 49 was observed 

(73% conversion by LC/MS). 

 
Scheme 13.  Directed epoxidation of 47 
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 Epoxidation by m-CPBA.  Bloch and coworkers reported that control of the 

diastereofacial selectivity in the epoxidation of rigid allylic ethers was possible using m-

CPBA.22  Inspired by this report, we took an alternative route to install the C(6) 

stereocenter (Scheme 14).  Oxidation of 42 with m-CPBA provides 48 which was 

reduced with LiBEt3H,23 to provide 50 in 75% overall yield (70:30 dr).  To our delight, 
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1H NMR studies confirmed that the major product obtained from this sequence was 

indeed the desired epimer; the minor component proved identical to product 44 obtained 

from the ozonolysis-methyllithium sequence (Scheme 11).  Preliminary efforts towards 

enhancing the facial selectivity in this oxidation by variation in solvent (e.g., THF, 

toluene, acetonitrile, dichloromethane) were not fruitful. 

 
Scheme 14.  Synthesis of seco acid 50 
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 In addition, we also examined the facial selectivity afforded by epoxidation on the 

macrocyclic ring of 51.24  Treatment of macrolactone 51 with m-CPBA occurs with no 

facial bias, affording macrolactone 52  as an equimolar mixture of diastereomers 

(equation 3). 
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Me
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O
Me

O

Me

O

Me

O

Me Me

Me
Me

O

O
Me

Me
Me

m-CPBA

CH2Cl2
23 °C
(100%)

51 52  1:1 dr

(eq. 3)

 

 As such, seco acid 50 containing the requisite C(6) stereocenter was elaborated to 

erythronolide B. 
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Completion of Erythronolide B 

 Macrolactonization.  As shown in Scheme 15, hydrogenation of 50 with Pd/C 

and ammonium formate enabled the selective removal of the benzyloxymethylether 

(BOM) protecting group (in the presence of the benzylidine acetal) to provide 53.  Under 

Yamaguchi’s conditions, 53 undergoes efficient ring closing to afford macrolactone 54 

(65% yield).  1H NMR and COSY experiments verified the structure of macrolactone 54, 

as the data obtained from these experiments is consistent with the literature reported data 

for this compound (Table 2).18  Consequently, a formal synthesis of erythronolide B was 

achieved by interception of Kotchetkov’s intermediate. 

 
Scheme 15.  Synthesis of macrolactone 54 
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Table 2.  Comparison of 1H NMR Data for Macrolactone 54 and Kotchetkov’s Macrolactone 
 

7.51 (d, J = 8.1 Hz , 2 H)

5.69 (s, 1H, )

5.45 (dd, J = 4.1 Hz, 10 Hz, 1H)

4.06 (s, 1 H)

3.80 (s, 3H)

3.90 (d, J = 10.5 Hz, 1H)

3.65 (d, J = 9.3 Hz, 1H)

3.35 (d, J = 10.2 Hz, 1H)

2.77 (dq, J = 6.5, 10.5 Hz, 1H)

2.50 (m, 1H)

2.23 (br s, 1H)

1.60-1.80 (m, 4H)

1.48 (m, 1 H)

1.30 -1.50 (m, 2H)

1.48 and 1.53 (2s, 6H)

1.21-1.27 (m, 9H)

1.02 (d, J = 6.0 Hz, 3H)

0.88 (d, J = 6.9 Hz, 3H)

Macrolactone 54aCOSY assignment

p-MeOAr-

p-MeOArCH

H-13

H-5

p-MeOAr-

H-3

H-11

H-9

H-2

H-8

OH-6

H-4, 10, 12, 14

H-14'

H-7 and 7'

Me-2, Me-4, and 
Me-8

Me-10 or Me-12

Literature Reportb

7.50 (m, 2H)

6.89 (m, 2H)

5.69 (s, 1H)

5.47 (ddd, J  = 0.9, 4.5, 10 Hz, 1H)

4.06 (d, J = 1.2 Hz, 1H)

3.80 (s, 3H)

3.90 (dd, J = 1.0, 10.5 Hz, 1H)

3.66 (dd, J = 1.5, 9.1 Hz, 1H)

3.35 (dd, J = 10.5 Hz)

2.78 (dq J = 6.5, 10.5 Hz, 1H)

2.51 (dddq, J = 2, 6, 10.5 Hz, 1H)

2.23 (br s, 1H)

1.60-1.80 (m, 4H)

6.90 (d, J = 8.7 Hz, 2 H)p-MeOAr

1.46 (m, 1H)

1.30-1.50(m, 2H)

1.48 and 1.53 (2s, 6H)

1.26 (d, J =6.0 Hz, 3H, Me-8)

1.25 (s, 3H)

1.23 (d, J = 6.5 Hz, 3H, Me-4)

1.21 (d, J = 6.5 Hz, 3H, Me-2)

0.88 (d, 3H)

0.87 ( t, J = 7.3Hz, 3H)0.87 (t, J =  6.9 Hz, 3H)Me-14

1.02 (d, 3H)

Me-10 or Me-12

Me-6 1.25 (s, 3H)

-OCMe2O-

1H δ (multiplicity, J (Hz), integration)

 
a Spectra for macrolactone 54 recorded on a Varian Mercury-300 in CDCl3.  b Spectra for Kotchetkov’s 
macrolactone recorded on a Bruker WM-250 instrument in CDCl3.18 
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 From macrolactone 54, Kotchetkov and coworkers accessed erythronolide B in 

four subsequent transformations (Scheme 16).18  Global deprotection of 54 provided the 

tetraol 55.  Selective 3,5-O-benzylidenation results in 56,  which was then oxidized to 54.  

Compound 54 was deprotected by hydrogenation to provide 1.18 

 
Scheme 16.  Kotchetkov’s closing sequence from macrolactone 54 to erythronolide B 
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 In contrast to the closing stages of Kotchetkov’s synthesis, we accessed 

erythronolide B by achieving selective removal of the benzylidine acetal protecting 

group: submitting macrolactone 54 to hydrogenolysis with Pearlman’s catalyst (20% 

Pd(OH)2/C) in 2-propanol revealed triol 58 (equation 4). 
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(eq. 4)

(quantitative)

5854  

 As previously shown, PCC effected the regioselective oxidation of the C(9) 

carbinol,25 prior to acetonide deprotection under acidic conditions,26 to afford 

erythronolide B (1) in 60% yield from 58 (Scheme 17).  Our synthetic material is 

identical to a natural sample of erythronolide B,27 by 1H NMR analysis (see Table 3), 

TLC, and FAB MS.28 

 
Scheme 17.  Final oxidation/deprotection to erythronolide B (1) 
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Table 3.  1H NMR Data for erythronolide B (1)28 

 

Synthetic Sampleb Natural Sampleb

H-13

H-3

OH

H-11

OH

H-2, H-8, H-10

OH

Me-4

Me-10

Me-12

MeCH2-13

5.22, (dq, 3.8, 9.5, 1H)

3.92 (s, 1H)

3.88 (d, 9.5, 1H)

3.72 (s, 2H)

3.68 (m, 1H)

3.07 (s, 1H)

2.72-2.86 (m)

2.67 (s, 1H)

5.22 (ddd, 2.0, 7.5, 16.5, 1H)

proton

5.22 (ddd, 2.0, 7.1, 15.9, 1H)

3.94 (s, 1H) 3.94 (s, 1H)

3.91 (s, 1H) 3.91 (s, 1H)

3.72 (s, 2H) 3.73  (s, 2H)

Literature Reporta

3.68 (m, 1H) 3.68 (m, 1H)

3.06 (s, 1H) 3.03 (s, 1H)

2.72-2.86 (m) 2.72-2.86 (m)

2.67 (s, 1H) 2.67 (s, 1H)

0.88 (d, 7.0, 3H)

0.93 (t, 7.3, 3H)

1.02 (d, 7.0, 3H)

1.07 (d, 7.1, 3H)

0.88 (d, 6.0, 3H)

0.94 (t, 7.2, 3H)

1.02 (d, 6.6, 3H)

1.07 (d, 6.6, 3H)

0.88 (d, 7.0, 3H)

0.93 (t, 7.3, 3H)

1.02 (d, 7.2, 3H)

1.07 (d, 6.6, 3H)

OH-3

1H δ (multiplicity, J (Hz), integration)

 
a Data reported by Mulzer and recorded on in CDCl3 at 270 MHz.29  b Data recorded on a Varian Mercury-
300 in CDCl3. 

 

 With the final stages of our synthesis plan explored, we began investigations on 

developing an enantioselective route to ketone 4, which had previously been resolved by 

aldol coupling to aldehyde 2 (Scheme 8). 
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Asymmetric Tandem-Acyl Claisen Rearrangement  

Background.  Tehshik Yoon and Dr. Sung-gon Kim, a graduate student and 

postdoctoral fellow in our labs, developed an asymmetric variant of the acyl-Claisen 

rearrangement employing chiral boron Lewis acid complex 59 (Scheme 18).30.  

Importantly, propionyl chloride (6) efficiently participates in this process with several 

alkyl-substituted allyl morpholines (60) to provide Claisen adducts 61 (72–81% yields, 

86–93% e.e.). 

 
Scheme 18.  Asymmetric acyl-Claisen rearrangement by Yoon and Kim 
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N
O Me

R

i-Pr2NEt, CHCl3
- 30 °C

60  R = Me, i-Pr, Bn 61  R = Me, i-Pr, Bn
      86-93% e.e.

Ag(OClO4)

59

R
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Additionally, the sterically hindered methallyl-amine 62 rearranges to 63 with 

good enantioselectivity, albeit in modest yield (equation 5). 

 

O
N

Me O

Cl
Me

O

N
O Me Me

(eq. 5)

(66%)62 63  88% e.e.6

(2.0 equiv)  59

i-Pr2NEt, CHCl3
- 30 °C

Ag(OClO4)

 

Inspired by these findings, we decided to study the ability of boron complex 59 to 

promote the tandem acyl-Claisen rearrangement between diamine 17 and propionyl 

chloride (Table 4).  Following Yoon and Kim’s protocol, we observed that 17 undergoes 

acyl-Claisen rearrangement to form 64 in poor efficiency with moderate levels of 

enantiocontrol (25 % yield, 67 % e.e., entry 1).  With triflate as the counter ion, slightly 
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higher efficiency and similar enantioselectivity were observed (35% yield, 67% e.e., 

entry 2).  In both cases, the tandem Claisen product 21 was not observed.  Our initial 

efforts to improve these results, however, were frustrated by an apparent variability in the 

quality of boron complex 59. 

