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ABSTRACT 

 

 

 

A few years after the early investigation on ultra wideband (UWB) wireless 

system, considerable research efforts have been put into the design of UWB antennas 

and systems for communications. These UWB antennas are essential for providing 

wireless wideband communications based on the use of very narrow pulses on the 

order of nanoseconds, covering a very wide bandwidth in the frequency domain, and 

over very short distances at very low power densities. In this project, new models of 

T, L and U slotted UWB antennas are proposed by studying their current distribution 

characteristics. The wideband behavior is due to the fact that the currents along the 

edges of the slots introduce an additional resonance, which, in conjunction with the 

resonance of the main patch, produce an overall broadband frequency response 

characteristic. These antennas are considerable small than others listed in the 

references, which their sizes are less than a wavelength, compact, and suitable for 

many UWB applications. The configuration of slots type for both patches and 

feeding strip are considered as a novelty and contribution in this project. The 

geometry of the antenna implies the current courses and makes it possible to identify 

active and neutral zones in the antenna, thus it will be possible to fix which elements 

will act on each characteristic. This project also investigated the ability of slotted 

UWB antennas to reject the interference from licensed Fix Wireless Access (FWA), 

High performance local area network (HIPERLAN) and wireless local area network 

(WLAN) within the same propagation environment. Inserting a half-wavelength slot 

structure with additional small patches gap attached have resulted frequency notched 

band characteristics. The small patches gap instead of switching. The measured 

return loss, radiation patterns, and phase agree well with the simulated results. The 

antenna provides an omnidirectional pattern with the return loss less than -10 dB and 

linear in phase.  

 

 

 

 

 

 

 
Key researchers: 

 
Prof. Dr. Tharek Abdul Rahman (Project Leader) 

Dr Razali Ngah 
Ms. Yusnita Rahayu 
Mr. Khomeini Abu 

 
 

E-mail : tharek@fke.utm.my 
Tel. No. : 07-5536106 
Vote No. : 79028 

 



iv  

 

 

 

 

 

ABSTRAK 

 

 

Beberapa tahun setelah peneraju asal pada sistem wayarles jalur sangat lebar 

(UWB), sokongan penyelidikan telah ditumpukan pada reka bentuk antena UWB dan 

sistem komunikasi. Antena UWB ini sangat diperlukan dalam penyediaan 

komunikasi jalur lebar berasaskan penggunaan denyut yang sangat sempit dalam 

kiraan nano saat, meliputi jalur yang sangat lebar dalam domain frekuensi, dan 

mencakupi jarak yang sangat pendek pada kerapatan tenaga yang sangat rendah. 

Dalam projek ini, model terbaru antena UWB terselot-T, L dan U di cadangkan 

dengan mengkaji karakteristik pengagihan arus. Perilaku jalur lebar disebabkan pada 

kenyataan bahawa arus disepanjang tepian selot memperkenalkan satu resonan 

tambahan, yang mana ianya berkaitan dengan resonan tampal asas, sehingga 

menghasilkan keseluruhan karakteristik sambutan frekuensi yang sangat lebar. 

Antena-antena ini berukuran lebih kecil bila diperbandingkan dengan antena lainnya 

yang tersenarai dalam rujukan, ukurannya lebih kecil daripada satu panjang 

gelombang, padat, dan sangat sesuai digunakan untuk pelbagai aplikasi UWB. 

Konfigurasi jenis selot pada kedua tampal dan jalur suapan adalah novelty dan 

sebagai kontribusi dalam projek ini. Geometri antena mempengaruhi arah arus dan 

dengan menentukan zon aktif dan neutral pada antenna, maka elemen yang sesuai 

dapat ditentukan bagi setiap karakteristik. Projek ini juga menkaji kemampuan 

antena UWB terselot untuk menolak gangguan isyarat daripada Capaian Wayarles 

Tetap (FWA), Rangkaian Kawasan Tempatan Berprestasi Tinggi (HIPERLAN) dan 

Rangkaian kawasan Tempatan Wayarles (WLAN) yang wujud dalam kawasan yang 

sama. Kemasukan sebuah struktur selot separuh panjang gelombang dengan 

penambahan sela tampal yang kecil berjaya menghasilkan karakteristik frekuensi 

notched band. Sela tampal yang kecil ini digunakan bagi mewakili suatu suis. 

Keputusan pengujian seperti kehilangan kembali, corak sinaran dan fasa didapati 

menepati keputusan simulasi. Antena ini memberikan corak sinaran semua arah 

dengan kehilangan kembali kurang daripada -10 dB dan mempunyai sambutan fasa 

yang linar.  
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Introduction 

 

Ultra Wideband (UWB) is currently receiving special attention and is quite a 

hot topic in industry and academia. UWB short-range wireless communication is 

different from a traditional carrier wave system. UWB waveforms are short time 

duration and have some rather unique properties.  The benefits of UWB technology 

are derived from its unique characteristics that are the reasons why it presents a more 

eloquent solution to wireless broadband than other technologies. The unique 

characteristics are listed below [1]:  

 

Firstly, an inherent capability for integration in low cost, low power 

Integrated Circuit (IC) processes. UWB system based on impulse radio features low 

cost and low complexities which arise from the essentially base-band nature of the 

signal transmission. UWB does not modulate and demodulate a complex carrier 

waveform, so it does not require components such as mixers, filters, amplifiers and 

local oscillators. 

 

Secondly, UWB has an ultra wide frequency bandwidth; it can achieve huge 

capacity as high as hundreds of Mbps or even several Gbps with distances of 1 to 10 

meters [2]. Thus, the UWB is a promising technology for Wireless Personal Area 

Network (WPAN). In recent years, more interests have been put into WPAN 

technology worldwide. The future WPAN aims to provide reliable wireless 

connections between computers, portable devices and consumer electronics within a 
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short range. Furthermore, fast data storage and exchange between these devices will 

also be accomplished. This requires a data rate which is much higher than what can 

be achieved through currently existing wireless technologies.  

 

Thirdly, UWB system is extremely fine time and range solution even through 

lossy, opaque media. And fourthly, UWB system has immunity from multipaths.  

 

Fifthly, non-interfering operation with existing services. In spreading signals 

over very wide bandwidths, the UWB concept is especially attractive since it 

facilitates optimal sharing of a given bandwidth between different systems and 

applications. UWB systems are highly frequency adaptive, enabling them to be 

positioned anywhere within the RF spectrum.  This feature avoids interference to 

existing services, while fully utilizing the available spectrum. UWB systems operate 

at extremely low power transmission levels. Therefore, UWB short-range radio 

technology complements other longer-range radio technologies such as Wireless 

Fidelity (WiFi), Worldwide Interoperability for Microwave Access (WiMAX), and 

cellular wide area communications. 

 

Lastly, UWB has low probability of detection and interception. UWB 

provides high secure and high reliable communication solutions. Due to the low 

energy density, the UWB signal is noise-like, which makes unintended detection 

quite difficult. Furthermore, the “noise-like" signal has a particular shape; in contrast, 

real noise has no shape. For this reason, it is almost impossible for real noise to 

obliterate the pulse because interference would have to spread uniformly across the 

entire spectrum to obscure the pulse. Interference in only part of the spectrum 

reduces the amount of received signal, but the pulse still can be recovered to restore 

the signal. Hence UWB is perhaps the most secure means of wireless transmission 

ever previously available [3]. 

 

As with any technology, there are always applications that may be better 

served by other approaches.  For example, for extremely high data rate (10’s of 

Gigabits/second and higher), point-to-point or point-to-multipoint applications, it is 

difficult today for UWB systems to compete with high capacity optical fiber or 

optical wireless communications systems.  The high cost associated with optical fiber 
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installation and the inability of an optical wireless signal to penetrate a wall 

dramatically limits the applicability of optically-based systems for in-home or in-

building applications.  In addition, optical wireless systems have extremely precise 

pointing requirements, obviating their use in mobile environments. 

 

 

 

1.2 Research Background 

 

The UWB technology has experienced many significant developments in 

recent years. However, there are still challengers in making this technology live up to 

its full potential. One particular challenge is the UWB antenna design. UWB 

technology has had a substantial effect on antenna design.  The UWB antennas have 

to be able to transmit pulses as accurately and efficiently as possible. The spectrum 

allocated certainly requires transmitters and receivers with wideband antennas.  

 

Thorough literature survey, there are two vital design considerations in UWB 

radio systems.  One is radiated power density spectrum shaping must comply with 

certain emission limit mask for coexistence with other electronic systems [4].  

Another is that the design source pulses and transmitting/receiving antennas should 

be optimal for performance of overall systems [5].  Emission limits will be crucial 

considerations for the design of source pulses and antennas in UWB systems. 

 

The main challenge in UWB antenna design is achieving the extremely wide 

impedance bandwidth while still maintaining high radiation efficiency. By definition, 

an UWB antenna must be operable over the entire 3.1 GHz - 10.6 GHz frequency 

range.  Therefore, the UWB antenna must achieve almost a decade of impedance 

bandwidth, spanning 7.5 GHz. The high radiation efficiency is also required 

especially for UWB applications to ensure the transmit power spectral density 

requirement achieved. Conductor and dielectric losses should be minimized in order 

to maximize radiation efficiency.  High radiation efficiency is imperative for an 

UWB antenna because the transmit power spectral density is excessively low.  

Therefore, any excessive losses incurred by the antenna could potentially 

compromise the functionality of the system.   
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Next, the performance of UWB antenna is required to have a constant group 

delay.  Group delay is given by the derivative of the unwrapped phase of an antenna.  

If the phase is linear throughout the frequency range, the group delay will be constant 

for the frequency range.  This is an important characteristic because it helps to 

indicate how well a UWB pulse will be transmitted and to what degree it may be 

distorted or dispersed. The antennas required to have a non-dispersive characteristic 

in time and frequency, providing a narrow, pulse duration to enhance a high data 

throughput.  It is also a parameter that is not typically considered for narrowband 

antenna design because linear phase is naturally achieved for narrowband resonance.   

 

In addition, a nearly omni-directional radiation pattern is desirable in that it 

enables freedom in the receiver and transmitter location.  This implies maximizing 

the half power beam-width and minimizing directivity and gain.  It is also highly 

desirable that the antenna feature low profile and compatibility for integration with 

printed circuit board (PCB) [6]. 

 

A good design of UWB antenna should be optimal for the performance of 

overall system. For example, the antenna should be designed such that the overall 

device (antenna and Radio Frequency (RF) front end) complies with the mandatory 

power emission mask given by the Federal Communication Committee (FCC) or 

other regulatory bodies [6]. But not the least important, a UWB antenna is required 

to achieve good time domain characteristics. Minimum pulse distortion in the 

received waveform, is a primary concern of a suitable UWB antenna because the 

signal is the carrier of useful information. For the narrow band case, it is 

approximated that an antenna has same performance over the entire bandwidth and 

the basic parameters, such as gain and return loss, have little variation across the 

operational band.  

 

Today the state of the art of UWB antennas focuses in the microstrip, slot and 

planar monopole antennas with different matching techniques to improve the 

bandwidth ratio without loss of its radiation pattern properties [7]. The expected 

antennas are small size, omni directional patterns, and simple structure that produce 

low distortion but can provide large bandwidth [8].   
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In the past, one serious limitation of microstrip antennas was the narrow 

bandwidth characteristic, being 15% to 50% that of commonly used antenna 

elements such as dipoles, and slots [9]. This limitation was successfully removed 

achieving a matching impedance bandwidth of up 90%. To increase the matching 

impedance bandwidth ratio it was necessary to increase the size, height, volume or 

feeding and matching techniques [10]. Variety of matching techniques have been 

proposed in the literature reviews, such as the use of slot [11][12], bevel or taper at 

the bottom of patch [13], notch and partial ground plane [12]. There is a growing 

demand for small and low cost UWB antennas that can provide satisfactory 

performances in both frequency domain and time domain.  

 

The planar monopole antennas are promising antennas for UWB applications 

due to their simple structure, low profile, easy to fabricate and UWB characteristics 

with nearly omni-directional radiation patterns [6][14][15].  Planar monopole 

antennas feature broad impedance bandwidth but somewhat suffer high cross-

polarization radiation levels. The large lateral size or asymmetric geometry of the 

planar radiator causes the cross-polarized radiation. Fortunately, the purity of the 

polarization issue is not critical, particularly for the antennas used for portable 

devices [16]. There are several UWB planar antenna designs, including planar half-

disk antenna [17], planar horn antenna [18], and metal plate antenna [19], have been 

reported. 

 

Even though UWB is recommended by the FCC of United States (U.S) to 

operate with maximum in-band effective incident radiated power of -41.3 dBm/MHz 

within the band from 3.1 GHz to 10.6 GHz, there have been almost 1000 complaints 

logged against UWB deployment so far [20].  Evaluation of interference between 

Multiband Orthogonal Frequency Division Multiplexing (MB-OFDM) UWB and 

Wireless Local Area Network (WLAN) systems using a Gigahertz Transverse 

Electromagnetic (GTEM) cell has been proposed in [21]. As a result, when the 

frequencies of the MB-OFDM UWB corresponded to out-of-band radiation for 11a 

(Band #3), MB-OFDM UWM did not interfere with the WLAN system. In the other 

hand, when frequencies of the MB-OFDM UWB corresponded to in-band radiation 

for 11a (Band #4), although the interference power of MB-OFDM UWB was less 

than receiver noise, the MB-OFDM UWB systems interfered with the WLAN.   
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Evaluation of interference between Direct Sequence spread spectrum UWB 

(DS-UWB) and WLAN systems using a GTEM cell has already been presented a 

year before in [22]. Even if the UWB signal is smaller than the receiver noise of 

WLAN, the throughput characteristics deteriorate than those in case of the non-

interference [22].  Therefore, recently the consideration of UWB antennas is not only 

focused on an extremely wide frequency bandwidth, but on the ability of rejecting 

the interference from WLAN 11.a (5725 - 5825 MHz) and High Performance Local 

Area Network (HIPERLAN) (5150 - 5350 MHz) within the same propagation 

environment [23]. 

 

To avoid the interference between the UWB, WLAN and HIPERLAN 

systems, a band-notch filter in UWB systems is necessary. However, the use of a 

filter will increase the complexity of the UWB systems [24]. One of the solutions 

proposed, as far as antennas are concerned, was to design frequency notched antenna. 

Therefore, several techniques used to introduce a notched band for rejecting the 

WLAN and HIPERLAN interference have been investigated, which include such as 

inserting a half-wavelength slot structure [23][25]-[29], slitting on the edges [30]-

[31], utilizing fractal feeding structure [32], and parasitic quarter-wave patch [33] or 

parasitic open-circuit stub [34]. With the notched band characteristic, the antenna 

allows to reconfigurable its frequency that only responsive to other frequencies 

beyond the rejection bands within UWB bandwidth. 

 

 

 

1.3 Problem Statements 

 

One of the critical issues in this UWB antenna design is the size of the 

antenna for portable devices, because the size affects the gain and bandwidth greatly 

[35]. Therefore, to miniaturize the antennas capable of providing ultra wide 

bandwidth for impedance matching and acceptable gain will be a challenging task 

[5]. Planar monopole is used to reduce the size of the proposed antennas. Some 

novelty UWB planar monopole antennas are investigated in detail in order to 

understand their operations; find out the mechanism that leads to UWB 
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characteristics and to obtain some quantitative guidelines for designing of this type 

of antennas. 

 

In order to obtain the ultra wide bandwidth and omni directional radiation 

pattern, four matching techniques are applied to the proposed UWB antennas, such 

as the use of slots, the use of bevels and notches at the bottom of patch, the 

truncation ground plane, and the slotted ground plane. All these techniques are 

applied to the small UWB antenna without degrading the required UWB antenna’s 

performance. The size of slots, bevels and notches are critically affect to the 

impedance bandwidth. The distance between truncation ground plane to the bottom 

of the patch is as matching point, where it determines the resonance frequency. To 

ensure the broad bandwidth can be obtained, the proper designs on those parameters 

are required.  

 

The theory characteristic modes are used to design and optimize the proposed 

UWB antennas as well as some new designs are studied. From the study of the 

behavior of characteristic modes, important information about the resonant frequency 

and the bandwidth of an antenna can be obtained. The current behaviors of the 

antenna are investigated in order to obtain several new slotted UWB antennas. High 

radiation efficiency and linear phase are also required. 

 

A licensed Fix Wireless Access (FWA) for point to multipoint radio systems 

assigned by Malaysian Communications and Multimedia Commissions (MCMC) for 

3.4 to 3.7 GHz is considered giving a potential interference to UWB application. 

This is due to the allocation frequency for this FWA within the UWB range. Thus, 

the proposed notched antenna is not only designed to reject interference from 

WLAN, HIPERLAN but also from FWA. In order to meet the goal, the previous 

designed UWB slotted antenna is chosen as a basic type of reconfigurable slotted 

UWB antennas. This is due to the slot antennas are good candidate to meet the needs 

for UWB communication and antenna size reduction due to their compact and 

broadband. To design this reconfigurable UWB slotted antenna with three notched 

bands characteristics by using a simple structure of antenna is very challenging task. 

In this thesis, this antenna is known as reconfigurable UWB slotted antenna. The 

reconfigurability characteristic means the ability of UWB slotted antenna to reject 
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certain frequencies by using some small gaps, instead of switches, without any 

degrading the radiation pattern. The controllable slot length by the gaps is intended 

to reject the required frequencies.  

 

Finally, two types of UWB antennas have been designed and resulted in this 

thesis. One is slotted antenna type for general UWB applications. The second one is 

the reconfigurable UWB slotted antenna. This second type of antenna is used to 

reject the interference from existing wireless communication systems within the 

UWB range such as FWA, HIPERLAN, and WLAN bands.  However this is still the 

newest issue, the existing publications mostly on UWB antenna with notched bands 

on HIPERLAN/WLAN bands.  This thesis is working with an additional notched on 

FWA band in order to give contribution in UWB antenna development.   

 

 
 
1.4 Research Objective 

 

The main purpose of this research is to propose small novel types of 

reconfigurable UWB antennas.  The proposed antennas have capability to 

reconfigurable their frequency to a narrower bandwidth over UWB bandwidth (3.1 

GHz - 10.6 GHz) while excepting from interference with existing FWA, 

HIPERLAN, and WLAN bands with band notched characteristics. 

 

 

 

1.5 Research Scope and Methodology 

 

 The research scope is focused on slotted UWB antennas designs which 

provide an ultra wide bandwidth. Truncation ground plane and notches/bevels 

techniques are added to improve the impedance matching. The reconfigurability 

antennas characteristics are achieved by varying the length of slots with on/off the 

small gaps, instead of switches.  In order to achieve the objective, a number of 

activities have been identified, as outline below: 
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• Investigate characteristics of UWB antenna by means of simulation and 

numerical analysis. 

• Simulate the UWB antenna design model using antenna simulation software 
before the actual prototype built. 

• Integrate some small gaps into the proposed antenna to evaluate the 
reconfigurable characteristics performance. 

• Develop a new design prototype of reconfigurable UWB antenna. 

• Antenna performance evaluation and optimization. 
 

 

 

1.6 Thesis Outline 
 

The thesis is divided into six chapters.  Following is an introductory chapter 

that defines the importance of this research, objective, and scope. The introduction of 

UWB technology, the challenges in UWB antenna design, the UWB notched band 

characteristics and the current issues are also highlighted. The review of UWB 

applications technology is given in Chapter 2.  This chapter begins by the UWB 

history and definition of UWB signal with some international standardization on it. A 

wide variety of wideband antennas are presented as well. Some applications applied 

for this UWB technology such as communication system, radar system and 

positioning system are discussed.  With UWB techniques, it becomes feasible to fuse 

these unique capabilities into a single system.  The review of UWB antenna with 

notched band characteristics with capability to reject interference generated between 

other communication systems is presented.  Finally, overview of short pulse 

generation and link performance are discussed. 

 
The literature review examined a comprehensive background of other related 

research works and the fundamental antenna parameters that should be considered in 

designing UWB antenna, and potential technologies for physical construction given 

in Chapter 3.  Design methodology applied in this proposed UWB antenna and 

reconfigurable UWB antenna is discussed in detail. The key differences and 

considerations for UWB antenna design are also discussed in depth as several 
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antennas are presented with these considerations in mind.  Several bandwidth 

enhancement techniques such as various geometry perturbation and Genetic 

Algorithm will be highlighted in order to obtain optimization in size and 

performance.   

 

Chapter 4 elaborates on the design methodology mentioned in the previous 

sections.  Some new novelty slotted UWB antennas and reconfigurable UWB 

antennas are presented and design requirements, general strategy for the design are 

discussed in detail. By properly design the slots and gaps have provided band 

notched characteristics at 3.4 - 3.7 GHz and 5.150 - 5.850 GHz. The novelty is in 

term of the type of slots used and it is considered as a contribution in this thesis.  

 

Chapter 5 presents the results and discussion. Simulated and measured results 

are compared. The experimental verification process is explained with numerical 

analysis given. The key contributions in this thesis are highlighted. Finally, some 

recommendations on further work as well as a concluding statement are given in 

Chapter 6. 
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CHAPTER 2 

 

 

 

ULTRA WIDEBAND APPLICATIONS TECHNOLOGY 

 

 

 

2.1  Introduction 

 

Although often considered a recent breakthrough in broadband wireless 

technology, the concept of UWB dates back many decades. The early UWB systems, 

designed for the U.S military and government agencies, included such applications as 

covert (low probability of detection and intercept) radar and communication systems.  

Recent advancements in chip development have made UWB more viable for 

commercial and civilian use. Freescale Semiconductor was the first company to 

produce UWB chips in the world and its XS110 solution is the only commercially 

available UWB chipset to date [6]. It provides full wireless connectivity 

implementing DS-UWB. The chipset delivers more than 110 Mbps data transfer rate 

supporting applications such as streaming video, streaming audio, and high-rate data 

transfer at very low levels of power consumption. 

 

Contributions to the development of a field addressing UWB RF signals 

commenced in the late 1960's on time-domain electromagnetic [37] as carrier-free, 

base-band or impulse technology [38] by the pioneering contributions of Harmuth at 

Catholic University of America, Ross and Robbins at Sperry Rand Corporation and 

Paul van Etten at the USAF's Rome Air Development Center.  The Harmuth books 

and published papers, 1969 - 1984, placed in the public domain the basic design for 

UWB transmitters and receivers [39]-[45].  At approximately the same time and 

independently, the Ross and Robbins (R & R) patents, 1972 - 1987, pioneered the 
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use of UWB signals in a number of application areas, including communications and 

radar using coding schemes [46]-[53].  Ross' US Patent 3,728,632 dated 17th April, 

1973, is a landmark patent in UWB communications [42]. Van Etten's empirical 

testing of UWB radar systems resulted in the development of system design and 

antenna concepts.  In 1974, Morey designed a UWB radar system for penetrating the 

ground, which was to become a commercial success at Geophysical Survey Systems, 

Inc. (GSSI) [54]. 

 

By the early 1970s the basic designs for UWB signal systems were available 

and there remained no major impediment to progress in perfecting such systems.  

