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Abstract 

 This paper presents wear prediction of friction material in a disc brake assembly. A 

new and unworn pair of brake pads is tested under different durations of brake 

application to establish wear on their surfaces. One of the wear models available in 

the literature is adopted and then modified to suit the current work. A detailed 3- 

dimensional finite element (FE) model of a real disc brake is developed considering 

the real surface topography of the friction material. Confirmation of the adopted 

model is made between predicted and measured static contact pressure distribution 

and surface topography of the friction material. Predicted unstable frequencies and 

experimental squeal frequencies are shown to be in fairly good agreement. 

Keywords: Wear; Friction material; Contact analysis; Surface topography; Squeal; the 

Finite element method 

 

1. Introduction 

Wear is a dynamic process which quite often involves progressive dimensional 

loss from the surface of a solid body due to mechanical interaction between two or 

more bodies in frictional sliding contact. Wear of engineering components in most 

cases is regarded as a critical factor influencing the product life and even product 

performance. Research into wear modelling and prediction has been carried out for 

over fifty years [1]. To date, there are many wear models proposed for many different 
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situations. However, they only work for the particular material pair, contact geometry, 

operating conditions, and the particular environment and lubricant [2]. Archard [3] 

was one of the early researchers to develop a linear wear model for metals. In his 

model, the wear volume per sliding distance was in terms of wear coefficients, which 

can be interpreted in various ways in literature, for example, in terms of the contact 

force and material hardness. On the other hand, Rhee [4,5] was the early researcher 

who proposed a nonlinear wear model for friction material in a disc brake assembly 

and his seminal work was followed by some other researchers [6-8].  

 Given various wear models that are available in the literature, it is possible to 

select an appropriate one and simulate wear numerically. Numeral simulation and 

prediction of wear were reported in [8-18]. For wear of metals, the authors of [9-15] 

favoured Archard’s wear law [3]. For wear of friction material in brake systems, Bajer 

et al. [17] used a very simple wear formula that is a linear function of the local contact 

pressure. Barecki and Scieszka [16], on the other hand, used almost the same 

empirical wear formula of Rhee [4] for their winding gear, post-type brake. AbuBakar 

et al. [18] used a modified Rhee’s wear formula [4] and assumed all the constants in 

the formula as unity. All of the authors mentioned above compared their predicted 

wear states with experimental data, except in [17, 18]. 

The effect of wear on squeal generation has been studied experimentally by many 

researchers [19-21]. However, there is very little investigation by means of numerical 

methods. The authors of [17,18] recently attempted to relate wear with squeal 

generation using the finite element method. Bajer et al. [17] reported that considering 

the wear effect, predicted unstable frequencies were close to experimental ones. 

AbuBakar et al. [18] used wear simulation to investigate fugitive nature of disc brake 

squeal. In this paper, wear prediction and simulation are performed using a new pair 
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of brake pads. The friction material is subjected to three different stages of brake 

application to establish wear on the pad surface. The wear formula proposed by Rhee 

[4] is modified for the current investigation. Instead of verifying wear 

displacement/intensity/volume as has been adopted by the authors of [8-16], this 

paper attempts to verify wear progress predicted in the simulation using measured 

static contact pressure distributions from contact tests and measured surface 

topography of the friction material. Pressure indicating film and an associated 

pressure analysis system are used to obtain pressure distributions and magnitude. 

From the comparison, realistic values of those constants required in the modified wear 

formula are obtained. Then stability analysis through complex eigenvalue analysis is 

performed to predict unstable frequencies under various wear conditions. The 

predicted results are then compared with the squeal events observed in the 

experiments.  

 

2. Wear and contact tests 

In this work, a new and unworn pair of brake pads is subjected to three different 

durations of brake application under a brake-line pressure of 1 MPa and at a rotational 

speed of 6 rad/s. In the first stage, the brake is applied for 10 minutes. Another 10 

minutes is used in the second stage. In the third and final stage, the friction material is 

run for 60 minutes. At the end of each stage, the disc is stopped and then the 

stationary disc is subjected to a brake-line pressure of 2.5MP (a contact test). In order 

to verify predicted results from the FE analysis, Super Low (SL) pressure indicating 

film, which can accommodate local contact pressure in the range of 0.5 ~ 2.8 MPa, is 

used. The tested film shown in Fig. 1 can only provide stress marks but cannot reveal 

the magnitude. To determine the stress levels, a post-process interpretive system 
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called Topaq pressure analysis system that can interpret the stress marks is utilised. 