 
Table 4.  Preliminary results on the asymmetric acyl-Claisen rearrangement of diamine 17 
 

- 30 °C

entry temperature % yield 64 % e.e.solvent

1
2

OClO4

OTf - 20 °C
CHCl3
CH2Cl2

25% 67%
35% 67%

(X)

R2N NR2

O

Me

OBz

R2N NR2

O

Me

OBz

Me

O

R2N

NR2

OBz

64  NR2 = N-morpholine

complex 59

propionyl-
chloride
i-Pr2NEt

Ag(X)

17  NR2 = 
       N-morpholine

21  NR2 = N-morpholine
         (not observed)

 

 

Improving the preparation of boron complex 59.  Following the standard 

procedure,31 complex 59 is formed by aging a solution of the diamine ligand (65) and 

BBr3 in CH2Cl2 under N2(g) for 24 hrs (refer to equation 6).  Removal of the solvent in 

vacuo, produced a solid material which was successfully used without further purification 

or characterization by Yoon and Kim.  In our hands, this protocol yielded inconsistent 

results.  As such, we decided to characterize the complex obtained.  Surprisingly, 1H 

NMR analysis of the isolated solid revealed a mixture of species 59 and 66 in a ratio of 

two to one (equation 6). 
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Ph Ph

TsHN NHTs

BBr3, CH2Cl2

N2 (g), 24 hr N
B

N
Ts Ts

Ph Ph

Br

N
B

N
Ts Ts

Ph Ph

59 66

2:1  59:66

65

(eq. 6)

OH

 

Monitoring complex formation by 1H NMR revealed that the desired 

transformation was complete in less than 5 minutes, not 24 hours (equation 7).  

Moreover, the desired complex 59 was observed to degrade to the inactive complex 66 

over the 24 hr aging period.  As such, an improved protocol for formation of this 

moisture sensitive boron complex 59 without contamination of 66 was developed based 

on a shorter complex aging period (for more details, see experimental methods). 

 
Ph Ph

TsHN NHTs

BBr3, CH2Cl2

N2 (g), 5 min N
B

N
Ts Ts

Ph Ph

5965

(100%)

(eq. 7)

Br

 

Consequently, we observed a significant enhancement in results for the acyl-

Claisen rearrangement of diamine 17 (Table 5).  As highlighted in entry 3, the mono-

Claisen product 64 is formed in 57% yield with excellent diastereoselectivity and good 

enantioselectivity (>99:1 dr, 85% e.e.).  To our delight, the enantioenriched tandem 

product 21 was also isolated from this process in 30% yield, with good 

diastereoselectivity and outstanding enantioselectivity (5:1 dr, >95% e.e., entry 3).  With 

a reliable method for formation of complex 59, current studies in this lab are underway to 

find optimal conditions for accessing tandem adduct 21 exclusively.  Factors including 

solvent, tertiary amine, acid chloride-addition time and temperature should play 

significant roles in this transformation. 
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Table 5.  Temperature and counter-ion effects on the asymmetric tandem Claisen rearrangement 
 

entry

1

2

3

4

OTf

OClO4

OClO4

OTf

temp % yield % e.e. syn-anti/
syn-syn

- 20 °C

-30 °C

-45 °C

-30 °C >95%

(X) % yield

72% 87% -- --

57% 85% 30%

57% 85% 20% >95%

37%

% e.e.
product 64

<5% -- --

5:1

5:1

--

tandem product 21

71%

syn/anti

>99:1

>99:1

>99:1

>99:1

R2N NR2

O

Me

OBz

R2N NR2

O

Me

OBz

Me

O

R2N

NR2

OBz

64  NR2 = N-morpholine

complex 59

propionyl-
chloride
i-Pr2NEt

Ag(X)

17  NR2 = 
       N-morpholine

21  NR2 = N-morpholine

 

 

Remarkably, the mono-Claisen product 64 can be formed exclusively at lower 

temperatures (entry 4).32  Under these conditions, 64 was isolated efficiently with high 

levels of enantio- and diastereo-control (75% yield, 87% e.e., >99:1 dr).  Subjection of 64 

to standard acyl-Claisen rearrangement conditions, in a separate step, affords efficient 

access to enantioenriched 21 with excellent diastereoselectivity (equation 8).32   

Importantly, tandem adduct 21 represents the C(3) to C(9) fragment in our synthesis of 

erythronolide B.  Consequently, in lieu of a chiral resolution (Scheme 8), enantioselective 

synthesis of ketone 4 can now be achieved.  Notably, using a different acid chlorides in 

the second Claisen rearrangement can be envisioned to further expand the applications of 

this methodology. 

N N

O

Me

OBz

N N

O

Me

Me

Me

O

64 21   87% e.e., 94:6 dr

OO

Yb(OTf)3O

Cl
Me

i-Pr2NEt
CH2Cl2
23 °C

(eq. 8)
OO

(72%)
6  
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Concluding Remarks 

A novel approach to erythronolide B has been realized (twenty four steps from 

known ester 19, ca. 1.3% yield).  This synthesis features a tandem acyl-Claisen 

rearrangement of diamine 17 and propionyl chloride to rapidly install three of the four 

requisite stereocenters in the C(3)–C(9) polyketide backbone.  In addition, a novel Lewis 

acid promoted enantioselective variant of this key transformation was accomplished 

using chiral boron complex 59.  Subsequent installation of the essential C(6) stereocenter 

proved more challenging than anticipated.  As a consequence, insights gained from facing 

these challenges will be valuable for further improving this route, as well as the future 

planning of macrolide syntheses based on our tandem Claisen technology.   

The success of our first approach to erythronolide B relies on a conventional 

macrolactonization to form the 14-membered ring.  Future studies in this lab will focus 

on developing a more aggressive ring closing strategy, with the aim of reducing the 

number of “non-productive” functional/protecting group manipulations required by a 

standard macrolactonization plan (Figure 2).  Notably, carbon-carbon bond forming ring 

closures (e.g., olefin metathesis, Nozaki-Kishi) have yet to be exploited in the synthesis 

of the erythromycins. 
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Figure 2.  Future directions:  Using the tandem acyl Claisen rearrangement to explore 
unconventional ring-closing strategies in erythromycin syntheses 
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Experimental Methods 

General Information.  Commercial reagents were purified prior to use following 

the guidelines of Perrin and Armarego.33  Non-aqueous reagents were transferred under 

nitrogen or argon via syringe or cannula.  Organic solutions were concentrated under 

reduced pressure on a Büchi rotary evaporator.  Chromatographic purification of products 

was accomplished using forced-flow chromatography on ICN 60 32–64 mesh silica gel 

63 according to the method of Still.34  Thin-layer chromatography (TLC) was performed 

on EM Reagents 0.25 mm silica gel 60-F plates.  Visualization of the developed 

chromatogram was performed by fluorescence quenching or KMnO4 stain. 

1H and 13C NMR spectra were recorded on Bruker DRX-500 (500 MHz and 125 

MHz, respectively), Bruker AMX-400 (400 MHz and 100 MHz, respectively), Varian 

Mercury-300 (300 MHz and 75 MHz, respectively), or Varian I-500 (500 MHz and 125 

MHz, respectively) instruments, as noted, and are internally referenced to residual protio 

solvent signals.  Data for 1H NMR are reported as follows: chemical shift (δ ppm), 

multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), integration, 

coupling constant (Hz), and assignment.  Data for 13C NMR are reported in terms of 

chemical shift (δ ppm).  IR spectra were recorded on an ASI React-IR 1000 spectrometer 

and are reported in terms of frequency of absorption (cm-1).  Mass spectra were obtained 

from the UC Irvine or Caltech Mass Spectral facility.  Gas liquid chromatography (GLC) 

was performed on Hewlett-Packard 6850 and 6890 Series gas chromatographs equipped 

with a split-mode capillary injection system and flame ionization detectors using a CC-

1701 (30 m x 0.25 mm) column from C&C Column Technologies.  High performance 



 180

liquid chromatography (HPLC) was performed on the Hewlett-Packard 1100 Series 

chromatographs using a 4.6 x 250 mm Zorbax Sil column or Chiracel AS column. 

 

Benzoic acid-2-(-N-methyl-morpholinyl)-3-(-N-morpholinyl)-propenyl ester (17).  

Based upon a modified procedure of Boeckman,35 a solution of benzoic acid 2-methyl-

propenyl ester36 (19) (64.3 g, 0.365 mol) and NBS (136.4 g, 0.766 mol) in CCl4 (730 mL) 

at reflux was added benzoyl peroxide (1.06 g, 4.38 mmol).  After 2 h, the reaction 

mixture was filtered through a plug of Celite® and concentrated to yield the dibromide 

(20), which was used without further purification.  A solution of the crude dibromide 20 

in CH2Cl2 (3.2 L) was treated with i-Pr2EtN (127 mL, 0.729 mol), followed by dropwise 

addition of morpholine (64 mL, 0.73 mol) at 4 °C.  The reaction was then allowed to 

warm to 23 °C.  After 1.3 h, the reaction mixture was washed with H2O (3 x 600 mL), 

dried (Na2SO4), filtered, concentrated and purified on with grade I alumina (Et2O) to 

afford the product 17 as a yellow solid (62.0 g, 9.24 mmol) in 50% yield; mp 80 °C; IR 

(CH2Cl2) 1729, 1455, 1293, 1274, 1251, 1116, 1004, 865 cm-1; 1H NMR (400 MHz) δ (d, 

J = 7.2 Hz, 2H, Ar), 7.63 (app t, J = 7.4 Hz, 1H, Ar), 7.50 (app t, J = 7.6 Hz, 2H, Ar), 

7.42 (s, 1H, CH=C), 3.68–3.72 (m, 8H, 2 x O(CH2)2), 3.21 (s, 2H, CH2C=C), 3.02 (s, 2H, 

CH2C=C), 2.46–2.49 (m, 8H, 2 x N(CH2)2); 13C NMR (100 MHz) δ 163.4, 135.3, 133.7, 

129.9, 129.0, 128.6, 119.4, 67.1, 58.8, 54.0, 53.8, 53.6; LRMS (FAB) m/z 347 (MH)+; 