After the 1970s, the only innovations in the UWB field could come from 

improvements in particular instantiations of subsystems, but not in the system 

concept itself.  The basic components known were pulse train generators, pulse train 

modulators, switching pulse train generators, detection receivers and wideband 

antennas.  Moreover, particular instantiations of the subcomponents and 

methodologies known were avalanche transistor switches, light responsive switches, 

use of sub-carriers in coding pulse trains, leading edge detectors, ring demodulators, 

mono-stable multi-vibrator detectors, integration and averaging matched filters, 

template signal match detectors, correlation detectors, signal integrators, 

synchronous detectors and antennas driven by stepped amplitude input [38]. 

 

Through the late 1980’s, UWB technology was referred to as base-band, 

carrier free or impulse technology, as the term ultra wideband was not used until 

1989 by the U.S. Department of Defense.  Until the recent FCC allocation of the 

UWB spectrum for unlicensed use, all UWB applications were permissible only 

under a special license. The interest seems to be growing exponentially now, 

precipitated by the FCC allocation in 2002 of the UWB spectrum, with several 

researchers exploring RF design, circuit design, system design and antenna design, 

all related to UWB applications.   
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2.2 UWB Definition 

On February 14, 2002, a UWB frequency allocation has been made by the 

U.S FCC in the range from 1.99 GHz - 10.6 GHz, 3.1 GHz - 10.6 GHz, or below 960 

MHz depending on the particular application [4] and work is underway by regulatory 

bodies to achieve the same in Europe and Asia [55]. Since then, UWB technology 

has been regarded as one of the most promising wireless technologies that promises 

to revolutionize high data rate transmission and enables the personal area networking 

industry leading to new innovations and greater quality of services to the end users.  

 

The FCC has defined an UWB device as any device with a -10 dB fractional 

bandwidth, greater than 20% or occupying at least 500 MHz of the spectrum [4].  

Most narrowband systems occupy less than 10% of the center frequency bandwidth, 

and are transmitted at far greater power levels.  For example, if a radio system were 

to use the entire UWB spectrum from 3.1-10.6 GHz, and center about almost any 

frequency within that band, the bandwidth used would have to be greater than 100% 

of the center frequency in order to span the entire UWB frequency range.  By 

contrast, the 802.11b radio system centers about 2.4 GHz with an operating 

bandwidth of 80 MHz.  This communication system occupies a bandwidth of only 

1% of the center frequency. 

 

The FCC also regulated the spectral shape and maximum power spectral 

density (-41.3 dBm/MHz) of the UWB radiation in order to limit the interference 

with other communication systems.  The power spectral density is the average power 

in the signal per unit bandwidth and hence provides important information on the 

distribution of power over the RF spectrum.  The European Telecommunications 

Standard Institute (ETSI) regulations in European (EU) are expected to follow the 

FCC but with a more restrictive spectral shape, motivated by a different management 

of the available spectrum [56]-[57].  For the antenna this means that only one 500 

MHz band need to be active at a time.  The UWB spectral power density mask is 

shown in Figure 2.1. 
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From Figure 2.1, it shows the UWB spectral power density mask limited to    

-41.3 dBm by FCC and ETSI to ensure that the UWB emission levels exceedingly 

small.  The blue and red lines from that figure present the emission levels for indoor 

and handheld UWB devices defined by FCC, and the green and violet lines by ETSI. 

 

 

 

Figure 2.1: UWB spectral power density mask (FCC and ETSI) [4] [58] 

 

 

 

Table 2.1 gives the summary of emission levels for indoor and handheld 

UWB devices defined by FCC.  The emissions shall not exceed the average limits as 

shown in the table when measured using a resolution bandwidth of 1 MHz. UWB 

handheld devices are relatively small devices that do not employ a fixed 

infrastructure.  Antennas may not be mounted on outdoor structures such as the 

outside of a building or on a telephone pole.  Antennas may be mounted only on the 

handheld UWB devices.  Handheld UWB devices may operate indoors or outdoors 

[55]. 
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Table 2.1: FCC limits for indoor and handheld systems [55] 

Frequency (MHz) Indoor EIRP (dBm)  Handheld EIRP (dBm) 

960-1.610 -75.3 -75.3 

1.610-1.990 -53.3 -63.3 

990-3.100 -51.3 -61.3 

3.100-10.600 -41.3 -41.3 

Above 10.600 -51.3 -61.3 

 

 

 

The fractional bandwidth is measured at -10 dB points on either side of the 

peak emission.  If these upper and lower frequencies are represented by fH and fL, 

respectively, the fractional bandwidth (BW) and center frequency (fC) can be 

expressed as [55]: 

( ) ( )LHLH ffffBW +−= 2        (2.1) 

( ) 2LHC fff +=         (2.2) 

 

 

 

This fractional bandwidth greatly exceeds that of other radio transmitters, 

which are generally confined to a narrow frequency band allocated for a specific 

service.  As a consequence of occupying a large bandwidth, UWB devices can span a 

number of bands.  However, as the level of emissions from UWB is very low and 

below the power floor of existing frequency users, they are able to share spectrum 

with existing services.  By dividing the power of the signal across a huge frequency 

spectrum, the effect upon any frequency is below the acceptable noise floor [59], as 

illustrated in Figure 2.2. 
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Figure 2.2: Ultra wideband communications spread transmitting energy across a 

wide spectrum of frequency (Reproduced from [59]) 

 

 

 

The large transmission bandwidth, from near direct current (dc) to a few 

GHz, has as result a higher immunity to interference effects and improved multipath 

fading robustness. Another direct consequence of the large bandwidth is the 

possibility to accommodate many users, even in multipath environments.  

Furthermore, the very low frequencies have good penetration properties through 

different materials, improving the coverage of the UWB radios.   

 

UWB radio, operating with extremely large bandwidths, must coexist with 

many other interfering narrow-band signals (TV, GSM, UMTS, GPS, etc.).  In the 

same time, these narrow-band systems must not suffer intolerable interference from 

the UWB radios.  Regulatory considerations over such a wide bandwidth limit the 

radiated power.  The low transmit power levels together with the ultra-fine time 

resolution of the system can increase considerably the synchronization acquisition 

time and the complexity of the receiver. 
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2.2.1  Regulations Worldwide  

 The regulatory bodies outside U.S. are also actively conducting studies to 

reach a decision on the UWB regulations now. They are heavily influenced by the 

FCC's decision, but will not necessarily fully adopt the FCC's regulations. In Europe, 

the Electronic Communications Committee (ECC) of the Conference of European 

Posts and Telecommunications (CEPT) completed the draft report on the protection 

requirement of radio communication systems from UWB applications [60]. In 

contrast to the FCC's single emission mask level over the entire UWB band, this 

report proposed two sub-bands with the low band ranging from 3.1 GHz to 4.8 GHz 

and the high band from 6 GHz to 8.5 GHz, respectively. The emission limit in the 

high band is -41.3 dBm/MHz. 

 

In order to ensure co-existence with other systems that may reside in the low 

band, the ECC's proposal includes the requirement of Detect and Avoid (DAA) 

which is an interference mitigation technique [61]. The emission level within the 

frequency range from 3.1 GHz to 4.2 GHz is -41.3 dBm/MHz if the DAA protection 

mechanism is available. Otherwise, it should be lower than -70 dBm/MHz. Within 

the frequency range from 4.2 GHz to 4.8 GHz, there is no limitation until 2010 and 

the mask level is -41.3 dBm/MHz. The ECC proposed mask against the FCC one are 

plotted in Figure 2.3. 

 

Figure 2.3: Proposed spectral mask of ECC [61] 



18  

 

 

In Japan, the Ministry of Internal Affairs & Communications (MIC) 

completed the proposal draft in 2005 [62]. Similar to ECC, the MIC proposal has two 

sub-bands, but the low band is from 3.4 GHz to 4.8 GHz and the high band from 7.25 

GHz to 10.25 GHz. DAA protections is also required for the low band. 

 

In Korea, Electronics and Telecommunications Research Institute (ETRI) 

recommended an emission mask at a much lower level than the FCC spectral mask. 

 

Currently in Singapore the Infocomm Development Authority (IDA) permits 

UWB with a special experimental license.  The UWB Friendly Zone (UFZ) is 

located within Science Park II, amidst the research, development, and engineering 

community in Singapore [55]. 

 

The UWB proposals in Japan, Korea and Singapore against the FCC one are 

illustrated in Figure 2.4. 

 

Figure 2.4: Proposed spectral mask in Asia [61] 
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 In order to facilitate experimentation and encourage innovation, IDA issues 

trial licenses to companies permitting them operate UWB devices within the UFZ, 

subject to the emission limits given in Table 2.2.  The emissions of Table 2.2 are 

measured in a resolution of 1 MHz.  The limits are 6 dB less stringent, and have an 

expanded lower frequency band edge than what is permitted by the FCC. 

Table 2.2: UWB limits for the Singapore UFZ 

Frequency (MHz) EIRP (dBm) 

960-1.610 -75.3 

1.610-1.990 -63.3 

1.990-2.200 -61.3 

2.200-10.600 -35.3 

Above 10.600 -41.3 

 

 

 

2.3 A Brief History of UWB Antenna 

 

The demand for wireless wideband communications is rapidly increasing due 

to the need to support more users and to provide more information with higher data 

rates. Over the past few years, considerable research efforts have been put into the 

design of UWB antennas and systems for communications. These UWB antennas are 

essential for providing wireless wideband communications based on the use of very 

narrow pulses on the order of nanoseconds, covering a very wide bandwidth in the 

frequency domain, and over very short distance at very low power densities. In 

addition, the antennas required to have a non-dispersive characteristic in time and 

frequency, providing a narrow, pulse duration to enhance a high data throughput. A 

wide variety of antennas are suitable for use in UWB applications.  Some of these are 

described elsewhere in a historical survey [63]. 
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Before the decade 1990‘s, all proposed UWB antennas were based on general 

volumetric and partly on planar structures [64]. Basic wideband antenna structures 

have been investigated in 1939. Carter investigated biconical antenna and conical 

monopole by incorporating a tapered feed. Carter was among the first to take the key 

step of incorporating a broadband transition between a feed-line and radiating 

elements [65]-[66].  

 

Stratton and Chu [67]-[68] proposed the spheroidal antenna in 1941. The 

spheroidal antenna was obtained by a straightforward solution of Maxwell’s 

equation.  The zero reactance occurs when the antenna length is slightly less than a 

half wavelength for long thin wires. However, for thicker wires zero reactance may 

occur when the antenna length is greater than a half wavelength, thus makes the 

impedance curve broader and wider bandwidth. 

 

In 1943 Schelkunoff proposed a biconical antenna, which presented 

analytical formulas for antenna impedance characteristics for several antenna shapes. 

The biconical antenna concept is based on the fact that thicker wire provides wider 

impedance bandwidth that that for a thin wire dipole antenna [69].  If the biconical 

antenna is flared out to infinity called as infinite biconical antenna, while the finite 

biconical antenna is formed by finite sections of the two infinite cones. This antenna 

is still widely used for wideband antenna applications and its variations, including 

the discone antenna and the bow-tie antenna, are popular antennas for wideband 

applications.  

 

In 1947, a wideband antenna concept was proposed by the staff of the U.S. 

Radio Research Laboratory at Harvard University [70]. The concept of a wideband 

antenna evolves from a transmission line that gradually diverges while keeping the 

inner and outer conductors ratio constant. Several variations of the concept were 

developed, such as the teardrop antenna, sleeve antenna and inverted trapezoidal 

antenna. 
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However, those antennas mentioned above are large, non-planar and 

physically obtrusive, and therefore ruling them out as a possibility for use with small 

UWB integrated electronics [71]. Currently modern telecommunication systems 

require antennas with wider bandwidth and smaller dimensions than conventionally 

possible. 

 

Comparison study between the UWB antennas with conventional antennas 

has been done in [8]. In that paper, the authors described a study of conventional 

antennas and why they are not suitable for a UWB system. One of the simplest 

practical resonant antennas is the dipole antenna.  The antenna can only radiate 

sinusoidal waves on the resonant frequency.  Thus, the dipole antennas are not 

suitable for UWB system.  On the other hand, a non-resonant antenna can cover a 

wide frequency range, but special care must be taken in antenna design to achieve 

sufficient antenna efficiency.  Moreover, the physical size of available non-resonant 

antenna is inappropriate for portable UWB devices.  Even with appropriate size and 

sufficient efficiency, until now non-resonant antennas have not been suitable for 

UWB systems [8]. 

 

In 1950’s, the spiral antennas were introduced in the class of frequency 

independent antennas. These Antennas whose mechanical dimensions are short 

compared to the operating wavelength is usually characterized by low radiation 

resistance and large reactance [72]. Due the effective source of the radiated fields 

varies with frequency, these antennas tend to be dispersive. The equiangular spiral 

and archimedean spiral antennas are the most well known spiral antennas. Spiral 

antennas have about a 10:1 bandwidth, providing circular polarization in low profile 

geometry [73]. 

 

Transverse electric magnetic (TEM) horns and frequency-independent 

antennas feature very broad well-matched bandwidths and have been widely studied 

and applied [74]–[80]. However, for the log-periodic antennas structures, such as 

planar log-periodic slot antennas, bidirectional log-periodic antennas, and log-

periodic dipole arrays, frequency-dependant changes in their phase centers severely 

distort the waveforms of radiated pulses [81]. Biconical antennas are the earliest 

antennas used in wireless systems relatively stable phase centers with broad well-
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matched bandwidths due to the excitation of TEM modes. The cylindrical antennas 

with resistive loading also feature broadband impedance characteristics [82]–[84]. 

However, the antennas mentioned above are seldom used in portable devices due to 

their bulky size or directional radiation, although they are widely used in 

electromagnetic measurements [16]. 

 

In 1982, R.H. Duhamel invented the sinuous antenna, which provides dual 

linear polarization plus wide bandwidth in a compact, low profile geometry [85]. The 

sinuous antenna is more complicated than the spiral antenna. However, it provides 

dual orthogonal linear polarizations so that it can be used for polarization diversity or 

for transmit/receive operation. 

 

From 1992, several microstrip, slot and planar monopole antennas with 

simple structure have been proposed [14][86]-[89]. They produce very wide 

bandwidth with a simple structure such as circular, elliptical or trapezoidal shapes. 

The radiating elements are mounted orthogonal to a ground plane and are fed by a 

coaxial cable. The large ground plane mounted orthogonal to the patch made these 

antennas bulkier and are difficult to fit into small devices. On the other hand, 

research works on monopole and dipole UWB antennas in radiation and reception 

mode for some set of operation conditions including traveling and standing wave of 

exciting and induced currents in antenna was also reported in [90].  Some theoretical 

and experimental generalized data are obtained.  The obtained theoretical is the more 

adequate approach to estimate performances of the UWB antennas in contrast to 

frequency domain technique due physical nature of solving problems. 

 

A novel UWB antenna with combination of two antenna concepts: a slot-line 

circuit board antenna and a bowtie horn were introduced in 1992 [11].  These two 

antenna concepts are put together to form a novel antenna type that is wide band with 

easily controllable E- and H- plane beam-widths.  The bowtie horn is known for its 

broadband radiation pattern; whereas, the slot-line antenna provides a broadband and 

balanced feed structure. However, a broadband balun is needed for the transition 

between the microstrip and slotline transmission line. The microstrip and slotline are 
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on opposite sides of the substrate. Proper design of broadband balun is crucial to 

improve the antenna bandwidth.  

 

In 1998, Guillanton et al [13] proposed a new balanced antipodal vivaldi 

antenna for UWB application. The author extended the tapers of the balanced 

antipodal vivaldi to make the vivaldi antenna works as a dipole in lower frequency 

where the slot can not radiate to extend low frequency limit. However, the bandwidth 

of the antenna is limited by the transition from the feed line to the slot line of the 

antenna.  

 

In 1999, the Foursquare antenna was invented and patented by Virginia Tech 

Antenna Group (VTAG). Even though this antenna does not offer as much 

bandwidth as other elements, it has its unique characteristics such as unidirectional 

pattern, dual polarization, low profile and compact geometry [91]-[92]. The compact 

geometry of the Foursquare antenna is one of a desirable feature for wide scan, 

phased array antenna. 

 

In 2003, the trend in UWB antenna was to design notched band antennas 

[25]. This antenna made insensitive to particular frequencies. This technique is useful 

for creating UWB antennas with narrow frequency notches, or for creating multi-

band antenna. Since then, many researchers extended their research to investigate the 

possibility interference between UWB system and existing wireless communication 

systems such as HIPERLAN/WLAN systems. The commonly technique used is 

adding a half wavelength slot to the patch antenna. The slot is intended to reject the 

required frequencies [24]-[34]. 

 

In 2004, a new UWB antenna consisting of a rectangular patch with two 

steps, a single slot on the patch and a partial ground plane has been proposed in [12]. 

This design provides a quasi-omnidirectional UWB antenna with group delay ripple 

less than 0.5 ns. The techniques used in this paper are applied as a guideline in the 

design of proposed UWB antenna in this thesis. The extensive investigation on the 

effect of slot to the impedance bandwidth has been done since this issue did not 
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discussed in detail. Other research projects on UWB antenna have been reported in 

[6][71][8][15][5]. 

 

In 2007, evaluation of interference between DS-UWB and WLAN using a 

GTEM cell has been proposed in [22]. In 2008, the researchers extend their research 

to evaluate the interference between MB-OFDM UWB and WLAN. As a result, even 

if the UWB signal smaller than the receiver noise of WLAN the interference still 

exist.  Until 2008, hundreds of paper presenting UWB antenna design and 

development are available in many international journals and conferences and some 

of them as listed in this thesis’ references. 

 

 

 

2.4 Application of UWB Technology 

UWB is the leading technology for freeing people from wires, enabling 

wireless connection of multiple devices for transmission of video, audio and other 

high bandwidth data. Designed for short range, WPAN, it is used to relay data from a 

host device to other devices in the immediate area (up to 10 m or 30 feet). 

 

Recent years, rapid developments have been experimented on the technology 

using UWB signals.  UWB technology offer major enhancements in three wireless 

application areas: communications, radar and positioning or ranging.  UWB 

technology can be delivered also over wire lines and cables such as cable television 

(CATV) application.  Each of these applications illustrates the unique value of UWB 

[1]. 

 

 

2.4.1 Communication Systems 

Using UWB techniques and the available large RF bandwidths, UWB 

communication links has become feasible.  The exceptionally large available 

bandwidth is used as the basis for a short-range wireless local area network with data 
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rates approaching gigabits per second.  This bandwidth is available at relatively low 

frequencies thus the attenuation due to building materials is significantly lower for 

UWB transmissions than for millimeter wave high bandwidth solutions.  By 

operating at lower frequencies, path losses are minimized and the required emitted 

power is also reduced to achieve better performance.   

 

UWB radios operate in the presence of high levels of interference by trading 

data rate for processing gain.  The attributes of low emitted power and wide signal 

bandwidth result in a very low spectral power density of the UWB signal.  This 

means that UWB radios operate in the same spectrum space as narrowband radios on 

a non-interfering basis.  Computer peripherals offer another fitting use of UWB, 

especially when mobility is important and numerous wireless devices are utilized in a 

shared space.  A mouse, keyboard, printer, monitor, audio speakers, microphone, 

joystick, and PDA are in wireless, all sending messages to the same computer from 

anywhere in the given range [55]. 

UWB also is used as the communication link in a sensor network.  A UWB 

sensor network frees the patient from the tangle of wired sensors.  Sensors are being 

used in medical situation to determine pulse rate, temperature, and other critical life 

signs.  UWB is used to transport the sensor information without wires, but also 

function as a sensor of respiration, heart beat, and in some instance for medical 

imaging. 

UWB pulses are used to provide extremely high data rate performance in 

multi-user network applications.  These short duration waveforms are relatively 

immune to multipath cancellation effects as observed in mobile and in-building 

environments.  Multipath cancellation occurs when a strong reflected wave arrives 

partially or totally out of phase with the direct path signal, causing a reduced 

amplitude response in the receiver.  With very short pulses, the direct path has come 

and gone before the reflected path arrives and no cancellation occurs.  As a 

consequence, UWB systems are particularly well suited for high-speed multimedia, 

mobile wireless applications.  In addition, because of the extremely short duration 

waveforms, packet burst and time division multiple access (TDMA) protocols for 

multi-user communications are readily implemented [38].   
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2.4.2 Radar Systems 

For radar applications, these short pulses provide very fine range resolution 

and precision distance and positioning measurement capabilities.  The very large 

bandwidth translates into superb radar resolution, which has the ability to 

differentiate between closely spaced targets.  This high resolution is obtained even 

through lossy media such as foliage, soil and wall and floor of the buildings.  Other 

advantages of UWB short pulses are immunity to passive interference (rain, fog, 

clutter, aerosols, etc) and ability to detect very slowly moving or stationary targets 

[37].  UWB antennas arrays are especially important, to have both fine range and 

angular resolution in radars. 

In radar cross-section (RCS) range, a single UWB antenna replaces a large set 

of narrow band antennas that are normally used to cover the whole frequency band of 

interest.  UWB signals enable inexpensive high definition radar.  Radar will be used 

in areas currently unthinkable such as; automotive sensors, smart airbags, intelligent 

highway initiatives, personal security sensors, precision surveying, and through-the 

wall public safety application [55]. 

Operation of vehicular radar in the 22 to 29 GHz band is permitted under the 

UWB rules using directional antennas on automobiles.  These devices are able to 

detect the location and movement of the objects near a vehicle, enabling features 

such as near collision avoidance, improved air bag activation, and suspension 

systems that better respond to road conditions [55]. 

 

 

2.4.3 Positioning Systems 

For Global Positioning System (GPS), location and positioning require the 

use of time to resolve signals that allow position determination to within ten of 

meters.  Greater accuracy is enhanced with special techniques used.  Since there is a 

direct relationship between bandwidth and precision, therefore increasing bandwidth 

will also increase positional measurement precision, with UWB techniques 
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extremely fine positioning becomes feasible, e.g., sub -centimeter and even sub-

millimeter [38].  In satellite communications where wide band feeds save space and 

weight by supporting many communication channels with just one antenna.   

The architectures for UWB position-determination systems would resemble 

traditional systems, e.g. multi-alterations like GPS or radio ranging like the military’s 

Enhanced Position Location and Reporting System (EPLRS).  Having relatively low 

frequency of operation, this type of system has the potential to work within buildings 

with minimal attenuation of the signal. 

With UWB techniques, it becomes feasible to fuse these unique capabilities 

into a single system.  Thus, it is possible to create communications systems in which 

position is determined to within less than a centimeter.  Moreover, it is possible to 

build radars (proximity sensors) that communicate simultaneously.  Since UWB 

exhibits all of these characteristics while allowing spectrum bandwidths to be re-use 

and maintain that little or no interference to be generated between other 

communication systems.  Therefore, the emission of UWB will greatly boost the 

performance of intrusion detection radar precision geo-location systems, proximity 

fuses and secure ground communications for troops which far outweigh the impact of 

UWB may have on other systems. 

 

 

2.4.4 UWB over Wires 

UWB technology is also delivered over wire lines and cables.  This could 

effectively double the bandwidth available to CATV systems without modification to 

the existing infrastructure.  Over wire technology for coaxial cable provide up to 1.2 

Gbps down-stream and up to 480 Mbps upstream of additional bandwidth, at low 

cost, on differing CATV architectures.  The wire-line UWB technology does not 

interfere with or degrade television, high speed internet, voice or other services 

already provided by the CATV infrastructure [55].   
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2.5  Short-Pulse Generation 

UWB technology involves the radiation, reception and processing of very wide 

bandwidth radio frequency emissions.  The main reason for such high bandwidths is 

that UWB devices send out tiny bursts of radio signals over many frequencies.  Data 

goes out in millions of pulses per second and is re-assembled by a receiving UWB 

device.  These bursts represent from one to only a few cycles of an RF carrier wave.  

