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ABSTRACT 

 
 
 
 
Document clustering has been investigated for use in a number of different 

areas of information retrieval. This study applies hierarchical based document 

clustering and neural network based document clustering to suggest supervisors and 

examiners for thesis.  The results of both techniques were compared to the expert 

survey. The collection of 206 theses was used and employed the pre-processed using 

stopword removal and stemming. Inter document similarity were measured using 

Euclidean distance before clustering techniques were applied. The results show that 

Ward’s algorithm is better for suggestion supervisor and examiner compared to 

Kohonen network.  
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ABSTRAK 
 
 
 
 

Dewasa ini, kaedah pengelompokan dokumen banyak diaplikasikan dalam 

bidang Capaian Maklumat. Kajian ini akan mengadaptasikan pengelompokan 

dokumen berasaskan Rangkaian Neural dan juga Pengelompokan Timbunan 

Berhirarki. Hasil pengelompokan ini dianalisis bagi mencari kaedah terbaik dalam 

pemilihan penyelia dan penilai dan dibanding dengan pemilihan yang dilakukan oleh 

pakar. Dokumen-dokumen yang dikelompokkan menjalani pra-pemprosesan 

termasuklah penghapusan perkataan yang tidak membawa makna dan mempunyai 

kekerapan yang tinggi atau stopword, pembuangan imbuhan atau stem, dan 

seterusnya pengelompokkan kata nama supaya tiada pengulangan perkataan yang 

sama. Seterusnya, keserupaan dokumen-dokumen selepas pra-pemprosesan akan 

digambarkan menggunakan jarak Euclidean. Hasil yang diperolehi menunjukkan 

algoritma Ward’s adalah lebih baik dalam pemilihan penyelia dan penilai berbanding 

algoritma Kohonen. 
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 
 
 
 
1.0 Introduction 

 
 
IR is a discipline involved with the organization, structuring, analysis, 

storage, searching and dissemination of information. A compact definition of the 

basic function of an information retrieval system (IRS) has been given by Lancaster, 

(1968): 

 
“An information retrieval system does not inform (i.e. change the knowledge 

of) the user on the subject of his enquiry. It merely informs on the existence (or non-

existence) and whereabouts of documents relating to his request.” 

 
Much of the research and development in IR is aimed at improving the 

effectiveness and efficiency of retrieval. Document clustering was introduced to IR 

on the grounds of its potential to improve the efficiency and effectiveness of the IR 

process. Jardine and Van Rijsbergen (1971) provided some experimental evidence to 

suggest that the retrieval efficiency and effectiveness of an IR application can benefit 

from the use of document clustering. The efficiency and effectiveness of an IR 

application was expected to increase through the use of clustering, since the file 

organization and any strategy to search it, take into account the relationships that 

hold between documents in a collection (Croft, 1978). Relevant documents that 

might have otherwise been ranked low in a best-match search will be (through inter-
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document associations) grouped together with other relevant documents, thus 

improving the efficiency and effectiveness of an IR system. 

 
 
 
 

1.2  Problem Background 
  
 
Document clustering has been applied to IR for over thirty years. The aim of 

research in the field is to postulate the potential of clustering to increase the 

efficiency and effectiveness of the IR process (Jardine & Van Rijsbergen, 1971; 

Croft, 1978). The literature published in the field covers a number of diverse areas, 

such as the visualization of clustered document spaces (Allen et al, 2001; Leuski, 

2001), the application of document clustering to browsing large document collections 

(Cutting et al., 1992; Hearst & Pedersen, 1996), etc.  

  

The main motivation for this work has been to investigate methods for the 

improvement of the efficiency and effectiveness of document clustering. One type of 

clustering employed in this study is hierarchical clustering; perhaps the most 

commonly used type of clustering in IR (Willett, 1988). This is a choice based on the 

more sound theoretical basis of hierarchical clustering. Jardine and Sibson (1971), 

Salton and Wong (1978) and Van Rijsbergen (1979) have identified three strengths 

of hierarchical methods. Firstly, such methods are theoretically attractive since they 

do not depend on the order in which documents are processed. Secondly, they are 

well formed, in the sense that a single classification will be derived from a given set 

of documents. And finally, hierarchic methods are stable, since small changes in the 

original document vectors will result in small changes in the resulting hierarchies. 

  

The application of hierarchical methods to IR (e.g. group average, complete 

link and Ward’s methods) was extensively investigated during the 1980s. The 

majority of the research work was carried out at Cornell University by Voorhees 

(1985a) and at Sheffield University by Griffiths et al. (1984, 1986) and also El-

Hamdouchi and Willett (1989).  
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More recently, information science researchers have turned to other newer 

artificial intelligence based inductive learning techniques including neural networks. 

This newer techniques which are grounded on diverse paradigms have provided great 

opportunities for researchers to enhance the information processing and retrieval 

capabilities of current information storage and retrieval systems. 

 

NN is another clustering technique applied in this study. Neural network 

models have many attracting properties and some of them could be applied to an IR 

system. Recently, there is a research tendency to apply NN in cluster document. 

Initially, Kohonen is an unsupervised NN which is mathematically characterized by 

transforming high-dimensional data into two dimensional representations, enabling 

automatic clustering of the input, while preserving higher order topology.  

 

In neural network models, information is represented as a network of 

weighted, interconnected nodes. In contrast to traditional information processing 

methods, neural network models are "self-processing" in that no external program 

operates on the network: the network literally processes itself, with "intelligent 

behavior" emerging from the local interactions that occur concurrently between the 

numerous network components (Reggia & Sutton, 1988). It is expected that the 

research on the application of neural network models into IR will grow rapidly in the 

future along with the development of its technological basis both in terms of 

hardware and software (Qin He, 1999). 

 

Neural networks computing, in particular, seem to fit well with conventional 

retrieval models such as the vector space model and the probabilistic model. 

Doszkocs et al. (1990) provided an excellent overview of the use of connectionist 

models in IR. A major portion of research in IR may be viewed within the 

framework of connectionist models. 

  

Essentially, thesis focuses solely on the retrieval effectiveness and efficiency 

of document clustering for suggestion of supervisors and examiners for thesis since 

there is not much research in this domain.  
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Each Computer Science student enrolled in the master program should 

produce a thesis before finishing his/her studies. This thesis contains a complete 

report of a research. 

 

Each thesis should have at least one supervisor and examiners to fulfil the 

requirement. This supervisor and examiners are selected either from FSKSM 

lecturers or any other person in who is expert in the thesis’s subject.  

 

A supervisor is responsible to guide student in doing research, and producing 

a valuable research whereas examiners evaluate the yield of research and to see 

whether students really understand his/her research. The evaluation from the 

supervisor and examiners shows the quality of a student’s research.   

 

Currently, the determination of supervisor and examiner is done manually by 

the coordinators. However, sometimes the coordinators are new and did not know 

much about the experience of lecturers in supervising and examining students in 

various areas. The selection process based on incomplete knowledge such as this 

sometimes may affect the quality of thesis produced by students. The major problem 

related to thesis performance is the student didn’t get an effective guidance from 

his/her supervisor because the supervisor is not the expert in the thesis’s subject.  

 

The weaknesses of such a manual system may affect the quality of research in 

the long term. 

 

Therefore, in this study, two clustering techniques are used, Kohonen 

clustering and Hierarchical clustering to give a better solution. Clustering result will 

be analyzed in order to find out the best techniques for the solution. Furthermore the 

implementation of mathematical algorithm makes the system more concrete without 

bias situation.  
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1.3 Problem Statement 
 
  

• Can document clustering be used for determining supervisors and 

examiners of thesis effectively? 
• Can Kohonen based document clustering perform better result than 

Ward’s clustering (one type of hierarchical clustering) for determining 

supervisors and examiners of thesis? 

 
 
 
 
1.4  Objectives 

 
 
The objective of this study is as follows:  

 

    1.   To represent index terms in document vector. 

 

 2.  To apply two techniques of clustering, Kohonen clustering and 

Ward’s clustering to improve the efficiency and effectiveness of 

suggestion for supervisors and examiners  

 

3. To analyze Kohonen network based document clustering and Ward’s 

based document clustering for suggestion supervisors and examiners  

 

4. To compare clustering techniques to use in the domain of suggestion 

of supervisors and examiners in FSKSM, UTM 

 
 
 
 

1.5  Project Scope 
 
 
Two clustering techniques will be applied in this study that is Neural 

Network clustering and Hierarchical clustering. The result of these two clustering 

will be analysed to find out the best techniques in domain study. This study will be 

done in scope as stated below: 



 6

 

1. Title and abstract of 206 theses will be stored on the machine and will 

be used in information retrieval process. The theses are on master thesis from 

FSKSM, UTM only.  

 

2. Porter stemming will be used to reduce a word to its stem or root form 

in the title and also the abstract of thesis  

 

3. Indexing process will create a unique identifier of the documents by 

counting the frequency of each index terms before the tfidf weighting is 

calculated  

 

4. Ward’s clustering and Kohonen clustering will be applied to the 

indexed documents. 

 
 
 
 

1.6  Significance of the Project 
 
 
Results of the study will show whether NN based document clustering or 

Hierarchical based document clustering is effective for determining supervisors and 

examiners. It will also give insight on whether NN based is better than Hierarchical 

based document clustering in terms of suggestion of supervisors and examiners.  

 
 
 
 

1.7  Organization of the Report 
 
 
This report consists of five chapters. The first chapter presents introduction to 

the project and the background of problem on why is the study is being conducted.  It 

also gives the objectives and scope of the study.  Chapter 2 reviews on IR, pre-

processing to achieve IR purpose, and document clustering also clustering techniques 

that will be used in this study. Chapter 3 discusses on the framework of this project 

in detailed including pre-processing phase further clustering algorithm that will be 
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applied in this study. Chapter 4 contains a cluster analysis based on Ward’s and 

Kohonen performance in determining supervisors and examiners and Chapter 5 is the 

conclusion and suggestions for future work. 
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CHAPTER II 
 
 
 

 
LITERATURE REVIEW 

 
 
 
 
2.1 Introduction 

 
 
This chapter will review previous research related to this study. Previous 

research is very useful in order to have a good research. This review will touch a 

little bit of information retrieval, document clustering also pre-processing of 

document to create an indexed file for document clustering; which are stemming and 

stopword removal.  

 
 
 
 
2.2 Background of Assigning Supervisors and Examiners in FSKSM  

 
 
Each Computer Science student in master program should produce with one 

thesis before finishing his/her studies. This thesis should contain a complete report of 

research. For this purpose, each student will be supported and guided by at least one 

supervisor. Each report will evaluated by some examiners. The selection of examiner 

is determined during the postgraduate committee meeting.  
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In this research, we are concerned with the selection of supervisors and 

examiners. This is an important step in order to get a better report and outcome in the 

studies. The selection process has to be carried out appropriately because it will 

affect the thesis performance.   

   

In the past, students will choose their own supervisors. The aim is to fulfil the 

requirement of project I without much consideration of the expertise and knowledge 

of the supervisor. Consequently, some supervisors can’t guide students in producing 

a good research results since they have no experience in such kind of work in a 

particular area. 

  

There are also examiners had to evaluate student research and improper 

selection can results in choices that are not accurately based on their expertise and 

knowledge. The main issue is the ability of the examiners in evaluating research 

methodology and result. 

 

The selection and approval process is normally done by coordinators and 

postgraduate committee. However, they sometimes do not have enough information 

on the experience of the lecturers to do the selection effectively. The selected 

supervisor and examiner should have knowledge and capability in term of proposed 

studies. 

 

This situation shows some weaknesses of human intervention in constructing 

decision especially if they are inexperience. Therefore this study tries to find out the 

best solution to the problem using mathematical algorithm, with the hope to improve 

the efficiency and effectiveness of selection supervisors and examiners. 

 
 
 
 
2.3 Information Retrieval 
 
 

Information retrieval is essentially a matter of deciding which documents in a 

collection should be retrieved to satisfy a user’s need for information. Thus, an 

information retrieval aims at collecting and organizing information in one or more 
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subject areas in order to provide it to the user (Salton and McGill, 1983). IR 

techniques have been developed over many years to support searching for documents 

(Van Rijsbergen, 1979; Baeza-Yates & Ribeiro-Neto, 1999).  There is much research 

in using IR techniques (Dunlop, 2000).  