HRMS (FAB) exact mass calcd for (C19H26N2O4H)+ requires m/z 347.1971, found m/z 

347.1971. 
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(2R*,3R*,6R*)-3-Benzoate-2,6-dimethyl-1,7-dimorpholin-4-yl-4-methylene-heptane-

1,7-dione (21).  To a flask containing Yb(OTf)3 (258 mg, 0.416 mmol) was added the 

allyl dimorpholine 17 (72.1 mg, 0.208 mmol) in 4.0 mL of CH2Cl2, followed by i-Pr2NEt 

(0.15 mL, 0.83 mmol) at 23 °C.  After 5 min a solution of the propionyl chloride (0.75 

mL, 1 M solution in CH2Cl2, 0.75 mmol) was added dropwise over 1 min. The resulting 

solution was maintained at 23 °C until the allyl dimorpholine 17 was consumed (4–6 h) 

as determined by TLC analysis (EtOAc).  The reaction mixture was then diluted with 

EtOAc (20mL) and washed with aqueous 1N NaOH (20 mL).  The aqueous layer was 

then extracted with EtOAc (3 x 20 mL), and the combined organic layers washed with 

brine, dried (Na2SO4), and concentrated.  The resulting residue was purified by silica gel 

chromatography (EtOAc) to provide 21 as a yellow oil in 86% yield (81.7 mg, 0.178 

mmol); 91:9 syn–anti:syn–syn.  Syn–anti isomer: IR (CH2Cl2) 2247, 1722, 1637, 1440, 

1274, 1116, 1031, 703 cm-1; 1H NMR (400 MHz, CDCl3) δ 8.06 (d, J = 9.0 Hz, 2H, Ar), 

7.58 (t, J = 9.3, 1H, Ar), 7.45 (t, J = 9.5 Hz, 2H, Ar), 5.69 (d, J = 9.5 Hz, 1H, CHOBz), 

5.19 (s, 1H, CH(H)=C), 4.98 (s, 1H, CH(H)=C), 3.47–3.70 (m, 16H, 2 x O(CH2CH2,)2N), 

3.25 (dt, J = 8.5, 17.5 Hz, 1H, CHCHOBz), 3.02 (app dt, J = 8.5, 20.4 Hz, 1H, 

(CO)CHCH2), 2.55 (dd, J = 9.0, 18.0 Hz, 1H, CH(H)C=CH2 ), 2.14 (dd, J = 8.5, 18.0 Hz, 

1H, CH(H)C=CH2), 1.24 (d, J = 8.5 Hz, 3H, CH3), 1.07 (d, J = 8.5 Hz, 3H, CH3); 13C 

NMR (100 MHz) δ 174.6, 171.7, 165.3, 145.1, 133.0, 130.0, 129.5, 128.4, 114.2, 76.0, 

66.8, 46.2, 45.9, 42.1, 38.8, 37.4, 33.9, 17.7, 13.8; LRMS (CI) m/z 459 (MH)+; HRMS 

(CI) exact mass calcd for (C25H34N2O6H)+ requires m/z 459.2495, found m/z 459.2481.  

Diastereomer ratio was determined by HPLC with a Zorbax SIL column (75:25 

hexane:EtOH, 1.0 mL/min); syn–anti adduct tr = 14.5 min, anti–anti adduct tr = 16.8 min. 
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(2S*,3R*,6R*)-3-Benzoate-2,6-dimethyl-4-methylene-7-morpholin-4-yl-heptanoic 

acid (22).  Following the Metz protocol,37 to a solution of 21 in 1.2 mL of 1:1 DME/H2O 

at 23 °C was added I2 (60.0 mg, 0.254 mmol), and the resulting solution maintained in the 

absence of light for 3 h.  The solution was then diluted with EtOAc (30 mL), and the 

resulting mixture was successively washed with Na2S2O3 (10 % aq., 20mL), and brine 

(20 mL), and then dried (Na2SO4) and concentrated to provide the corresponding 

iodolactone which was used without further purification.  The resulting residue was 

dissolved in 1.0 mL of AcOH, treated with Zn dust (40 mg, 0.61 mmol) and then heated 

at 50 °C for 2 h.  Subsequently, the reaction mixture was cooled to 23 °C and 1 N HCl 

(20 mL) was added.  After extraction with EtOAc (3 x 30 mL), the combined organic 

layers were dried (Na2SO4) and concentrated.  The resulting residue was purified by 

chromatography on silica gel (99:1 EtOAc/AcOH) to afford 22 as a white solid (20.7 mg, 

53.3 µmol) in 88% yield: 83:17 regioselectivity by 1H NMR analysis.  The resulting 

product mixture can be titruated with ether to remove the minor regioisomer component.  

Major isomer (α,β-disubstituted acid): IR (film) 2981, 2935, 2866, 1722, 1637, 1452, 

1274, 1112, 1027, 966, 850 cm-1; 1H NMR (500 MHz, CDCl3) δ 8.06 (d, J = 9.0 Hz, 2H, 

Ar), 7.58 (app t, J = 9.3, 1H, Ar), 7.45 (app t, J = 9.5 Hz, 2H, Ar), 5.69 (d, J = 5.0 Hz, 

1H, CHOBz), 5.09 (s, 1H, CH(H)=C), 4.98 (s, 1H, CH(H)=C), 3.49–3.76 (m, 8H, 2 x 

O(CH2CH2,)2N), 2.99–3.05 (m, 2H), 2.61 (dd, J = 7.0, 14.5 Hz, 1H, CH(H)C=CH2 ), 2.18 

(dd, J = 6.5, 15.0 Hz, 1H, CH(H)C=CH2), 1.28 (d, J = 7.0 Hz, 3H, CH3), 1.13 (d, J = 8.5 

Hz, 3H, CH3); 13C NMR (125 MHz) δ 176.8, 175.2, 165.3, 143.5, 133.2, 129.6, 

128.5,128.4, 113.9, 75.6, 66.8, 66.7, 46.1, 42.4, 41.8, 36.9, 34.0, 17.8, 10.9; LRMS (CI) 
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m/z 389.1 (M)+; HRMS (CI) exact mass calcd for (C21H27NO6)+ requires m/z 389.1838, 

found m/z 389.1845. 

 

(2S*,3R*,6R*)-3-(tert-Butyl-dimethyl-silanyloxy)-2,6-dimethyl-4-methylene-7-oxo-

nonanoic acid (4).  To a solution of 22 (1.10 g, 2.82 mmol) in 25 mL of THF at –63 °C 

(CHCl3/CO2 bath) was added 25 mL of freshly prepared EtLi as a 0.70 M solution in 

THF over 30 min via syringe pump.  After 1 hr, the reaction was quenched by the 

addition of 50 mL of saturated NH4Cl and 50 of 1 N KHSO4.  After 5 min, the resulting 

solution was allowed to warm to rt.  The aqueous layer was extracted with EtOAc (3 x 50 

mL).  The combined organic layers were washed with brine (150 mL), dried over 

anhydrous Na2SO4, filtered, and concentrated in vacuo.  The ketone 26 was used without 

further purification.  A solution of TBSCl (1.70 g, 11.3 mmol) and imidazole (1.50 g, 

22.0 mmol) in 5.6 mL of DMF was added via cannula to ketone 26 under Ar (g) at rt.  

After 16 hr, the mixture was diluted with 50 mL of 1 N KHSO4 and extracted with 

EtOAc (3 x 50 mL).  The combined organic layers were washed with brine (10 mL), 

dried over anhydrous Na2SO4, filtered, and concentrated in vacuo.  The resulting bis-

protected silyl ether 32 was dissolved in 55 mL of MeOH and cooled (0 °C) and 23 mL 

of an aqueous solution of 0.25 M K2CO3 was added.  After 30 min, 50 mL of 1 N KHSO4 

was added.  The resulting mixture was concentrated in vacuo to remove MeOH.  The 

remaining aqueous layer was extracted with EtOAc (3 x 50 mL).  The combined organic 

layers were washed with brine (50 mL), dried over anhydrous Na2SO4, filtered, and 

concentrated in vacuo.  The residue was purified by flash chromatography (20% 

EtOAc/hexanes) to afford 520 mg (1.52 mmol) of 4 as a colorless oil in 54% yield.  1H 
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NMR (300 MHz, CDCl3) δ 5.16 and 4.89 (2s, 2H, C=CH2), 4.46 (d, J = 4.8 Hz, 1H, 

CHOTBS), 2.76–2.88 (m, 1H,) 2.60–2.70 (m,1H),  2.44–59 (m, 1H), 2.38 (dd, J = 7.2, 

15.3 Hz, CH2C=CH2), 2.01 (dd, J = 7.4, 15.8 Hz, CH2C=CH2), 1.13 (d, J = 7.2 Hz, 3H, 

Me), 1.10 (d, J = 7.8 Hz, 3H, Me), 1.07 (t, J = 7.2 Hz, 3H, CH3CH2), 0.91 (s, 9H, -

C(Me)3), 0.06 and  0.00 (2s, 6H, Si(Me)2); 13C NMR (75 MHz, CDCl3) 214.5, 179.0, 

146.5, 113.1, 76.3, 44.4, 44.0, 34.5, 34.5, 26.1, 18.4, 17.3, 10.6, 8.1, –4.1, –5.0;  HRMS 

(FAB) exact mass calcd for (C18H34O4Si + H+) requires m/z 343.2305, found m/z 

343.2301. 

 

(2R, 3R, 6R, 7S, 8S, 9R, 10R, 11R)-11-Benzyloxymethoxy-3-(tert-butyl-dimethyl-

silanyloxy)-9-hydroxy-2,6,8,10-tetramethyl-4-methylene-7-oxo-tridecanoic acid and 

11-Benzyloxymethoxy-3-(tert-butyl-dimethyl-silanyloxy)-9-hydroxy-2,6,8,10-

tetramethyl-4-methylene-7-oxo-tridecanoic acid (33) and compound 34. 