The resultant waveforms are extremely broadband, it is often difficult to determine an 

actual RF center frequency thus, the term "carrier-free".  Most other wireless 

technologies use a single radio frequency carrier.   

In general, UWB radio systems transmit and receive single band (SB) or 

multi-band (MB) pulses.  SB based, employing one single transmission frequency 

band, and MB based, employing two or more frequency bands, each with at least 500 

MHz bandwidth.   

In the SB solution, the UWB signal is generated using very short, low duty-

cycle, baseband electrical pulses with appropriate shape and duration.  Due to the 

carrier-less characteristics, no sinusoidal carrier to raise the signal to a certain 

frequency band, these UWB systems are also referred to as carrier-free or impulse 

radio (IR-UWB) communication systems [93].  Such systems are capable of 

providing low system complexity and low cots because of their direct transmission 

and reception of pulsed signals and the least RF devices in their front-ends as against 

conventional narrow-band radio systems [5]. 

The MB UWB systems is implemented carrier less (different pulse 

shapes/lengths are used according to the frequency band) [36] or carrier based 

(multi-carrier like) [94] known as UWB-OFDM. In UWB-OFDM bandwidth is split 

into many sub-bands applying communication techniques well-known from 

narrowband systems. 

The requirements for UWB antennas can vary for different schemes. In the 

multiband scheme, the consistent or flat gain response of the UWB antennas is more 

important than a constant group delay or a linear phase response, which is conversely 

more important in the single band scheme. Therefore, the performance of UWB 
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antennas can be assessed in terms of the system transfer function and group delay 

together with conventional frequency-domain parameters such as return loss, gain, 

radiation patterns, and polarization matching path loss as well as the time-domain 

parameters such as pulse waveforms, and fidelity [16]. 

In the IR UWB solutions, typically the radiated pulse signals are generated 

without the use of local oscillators or mixers, thus potentially a simpler and cheaper 

construction of the transmitter (TX) and receiver (RX) is possible, as compared to 

the conventional narrow-band systems.  The characteristics of the pulse used (shape, 

duration), determine the bandwidth and spectral shape of the UWB signals.  The 

most common pulse shapes used in IR-UWB are: Gaussian monocycle (and its 

derivatives) and Hermitian pulses [95].   

The impulse radio technology has been widely used in radar applications due 

to its spatial resolution, detectable material penetration, easy target detection and 

feature extraction and low probability of intercept signals [96]-[98].  Military and 

government multi-user networking and high precision localization applications rely 

on the UWB communication systems [99].   

The basic properties of the impulse radio systems make the UWB technology 

ideal candidate also for commercial, short-range, low power, low cost indoor 

communication systems such as WLAN and WPAN [100]-[102].   

 

 

2.6  UWB Link Performance 

 As with narrowband antennas, the link behavior of UWB antennas in free 

space is governed by Friis’s Law [79]: 
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where  PRX is the received power, PTX is the transmitted power, GTX is the transmit 

antenna gain, GRX is the receive antenna gain, λ is the wavelength, f is the frequency, 

c is the speed of light, and r is the range between the antennas.  Friis’s Law depends 

on frequency, power and gain will be functions of frequency.  Thus, in the UWB 

case, Friis’s Law must be interpreted in terms of spectral power density: 
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where GTX(f) must be the peak gain of the antenna in any orientation.  Since 

regulatory limits are defined in terms of EIRP, PTX (f) GTX(f) to be constant and as 

close to the regulatory limit as a reasonable margin of safety ( Typically 3 dB) will 

allow [103].  Similarly, this power gain product must roll-off so as to fall within the 

skirts of the allowed spectral mask. 

 

 Note the dependence of the received power on the inverse frequency squared.  

Colloquially, this (λ/4πr)
2
 or (c/4πrf)

2
 variation of the signal power is referred to as 

path loss.  The greater the range r, the larger the (4πr)
2
 surface area over which a 

signal is spread and thus the weaker the captured signal.  This is more a diffusion of 

the signal energy than a loss.   

 

 Antenna gain G is defined in terms of antenna aperture A as: 
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This antenna aperture is the effective area of the antenna, a measure of how 

big a piece of an incoming wave front an antenna can intercept.  For directive, 

electrically large antennas, antenna aperture tends to be comparable to the physical 

area.  For omni directional small element antennas, the antenna aperture may actually 

be significantly larger than the antennas’s physical area.  This follow from the ability 

of electromagnetic waves to couple to objects within about λ/2π. 

 

 

2.7    Summary 

 

In this chapter, a brief history of UWB antenna technology has been reviewed. 

From the literature reviews, the UWB antenna concept has been investigated since 

many decades. The FCC released the regulations of UWB technology for 

commercial purposed since 2002. The standardizations or regulation applied for this 

technology in Europe and Asia with their specific requirements is also presented in 

detail.  These regulations are used as guidelines for research work. The frequency 

bands were allocated based on certain applications.  Some applications with their 

signal characteristics and performance link are discussed. Overview of UWB short 

pulse and link performance are also given. The contents of this chapter have been 

published as a full paper in the fifth international conference on wireless and optical 

communication networks (WOCN 2008). 
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CHAPTER 3 

 

 

 

ULTRA WIDEBAND ANTENNA DESIGN METHODOLOGY 

 

 

 

3.1 Introduction 

 

For many years, the idea of an UWB antenna that would allow stable pattern 

control over many frequency decades seemed elusive at the best.  UWB antennas 

require the phase center and voltage standing wave ratio (VSWR) to be constant 

across the whole bandwidth of operation.  A change in phase center may cause 

distortion on the transmitted pulse and worse performance at the receiver.  The 

antennas are significant pulse-shaping filters.  Any distortion of the signal in the 

frequency domain (filtering) causes distortion of the transmitted pulse shape, thereby 

increasing the complexity of the detection mechanism at the receiver [104]. As 

discussed in Chapter 1, monopole antennas match most these characteristics 

representing the starting point of the modern research on broadband antenna [14]. 

Accordingly, many techniques to broaden the impedance bandwidth of small 

antennas and to optimize the characteristics of broadband antennas have been widely 

investigated. Detail discussion on various bandwidth enhancement techniques will 

further examined in section 3.3. 

 

The reduction in antenna size presents various problems due to the 

performance penalties in antenna characteristics, such as impedance, efficiency, and 

bandwidth. Small antennas are defined as those which have smallness in terms of 

size, wavelength, and function, and they are divided into four categories [105]. The 

first is electrically small antennas, which have a very small size compared to the 
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wave length (λ). The second is physically constrained small antennas, which are not 

necessary electrically small, but are shaped in such a way that considerable size 

reduction is achieved in one plane. The third is physically small antennas, which 

have dimensions regarded as small in a relative sense.  The last is functionally small 

antennas, which are antenna systems that achieved additional functions without 

increasing size [105].  

 

In this thesis, the proposed slotted UWB antennas meet those four categories 

as a small antenna. Their sizes are less than a wavelength, compact size in one plane, 

considerable smaller size compared to the antennas sizes in the references listed 

[12][16][106][107]-[108][109]-[111][112], and suitable for many UWB applications. 

Comparison in terms of antenna sizes between the proposed antennas and several 

UWB antennas listed in the references has been done. Those proposed antennas 

originate from conventional rectangular monopole and are realized by adding slots 

for both patch and feeding strip. 

 

In order to understand the challenges that UWB provides to antenna’s 

designer, a comprehensive background outlining several characterizing antenna 

parameters will be presented.  Next, a clear description of various bandwidth 

enhancement techniques that required in the design of UWB antennas is presented.  

Some related research works are reviewed as well. Several techniques that employed 

in the design reconfigurable UWB antenna with band notched characteristic will be 

further discussed.  Fundamental antenna parameters must be fully defined and 

explained before a thorough understanding of antenna requirements for a particular 

application can be achieved. 

 

 

 

3.2  Fundamental Antenna Parameter 

An antenna is a transducer that converts guided electromagnetic energy in a 

transmission line to radiate electromagnetic energy in free space. The fundamental 

principles of an antenna design are based on electromagnetic field theory.  An 

antenna working condition depends on the antenna parameters.  These factors will 
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affect the selection of an antenna.  Among the most fundamental antenna parameters 

are radiation pattern, impedance bandwidth, directivity, efficiency and gain.  Other 

characterizing parameters that will be discussed are field region, polarization and 

dispersion.  All of the aforementioned antenna parameters are necessary to fully 

characterize an antenna and determine whether an antenna is optimized for a certain 

application. 

 

 

3.2.1  Radiation Pattern  

One of the most common descriptors of an antenna is its radiation pattern.  

Radiation pattern can easily indicate an application for which an antenna will be 

used. Cell phone use would necessitate a nearly omnidirectional antenna, as the 

user’s location is not known.  Therefore, radiation power should be spread out 

uniformly around the user for optimal reception.  However, for satellite applications, 

a highly directive antenna would be desired such that the majority of radiated power 

is directed to a specific, known location.   

 

A radiation pattern or antenna pattern is a graphical representation of the 

radiation (far field) properties of an antenna.  Two most important measurements are 

the E-plane and H-plane patterns.  Three dimensional radiation patterns are measured 

on a spherical coordinate system; the x-z plane (θ = 0°) usually indicates the 

elevation plane, while the x-y plane (θ = 90°) indicates the azimuth plane.  Typically, 

the elevation plane will contain the electric-field vector (E-plane) and the direction of 

maximum radiation, and the azimuth plane will contain the magnetic-field vector (H-

Plane) and the direction of maximum radiation shown in Figure 3.1 [71]. 
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Figure 3.1: Dipole model for simulation and simulated 3D radiation pattern [71] 

 

 

 

Figure 3.1 illustrates a half-wave dipole and its three dimensional radiation 

pattern.  The gain is expressed in dBi, which means that the gain is referred to an 

isotropic radiator.  It can be seen quite clearly in Figure 3.1 that the maximum 

radiation power occurs along the θ = 90° plane, or for any varying in the azimuth 

plane.  The nulls in the radiation pattern occur at the ends of the dipole along the z-

axis (or at θ = 0° and 180°).   

 

The power received at a point by a receiving antenna is a function of the 

position of the receiving antenna with respect to the transmitting antenna.  The graph 

of the received power is at a constant radius from the transmitting antenna is called 

the power pattern of the antenna, which is the spatial pattern.  The spatial pattern of 

the electric (or magnetic field) is called the field pattern.  A cross section of this field 

pattern in any particular plane is called the radiation pattern in that plane [113].  A 

typical antenna power plot is shown in Figure 3.2 as a polar diagram and a 

rectangular plot.  It consists of several lobes such as main lobe, major lobe or main 

beam. This lobe contains the direction of maximum radiation [114]. 
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Figure 3.2: Representation plots of the normalized radiation pattern of a microwave 

antenna in (a) polar form and (b) rectangular form [71] 

 

 

 

3.2.2  Field Region 

 

 The space surrounding an antenna is subdivided into three regions (or zones).  

They are respectively termed as reactive near-field region, radiating near-field 

(Fresnel) region and far-field (Fraunhofer) region as shown in Figure 3.3.  The 

general characteristics of the field distributions in each region can be established, 

although the boundaries of the regions are not defined precisely. 

 

 Reactive near-field region: the region immediately surrounding the antenna 

where the field patterns change rapidly with distance and radiate both energy and 

reactive energy, which oscillates towards and away from the antenna.   
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Figure 3.3: Field regions of antenna  

 

 

 

Near- field (Fresnel) region: the region further away from the reactive near 

field region where only the radiating energy is present, resulting in a variation of 

power with direction which is dependent of distance.  These regions are 

conventionally divided at a radius R, within this radius the zone is known as the 

near-field or Fresnel region [115]. 

 

Far-Field (Fraunhofer) region: this region lies beyond the near field region 

where waterfronts resemble very much like spherical waves, so that only the power 

radiated in a particular direction is of importance.  In most applications, the power 

radiated from an antenna is measured from this region [115]. 
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3.2.3  Directivity, Efficiency and Gain 

 

 Directivity is how much an antenna concentrates energy in one direction in 

preference to radiation in other directions.  It is equal to its power gain if the antenna 

is 100% efficient, which means that it is a perfect antenna that radiates equally in all 

directions.  This antenna is called an isotropic radiator.  Power gain is expressed 

relative to a reference such as isotropic radiator or half-wavelength dipole.  Since all 

real antennas will radiate more in some directions than in others, therefore the gain is 

the amount of power that can achieve in one direction at the expense of the power 

lost in the others [63].  Gain is always related to the main lobe and is expressed in 

dBi or dBd. 

 

The antenna efficiency takes into consideration the ohmic losses of the antenna 

through the dielectric material and the reflective losses at the input terminals.  Reflection 

efficiency and radiation efficiency are both taken into account to define total antenna 

efficiency.  Reflection efficiency, or impedance mismatch efficiency, is directly 

related to the S11 parameter (Γ).  Reflection efficiency is indicated by er, and is 

defined mathematically as follows: 

  

[ ]( )2
1 Γ−=re                   (3.1) 

 

 

The radiation efficiency takes into account the conduction efficiency and 

dielectric efficiency, and is usually determined experimentally with several 

measurements in an anechoic chamber.  Radiation efficiency (erad) is determined by 

the ratio of the radiated power, Prad to the input power at the terminals of the antenna, 

Pin: 
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rad
rad

P

P
e =                   (3.2) 

 

Total efficiency is simply the product of the radiation efficiency and the 

reflection efficiency.  Reasonable values for total antenna efficiency are within the 
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range of 60% - 90%, although several commercial antennas achieve only about 50% 

- 60% due to inexpensive, lossy dielectric materials such as FR4. 

 

 The antenna gain measurement is linearly related to the directivity 

measurement through the antenna radiation efficiency.  Gain measurement is 

typically misunderstood in terms of determining the quality of an antenna.  A 

common misconception is that the higher the gain, the better the antenna.  This is 

only true if the application requires a highly directive antenna.  Since gain is linearly 

proportional to directivity, the gain measurement is a direct indication of how 

directive the antenna is (provided the antenna has adequate radiation efficiency). 

 

 

 

3.2.4  Impedance Bandwidth  

 

The Institute of Electrical and Electronic Engineers (IEEE) standard [116] 

defines the bandwidth of an antenna as “the range of frequencies within which the 

performance of the antenna, with respect to some characteristics, conforms to a 

specific standard.” Usually the bandwidth is characterized by impedance bandwidth. 

 

The impedance bandwidth indicates the bandwidth for which the antenna is 

sufficiently matched to its input transmission line such that 10% or less of the 

incident signal is lost due to reflections.  Impedance bandwidth measurements 

include the characterization of the VSWR and return loss throughout the band of 

interest. 

 

The impedance of an antenna is the impedance at the antenna terminals with 

no load attached, impedance may be defined as the ratio of the voltage to current at 

the antenna terminals or the ratio of the appropriate components of electric and 

magnetic fields at a point.  Maximum power transfer can only be achieved when the 

impedance of the antenna is matched to those of the load, which involve complex 

conjugate of the load impedance.  Power reflected at the terminals of the antenna is 

the main concern related to impedance matching. 
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Impedance matching has been particularly difficult to achieve in UWB 

antennas, since its impedance has to remain constant over a wide spectrum of 

frequencies.  A good match can be achieved with careful design and employing 

appropriate mechanisms, such as resistive loading [115].  A good impedance match 

is indicated by a return loss greater than 10 dB. 

 

VSWR is a measure of impedance mismatch between the transmission line 

and its load.  The higher the VSWR, the greater is the mismatch.  The minimum 

VSWR that corresponds to a perfect impedance match is unity [115].  The typically 

desired value of VSWR to indicate a good impedance match is 2.0 or less.  Most 

radio equipment is built for an impedance of 50-ohm. 

 

 

 

3.2.5  Polarization 

 

Antenna polarization indicates the polarization of the radiated wave of the 

antenna in the far-field region as shown in Figure 3.4.  The position and direction of 

the electric field with reference to the earth’s surface or ground determines wave 

polarization.  In general, the electric field is the same plane as the antenna's radiator.  

Horizontal polarization is the electric field parallel to the ground.  Vertical 

polarization is the electric field perpendicular to the ground.  There is one special 

polarization known as Circular polarization.  As the wave travels it spins to cover 

every possible angle.  It can either be right-handed or left-handed circular 

polarization depending on which way it is spinning.  Another common type of 

polarization is elliptical, which is a cross between linear (horizontal or vertical) and 

circular polarization. 

 



41  

 

 

 

 

Figure3.4: Some wave polarization states where the wave is approaching 

 

 

 

3.2.6  Dispersion and Non-Dispersion 

 

 Traditionally, antennas are evaluated according to a few basic parameters 

such as gain and return loss (matching).  For typical narrowband antennas, these 

parameters are very little across the operational band [117].  The extension to UWB 

antennas, gain and return loss generally vary with frequency, these parameters may 

be treated as functions of frequency [117].  Even though an antenna’s gain may 

appear well behaved, if the phase center of an antenna moves as a function of 

frequency, or as a function of look angle, then an antenna will radiate a mangled and 
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dispersed waveform.  Then UWB system must compensate for these differences.  

This compensation may be difficult and resources intensive.   

 

The half-wave dipole is a commonly used antenna in carrier based systems. 

However, when a half-wave dipole pair is used for transmitting and receiving UWB 

signals, it is very avoid the severe ringing and dispersion problems. These are typical 

problems using narrow-band antenna to transmit and receive UWB pulses [118].  

 

A log periodic antenna is an example of a dispersive antenna [103]. The log 

periodical antenna is actually a combination of dipole antennas with different lengths 

[118].  A smaller scale portion radiates high frequency components and a larger scale 

portion radiates lower frequency components of a signal.  Because the phase center 

moves as a function of a frequency, frequency independent antennas radiate 

dispersed signals.  The dispersion is a problem for multi-band systems as well as 

those where a radiated signal occupies the entire band [117].  This phase variation 

may have a serious impact on UWB antenna performance.  The best way to obtain 

quick qualitative assessment of dispersion is to look at the time domain 

electromagnetic field signal emitted by an antenna.  In addition, a UWB antenna is 

preferentially non-dispersive, having a fixed phase center.   

 

All of the fundamental parameters described must be considered in designing 

antennas for any radio application, including UWB.  However, there are additional 

challenges for UWB.  

 

 

 

3.3 UWB Antenna Design Methodology 

 

In order to fulfill the UWB antenna requirements, various bandwidth 

enhancement techniques for planar monopole antennas have been developed during 

last two decades. The recent trends in improving the impedance bandwidth of small 

antennas can be broadly divided into the following categories [119], [16], [6], the 

first category is the leading of all categories in numbers and varieties. By varying the 
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physical dimensions of the antenna, the frequency and bandwidth characteristics of 

the resulting UWB pulse could be adjusted [37]. 

 

 

 

3.3.1 Various Geometries and Perturbations 

 

Planar monopoles with a huge number of different geometries have been 

numerically characterized [16]. Many techniques to broaden the impedance 

bandwidth of planar monopole antennas and to optimize the characteristics of these 

antennas have been widely investigated. Among all these techniques, the beveling 

technique was reported to yield maximum bandwidth. Various geometries and 

perturbations are used to introduce multiple resonances as well as input impedance 

matching. The input impedance is also extremely dependent on the feeding gap 

configuration [120]. 

 

Beveling the bottom edge of the radiating element has been demonstrated to 

shift upward significantly the upper edge frequency when properly designed 

[106][35][121][123]. The optimization of the shape of the planar antenna especially 

the shape of the bottom portion of the antenna, improve the impedance bandwidth by 

achieving smooth impedance transition [16]. In fact, this part of the radiator results to 

be very critical for governing the capacitive coupling with the ground plane.  Any 

reshaping of this area strongly affects the current path [106]. A modal study of four 

common planar monopole geometries has been performed in [120].  The election and 

beveling angle is critical, as it determines the matching of the mode.  

 

The patch radiator may be slotted to improve the impedance matching, 

especially at higher frequency. The slots cut from the radiators change the current 

distribution at the radiators so that the impedance at the input point and current path 

change [16]. A notch is cut from radiator to reduce the size of the planar antenna 

[35]. 

 

Adding a strip asymmetrically at the top of the radiator can also reduce the 

height of the antenna and improve impedance matching [124]. 
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An offset feeding point has been used in order to excite more modes and 

consequently improving the impedance bandwidth [122]. By optimizing the location 

of the feed point, the impedance bandwidth of the antenna will be further widened 

because the input impedance is varied with the location of the feed point [122].  

 

Moreover, other strategies to improve the impedance bandwidth which do not 

involve a modification of the geometry of the planar antenna have been investigated. 

Basically, these strategies consist of adding a shorting post to the structure or using 

two feeding points to excite the antenna [120]. A shorting pin is also used to reduce 

the height of the antenna [125]. In [106], the shorting pin inserted to the antenna that 

provides a broad bandwidth has been investigated. A dual feed structure greatly 

enhanced the bandwidth particularly at higher frequencies [126]. By means of 

electromagnetic coupling (EMC) between the radiator and feeding strip, good 

impedance matching can be achieved over a broad bandwidth [127].  

 

The use of double feeding configuration to the antenna structure is to enforce 

the vertical current mode, whereas it prevents other modes such as horizontal and 

asymmetrical current modes from being excited, which degrade the polarization 

properties and the impedance bandwidth performance of the antenna [107[128]-

[130]. The double feeding gives a significant improvement of the vertical current 

distribution resulting in better matching notably over the upper-band part [108]. The 

matching of this upper frequency band is mainly governed by two parameters: the 

distance between the two monopole ports and the height between the monopole and 

the ground plane [107]. In [129] a square monopole antenna with a double feed has 

been proposed. This feed configuration has shown the improvement on radiation 

pattern and impedance bandwidth. This is due to a pure and intense vertical current 

distribution generated in the whole structure. 

 

The hidden feed-line technique on printed circular dipole antenna has been 

investigated in [131]. The specific feeding has shown remove any radiation pattern 

disturbance generally met with this kind of antenna when fed with a coaxial or a 

microstrip line. It was also shown a wide frequency bandwidth.  
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Due to the radiation from planar antenna may not be omni directional at all 

operating frequencies because they are not structurally rotationally symmetrical. Roll 

monopoles is a choice to feature broad impedance bandwidth with omni directional 

characteristics [132]. With the roll structure, the antenna becomes more compact and 

rotationally symmetrical in the horizontal plane. However, the roll monopoles are not 

easy to fabricate with high accuracy [16]. The folded antenna was also presented in 

[133] in order to improve radiation pattern maintaining the broadband behavior. In 

[133], the antenna was analyzed employing transmission line model (TLM).  

 

In [112], various combinations of bandwidth enhancement techniques was 

successfully applied in UWB antenna design such as adding slit in one side of the 

monopole, tapered transition between the monopole and the feed line, and adding 

notched ground plane.   