 
 
 
 
2.4 Text Pre-processing  
 
 
 Yet the goal of text pre-processing is to optimise the performance of data 

analysis such as clustering. The first step of most machine learning algorithms is to 

reduce dimensionality by discarding irrelevant data. Data analysis is very dependent 

on the pre-processing and the data representation model. This is the most important 

step before implementing document representation further similarity measures. 

Figure 2.1 briefly illustrated the text pre-processing in order to produce index term 

towards representing document. The followed paragraph will explain briefly the pre-

processing in Fig. 2.1.  

 

 

 

 

 

 

 

 

Figure 2.1 Text pre-processing 

 
 
 
 
2.4.1 Stopword Removal 
 
 
 A text retrieval system often associates a stop list with a document set, which 

is a set of words that are deemed “irrelevant”, e.g., a, the, of, for, with, etc., even 

though they may appear frequently. Stoplists may vary when document set varies, 
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e.g., “computer”. This kind of term is removed by compiling stopword lists so they 

do not interfere with the data analysis. 

 
 
 
 
2.4.2 Stemming 
 
 

Word stemming is a process of text normalizations which consists of 

reducing individual words, or words within phrase structures, to some abstract 

(canonical) representation. For example, the words: “presentation”, presented”, 

“presenting” could all be reduced to a common representation “present”. Stemming 

has been the most widely applied morphological technique for information retrieval. 

 

 Stemming also reduces the total number of distinct index entries. Further, 

stemming causes query expansion by bringing word variants and derivation (Pirkola, 

2001). Some early research results with English collections questioned the 

effectiveness of stemming (Harman, 1991). 

 

There are two kinds of stemming errors which are understemming errors, in 

which words which refer to the same concept are not reduced to the same stem, and 

overstemming errors, in which words are converted to the same stem even though 

they refer to distinct concepts. In designing a stemming algorithm there is a trade-off 

between these two kinds of error. A light stemmer plays safe in order to avoid 

overstemming errors, but consequently leaves many understemming errors. A heavy 

stemmer boldly removes all sorts of endings, some of which are decidedly unsafe, 

and therefore commits many overstemming errors. 

 

A number of techniques have been proposed in the past (Frakes and Baeza-

Yates, 1992). In all these methods, the individual rules are accompanied by 

conditions designed to improve the accuracy of the stemming and to prevent words 

from being shortened too far (e.g., to prevent "ring" and "red" being converted to 

"r"). 
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A well-known technique for stemming text is Porter’s algorithm, which is 

based on a set of rules extracted from the English language (Porter, 1980). 

Specifically it has five steps applying rules within each step. Within each step, if a 

suffix rule matched to a word, then the conditions attached to that rule are tested on 

what would be the resulting stem, if that suffix was removed, in the way defined by 

the rule. Since Porter stemmer is a very widely used and available stemmer, and is 

used in many applications, this stemmer is employed to the collection of 206 thesis in 

this study.  

 

Another stemmer is Paice/Husk stemmer, a simple iterative stemmer whereas 

it removes the endings from a word in an indefinite number of steps (Paice, 1994). 

Lovins stemmer is a single pass, context-sensitive, longest-match stemmer (Lovins, 

1968). This stemmer, though innovative for its time, has the problematic task of 

trying to please two masters (IR and Linguistics) and cannot excel at either. The 

Dawson stemmer is another stemmer which it is a complex linguistically targeted 

stemmer that is strongly based upon the Lovins stemmer, extending the suffix rule 

list to approximately 1200 suffixes (Dawson, 1974). It keeps the longest match and 

single pass nature of Lovins, and replaces the recoding rules, which were found to be 

unreliable. The other side of stemmer is Krovetz stemmer which effectively and 

accurately removes inflectional suffixes in three steps (Krovetz et. al., 1993). 

 
 
 
 
2.4.3 Noun Group 
 
 
 The index terms tend to be very large so terms that are similar and close to 

each other are mapped to one term via word stemming.  

 
 
 
 
2.4.4 Index Term Selection 
 
 
 Index term selection goal is to reduce the number of words in the vector 

description. There are numerous methods for keyword selection such as by extracting 
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keywords based on their entropy. In the approach discussed by Klose et. al., (2000), 

for each word k in the vocabulary the entropy as defined by Lochbaum and Streeter 

(1989) was computed:  
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where tfjk is the frequency of word k in document j, and n is the number of documents 

in the collection. 

  

 Borgelt and Nurnbeger (2001) applied a greedy strategy for index term 

selection where all the terms obtained after text pre-processing will then categorized 

in the selected term (index term) with highest relative entropy. This process can be 

terminated until the desired number of index term has been selected.  

 

 Due to objective of this study, index term selection will not performed and 

consequently, all the term produces after text pre-processing will then indexed to 

employ the two clustering techniques as described in Chapter 1. 

 
 
 
 
2.4.5 Indexing 
 
 

Indexing is the use of language to describe the documents and user’s 

information needs. Index terms are derived from the text or the user input. An 

indexing term is defined as a set of unique words that characterize some feature 

found in the document set. Documents are encoded or modeled using the indexing 

terms that appear in them. User queries are processed by mapping the query to the 

indexing terms previously extracted from the document set and then matching the 

query to individual documents. Indexing is done either by human experts or an 

automatic indexing program. Manual document indexing is labour-intensive and time 

consuming work and has a drawback of lack of uniformity and indexer user 

mismatch. In contrast, automatic indexing has the advantage of bias free uniformity 

and efficiency. 
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Automatic indexing usually proceeds by the following steps: (i) get words in 

each document, (ii) exclude stop words from them, (iii) do stemming to produce 

index terms, (iv) compute the precoordination information (e.g. term frequency) and 

pointers from the term to documents to build an inverted file.  

 

The goal of indexing is to build a data structure that will allow quick 

searching of the text. There are many classes of indices based on different retrieval 

approaches (e.g. inverted file, signature file and so on). Almost all type of indices are 

based on some kind of tree or hashing. 

 

 Increasingly, IR databases are designed to provide more than one indexing 

approach in hopes of maximizing the effective retrieval of useful messages, texts and 

documents. This study will performed automatic indexing for document 

representation.     

  

 Documents were indexed using: 

 

 i) tf/idf weighting, which weights terms proportional to how often they occur  

in the current document but inversely to how often they occur in the 

collection as a whole (Sparck Jones, 1972)  

 

ii) a simple stopword list based on the collection itself, the 30 most common 

words in the collection were not indexed 

 

iii) Porter stemming algorithm, an algorithmic stemmer that conflates variants 

of a words into the same base form, e.g. walking, walks etc all conflate to 

walk (Porter, 1980) 

 

iv) Cosine matching function, an IR standard that takes into account term 

weights and document lengths (Salton and McGill, 1983). 

 

 The IR engine was designed to index the corpus, in this study only title and 

abstract will be indexed before the tfidf weighting is calculated. 
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2.5 Document Representation  
 
 

For IR purpose, we have to map the text files to numerical feature vectors. 

There exist numerous models in document representation. The top three models are 

Boolean, Vector space and probabilistic models.  

 

The probabilistic models, involve estimating probabilities. The goal is to 

estimate the probability of relevance of a given document to a user with respect to a 

given query. Probabilistic assumptions about the distribution of elements in the 

representations within relevant and irrelevant document are required (Maron & 

Kuhns, 1960).  

 

The author has employed the vector space model for document representation 

(Salton, 1989). In the vector space model, term weights can be interpreted as 

probability estimates (Turtle, 1992) and a great deal of experimental work has been 

done to evaluate alternative forms (Salton & Buckley, 1988). In general, these are 

referred to as tf/idf weights, since they include a component based on the frequency 

of a word (or feature) in the text of an object (the term frequency component or tf) 

and a component based on frequency of the word in the “universe” of objects (the 

inverse document frequency of idf). The idf weight increases as the frequency of the 

word decreases (hence the name). For example;   
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 The cosine similarity is the most commonly used method in vector space 

model to compute the similarity between two documents di and dj, which is defined 

to be 
||||||||

),cos(
ji

j
t
i

ji dd
dd

dd = .  The cosine formula can be simplified to 

 when the document vectors are of unit length. This measure 

becomes one if the documents are identical and zero if there is nothing in common 

between them (e.g., the vectors are orthogonal to each other).  

j
t
iji dddd =),cos(

  

 In particular, Boolean model purpose is to find documents satisfying the 

query in Boolean form. However the model has the limitation according to Cater and 

Craft (1987) and Wong, et.al, (1988).  

 
 
 
 
2.6 Document Clustering  
 
 
 Clustering techniques have long been used in IR to improve the performance 

of search engines both in term of timing and quality or results [e.g. Jardine and Van 

Rijsbergen, 1971; Van Rijsbergen and Croft, 1975; Griffiths, et. al. 1986). This work 

follows from the observation, known as the cluster hypothesis, that relevant 

documents are more like one another than they are to non-relevant documents (Van 

Rijsbergen & Spark Jones, 1973).  

  

 Clustering means that documents in collection are processed and grouped into 

dynamically generated clusters. Dunlop (2000) investigated the use of clustering 

techniques to improve the performance of people matching based on web.   

 

 Document clustering goal is to automatically group related documents based 

on their content. This technique requires no training sets or predetermined 

taxonomies and generates taxonomy at runtime. To be able cluster text document 

collections with hierarchical and NN clustering, therefore, the author first to applied 

pre-processing methods e.g., stopword removal, stemming, encoded each document 
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using v  

l 

ill 

 

ethods have their specific measure (e.g. Euclidean 

istance for Ward’s method) but more commonly the choice of measure is at the 

Most common measures that are widely used are Dice coefficient, Jaccard 

oeffic efficient. 

  

 Dice coefficient: 

ector space model and finally selected a subset of terms as features for the

clustering process.  

Choosing the variables and similarity measurements is the first step in a 

cluster analysis. This is a very important step, since the decision on these issues wil

affect the final results directly (Willett, 1988). At this step, the raw data matrix w

be converted in to a matrix of inter-individual similarity (dissimilarity or distance)

measures. Some clustering m

d

discretion of the researcher. 
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Cosine coefficient: 
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se 

intuitively they appear to be dissimilarity measures. Distance measures normally 

have no upper bounds and are scale-dependent. Euclidean distance is defined as  

 

  

In particular, distance measures have enjoyed widespread popularity becau
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umber of elements in vectors Vx and 

y. Vxj is the jth component of the Vx vector. 

 
n 

and 

 distance takes the magnitude of changes in the gene expression levels into 

ccount. 

 

, average linkage or 

ard’s clustering and partitioning algorithm such as k-means. 

reat 

and retrieval 

urrent information storage and retrieval systems.     

 

d in 

euski, 2001) because of its 

ffectiveness and the quality of cluster produced.  

 

where n is the number of documents, k is the n

V

 

The Euclidean distance takes the difference between two representatio

directly. It should therefore only be used for expression data that are suitably 

normalized, for example by converting the measured representation levels to log-

ratios. In the sum, we only include terms for which both xi and yi are present, 

divide by n accordingly. Unlike the correlation-based distance measures, the 

Euclidean

a

 
 Clustering performed more effective than simple searching for basic IR 

techniques (Dunlop, 2000). The standard clustering algorithm can be categorized into

hierarchical algorithms such as single linkage, complete linkage

W

  

 More recently, information science researchers have turned to other newer 

artificial intelligence based inductive learning techniques including neural networks. 

This newer techniques which are grounded on diverse paradigms have provided g

opportunities for researchers to enhance the information processing 

capabilities of c

 

Since there are numerous clustering algorithms, the author had focus on 

hierarchical clustering and NN clustering. Hierarchical clustering is widely use

document clustering research (e.g. Dunlop, 2000, L

e
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2.6.1 Hierarchical Clustering  

ype 

 

t 

tes 

e 

hows 

m for hierarchical clustering. This is a general algorithm that is 

stantiated.  

 

at hopefully, has similar users grouped together on the lower levels of 

e hierarchy. 