The system is reported to be accurate to within ±2%, which is very accurate in the 

field of tactile pressure measurement [22]. 

A disc brake assembly shown in Fig. 2 consists of a pair of a piston (inboard) and 

a finger (outboard) pads. Once the brake is applied the hydraulic pressure is exerted 

onto the top of piston and the inside of the piston chamber in the calliper housing. 

This brings both pads into contact with the sliding disc. Since the pads are much 

softer than the disc, it wears more rapidly than the disc. Fig. 3 shows measured static 

contact pressure distributions at the piston and finger pads at the end of all stages of 

braking. It can be seen from the figures that contact pressure distributions vary as 

wear progresses in time (note that the blank part with no colour within the 

circumference of a pad implies no contact of zero pressure). The results also show that 

the area in contact is also gradually increasing. This may suggest that the surface 

topography of both pads that initially have a rough surface becomes either 

smoothened or glazed.  

In order to visualise the surface topography, measurements are made in the 

middle of the circumferential direction of the friction material using a linear gauge 

LG-1030E and a digital scale indicator (see Fig. 4). Surface topography or height 

distributions of new friction material at the final stage of braking are illustrated in Fig. 

5. It can be seen from Fig. 5a that height distribution of the piston pad after 80 

minutes of braking application is in a similar pattern to the initial distribution, except 

at the trailing edge.     For the finger pad as shown in Fig. 5b the height distribution is 

very similar to the initial distribution but in different magnitude particularly at the 

trailing edge. 
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3. Finite element model 

 A detailed 3-dimensional finite element (FE) model of a Mercedes solid disc brake 

assembly is developed and illustrated in Fig. 6. The FE model consists of a disc, a 

piston, a calliper, a carrier, piston and finger pads, two bolts and two guide pins, as 

shown in Table 1. A rubber seal (attached to the piston) and two rubber washers 

(attached to the guide pins) in this brake assembly are not included in the FE model. 

Damping shims are also absent since they have been removed in the squeal 

experiments. The FE model uses up to 8350 solid elements and approximately 37,100 

degrees of freedom (DOFs). Fig. 7 shows a schematic diagram of contact interaction 

that has been used in the disc brake assembly model. A rigid boundary condition is 

imposed at the boltholes of the disc and of the carrier bracket, where all six degrees of 

freedom are rigidly constrained, as those places are stiffly attached to very strong 

supports in the rig on which the experimental squeal frequency was observed.  

Since the contact between the disc and friction material is crucial, a realistic 

representation of the interface should be made. In this work, actual surfaces at the 

piston (inboard) and finger (outboard) pads are measured and considered at 

macroscopic level. A Mitutoyo linear gauge LG-1030E and a digital scale indicator 

are used to measure and provide readings of the surface respectively, as shown in Fig. 

4. The linear gauge is able to measure surface height distribution from 0.01mm up to 

12 mm.  

Node mapping, as shown in Fig. 4, is required so that surface measurement can be 

made at desirable positions, which are the FE nodes of the pad surfaces. By doing 

this, information that is obtained in the measurement can be used to adjust the normal 

coordinates of the nodes at the contact interfaces. There are about 227 nodes on the 
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piston pad interface and 229 nodes on the finger pad interface. Fig. 8 shows the 

surface topography of the piston and finger pads. The FE model has been validated 

through three validation stages described in [18] and details of the material data are 

given in Table 2. 

 

4. Wear simulation 

Rhee’s wear formula [4] postulates that the material loss W∆ of the friction 

material at fixed temperature is dependent upon the following parameters: 

 cba tvkFW =∆        (1) 

where k is the wear rate coefficient obtained from experiments, F is the contact 

normal force, v is the disc speed, t is the sliding time and a , b and c are the set of 

parameters that are specific to the friction material and the environmental conditions. 