 

 From various bandwidth enhancement techniques, there are four techniques 

adopted for this proposed UWB antennas design. The four techniques are the use of 

slots for both patch and feeding strip, truncation ground plane, bevels or notches at 

the bottom, and notched ground plane which can lead to a good impedance 

bandwidth. The original contribution focused on the various slots types design. The 

proposed slotted UWB antennas are designed by adding asymmetry couple slots 

without degrading their performance. The performance optimization is done by 

studying their current distribution.  

 

 

 

3.3.2 Genetic Algorithm (GA) 

 

Optimization of patch geometry is an ideal technique to have single or more 

optimized figures of merit like, impedance bandwidth.  The GA has been 

successfully applied by a number of researchers to improve the impedance 

bandwidth [5], [134]-[138].  The optimized shape however is too much irregular and 

unconventional and this can only be fabricated using the pattern produced in true 

scale by the GA code.  
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Electromagnetic optimization problems generally involve a large number of 

parameters. The parameters can be either continuous, discrete, or both, and often 

include constraints in allowable values.  The goal of the optimization is to find a 

solution that represents a global maximum or minimum.  For example, the 

application of GA optimization is used to solve the problem of design a broadband 

patch antenna [5].  Parameters that are usually included in this type of optimization 

problem include the location of the feed probe, the width and length of the patch, and 

the height of the patch above the ground plane. In addition, it may be desirable to 

include constraints on the available dielectric materials, both in terms of thickness 

and dielectric constants; tolerance limits on the patch size and probe location; 

constraints on the weight of the final design; and possibly even cost constraints for 

the final production model.  Given the large number of parameters, and the 

unavoidable mixture of discrete and continuous parameters involved in this problem, 

it is virtually impossible to use traditional optimization methods. GA optimizers, on 

the other hand, can readily handle such a disparate set of optimization parameters [5].  

 

The use of the GA approach in the design of UWB antennas has been 

proposed in [134]-[135]. The planar fully-metal monopole (PFMM) of bow tie (BT) 

and reverse bow tie (RBT) have been demonstrated in [134], [136] have an ultra-

wide bandwidth. The element height, the feed height, and the element flare angle 

were the parameters that used in optimization. The height essentially determines the 

operating mode and the lower frequency limit of the antenna, while the flare angle 

and the feed height control the variation of the input impedance over frequency, the 

high frequency impedance value, as well as the resonance bandwidth [134]. In this 

paper, the GA was used to determine the optimal dimensions of the selected element 

shape in order to fulfill the given bandwidth requirement. As a result, the RBT 

antenna can achieve a much wider impedance bandwidth than the BT with 

significantly reduced sizes. 

 

In [135], the semi-conical UWB antenna was optimized by using the Green’s 

Function Method (GFM) Absorbing Boundary Condition (ABC) with GA. The goal 

of this optimization is to have significant reduction in the size of the white space, due 

to the unique capability of the GFM to model arbitrarily shaped boundaries in close 
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proximity to the antenna. The white space is defined as the region between the 

antenna and the absorbing boundary.  

 

The GA optimizer is also used to reconfigure the radiation characteristics of 

antenna over an extremely wide-band [137]. The design results indicate that the 

antenna can obtain the required goals over an ultra-wide band through reconfiguring 

the states of the switch array installed in shared aperture when it operates with the 

higher order modes [137]. Optimization of broadband and dual-band microstrip 

antennas on a high-dielectric substrate by using GA was also proposed in [138].  

 

 

 

3.3.3 Resonance Overlapping  

 

 Normally, the bandwidth of a resonant antenna is not very broad because it 

has only one resonance. But if there are two or more resonant parts available with 

each one operating at its own resonance, the overlapping of these multiple 

resonances may lead to multi-band or broadband performance. 

 

Theoretically, an ultra wide bandwidth can be obtained if there are a 

sufficient number of resonant parts and their resonances can overlap each other well. 

However, in practice, it is more difficult to achieve impedance matching over the 

entire frequency range when there are more resonant parts. Also, it will make the 

antenna structure more complicated and more expensive to fabricate. Besides, it is 

more difficult to achieve constant radiation properties since there are more different 

radiating elements. 
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3.4 Reconfigurable UWB Antenna  

 

This section presents the concept of reconfigurable antennas and the 

emerging technologies that make reconfigurable antenna possible. There are three 

parameters that frequently used for designing the reconfigurable antennas such as, 

frequency, polarization and radiation patterns. 

 

 

 

3.4.1 Reconfigurability Antenna Parameters 

 

Ideally, reconfigurable antennas should be able to alter their operating 

frequencies, impedance bandwidth, polarizations, and radiation patterns 

independently to accommodate operating requirements. However, the development 

of these antennas posses significant challenges to both antenna and system designers. 

These challenges lie not only in obtaining the desired levels of antenna functionality 

but also in integrating this functionality into complete systems to arrive at efficient 

and cost effective solutions.  

 

 

 

3.4.1.1 Frequency Response Reconfigurability 

 

 Frequency reconfigurable antennas are classified into two categories: 

continuous and switched [78]. Continuous frequency-tunable antennas allow for 

smooth transitions within or between operating bands without jumps. Switched 

tunable antennas use some kind of switching mechanism to operate at distinct and 

separated frequency bands. The main differences are in the extent of the effective 

length changes that enable operation over different frequency bands and the devices 

to achieve these changes. There are different kinds of switching technology, such as 

optical switches, PIN diodes, FETs, and radio frequency microelectromechanical 

system (RF-MEMS) switches, in frequency tunable monopole antennas for various 

frequency bands. The effective length of the antenna can be altered by adding or 

removing these switches, hence altering its operating frequency.  
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3.4.1.2 Polarization Reconfigurability 

 

 Antenna polarization reconfiguration provides immunity to interfering signals 

in varying environments as well as provides an additional degree of freedom to 

improve link quality as a form of switched antenna diversity [139]. The direction of 

current flow on the antenna translates directly into the polarization of the electric 

field in the far field of the antenna. To achieve polarization reconfigurability, the 

antenna structure, material properties, feed configuration have to change in ways that 

alter the way current flows on the antenna. The main difficulty of this kind of 

reconfigurability is that this must be accomplished without significant changes in 

impedance or frequency characteristics [78]. The mechanisms to achieve these 

modifications are the same as those described for frequency reconfigurability earlier.  

 

 

 

3.4.1.3 Radiation Pattern Reconfigurability 

 

 Reconfigurable radiation patterns can be achieved with slot-based radiators as 

presented in [140]. Both frequency and pattern reconfigurabilities are due to 

incorporated the PIN diode switches into the slot radiator. Frequency 

reconfigurability is supported through PIN diode switches that control input 

impedance circuitry, whereas the pattern reconfigurability is enabled with diode 

switches placed at locations around the slot to control the direction of a pattern null 

that is inherent to basic antenna operation [78], [140]. For UWB antenna, the 

reconfigurability of radiation pattern is not an important issue since it requires omni 

directionality pattern over frequency bands. Next section will be further discussed on 

frequency notch UWB antenna as main focused in this thesis. 
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3.4.2 Design Methodology 

 

 As mentioned previously, one way to implement a frequency notched UWB 

antenna is to incorporate a half wave resonance structure in an antenna. In [25], there 

are two varieties of slotted antennas which have a frequency notched reported, a 

triangular notch and elliptical notch. Both antennas have frequency notch 

characteristics where the arc length of slots form a half wavelength resonance 

structure at particular frequency, thus a destructive interference takes place causing 

the antennas to be non responsive at that frequency [25].  

 

Other types of this kind of antenna was reported in [141], a band notched 

UWB antenna using a slot-type split ring resonator (SRR) was found very effective 

in rejecting unwanted frequency, such as that for WLAN service, in terms of its 

selectivity and small dimension. The SRR is composed of two concentric split ring 

slots and proposed for band stop application, since it provides high Q characteristic. 

It is expected that the smaller structure has a relatively smaller effect on the radiation 

patterns of the antenna. SRR has a favorable aspect in its size, and it can be designed 

as small as one-tenth of the resonance wavelength [141]. The slotted SRR was 

positioned near the feeding point to provide more coupling with the field. 

 

A multiple band-notched planar monopole antenna using multiple U-shape 

slots for multi band wireless system was presented in [142]. The half wavelength U-

shape slots were symmetrically inserted in the center of the planar element. 

Therefore, in order to generate the two band-notched characteristics, three U-shape 

slots were proposed. The center U-shape slot makes one notch band at 3.03 GHz and 

the other two symmetric U-shape slots make notch band at 4.78 GHz, with little 

effect of mutual coupling between notch bands. The wideband characteristic is due to 

proper design on antenna size, ground plane size, feed gap, and bevel angle. The 

frequency corresponding to the lower edge of the bandwidth was found to be 

dependent on the antenna size and ground size, but the upper edge of the bandwidth 

was found to be dependent on the feeding gap and bevel angle [143]. 
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At the notch frequency, current is concentrated around at the top of the slot 

and is oppositely directed between the interior and exterior of the slot. This causes 

the antenna to operate in a transmission line like mode, which transforms the nearly 

zero impedance at the top of the slot to high impedance at the antenna feeding point. 

This high impedance at the feeding point leads to the desired high attenuation and 

impedance mismatching near the notch frequency [142]. However, the use of a slot 

can cause deterioration of an antenna performance such as gain, efficiency and 

radiation pattern [144]. An alternative antenna design without using slot to obtain 

band-notched characteristic was proposed in [144]. The antenna consists of two same 

size monopoles and a small strip bar at the center showing the band rejection 

performance in the frequency band of 4.9 to 6 GHz, which satisfies the UWB system 

requirement. The use of strip bar leads to high impedance at the notch frequency. 

The total length of strip bar from the ground plane is equal to a quarter-wavelength at 

the notch frequency. The current is concentrated around the strip bar and near the 

dual monopole edges and is oppositely directed and cancelled each other at the notch 

frequency.   

 

In [24], a novel and compact wideband monopole antenna with a narrow slit 

having band-notch characteristic was presented. Band-notch characteristic is 

achieved by inserting a modified inverted U-slot on the main patch, which has length 

of 0.29λ (< 0.5λ). The narrow slit leads to produce an additional surface current path. 

The notch frequency is controllable by changing the length of the slot.  Paper [26] 

has also presented the length of slot less than half wavelength (0.25λ) in order to 

have a frequency band notch function.   

 

A CPW-fed planar UWB antenna with various slot shape having a frequency 

notch characteristic of WLAN frequency band was reported in [23], [26], [29]. The 

band-notch frequency due to the additional slot has increased the reactance value, 

thus less energy is radiated and it is more reactive within the stop band [23].  

 

 In this thesis, the proposed reconfigurable UWB antennas are designed by 

adopting the half wavelength slot structure techniques.  This is corresponding to the 

previous techniques used when designing the proposed UWB slotted antenna. The 

main goal is how to design the reconfigurable UWB slotted antenna without major 
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modification from the previous slotted UWB antennas.  The unique of this proposed 

reconfigurable UWB antenna is the antenna has additional capability in rejecting the 

FWA bands. Several small gaps are added instead of switches in order to perform the 

reconfigurability characteristics. 

 

 

 

3.5 Theory Characteristic Modes for Planar Monopole Antennas 

 

A great variety of experiments related to planar monopole geometries and 

feeding configurations have been carried out, but very little analysis on the physical 

understanding of the operating behavior has been considered up to now. Recently, 

the theory characteristic modes have been shown useful for antenna design. The 

theory characteristic modes allows to express the total current in the surface of a 

conducting body as a superposition of an orthogonal set of real current modes, which 

are termed characteristic modes [130]. These modes are obtained numerically for 

arbitrarily shaped bodies without any specific source of excitation, and hence they 

only depend on the shape and size of the body. 

 

To acquire a clear insight into the physical performance of planar monopole 

antennas, the theory characteristic modes introduced by Harrington and Mautz [145], 

will be used to determine how the shape of the planar monopoles affects the input 

bandwidth performance of the antenna.  This theory has been satisfactorily applied to 

the analysis of wire and patch, and to the study of the coupling phenomena between 

the antenna and the chassis in mobile handset [130].  

 

For electrically small and intermediate size bodies, only a few modes are needed 

to characterize the electromagnetic behavior of the body [145]. Characteristic modes 

(Jn) are real current modes that are extracted at every frequency from generalized 

impedance matrix of the antenna. This matrix is obtained by the direct application of 

Method of Moments [120], [145]. Characteristics modes correspond with the 

eigencurrents of the matrix, and therefore depend only on the shape and size of the 

antenna [120]. A modal solution for the current J on the surface of the antenna as 

follows: 
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The term χn corresponds with the characteristic value or eigenvalue related to the 

n
th

 characteristic mode. A mode is at resonance when its associated eigenvalue is 

zero, it is derived that the smaller the magnitude of the eigenvalue is, the better the 

modes radiates [120]. The behavior of the modes can be obtained by studying 

eigenvalue variation with frequency. The eigenvalues χn, range from -∞ to +∞, with 

those of smallest magnitude being more important, for radiation and scattering 

problems [110]. Those modes with positive χn have predominantly stored magnetic 

energy, while those with negative χn have predominantly stored electric energy. 

Those modes with χn > is called as inductive modes, and those with χn < 0 is called as 

capacitive modes. A mode having χn = 0 is called an externally resonant mode. The 

modes corresponding to the internal cavity resonances or the conducting surface has 

∞=χ , and do not enter into radiation and scattering problems. 
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nV is known as modal excitation coefficient, and defined as (3.2). The product 

n

i

n JV in (3.1) models the coupling between the excitation and the n
th

 mode, and 

determines which modes will be excited. 

 

 

 

3.6 Summary 

 

In this chapter, fundamental antenna parameters as the guidelines in designing 

UWB antenna have been discussed. UWB antenna design methodologies with 

various bandwidth enhancement techniques are also reviewed. Four techniques such 

as the use of slots for both patch and feeding strip, bevels/notches, truncation ground 

plane and notched ground plane are the techniques employed to the design of 

proposed UWB antennas. Theory characteristic mode is used in analyzing the 

monopole performance. Various reconfigurability antenna parameters are discussed 
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as well. Half wavelength slot structure is the technique used for designing the 

proposed reconfigurable slotted UWB antenna. This antenna has capability to reject 

the frequency bands from existing wireless communication systems such as FWA, 

HIPERLAN and WLAN. The proposed antennas are small UWB antennas with 

regards to the small antenna definition. 
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CHAPTER 4 

 

 

 

SLOTTED AND RECONFIGURABLE UWB ANTENNA DESIGN 

 

 

 

4.1 Introduction 

 

In choosing an antenna topology for UWB design, several factors must be 

taken into account including physical profile, compatibility, impedance bandwidth, 

radiation efficiency, directivity and radiation pattern. On the other hand, there are 

special design considerations for antennas for the UWB systems, especially for 

microwave wireless communications [16]. Studies have shown that the antenna 

designs should be considered from a systems point of view, and the system transfer 

function is a good measure to evaluate the performance of the antennas in terms of 

system gain (the magnitude of the system transfer function) and group delay (the 

derivative of phase of the system transfer function), especially for the impulse 

systems.  

 

In this chapter, the proposed slotted and reconfigurable UWB antennas are 

presented in detail. The novelty slotted UWB antennas are achieved by evaluating 

various slots configurations. The effect of slots, bevels and notches to the antenna 

impedance bandwidth are analyzed by using FDTD Zeland simulation software 

before the actual prototype is built. The proposed reconfigurable slotted UWB 

antennas with varying the slot length will investigate how the small gaps 

incorporated to slots having ability to band-notched frequency at FWA, HIPERLAN 

and WLAN bands. The controllable slot length by the gaps is intended to reject the 

required frequencies. Both simulation results of slotted and reconfigurable UWB 

antennas are presented.  
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4.2 Slotted UWB Antenna Design Consideration 

 

Antennas play a critical role in the UWB communication systems and the 

choice of a specific UWB antenna design has to be based on the application main 

requirements. As mentioned in the previous chapter, the various geometries and 

perturbation techniques of planar monopole antennas are applied as guidelines in the 

proposed UWB antenna design. Several planar monopole geometries such as 

circular, elliptical, square, rectangular, hexagonal and pentagonal, have been 

proposed in many papers, providing wide impedance bandwidth. In this thesis, the 

rectangular geometry is taken as initial geometry to form various novelties 

polygonal. This is due to the flexibility of this geometry to be modified. Some 

novelty polygonal monopole antennas are proposed and studied in the frequency 

domain for UWB system in this chapter. The configuration of these antennas will be 

investigated both numerically and experimentally to obtain some quantitative 

guidelines for designing this type of antennas. The effect of bevels/notches 

technique, cutting slots on the patch and slotted ground plane to the impedance 

bandwidth is discussed with some examples on it. In addition, the UWB antennas 

printed on PCBs are more practical to implement. The antennas can be easily 

integrated into other RF circuits as well as embedded into UWB devices.   

 

 

 

4.2.1 Various Bevels and Notches 

 

Figure 4.1 and Figure 4.2 depict several typical polygonal planar monopoles, 

which are vertically installed above a ground plane. The dimension of the ground 

plane is chosen to be (30 x 11.5) mm
2
 in this study. The original design has a 

rectangular radiator with a width (w) of 15 mm and a length (l) of 12 mm. The main 

objective in this antenna design is to reduce the size. Thus, the dimension of this 

rectangular radiator is kept to be constant. Obviously, it is difficult to do this without 

degrading the antenna performance but the main question is whether this degradation 

is acceptable or not for a given application.  
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The radiator may be varied and have a bevel or a smooth bottom or a pair of 

bevels for good impedance matching. The simulation results have proved that the 

bevel at the bottom or at upper edge of radiator give a very broadband bandwidth 

when properly designed. The objective of this study is to develop a design 

methodology to control the matching bandwidth of antenna 

 

Figure 4.1(a) shows the rectangular monopole antenna with various steps 

notches cutting at the bottom edge. The feed width (wf) is set to be 3 mm and the 

feed length (fl) is set to be 12.5 mm. The first and third notch dimensions are (1 x 1) 

mm
2
 and the second notch is (1 x 1.5) mm

2
. 

 

 

                 (a) 

 

 

                  (b) 

 

Figure 4.1:  Various type of polygonal monopole antennas: (a) various steps notches 

at the bottom and (b) various bevel at the bottom 
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Figure 4.1(b) shows various beveling techniques applied to the rectangular 

monopole antennas.  Beveling at the left side, right side and both sides have shown a 

different simulation results. The optimized dimension of a bevel that found to 

increase the impedance bandwidth is (bv1 x bv2) of (3 mm x 2.5 mm), respectively. 

 

The simulated return loss curves and input impedance for antenna shape in 

Figure 4.1(a) are shown in Figure 4.2. Cutting notches at the bottom techniques are 

aimed to change the distance between the lower part of the planar monopole antenna 

and the ground plane in order to tune the capacitive coupling between the antenna 

and the ground plane, thereby wider impedance bandwidth can be achieved. This 

technique is confirmed by the simulation result shown in Figure 4.2. As shown in 

Figure 4.2(a), the return loss of antenna with three steps notches cutting at the bottom 

edge is the worst curve with respect to -10 dB. This is due to its notch variation is 

more abrupt, thus the bandwidth is smaller. For the two steps notches, the return loss 

curve is the best, covering 3.17 GHz to 11.5 GHz of frequency ranges. While one 

step notch at the bottom provides a good matching bandwidth at below 9 GHz and 

start degrading at higher frequencies.  

 

The simulated input impedance shows the loops around matching impedance 

point. It shows that the one step and three steps notches cutting at the bottom give 

more capacitive to the antenna than the two steps notches especially at higher 

frequency ranges. The ground plane as an impedance matching circuit and also it 

tunes the resonant frequencies. 
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Figure 4.2:  (a) Simulated return loss curves and (b) input impedance for various 

notches 
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There is an important phenomenon in Figure 4.2 at the first resonance occurs 

at 5.2 GHz for the patch with two notches at the bottom. When the antenna has only 

one and three notches at the bottom, the first resonances are 4.9 GHz and 5.1 GHz, 

respectively. Both first resonances are shifted slightly, but still not far from 5.2 GHz. 

In fact, the quarter wavelength at this first resonant frequency (5.2 GHz) just equals 

to the length of the antenna and optimized by the simulation software.  

 

Table 4.1: The effect of notches to the simulated -10dB bandwidths of the proposed 

antenna  

No.  

Notch  

fL  

(GHz) 

fU  

(GHz) 

Absolute BW 

(GHz) 

Fractional BW 

(%) 

0 3.56 9.05 5.49 87 

1 3.27 8.7 5.43 90 

2 3.17 11.5 8.33 113 

3 3.07 7.98 4.91 88 

 

 

 

Table 4.1 shows the effect of two notches at the bottom of the patch to the 

antenna bandwidth. The basic rectangular patch antenna with a length of 12 mm and 

a width of 15 mm only provides the fractional bandwidth of 87%. This fractional 

bandwidth increases to 90% by cutting one notch at the bottom, while the maximum 

fractional bandwidth reach to 113% by applying two notches at the bottom of the 

patch antenna. Then, the fractional bandwidth decreases again by cutting three 

notches. Hence, the proper selections in the size of notches lead to the UWB 

characteristic. 
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Figure 4.3:  (a) Simulated return loss curves and (b) input impedance for various 

bevels 
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Figure 4.3 is simulated return loss curves and input impedance for antenna 

shape in Figure 4.1(b). The return loss of antenna with bevel at left or right bottom 

side shows almost identical result, which cover 3.27 to 10.82 GHz. Both bevels at 

both sides have found to increase the matching impedance bandwidth up to 11.5 

GHz. The loops around matching point for all these types of antenna have shown a 

very broad bandwidth.  

 

Table 4.2: The effect of bevels to the simulated -10dB bandwidths of the proposed 

antenna  

Bevel fL 

(GHz) 

fU 

(GHz) 

Absolute BW 

(GHz) 

Fractional BW 

(%) 

Left 3.27 10.82 7.55 107 

Right 3.27 10.82 7.55 107 

Both 3.27 11.5 8.23 111 

 

 

 

 Table 4.2 shows the fractional bandwidth of various bevels of proposed 

antennas. All three antenna designs show the UWB characteristic bandwidth. Bevel 

both sides has increased the fractional bandwidth to 111%.  

 

In order to vary the geometry of antennas, a combination between pair bevels 

and notches steps are applied at edges corner as shown in Figure 4.4(a). The radiator 

is found to be irregular shape. Bevel and notch are kept same dimension with the 

previous model.  

 

Trapezoidal and pentagonal antennas are also proposed in Figure 4.4(b). Both 

shapes are as variation of rectangular shape with bevel techniques. The dimension of 

w1, bv3, bv4, bv5, bv6, is 12, 10, 7.5, 6, 6 mm, respectively. By varying the height of 

bevel at the bottom edge gives significant improvement of impedance bandwidth.  
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Figure 4.4:  Various type polygonal monopole antennas: (a) combination of notch 

and bevel, (b) trapezoidal and pentagonal bevels, and (c) smooth bevels 

at the bottom  
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Figure 4.4(c) presents a smooth bevel at the bottom edge. The smooth bevel 

is resulted by an ellipsis with r1 and r2 of 15 mm and 10 mm, respectively. By 

optimizing the major and minor axes of the ellipse as well as feed gap between the 

bottom of the ellipse and ground plane, the antenna features a high-pass impedance 

response. The broadband characteristics are due to the smooth transition between the 

radiator and feeding strip. Overlapping an ellipsis and modified rectangular results a 

new polygonal shape.  The dimension of w2, w3, w4, bv7, bv8, bv9 is 12, 1.5, 1, 2, 7, 

2.5 mm, respectively.  