 

 
 
 A hierarchical clustering algorithm creates a hierarchy of clusters. This t

of structure is particularly useful in IR as it allows a document collection to be 

viewed at different levels of graininess. It builds a tree where each node is a cluster

of objects and the clusters corresponding to the node’s immediate children form a 

complete partition of that cluster (Mirkin, 1996). On input the algorithm receives a 

set of objects and a matrix of inter-object distances. It starts by assigning each objec

to its own unique cluster that is the leaves of the future tree. The algorithm itera

through the cluster set by selecting the closest pair of clusters and merging th

together forming a new cluster that replaces them in the cluster set. A node 

corresponding to this new cluster is created in the tree and the selected pair of 

clusters becomes its children. That procedure is executed until all objects are 

contained within a single cluster, which becomes the root of the tree. Fig. 2.2 s

the dendrogra

in

The clustering techniques were used to produce a hierarchical clustering of 

the thesis, H, th

th

 
Fig. 2.2 Hierarchical clustering dendrogram 

 

 

which are single linkage, average linkage, group linkage and Ward’s method.  

 
 

Initially, there are four well known techniques in hierarchical clustering
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Ward’s Method 
 
 

Ward’s method on the other hand aims to merge clusters that result in the 

minimum loss of information which results from the grouping of objects into clusters 

and to quantify that loss in a form that is readily interpretable, such as the total sum 

of squared deviations of every object from the mean of the cluster to which it 

belongs.  At each step in the analysis, union of every possible pair of clusters is 

considered and the two clusters whose fusion results in the minimum increase in the 

sum of the distances from each object to the centroid of its clusters.   

 

When a method satisfies the reducibility property (Murtagh, 1983), a more 

computationally efficient reciprocal nearest neighbour (RNN) algorithm that can 

produce exact results as those produced by the original clustering method can be 

used.  The main advantage of this algorithm is that all reciprocal nearest neighbours 

can be simultaneously merged, without affecting the final dendrogram.  The 

reducibility property requires that if the following distance constraints hold for 

clusters i, j and k for some distance ρ: d(i,j) < ρ, d(i,k) > ρ and d(j,k) > ρ, if the 

agglomerated cluster is (i+j), then d(i+j,k) > ρ.  It also implies that when clusters i 

and j are merged into clusters (i+j), we have to update the nearest neighbour only for 

those points which have i or j as nearest neighbours.  The Ward's method and the 

group-average method (implemented using the Cosine coefficient) satisfy this 

property, thus they can be implemented using the RNN algorithm.  This algorithm 

traces a path through the similarity space until a pair of points is reached that are 

both more similar to one another than they are to any other points.  They are called 

reciprocal nearest neighbours (RNN) and are combined to form a single new point.  

The search for other RNNs continues until all points have been combined.  The basic 

RNN algorithm is shown in Figure 2.3. 
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Basic algorithm of RNN can be described as below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. 

2. 

3. 

4. 

5. 

 
  

Base

result amon

and RNN is

by Murtagh

 
 
 As w

effectivenes

performanc

produced (S

 
 
 
 
 
 
 
 
 
 
 
 

Table 2
 
 
 
 

Mark all entities as unfused 

Starting at an unfused I, trace a path of unfused nearest 

neighbours (NN) until a pair of RNNs is encountered, i.e., trace a 

path of the form J := NN(I), K:= NN(J),  L:= NN(K) … until a 

pair is reached for which Q := NN(P) and P := NN(Q). 

Add the RNNs P and Q to the list of RNNs along with the 

distance between them.  Mark Q as fused and replace the centroid 

of P with the combined centroid of P and Q. 

Continue the NN-chain from the point in the path prior to P, or 

choose another unfused starting point if P was a starting point. 

Repeat Steps 2 to 4 until only one unfused point remains.  
 
Fig. 2.3 Basic algorithm of RNN 

d on Table 2.1, we can see that combination ward’s and RNN gives best 

g other hierarchical clustering techniques. The combination of Ward’s 

 proposed by El-Hamdouchi and Willet (1986). RNN which is proposed 

 (1983) can improve the time complexity of Ward’s technique. 

e can see in Table 2.1, hierarchical clustering (first five rows) shows its 

s in term of space complexity.  Although its time complexity shows low 

e, but hierarchical clustering still maintain the quality of clusters 

teinbach, et, al., 2000; Dunlop, 2000; Mock, 1998).  

.1 Time and space complexity of several well known algorithms 



 22

 

Hierarchical 
Clustering Technique 

Time Complexity Space Complexity 

Single Linkage O(N2) - (Sibson, 1973) O(N2) Van Rijsbergen 
(1971), (Sibson, 1973) 

Complete Linkage O(N2) - (Defays, 1977) O(N2) -  (Defays, 1977) 

Average Linkage O(N2) - Voorhees (1985a, 1986) O(N) - Voorhees (1985a, 
1986) 

Ward’s O(N3) - (Ward, 1963)  O(N2) - (Ward, 1963)  

Ward’s +RNN  O(N) - (El-Hamdouchi, Willet, 
1986)  

O(N2)- (El-Hamdouchi, 
Willet, 1986) 

K-means O(N) O(N2) 

Leader O(N) O(N2) 

ISODATA O(N) O(N2) 

 
 
 
 
Complete Linkage 
 
 
Also know as the ‘furthest neighbour’ method since it measures the distance between 

two groups as the most distance pair of individual objects, one from each group. The 

parameters for complete linkage are: aX = 0.5, aY = 0.5, b = 0 and g = 0.5. Which 

gives: 

 

222
,,,,

,
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D

−
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Fig. 2.4 –Complete linkage;. The new cluster Q is formed from combining the two 

groups X and Y. 

 
 
 
 
Single Linkage 
 
 
The single-link algorithm is more versatile than the complete-link algorithm, 

otherwise. For example, the single-link algorithm can extract the concentric clusters 

but the complete-link algorithm cannot. However, from a pragmatic viewpoint, it has 

been observed that the complete link algorithm produces more useful hierarchies in 

many applications than the single-link algorithm (Jain and Dubes 1988). 

 
 
 
 
Group-Average 
 
 
The group-average method measures distance by taking the average of the distances 

between all pairs of individual objects from the two groups. The parameters for 

group-average are: 

 

00,, ==== γβαα and
N
N

N
N

P

Y
Y

P

X
X , 

which gives  
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NX and NY are the number of objects in the clusters X and Y respectively. Also, 

NP = NX + NY.. 

 

 
 
 
2.6.2 Kohonen Clustering  
 
 

Neural netwoks computing, in particular, seems to fit well with conventional 

retrieval models such as the vector space model (Salton, 1989) and the probabilistic 

model (Maron& Kuhns, 1960). Kohonen network, a specific kind of ANN, is a tool 

that may be used for the purpose of automatic document categorization (Kohonen, 

1997). This model is actually called a self-organising map, or SOM an unsupervised 

competitive ANN. The aim of a SOM is to produce a pattern classifier which is self-

organising, using Kohonen learning to adjust the weights.  

 

Lin et al. (1991) had adopted a Kohonen network for information retrieval. 

Kohonen’s feature map, which produced a two dimensional grid representation for 

N-dimensional features, was applied to construct a self-organizing map 

(unsupervised learning), visual representation of the semantic relationships between 

input documents. In MacLeod and Robertson (1991), a neural algorithm was used for 

document clustering.  

 

Typically, a Kohonen network consists of a 2-dimensional array of neurons with 

all of the inputs arriving at all of the neurons. Each neuron j has its own set of 

weights which can be thought of as together representing a “prototypical pattern” 

which is “remembered” by that neuron. When an input pattern arrives at the network, 

the neuron with the prototype pattern which is most similar to the input pattern will 

give the largest response, thus “recognizing” the input pattern. The key defining 

property of Kohonen is that the prototype patterns are stored in such a way that 

similar prototypes are found in neurons that are physically close to each other, and 

prototypes that are very different from each other are situated far apart. 
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Fig. 2.5 Kohonen network architecture 

 With the demand for biological plausibility rising, the concept of self-

organizing networks became a point of interest among researchers. Fig. 2.5 shows 

the architecture of Kohonen network. Self-organizing networks could be both 

supervised or unsupervised, and have four additional properties: 

o Each weight is representative of a certain input (refer Fig. 2.6).  

o Input patterns are shown to all neurons simultaneously.  

o Competitive learning: the neuron with the largest response is chosen.  

o A method of reinforcing the competitive learning. 

 
Fig. 2.6 Kohonen network weight 

 

 

In competitive learning, neurons compete among themselves to be activated. 

In other words, only single output neuron is active at any time. The output neuron 

that wins the “competition” is called the winner- takes-all neuron. Fig. 2.7 shows the 
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competitive learning in Kohonen network. Competitive learning rule defines the 

change  applied to synaptic weight  as ijw∆ ijw
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where  is the input signal and ix α  is the learning rate parameter.  

 
Fig. 2.7. Competitive learning networks (a) with explicit inhibitory connections 

among the competitive units, (b) with implicit inhibition, as in Kohonen’s direct 

selection of the winner based on minimum distortion, and (c) with a supervised 

network above which employs inputs from the competitive layer. The competitive 

layer can be considered to perform either data compression or data representation by 

feature extraction from the input vectors. 

 

At the initial process, the initialized weight is calculated randomly and in next 

iteration the weight is calculated as in equation (1) and the generated weight much 

better than the initialized weight (see Fig. 2.8).  

 

The learning algorithm iterates until it converges (adjustments are arbitrarily  
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close to zero). Finally, each training document is mapped to a single node either 

through a simple matching of grid vectors to document vectors (Lin, et al.,1991) or 

by running an additional pass of the SOM algorithm to self organize a mapping 

(Honkela, et al., 1996).   

 

Figure 2.8 Weight adjustment: TL: Initial iteration, TR: 100 iterations, BL: 200 
iterations, BR: 500 iterations. 

 

The overall effect of the competitive learning rule resides in moving the 

synaptic weight vector of the winning neuron j towards the input pattern X. The 

matching criterion is equivalent to the minimum Euclidean distance between vectors. 

The Euclidean distance between a pair of n-by-1 vectors X and is defined by  

jW
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where  and  are the ith elements of the vectors X and  , respectively. ix ijw jW

 

The SOM transforms highly dimensional data into two dimensional grid, 

while keeping the data topology by mapping similar data items to the same cell on 

the grid (or neighbour cells). A typical SOM is made of a vector of nodes for the 

input, an array of nodes as the output map and a matrix of connections between each 

output unit and all the input units. 
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2.7 Clustering Performance Measure 
 
  
 Initially, prediction models such as ANN, aim to achieve an ability to 

correctly classify cases or problems unseen during training phase. Subsequently, the 

quality indicator is the accuracy during the testing phase. Generally, a classifier will 

be able to generalize if its architecture and learning parameters have been properly 

defined and enough training data are available.    

 

 In particular, the application of more than one data sampling may provide the 

basis for accurate and reliable predictions (Azuaje, 2003). Thus, the author had set-

up five data samples as follows, 50:50, 60:40, 70:30, 80:20 and 95:5. The average of 

these five samples represents the accuracy for each of the prediction models.    

 

 Essentially, data sampling can be used to establish differences between data 

sampling techniques when applied to small and larger data sets, to study the response 

of these methods to the size and number of train-test sets also to discuss criteria for 

the selection of sampling techniques.  

 
 
 
 
 
2.8 Discussion 
 
 
 Previous research in document clustering is discussed briefly in the following 

Table 2.2. 

 

Table 2.2 Web/Document clustering in previous research 

Author Main Contribution 

Kandel, et, al. (2003) Proposed graph based k-means for web 

clustering 

Leuski (2001) Shows Ward’s is an effective method for 

interactive information retrieval 
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Steinbach, Karpis and  Kumar 

(2000) 

Bisecting k-means shows the better 

performance than Kmeans 

Na Tang and Rao Vemuri (2004) 

 

AIS result is more compact cluster, good for 

large sized document sets that contain data 

redundancy 

Korenius, et, al. (2004) Ward’s is the best method after stemming and 

lemmatization Finnish documents 

Dunlop (2000) Balanced Document clustering improve the 

performance of people matching based on 

web pages 

Lin et al., (1991) Adopted Kohonen for IR  

Mock (1998) Tree Cluster give good result in both 

domains, scales linearly with the input and 

generates a shallow tree hierarchy that may be 

easily browser 

Botofago, (1993) Proposed approaches rely solely on the 

semantic information embedded in link 

structures between documents (link-based 

methods) 

Weiss et al., (1996) 

 

Hybrid approach that combines link and 

content information in order to calculate 

interdocument similarities 

Macskassy et al. (1998) 

 

Conducted a small scale experiment to 

investigate the way that humans cluster web 

documents. 