Based on a modification of Martin’s procedure,1 a solution of the racemic ketone 4 (676 

mg, 1.97 mmol) in 6.6 mL of THF was added to a solution of freshly prepared lithium 

hexamethyldisilazide (5.91 mmol) in 7.7 mL of THF at – 78 °C.  After 2 h, a solution of 

freshly prepared aldehyde 21 (1.40 g, 5.92 mmol) in  6.4 mL of THF was added,  and the 

mixture maintained at – 78 °C for 2 h.  The reaction was quenched by the addition of 

saturated NH4Cl (2 mL) and the resultant mixture was allowed to warm to ambient 

temperature.  The solution was diluted with 0.2 N KHSO4 (60 mL) and extracted with 

EtOAc (3 x 100 mL).  The combined organic layers were washed with brine (10 mL), 

dried over anhydrous Na2SO4, filtered, and concentrated in vacuo.  The residue was 

purified by flash chromatography (5% gradient to 10% EtOAc/hexanes) to afford (943 
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mg, 1.63 mmol) 33 and 34 as a colorless oil and inseparable 1:1 mixture of diastereomers 

in 83% yield.  The resulting mixture was used without further purification.   

 

(2S, 3R, 6R)-6-[(4S, 5S, 6S)-6-((1S, 2R)-2-Benzyloxymethoxy-1-methyl-butyl)-2-(4-

methoxy-phenyl)-5-methyl-[1,3]dioxan-4-yl]-3-(tert-butyl-dimethyl-silanyloxy)-2-

methyl-4-methylene-heptanoic acid (35) and diastereomer 36.  Following a 

modification of Martin’s procedure, anhydrous acetic acid was slowly added to a solution 

of Me4NBH(OAc)3 (2.90g, 11.08 mmol) in 11 mL of CH3CN.  After the solution was 

stirred at rt for 40 min, it was cooled to –45 °C, and the ketones 33 and 34 (943 mg, 1.63 

mmol) in 11 mL of CH3CN was added.  The resulting frozen solution was maintained 

between –40 and –50 °C for 8 h, and then warmed to 10 °C over a period of 8 h.  The 

reaction mixture was poured into saturated NaHCO3 (200 mL) and the mixture was 

stirred at rt for 30 min.  The resulting mixture was extracted with EtOAc (3 x 200 mL), 

and the combined extracts were washed with brine (100 mL), dried (Na2SO4) and 

concentrated in vacuo.  The residue was purified by flash chromatography (5% gradient 

to 10% EtOAc/hexanes) to afford (633 mg, 1.09 mmol) of the corresponding diol as a 

foam-like solid and 2:1 mixture of diastereomers in 67% yield.38  This material was used 

without further purification.  To a solution of the diol as a 2:1 mixture of isomers (377 

mg, 0.650 mol) in 7 mL of CH2Cl2 was added (0.28 mL, 1.95 mmol) of p-

methoxyanisaldehyde and (7.5 mg, 0.0325 mmol) of CSA under Ar(g) at ambient 

temperature.  After 6 hr, the reaction mixture was quenched by the addition of Hünig’s 

base (0.23 mL, 1.32 mmol) and concentrated in vacuo.  The residue was purified by flash 

chromatography (10% gradient to 20% EtOAc/hexanes) to afford 214 mg of the major 
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isomer as a colorless oil (70% yield based on a theoretical yield of 0.43 mol), and 78.0 

mg of the minor isomer as a colorless oil (50% yield based on a theoretical yield of 0.22 

mol).  Mosher ester analysis revealed the major isomer to be the desired product.  Major 

isomer (35): IR (thin film) 3500–2600 (br, COOH), 1710, 1517, 1462, 1250, 1042, 834 

cm-1;  1H NMR (300 MHz, CDCl3) δ 10.0–9.0 (br s, 1H, -COOH), 7.36 (d, J = 8.4 Hz , 

2H, p-MeOAr-), 7.23–7.29 (m, 5H, Ph), 6.85 (d, J = 8.1 Hz, 2H, p-MeOAr), 5.54 (s, 1H, 

p-MeOArCH), 5.18 and 4.93 (2s, 2H, C=CH2), 4.79 (dd, J = 6.6, 11.7 Hz, 2H, -OCH2O-

), 4.63(d, J = 2.1 Hz, 2H, PhCH2-), 4.48 (d, J = 3.9 Hz, 1H, CHOTBS), 3.94–4.02 (m, 

2H, CH(OPMB), 3.78 (s, 3H, p-MeOAr-), 3.37 (d, J = 10.5 Hz, 1H, CH(OBOM), 2.49–

2.60 (m, 2H,) 2.07 (d, J = 14.7 Hz, 1H),  1.70–1.80 (m, 4H), 1.48 (dq, J = 7.3, 21.5 Hz, 

1H), 1.19 (d, J = 7.2 Hz, 3H, Me-10), 1.09 (d, J = 7.2 Hz, 3H, Me–8), 1.08 (d, J = 6.6 Hz, 

3H, Me-6), 0.87 (s, 9H, -C(Me)3), 0.86–0.90 (m, 3H, CH3CH2-), 0.82 (d, J = 6.6 Hz, 

3H,Me-5), 0.018 and –0.008 (2s, 6H, Si(Me)2); 13C NMR (75 MHz, CDCl3) 179.9, 159.7, 

146.3, 138.1, 131.9, 128.5, 127.8, 127.6, 127.4, 127.3, 113.7, 95.4, 84.8, 78.5, 75.5, 75.4, 

69.4, 55.5, 44.1, 37.2, 37.0, 29.9, 29.7, 29.6, 26.1, 25.9, 18.4, 16.2, 13.5, 10.9, 10.4, 7.6, –

4.0, –4.8;  HRMS (ES) exact mass calcd for (C40H62O8Si + Na+) requires m/z 721.4112, 

found m/z 721.4103;  [α]D
23 = ─ 11.1 (c = 1.0, CHCl3);  TLC Rf = 0.14 (20% 

EtOAc/hexanes).   

 

Diastereomer 36:  IR (thin film) 3500–2600 (br, COOH), 1710, 1616, 1518, 1462, 1380, 

1250, 1101, 834 cm-1;  1H NMR (500 MHz, CDCl3) δ 7.40 (d, J = 8.5 Hz , 2H, p-

MeOAr-), 7.23–7.29 (m, 5H, Ph), 6.87 (d, J = 8.5 Hz, 2H, p-MeOAr), 5.69 (s, 1H, p-

MeOArCH), 5.19 and 4.94 (2s, 2H, C=CH2), 4.81 (d, J = 6.5 Hz, 1H, -OCH2O-), 4.76 (d, 
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J = 6.0 Hz, 1H, -OCH2O-), 4.69 (d, J = 12.0 Hz, 1H, PhCH2-), 4.60 (d, J = 12.5 Hz, 1H, 

PhCH2-), 4.54 (d, J = 3.0 Hz, 1H, CHOTBS), 4.00 (ddd , J = 1.5, 10.0 Hz, 1H 

CH(OPMB), 3.91–3.94 (m, 1H, 3.94–4.02, 1H, CH(OPMB), 3.79 (s, 3H, p-MeOAr-), 

3.44 (d, J = 10.5 Hz, 1H, CH(OBOM), 2.56–2.66 (m, 3H), 1.67–1.90 (m, 4H), 1.49 (dq, J 

= 7.3, 21.3 Hz, 1H), 1.23 (d, J = 6.5 Hz, 3H, Me), 1.03 (d, J = 6.5 Hz, 3H, Me), 1.08 (d, J 

= 6.6 Hz, 3H, Me-6), 0.89 (s, 9H, -C(Me)3), 0.88–0.91 (m, 3H, CH3CH2-), 0.84 (d, J = 

7.0 Hz, 3H), 0.0 and – 0.005 (2s, 6H, Si(Me)2); 13C NMR (75 MHz, CDCl3) 178.5, 159.9, 

146.7, 138.0, 131.9, 128.5, 128.5, 127.9, 127.7, 127.4, 113.8, 113.4, 95.4, 85.3, 78.6, 

75.3, 75.1, 69.8, 55.5, 43.6, 37.3, 36.0, 29.3, 29.0, 26.1, 26.0, 18.4, 16.4, 13.6, 10.9, 9.8, 

7.7, –4.0, –4.9;  HRMS (ES) exact mass calcd for (C40H62O8Si + Na+) requires m/z 

721.4112, found m/z 721.4106;  [α]D
23 = ─ 7.04 (c = 1.0, CHCl3);  TLC Rf = 0.19 (20% 

EtOAc/hexanes). 

(2S, 3R, 6R)-6-[(4S, 5S, 6S)-6-((1S, 2R)- 2-Benzyloxymethoxy-1-methyl-butyl)-2-(4-

methoxy-phenyl)-5-methyl-[1,3]dioxan-4-yl]-3-(tert-butyl-dimethyl-silanyloxy)-2-

methyl-4-methylene-heptanoic acid methyl ester (36).  To a solution of the acid 35 

(50.0 mg, 0.0715 mmol) in 0.20 mL of MeOH and 2.0 mL of CH2Cl2 was added 

TMSCHN2 (0.25 mL, 2.0 M solution in hexanes, 0.50 mmol) dropwise.  After 30 min, the 

resulting yellow solution was cooled (0 °C) and quenched by addition of AcOH (0.20 

mL).  The resulting mixture was diluted with 10 mL of aqueous NaHCO3 (sat) and 

extracted with EtOAc (3 x 15 mL).  The combined organic layers were washed with brine 

(10 mL), dried over anhydrous Na2SO4, filtered, and concentrated in vacuo.  The residue 

was purified by flash chromatography (25% EtOAc/hexanes) to afford the product 36 as 

a colorless oil in 98% yield (45.0 mg):  IR (thin film) 2931, 2361, 2339, 1735, 1616, 
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1518, 1457, 1250 cm-1;  1H NMR (300 MHz, CDCl3) δ 7.36 (d, J = 8.1 Hz , 2 H, p-

MeOAr-), 7.20 –7.27 (m, 5H, Ph), 6.85 (d, J = 8.7 Hz, 2 H, p-MeOAr), 5.53 (s, 1H, p-

MeOArCH), 5.14 and 4.90 (2s, 2H, C=CH2), 4.79 (dd, J = 6.6, 18.6 Hz, 2H, -OCH2O-), 

4.62(dd, J = 11.9, 20.0 Hz, 2H, -CH2Ph), 4.42 (d, J = 5.1 Hz, 1H, CHOTBS), 3.95–4.02 

(m, 2H), 3.78 (s, 3H, p-MeOAr-), 3.62 (s, 3H, MeOC=O), 3.37 (d, J = 10.5 Hz, 1H), 

2.43–2.51 (m, 2H,) 2.07 (d, J = 14.7 Hz, 1H),  1.67–1.85 (m, 4H), 1.49 (dq, J = 7.2, 21.8 

Hz, 1H), 1.20 (d, J = 6.6 Hz, 3H, Me), 1.08 (d, J = 6.6 Hz, 3H, Me), 0.97 (d, J =6.6 Hz, 

3H, Me), 0.92–0.86 (m, 3H, -CH2CH3), 0.87 (s, 9H, -C(Me)3), 0.81 (d, J = 7.2 Hz, 3H, 

Me), –0.011 and – 0.022 (2s, 6H, Si(Me)2); 13C NMR (75 MHz, CDCl3) 174.7, 159.7, 

146.6, 138.1, 131.9, 128.5, 127.7, 127.6, 127.3, 113.7, 113.5, 95.4, 95.3, 84.8, 78.6, 76.0, 

75.4, 69.7, 55.5, 51.8, 44.4, 37.2, 36.8, 30.0, 29.6, 26.0, 25.9, 18.4, 16.0, 13.6, 10.9, 10.8, 

7.5, –4.0, –4.9;  HRMS (FAB) exact mass calcd for (C41H64O8Si) requires m/z 712.4371, 

found m/z 712.4370;  [α]D
23 = ─ 7.2 (c = 1.0, CHCl3). 