 

The simulated return loss curves of antenna shape in Figure 4.4(a) are shown 

in Figure 4.5. The original goal of additional notches to the patch is to increase the 

bandwidth. In fact, the simulated return loss curves for both types of antenna, pair 

bevels with one and two steps notches, do not give any improvement of bandwidth 

even though coupled with the notches. They degrade the return loss performance 

especially at 8.7 to 10 GHz.  It is clearly shown from this simulated result that the 

impedance bandwidth is critically determined by proper design and place of notches 

at antenna edges.  

 

 The matching characteristics of these types of antennas are shown in the 

smith chart Figure 4.5(b).  Cutting notches at the antenna edges has moved antenna 

to be more capacitive at higher frequency ranges. The loops are also found around 

the impedance matching point. 
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Figure 4.5:  (a) Simulated return loss curves and (b) input impedance for various 

pair bevel and notches 
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Table 4.3: The effect of bevels coupling notches to the simulated -10dB bandwidths 

of the proposed antenna  

Bevel & notch fL  

(GHz) 

fU  

(GHz) 

Absolute BW 

(GHz) 

Fractional BW 

(%) 

Pair bevels 3.37 11 7.63 106 

Pair bevels with 

1 notch 

3.37 8.56 5.19 87 

Pair bevels with 

2 notches 

3.47 8.66 5.19 85 

 

 

 

 Table 4.3 lists the fractional bandwidth of antenna with pair bevels and notch. 

An additional of notch to the antenna edge coupled with the bevels has shown the 

bandwidth decrement. The maximum fractional bandwidth of 106% is achieved for 

antenna with bevels at the upper and lower edges. 

 

Trapezoidal and various height pentagonal shapes are proposed. The 

simulated return loss curves and the input impedance are shown in Figure 4.6(a) and 

Figure 4.6(b), respectively. The ratio between upper height and lower height are 

critically determined the input impedance bandwidth. By changing the height will 

degrade the return loss performance as proved in Figure 4.6(a).  

 

The lower height determines the lower resonance frequency and the upper 

height determines the upper frequency. This behavior is shown by comparing the 

return loss curves between pentagonal with lower height of 10 mm and pentagonal 

with lower height of 6 mm. The first type with 6 mm of height, the lower resonance 

is 7 GHz while the second type is 5.2 GHz. The difference of height results much 

shifted to the lower resonance frequency.  The smooth beveling transition at upper 

edges of pentagonal gives a flat return loss curves below -15 dB. The abrupt 

transition at the upper edges has degraded the antenna performance especially at 

higher frequency ranges of 8.7 to 9.7 GHz, as shown in Figure 4.6(a). 
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Figure 4.6:  (a) Simulated return loss curves and (b) input impedance for trapezoidal 

and various pentagonal  
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The return loss curve of trapezoidal shape shows two resonance frequencies 

of 5 GHz and 9.8 GHz with covering bandwidth of 3.27 to 11.3 GHz, except the 

middle frequency ranges which the return loss lower than the pentagonal with 10 mm 

of height.  

 

Table 4.4 shows the fractional bandwidth of proposed trapezoidal and 

pentagonal antennas. The maximum fractional bandwidth of 110% is achieved for 

trapezoidal antenna. Even though the trapezoidal antenna has a maximum fractional 

bandwidth, the pentagonal antenna with 10 mm lower height has a flat return loss 

below -15 dB. Decreasing the lower height of pentagonal has decreased the fractional 

bandwidth, as listed in Table 4.4. 

 

Table 4.4: Trapezoidal and pentagonal fractional bandwidth with respect to the 

simulated return loss of -10dB  

Model fL 

(GHz) 

fU 

(GHz) 

Absolute BW 

(GHz) 

Fractional BW 

(%) 

Trapezoidal 3.27 11.3 8.03 110 

Pentagonal with 10 

mm lower height 

3.47 10.9 7.43 103 

Pentagonal with 6 

mm lower height 

4.35 8.7 4.35 67 

 

 

 

 

 Figure 4.7 shows the return loss curves and input impedance of various 

shapes of antenna with smooth bevel at the bottom and various transitions shape at 

the upper edge. From all simulated return loss curves, the antenna with reverse 

trapezoidal transition results a nearly flat response curve at higher frequency. The 

impedance bandwidth covers 3.27 to 12 GHz. All simulated return loss curves are 

not varying too much. The matching curve lines are shown in Figure 4.7(b). 
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Figure 4.7:  (a) Simulated return loss curves and (b) input impedance for various 

transitions with smooth bevel  
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Table 4.5: The effect of smooth bevels and upper edge transition to the simulated -

10dB bandwidths of the proposed antenna 

Model 

transition 

fL  

(GHz) 

fU  

(GHz) 

Absolute BW  

(GHz) 

Fractional BW  

(%) 

Rectangular 3.17 8.56 5.39 92 

Trapezoidal 3.17 8.66 5.49 93 

Reverse 

trapezoidal 

3.27 12 8.73 114 

 

 

 

 It is shown in Table 4.5, the antenna with smooth bevels and reverse 

trapezoidal at upper edges has a maximum fractional bandwidth of 114%. The 

bandwidth start degrading at 8.5 to 9.5 GHz for rectangular and trapezoidal shape 

transition, this is due to these shape give more capacitive to the antenna.  
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Figure 4.8:  Simulated comparison return loss curves for each best type of antenna 

 Figure 4.8 provides a simulated comparison return loss curves for each group 

of antenna, as described above, which give the best performance. This comparison is 
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to investigate which shape of the antenna model gives the best performance in term 

of return loss. Next, the effect of slots insertion to these models will be discussed in 

the next section. To simplify the next step, two model antennas chosen are two steps 

notches, and pentagonal with 10 mm of lower height. 

 

 It is also clearly shown from the graph that the lower resonance frequency for 

all antenna models is around 5.2 GHz. It is correspondence to the dimension of 

antenna where kept to be constant for all models. The only variation of return loss 

curves occur at higher frequency range and this is determined by how properly notch 

and bevel designed.  

 

 

 

4.2.2 Current Distribution Behavior 

 

Antennas are divided in two zones; active and neutral zones. They can be 

identified with the study of the currents. The geometry of the antenna implies the 

current courses and makes it possible to identify active and neutral zones in the 

antenna, thus it will be possible to fix which elements will act on each characteristic.  

The active zone is the matching and radiator zone. Acting on matching and radiating 

areas allows controlling the bandwidth [146]. Zone closed to feeding point is the 

active zone. The neutral zones where geometry modifications are useless because 

neither the radiation pattern nor the matching bandwidth is much influenced. Study 

on current distribution of planar monopole antenna by transmission line modeling 

(TLM) was performed in [147].  
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            (a)  

 

              (b) 

 

               (c) 

 

Figure 4.9:  Simulated current distribution for three model antennas with affect to 

the impedance bandwidth: (a) rectangular, (b) rectangular with two 

notches, and (c) pentagonal 
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Matching bandwidth is due to the shape of the antenna closed to the feeding 

point, where currents are the strongest. It is possible to enlarge or reduce it in 

accordance with the application to implement by modifying its geometry close to this 

one as shown in Figure 4.9. Figure shows the current distribution for three model 

antennas at 7.5 GHz, such as rectangular, pentagonal with 10 mm of lower height 

and rectangular with two notches. As mentioned in Chapter 3, when properly 

designed, the bevels and notches improve significantly the impedance bandwidth at 

upper frequency.  

 

The study of the current flow on a planar monopole antenna reveals that it is 

mostly concentrated in the vertical and horizontal edges, as shown in Figure 4.9. It is 

observed that the horizontal currents distributions are focused on the bottom edge of 

rectangular patch. Besides, the horizontal component is also greater than the vertical 

on this part of the antenna. The field supported by these currents would be mainly 

confined between the bottom part of the rectangular antenna and the ground plane; 

this is due to the small distance, a small fraction of wavelength, of this edge to the 

ground plane [147]. Thereby, this part acts as a matching element. 

 

Figure 4.10 shows the return loss performance of this rectangular antenna.  

The return loss starts degrading its performance at 7.5 GHz, this is due to more 

horizontal current mode occurs in the whole structure which degrade the polarization 

properties and the impedance bandwidth performance of the antenna [129]. In order 

to modify the equivalent characteristic impedance on the antenna, the distance of the 

bottom edge to the ground plane and the bottom profile of the monopole should be 

varied. By varying the edges closed to the feeding point means modifying the current 

path on the antenna. 

 

The discontinuity occurred from cutting notch or beveling at the bottom side 

of a rectangular antenna has enforced the excitation of a particular characteristic 

mode (the vertical current mode) in the structure, which presents a very wide 

bandwidth. Much current density occurs closed to the feeding edge, while at the top 

of antenna; the current levels are not too strong as shown by simulated result in 

Figure 4.9(b) and Figure 4.9(c). From the simulated return loss, the rectangular shape 

has the smallest impedance bandwidth. In addition, the double notches at the base of 
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the antenna have demonstrated to shift upward the upper edge frequency of the 

bandwidth. 
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Figure 4.10:  Simulated return loss for three model antennas with affect to the 

impedance bandwidth 

 

 

 

To better control an antenna behavior, it is necessary to identify neutral 

zones. The neutral zone can be used to simplify the antenna structure and integrate 

other function of the systems such as antenna circuits. This investigation has been 

proposed in [146], but not much explanation given. How to determine the neutral 

zone is not explained in detail.  

 

Thorough literature reviews [146]-[147] and simulation experiences, there are 

four types of current distribution modes in the antenna surface; vertical current mode, 

horizontal current mode, diagonal current mode and asymmetry current mode. By 

observing the current distribution flow, the pentagonal has a diamond neutral zone 

and both rectangular and two steps notches have a rectangular neutral zone. In this 

zone, the current level is not too strong but it is not zero level. Normally, this zone 
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occurs at the middle of the antenna structure. The neutral zone for each frequency 

appears at different position. This is due to the difference current mode behavior at 

every frequency.  From simulation experiences, as long as the size and the position 

of the neutral zone are precisely determined, this zone can be removed with no much 

influence on the radiation pattern and the matching bandwidth as shown in Figure 

4.11 to Figure 4.14, respectively.  

 

d2

d1

(c)

d3 d4
d5

(b)(a)
 

Figure 4.11: Neutral zones for various frequencies of pentagonal antenna: (a) 5 

GHz, (b) 8GHz, and (c) 10.5 GHz 

 

 

 

Figure 4.11 presents the neutral zones for 5, 8, and 10.5 GHz of pentagonal 

antenna. From observation, each frequency has a different neutral zone size and 

position. The neutral zones of 5 GHz and 8 GHz have the same size. This neutral 

zone size is determined by observing the current distribution mode in the antenna 

surface. The slot size is precisely measured in order not to degrade the antenna 

performance. This size is obtained and optimized by Zeland simulation software. The 

optimum size of diamond slot at 5 and 8 GHz is d1 x d2 of 4 x 4 mm, while d3 x d4 x 

d5 of 6 x 4 x 2 mm at 10.5 GHz. The effect of this diamond slot to the return loss and 

radiation pattern of proposed antenna are described in Figure 4.12. 

 

Figure 4.12 shows the simulated radiation pattern and return loss for both 

pentagonal antennas with and without diamond neutral slot. The simulated return 

y 

x 

z 
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loss for all types of diamond slots does not influence the impedance bandwidth with 

respect to -10 dB. The Radiation patterns of these antennas are computed at 5.25 

GHz using the Zeland FDTD. The radiation patterns displayed have been normalized 

to the 0 dB of gain and a 10 dB/division scale is adopted for all the figures. In this 

software, the radiation patterns are simulated into elevation and azimuth directions. 

For elevation direction, E-theta and E-phi are plotted with varying the phi angle. 

While the azimuth direction, the E-theta and E-phi are plotted with varying theta 

angle. 

 

For Zeland FDTD and IE3D software, the terminologies used are Total Field 

(E-total), Theta Field (E-theta), and Phi Field (E-phi). The E-total is the properties of 

the antenna with all the field considered, the E-theta and E-phi are considered only 

E-theta field and E-phi field, respectively. For linear polarized antenna, the E-total or 

E-theta is primary radiation pattern, while the E-phi pattern as the cross polarization 

[148].  

 

The elevation patterns for antennas simulated at E-theta, phi = 90
0
 is shown 

in Figure 4.12.  It is observed that the patterns behaviors for all neutral zones do not 

much vary with respect to the patterns that obtained without the slot. This leads to be 

ideal for ultra wideband antenna characteristic. 
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Figure 4.12:  (a) The simulated radiation pattern for various diamond slots of 

pentagonal antenna at 5.25 GHz and (b) the simulated return loss for 

various diamond slots 
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Figure 4.13: Neutral zones for various frequencies of rectangular with two notches 

antenna: (a) 4.5 GHz, (b) 5 GHz, and (c) 8 GHz 

 

 

 

 Figure 4.13 shows the rectangular neutral zones at 4.5, 5, 8 GHz of 

rectangular with two notches antenna, respectively. The sizes of t1, t2, t3, t4, t5, t6 are 

3, 6, 3, 3, 5, 1.5 mm. The simulated radiation pattern and return loss for these 

antennas are shown in Figure 4.14. 

 

It is shown from simulation results that rectangular slots cut in the neutral 

zone not give significant affect to the impedance bandwidth. The radiation pattern is 

simulated at 5.25 GHz for various rectangular slots. Thus, by identifying the neutral 

zone and active zones on an antenna, the size of antenna can be reduced and its 

characteristic can be controlled.  

 

It can be concluded, from simulation experience, that this theory of slot cut 

on the neutral zone is only valid for a single slot. If there are some slots cut on the 

same patch, the mutual coupling effect between slots will influence the antenna 

performance as discussed in the next section.  
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Figure 4.14: (a) The simulated radiation pattern for various rectangular slots of 

rectangular antenna with two notches at 5.25 GHz (b) The simulated 

return loss for various rectangular slots 
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4.2.3 Various Slots 

 

As mentioned in Chapter 3 that slots on patch antenna have resulted 

improvement of the impedance bandwidth especially at higher frequency ranges [16]. 

Slots are also used to control simultaneously the radiation pattern shape [146]. These 

behaviors can be identified with the study of the current distribution as discussed in 

previous section. 

 

In [146], by modifying the current paths on the monopole antenna, it is 

possible to have a radiation pattern without any zero of radiation while keeping the 

bandwidth. The monopole radiation pattern presents a zero of radiation in the axis of 

the antenna that comes from a destructive recombination of the currents at this point. 

The analysis in [146] has shown that slots must be placed on the top of the antenna, 

where current levels are not to strong, even though the matching bandwidth may be 

reduced. Typically, slots are placed on the half top of the antenna. The current path is 

modified on one side of the antenna. The dissymmetry created by the slots removes 

the zero current point. 

 

Figure 4.15 and Figure 4.16 depict both proposed antennas with various slots 

design. The slots shape is designed very carefully by studying the current flow 

distribution which will give input impedance improvement. Each antenna has three 

different slots shapes in order to determine which shape of slot produced the best 

performance. This study will investigate the effect of vertical slot, horizontal slot and 

circular slot cut on the patch to the current distribution flow and impedance 

bandwidth. The rectangular antenna with two notches at the bottom side is inserted 

by T slots for feeding strip and patch radiator, a ring and L slots, and dual asymmetry 

L slots. The slot sizes of these rectangular antennas are listed in Table 4.6. The T slot 

and dual L slot are as combination between vertical and horizontal slot, a ring and L 

slots are designed as combination of circular, horizontal and vertical slots. The 

pentagonal radiator is added by dual L and U asymmetry slots, an arrow slot and an 

epsilon (ε) slot. The slot sizes of these pentagonal antennas are listed in Table 4.7. 

Analysis has proved the theory of slots in [16]. Various slot designs on these 

proposed antennas result novelty structure of slotted UWB antenna, this is as one of 

contribution in this thesis. 
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                (a)                                         (b)                                         (c) 

 

Figure 4.15: Various slots design for rectangular with two notches antennas: (a) T 

slots for patch and feeding, (b) a ring and L slot, and (c) dual 

asymmetry L slots 

 

 

 

                  

(a)                                         (b)                                         (c) 

 

Figure 4.16:  Various slots design for pentagonal antennas: (a) dual L and U 

asymmetry slots, (b) arrow slot, and (c) epsilon slot 
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Table 4.6: Slot size for slotted rectangular antenna in Figure 4.3 

Model Description Symbol Size (mm) 

slot width ws 1 

ls1 11 

ls2 5 

ls3 3 

ls4 7 

ls5 1.5 

ls6 2 

 

 

 

 

(a) 

 

 

 

slot length 

ls7 6 

slot width ws 1 

ls8 11 

ls9 6 

 

slot length 

ls10 6 

 

 

(b) 

radius r1 3 

ls11 3 

ls12 6 

ls13 11 

ls14 6 

 

 

(c) 

 

 

slot length 

 

 
ls15 6 

 

 

 

Table 4.6 presents the slot size of three types slot design for rectangular 

antennas. The ws is kept constant of 1 mm for whole antenna design. The original 

idea cutting a slot at feeding strip for most slots design is to increase the vertical 

current distribution to antenna radiator. Table 4.7 lists the slot size of three types slot 

design for pentagonal antennas. Figure 4.16(a), the slot width is decreased to 0.5 mm 

in order to improve the bandwidth above 10 GHz. Other types have the same slot 

width of 1 mm. The length and width of slots for proposed antennas are optimized by 

Zeland simulation software. 
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Table 4.7: Slot size of slotted pentagonal antenna in Figure 4.4 

Model Description Symbol Size (mm) 

ls16 6.5 

ls17 3 

ls18 9 

 

 

(a) 

 

 

slot length 

ls19 6 

ls20 20 (b) slot length 

ls21 9 

slot length ls22 6 

r2 1 

(c) 

radius 

r3 1 

 

 

 

The simulated return loss for various slot designs of proposed slotted 

pentagonal antennas as shown in Figure 4.17. It is shown from the graphs that the 

first resonance frequency is not much shifted for all slot designs. The length and 

shape of slots are only affecting to the mid and higher frequency ranges. Here, the 

resonance frequencies are defined where the dips on the return loss curve are located. 

The L and U slot design has shown improvement bandwidth at frequency above 10 

GHz. The slot width for this slot design is set to 0.5 mm; this is due to the fact that 

slot width of 1 mm does not provide improvement at the upper frequency. From 

simulation, the U slot improves the upper dip resonance of 10.3 GHz and the L slot 

improves the lower dip resonance of 5.3 GHz. The coupling both slots has shown a 

very good return loss below -15 dB.  The length of L slot is 14.5 mm approximately 

equal to 0.25λ at 5.3 GHz, and the length of U slot is 11.5 mm approximately equal 

to 0.4λ at 10.3 GHz.  

 

Arrow slot on pentagonal patch produces an additional dip resonance 

frequency at 8.3 GHz, which are overlap with the main resonance of the patch 

antenna, but degrade the bandwidth at around 9 GHz. The degradation is due to the 

head arrow slot placed at the top of antenna. The slot length of the head arrow is 17 

mm approximately equal to 0.5λ at 9 GHz. The dip resonance at 8.3 GHz is caused 
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by the long vertical slot coupled with the head arrow. The total length slot of these 

couple slots is 37 mm approximately 1λ at 8.3 GHz. It is noticed from the simulation 

result that any slot placed at the top of pentagonal antenna critically determine the 

impedance bandwidth.   
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Figure 4.17: The simulated return loss of various slot designs for pentagonal 

antennas 

 

 

 

 The epsilon slot has shown a very flat return loss at mid range of frequencies. 

The width slot is 1 mm with the radius (r3) of 1 mm. Two coupled ring slots are 

designed to form an epsilon slot. The total arc length of both epsilon slots is 19 mm. 

The total vertical and epsilon length slots are approximately equal to 0.5λ at 5.4 

GHz. Even though the epsilon slot improves the return loss of lower resonance at 5.4 

GHz but degrade the return loss of frequency range above 6 GHz if compared with 

antenna without slot. 

 

Figure 4.18 shows the simulated return loss of slotted rectangular antennas. 

Two slots design such as ring and L slot and dual asymmetry L slot has shown 

multiple resonances. In [12], a new UWB antenna which consists of a rectangular 
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patch with two steps, a single slot on the patch, and a partial ground plane is 

reported. However, the performance and characteristic of this antenna is not analyzed 

in detail. How exactly this antenna operates across the entire bandwidth, remains a 

question. With this proposed various slot on rectangular antenna with two steps, the 

effect of slot to the antenna performances are investigated in detail.  
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Figure 4.18:  The simulated return loss of various slot designs for rectangular with 

two notches antennas 

 

 

 

The T slot on the feeding strip produces more vertical current thus improve 

the matching impedance performance at higher frequencies. The length of the T slot 

on the feeding strip is designed approximately equal to 
2

λ  at 10.5 GHz. From the 

graph in Figure 4.18, at upper frequency of 10.5 GHz of T slotted antenna, the │S11│ 

reaches -30 dB. The bandwidth enhancement is due to much more vertical electrical 

current achieved in the patch through the T slots resulting in much regular 

distribution of the magnetic current in the slots. While the T slot cut on the patch 

shows the return loss improvement at the first resonant point of 5.2 GHz. By cutting 

the slots on the patch disturb the current distribution flow. Thus, the slot wideband 



86  

 

 

behavior is due to the fact that the currents along the edges of the slot introduce the 

same resonance frequencies, which, in conjunction with the resonance of the main 

patch, produce an overall broadband frequency response characteristic. The slot also 

appears to introduce a capacitive reactance which counteracts the inductive reactance 

of the feed [109]-[110]. Thus, the bandwidth broadening comes from the patch and 

T-slot, coupled together to form UWB characteristic [111]. The use of slot embedded 

on the microstrip patch has been investigated extensively in [109], [111][149]-[151].  

This most successful technique utilizes a coupled resonator approach, in which the 

microstrip patch acts as one of the resonator and slot as the second resonator near its 

resonance [149].  

 

 The ring slot with the open angle of 90
o
 and radius (r1) of 3 mm has shown an 

improvement to the return loss at the lower resonance of 5 GHz and the upper 

resonance of 10 GHz. The arc length of ring slot is 19 mm. The total length of 

vertical slot and ring slot is approximately equal to 1λ at 10 GHz. The vertical slot 

cutting at the feeding strip has guided the vertical electrical current flowing through 

the antenna radiator and most concentrated near to the ring edge. The L slot at the 

right upper corner of the patch shows the second dip resonance at 7.3 GHz. The 

length of L slot is 11 mm and optimized by the Zeland simulation software. This 

coupled slot has presented multiple resonances which cover 3 to 12 GHz frequency 

range. 