Zamir and Etzioni (1988)  

 

Develop a clustering algorithm designed 

specifically for web documents (Suffix Tree 

Clustering, STC). 
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 Based on Table 2.2, we can see that there are only a few researches on 

document clustering based on NN. Due to this observation, the author try to measure 

NN document clustering performance and compares it to the hierarchical clustering 

since it produced quality cluster among other algorithm.   

 

 Since Ward’s clustering produce a quality cluster and its time and space 

efficiency than other hierarchical clustering techniques, the author decide to apply 

this technique to compared with Kohonen performance in suggestion supervisor and 

examiner. Essentially Kohonen clustering is the most popular technique in document 

clustering as described above. Accuracy percentages of both clustering algorithms 

will be counted to evaluate their performance in terms of suggestion of supervisors 

and examiners.  

  
 
 
 
2.9 Summary 
 
 
 This chapter discussed the application of document clustering in IR. There is 

various applications were applied document clustering and we can see that 

Hierarchical clustering shows better performance in most application in terms of its 

quality cluster. However, more recently, most of the information science researchers 

have turned to other newer AI including NN. According to this study, document 

clustering was applied in determining supervisors and examiners in FSKSM wherein 

Ward’s algorithm and Kohonen network has chosen to apply in this study.     
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CHAPTER III 
 

 
 

 
 

EXPERIMENTAL DETAIL 
 
 
 
 
3.1 Introduction 
 
 
 This chapter will explain the methodology used for this study. There are 

seven steps in the framework of this study. All the methodology is illustrated as in 

Fig. 3.1. This study is implemented using Intel Pentium 4 processor with 128 MB 

RAM and 40 GB of hard disk capacity. The software that was used in this study is 

Microsoft Visual C++, Visual Basic 6.0, Multivariate Statistical Package 3.13m 

(MVSP), also the Microsoft Office XP for report writing. 

 

 

 

 

 

 

 

 

 

 

 



 32

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 A general framework of the proposed study 

Comparison and evaluation 
of clustering

Stopword removal 

Porter Stemming 

Kohonen clustering Ward’s clustering 

Document vector representation 

Thesis collection 
and digitization

Conclusion 

 

Figure 3.1 Framework of study 

 

The next paragraphs will explain the details for each step. Scheduling and time 

management for this study is illustrated in the Gantt chart (refer to Appendix A).  

 
 
 
 
3.2 Thesis Collection and Digitization 
  
 
 A set of thesis will be used in this study. This set contains 206 master theses 

from FSKSM, UTM. The theses are digitized for preprocessing of text before 

clustering. This entire document will be used as training data followed by clustering 

process based on samples that will be described in section 3.6. Appendix B shows the 

set of 206 theses that were used in this study. 
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3.3 Stopword removal 
 
 
The first process is the stopword removal. As stated in the literature review, 

each document will contain an unneeded text or in other word the text is no 

significant in the next process. All this stopword can make storage became larger 

than supposed. Each text in each document (input text) will be compared with a 

stopword list. All this will execute using Visual Basic programming. The stopword 

list will be enclosed in Appendix C. 

 

Initially, the list of stopwords will be defined. Then, every time a new 

document read, all the stopwords will be removed before proceeding to the next 

stage. 

  
 
 
 
3.4 Stemming 
 
 
 Porter stemmer will be performed in order to remove the affix and successor 

suffix in thesis collection. Porter stemmer is chosen because this stemmer has been 

widely used in English stemming, in addition this study not focused on stemming 

effect. 

  

There are five rules to be used in order to achieve goal of Porter stemmer. 

The rules are divided into steps. The rules in a step are examined in sequence, and 

only one rule from each step can be applied. 
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Fig. 3.2 Porter stemming 

 

Refer Appendix D for detailed rule of Porter Stemming.  

 
 
 
 
3.5 Document Vector Representation 
 
 
 Document vector is a process of representing the content of each document in 

a document collection so as to facilitate efficient and accurate retrieval of desired 

documents from the collection.  
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 The algorithm used for this stage is as follows: 

1. Determine index term after stopword removal and stemming 

2. Store index term in array without duplicate term 

3. Read document and match with index term array then store the 

frequency of term in document  

4. Repeat step 3 for all document set   

 
Document vector is one of the way to model the input for implementation in 

the clustering method. Each document and each query is represented by a vector or 

n-tuple. Each value represents a particular term produced after stopword removal and 

stemming process and the vector is in non binary form where the values represent the 

occurrences assigned to terms. For this study, the author used tfidf weight instead of 

occurrences for next clustering purpose. The tfidf weight is defined as in section 

2.3.2. 

 
 
 
 
3.6 Data sampling 
 
 
 As explained in section 2.5, data sampling is an alternative in order to 

measure the accuracy of prediction model. One of the data sampling techniques that 

are applied in this study is cross validation in which data will be divided randomly 

into the training and test sets. This process is repeated k times and the classification 

performance is the average of the individual test estimates.  

 
 The validation results were analysed for five different splitting methods as 

shown in Table 3.1. 

Table 3.1 Splitting sample 
 

Testing Set Training Set 

50% (1-103) 50% (104-206) 

60% (1-82) 40% (83-206) 

70% (20-70) 30% (1-19 and 71-206) 

80% (1-42) 20% (43-206) 

95% (148-157) 5% (1-147 and 158-206) 
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 Sampling techniques can be implemented to assess the classification quality 

factors (such accuracy) of classifiers (such as ANNs) (Azuaje, 2003). 

 
 
 
 
3.7 Ward’s Clustering 

 
 
Due to the time constraint, only one technique of hierarchical clustering is 

applied in this project and Ward’s clustering has been chosen because it can generate 

quality cluster (Korenius, et. al., 2004; Leuski 2001).  The document vector with tfidf 

weight which obtained after preprocessing data will be clustered using this 

technique. 

 
 
 
 

3.7.1 Euclidean distance  
 
  

Based on explanation in section 2.4, Euclidean distance is the distance 

measure that will be applied in implementing Ward’s algorithm. This kind of 

measure is defined as in Equation (1), section 2.4. 

 
 
 
 

3.7.2 Combining RNN and Ward’s Clustering 
 
 
 The following algorithm shows the combination of Ward’s clustering and 

RNN proposed by Murtagh (1983) which is more efficient: 

 

i.   Initialize as much as possible clusters wherein each cluster contains 

exactly one document. At this stage, value for E is 0. 

 

ii. Combine RNN method in this step by getting the nearest neighbors (NN) 

for each cluster in consider the distance similarity 
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iii. Reduce the number of cluster by merging those two that minimize the 

increase of the total error sum of square, E using Equation (3) and those 

merged cluster will never isolate. At this stage, minimum variance is 

employed. The following equation is the calculation for error sum of square, 

ESSk for cluster k 
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where xjk is an attribute value in document i which is clustered to cluster k 

sized n. Equation (3) represent as sum of the ESS for each cluster k defined as 

E and g refer to number of cluster. 
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kESSgE      (3) 

 

At this step, two centroid clusters is chosen randomly to merged then 

updating error sum of square. The best combination of clusters will minimize 

total of the error sum of square. 

 

iv. If there is more than one cluster remain, repeat step (iii) 

 

Initially, time requirement for Ward’s clustering algorithm O(N3). The combination 

of RNN proposed by Murtagh (1983), time requirement was reduced to O(N2) (El-

Hamdouchi and Willett, 1989). 

 
 
 
 
3.7.3 Mojena’s stopping rule 
 
 
 In hierarchical clustering, the partition with the best number of groups for a 

dataset will need to be selected from the overall dendrogram. One partitioning 
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method is by examining the differences between fusion levels in the dendrogram 

[Mojena, 1977].  It can be implemented depends on the distribution of clustering 

criterion, α  defined as 

 

[ ] pNjiESSijjip −== < ,...,1,,minα    (4) 

 

where ijα is the value in which there is N-p cluster. is depends on clustering 

technique used. For this study, Ward’s clustering is used and the value of refer 

to the error sum of square obtained once merging cluster i and cluster j. Subsequent 

to clustering,   is refer to the error sum of square obtained when merging 

cluster i and cluster j with another cluster, m. The following is the value used 

ijESS

ijESS

( )mijESS

 

 ( ) ( )jmimmij ESSESSESS ,min=       (5) 

 

In this case, m = 1,…, p where jim ,≠  and p is number of current cluster. α will be 

increased since number of cluster become small.  

 

 The fist rule utilizes the mean and standard deviation to define a 

significantα . Selection of groups level corresponding to the first stage j, i = 1,…,N-

2 satisfying Equation (6).  

 

ασµα kj +>+1      (6) 

 

where 1+jα  represents the value of the criterion in stage j+1, k is constant, µ  and 

ασ are respectively the mean and unbiased standard deviation of the α distribution. 

In this case, k is setup to 1.25 as proposed by Miligan and Cooper (1985). 
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as com

 Evaluation 

For evaluation purpose, the accuracy of the Ward’s result to correctly classify

nknown inputs will be measured. A set of five testing sample which is not u

he training phase but previously interpreted by expert were presented to the 

lgorithm. For each testing thesis, the result by Ward’s algorithm is obtained by 

anking the entire remain cluster corresponding to the Mojena’s stopping rule and 

ompared it to the expert survey. A

sed in 

fterwards, the percentage of correct responses 

puted for further analysis. 

Begin 

 one

e of 

7. e best number 

of groups for a dataset from overall dendrogram for evaluation 

 

1. Read document vector as input 

2. Compute Euclidean distance for each document 

Initialize a3. s much as possible cluster wherein each cluster contains exactly

5.  minimize the increas

document 

4. Combine RNN method to by getting the nearest neighbor for each cluster 

Reduce number of cluster by merging those two that

the total error sum of square, E using Equation (3). 

6. Repeat step (4), if there is more than one cluster remain 

Apply Mojena’s stopping rule to determined the partition with th
Fig. 3.2 Ward’s Algorithm  

.8 Kohonen Clustering 

hase 

s defined in Appendix G which list the supervisor code used in the 

valuation stage.  

 

plementation 

 

ill be processed and eigen 

alues of the meaningful variables will be generated.  

 

The training set is composed of 206 input variables (title, abstract). A file 

omprising 206 thesis title and abstract has been used for training and testing p

orresponding to the sample as previously described. 25 interpretation classes 

haracterize the type of supervisor as supervisor code in Appendix F and also eight 

lasses for expert a

.8.1 PCA im
 

At this stage, the document vector will be reduced into a smaller dimension

y considering the meaningful variables. All the data w
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 Deboeck (1999) explained that Kohonen algorithm result is more effectiv

when used on PCA data compared to the raw data. For this project, Multivariate 

Statistical Package 3.13m has been used for this purpose. All the 2911 variables 

produced in section 3.5 were reduced dow o

e 

n t  204 variables using PCA further 

pplied to Kohonen network as an input.  

 follows: 

ii. 

ion Axes to 

 rs option  

iv. The generated output was used for Kohonen clustering 

.8.2 Kohonen Network Algorithm 

 
he following is the Kohonen algorithm due to this project: 

. Set 

 

ee 

etw rk. Table 3.2 shows the 

ohonen network design for this study.    

a

 
The step for reduce dimension using MVSP 3.13m is as 

i. Import document vector into MVSP as an input 

Then select Analysis menu and click on Principal Component. 

 Principal Component window will then pop-up. Opt

Extract changed  to All and maintain othe

iii. Run the analysis by clicking Run button 

 
 
 
 
3
 

T

 
i. Initialize network 

Define wij (t) (0 ≤ i ≤ n-i) to be the weight from input i to node j at time t. 

Initialize weights from the n inputs to the nodes to small random values

the initial radius of the neighborhood around node j, Nj(0), to be large. 