 

(2S, 3R, 6R)-6-[(4S, 5S, 6S)-6-((1S, 2R)-2-Benzyloxymethoxy-1-methyl-butyl)-2-(4-

methoxy-phenyl)-5-methyl-[1,3]dioxan-4-yl]-3-(tert-butyl-dimethyl-silanyloxy)-2-

methyl-4-methylene-heptan-1-ol (37).  To a solution of the ester 36 (46.0 mg, 0.0645 

mmol) in 1.30 mL of THF at 0 °C was added (0.26 mL, 0.26 mmol) of a 1.0 M solution 

of LiBEt3H in THF under Ar (g).  After 1 hr, the reaction was quenched with 5 mL of 

H2O and then diluted with 10 mL 0.5 N KHSO4.  The resulting mixture was extracted 

with EtOAc (3 x 15 mL).  The combined organic layers were washed with brine (10 mL), 

dried over anhydrous Na2SO4, filtered, and concentrated in vacuo.  The residue was 

purified by flash chromatography (25% EtOAc/hexanes) to afford the product 37 as a 
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colorless oil in 86% yield (38.0 mg):  IR (thin film) 3507, 2960, 2881, 1616, 1517, 1456, 

1250, 1103, 1046, 831, 776 cm-1;  1H NMR (300 MHz, CDCl3) δ 7.32 (d, J = 9.0 Hz , 

2H, p-MeOAr-), 7.25–7.29 (m, 5H, Ph), 6.84 (d, J = 8.7 Hz, 2H, p-MeOAr), 5.54 (s, 1H, 

p-MeOArCH), 5.17 and 4.93 (2s, 2H, C=CH2), 4.79 (dd, J = 6.6, 19.8 Hz, 2H, -OCH2O-

), 4.61 (s, 2H, PhCH2-), 4.36 (app s, 1H, CHOTBS), 4.06 (d, J = 10.5 Hz, 1H), 3.97 (t, J 

= 7.2 Hz, 1H),  3.78 (s, 3H, p-MeOAr-), 3.51 (d, J = 7.2 Hz, 2H, -CH2OH), 3.36 (d, J = 

11.1 Hz, 1H, CH(OBOM), 2.46–2.60 (m, 1H,) 2.13 (d, J = 14.1 Hz, 1H), 1.68–1.82 (m, 

1H), 1.48 (dq, J = 7.2, 21.5 Hz, 1H), 1.19 (d, J = 6.3 Hz, 3H, Me), 0.98 (d, J = 6.0 Hz, 

3H, Me), 0.87 (s, 9H, -C(Me)3), 0.87 (m, 3H, CH3CH2-),   0.81 (d, J = 6.6 Hz, 3H, Me), 

0.75 (d, J = 7.2 Hz, 3H, Me), 0.073 and 0.0090 (2s, 6H, Si(Me)2); 13C NMR (75 MHz, 

CDCl3) 159.8, 147.3, 137.9, 131.9, 128.5, 127.8, 127.7, 127.3, 113.7, 112.7, 95.3, 95.0, 

84.9, 78.3, 75.0, 72.5, 70.0, 65.4, 55.6, 39.6, 38.6, 36.9, 29.3, 29.0, 26.3, 25.5, 18.6, 15.9, 

13.3, 10.8, 9.8, 7.5, –4.0, –4.7;  HRMS (FAB+) exact mass calcd for (C40H64O7Si) 

requires m/z 684.4421, found m/z 684.4450;  [α]D
23 = ─ 16.6 (c = 1.0, CHCl3). 

 

4-Benzyl-3-[8-[6-(2-benzyloxymethoxy-1-methyl-butyl)-2-(4-methoxy-phenyl)-5-

methyl-[1,3]dioxan-4-yl]-5-(tert-butyl-dimethyl-silanyloxy)-3-hydroxy-2,4-dimethyl-

6-methylene-nonanoyl]-oxazolidin-2-one (40).  To a solution of the alcohol 37 (46.8 

mg, 0.0666 mmol) and NMO (30 mg, 0.26 mmol) in CH2Cl2 (2.5 mL) was added TPAP 

(2 mg, 5.7 mmol) at ambient temperature.  After 15 min, the resulting heterogeneous 

black solution was flushed through a plug of silica gel (15 mL) with 20% EtOAc/hexanes 

(75 mL) as the eluent.  After concentration in vacuo, the resulting aldehyde 38 was used 

immediately without further purification.  According to Evan’s protocol,21 to a cooled (0 
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°C) solution of (R)-(-)-4-Benzyl-3-propionyl-2-oxazolidinone39 in CH2Cl2 (1.0 mL) was 

added freshly prepared di-n-butylboron triflate (134.0 mg, 0.466 mmol) dropwise 

followed by Hünig’s base (112.0 µL, 0.644 mmol).  After 30 min, the resulting clear and 

colorless mixture was cooled to –78 °C and freshly prepared aldehyde 38 (45.5 mg, 

0.0666 mmol) was added dropwise as a solution in CH2Cl2 (0.30 mL).  After 30 min, the 

resultant solution was warmed to 0 °C and maintained at that temperature for 2 hr.  The 

reaction mixture was quenched by the addition of 0.80 mL of an aqueous 0.25 N NaHPO4 

solution, 0.80 mL of MeOH, and 1.2 mL of 30% aqueous H2O2 in 0.60 mL of MeOH.  

The resultant solution was stirred at ambient temperature for 45 min.  The mixture was 

than diluted with 15 mL of NH4Cl (sat) and extracted with EtOAc (3 x 15 mL).  The 

combined organic layers were washed with brine (10 mL), dried over anhydrous Na2SO4, 

filtered, and concentrated in vacuo.  The residue was purified by flash chromatography 

(10% gradient to 25% EtOAc/hexanes) to afford the product 40 (51.2 mg) as a colorless 

oil in 84% yield:  IR (thin film) 3526, 2932, 1783, 1692, 1616, 1517, 1381, 1249, 1210, 

1103, 1044, 835 cm-1;  1H NMR (300 MHz, CDCl3) δ 7.39 (d, J = 8.7 Hz , 2 H, p-

MeOAr-), 7.17 –7.33 (m, 10H, Ph), 6.87 (d, J = 9.0 Hz, 2 H, p-MeOAr), 5.547(s, 1H, p-

MeOArCH), 5.12 and 4.91 (2s, 2H, C=CH2), 4.82 (dd, J = 6.6, 27.0 Hz, 2H, -OCH2O-), 

4.65 (d, J = 9.6 Hz, 2H, PhCH2-), 4.23–3.87 (m, 8H), 3.80 (s, 3H, p-MeOAr-), 3.44 (d, J 

= 10.2 Hz, CH(OBOM), 3.21 (dd, J = 3.2, 22.3 Hz, 1H), 2.74 (dd, J = 9.6, 22.5 Hz, 1H), 

2.49–2.61 (m, 1H,) 2.12–1.63 (m, 6H), 1.59 (br s, 1H), 1.47 (dq, J = 1.50, 21.7 Hz, 1H), 

1.33 (d, J = 6.6 Hz, 3H, Me), 1.26 (d, J = 6.6 Hz, 3H, Me), 1.0 (d, J = 6.6 Hz, 3H, Me), 

0.90 (s, 9H, -C(Me)3), 0.89–0.88 (m, 3H, CH3CH2-), 0.85 (d, J = 7.2 Hz, 3H, Me), 0.078 

and 0.016 (2s, 6H, Si(Me)2); 13C NMR (75 MHz, CDCl3) 175.9, 159.7, 152.8, 147.7, 
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138.1, 135.1, 132.0, 129.5, 129.1, 128.5, 127.6, 127.3, 113.7, 111.7, 95.6, 95.5, 84.9, 

80.0, 79.0, 75.7, 73.8, 69.8, 66.2, 55.6, 55.2, 41.6, 39.2, 37.9, 37.4, 35.2, 29.6, 29.4, 26.2, 

26.0, 18.5, 16.5, 15.3, 13.8, 10.9, 8.5, 7.7, –3.7, –4.7;  HRMS (ES) exact mass calcd for 

(C53H77NO10Si + Na+)+ requires m/z 938.5214, found m/z 938.5217;  [α]D
23 = ─ 12.8 (c = 

1.0, CHCl3). 