 

 The dual asymmetry L slot on rectangular patch has shown multiple 

resonances.  The second dip resonance of 7.1 GHz is due to the right upper corner L 

slot length, while the dip resonance of 10.7 GHz is caused by the lower L slot. The 

lengths of right upper L slot and the lower L slot are 11 mm and 9 mm and 

approximately equal to 0.25λ at 7.1 GHz and 0.3λ at 10.7 GHz, respectively. Both 

coupled asymmetry L slots has provided the UWB characteristic which cover 3.1 to 

11.7 GHz. 
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(a) 

 

(b) 

 

Figure 4.19: The simulated radiation pattern of various slot designs: (a) rectangular 

with two notches and (b) pentagonal 
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 Figure 4.19 is the simulated E-theta radiation patterns for both slotted UWB 

antennas at 5.25 GHz. These radiation patterns are computed using FDTD Zeland 

software. From the simulation results, both slotted UWB antennas have shown omni 

directional patterns with remove the null radiation pattern. From the results, The T 

slotted antenna has shown very good omni directional pattern by removing the null 

pattern at 45
o
 besides provides a broad bandwidth.  

 

 

 

4.2.4 Feed Gap and Slotted Ground Plane 

 

The feed gap between ground plane to the bottom of patch is known given 

crucial effect to the impedance bandwidth. The modified truncated ground plane acts 

as an impedance matching element to control the impedance bandwidth of a 

rectangular patch.  This is because the truncation creates a capacitive load that 

neutralizes the inductive nature of the patch to produce nearly-pure resistive input 

impedance [42].   

 

Slotted or notched ground plane is also taken into consideration. The size of 

notches should be properly designed while still maintaining the antenna’s 

performance. The efficient technique to determine the size of notches in the ground 

plane is by calculating the optimum feed gap between the ground plane and the 

bottom patch required without adding the notches. Then, the size of notches can be 

adjusted with respect to the optimum distance. 

 

To investigate the effect of feed gap and slotted ground plane to the antenna 

performance, two antenna models are chosen, pentagonal with L and U slots and 

rectangular with T slot. Both antenna models are selected based on the best antenna 

performance given.  

 

Figure 4.20 illustrates the simulated return loss curves for different feed gaps 

to the ground plane of T slotted antenna, their corresponding input impedance curves 

are plotted in Figure 4.21. It is shown in Figure 4.20 and Table 4.8 that the -10 dB 

operating bandwidth of the antenna varies with the variation of the feed gap (h) and 
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the dimension of the ground plane. The optimal feed gap is found to be 1 mm with 

the fractional bandwidth of 116%.  
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Figure 4.20: Simulated return loss curves of T slotted antenna for different feed 

gaps 

 

 

 

Table 4.8: Simulated -10dB bandwidths of the T slotted antenna for different feed 

gaps of the ground plane 

h  

(mm) 

fL 

(GHz) 

fU 

(GHz) 

Absolute BW 

(GHz) 

Fractional BW 

(%) 

0.5 3.27 12 8.73 114 

1.0 3.17 12 8.83 116 

1.5 3.27 11.8 8.53 113 

2.0 2.98 8.17 5.19 93 
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 It can be seen in Table 4.8 that the -10 dB bandwidth of T slotted antenna 

does not change much with the variation of the feed gap of the ground plane below 

1.5 mm. But beyond this ranges, it will degrade the impedance bandwidth 

performance. These simulated results indicate that the antenna bandwidth is 

dependent on the feed gap of the ground plane, since the ground plane serves as an 

impedance matching circuit. 

 

As shown in Figure 4.21(a), the return loss < -10 dB always occurs over the 

frequency range when the input impedance is matched to 50 ohm. The real part (Re) 

is close to 50 Ω while the imaginary part (Im), as shown in Figure 4.21(b), is not far 

from zero for the four different feed gaps. When h is 1mm and 1.5 mm, Re varies 

tardily at the level of 50 Ω whilst Im remains small across wide frequency range, 

leading to a UWB characteristic. However, when h rises to 2 mm, Re varies more 

widely and Im also fluctuates significantly across the frequency range, thus resulting 

in impedance mismatch at the antenna and hence the decrease of the operating 

bandwidth. The peak value of resistance is as high as 100 ohms, while the maximum 

reactance is around 35 ohms.  
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Figure 4.21: Simulated input impedance curves of T slotted antenna for different 

feed gaps: (a) real part and (b) imaginary part 
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Figure 4.22: Simulated return loss curves of L and U slotted antenna for different 

feed gaps 

 

 

 

Table 4.9: Simulated -10dB bandwidths of the L and U slotted antenna for different 

feed gaps of the ground plane 

h 

(mm) 

fL 

(GHz) 

fU 

(GHz) 

Absolute BW 

(GHz) 

Fractional BW 

(%) 

0.5 4.35 11.3 6.95 89 

1.0 3.47 11.2 7.73 105 

1.5 3.27 10.9 7.63 107 

2.0 3.07 10.8 7.73 111 

 

 

 

 Figure 4.22 presents the simulated return loss of the L and U slotted antenna 

for different feed gap. From the Table 4.9 shows that by increasing the feed gap from 

0.5 mm to 2 mm to the ground plane, shifted the return loss curve to the left side and 

caused decreasing the lower resonance frequency but increasing the fractional 
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bandwidth.  The optimum feed gap is found to be 1.5 mm with fractional bandwidth 

of 107 %. Even though the lower resonance is shifted to 3.27 GHz. The maximum 

fractional bandwidth is achieved for feed gap of 2 mm to the ground plane, but the 

return loss at mid range frequency is not as good as others curves.  
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Figure 4.23: Simulated input impedance curves of L and U slotted antenna for 

different feed gaps: (a) real part and (b) imaginary part 
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 Figure 4.23 is simulated input impedance of L and U slotted antenna for 

different feed gap. It is shown that the real part varies closed to 50 ohm for 1.5 mm 

of feed gap and the imaginary part fluctuates closed to 0 ohm. The peak value of 

resistance is as high as 85 ohms, while the maximum reactance is around 38 ohms. 

 

 As mentioned previously, the ground plane acts as impedance matching of 

the antenna. Modify the partial ground plane to staircase slotted ground plane has 

improved the return loss of antenna, especially at higher frequency.  The geometry of 

staircase slotted ground plane is shown in Figure 4.24.  

 

N3
N2

N1

 

 

Figure 4.24: Geometry of staircase slotted ground plane 

 

 

 

Figure 4.24 shows the geometry of staircase slotted ground plane. By varying 

the lengths and the widths of slots of ground plane, it is possible to tune the 

impedance matching as shown in Figure 4.25. The simulated return loss as shown in 

Figure 4.25 presents the results of various length of slotted ground plane for both 

slotted antenna. The width of this slotted ground plane is set to 0.5 mm. The 

optimum feed gap for T slotted antenna is found to be 0.5 mm above the slotted 

ground plane. The optimum feed gap for L and U slotted antenna is 1 mm above 

ground plane. The gap of patch radiator to ground plane is critically effect to the 

input impedance of antenna. From the simulation, the lengths of slots of N1, N2, N3 of 

10, 7, 3 mm give the best return loss for both slotted antennas. It is shown that by 
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increasing the length of slotted ground plane caused degrading the impedance 

bandwidth of antenna performance. 
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Figure 4.25: The effect of various length slotted ground plane to the antenna 

performance: (a) T slotted antenna and (b) L and U slotted antenna 
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Figure 4.26:  The effect of various width slotted ground plane to the antenna 

performance: (a) T slotted antenna and (b) L and U slotted antenna 
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 Figure 4.26 presents the effect of various width slotted ground plane to the 

antenna performance. The width slotted ground plane of 1 mm has degraded the 

antenna return loss above -10 dB. This is due to the width slot has brought the 

antenna to much more capacitive and far away from the resonance point. The 

staircase slotted ground plane has improved the return loss around at 9 GHz for T 

slotted antenna with the width slot of 0.5 mm, but this degrade the return loss for L 

and U slotted antenna at above 4 GHz. It is also shown that the staircase slotted 

ground plane has removed the lower and upper dip resonances for both slotted 

antenna. The return loss curves fluctuate around -15 dB. The T slotted with slotted 

ground plane antenna cover frequency range of 3.17 GHz to 10.6 GHz with 

fractional bandwidth of 108%. The L and U slotted with slotted ground plane 

antenna cover 3.17 GHz to 9.8 GHz with fractional bandwidth of 102%.  

 

 The simulated return loss curves for various number of slotted ground plane 

for both antennas are depicted in Figure 4.27. It is clearly shown that by increasing 

the number of slotted ground plane has degraded the antenna performance and led 

the antenna to much more capacitive especially at higher frequency range. 
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Figure 4.27:  The effect of various number slotted ground plane to the antenna 

performance: (a) T slotted antenna and (b) L and U slotted antenna 
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4.2.5 Substrate Permittivity and Thickness 

 

The relative permittivity of the substrate materials is a very important 

parameter and it must be shown very precisely because of its effect on various 

quantities such as resonance frequency, characteristic impedance, and phase velocity. 

A number of methods have been reported for measurement of dielectric constant of 

the planar substrate materials in [152]-[154]. The proposed method in [152]-[154] for 

determination of dielectric constant is as a function of patch dimension and measured 

frequency for different low and high permittivity.  
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Figure 4.28:  Simulated return loss curves of T slotted antenna for different 

substrate permittivity  

 

 

 

 Figure 4.28 depicts the return loss of T slotted antennas for εr 4.6 and εr 2.2, 

respectively. In this study, the thickness substrate for both dielectrics is 1.6 mm. For 

both T slotted with slotted ground plane antennas, the lower dielectric has shifted the 

lower edge frequency to 3.6 GHz and improved the impedance matching at 

frequency above 5.5 GHz with respect to -10 dB. The return loss of 4.7 GHz to 5.4 
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GHz has degraded due to this lower dielectric substrate. Meanwhile, the T slotted 

antenna without slotted ground plane with dielectric substrate of 2.2 has fractional 

bandwidth of 108% covering 3.56 GHz to 12 GHz. It is concluded that the lower 

dielectric substrate has improved the upper frequency but shifted the lower edge 

resonance.  
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Figure 4.29:  Simulated return loss curves of L and U slotted antenna for different 

substrate permittivity and thickness 

 

  

 

 The simulated return loss curves for different permittivity of L and U slotted 

antenna is shown in Figure 4.29. The return loss curve with dielectric permittivity of 

2.2 of slotted ground plane above 5.5 GHz shows much lower than the antenna with 

dielectric permittivity of 4.6. The lower dielectric permittivity also has shifted the 

lower edge resonance to 3.6 GHz and degraded the performance at 4.7 GHz to 5.4 

GHz. This is due to the dielectric constant as a function of patch dimension as shown 

in Figure 4.30. The L and U slotted antenna without slotted ground plane has 

presented fractional bandwidth of 108% covering 3.56 GHz to 12 GHz.  
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 Figure 4.30 shows the return loss of T slotted antenna with the length of patch 

antenna of 14 mm. It is shown that by increasing the length of patch to 14 mm giving 

a very significant improvement for whole frequencies ranges, especially at the lower 

edge resonance.  
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Figure 4.30:  The simulated return loss of T slotted antenna with different length of 

patch radiator 

 

 

 

4.3 Reconfigurable Slotted UWB Antenna Design Consideration 

 

 In these sections two basics models of new reconfigurable UWB slotted 

antennas having band notched frequency at FWA, HIPERLAN and WLAN bands are 

presented. Band-notched operation is achieved by incorporating some small gaps 

instead of PIN diodes into the slot antenna. The term of small gap in this thesis will 

refer to the switch for next explanation. The switches are used to short the slot in pre-

selected positions along the circumference. It is found that by adjusting the total 

length of slot antenna to be about a half-wavelength or less at the desired notched 

frequency, a destructive interference can take a place, thus causing the antenna to be 

non-responsive at that frequency.  
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In this thesis, the switches are used to reconfigure slot element of UWB 

antenna for frequency notch tuning. The length of the slot antenna can be lengthened or 

shorted by closing or opening the switch allowing for a change in the notched frequency. 

For the simulation proposed, the PIN diodes as switches are considered to be ideal 

switch. The switches are modeled as small patches that connect or disconnect the 

adjacent slot changing the antenna’s slot length. For implementation, the gaps are 

created in the UWB antenna pattern, which are represented as switches. The selections of 

PIN diodes as switch are based on its low cost, higher speed and it has better insertion 

losses at higher frequency than FET switches.  

 

 

 

4.3.1 Reconfigurable Modified T Slotted Antenna  

 

 In this section, the modified T slotted antenna from the previous model is 

used with some switches incorporated into the slot antenna. In order to modify the 

previous model to become a reconfigurable notched frequency, the length of inverted 

U upper slot is varied and keeps other parameters to be constant. The switches are 

modeled as a very small patch with dimension of 0.7 x 1 mm. Thus, this proposed 

antenna has double functions as an UWB antenna as well as a frequency notched 

antenna without major modification applied. 

 

 Figure 4.31 shows the proposed antenna model. The dimension and type of 

substrate used is same with the previous model as well as the antenna dimension, 

except the dimension for inverted U upper slot. The inverted U slot consists of one 

horizontal slot and two verticals slots. To accommodate the proposed notched 

frequencies, the length of inverted U upper slot is lengthened than the previous 

model. The maximum length of horizontal slot of inverted U upper slot is 11 mm 

(TL1), with varying the length of vertical slot based on the proposed notched 

frequency. It is investigated that the notched frequency response given only by the 

inverted U upper slot rather than other slots. Thus, this simulation is focused on how 

the vertical slot affects to the notched frequencies.  

 



103  

 

 

TL1

ws

ls1

ls2

ls3

ls4

ls7

off

on

#1 #2

#3 #4

#5 #6

TL2

TL3

TL4

 

Figure 4.31: The reconfigurable modified T slotted antenna 

 

 

 

Figure 4.31 shows the reconfigurable modified T slotted antenna with 6 

switches attached into the slot. The antenna examined has vertical arms length of 29 

mm, 17 mm and 16 mm which correspond to frequency notched of 3.5 GHz, 5.25 

GHz and 5.8 GHz. The ideal switches model in this figure use removable metal 

patches to simulate the PIN diodes switches. To place a switch in the off state, the 

patch is deleted from the geometry, leaving a gap of 0.7 mm along the length of the 

vertical arms. 

 

When the antenna is operating in the UWB band without frequency notch 

function, the switch #1 and #2 are in the off state and the rest of switches are in the 

on state as shown in Figure 4.32(b). The simulation also shows that to obtain the 

notched frequency at 3.4 to 3.7 GHz, the total length of inverted U upper slot should 

be equal to 29 mm (TL4). This length is approximately equal to 
3

λ
 at 3.5 GHz, 

which is the center frequency of FWA frequency band. For this notched frequency, 

all switches are in the on state position as shown in Figure 4.32(a). 
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In order to reject the HIPERLAN band, the total length of inverted U slot is 

designed to be equal to 17 mm or approximately equal to 
3

λ
 at 5.25 GHz (TL3). 

Most of switches are in the on state (#1, #2, #3, #4) and two of them are in the off 

state (#5, #6). This configuration is illustrated in Figure 4.32(c).  

 

For notched frequency at WLAN band, the total length of inverted U upper 

slot is equal to 16 mm or approximately equal to
3

λ
 at 5.8 GHz. Only switches of #3 

and #4 are in the off state, others are in the on state. The configurations of switches 

into slot antenna for WLAN notched band mentioned are illustrated in Figure 

4.32(d). The numbers of switches used are set as minimal as possible in order to 

avoid the complexity.  
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Figure 4.32: Switching configuration for T slotted antenna: (a) notched at FWA, 

(b) UWB bandwidth (w/o notched), (c) notched at HIPERLAN, and 

(d) notched at WLAN 
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Figure 4.33:  The simulated VSWR for reconfigurable modified T slotted antenna 

 

 

  

The simulated VSWR for the proposed frequency notched antennas are 

illustrated in Figure 4.33. It is shown that by varying the length of vertical slot of 

inverted U upper slot, the desired frequency notched is achieved. Notice that the 

VSWR is less than 2 over the most frequency band in the case of without frequency 

notch function. After extending the total length of 29 mm for inverted U upper slot, a 

frequency notched at 3.47 – 3.66 GHz has resulted with VSWR changed to more 

than 6, but it has degraded the frequency band of 8.5 – 9.5 GHz. At that frequency 

notched band, the slot can be considered as a secondary antenna. The degradation 

result is maximum VSWR of 2.5, this result is considered acceptable.   

 

 The total lengths of inverted U upper slot of 17 mm and 16 mm have resulted 

frequency notched bands at HIPERLAN and WLAN, respectively. The frequency 

notched bands of 5.23 GHz – 5.53 GHz is obtained for HIPERLAN and 5.62 GHz – 

5.92 GHz for WLAN. At these frequency-notched bands, the VSWR is changed to 

more than 5 without degrading the VSWR for the most frequency bands which are 
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less than 2. Thus, this antenna is very compromise to be used for UWB application 

without having interference to HIPERLAN and WLAN systems. Other feature for 

this antenna is this antenna non responsive to FWA band which was assigned by 

MCMC. Therefore, it fulfills the local wireless communications needs. This is 

considered as one of contribution for this thesis.  

 

 

 

4.3.2 Reconfigurable Modified L and U Slotted Antenna 

  

 Modified L and U slotted antenna for reconfigurable frequency notched at 

FWA, HIPERLAN and WLAN are shown in Figure 4.34. There are maximum six 

switches used to provide the reconfigurable function. The dimension of antenna and 

substrate are kept same with the previous model. The length of L and U slots are 

same with the previous length, except two additional slot lengths, Is20 and Is21.  The 

additional slots are very critically determined the frequency notched band 

characteristics. 

 

A switch PIN diode is modeled as a small patch with different color for on 

and off state condition. In order provide the UWB characteristic, the switches are 

placed as shown in Figure 4.34 (a). Three switches of #2, #3, and #4 are in the off 

state position. Other switches of #1, #5, and #6 are in the on state condition. When 

the switches are in the off state condition, the gap between slots occur and the current 

flowing to the gap. When the switches are in the on state condition, there is no 

current flowing to the slots. Thus it forms continuous slots. The switches of #2 and 

#3 are incorporated to the first additional slot (Is20) which is 3.5 mm of slot length. 

The switch of #4 is attached to the second additional slot (Is21) which is 2.5 mm of 

slot length. 
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             (a)     (b) 

 

             (c)     (d) 

 

Figure 4.34: Switching configuration for L and U slotted antenna:  (a) UWB 

bandwidth (w/o notched), (b) notched at FWA, (c) notched at 

HIPERLAN, and (d) notched at WLAN 

 

 

 

The frequency notched characteristic antenna at FWA is shown in Figure 

4.34 (b). All switches are in the on state or continuous slot. Total slot lengths are 32 

mm or approximately equal to 0.4λ at 3.7 GHz. The total slot length means the sum 
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of slot lengths of L, U and additional slots. Figure 4.34 (c) and Figure 4.34 (d) 

present the frequency notched characteristic antenna at HIPERLAN and WLAN, 

respectively. To reject interference from HIPERLAN, the switches of #1, #4, and #6 

are in the off state while switches of #2, #3, and #5 are in the on state. It is 

investigated that by inserting those switches in the off state condition broke the 

connection between slots. This break connection has reduced the slot length to be 

20.75 mm or approximately equal to 0.33λ at 5.2 GHz. Thus, the antenna has 

frequency notched at HIPERLAN band. The total slot length is measured from the 

connecting slots. 

 

The configuration of switches in Figure 4.34(d) have resulted an antenna with 

frequency notched at WLAN. It is shown that the switch of #5 set in the off state in 

order to reduce the slot length, while the switch of #6 is in the on state. This is the 

only different while compared to the HIPERLAN configuration. Total slot lengths 

are 18 mm or approximately equal to 0.33λ at 5.75 GHz measured from the 

connecting slots.  
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Figure 4.35: The simulated VSWR for reconfigurable modified L and U slotted 

antenna 
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 Figure 4.35 shows the simulated VSWR for reconfigurable modified L and U 

slotted antenna. By varying the slot lengths and break the connection between slots 

using switches, the proposed frequency notched is achieved. The FWA notched 

bands are obtained from 3.57 GHz – 3.86 GHz with the total slot length of 32 mm at 

3.7 GHz, which is the centre frequency. While the HIPERLAN and WLAN notched 

bands are from 4.84 GHz to 5.33 GHz and 5.53 GHz to 6.02 GHz, respectively.  It is 

noted that beyond the frequency notched bands, the VSWR is kept to be less than 2.  

 

 

 

4.4 Summary 

 

 In this chapter, various polygonal UWB antennas have been presented with 

some parameters design taken into consideration. There are two models UWB slotted 

antennas resulted in this study, such as T slotted antenna with slotted ground plane 

and L and U slotted antenna.  Both antennas show a very broad bandwidth and nearly 

omni directional pattern. Both antennas show a very good radiation and antenna 

efficiency within UWB frequency range which exceed 75% except at 12 GHz. This 

chapter also investigates the reconfigurable characteristic for proposed UWB 

antennas by inserting the half-wavelength slot to the patch. These proposed types of 

antennas are variation from the previous models. The reconfigurability behaviors are 

achieved by shortened or widened the slot. The switching is model as a small patch 

of 0.7 mm x 1 mm instead of PIN diodes. 
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CHAPTER 5 

 

 

 

FINAL RESULTS AND DISCUSSIONS 

 

 

 

5.1 Introduction 

 

After intensive investigation for various polygonal monopole antennas as 

discussed in Chapter 4, and observing their performance with regard to the UWB 

antenna requirements, there are two model slotted UWB antennas resulted from this 

study, the T slotted antenna with slotted ground plane and L and U slotted antenna. 

Both types of antennas have been developed and tested. This selection is based on 

the best performance given in terms of resonance frequency, impedance bandwidth, 

current distribution, slots effect, permittivity and radiation pattern. For 

reconfigurable slotted UWB antennas, it is shown from the simulation results that by 

modifying the length slots of slotted UWB antenna, it provides the band notched 

characteristics without major modification by using one antenna. In this chapter, the 

simulation results of both proposed antennas will be further discussed and compared 

to the experimental works.  

 

 

 

5.2 Final Design of Slotted UWB Antenna and Experimental Verification 

 

Figure 5.1 shows the geometry and prototypes of slotted UWB antennas.  The 

size of slotted ground plane has described previously. The slot dimensions for both 

models have been given in Table 4.6 and Table 4.7, respectively. . The optimum feed 
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gap for T slotted with slotted ground plane and L and U slotted antennas are 0.5 mm 

and 1.5 mm, respectively. 

 

 

(a)  

 

 

(b)  

 

Figure 5.1:  The geometry and prototypes of final design for slotted UWB antennas: 

(a) geometry, (b) prototypes 
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As shown in Figure 5.1, both prototypes are printed in the front of substrate 

FR4 of thickness 1.6 mm and relative permittivity (εr) 4.6. The return losses were 

measured by using Agilent 8722 ES network analyzer. The measured of both 

prototypes and simulated return loss curves are plotted in Figure 5.2 and Figure 5.3, 

respectively. The return loss predicted by the FDTD solutions is reasonably close to 

the measured values. 