Set the initial cluster based on the labeling process that will be explained in

step iii. Learning rate for Kohonen algorithm was setup to 0.005 and thr

different dimensions will be used in this n o

K
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Table 3.  n ign2 Kohonen
 

etwork des  

LearningRate Di n Itmensio eration 
5000 10x10 
7000 
5000 12x12 
7000 
5000 

KOHONEN NETWORK 
0.005 

15x15 
7000 

 
ii. Present input 

Present input x0(t), x1(t), x2(t), …, xn-1(t), where xi(t) is the input to node i at 

time t in terms of document vector after PCA process.  A vector chis osen at 

om f training data and presented to the lattice  

ning 

t supervisor. In 

ple. 

, dj between the input and each output node j, given by 

Equation (7). 

 

rand  from the set o

 
iii.  Data labeling 

Since the author applied the supervised Kohonen, labeling on the trai

data is needed. The training data is labeled based on the supervisors 

(considering the supervisor code as in Appendix F) for each thesis. At this 

point, number of clusters depends on the number of differen

fact, training data is different corresponding to the sam

 
iv. Calculate distance using Euclidean function  

Compute the distance

 

( )
2/1

1
⎥
⎦

⎢
⎣

2 ⎤⎡
−=−= ∑

=

n

wxWXd     (7) 

 
 and  are the ith elements of the vectors X and  , respectively. 

r. The 

i
ijij

where i ij

 
x w ijW

v. Select minimum distance 

Designate the output node with minimum dj to be *j . Every node is 

 examined to calculate which one’s weights are most like the input vecto

 winning node is commonly known as Best Matching Unit (BMU). The 

 radius of the neighbouhood of the BMU is now calculated. This a value that 
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 starts large, typically set to the ‘radius’ of the lattice but diminishes each time

 step. Any nodes found w

 

ithin this radius are deemed to be inside the BMU’s 

 neighbouhood.  

er a node is to the 

MU, the more its weights get altered. New weights are  

 

 
vi. Update weights 

Each neighbouring node’s (the nodes found in step v) weights, ( )tN j*  are 

adjusted to make them more like the input vector. The clos

B

( ) ( ) ( ) ( ) ( )( )twtxttwtw ijiijij −+=+ η1  

 

The term ( )tη  is a gain term (0 < ( )tη  < 1) that decreases in time, so slowing 

the weight adaptation. Notice that the neighbourhood ( )tN j*  decreases in size 

s time goes on, thus localizing the area of maximum activity. 

vii. Repeat by going to step 2 for N iteration. 

stering and Kohonen Clustering Compared to  

the Expert Survey 

 
 

ntage 

 as the best techniques in terms of suggestion of 

upervisors and examiners.  

a

 

 
 
 
 
3.9  Evaluation of Ward’s Clu

 

 

Determination of the best technique in this domain study is measure based on

the accuracy of percentage corresponding to the expert survey. The accuracy of the 

entire sample as explained in previous, will be computed and the average perce

for both algorithms will be obtained. The algorithm that produced the highest 

average accuracy is identified

s
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3.10 Summary 

zed for preprocessing purposes 

hich are stopword removal and Porter stemming.  

 

e 

lated 

 chapter will discuss the results obtained from 

ard’s and Kohonen network.  

 

 
 
 Briefly, this chapter discussed the entire step in order to satisfy the objective 

of this study. The set of 206 was collected and digiti

w

 

 In the next stage, the entire document is represented in document vector by

considering the tfidf weight. The Euclidean distance was selected to measure th

distance of the document. Further, Ward’s algorithm and Kohonen network is 

applied to the document vector. The result from Ward’s clustering will be compared 

to the Kohonen result. Here, the correctness percentage for each sample is calcu

for evaluation purpose. The next

W
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CHAPTER IV 
 

 
 
 

RESULT AND ANALYSIS  
 
 
 
 
4.1 Introduction 
 
 

This chapter discusses and evaluates both clustering techniques based on their 

performance in suggestion of supervisor and examiner. The result will then be 

compared with expert survey. The performance of both clustering techniques for 

suggestion supervisors and examiners based on thesis title and abstract will be 

evaluated.  

 
 
 
 
4.2 Preprocessing Result 
 
 
 Appendix E shows the preprocessing result for thesis title after the stopword 

removal and Porter stemming was applied to the 206 set of theses.  

 
 
 
 
 
 
 
 
 



 45

4.3 Evaluation of Ward’s Clustering and Kohonen Clustering 
 
 
4.3.1 Ward’s Result 
 
 
 Table 4.1 in Appendix H show the 15 final clusters produced by Ward’s 

clustering at level 191 corresponding to the Mojena’s stopping rule. The unknown 

thesis had been clustered into several different clusters which contains known 

documents.  

 

 Referring to Table 4.2 in Appendix H, Ward’s result gives 45.63% accuracy 

for sample 50:50 when compared to the expert survey. 

 

 In the mean time, 82 theses are randomly chosen as testing data in sample 

60:40. Only 40 theses from 82 are predicted accurately by Ward’s which gives 

48.78% accuracy in suggestion supervisor and examiner.  The result for 60:40 

sample is shown in Table 4.3. 

 

 Based on Table 4.4 also in Appendix H, 51 theses are identified as a testing 

data and the rest 165 is identified as a training data for sample 75:25. Ward’s 

produced 45.10% accuracy compared to the expert survey where only 23 theses are 

predicted accurately.  

 

 In particular, Ward’s algorithm gives 36.59% accuracy from 41 testing theses 

that means only 14 theses is predicted accurately for sample 80:20. Detailed result is 

shown in Table 4.5.   

 

 Meanwhile, from 10 testing theses in sample 95:5, 70.00% accuracy is 

produced by Ward’s algorithm as shown in Table 4.6. 

  

 Table 4.7 briefly shows the accuracy percentages in determination supervisor 

and examiner for entire sample involved in this study. 
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Table 4.7 Ward’s Result 

Sample Ward’s Result 

50:50 45.63% 

60:40 48.78% 

75:25 45.10% 

80:20 36.59% 

95:5 70.00% 

 

 As we can see in Table 4.7, sample 95:5 shows the highest percentages 

among the rest sample. This observation Azuaje (2003) results that larger training set 

will produce more accurate result.  
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Fig. 4.1 Accuracy of Ward’s algorithm 

 
 
 
 

4.3.2 Kohonen Result 
  

 

There are 204 of variables used in applying Kohonen clustering for 

substituting 2911 raw data. This 2911 raw data was reduced by using PCA as 

explained in chapter 3. 
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Initially, Kohonen clustering used several parameters in order to ensure 

convergence of the weight. For this thesis, the author had setup three different 

parameters which are learning rate, iteration and the dimension of the feature map as 

shown in Table 3.1. As explained in section 3.83, learning rate was setup to 0.005 for 

each five sample data. 

 

Sample 50:50 was fed to the Kohonen network with 103 testing theses, which 

producing 43.69 % correctness where only 45 theses is predicted correctly in 

suggestion of supervisor and examiner. Table 4.8 (Appendix I) shows the detailed 

result for sample 50:50. 

 

Meanwhile, 82 theses was used as testing data in sample 60:40 which gives 

42.68% correctness in suggestion of supervisor and examiner. Detailed result can be 

seen in Table 4.9, Appendix I. 

 

Whilst for sample 75:25 in Table 4.10 (Appendix I), Kohonen was predicted 

accurately to the 18 testing theses with 35.26% correctness.  In particular, Table 4.11 

(Appendix I) shows that Kohonen was suggested supervisor and examiner with 

46.34% correctness in which 19 theses is predicted correctly compared to the expert 

survey.  

 
 Another last sample, 95:5 shows that Kohonen can suggest supervisor and 

examiner with 50.00% correctness. This can be referring to Table 4.12 (Appendix I). 

 

Table 4.13 Kohonen result 

Sample Kohonen Result 

50:50 43.69% 

60:40 42.68% 

75:25 35.29% 

80:20 46.34% 

95:5 50.00% 
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 Table 4.13 denoted briefly Kohonen result as explained in previous. Based on 

this Table 4.13, it shows that sample 95:5 gives the highest accuracy percentage with 

50.00%. As discussed in section 4.2.1, larger training set can give better results. 

 
 

Kohonen Accuracy
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Fig. 4.2 Accuracy of Kohonen algorithm 

 
 
 
 
4.4 Comparative Study and Discussion 
 
 
 Based on the previous section, comparative study has been conducted to find 

out the best technique for suggestion supervisor and examiner. Table 4.14 shows the 

comparative study on both clustering techniques.  

 

Table 4.14 Comparative Study 

Sample Ward’s Result Kohonen Result 

50:50 45.63% 43.69% 

60:40 48.78% 42.68% 

75:25 45.10% 35.29% 

80:20 36.59% 46.34% 
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95:5 70.00% 50.00% 

AVERAGE 49.22% 43.6% 

  

 

 Considering the clusters result, Ward’s shows better performance compared 

to Kohonen network in suggestion of supervisors and examiners (see Table 4.14). 

Among five samples, four samples in Ward’s algorithm give better performance as 

highlighted in blue column in Table 4.14. In particular, Kohonen shows best 

performance only for sample 80:20.  Once again, Ward’s presents 49.22% accuracy 

average better than Kohonen network which yielded only 43.6% correctness. Fig. 4.3 

shows the performance on both algorithms based on Table 4.14 in suggestion 

supervisor and examiner.   

 

Comparative Study : Ward's and Kohonen

48.78%
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Fig. 4.3 Ward’s Clustering vs Kohonen Network 

 

 According to the both clustering, better performance is yielded in sample 

95:5. As discussed above, the correctness percentage is increased since the training 
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data set become larger. In fact, the predicted accuracy of a classifier is generally 

proportional to the size of the training dataset (Azuaje, 2003). This condition is 

difficult to achieve due to resource and time constraints. More to the point, the size 

of the training set needs also to be better understood. 

 

 However, the increasing of accuracy percentage for Kohonen is in proportion 

to the increase of available training data. In particular, the possibility of overfitting 

can also occur in training phase may affect the result produced by Kohonen. It can be 

seen in sample 75:25 (Fig. 4.2) which the accuracy percentage decreased down to 

35.29%.  

  

 Since Kohonen performance depends on several parameters such that 

learning rate, dimension and the number of iteration, and the Kohonen network 

adaptation has not yet been adequately trialed, it appears a promising technique that 

warrants further exploration. 

 

 Moreover, in order to more accurately evaluate the performance of both 

algorithms a more thorough analysis is needed. Azuaje (2003) said that accuracy may 

not tell the whole story for a method. Besides the overall classification success there 

is a need to evaluate each cluster separately, for precision and recall of specific 

clusters. 

 

 As a conclusion, Ward’s presents better performance than Kohonen network 

in determining supervisors and examiners for FSKSM’s Post Graduates theses. 

 
 
 
 
4.5 Summary 
 
 
 Based on the experiments carried out for the analyses, we can conclude that 

Ward’s clustering gives better result when compared to Kohonen network. Actually, 

the result produced by Ward’s in this study is much similar to the result produced by 

Leuski (2001).  It shows that Ward’s still maintain quality of cluster and is superior 
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to Kohonen network. However, the more thorough analysis on both this algorithm is 

desired to ensure their performance in determining supervisors and examiners.  
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CHAPTER V 
 
 
 
 

CONCLUSION AND FUTURE RESEARCH 
 
 
 
 
5.1 Summary 
 
 

The main objective of this study is to measure document clustering 

performances in determining supervisors and examiners for thesis. From the 

discussion in literature review, we can see that document clustering has been 

investigated for use in a number of different areas of text mining and information 

retrieval. Initially, document clustering was investigated for improving the precision 

and recall in IR (van Rijsbergen, 1979) and as an efficient way of finding the nearest 

neighbors of a document (Bukley, et. al, 1985). However, there is only few research 

in this domain study. 

 

Ward’s algorithm and Kohonen network have been adapted in order to evaluate 

whether document clustering can be used for determining supervisor and examiner. 