 

(2R, 3S, 4S, 5R, 8R)-8-[(4S, 5S, 6S)-6-((2-Benzyloxymethoxy-1-methyl-butyl)-2-(4-

methoxy-phenyl)-5-methyl-[1,3]dioxan-4-yl]-5-(tert-butyl-dimethyl-silanyloxy)-3-

hydroxy-2,4-dimethyl-6-methylene-nonanoic acid (41).  To a solution of 51.2 mg of 

imide 40 (0.0559 mmol) in 5.7 mL of THF and  2.13 mL of H2O at 0 °C was added 0.569 

mL of a 30% aqueous solution of H2O2 followed by 1.42 mL (1.70 mmol) of a 1.20 M 

LiOH (aq).  After 2.5 hr, the resulting solution was quenched with 3.0 mL of 1.25 M 

Na2S2O3 (aq) and stirred for another 30 min.  The resulting solution was then allowed to 

warm to ambient temperature.  After 15 min, the reaction was diluted with 10 mL of 0.3 

N KHSO4.  The resulting mixture was extracted with EtOAc (3 x 15 mL).  The combined 

organic layers were washed with brine (10 mL), dried over anhydrous Na2SO4, filtered, 

and concentrated in vacuo.  The residue was purified by flash chromatography (20% 

EtOAc/hexanes) to afford the product 41 (30.0 mg) as a colorless oil in 71% yield:  IR 

(thin film) 3287 (br COOH), 2960, 2928, 2856, 1751, 1616, 1517, 1456, 1405, 1250, 

1028, 834, 701 cm-1;  1H NMR (500 MHz, CDCl3) δ 7.42 (d, J = 8.0 Hz , 2 H, p-

MeOAr), 7.24–7.31 (m, 5H, Ph), 6.87 (d, J = 8.5 Hz, 2H, p-MeOAr), 5.65 (s, 1H, p-

MeOArCH), 5.13 and 4.98 (2s, 2H, C=CH2), 5.06 (d, J = 7.5 Hz, 1H, CH2Ph), 4.77 (d, J 

= 7.5 Hz, 1H, CH2Ph), 4.67 (d, J = 12.0 Hz, -OCH2O-) 4.47 (d, J = 12.5 Hz, 1H, -
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OCH2O-), 4.29 (d, J = 4.5 Hz, 1H, H-5), 4.10 (ddd, J = 2.9, 5.9, 9.0 Hz, 1H, H-13), 4.00 

(dd, 1H, J = 1.5, 10.5 Hz, 1H, H-11), 3.82 (d, J  = 10.0 Hz, 1H, H-3), 3.80 (s, 3H, p-

MeOAr-), 3.32 (d, J = 10.5 Hz, 1H, H-9), 2.65 (dq, J =6.5, 10.0 Hz, 1H, H-2), 2.32–2.50 

(m, 2H, OH and H-8),  2.27 (d, J = 14.0 Hz, 1H, H-7), 1.95–1.85 (m, 2H, H-14 and H-

12), 1.84–1.76 (m, 1H, H-10), 1.77–1.71 (m, 1H, H-4), 1.66–1.55 (m, 2H, H-14’ and H-

7’), 1.32 (d, J =6.5 Hz, 3H, Me-2), 1.21 (d, J = 7.0 Hz, 3H, Me-10), 1.00 (d, J = 6.5 Hz, 

3H, Me-8), 0.97 (s, 9H, -C(Me)3), 0.90 (t, J =7.5 Hz, 3H, -CH2CH3), 0.89 (d, J = 7.5 Hz, 

3H, Me-4), 0.82 (d, J = 6.5 Hz, 3H, Me-12), 0.188 and 0.069 (2s, 6H, Si(Me)2); 13C NMR 

(125 MHz, CDCl3) 177.0, 169.0, 146.3, 137.5, 132.0, 128.6, 128.1, 128.0, 127.5, 114.8, 

113.9, 95.7, 95.0, 86.5, 80.7, 79.0, 75.8, 75.0, 70.0, 55.5, 43.7, 39.2, 38.3, 36.1, 29.9, 

29.0, 26.2, 25.7, 18.3, 16.0, 15.2, 13.6, 10.4, 7.3, 6.5, –3.9, –4.7;  HRMS (FAB) exact 

mass calcd for (C43H68O9Si - H+)- requires m/z 755.4554, found m/z 755.4559;  [α]D
23 = 

─ 5.9 (c = 1.0, CHCl3);  TLF Rf value = 0.51 (50% EtOAc/hexanes). 

 

(R)-2((4S, 5S, 6R)-(6-{(R)-3-[(4S, 5S,6S)-6-((1S,2R)-2-Benzyloxymethoxy-1-methyl-

butyl)-2-(4-methoxy-phenyl)-5-methyl-[1,3]dioxan-4-yl]-1-methylene-butyl}-2,2,5-

trimethyl-[1,3]dioxan-4-yl)-propionic acid (42).  To a solution of 30.0 mg (0.0396 

mmol) of silyl ether 41 in 1.10 mL of THF at ambient temperature was added 0.180 mL 

of 1.0 M TBAF solution in THF.  The resultant clear yellow solution was warmed to 50 

°C and maintained at that temperature for 8 hr before the reaction was quenched by the 

addition of 2.0 mL of 0.5 N KHSO4.  The resulting mixture was extracted with EtOAc (3 

x 10 mL).  The combined organic layers were washed with brine (10 mL), dried over 

anhydrous Na2SO4, filtered, and concentrated in vacuo.  The resulting diol was used 
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without further purification. TLC Rf = 0.10 (50% EtOAc/hexanes).  To a solution of this 

diol in 2,2-dimethoxypropane (1.80 mL) was added CSA (4.0 mg, 0.017 mmol) at 

ambient temperature.  After 6 hr, 0.10 mL of Hünig’s base was added and the resulting 

solution concentrated in vacuo.  The residue was purified by flash chromatography (20% 

EtOAc/hexanes) to afford the product (30.0 mg) as a colorless oil in 71% yield:  IR (thin 

film) 3500–2500 (br COOH), 2932, 1734, 1517, 1454, 1381, 1250, 1102, 1039, 829 cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.37 (d, J = 9.0 Hz , 2 H, p-MeOAr-), 7.24 –7.31 (m, 5H, 

Ph), 6.86 (d, J = 8.5 Hz, 2H, p-MeOAr), 5.57 (s, 1H, p-MeOArCH), 5.21 and 4.95 (2s, 

2H, C=CH2), 4.98 (d, J = 7.0 Hz, 1H, CH2Ph), 4.79 (d, J = 7.0 Hz, 1H, CH2Ph), 4.65 (d, 

J = 12.0 Hz, -OCH2O-) 4.54 (d, J = 11.5 Hz, 1H, -OCH2O-), 4.08 (ddd, J = 2.8, 5.8, 8.8 

Hz, 1H, H-13), 3.99 (dd, 1H, J = 1.5, 10.5 Hz, 1H, H-11), 3.84 (dd, J  = 2.2, 10.0 Hz, 1H, 

H-3), 3.80 (s, 3H, p-MeOAr-), 3.37 (d, J = 10.5 Hz, 1H, H-9), 2.63 (dq, J =6.7, 10.1 Hz, 

1H, H-2), 2.40–2.50 (m, 1H),  2.22 (d, J = 13.5 Hz, 1H, H-7), 1.95–1.60 (m, 6H), 1.50 

and 1.48 (2s, 6H, -CMe2), 1.28 (d, J =7.0 Hz, 3H, Me-2), 1.22 (d, J = 7.5 Hz, 3H, Me-

10), 0.96 (d, J = 6.5 Hz, 3H, Me-8), 0.89 (t, J =7.3 Hz, 3H, -CH2CH3), 0.85 (d, J = 7.0 

Hz, 3H, Me-4), 0.84 (d, J = 7.5 Hz, 3H, Me-12); 13C NMR (75 MHz, CDCl3) 175.2, 

160.0, 143.4, 137.6, 131.8, 128.6, 128.1, 128.0, 127.4, 113.9, 112.9, 99.9, 95.4, 94.7, 

86.3, 80.3, 75.3, 75.1, 73.1, 70.0, 55.5, 42.7, 38.5, 36.1, 32.5, 30.1, 29.9, 28.8, 28.6, 25.5, 

19.9, 15.6, 14.9, 13.6, 10.4, 7.4, 5.5;  HRMS (FAB) exact mass calcd for (C40H58O9) 

requires m/z 682.4081, found m/z 682.4067;  [α]D
23 = ─ 16.2 (c = 1.0, CHCl3); TLC Rf = 

0.36 (50% EtOAc/hexanes).  
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(R)-2-[(4S,5S,6R)-6-((S)-2-{(2R)-2-[(4S,5S,6S)-6-((1S,1R)-2-Benzyloxymethoxy-1-

methyl-butyl)-2-(4-methoxy-phenyl)-5-methyl-[1,3]dioxan-4-yl]-propyl}-oxiranyl)-

2,2,5-trimethyl-[1,3]dioxan-4-yl]-propionic acid (48).  To a solution of the olefin 42 

(10.0 mg, 14.7 µmol) in CH2Cl2 (1.0 mL) was added m-CPBA (40 mg, 70% maximum 

purity with the remainder as 3-chlorobenzoic acid and water) at 0 °C.  After 1 hr, the 

solution was allowed to warm to rt and allowed to stir for another 2 hr.  The resulting 

mixture was then quenched by the addition of 0.50 mL of a 1.0 M solution of Na2SO3.  

The resultant solution was stirred at ambient temperature for 10 min.  The mixture was 

then diluted with 10 mL EtOAC and washed with 10 mL of 10% Na2SO3.  The aqueous 

layer was extracted with EtOAc (3 x 10 mL).  The combined organic layers were washed 

with a pH 8.5 buffer solution (20 mL), washed with brine (20 mL), dried over anhydrous 

Na2SO4, filtered, and concentrated in vacuo.  The residue was purified by flash 

chromatography (20% EtOAc/hexanes) to afford 9.0 mg (88% yield) of a colorless oil; 

diastereomeric ratio: 2:1.  Major isomer 48:  1H NMR (300 MHz, CDCl3) δ 7.38 (d, J = 

8.7 Hz , 2 H, p-MeOAr-), 7.24–7.31 (m, 5H, Ph), 6.87 (d, J = 8.7 Hz, 2H, p-MeOAr), 

5.56 (s, 1H, p-MeOArCH), 5.03 (d, J = 6.6 Hz, 1H, CH2Ph), 4.80 (d, J = 6.6 Hz, 1H, 

CH2Ph), 4.66 (d, J = 11.4 Hz, -OCH2O-) 4.53 (d, J = 12.3 Hz, 1H, -OCH2O-), 4.26 (d, J 

= 1.5Hz, 1H), 4.13–4.03 (m, 1H), 3.97 (dd, J = 1.3, 10.1 Hz, 1H), 3.85–3.80 (m, 1H), 

3.80 (s, 3H, p-MeOAr-), 3.32 (d, J = 11.1 Hz, 1H, H-9), 3.07 (d, J = 5.4 Hz, 1H, CH2OC-

), 2.67–2.58 (m, 1H, H-2), 2.35 (d, J = 5.7 Hz, 1H, CH2OC-), 2.22 (dd, J = 2.7, 15.0 Hz, 

1H), 1.98 – 1.58  (m, 8H), 1.49 and 1.42 (2s, 6H, -CMe2), 1.27 (d, J = 6.6 Hz, 3H, Me-2), 

1.21 (d, J = 6.6 Hz, 3H, Me-10), 1.00 (d, J = 6.6 Hz, 3H, Me-8), 0.92–0.85 (m, 6H); 
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HRMS (FAB) exact mass calcd for (C40H58O10 – H+)- requires m/z 697.3951, found m/z 

697.3940.  