This original formula however cannot be used in the present investigation. Since mass 

loss due to wear is directly related to the displacements that occur on the rubbing 

surface in the normal direction, Rhee’s wear formula is then modified as: 

( ) cba tΩrkPh =∆        (2) 

where h∆  is the wear displacement, P is the normal contact pressure, Ω  is the 

rotational disc speed (rad/s), r is the pad mean radius (m) and a, b and c are all 

constants which remain to be determined. Since no experimental data on wear rate 

coefficients have been obtained in this work, this coefficient value is adopted from 

[23] as /Nmm1078.1 313−×=k because of the same disc material and almost the same 

brake-line pressure and wear duration. The pad mean radius for current disc brake 

assembly is r = 0.111 m, the sliding speed is maintained at 6 rad/s and the total sliding 

time is set to t =4800s (80 minutes). The seemingly short duration of wear tests is due 

to a numerical consideration. In the wear formula of equation (2), the duration of 
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wear, t, must be specified. The longer the duration of wear, the more the dimensional 

loss and the greater change of the contact pressure. However, if t is too big, there will 

be numerical difficulties in an ABAQUS run. It has been found through trial-and-error 

that t = 200 s gives reasonably good results and good efficiency. Consequently a 

simulation of 80-minute wear means twenty-four ABAQUS runs. In line with this 

numerical consideration, wear tests have not lasted for numerous hours as normally 

done in a proper wear test or a squeal test. In theory, however, numerical simulations 

of wear may cover an arbitrary length of time. 

Firstly, contact analysis of the FE model is performed similarly to the operating 

conditions of the experiments described in section 2. From the contact analysis, 

contact pressure can be obtained and hence wear displacements can be calculated. 

Having obtained the wear displacements for each wear simulation, nodal coordinates 

at the friction interface model in the axial direction are adjusted. This process 

continues until it reaches braking duration of 80 minutes. Fig. 9 shows the procedure 

to predict wear on the friction material interface.  

It is worthwhile noting that during this wear calculation all constants in Eq. (2) 

need to be determined. In the early stage of their investigation, the authors adopted the 

constant values of [4-7, 18]. However, none of those could produce satisfying contact 

pressure distributions for the entire braking duration. Having simulated for various 

values of constants a, b  and c, it is found that the wear formula below 

rt
P
P

kh Ω∆ 9.0
0 )(

′
=       (3) 

seems to give a close prediction of contact pressure distributions and surface 

topography of the friction material to the experimental ones for the entire braking 

duration. In equation (3), P ′  is the maximum allowable braking pressure (8MPa for a 
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passenger car) and Nm/m109.2 37
0

−×=k . Fig. 10 illustrates predicted static contact 

pressure distributions at the piston and finger pads. It is seen that areas in contact 

increase as braking duration approaches 80 minutes described in Fig. 11. From the 

figure, the initial contact areas are predicted as about 7.0e-4 m2 for both pads and then 

are predicted as much as 2.9e-3 m2 in the final stage of braking duration. This is an 

increase by more than four folds.  

  Comparison is also made on the surface topography or height distribution of the 

friction material. The height distribution is calculated based on the measured or 

predicted surface heights minus the lowest height value of the friction material 

interface.   From Fig. 12 it can be seen that predicted height distributions for the 

piston and finger pads are very close to the measured ones. This work is not intended 

to verify the wear displacement ( h∆ ). Instead the authors are interested in the changes 

of surface topography or surface roughness due to wear and its important influence on 

the squeal generation to be discussed in the following section.  Another feature that 

can be seen from this figure is that the leading edge for both pads is experiencing 

more wear than the trailing edge. This is because the leading edge is subjected to high 

pressure due to sliding friction.  

 The simulated wear progress with time is shown in Fig. 13 for the piston and 

finger pads. The surface profiles look jagged indicating a rough surface. Later, when 

the braking duration reaches 80 minutes the surface profiles become smoother and 

level off. This is reflected by the decreasing arithmetic mean surface roughness aR  (in 

meter) of the two pads over time. Note that wear causes the axial coordinates of the 

two pad surfaces to change in an opposite manner as the two surfaces are facing each 

other in a brake system. 

 



*Corresponding author: Abd Rahim Abu Bakar, email: arahim@fkm.utm.my, Fax. No: +6075566159 
Tel. No: +60755334572 

9 

5. Stability analysis 

There are typically two big different approaches available to predict squeal noise 

and they are the transient dynamic analysis and complex eigenvalue analysis. 