 

 

 

5.2.1 Simulated and Measured Return Loss 

 

As shown in Figure 5.2, the measured return loss curves for both T slotted 

antennas with and without slotted ground plane are reasonably close to the simulated 

results. It is shown that both results have produced multiple resonances frequencies, 

which shifted from the simulated resonances, but they are still covering the UWB 

bandwidth requirement. For T slotted antenna with slotted ground plane as shown in 

Figure 5.2(a), the frequency ranges cover 3 GHz to 10.23 GHz with respect to -10 dB 

of return loss. While the second antenna without slotted ground plane as shown in 

Figure 5.2(b), the return loss covers 2.3 GHz to 10.4 GHz. From this measured 

results, the antenna without slotted ground plane is better than the antenna with 

slotted ground plane in terms of the impedance bandwidth. This is due to the antenna 

with slotted ground plane need very accuracy in alignment between the slotted 

ground plane and patch on both sided of substrate during fabrication. The distance of 

patch to the ground plane is also very small of 0.5 mm. The misalignment occurred 

affects the impedance bandwidth.  The measurements confirm the UWB 

characteristic of the proposed slotted UWB antennas, as predicted in the simulations. 
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(b) 

 

Figure 5.2:  The measured and simulated return loss for T slotted antenna: (a) with 

slotted ground plane and (b) without slotted ground plane 
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 For L and U slotted antenna, as shown in Figure 5.3, the measured return loss 

is very close to the simulated result which covers frequency band of 2.5 GHz to 10.1 

GHz. In both prototypes, measurements are done by using a 50-Ω SMA connecter 

which is soldered at the bottom edge of microstrip line and connected to network 

analyzer by an RF cable. The RF cable significantly affects the performance of 

antenna under test [35]. However, some differences in the simulated and measured 

results are expected, since in the simulation model the mismatch due to the adapter 

and connector used are not taken into consideration. In reality the coaxial cable has a 

considerable effect, especially the length of its inner conductor, which is connected 

to the input of the antenna, creating an additional inductance. In addition, since the 

antenna is fed by a microstrip line, misalignment can result because etching is 

required on both sides of the dielectric substrate. The alignment error results 

degradation to the antenna performance. 
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Figure 5.3: The measured and simulated return loss for L and U slotted antenna 

 

 

 

 



116  

 

 

 From experimental experiences, the multiple resonances of return loss 

occurred on the proposed antennas are due to these antennas printed in the front of 

FR4 substrate. It has been investigated during the return loss measurement of many 

wideband antennas that have been developed. In addition, the FR4 substrate quality 

needs to be taken into consideration. It should be used within six months after 

purchased in order to avoid the oxidation process. The poor quality of FR4 substrate 

used produces a poor measured return loss and need longer time during etching 

process. Thus, perfect impedance match is not easily obtainable. These fabrication 

processes are important, because a slight error could result in major degradation in 

antenna performance. 

 

 

 

5.2.2 Simulated and Measured VSWR 

 

The VSWR for both prototypes were computed and measured as well and 

shown in Figure 5.4. The agreement between measured and calculated results 

indicates that accurate design studies can be performed by simulation. The VSWR 

curves are referenced to a 50-Ω input impedance in both simulation and 

measurement.  The VSWRs are well below 2:1 achieved by tapering the bottom of 

the patch and properly designed on the gap to the ground plane. 
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Figure 5.4: The measured and simulated VSWR for both antennas 

 

 

 

5.2.3 Simulated and Measured Gain 

 

 The simulated maximum gain and maximum directivity of T slotted antenna 

is shown in Figure 5.5. The gain varies from 1.7 to 5.6 dBi and the directivity varies 

from 2.6 to 7.3 dBi. The simulated maximum gain and directivity related to the angle 

is listed in Table 5.1. The lower gain is obtained due to the antennas exhibit 

omnidirectional radiation pattern. In this thesis, the gain measurements for both 

proposed antennas are not performed with a standard gain of horn antenna. Variation 

of gain and directivity for antenna can also be observed from the variation of antenna 

radiation pattern [154]. Therefore, since these antennas have the omnidirectional 

behavior, the azimuth plane (H-plane) pattern plots are considered.  
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Figure 5.5:  The simulated maximum gain and directivity of T slotted antenna with 

slotted ground plane 

 

 

 

Table 5.1: The simulated maximum gain and directivity of T slotted antenna with 

slotted ground plane 

Max. Directivity Freq. 

(GHz) 

Max. Gain 

(dBi) dBi (θ, φ) deg 

3dB beam 

width (deg) 

3  1.7 2.6 (170, 330) (85.5, 180) 

5.25 3.9 4.2 (160, 260) (48.9, 192.8) 

7.5 2.7 3.1 (80,150) (68, 244.7) 

9.75 5.5 6.4 (80, 120) (39.5, 85.6) 

12 5.6 7.3 (90, 120) (29.5, 70.4) 
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(a) 

 

(b) 

 

 

Figure 5.6:  The measured relative gain for T slotted antenna with slotted ground 

plane with respect to the peak plot in the H-plane: (a) 4 GHz, (b) 5.8 

GHz, and (c) 10.6 GHz 
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The measured gain obtained is only relative gain (dB) to the peak measured 

radiation pattern plot. This gain is normalized to 0 dB. The relative gain of 4 GHz 

and 5.8 GHz varies around -6 dB for T slotted antenna. The gain varies around -15 

dB to -23 dB at elevation ± 5 degrees of 10.6 GHz. The measured relative gain for T 

slotted antenna is shown in Figure 5.6. For L and U slotted antenna, the gain varies 

around -7 dB at both frequencies of 4 GHz and 5.8 GHz. Then it decreases to be -20 

dB at elevation ± 5 degrees of 10.6 GHz. Figure 5.7 shows the measured relative 

gain for L and U slotted antenna.  

 

It is observed from the results, at lower frequencies, the radiation patterns are 

nearly omni directional with small variation; however, as frequency increases the 

radiation pattern starts degrading.  This is caused by the presence of the coaxial cable 

that feeds the antenna and disturbs the symmetry of the measurement setup [154].  

Since the cable is electrically large at higher frequencies, a more pronounce 

asymmetry on the radiation patterns are observed at higher frequencies. 
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(a) 

 

(b) 

 

(c) 

 

Figure 5.7:  The measured relative gain for L and U slotted antenna with respect to 

the peak plot in the H-plane: (a) 4 GHz, (b) 5.8 GHz, and (c) 10.6 GHz 
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The simulated antenna efficiency and radiation efficiency for T slotted 

antenna with slotted ground plane is also presented in Figure 5.8. The antenna 

efficiency is defined as the ratio between the radiated power and the incident power. 

Whereas, the radiated power is defined as the total radiated power into the space by 

the antenna. Incident power is the power of the incident wave with respect to the 

normalization impedance Zc [148]. Thus, the radiation efficiency is the ratio between 

radiated power and input power. The input power is the net power delivered to the 

antenna or incident power minus reflected power.  
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Figure 5.8:  The simulated antenna and radiation efficiency of T slotted antenna 

with slotted ground plane 

 

 

 

The antenna efficiency of T slotted antenna reaches a maximum of 92.7% at 

5.25 GHz, and start degrading at frequency above 6 GHz, but it is still above 67%. 

The radiation efficiency varies from 80% to 97% and decreasing with increasing the 

frequency. Both results show a well match between radiated power and input power. 

The antenna radiation properties are listed in Table 5.2. 
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Table 5.2: The simulated radiation properties of T slotted antenna with slotted 

ground plane 

Freq. 

(GHz) 

Incident 

power (W) 

Input 

power (W) 

Radiated 

power (W) 

Radiation 

eff. (%) 

Antenna 

eff. (%) 

3  0.01 0.00829955 0.00810181 97.6174 81.0181 

5.25 0.01 0.00957716 0.00927255 96.8194 92.7255 

7.5 0.01 0.00989331 0.00903805 91.3552 90.3805 

9.75 0.01 0.0098948 0.00814509 82.3169 81.4509 

12 0.01 0.00846983 0.0067767 80.0098 67.767 

 

 

 

For L and U slotted antenna, the simulated antenna gain is shown in Figure 

5.9.  From the result, the maximum directivity varies from 2.6 dBi to 6.8 dBi over 

frequency range with maximum gain of 1.5 to 5.9 dBi. Table 5.3 shows maximum 

directivity and gain of L and U slotted antenna. The simulated antenna efficiency and 

radiation efficiency is shown in Figure 5.10. The radiation efficiency varies from 

79.5% at 12 GHz to 97.9% at 5.25 GHz. The antenna efficiency at most frequencies 

are above 75% except at 12 GHz of 57.2%.  
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Figure 5.9: The simulated maximum gain and directivity of L and U slotted antenna 
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Table 5.3: The simulated maximum gain and directivity of L and U slotted antenna  

Max. Directivity Freq. 

(GHz) 

Max. Gain 

(dBi) dBi (θ, φ) deg 

3dB beam 

width (deg) 

3  1.5 2.6 (170, 330) (86.3, 180) 

5.25 4.0 4.1 (160, 250) (53.7, 197.8) 

7.5 3.3 3.6 (80, 160) (62, 245) 

9.75 5.9 6.8 (80, 120) (41, 84.2) 

12 3.7 6.1 (80, 70) (32, 66.3) 
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Figure 5.10:  The simulated antenna and radiation efficiency of L and U slotted 

antenna 

 

 

 

Table 5.4 shows the simulated radiation properties. The radiation efficiency 

above 75% is achieved for this type of antenna and meets the UWB antenna 

requirement. The antenna efficiency decreases at frequency of 12 GHz only.  
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Table 5.4: The simulated radiation properties of L and U slotted antenna  

Freq. 

(GHz) 

Incident 

power (W) 

Input 

power (W) 

Radiated 

power (W) 

Radiation 

eff. (%) 

Antenna 

eff. (%) 

3  0.01 0.00803227 0.00769477 95.7982 76.9477% 

5.25 0.01 0.00991543 0.00970641 97.892 97.0641 

7.5 0.01 0.00993616 0.00924668 93.0609 92.4668 

9.75 0.01 0.00995734 0.00823922 82.7452 82.3922 

12 0.01 0.00719585 0.00572247 79.5246 57.2247 

 

 

 

5.2.4 Various Slot Design 

 

The effect of various slots design to the antenna performance is discussed in 

the next section. The observation has been done in terms of the slot length, the 

current distribution, and the slot width to the impedance bandwidth by simulation.  

 

 

 

5.2.4.1 Various T Slot Design 

 

Figure 5.11 shows various modified of T slotted antenna with their current 

distribution at 3, 5.5 and 9 GHz, respectively. Figure 5.11(a) presents the current 

distribution of antenna with both T slot on patch and feed, T slot on patch only, and 

T slot on feed only at 3 GHz. The T slot has resulted much more vertical current 

through antenna radiator. Most vertical electrical current is distributed near the T slot 

edges and lead to impedance matching at 3 GHz. The vertical current is most 

concentrated near the patch edges and slots rather than distributed on the antenna 

surface at 5.5 GHz and this cause the decrement of the intensity of vertical electrical 

current on antenna surface. For the antenna’s current distribution at 9 GHz, the 

horizontal current mode occurs on the antenna surface. And it is also shown that 

some vertical current start flowing down to the base. The simulated return loss for 

these various T slots antennas is shown in Figure 5.12.  
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Figure 5.12 shows that the T slots have improved the return loss at mid 

frequencies range, while slightly shifted the upper edge resonance. The return loss 

provides a very broad bandwidth below -15 dB. 

 

 

(a)  

  

 

(b)  

 

 

(c)  

 

Figure 5.11: The simulated current distribution for T slotted with slotted ground 

plane antenna: (a) 3 GHz, (b) 5.5 GHz, and (c) 9 GHz 
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Figure 5.12: The simulated return loss of various T slots design for T slotted with 

slotted ground plane antenna 

 

 

 Frequency (GHz)

0 2 4 6 8 10 12 14

R
e
tu

rn
 L

o
s
s
 (

d
B

)

-25

-20

-15

-10

-5

0

width T slot= 0.5 mm

width T slot = 1mm

 

 

Figure 5.13: The simulated return loss of various width of T slots design 
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Figure 5.13 shows the return loss of T slots with 0.5 mm and 1 mm width, 

respectively. From the results, there is not a significant effect to the antenna’s return 

loss performance by decreasing the slot width. The optimum width is found to 1 mm.  

 

  

                      3 GHz                                  6 GHz                             9.5 GHz 

(a) 

 

                     3 GHz                                  6 GHz                              9.5 GHz 

(b) 

 

                    3 GHz                                  6 GHz                              9.5 GHz 

(c) 

 

Figure 5.14: The simulated current distribution on the antenna by varying its height 

of T slot on the patch radiator for different frequency: (a) both length 

3 mm, (b) both length 5 mm, and (c) length 4 and 3mm 

Y 

X 

Z 
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Figure5.14 shows the current distribution on the antenna by varying its height 

of T slot on the patch radiator. The T slot height provides significantly effect to the 

return loss performance, as shown in Figure 5.15. From the simulation results, 

increasing the height of T slots results multiple resonance frequency. The lower edge 

resonance frequency is same for all T height at 5.2 GHz. Asymmetry heights of T 

slots does not give any return loss improvement, but degrade the return loss at around 

8 GHz. The optimum height is found to be 2 to 3 mm.  
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Figure 5.15: The simulated return loss of various heights for upper T slot  

 

 

 

5.2.4.2 Various L and U Slot Design 

 

The L and U slotted antenna with current distribution at 3, 6, and 9 GHz is 

presented in Figure 5.16. Individual L and U slotted antenna is depicted as well. It is 

shown in both figures; the vertical current is most concentrated near to the slots 

edges for all frequency range. It is noted for both L and U slots, the current 

distribution is less on the area between both slots. While for L slot only, the intensity 

current distribution decreases on the area below the L slot.  The U slotted antenna 

has less current distribution on the area opposite to the U slot.  
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 It has been investigated that by increasing the frequency caused decreasing 

the distributed current on the area between both L and U slots, below L slot and 

opposite the U slot. This is due to the current tends to distribute along the slot which 

correspondence to the resonance frequency. 

 

 

(a) 

 

  

(b) 

 

  

(c) 

Figure 5.16:  The simulated current distribution of 3, 6, and 9 GHz for L and U 

slotted antenna 
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Figure 5.17: The simulated return loss of various L and U slots design for L and U 

slotted antenna 

 

 

 

 Figure 5.17 shows the return loss comparison between antenna with and 

without L and U slotted on patch radiator. The lower resonances for all antenna 

models are shifted slightly, but they are still around 5 GHz. The individual L slotted 

antenna has degraded the return loss at upper frequency rather than the individual U 

slotted antenna. It is clearly shown that L and U slotted antenna has a good return 

loss performance with respect to -10 dB. 

 

 Figure 5.18 is the simulated return loss of various width L and U slots design. 

By decreasing the width slot to 0.5 mm has improved the return loss especially at 

upper frequency and widened the impedance bandwidth. 
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Figure 5.18: The simulated return loss of various width of L and U slots design 

 

 

 

Figure 5.19 and Figure 5.20 show the current distribution of L and U slotted 

antenna with different length slot and their return loss performance, respectively. As 

mentioned previously, most current distributes near to the slots edges. Increasing the 

frequency has caused decreasing the distributed current on the area between both 

slots. It is noted from the results, varying the length slot of L or U slot only give a 

little impact to the antenna performance without affect the impedance bandwidth. 

The optimum length of slots is found as listed in Table 4.7.  
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                      3 GHz                                 6 GHz                               9 GHz 
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Figure 5.19: The simulated current distribution on the antenna by varying its length 

of L and U slot on the patch radiator for different frequency: (a) vary L, 

(b) vary U, and (c) vary both L and U 
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Figure 5.20: The simulated return loss of L and U slotted antenna with different 

length slot 

 

 

  

5.3 Final Design of Reconfigurable Slotted UWB Antenna 

 

 Three prototypes resulted for each model of slotted UWB antenna. As 

mentioned before, there are two models such as T slotted antenna and L and U 

slotted antenna. Each prototype has capability to reject a certain frequency. Figure 

5.21 shows the geometry of first model reconfigurable slotted UWB antenna and the 

photograph of prototypes. From the top left side of Figure 5.21(a) is a prototype 

which has band notched at FWA band. The top middle side and the top right side of 

Figure 5.21(a) are both prototypes have band notched bands at HIPERLAN and 

WLAN band, respectively. The same sequential are also applied to the Figure 5.21(b) 
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(a) 

          

(b)  

 

Figure 5.21: Three prototypes of T slotted antennas with notched band at FWA 

(left), notched at HIPERLAN (middle) and notched at WLAN (right): 

(a) geometry of reconfigurable T slotted antenna and (b) photograph 

of prototype 
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Figure 5.22: The measured VSWR for the three prototypes of modified T slotted 

antenna 

 

 

 

 Figure 5.22 shows the measured VSWR for three prototypes of modified T 

slotted antenna. The measured VSWR increased to 2.2 compared to the simulated 

result described in Chapter 4. The band notched curves for all frequency are also 

shifted. This is due to the imperfect matching in the coaxial feed during soldering 

and fabrication. For band notched at FWA band, the rejection covers from 3.56 GHz 

to 4.05 GHz, the rejection at HIPERLAN and WLAN are 5.13 GHz to 5.43 GHz and 

5.82 GHz to 6.2 GHz, respectively. The VSWR beyond 9.3 GHz is getting worse.  

 

Figure 5.23 shows the measured phase for the modified T slotted antenna 

which has the band notched at FWA band. It is shown that the phase almost constant 

over frequencies range, slightly shifted occurred. This nearly constant phase also 

occurs for others both prototypes. This constant phase and group delay is important 

to ensure the pulse transmitted are not distorted. 
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Figure 5.23: The measured phase for modified T slotted antenna 

 

 

 

There are three prototypes have been developed for this modified L and U 

slotted antenna as shown in Figure 5.24.  Figure shows the geometry and photograph 

of L and U slotted antenna. The top side of Figure 5.24(b) shows a prototype of band 

notched at 3 GHz, the left figure is a prototype of band notched at HIPERLAN and 

the right figure is a prototype of antenna band notched at WLAN. The geometry with 

respect to these configurations are shown in Figure 5.24(a). The measured VSWR for 

three prototypes of L and U slotted antenna are shown in Figure 5.25.  
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(a) 

 

(b) 

 

Figure 5.24:  Three prototypes of modified L and U slotted antenna for band 

notched at FWA (top), at HIPERLAN (left) and at WLAN (right): (a) 

geometry and (b) photograph 
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Figure 5.25: The measured VSWR for L and U slotted antenna 

 

 

 

 The measured VSWR for this type of antenna is shown in Figure 5.25. The 

VSWR is approximately less than 2.2 over 3 GHz to 10 GHz, except for antenna 

with band notched at HIPERLAN band. The VSWR beyond 9.5 GHz is getting 

worse. For band notched at FWA, the rejection is in the range of 3.76 GHz to 4.25 

GHz, and the rejection of HIPERLAN is 5.23 GHz to 5.53 GHz. The antenna with 

band notched at WLAN band has rejection in the range of 5.72 GHz to 6.1 GHz. 

Even though the band notched slightly shifted from the required bands, but it still 

covers the rejection bandwidth.  

 

 Figure 5.26 presents the measured constant phase for the antenna with 

HIPERLAN rejection. The slightly distorted occurred over the frequency ranges. 

Both other prototypes have almost similar constant phase.  
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Figure 5.26: The measured phase of L and U slotted antenna with HIPERLAN 

notched band 

 

 

 

5.4 Spherical Near Field Testing 

 

 Once the resonance frequencies were identified, principal radiation patterns 

were taken to characterize the operational performance of each antenna. These 

measurements were obtained using indoor anechoic chamber room. For these 

measurements, the chamber was arranged as shown in Figure 5.27. 
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Figure 5.27: The radiation pattern measurement setup inside the anechoic chamber 

room 

 

 

 

 From Figure 5.27, it is shown the measurement setup for both antenna and 

probe which were mounted to the vertical positioner-holders. The probes available at 

the chamber are in the frequency ranges of 3.95 – 5.85 GHz and 8.95 – 12 GHz, 

respectively. Therefore, the radiation patterns were measured at 4 GHz, 5.8 GHz and 

10.6 GHz. The measured radiation patterns were plotted into horizontal (H) and 

vertical (V) cuts. The H-cut is cut for the azimuth plane with fixed elevation angle at 

0
0
 and vary the azimuth angle. The V-cut is cut for the elevation plane with fixed 

azimuth angle at 0
0
 and vary the elevation angle.  

 

The existing chamber employed the spherical near field measurement as 

shown in Figure 5.28. By definition, near field tests are done by sampling the field 

very close to the antenna on a known surface. From the phase and amplitude data 

collected, the far field pattern must be computed in much the same fashion that 

theoretical patterns are computed from theoretical field distributions. The 

transformation used in the computation depends on the shape of the surface over 

which the measurements are taken with the scanning probe [155]. 

Y 

X 

Z 
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Figure 5.28: Coordinate system for typical spherical near-field rotator system [156]  

 

 

 

This spherical system acquired a double data set on the antenna under test 

(AUT). The ‘360phi’ data set is taken with full 360
0
 phi rotation of the AUT, but 

with only 0 – 180
0
 motion in theta. In this mode, the AUT’s Z axis will only be 

looking at one side of the chamber during the measurement [156]. The AUT was 

swept every 2
o
 increment in azimuth plane in order to reduce the aliasing errors. Data 

point spacing aliasing errors will occur for spherical near-field measurements if the 

data point spacing is not small enough to sample the highest spatial frequency 

components in the measured data [156].  

 

 

 

5.4.1 Radiation Patterns of T Slotted Antenna with Slotted Ground Plane 

 

 Several requirements are needed to take into consideration during the 

measurement process. Obtaining true patterns depends primarily on accurately 

positioning the probe, accurately measuring the field, and eliminating distortions in 
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the field introduced by the room, track, or probe it self [155]. The room reflections 

must be lower than the basic sidelobe level, the probe it self must have low 

reflections. The probe position must be accurate to better that the tolerance 

corresponding to the sidelobe level. In a spherical near-field range, the spherical 

measurement surface will be imperfect due to inaccuracies of the positioners and 

misalignment of these positioners [156]. 

  

The elevation patterns for the antennas are simulated at the H-plane (φ = 0
0
, 

yz-plane) and E-plane (φ = 90
0
, xy-plane).  The E-plane pattern is the radiation 

pattern measured in a plane containing feed, and the H-plane pattern is the radiation 

pattern in a plane orthogonal to the E-plane. These both simulated results are 

compared to the measured H-plane and E-plane for the three differences frequencies 

of 4 GHz, 5.8 GHz and 10.6 GHz, as shown in Figure 5.29 to Figure 5.31, 

respectively. 

 

The results show that the radiation patterns are changing as the frequency 

increases. The measured H-planes show omnidirectional radiation pattern over the 

frequencies. The patterns resulted from the measurements have many ripples in 

amplitude due to many reflections into the field between the AUT and probe. The 

reflections may come from the room (floor and ceiling), chamber scattering, antenna 

holder it self and track inside the anechoic chamber.  It is shown in Figure 5.27, the 

antenna size is very small compared to its huge holder, and also the floor and the 

track surrounding the antenna tower are not all covered by absorber. If moved 

sideways, the ripples due to the track to move about half cycle. If moved vertically, 

the ceiling and floor reflections are indicated. Various types of leakage occur are also 

considered as pattern degradation. The most significantly is probably from improper 

cable connectors allowing excitation of the outside surface [155]. Leakage will be 

added to the measured pattern as degradation. 
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(a) 

 

(b) 

 

Figure 5.29: The measured and simulated E and H planes at 4 GHz: (a) measured 

and simulated E-planes and (b) measured and simulated H-planes 
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It is observed that the measured and simulated elevation patterns for the E 

and H planes are relatively broad. The antenna tends to radiate energy equally to all 

direction.  The measured radiation patterns demonstrate that at the low end of the 

operating band, the currents are well distributed over the patch antenna plate so the 

patterns are nearly omnidirectional. But at high end of the operating band, the 

currents are concentrated near the slot, thus the fields radiate mainly through the slot. 