 

(R)-2-((4S,5S,6R)-6-{(1R,3R)-3-[(4S,5S,6S)-6-((1S,2R)-2-Benzyloxymethoxy-1-

methyl-butyl)-2-(4-methoxy-phenyl)-5-methyl-[1,3]dioxan-4-yl]-1-hydroxy-1-

methyl-butyl}-2,2,5-trimethyl-[1,3]dioxan-4-yl)-propionic acid (50).  To a solution of 

the epoxide 48 (6.0 mg, 8.6 µmol) in THF (2.0 mL) was added dropwise LiEt3BH (0.40 

mL, 0.40 mmol as a 1.0 M solution in THF) at 0 °C under Ar(g).  After 5 min, the 

resulting solution was allowed to warm and stirred at ambient temperature for 5.5 hr.  

The reaction was quenched by the addition of 2.0 mL 0.5 N KHSO4.  The resulting 

mixture was extracted with EtOAc (3 x 10 mL).  The combined organic layers were 

washed with brine (20 mL), dried over anhydrous Na2SO4, filtered, and concentrated in 

vacuo.  The residue was purified by flash chromatography (5:25:70 

AcOH/EtOAc/hexanes) to afford 50 (5.1 mg) as a colorless oil in 85% yield as a 2:1 

mixture of isomers.  Major isomer:  1H NMR (300 MHz, CDCl3) δ 7.39 (d, J = 9.0 Hz , 2 

H, p-MeOAr-), 7.29 –7.31 (m, 5H, Ph), 6.88 (d, J = 9.0 Hz, 2H, p-MeOAr), 5.52 (s, 1H, 

p-MeOArCH), 4.92 (d, J = 6.9 Hz, -OCH2O-), 4.78 (d, J = 7.2 Hz, 1H, -OCH2O-), 4.67 

(d, J = 1.5 Hz, 1H), 4.26 (d, J = 1.5Hz, 1H), 4.04–3.61 (m, 3H), 3.80 (s, 3H, p-MeOAr-), 

3.28 (d, J = 10.8 Hz, 1H, H-9), 2.69 (dq, J = 4.4, 14.3 Hz, 1H, H-2), 2.54–2.40 (m, 1H), 

2.22 (dd, J = 2.7, 15.0 Hz, 1H), 1.90 – 1.50  (m, 8H), 1.46 and 1.45 (2s, 6H, -CMe2), 1.27 

(d, J = 6.6 Hz, 3H, Me-2), 1.19 (d, J = 4.5 Hz, 3H, Me-10), 1.04 (d, J = 7.2 Hz, 3H, Me-

8), 0.90 (t, J = 7.4 Hz, 3H, CH3CH2-), 0.81 (d, J = 7.2 Hz, 3H, Me); HRMS (FAB) exact 

mass calcd for (C40H60O10 + H+)- requires m/z 701.4262, found m/z 701.4286. 
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(R)-2-((4S,5S,6R)-(6-{(1R,3R)-1-Hydroxy-3-[(4S,5S,6S)-6-((1S,2R)-2-hydroxy-1-

methyl-butyl)-2-(4-methoxy-phenyl)-5-methyl-[1,3]dioxan-4-yl]-1-methyl-butyl}-

2,2,5-trimethyl-[1,3]dioxan-4-yl)-propionic acid (53).  To a solution the seco acid 50 

(5.1 mg, 7.3 µmol), 46.0 mg of Pd/C, in 2.0 mL of MeOH and 0.50 mL of acetone was 

added 146.0 mg of ammonium formate at ambient temperature.  The reaction vessel was 

sealed under a balloon to trap the H2 (g) released.  After 6 h, the mixture was filtered 

through a plug of Celite© with 20 mL of EtOAc and diluted with 20 mL of 0.5 N 

KHSO4.  The resulting mixture was extracted with EtOAc (3 x 10 mL).  The combined 

organic layers were washed with brine (20 mL), dried over anhydrous Na2SO4, filtered, 

and concentrated in vacuo.  The residue was purified by flash chromatography (5:25:70 

AcOH/EtOAc/hexanes) to afford 2.5 mg of 53 as colorless oil in 60% yield: 1H NMR 

(300 MHz, CDCl3) δ 7.39 (d, J = 9.0 Hz , 2 H, p-MeOAr-), 7.29 –7.31 (m, 5H, Ph), 6.88 

(d, J = 9.0 Hz, 2H, p-MeOAr), 5.52 (s, 1H, p-MeOArCH), 4.92 (d, J = 6.9 Hz, -OCH2O-

), 4.78 (d, J = 7.2 Hz, 1H, -OCH2O-), 4.67 (d, J = 1.5 Hz, 1H), 4.26 (d, J = 1.5Hz, 1H), 

4.04–3.61 (m, 3H), 3.80 (s, 3H, p-MeOAr-), 3.28 (d, J = 10.8 Hz, 1H, H-9), 2.69 (dq, J = 

4.4, 14.3 Hz, 1H, H-2), 2.54–2.40 (m, 1H), 2.22 (dd, J = 2.7, 15.0 Hz, 1H), 1.90 – 1.50  

(m, 8H), 1.46 and 1.45 (2s, 6H, -CMe2), 1.27 (d, J = 6.6 Hz, 3H, Me-2), 1.19 (d, J = 4.5 

Hz, 3H, Me-10), 1.04 (d, J = 7.2 Hz, 3H, Me-8), 0.90 (t, J = 7.4 Hz, 3H, CH3CH2-), 0.81 

(d, J = 7.2 Hz, 3H, Me); HRMS (FAB) exact mass calcd for (C32H52O9 – H+)- requires 

m/z 579.3533, found m/z 579.3520. 
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13-Ethyl-4-hydroxy-17-(4-methoxy-phenyl)-2,4,7,7,10,14,19,20-octamethyl-

6,8,12,16,18-pentaoxa-tricyclo[13.3.1.15,9]icosan-11-one (54).18  To a solution of the 

seco acid 53 (4.6 mg, 7.9 µmol) in 0.50 mL of benzene at ambient temperature were 

added 0.265 mL (1.48 mmol) of Hünig’s base and 0.154 mL (0.987 mmol) 2,4,6,-

trichlorobenzoyl chloride.  The resultant solution was stirred at ambient temperature for 8 

h after which it was diluted with 50 mL of benzene and treated with 240 mg (1.97 mmol) 

N,N-(dimethylamino)pyridine).  After 24 h, the resultant white mixture was quenched by 

the addition of 30 mL of NH4Cl (sat).  The mixture was extracted with EtOAc (3 x 20 

mL).  The combined organic layers were washed with brine (20 mL), dried over 

anhydrous Na2SO4, filtered, and concentrated in vacuo.  The residue was purified by flash 

chromatography (10% gradient to 20% EtOAc/hexanes) to afford 3.0 mg of macrolactone 

54 as a colorless oil in 65% yield: 1H NMR (300 MHz, CDCl3)  δ 7.51 (d, J = 8.1 Hz , 2 

H, p-MeOAr-), 6.90 (d, J = 8.7 Hz, 2 H, p-MeOAr), 5.69 (s, 1H, p-MeOArCH), 5.45 

(dd, J = 4.1 Hz, 10 Hz, 1H, H-13), 4.06 (s, 1 H, H-5), 3.80 (s, 3H, p-MeOAr-), 3.90 (d, J 

= 10.5 Hz, 1H, H-3), 3.65 (d, J = 9.3 Hz, 1H, H-11), 3.35 (d, J = 10.2 Hz, 1H, H-9), 2.77 

(dq, J = 6.5, 10.5 Hz, 1H, H-2), 2.50 (m, 1H, H-8), 2.23 (br s, 1H, OH-6), 1.60–1.80 (m, 

4H, H-4, 10, 12, 14), 1.48 (m, 1 H, H-14’), 1.30 –1.50 (m, 2H, H-7 and 7’), 1.53 and 1.48 

(2s, 6H, -OCMe2O-), 1.25 (s, 3H, Me-6), 1.21–1.27 (m, 9H, Me-2, Me-4, Me-8), 1.02 (d, 

J = 6.0 Hz, 3H, Me-10 or Me-12), 0.88 (d, J = 6.9 Hz , 3H, Me-10 or Me-12), 0.87 (t, J = 

6.9 Hz, 3H, Me-14); HRMS (FAB) exact mass calcd for (C32H50O8 – H+)- requires m/z 

561.3427, found m/z 561.3426;  TLC Rf = 0.21 (20% EtOAc/hexanes). 