Both algorithms were tested on 206 theses and measured by the percentage of 

accuracy compared to assignment by human expert. The implementation of Ward’s 

clustering show that Hierarchical clustering has superior performance compares to 

Kohonen network, though a more thorough analysis is needed to measure both 

algorithms accurately. It is because the accuracy percentage is presently the initial 

performance at the same time as precision rather the whole performance. 
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5.2 Contribution 
 
 
 Based on literature review, the application of document clustering is very 

limited in this domain study. Subsequently the main contribution of this study is in 

measuring the performance of document clustering focused on Ward’s technique and 

Kohonen network in suggestion of supervisors and examiners. As expected, Ward’s 

clustering is capable in determining supervisors and examiners effectively. Ward’s 

clustering still maintains its cluster quality compared to Kohonen based clustering in 

terms of the percentage of accuracy. 

  

 Thus, Ward’s algorithm can be used in determining supervisors and 

examiners instead of the manual determination. In addition, human intervention can 

be avoided since it gives rise to bias in making decision. 

 
 Essentially, for further application, we can enhance the used of Ward’s 

clustering techniques for suggestion of project leader for certain research or to find 

out the best lecturer for certain subjects. 

 
 
 
5.3 Further Work 
 
  
 Document clustering is a wide research area and there is still much more 

things to explore due in the domain. At this point, several suggestions are suggested 

for future research: 

 

a) Merging multiple techniques is one of the effective steps; in order to improve 

IR performance especially for this domain study. This study has only begun 

to implement many possibilities in term of Ward’s clustering and Kohonen 

clustering in suggestion supervisor and examiner. By merging Ward’s and 

Kohonen techniques, we can attempt to harness the best quality of each 

technique. 

 

b) Due to time constraint, only Ward’s techniques presented as Hierarchical 

clustering was applied in this project because its produced quality cluster 
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(Korenius, et. al. 2004) and for more attestation, another hierarchical 

clustering techniques should be applied to this domain to find out the best 

technique in suggestion supervisor and examiner. 

 

d) Enlarge the data set for better performance because the produced clusters 

appear inappropriate to each other (Azuaje, 2003). It is because a small test 

data set may contribute to an inaccurate performance assessment 

 

e) Apply another clustering technique to this domain to find the best techniques 

for suggestion supervisor and examiner such as Fuzzy network or non 

hierarchical clustering techniques 
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Gantt Chart 



ID Task Name Duration

1 MASTER PROJECT 258 days
2 Phase I 20 days
3 Thesis collection 10 days

4 Thesis digitization 4 days

5 Phase II 12 days
6 Prepare stoplist 2 days

7 Stoplist programming 10 days

8 Stopword removal 2 days

9 Phase III 26 days
10 Research on Porter stemming 6 days

11 Develop stemming programming 16 days

12 Stemming 9 days

13 Phase IV 27 days
14 Understanding indexing concept 8 days

15 Programming to extract word 5 days

16 Programming to count frequency for each word 5 days

17 Present in Vector Space Model 11 days

18 Presentation Project I 1 day
19 Report correction 9 days
20 Submit report 1 day
21 Phase V 35 days
22 Calculate TFIDF weight 15 days

23 Calculate document similarity 14 days
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ID Task Name Duration

24 reduce dimension using PCA 5 days

25 Phase VI 15 days
26 Understanding Ward's clustering 9 days

27 Ward's programming 7 days

28 Ward's clustering 3 days

29 Phase VII 35 days
30 Understanding Kohonen clustering 10 days

31 Kohonen programming 15 days

32 Kohonen clustering 3 days

33 Phase VIII 4 days
34 Evaluation Ward's result vs expert survey 4 days

35 Evaluation Kohonen result vs expert survey 4 days

36 Comparison on both clustering techniques peformanc 4 days

37 Presentation 1 day

38 Report correction 9 days

39 Submit final report 1 day
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No Title Supervisor   ExpertSurvey 

1 A  Comparative Study Between Smart School And Normal School On The 
Usage Of Ict In Johor Bahru Prof. Dr. Rose Alinda Binti Alias   5 

2 A Decision Support System Based On Neural Networks To Select 
Candidates For The Computer Science Degree Program 

Prof.Madya Dr.Mohd Noor Bin Md 
Sap   1 

3 A Prototype Virtual Intelligence Map System Prof Dr Ahmad Zaki b Abu Bakar   5 

4 Resource usage analyzing for distributed threats simulation on intrusion 
detection system hose PM Dr Mohd Azaini b Maarof   2 

5 Active Reaction analyzing for distributed threats simulation in parallel on 
Intrusion Response system PM Dr Mohd. Aizaini Maarof   2 

6 Knowledge Management Application Support Towards the Lecturer 
Communities of Practice In Institute Of Higher Learning 

Prof. Madya Dr. Shamsul bin 
Shahibuddin, En. Mohammad Nazir 
bin Ahmad @ Sharif 

  5 

7 Application of Fuzzy Logic on Decision Support Systems For Selecting 
Subject Course In Universiti PM. Abd. Manan Ahmad   1 

8 Class Timetabling Using Modified Genetic Algorithm PROF. MADYA DR. SAFAAI BIN 
DERIS   1 

9 Computer Controlling System P.M. Dr. Mohd Aizaini Bin Maarof   2 
10 Content Management Framework For Malaysian Government Web Sites PROF. ZAMRI B. MOHAMED   5 

11 Critical Success Factors For Managing Dot.Com Company PM DR HARIHODIN B 
SELAMAT   5 

12 Denial Of Service Attack Detection Prof Dr Abdul Hanan b Abdullah   2 

13 Developing A University Knowledge Community Using Sms Technology 
PM Dr. Rose Alinda Alias, 
Professor Dr. Ahmad Zaki bin Abu 
Bakar 

  5 

14 Developing A Web Based Tourism Information System For Sarawak 
Tourism Board Prof Zamri b Mohamed   5 

15 Development of A Prototype For Johore Tourism Information System In 
Web Environment PM Dr. Mohd. Noor bin Md. Sap   5 

16 Easy Link Information Centre Administrator (Elica) PM Dr Shamsul b Sahibuddin   5 
17 Electronic Commerce For A Computer Shop PM Dr Harihodin b Selamat   7 

18 
Enhancing Customer Relationship Process In Southern Sumatra District 
Office Of P.T. Telekomunikasi Indonesia, Tbk. Through Integration Of 
Multiple Communication Services 

PM Dr Abdul Samad  b Hj Ismai   4 

19 Guide Line for Information and Communication Technology Management in 
Small Medium Industries Countryside  

PROFESSOR ZAMRI BIN 
MOHAMED, Encik Md. Hafiz Bin 
Selamat, Encik Mohd. Zaidi Bin 
Abdul Rozan 

  5 

20 Beam Search Implementation in Solving Personal Computer Configuration 
Problem PM Abdul Manan Ahmad   1 

21 Implementation Of Constraint Based In Scheduling Nurse Shift At Crystal 
Ward, Hospital University Malaysia  

Professor Dr. Safaai Bin Deris, PM 
Safie Bin Mat Yatim, PM Abdul 
Manan 

  1 

22 Information Security Policy For Universiti Teknologi MARA Prof  Dr Abdul Hanan b Abdullah   2 

23 Integration of Workspace Awareness in Collaborative Case Tools PM DR. Shamsul Sahibuddin, Pn 
Mazleena   4 

24 Islamic E-Organizer PM Dr Shamsul b Sahibuddin   5 

25 Guide Line Forming to Improve Effectiveness of Supervising and 
Controlling ICT Project at government agency by Project Leader Committee Prof Zamri b Mohamed   7 

26 Reengineering Magazines Ordering System : Replacement Structured 
System and Analysis to Object Oriented Design (UML) PM Dr Mohd Noor b Md Sap   1 

27 Knowledge Cents As A Contribution Metrics For Knowledge Management Prof Dr Ahmad Zaki b Abu Bakar, 
En Mohd Zaidi b Abdul Rozan   5 

28 Managing A Tutoring System For Propagating Plants-Living Skills Subject PM Dr Rahman b Ahmad   8 

29 Mobile Protection System Assoc. Prof. Dr. Shamsul Bin 
Sahibuddin   4 

30 Neural-Fuzzy For Handwritten Digits Recognition PM Dr Siti Mariyam bt Hj 
Shamsudin   3 

31 Development of Computer Games Engine on simulation strategy style Prof. Dr. Ahmad Zaki Abu Bakar   5 
32 FSKSM Sharenet Implementation in Encourage Knowledge Sharing Process PM Abdul Manan b Ahmad   1 
33 System Prototype for Tools Technics Planning Information System PM Dr Rose Alinda Alias   7 

34 Weight Using Method Implementation for Strategic Management 
Assessment System for IPTS : Review Case in ITP-YPJ 

PM DR ROSE ALINDA BT Alias, 
Pn Zeti Darleena   5 

35 An Object Oriented Prototype System For A Small And Medium Enterprise PM Dr Rose Alinda bt Alias   5 
36 Implemention Infomediary Concept inE-Learning Environment PM Dr Rahman b Ahmad   8 
37 Hypermedia Application Model using Combination UML and  HDM  Prof Dr Safaai b Deris   1 

38 Recurrent Neural Network in Prediction House Price PM Dr Siti Mariyam bt Hj 
Shamsudin   1 

39 Enhancement MOO Tool in Distance Learning PM Dr. Shamsul Sahibuddin   7 

40 Effective Hybrid Bounding Volume Serial Strategic for Detecting Collission 
N-Rigid Convex Object in an Interactive Virtual Environmen  PM Daut Daman   3 
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41 Speech Recognition For Isolated Word Samples Using Support Vector 
Machine 

PM DR SITI MARIAM BINTI HJ 
SHAMSUDIN,  EN MD SAH BIN 
HJ SALAM 

  3 

42 Gray Scale Fingerprint Image Minutiae Detection Using Ridge Line 
Following Algorithm Prof Dr Ghazali Sulong   3 

43 Neural Network in time series forecasting  PM Dr Salihin b Ngadiman   1 

44 Implementation of Knowledge Management in Higher Learning Institute: 
Case study FSKSM 

PM Dr Shamsul b Sahibuddin, Pn 
Norhawaniah bt Zakaria   5 

45 Rainfall Forecasting Using Neural Network based on Massive 
Meteorological Data P.M. Dr. Mohd Noor bin Md. Sap   1 

46 Comparison of Classification Result for Undiscretized and Discretized Data  
: Back Propagation and Rough Set  

PM Dr Siti Mariyam bt Hj 
Shamsudin   1 

47 Neural Network Optimization using Genetic Algorithm in Speech 
recognition  PM Dr Zulkifli Mohamad   3 

48 Enhancement Dick, Carey and Carey (2001) Model using A Nine Step 
Model in developing intelligence learning system  PM Noraniah bt Mohd Yassin   8 

49 Information system of Quality Service Assessment :Customer Automated 
Support System (CASS) 

PROF MADYA DR ROSE 
ALINDA BTE ALIAS   5 

50 Comparison of linear summation technique and neural network model in 
decision support for student intake in Higher Education Institution  PM Dr Mohd Noor b Md Sap   1 

51 Performance Comparison of Java RMI and CORBA in Multi-Level 
Marketing Business Structure PM. DR. Rose Alinda Alias   5 

52 Collaborative environment for JPA top level management : Management and 
Professional  PM Dr Shamsul b Sahibuddin   5 

53 Properties Consultation Computerized  Pm Abdul Manan b Ahmad   1 
54 Knowledge Audit Portal for Public Higher Education PM Dr Rose Alinda Alias   5 

55 Small Medium Industries Community Portal  PM Safie Mat Yatim, En Norhashim 
Abu Samah   5 

56 UPSI Education Community Portal PM Dr Shamsul Sahibuddin   5 
57 Knowledge Management System Prof Dr Ahmad Zaki b Abu Bakar   5 
58 Seminar Management and Monitoring Portal Prof Dr Safaai b Deris   1 
59 Product Information Searching Through WAP PM Dr Mohd Azaini b Maarof   2 
60 Project Time Management And Communication System Prof Dr Safaai b Deris   1 

61 Protein Secondary Structure Prediction From Amino Acid Sequences Using 
A Neural Network Classifier Based On The Dempster-Shafer Theory 