 

 

(a) 

 

Figure 5.30: The measured and simulated E and H planes at 5.8 GHz: (a) measured 

and simulated E-planes and (b) measured and simulated H-planes 
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It is also noted from Figure 5.30 that with increasing frequency to 5.8 GHz, 

the E-plane patterns become smaller. Many ripples occurred in this frequency. The 

dips also present for various different angles. Even though the measured radiation 

patterns are slightly difference to the simulated ones, since their patterns are nearly 

omni directional and their return losses are less than -10 dB, this proposed antenna 

meets the UWB requirements. 

 

(a) 

 

(b) 

Figure 5.31: The measured and simulated E and H planes at 10.6 GHz: (a) 

measured and simulated E-planes and (b) measured and simulated H-

planes 
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 Figure 5.31 shows the E and H-planes for simulated and measured results. 

Slightly degradation at boresight occurs in measured H-plane. It is shown from both 

figures that both measured planes are wider than both simulated planes. The E-plane 

pattern seems tend to omnidirectional, which is similar to the H-plane. The 

degradation at boresight is due to misalignment of the AUT.  

 

 

 

(a) 

 

 

(b) 

 

Figure 5.32: The measured 3D radiation pattern: (a) 4 GHz and (b) 5.8 GHz 

 

 

 

 



148  

 

 

 Figure 5.32 and Figure 5.33 present the measured 3D radiation patterns for 4 

GHz, 5.8 GHz and 10.6 GHz.  This 3D graphical radiation patterns show clearly the 

nearly omni directional pattern for each frequency. The pattern types are almost 

similar. The 3D radiation patterns are plotted from top and side views. 

 

 

 

Figure 5.33:  The measured 3D radiation pattern at 10.6 GHz: (a) side view and (b) 

top view 

 

 

 

5.4.2 Radiation Patterns of L and U Slotted Antenna 

 

Figure 5.34 to Figure 5.36 present the measured and simulated radiation 

pattern for E and H planes of 4 GHz, 5.8 GHz and 10.6 GHz, respectively. An 

important feature that is highly desirable of proposed UWB antennas are the nearly 

omni directional radiation patterns as demonstrated by the fact that the H plane 

patterns are not significant different for all frequencies. The E-plane pattern for 10.6 

GHz is very broad and tends to nearly omnidirectional. 
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(a) 

 

(b) 

 

Figure 5.34: The measured and simulated E and H planes at 4 GHz: (a) measured 

and simulated E-planes and (b) measured and simulated H-planes 
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(a) 

 

 

(b) 

 

Figure 5.35: The measured and simulated E and H planes at 5.8 GHz: (a) measured 

and simulated E-plane and (b) measured and simulated H-planes 
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(a) 

 

(b) 

 

Figure 5.36: The measured and simulated E and H planes at 10.6 GHz:  

(a) measured and simulated E-planes and (b) measured and simulated  

H-planes 
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 From the measured results obtained, the E and H planes for the T slotted 

antenna and this antenna have nearly similar patterns. The H planes are remaining 

omnidirectional along the bandwidth. The ripples problem still occurs for all 

frequencies range. This is due to imperfect system inside the anechoic chamber 

where is difficult to obtain the true patterns. However, the mathematical error 

computed by simulation software are very small in error, the largest sources of error 

are experimental. The antenna misalignment also directly contributes to the boresight 

errors.  

 

 

(a) 

 

 

(b) 

 

Figure 5.37: The measured 3D radiation pattern: (a) 4 GHz (b) 5.8 GHz 
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Figure 5.38: The measured 3D radiation pattern at 10.6 GHz 

 

 

 

 The 3D graphical radiation patterns are presented in Figure 5.37 and Figure 

5.38 for 4 GHz, 5.8 GHz and 10.6 GHz. These patterns are seen from top view and 

side view. It is noticed that the patterns behavior of this antenna show very closely 

with the T slotted antenna.  

 

 

 

5.4.3 Radiation Patterns of Reconfigurable T slotted UWB Antenna 

 

This thesis is also investigated the effect of frequency notched to the radiation 

pattern at 4 GHz and 5.8 GHz. Figure 5.39 presents the measured and simulated 

radiation patterns for antenna having frequency notched at FWA. Comparison 

between the reconfigurable modified T slot antenna and UWB T slotted antenna 

without frequency notch function, in terms of radiation patterns, have been done. It is 

found that the radiation pattern at 4 GHz of notched band at FWA has a dip towards 

null at 30
0
 in E plane. This dip is smaller than the dip occurs at 49

0
 for antenna 

without notch function. For radiation pattern at 5.8 GHz, more distortions occur for 

the E-plane rather than the E-plane pattern of previous frequency. Both the E planes 

for both frequencies are relative broad. The measured H planes for both frequencies 
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are remaining omnidirectional behaviors.  The E plane at 5.8 GHz has a dip to null at 

-30
0
.  

   

(a) 

 

(b) 

 

Figure 5.39: The measured and simulated E and H-planes for T slotted antenna 

notched at FWA: (a) 4 GHz and (b) 5.8 GHz 

 

 

 

Figure 5.40 shows the measured and simulated radiation pattern for antenna 

with notched band at HIPERLAN band. It is observed that the E-pattern of 5.8 GHz 

is smaller than E-pattern of 4 GHz, while both H-planes are omnidirectional. It is 

noticed that the notched band does not affect to the radiation pattern. This is 
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investigated by comparing between these characteristic patterns with the previous 

characteristics without notched function. Both characteristics are mostly similar each 

other.  A dip occurs at -60
0
 for E-plane of 5.8 GHz pattern. E-plane pattern of 4GHz 

has no dip toward null, it is broad and the ripples still occur in the pattern due to the 

uncertainties. The uncertainties of the far-field patterns caused by any errors, as 

mentioned in previous chapter, contribute to the radiation pattern degradation.   

 

 

(a) 

 

(b) 

 

Figure 5.40: The measured and simulated E and H planes for T slotted antenna 

notched at HIPERLAN: (a) 4 GHz and (b) 5.8 GHz 
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(a) 

 

(b) 

 

Figure 5.41: The measured and simulated E and H planes for T slotted antenna 

notched at WLAN: (a) 4 GHz and (b) 5.8 GHz 

 

 

 

 The measured radiation patterns for antenna notched band at WLAN band are 

shown in Figure 5.41. The patterns behavior is almost same with the measured 

radiation pattern for others both prototypes. The H planes for both frequencies are 

having omnidirectional while the E planes are relative broad. Two dips occur at ± 30
0
 

at E-plane pattern of 4GHz. The measured 3D radiation patterns for those antennas 
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are shown in Figure 5.42 and Figure 5.43 from the side view. It is clearly shown the 

omnidirectional pattern over the bandwidth. 

 

    

       4 GHz         5.8 GHz 

(a) 

   

      4GHz          5.8 GHz 

(b) 

 

Figure 5.42: The measured 3D radiation patterns for T slotted notched band 

antenna: (a) band notched at FWA and (b) band notched at 

HIPERLAN 
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       4GHz       5.8 GHz 

 

Figure 5.43: The measured 3D radiation patterns for T slotted notched band at 

WLAN 

 

 

 

5.4.4 Radiation Patterns of Reconfigurable L and U Slotted Antenna 

 

 Comparison between measured and simulated radiation patterns for these 

proposed antennas are plotted in Figure 5.44 to Figure 5.46. There are slightly 

backlobe presents at the E-planes for both frequencies, as illustrated in Figure 5.44. 

The frequency notched at FWA has shown no significant variation to the radiation 

pattern from the previous antenna model. The measured and simulated radiation 

patterns at 4 GHz and 5.8 GHz for both antennas with frequency notched bands at 

HIPERLAN and WLAN are shown in Figure 5.45 and Figure 5.46, respectively. 

Both H-planes are omnidirectional with slightly gain decreased at boresight 

direction. There are more distortions in the measured patterns compared with the 

simulated ones due to an enhanced perturbing effect on the antenna performance 

caused by the feeding structure and cable at these frequencies. Though the overall 

radiation pattern of the antenna has gone through a notable transformation, the H-

planes patterns retain a satisfactory omnidirectionality (less than 10 dB gain variation 

in most directions) over the entire bandwidth in both simulation and experimental.  
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(a) 

 

(b) 

 

Figure 5.44: The measured and simulated E and H planes for L and U slotted 

notched antenna at FWA (a) 4 GHz and (b) 5.8 GHz 
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(a) 

 

  

(b) 

 

Figure 5.45: The measured and simulated E and H planes for L and U slotted 

antenna notched at HIPERLAN: (a) 4GHz and (b) 5.8 GHz 
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(a) 

 

 

(b)  

 

Figure 5.46: The measured and simulated E and H planes for L and U slotted 

antenna notched at WLAN: (a) 4 GHz and (b) 5.8 GHz 

 

 

 

 The 3D radiation patterns are shown in Figure 5.47 to Figure 5.49, 

respectively for all types of this modified L and U slotted antenna. From the 3D 

patterns, it is clearly shown that the antennas have omnidirectionality behavior. The 

patterns are presented from side and top views. 
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(a) 

 

 

(b) 

 

Figure 5.47: The measured 3D radiation patterns for L and U slotted antenna 

notched band at FWA: (a) 4 GHz and (b) 5.8 GHz 
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(a) 

 

 

(b) 

 

Figure 5.48: The measured 3D radiation patterns for L and U slotted antenna 

notched band at HIPERLAN: (a) 4 GHz and (b) 5.8 GHz 
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(a) 

 

 

(b) 

 

Figure 5.49: The measured 3D radiation patterns for L and U slotted antenna 

notched band at WLAN: (a) 4 GHz and (b) 5.8 GHz 

 

 

 

 

5.5 Estimating Error Analysis in Radiation Pattern Measurement 

 

 Since the measured radiation patterns obtained have many ripples and dips 

for the E-planes, the error analysis has been done to estimate the uncertainty and the 

caused of the error. The development of analysis and measurements to estimate the 

error during measurement in spherical near-field has been conducted in [156] – 

[157]. These are summarized in Table 5.5. Each error give affect to the antenna 
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performance and some corrections have been taken to ensure the correct results 

achieved.  

 

Table 5.5: Near field error analysis for spherical measurement [156] – [157]. 

No. Error terms Far-field parameters 

affected 

1 Multiple reflection Gain, side lobe, cross-pol, 

pointing 

2 AUT alignment Pointing, pattern comparisons 

3 Rotator alignment and position errors Gain, side lobe, cross-pol, 

pointing 

4 Drift correction Gain, pointing 

5 Probe rotary joint Gain, side lobe, cross-pol, 

pointing 

6 Room scattering Gain, side lobe, cross-pol, 

pointing 

7 Random errors in amplitude/phase Gain, side lobe, cross-pol, 

pointing 

 

 

 

 Table 5.5 lists the possible errors occur during the measurement procedures. 

The multiple reflections, rotator alignment, probe rotary joint and room scattering are 

shown as primary sources of errors that cause degradation in measured radiation 

pattern.  

 

 Multiple reflections between the AUT and probe produce the ripple in the 

measured data. The correction is difficult to do due to the need a series of near-field 

measurements at Z-positions separated by λ/8. The far-fields are then calculated for 

each and averaged [126]. In the case of multiple reflections and random errors, 

multiple measurements are required. 
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 Figure 5.50 shows the example of the random errors presented during 

measurement. These measured patterns are from repeated measurement at 5.8 GHz 

for L and U slotted antenna. Some corrections on the AUT alignments have also been 

done. From the pattern comparison graphics show the random error occurs in 

amplitude and phase during multiple measurements. 

 

 

Figure 5.50: An Example of results of random errors for L and U slotted antenna at 

5.8 GHz 

 

 

 

 When the AUT is not precisely aligned to reference coordinate system, vector 

components or coordinate angles may change for some rotation. This correction can 

be done by realigned the AUT position.  

 

The rotator alignment for spherical is a special case of position errors. The 

orthogonallity and intersection of the theta and phi axes and the coincidence of the 

phi and probe polarization axes can be checked by measuring and comparing near-

field cuts at θ = 0 and 180 degrees. The misalignment can be corrected by 

adjustments of the mechanical system. However, the difference values still present at 

those near-field cuts of measured data.  
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 The thermal drift during measurements can cause changes in the transmission 

lines as well as the alignment of the AUT. It is usually have little effect on the far-

field patterns.  

 

The probe rotary joints associated with the theta and phi rotators produce 

some amplitude and phase variations as it is moved and this is as a function of theta 

and phi. The error can be observed from the measured data by comparing the 

amplitudes and phases of the two components at (θ, φ) coordinates, (0, 0) and (0,180) 

[157]. At these points, the amplitude should be identical and the phases should be 

either identical or 180 degrees different. This error is more important at high 

frequencies where rotary joints may not be as accurate. From the measured data 

obtained, it is observed that the variations have presented in amplitudes and phases 

for those points of both proposed antennas. Thus, this error contributes to the 

uncertainty in far-field results.  

 

 Both probe and room scattering can produce higher spatial frequencies in the 

data. The smaller data point spacing is needed to avoid the aliasing errors. The room 

scattering effect can be more severe when low gain AUT’s are being measured [157]. 

In this measurement, the 2
0
 data point spacing is used for scanner movement. 

Scattering from structures and absorber introduces an error that is difficult to 

estimate. This is because the procedure is demanding and time consuming. The AUT 

and probe must be translated together in a combination of X, Y and Z movements 

while maintaining precise angular alignment. The translations should be at least 

multiple wavelengths in dimension and the AUT must be realigned in the new 

position. Comparison of the patterns from the two locations provides an estimate of 

the room scattering but it is difficult to distinguish from alignment differences, 

probe/AUT multiple reflections and system drift [157]. 
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5.6 Key contributions 

 

The major contributions in the thesis are detailed below:  

 

Firstly, the mechanism which leads to UWB characteristics were proposed 

based on the further insight of the operations of UWB various monopoles with and 

without slots. The overlapping of multiple resonances which are evenly and closely 

spaced accounts for the UWB characteristics. Various slot types are designed by 

studying their current behaviors, with much effect to the impedance bandwidth. In 

addition, the UWB antennas designed with novelty slot type has produced a new 

structure in antenna type. 

 

Secondly, the miniaturization of vertical type T slotted antenna and L and U 

slotted antenna was realized by narrowing the patch and inserting the slots while 

retaining the UWB characteristics. The proposed antennas are simple in design, small 

in size and easy to manufacture. Their sizes are considerable small compared to the 

existing UWB antenna in the reference listed. 

 

Thirdly, printed two UWB antennas with asymmetry slots were proposed. 

One is T slotted antenna with slotted ground plane and second is L and U slotted 

antenna. Both of them feature small size, ease of fabrication, low profile and 

compatibility with printed circuit board. Both of them are fed by a SMA coaxial port.  

 

Fourthly, six printed reconfigurable UWB slotted antenna were realized. The 

reconfigurable behaviors on the notched band for each antenna were proposed by 

varying the length of slots. All proposed antennas exhibits nearly omnidirectional 

radiation patterns and broad bandwidth. 

 

Lastly, the reconfigurable antenna with notched band at FWA band assigned 

by MCMC Malaysia is as primary contribution in this type of antenna. This 

characteristic is obtained with this small slotted UWB antenna by retaining their 

UWB performance. All of these antennas proposed in the thesis can provide ultra 

wide bandwidth with nearly omni-directional radiation patterns which make them 

very suitable for the future UWB applications. 
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5.7 Summary 

 

 This chapter presents the slotted and reconfigurable UWB antenna results 

with experimental verifications. Both simulated and experimental results are closely 

to each other. Slotted UWB antennas show a good impedance matching covering the 

UWB requirements. The reconfigurable characteristic for proposed UWB antennas 

has been done by inserting the half-wavelength slot to the patch. These proposed 

types of antennas are variation from the previous models. The reconfigurability 

behaviors are achieved by shortened or widened the slot. The switching is model as a 

small patch of 0.7 mm x 1 mm instead of PIN diodes.  It has been demonstrated that 

the measured results closely to the simulated results. Event though the rejected band 

slightly shifted from the expected one but it still covers the frequency range.  

 

 The radiation patterns are also studied for notched band characteristics. It is 

found that the notched bands do not give any significant effect to the antenna 

radiation performance. The uncertainties due to errors in measurements are also 

presented as ripples in the patterns. 

 

The imperfect of the anechoic chamber system cause some ripples occurring 

in the measured radiation patterns. This is due to many reflections absorbed from 

surrounding. Analysis on possible errors occurred during measurement has been 

done. The measured relative gain for slotted UWB antennas are given from the H-

plane plots of measured radiation patterns. The simulated gain and directivity for 

both antennas are also presented as well. Thus, these antennas are very promising for 

UWB application which is small, compact and has a good performance. 

 

 
 
 
 
 
 
 
 

 

 



170  

 

 

 

 

 

CHAPTER 6 

 

 

 

CONCLUSIONS AND FUTURE WORKS 

 

 

 

6.1 Conclusions 

 

The UWB technology will be the key solution for the future WPAN systems. 

This is due to its ability to achieve very high data rate which results from the large 

frequency spectrum occupied. Besides, extremely low power emission level will 

prevent UWB systems from causing severe interference with other wireless systems. 

As the only non-digital part of a UWB system, antenna remains as a particular 

challenging topic because there are more stringent requirements for a suitable UWB 

antenna compared with a narrowband antenna. Therefore, the antenna design and 

analysis for UWB systems were carried out in this thesis. 

 

Rectangular planar monopole antenna is chosen as conventional structure, 

this is due to a simple structure, low profile, easy to fabricate and UWB 

characteristics with nearly omni-directional radiation patterns.  T slotted antenna and 

L and U slotted antenna originates from a conventional rectangular monopole by 

modifying the bottom patch with beveling and notches. Various antenna 

configurations with various forms of notch and bevel have also analyzed in order to 

form the novelty structure. Slots insertion and truncation ground plane are added to 

further improve the impedance bandwidth. 
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Studies indicate that the UWB characteristic is obtained by proper selection 

in the size of notch and bevel and the distance between the bottom patch to the 

ground plane. In a broad sense, the ground plane serves as an impedance matching 

circuit, and it tunes the input impedance and hence changes the operating bandwidth 

when the feed gap is varied. Therefore, it is essential to design a smooth transition 

between the feeding line and the antenna for good impedance matching over the 

entire operational bandwidth. 

 

Investigations have also been carried out in this thesis to analyze the current 

distribution of antennas. The dimension of the antenna also has an impact on the 

antenna performance because the current is mainly distributed along the edge on the 

antenna. Thus, it will be possible to fix which elements will act on each 

characteristic. By varying the edges closed to the feeding point means modifying the 

current path on the antenna. In addition, the current distributions along the neutral 

zone do not much influence to the antenna performance, due to the current levels are 

not too strong. Consequently, antenna with neutral zone slot insertion exhibits the 

similar characteristics as its antenna without neutral zone slot, as long as the size and 

the position of the neutral zone are precisely determined. 

 

The current distributions on various slots of rectangular with two notches and 

pentagonal antennas have investigated in this thesis. It is shown that with increasing 

the frequency the current much concentrated along the slot edges. The slot also 

appears to introduce a capacitive reactance which counteracts the inductive reactance 

of the feed. Thus, the slot wideband behavior is due to the fact that the currents along 

the edges of the slot introduce the same resonance frequencies, which, in conjunction 

with the resonance of the main patch, produce an overall broadband frequency 

response characteristic. 

 

The T slotted antenna with slotted ground plane has shown the return loss 

varies from -15 dB to -20 dB. However, during fabrication process, the slightly 

shifted impedance bandwidth has occurred. This is due to the antenna with slotted 

ground plane need very accuracy in alignment between the slotted ground plane and 

patch on both sided of substrate. The distance of patch to the ground plane is also 

very small of 0.5 mm, where is this distance as the impedance matching. 
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L and U slotted antenna has performed UWB characteristics with feed gap of 

1.5 mm to the ground plane. Adding slotted ground plane to this antenna did not give 

any improvement to the bandwidth. Therefore, in this antenna, the slotted ground 

plane is out of design consideration. From the measurement results, T slotted antenna 

and L and U slotted antenna have shown much closed to the simulated one in terms 

of the return loss and radiation patterns. Ripples and dips occur on the patterns are 

due to the uncertainties caused by any errors during measurement. However, the 

omnidirectional patterns exhibit for the H-planes, and the E-planes are relative broad 

over the entire bandwidth. It has been shown that the operating bandwidth meets the 

FCC requirements. 

 

 Reconfigurable UWB antennas with band notched characteristics have been 

investigated. There are three models resulted for each antenna model, T slotted 

antenna and L and U slotted antenna.  The VSWR, radiation patterns and gain are 

evaluated. Three notched bands required are FWA assigned by MCMC, HIPERLAN, 

and WLAN. This thesis primary contributes to design and develop UWB antenna 

with notched band at FWA assigned by MCMC Malaysia. By modifying the length 

of slots, the required notched bands are obtained. The measured radiation patterns 

show agree well with the simulated one.  

 

 

 

6.2  Future Work 

 

Based on the conclusions drawn and the limitations of the work presented, 

future work can be carried out in the following areas: 

 

Firstly, it has been shown that both UWB antennas with asymmetry slots 

operate over UWB bandwidth.  A more detailed understanding of the current 

distribution mode mechanism and the impedance variations caused by the asymmetry 

slot could lead to improved design of UWB antennas. 

 

Secondly, further study is also needed for this proposed UWB antenna with 

different feeding applied, such as coplanar waveguide (CPW). This is useful for the 
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future antenna design, in order to reduce the error due to misalignment between 

patch and ground plane printed on both substrates during fabrication process.  

 

Thirdly, in this thesis, all of the antenna measurements are carried out inside 

an anechoic chamber. However, imperfect existing antenna holder and far field 

measurement systems have led degradation to the radiation patterns. Because of this 

antenna is very small, it needs special handling in measurement procedures to avoid 

multiple reflections from other sources. 

 

Fourthly, in the future UWB systems, antenna might be embedded inside a 

laptop or other devices. Thus, the devices' effects on the antenna performances need 

to be investigated. When the antenna is built on a portable device, the impact from 

human body should also be considered. 

 

Fifthly, to ensure the performance of UWB antenna, time domain 

measurement needs to be evaluated. This is to evaluate how good this antenna 

transmits or received the pulse without any distortion and delay. 

 

Sixthly, UWB systems operate at extremely low power level which limits its 

transmission range. In order to enhance the quality of the communication link and 

improve channel capacity and range, directional systems with high gain are required 

for some applications. Therefore, research on UWB directional antenna and antenna 

array could be carried out. 

 

Seventhly, inserting the real PIN diodes into antenna structure need to be 

developed to ensure the antennas have the required notched bands. A more studies on 

electronic drive circuit and the effect of switching to the electromagnetic waves on 

antenna need to be investigated. A programmed microcontroller to control the 

current source of PIN diodes is needed in order to randomly on/or state the 

switching.  

 

Lastly, gain measurement need to be carried out to complete the overall 

performance of UWB antennas.  
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