 



 198

13-Ethyl-4-hydroxy-17-(4-methoxy-phenyl)-2,4,7,7,10,14,19,20-octamethyl-

6,8,12,16,18-pentaoxa-tricyclo[13.3.1.15,9]icosan-11-one (58).  According to a 

modified Evans procedure,21 to a solution of 2.0 mg (3.6 µmol) of macrolactone 54 in 1.0 

mL of 2-propanol at ambient temperature was added 10 mg of Pd(OH)2.  The vial was 

subsequently purged for 5 min with H2 (g) under balloon pressure and maintained under 

positive H2 (g) pressure (balloon).  After 14 h, the mixture was filtered through a plug of 

Celite© with 20 mL of EtOAc and concentrated in vacuo.  The residue was purified by 

flash chromatography (20% EtOAc/hexanes) to afford 1.6 mg of macrolactone 58 as a 

colorless oil in quantitative yield:  1H NMR (300 MHz, CDCl3)  δ 5.21 (dd, J = 1.0 Hz, 

4.6 Hz, 9.3 Hz, 1H, H-13), 3.90 (s, 1H), 3.71 (d, J = 10.2 Hz, 1H), 3.58 (d, J = 9.3 Hz, 

1H), 3.54 (d, J = 3.3 Hz, 1H), 3.24 (d, J = 7.5 Hz, 1H), 3.00 (m, 1H), 2.70 (dq, J = 6.5, 

10.5 Hz, 1H, H-2), 2.17 (d, J = 0.9 Hz, 1H), 1.60–1.90 (m, 6H), 1.41 (s, 3H, Me), 1.40 (s, 

3H, Me), 1.26 (d, J = 6.0Hz, 3H, Me), 1.21–1.14 (m, 2H), 1.14(s, 3H, Me), 1.12 (d, J = 

7.2 Hz, 3H, Me), 1.01 (d, J = 7.2 Hz, 3H, Me), 0.91 (d, J = 6.6 Hz, 3H, Me), 0.83 (t, J = 

7.4 Hz, 3H, Me), 0.74 (d, J = 7.2 Hz, 3H, Me); HRMS (FAB) exact mass calcd for 

(C24H44O7 – H+) requires m/z 445.3165 found m/z 445.3148;  TLC Rf = 0.24 (50% 

EtOAc/hexanes). 

 

Erythronolide B (1).  Following a modified procedure by Corey, macrolactone 58 (0.40 

mg, 0.90 µmol) was oxidized by treatment with PCC (4.0 mg, 0.018 mmol) and activated 

3 Ǻ mol sieves in CH2Cl2 (0.20 mL) at 0°C.  After the reaction was complete as 

determined by TLC analysis (30 min), IPA (ca 10 drops) was added until the solution 

turns dark orange/brown.  The resulting solution was filtered with Et2O through a column 
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of silca gel (0.50 mL), and concentrated in vacuo.  The resulting C(9) ketone was used 

with out further purification by subjection to 0.30 mL of 1 N HCl: THF (1:1) at ambient 

temperature.  After 30 min, 5 mL of a saturated solution of NaHCO3 (aq) was added.  The 

resulting aqueous layer was extracted with EtOAc (3 x 10 mL), and the organic layers 

washed with brine, dried (Na2SO4) and concentrated in vacuo.  The resulting residue was 

purified (20:1 MeOD:CDCl3, 0.40 mL of silica gel) to provide erythronolide B (1) as a 

white solid in 60% yield (0.20 mg).  This synthetic material was identical to the natural 

sample of erythronolide (B) by co-elution on TLC; TLC Rf = 0.33 (10:1 CHCl3:MeOH).  

Due to the high dilution of our 1H NMR sample for 1, the region between 1.22 to 1.99 

ppm is obscured by ubiquitous grease.  The observed 1H NMR shifts are in complete 

accord with data obtained from the natural sample,27 and data reported in the literature.29 

Synthetic Sampleb Natural Sampleb

H-13

H-3

OH

H-11

OH

H-2, H-8, H-10

OH

Me-4

Me-10

Me-12

MeCH2-13

5.22, (dq, 3.8, 9.5, 1H)

3.92 (s, 1H)

3.88 (d, 9.5, 1H)

3.72 (s, 2H)

3.68 (m, 1H)

3.07 (s, 1H)

2.72-2.86 (m)

2.67 (s, 1H)

5.22 (ddd, 2.0, 7.5, 16.5, 1H)

proton

5.22 (ddd, 2.0, 7.1, 15.9, 1H)

3.94 (s, 1H) 3.94 (s, 1H)

3.91 (s, 1H) 3.91 (s, 1H)

3.72 (s, 2H) 3.73  (s, 2H)

Literature Reporta

3.68 (m, 1H) 3.68 (m, 1H)

3.06 (s, 1H) 3.03 (s, 1H)

2.72-2.86 (m) 2.72-2.86 (m)

2.67 (s, 1H) 2.67 (s, 1H)

0.88 (d, 7.0, 3H)

0.93 (t, 7.3, 3H)

1.02 (d, 7.0, 3H)

1.07 (d, 7.1, 3H)

0.88 (d, 6.0, 3H)

0.94 (t, 7.2, 3H)

1.02 (d, 6.6, 3H)

1.07 (d, 6.6, 3H)

0.88 (d, 7.0, 3H)

0.93 (t, 7.3, 3H)

1.02 (d, 7.2, 3H)

1.07 (d, 6.6, 3H)

OH-3

1H δ (multiplicity, J (Hz), integration)

 
a Data reported by Mulzer and recorded on in CDCl3 at 270 MHz.40  b Data recorded on a Varian Mercury-
300 in CDCl3. 

 

HRMS (FAB) exact mass calcd for (C21H38O7 + Na+)- requires m/z 425.2515, found m/z 

425.2497; Mass fragmentation pattern for synthetic erythronolide B (1) is identical to the 
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reported fragmentation for natural erythronolide B.41  LRMS/MS (ES) m/z found 425.3, 

407.1, 327.1, 309.0, 291.1, 247.1, 207.0. 

 

(R,R)-2-Bromo-4,5-diphenyl-1,3-bis-(toluene-4-sulfonyl)-[1,3,2]diazaborolidine (59).  

Based on a modified procedure by Yoon,31 in a flame-dried 250 mL round-bottomed 

Schlenck flask was placed (R,R)-bis(4-methylbenzene-sulfonyl)-1,2-diphenyl-1,2-

diaminoethane42 (65) (445 mg, 0.854 mmol).  The flask was sealed with a glass stopper 

with teflon tape, and then evacuated and flushed three times with Ar (g).  The flask was 

then charged with 17 mL of dry CH2Cl2.43  A 1.0 M solution of boron tribromide44 in 

CH2Cl2 (1.10 mL, 1.10 mmol) was added by syringe, and the resulting pale yellow 

reaction mixture was stirred for 20 min.  The flask was immersed in a water bath, and the 

solvent and residual boron compounds carefully removed under reduced pressure (0.50 

mmHg) through two traps cooled by liquid nitrogen.  The resulting residue was dried 

under vacuum (0.03 mmHg) for 20 min to quantitatively provide a pale orange solid (520 

mg).45 Purity by 1H NMR analysis was typically greater than 95%.  Complex (56):  1H 

NMR (300 Hz) δ 7.35–7.29 (m, 6H, Ar), δ 7.25–7.20 (m, 4H, Ar), 7.07–7.04 (m, 8H, 

Ar), δ 5.0 (s, 2H, CHAr), δ 2.34 (s, 6H, Me).  This material was used in the tandem acyl-

Claisen rearrangement without further purification. 

 

(R, R)-4,5-Diphenyl-1,3-bis-(toluene-4-sulfonyl)-[1,3,2]diazaborolidin-2-ol (66):  1H 

NMR (300 Hz) δ 7.29 (d, J = 8.1, 4H, Ar), δ 7.09 (d, J = 13.0, 2H, Ar), 7.01 (t, J = 7.5 

Hz, 4H, Ar), δ 6.94 (d, J = 13.5, 4H, Ar), δ 6.87 (d, J = 13.0, 4H, Ar), δ 6.59 (s, 1H), δ 

4.59 (s, 2H, CHAr), δ 2.27 (s, 6H, Me). 
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(2R, 3S)-Benzoic acid 1-(1-methyl-2-morpholin-4-yl-2-oxo-ethyl)-2-morpholin-4-

ylmethyl-allyl ester (64).  Based on a modified procedure by Yoon,31 a dry flask in an 

inert atmosphere glovebox was charged with 59 (169 mg, 0.300 mmol) and anhydrous 

AgClO4 (62.2 mg, 0.300 mmol).  The flask was sealed with a rubber septum and removed 

from the glovebox.  CH2Cl2 (1.5 mL) was introduced by syringe, and the resulting yellow 

mixture stirred in the absence of light for 1 hr under Ar (g).  The resulting mixture was 

taken up in a disposable 2.5 mL syringed, which was then fitted with an Acrodisc® PTFE 

syringe filter and an 18 gauge disposable needle.  The filtered solution was added directly 

to a solution of the diamine 17 (34.6 mg, 0.100 mmol) in CH2Cl2 (1.5 mL).  The reaction 

mixture was cooled to –45 °C.  The solution was stirred for 10 min before propionyl 

chloride (0.30 mL of a 1 M solution in CH2Cl2, 0.30 mmol) was added dropwise over 0.5 

min.  After 18 hr, the reaction mixture was poured onto a mixture of EtOAc (10 mL) and 

1 N NaOH (10 mL).  The layers were separated, and the aqueous layer extracted with 

EtOAc (3 x 10 mL).  The combined organic layers were washed with saturated aq. NaCl 

(50 mL), dried (Na2SO4), and concentrated in vacuo.  The resulting residue was purified 

by silica gel (EtOAc) to provide 64 in 72% yield (29.1 mg); syn:anti  >99:1 by 13C NMR 

analysis; syn 87% e.e. Syn isomer: 1H NMR (300 MHz, CDCl3) δ 8.00 (dd, J = 1.7, 9.0 

Hz, 2H, Ar), 7.50 (t, J = 7.5 Hz, 1H, Ar), 7.38 (t, J = 12.5 Hz, 2H, Ar), 5.83 (d, J = 6.5 

Hz, 1H, CHOBz), 5.11 (s, 2H, CH2=C), 3.47–3.93 (m, 8H, O(CH2CH2,)2NCO), 3.17 (dq, 

J = 5.6, 18.9 Hz, 1H, CHCHOBz), 3.11 (d, J = 23.0 Hz, 1H, CH(H)C=CH2 ), 2.89 (d, J = 

23.0, 1H, CH(H)C=CH2), 2.46–2.52 (m, 4H), 2.24–2.35 (m, 4H), 1.18 (d, J = 12.0 Hz, 

3H, Me); 13C NMR (75 MHz) δ 171.5, 165.8, 141.7, 133.3, 130.3, 130.0, 128.7, 115.6, 
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74.2, 67.2, 67.0, 63.3, 53.8, 46.3, 42.5, 37.4, 11.2; HRMS (FAB) exact mass calcd for 

(C22H30N2O5
 + H)+ requires m/z 403.2233, found m/z 403.2233; [α]D

23 = –7.9 (c = 1.0, 

CHCl3).  The enantiomeric purity was determined by HPLC with a Chiracel AS column 

and AS guard column (2.5% EtOH:hexanes, 1 mL/min flow); tr = 18.8 min and 22.2 min. 
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