However, complex eigenvalue analysis is much preferred in the brake research 

community due to its maturity and other advantages over the transient dynamic 

analysis [24-26]. Nevertheless, both analyses should include frictional contact 

analysis as the first, integral part of the analysis procedure. For complex eigenvalue 

analysis, contact pressure distribution is essential to establish asymmetric stiffness 

matrix that leads to the complex eigenvalues. The positive real parts of the complex 

eigenvalues are thought to indicate possible squeal noise that occurs in a real disc 

brake assembly. Therefore, it is important to include realistic surface topography of 

the friction material, especially when wear is under consideration.  

In this paper, complex eigenvalue analysis is conducted using ABAQUS v6.4. The 

analysis procedure is the same as that reported in [17,18]. In order to perform the 

complex eigenvalue analysis using ABAQUS, four main steps are required as follows: 

•  Nonlinear static analysis for applying brake-line pressure 

•  Nonlinear static analysis to impose rotation of the disc 

•  Normal mode analysis to extract natural frequencies and modes of undamped 

system 

•  Complex eigenvalue analysis that incorporates the effect of contact stiffness and 

friction coupling 

Having completed wear simulations for all stages of brake application, stability 

analysis is performed using complex eigenvalue analysis. A similar operating 

condition to that of the experiments is applied. Kinetic friction coefficient is set to 

393.0=kµ  which is determined from the experiments of [27]. From the complex 
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eigenvalue analysis, it is found that there is an unstable frequency at 4.2 kHz with 

positive real parts of 39.8 predicted towards the end of braking. Significantly, for the 

first two stages of braking such an unstable frequency is not predicted. Hence this 

result is in good agreement with the observation made in the experiments given in 

Table 3. 

 

6. Conclusions 

 The experimental results show that the contact area of a new and unworn friction 

material increases and initial rough surfaces later become smoother or glazed as wear 

progresses. These are also clear in the simulation results. It is found that the leading 

edge is prone to more wear than the trailing edge. 

 The results from simulation show a reasonably good correlation with the 

experimental results in the static contact pressure distribution and height distributions. 

Good agreement is also found between the unstable frequency predicted in the 

stability analysis and the squeal frequency recorded in the experiment. From these 

results it is suggested that the wear formula modified in this work can be used to 

predict wear progress and changes in surface topography, based on which disc brake 

squeal can be captured better in the stability analysis.  
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Figure Captions 

Fig. 1. Pressure indicating film before (left) and after (right) testing 

Fig. 2. Disc brake assembly 
 
Fig. 3. Measured contact pressure distribution for different braking durations (the top 
side is the leading edge) 
 
Fig. 4. Facilities for measuring height distribution of the friction material 
 
Fig. 5. Surface topography of the friction material 

Fig. 6. FE model of the disc brake assembly 
 
Fig. 7. Contact interaction between disc brake components 
 
Fig. 8. Contact interface model of the friction material: piston pad (left) and finger 

pad (right) 

Fig. 9. FE wear simulation procedure 
 
Fig. 10. Predicted contact pressure distribution for different braking duration (the top 
side is the leading edge) 
 
Fig. 11.Predicted contact area for different braking duration 
 
Fig. 12. Comparison of height distribution between the FE results and experimental 
results 
 
Fig. 13. Predicted wear profile for different braking duration 
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Table 
Table 1 Description of disc brake components 

 
Components Types of 

element 
No. of 

elements 
No. of 
nodes 

 

 

Disc C3D8 
C3D6 

3090 4791 

 

Calliper C3D8 
C3D6 
C3D4 

1418 2242 

 

Carrier 
C3D8 
C3D6 
C3D4 

862 1431 

 
Piston C3D8 

C3D6 
416 744 

Back plate C3D8 
C3D6 

 

 
Friction 
Material 

C3D8 
C3D6 

2094 2716 

 
Guide pin C3D8 

C3D6 
388 336 

 
Bolt C3D8 

C3D6 
80 110 

 

 

 

 

 

Table(s)



 

Table 2 Material data of disc brake components 
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Density 
(kgm-3) 7107.6 7850.0 7918.0 7545.0 6997.0 7850.0 9720.0 2798.0 

Young’s 
modulus 
(GPa) 

105.3 210.0 210.0 210.0 157.3 700.0 52.0 Orthotropic 

Poisson’s 
ratio 0.211 0.3 0.3 0.3 0.3 0.3 0.3 - 

 