Prof Dr Safaai b Deris, PM Dr Rosli 
Md Illias   1 

62 Evaluation System for E-Learning Portal PM Dr Mohd Noor b Md Sap   5 
63 World Islamic Trade Business Game (WITNES) in Prototype  En Noor Azam b Mohd Sheriff   3 
64 Prototype System of Personal Firewall Prof. Dr. Abdul Hanan Bin Abdulah   2 

65 Prototyping A Profit And Loss Statement Analysis Using Simulation 
Modeling And Fuzzy Logic Prof Dr Ahmad Zaki b Abu Bakar   5 

66 Region Based Digital Image Segmentation Using Pixel Caste-Mark And 
Pixel Discrimination 

PM Dr Mohd Noor b Md Sap, Pm 
Dr Harihodin b Selamat   1 

67 Tools Design Web Based In Supporting Collaborative Learning PM Dr Harihodin b Selamat   5 

68 Trap detached design in Simple Network Management Protocol (SNMP) 
using wireless application protocol (WAP) Client Server System  Prof Dr. Shamsul Sahibuddin   4 

69 Intelligent Mobile Agent Open Architecture for Distributed Application Prof Dr Safaai b Deris   1 
70 Decision Support System using Neural Network in Bank Loan Application  PM Dr Mohd Noor Md Sap   1 
71 School Discipline Decision Support System  PM Abdul Manan b Ahmad   1 
72 decision support system of service quality information system in IPTS  PM Dr Rose Alinda bt Alias   5 

73 Agency Management Smart System PM. SAFIE MAT YATIM, PM. 
DR. SAFAAI DERIS   5 

74 Quality Assurance System at Top Empire Sdn Bhd  Prof. Madya Dr. Ab. Rahman 
Ahmad   6 

75 Software Standardized Control System  Prof Dr. Hanan b Abdullah   2 

76 Assembly Line Balancing Workstation System Using Heuristic Method Prof. Madya Dr. Ab Rahman 
Ahmad, Dr. Masine bte Md Tap   3 

77 Student Information System  En Nadzari b Shaari, Prof Dr Safaai 
b Deris   5 

78 student discipline system in school involving merit demerit process  PM Abdul Manan b Ahmad   1 
79 Electronic Document Delivery System PM Dr Mohd Noor b Md Sap   5 

80 Data Recovery System in Disc Forensic for Windows Operating System PROF MADYA DR. SHAMSUL 
SAHIBUDDIN   5 

81 Intelligent tutoring system : Possiblities Statistic Topic  PM Noraniah bt Mohd Yassin   8 
82 Faraid knowledge information  Based on Web technology PM Abdul Manan Ahmad   5 

83 Staff Information Management system Based on Lotus Notes : Case Study at 
Mydin Mohammad & Sons Sdn Bhd Dr Shamsul b Sahibuddin   5 

84 Knowledge Management System in Solving ISO 9000  Dr. Azizah Binti Abdul Rahman, 
En. Azlan Bin Mohd Zain   5 

85 Student Performance Assessment System  PM Noraniah Mohd.Yassin   8 
86 Online Vehicle Sale System  P.M. Safie Mat Yatim, P.M. Dr.   5 
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Mohd. Noor Md. Sap 

87 Development for the Income Statement and Individual Income Tax 
Calculation On-Line System  PM Dr Shamsul b Sahibuddin   5 

88 Customer Profile System (CPS) : Case Study at Telekom Malaysia Berhad  Prof. Madya Dr. Harihodin Selamat   7 

89 Decision Support System for Vehicle Buying Planning through Hire 
Purchase  

PM Dr Shamsul b Sahibuddin, Pn 
Norhawaniah bt Hj Zakaria   5 

90 The Application Of Enhanced Genetic Algorithm In Class Timetabling 
Problem  Prof. Dr. Safaai bin Deris   1 

91 The Effect of Malaysian Smart School To Public Universities Curriculum 
Structures In Term Of Basic IT Subjects  PM Abdul Manan b Ahmad   1 

92 The Retrace Traveling Salesman Problem: A New Extension Of Traveling 
Salesman Problem  

PROF. MADYA DR. SAFAAI BIN 
DERIS   1 

93 Trademark Matching Algorithm based On Simplified Feature Extraction  Dr Dzulkifli Mohamad   3 
94 Visualization for Large Data Set Of Triangular DTM  PM Daut Daman   3 
95 Business Advertisement via Internet  PM Dr Mohd Azaini b Maarof   2 

96 Workflow Management System for Strata Title Application At Federal 
Lands And Mines Department PM Dr Rose Alinda bt Alias   5 

97 System Analysis Comparison between Data Flow Diagram and Use Case  PM Dr Rose Alinda Binti Alias   5 
98 The Recognition of Plate Number Location Using Statistical Method  Dr. Dzulkifli Mohamad   3 

99 Transition of the System Design from a Functional Oriented To an Object 
Oriented  

Pn Azizah binti Abdul Rahman, Pn 
Nor Hawaniah binti Zakaria   5 

100 The Effect of Architecture on Exact Forecasting in Backpropagation  Prof Dr. Safaai bin Deris   1 

101 Electronic Commercial System based on Letter Credit: Case Study at PT. 
Khage Lestari Timber  PM. Dr. Abdul Hannan Abdullah   2 

102 Building a Prototype Data Warehouse a Case Study at FAMA  PM Dr. Abdul Hannan Abdullah   2 

103 Leadership Through Knowledge Management Portal: A Prototype  Prof. Dr. Ahmad Zaki bin Abu 
Bakar   5 

104 Exploring the Notion of Service Assessment within the Context of 
Information System Service Quality (ISSQ) in the Malaysian Public Service  

Associate Professor Dr. Rose Alinda 
binti Alias   5 

105 Decision Support System for Rural Digital Divide Programs  Prof. Zamri bin Mohamed   7 

106 Development of Web Creation and Management Tool for Education 
Purposes Based On Web  PM Noraniah Mohd Yassin   8 

107 Developing MSCIT E-Learning Portal Prototype: Case Study of FSKSM 
MSc. IT Programme  Dr. Azizah binti Abdul Rahman   5 

108 A Prototype of Flood Management Support System National Flood 
Forecasting Center, Deparment Irrigation and Drainage, Malaysia  PM Dr. Rose Alinda binti Alias   5 

109 Enhancing Decision Making Processes in Project Monitoring Environment 
in Planning and Development Division, Ministry of Health  Professor Zamri bin Mohamed   7 

110 The Management Information System for Overall Equipment Efficiency 
(OEE) Analysis and Decision Making  PM Dr. Safaai bin Deris   1 

111 Health Promotion E-Portal  PM Dr. Shamsul bin Shahibuddin   5 

112 Information System Plan for Secondary School: Case Study at SMK Mutiara 
Rini  PM Dr. Rose Alinda binti Alias   7 

113 Decision Support System for Personal Budget  PM Dr. Shamsul bin Sahibuddin   5 
114 Electronic Claim Management System  PM Abdul Manan Ahmad   1 
115 Computer Assisted Learning-Algebra Fraction using EIF approach  PM Dr. Ab. Rahman bin Ahmad   8 

116 Pornographic Web Page Filtering System Using Neural Network Model  PM Dr. Siti Mariyam Hj. 
Shamsuddin   1 

117 Zakat Payment System for Jabatan Agama Islam Johor  PM Dr. Safaai bin Deris   1 
118 A Mobile and Wireless Ward in Hand System: (WiH)  PM Dr Rose Alinda bin Alias   5 
119 School Management Information System  PM Safie bin Mat Yatim   8 

120 Smart Kindergarten Management System  Dr. Muhammad Shafie Hj Abdul 
Latiff   4 

121 Instituting Knowledge Sharing Among Senior Officers in the Prison 
Department of Malaysia  Professor Zamri bin Mohamed   7 

122 Time Table Scheduling System for Primary School  PM Abdul Manan Ahmad   1 
123 Activity Based Costing Software for Manufacturing Industries  Dr. Muhammad Shafie Abdul Latiff   4 

124 Knowledge Classification System for Sistem Saraan Malaysia  Prof. Dr. Ahmad Zaki bin Abu 
Bakar   5 

125 Online Data Storage : Drivepods  PM Dr. Rose Alindabinti Alias   5 

126 Business Development Automation Using Market Basket Analysis 
Techniques  PM Abdul Manan Ahmad   1 

127 Academic Advisor Expert System  PM Dr. Safaai bin Deris   1 
128 Teacher Perfomance Apraisal System  PM Dr. Mohd Noor bin Md. Sap   1 
129 Acquisition Online System: Case Study In PSZ  PM Dr. Mohd Noor bin Md. Sap   1 

130 Designing and Implementing Double Cube Data Model  PM Dr. Harihodin bin Selamat, PM 
Daut Daman   7 

131 Information Retrieval System Using Text Block Indexing  PM Safie bin Mat Yatim, PM 
Sarudin bin Bakri   3 

132 Information Security Policy Of Jabatan Kastam Diraja Malaysia, Johor  PM Dr. Mohd. Aizaini Maarof   2 
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133 Cluster-Based Compuond Selection Using Fuzzy Clustering  PM Dr. Naomie binti Salim, Dr Ali 
bin Selamat   1 

134 Online Journal Management System for Journal Information Technology   PM Dr. Naomie bin Salim   1 

135 Cluster Analysis on Chemical Data using Genetic Algorithm  PM Dr. Naomie binti Salim, Dr. Ali 
bin Selamat   1 

136 Task Monitoring and Productivity Management System (Case Study: SPMB 
Workshop)  Dr. Azizah binti Abdul Rahman   5 

137 Decision Support System Assigning Machine’s at Top Empire Industries 
Sdn. Bhd  PM Dr. Abd. Rahman bin Ahmad   6 

138 Web Based Job Application System  PM Dr. Shamsul Sahibuddin   5 

139 Prediction of Life Expectancy for Patients with Hepatitis Using Support 
Vector Machines and Wrapper Method  Professor Dr. Safaai bin Deris   1 

140 Implementation of Lot Sizing and Forward Wagner Whitin Method in 
Rolling Horizon Environment  PM Dr. Mohd Salihin bin Ngadiman   1 

141 Assessment Performance Candidate Finding System  Prof. Dr. Ahmad Zaki bin Abu 
Bakar   8 

142 Using Genetic Algorithm with Directed Mutation in Solving Timetablig 
Problems  

Assoc. Prof. Dr. Mohd Salihin bin 
Ngadiman, Puan Roselina binti 
Sallehudin 

  1 

143 Human Animation using Neural Network  PM Dr. Siti Mariyam binti 
Shamsudin   1 

144 Comparison of the Effectiveness of Probability Model with Vector Space 
Model for Compound Similarity Searching  

PM Dr. Naomie binti Salim, Puan 
Razana Alwee   1 

145 Measurement System Analysis (MSA) in Automotive Manufacturing 
Industry using GR & R  PM Dr. Mohd Salihin bin Ngadiman   6 

146 Bioactivity Classification of Anti AIDS Compounds Using Neural Network 
and Support Vector Machine: A Comparison  Assoc. Prof. Dr. Naomie binti Salim   1 

147 Identification of Bioactivity Molecule for AIDS : A Comparison of Neural 
Network and Rough Set  PM Dr. Naomie binti Salim   1 

148 Finding Best Coefficient and Fusion of Coefficients for Similarity Searching 
Using Neural Network Algorithms  PM Dr. Naomie binti Salim   1 

149 Pairwise sequence alignment for selection of effective substitution matrices 
and gap penalty parameter for sequence alignment in dynamic Programming  

PM Dr. Naomie binti Salim, Encik 
Muhamad Razib bin Othman   1 

150 Promoting Reflective Practice in UTM’s Teaching Community with the 
User of Information Technology (IT)  

PM Dr. Rose Alinda binti Alias, PM 
Dr. Abdul Samad bin Ismail   5 

151 Prototype of an e- Learning assessment application based on Bloom 
Taxonomy for Physics Form 4  PM Dr. Mohd Noor bin Md. Sap   8 

152 Knowledge Management System for Managing Rosettanet Implementation 
in Johore  

Prof. Dr. Ahmad Zaki bin Abu 
Bakar, En. Md. Hafiz bin Selamat   5 

153 Rain Distribution Forecasting By Clustering In Data Mining: A Comparison 
of Association Rules Technique and Statistical Method  PM Dr. Mohd. Noor bin Md. Sap   1 