 

Table 3 Observation and prediction of squeal noise 

Length of braking 
application (minutes) 

Experiments 
Squeal noise 

FE analysis 
Unstable frequency 

10 No  No  

20 No  No  

80  4.0 kHz 4.2 kHz (+39.8) 
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After 20 minutes    After 80 minutes 
Fig. 3 

 
 
Fig. 4  
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b) Finger pad 
Fig. 5  

 
 

 

 
 
Fig. 6  
 Calliper Piston 
 Bolt 

 
 
 

Piston pad Guide pin 
 
 

 Disc 
 

 
 
  
  Finger pad 
 
 
        Linear spring element 
Carrier 
       Surface element 
 
 
Fig. 7  
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Fig. 8  
 

 
 

 
 

Fig. 9  
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After 20 minutes    After 80 minutes 
 

Fig. 10  
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Fig. 11  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a) Piston pad 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) Finger pad 
Fig. 12  
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a) Piston pad ( 5-1048.1,5-1072.4,5-1060.5,5-106.44a ××××=R  respectively) 
 

 

 

b) Finger pad ( 5-1084.2,5-1004.5,5-1064.5,5-1028.6a ××××=R  respectively) 
 
Fig. 13   
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Response to the First Reviewer’s Comments. 
 
We are very grateful to the referee for the helpful comments and have made substantial 
modifications to the paper based on these comments. 
 
1. Abstract & Introduction 
Done.  
The authors have changed it to “A new and unworn pair of the brake pads”. “brand new” means 
have not been used in a brake before the testing. 
 
2. Wear and contact tests  
Done.  
Figures 3 and 4 have been swapped accordingly. Figure 3 is enlarged and is now clear.  
It is indeed difficult to tell from Figure 5 that the surfaces become smoother as wear progresses. To 
clarify this important point, values of arithmetic mean roughness Ra are now given for each of the 
four states of wear progress in Figure 13, as a complement to Figure 5. 
 
3. Finite element model 
Done.  
Detailed information on the FE models for all brake components is given in a new table (Table 1). It 
should be clear now that the FE mesh densities of different brake components are normally 
different. Material data are given in another new table (Table 2). 
 
4. Wear simulation 
Done. 
The wear model is now re-formulated in terms of a non-dimensional ratio of the applied pressure to 
the maximum allowable pressure.  
We have numerically experimented with continuous wear durations of 100s, 200s, 400s  and 600s, 
and found that 200s is a good compromise between accuracy and efficiency. Simulation of 
continuous wear over a longer duration leads to divergence in the numerical results. 
The exponent values are obtained from a trial-and-error process. The chosen ones result in fairly 
good agreement between the predicted contact pressure and measured contact pressure overall at the 
four time instants (no wear at the beginning, at the ends of continuous wear for 10 minutes, 
continuous wear for another 10 minutes and continuous wear for final 60 minutes), when 
measurements are taken.  
We are applying the wear law to a specific application and admittedly wear and friction themselves 
are not our areas of research. 
 
5. Stability analysis 
The friction coefficient is determined from the experimental results reported in the PhD thesis of Dr 
Simon James of Liverpool University. If a friction coefficient of 0.4 is used, the unstable frequency 
will be the same but its real part will be slightly greater. 
 
6. Conclusions 
The constants in the wear formula were determined using the measured contact pressure but not 
measured squeal frequency. In addition, the stiffness values at the interfaces other than the disc and 
pads interface were validated in the past using modal testing data. Therefore the prediction is 
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genuine --- the measured squeal frequency was not used at any point in the determination of any 
wear constants or system parameters. 
 
Nonlinearity 
We used the linear wear law of a=b=c=1 in a previous investigation reported in Reference 18. In 
comparison with the nonlinear law of a=0.9, the linear law produced good results for the first 
braking stage (the first 10 minutes of wear) but deteriorating results afterwards.  
 
Additional modifications 
1) We think that we have made a big improvement to the standard of English and the quality of the 

writing. 
2) We have added three more references for the stability analysis and updated Reference 22. 
3) Figures 7, 12 and 13 have been made clearer. 
 
We hope the above explanations and modifications are satisfactory. We shall be happy to make 
further modifications if the referee deems them useful. 