154 A Study on Entrepreneurial Intention among Information technology 
Technopreneurs  

Prof. Dr. Ahmad Zaki bin Abu 
Bakar   5 

155 Features Extraction For Protein Homology Detection Using Hidden Markov 
Models Combining Scores  

Nazar M. Zaki, Safaai Deris , Rosli 
M. Illias   1 

156 Electrical Appliances Control System Via Internet Based On Parallel Port  Prof Dr. Abdul Hanan bin Abdullah   2 

157 Development of Surface Reconstruction For Ship Hull Design  

Fadni Bin Forkan, Mahmoud Ali 
Ahmed, Ang Swee Wen, Siti 
Mariyam Hj. Shamsuddin, Cik 
Suhaimi Bin Yusof, Mohd. Razak 
Samingan, Yahya Samian 

  3 

158 CSCW System In Office Environment Application  Prof Dr Mohd Aizaini Maarof   2 

159 Fingerprint Classification Approaches: An Overview  Leong Chung Ern, Dr. Ghazali 
Sulong   3 

160 An Hybrid Trust Management Model For MAS Based Trading Society  Prof Dr. Aizaini Maarof, Krishna 
K.2   2 

161 Interaction between Agents (Arguing and Cooperating Agents)  Ng Kee Seng, Abdul Hanan 
Abdullah, Abdul Manan Ahmad   2 

162 Technopreneurship as the New Paradigm For E-Business  Prof. Dr. Ahmad Zaki Abu Bakar   5 

163 Three-Dimensional Terrain Database Design and Management for 
Development of Virtual Geographical Information System  

Muhamad Najib Zamri, Safie Mat 
Yatim, Noor Azam Md. Sheriff, 
Ismail Mat Amin 

  3 

164 Modeling and Simulation of Collision Response Between Deformable 
Objects  

Abdullah Bade, Saandilian Devadas, 
Daut Daman, Norhaida Mohd Suaib   3 

165 Steganography : Hiding Secret Data Into Doubtless Text  Prof Dr. Mohd Aizaini Maarof   2 

166 Sound Optimization and Security System using Compression and Encryption 
Technique  Prof Dr Mohd Aizaini Maarof   2 

167 Proxy System Using Squid  Prof Dr. Abd Hanan bin Abdullah   2 

168 Feature Selection Method Using Genetic Algorithm for the Classification of 
Small and High Dimension Data  

Mohd Saberi Mohamad, Safaai 
Deris   1 

169 The Crowd Simulation for Interactive Virtual Environments  Muhammad Shafie Abdul Latif, 
Setyawan Widyarto   4 

170 Solving Time Gap Problems through the Optimization of Detecting Stepping Prof Dr Mohd Aizaini bin Maarof,   2 
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Stone Algorithm  Mohd Nizam Omar, Anazida Zainal 

171 Individualizing Learning Material Of Adaptive Hypermedia Learning 
System Based On Personality Factor (Mbti) Using Fuzzy Logic Techniques  

Norreen Binti Haron , Naomie Binti 
Salim   8 

172 Fuzzy Decision Tree for Data Mining of Time Series Stock Market 
Databases  

Mohd Noor Md Sap, Rashid Hafeez 
Khokhar   1 

173 A Multiple Perspectives Review Of Knowledge Management Literature  Dr Rose Alinda Alias   5 

174 3D Object Reconstruction and Representation Using Neural Networks  Lim Wen Peng, Siti Mariyam 
Shamsuddin   1 

175 The Development of Feature Extraction And Pattern Matching Techniques 
For 2D Image For Trademark Logo Recognition  

Assoc. Prof. Dr. Dzulkifli bin 
Mohamad   3 

176 A Computerized Handwritten Text Recognition System  Prof. Dr. Ghazali Sulong   3 
177 A Computerized Isolated Hand printed Character Recognition System  Prof. Dr. Ghazali bin Sulong   3 
178 A Secure Transaction Framework For Client-Server Based E-Commerce  Prof. Dr. Abd. Hanan bin Abdullah   2 

179 Malay Spelling Checker & End of Line Word Hyphenation & Database for 
Encyclopedia Science & Technology Project  Assoc. Prof. Dr. Naomie binti Salim   1 

180 Classification and Indexing of 2D Medical Images for Content-Based 
Retrieval System of Digitized X-Ray Films  

Assoc. Prof. Dr. Mohd. Noor bin 
Md. Sap   1 

181 Computerization of Manpower Planning System on Medical Doctor &amp; 
Specialist in Malaysia  Prof. Dr. Ghazali bin Sulong   3 

182 Database Security And Reliability Analysis For Real-time Wireless Update  Assoc. Prof. Dr. Mohd. Noor bin 
Md. Sap   1 

183 Development of a Model for Service Quality information Systems  Prof. Dr. Rose Alinda binti Alias   5 

184 Development of Collaborative Environment with Privacy and Conference 
Control for 3D Protein Structure Visualization  Assoc. Prof. Safie bin Mat Yatim   3 

185 Information Systems Planning  Prof. Dr. Rose Alinda binti Alias   7 

186 Malaysian IT Technopreneurship Model And Decision Support Tool Kit  Prof. Dr. Ahmad Zaki bin Abu 
Bakar   5 

187 Network Design and Security (NDS)  Prof. Dr. Abd. Hanan bin Abdullah   2 
188 Neural-Fuzzy-Ep Application in Scheduling, Planning and Forecasting  Prof. Dr. Safaai bin Deris   1 

189 Spatial And Non-Spatial Database Enhancement For Hydrogilical 
Information System (HIS)  Assoc. Prof. Daut bin Daman   3 

190 Alternative Negative Selection Framework Of Artificial Immune System For 
Classification Problems  

Associate Professor Dr. Siti 
Mariyam Shamsuddin   1 

191 The Reconstruction Of Sketched Primitive Objects  Dr. Habibollah bin Haron   3 

192 An Enhanced Parallel Thinning Algorithm for Handwritten Character 
Recognition Using Neural Network  Dr Habibollah bin Haron   3 

193 Outlier Detection For Breast Cancer Using K-Means And Isodata  PM Dr Mohd Noor Md Sap   1 

194 A Analysis of Hierarchical Clustering and Neural Network Clustering in 
Suggestion Supervisor and Examiner of Thesis  PM Dr Naomie Salim   1 

195 An Analysis Of Non Hierarchical And Fuzzy Clustering For Suggestion Of 
Supervisor And Examiner Of Thesis Title  PM Dr. Naomie Salim   1 

196 Developing an Student Performance Evaluation System  Dr. Azizah Abd. Rahman   8 

197 Developing A Customer Relationship Management System As A Support 
Tool To Improve The Services In Perpustakaan Sultanah Zanariah  Dr. Azizah Abdul Rahman   5 

198 K-Portal Zakat  Dr Othman Ibrahim   7 

199 Redesigning the project monitoring process: Case study at Pejabat Harta 
Bina UTM  

Dr. Azizah Abd. Rahman. Associate 
Prof. Dr. Rose Alinda Alias   5 

200 Comparison Retrieval Schemes Based On Title, Abstract And Bibliography 
Structures Of Thesis With Different Weighting Schemes  PM Dr Naomie Salim   1 

201 Optimization Process Of Numerical Control Code In Manufacturing Endmill 
Tool Endpoint Sized 20mm  Dr Habibollah bin Haron   6 

202 Optimization of Numerical Control Code in Manufacturing Ball End 25mm 
Tool  Dr Habibollah bin Haron   6 

203 Algorithm Enhancement For Host-Based Intrusion Detection System Using 
Discriminant Analysis  Prof Dr Abdul Hanan bin Abdullah   2 

204 Development Of Graphical User Interface (GUI) For Firewall Monitoring 
System  Prof Dr Abdul Hanan bin Abdullah   2 

205 Steganography And Cryptography Apply to Hide X-Ray Image  Prof Dr Aizaini Maarof   2 

206 Improved Two-Term Backpropagation Error Function with GA Based 
Parameter Tuning for Classification Problem   

PM Dr. Siti Mariyam Hj 
Shamsuddin   1 
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a 
a's 
able 
about 
above 
according 
accordingly 
across 
actually 
after 
afterwards 
again 
against 
ain't 
all 
allow 
allows 
almost 
alone 
along 
already 
also 
although 
always 
am 
among 
amongst 
an 
and 
another 
any 
anybody 
anyhow 
anyone 
anything 
anyway 
anyways 
anywhere 
apart 
appear 
appreciate 
appropriate 
are 
aren't 
around 
as 
aside 
ask 
asking 
associated 

at 
available 
away 
awfully 
b 
be 
became 
because 
become 
becomes 
becoming 
been 
before 
beforehand 
behind 
being 
believe 
below 
beside 
besides 
best 
better 
between 
beyond 
both 
brief 
but 
by 
bahru 
c 
c'mon 
c's 
came 
can 
can't 
cannot 
cant 
cause 
causes 
certain 
certainly 
changes 
clearly 
co 
com 
come 
comes 
concerning 
consequently 
consider 

considering 
contain 
containing 
contains 
corresponding 
could 
couldn't 
course 
currently 
d 
daily 
date 
definitely 
described 
despite 
did 
didn't 
different 
do 
does 
doesn't 
doing 
don't 
done 
down 
downwards 
during 
e 
each 
edu 
e.g. 
eg 
eight 
either 
else 
elsewhere 
enough 
entirely 
especially 
et 
etc 
even 
ever 
every 
everybody 
everyone 
everything 
everywhere 
ex 
exactly 
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example 
except 
f 
far 
few 
fifth 
first 
five 
followed 
following 
follows 
for 
former 
formerly 
forth 
four 
from 
further 
furthermore 
g 
get 
gets 
getting 
given 
gives 
go 
goes 
going 
gone 
got 
gotten 
greetings 
h 
had 
hadn't 
happens 
hardly 
has 
hasn't 
have 
haven't 
having 
he 
he's 
hello 
help 
hence 
her 
here 
here's 

hereafter 
hereby 
herein 
hereupon 
hers 
herself 
hi 
him 
himself 
his 
hither 
hopefully 
how 
howbeit 
however 
i'd 
i'll 
i'm 
i've 
ie 
if 
ignored 
immediate 
in 
inasmuch 
inc 
indeed 
indicate 
indicated 
indicates 
inner 
insofar 
instead 
into 
inward 
is 
isn't 
it 
it'd 
it'll 
it's 
its 
itself 
jabatan 
johor 
just 
keep 
keeps 
kept 
know 

knows 
known 
last 
lately 
later 
latter 
latterly 
least 
less 
lest 
let 
let's 
like 
liked 
likely 
little 
look 
looking 
looks 
ltd 
malaysia 
mainly 
many 
may 
maybe 
me 
mean 
meanwhile 
merely 
might 
more 
moreover 
most 
mostly 
much 
must 
my 
myself 
name 
namely 
nd 
near 
nearly 
necessary 
need 
needs 
neither 
never 
nevertheless 
new 
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next 
nine 
no 
nobody 
non 
none 
noone 
nor 
normally 
not 
nothing 
novel 
now 
nowadays 
nowhere 
obviously 
of 
off 
often 
oh 
ok 
okay 
old 
on 
once 
one 
ones 
only 
onto 
or 
other 
others 
otherwise 
ought 
our 
ours 
ourselves 
out 
outside 
over 
overall 
own 
particular 
particularly 
pc 
per 
perhaps 
placed 
please 
plus 

possible 
presumably 
probably 
provides 
que 
quite 
qv 
rather 
rd 
re 
really 
reasonably 
regarding 
regardless 
regards 
relatively 
respectively 
right 
said 
same 
saw 
say 
saying 
says 
second 
secondly 
see 
seeing 
seem 
seemed 
seeming 
seems 
seen 
self 
selves 
sensible 
sent 
serious 
seriously 
seven 
several 
shall 
she 
should 
shouldn't 
since 
six 
smk 
so 
some 

somebody 
somehow 
someone 
something 
sometime 
sometimes 
somewhat 
somewhere 
soon 
sorry 
specified 
specify 
specifying 
still 
sub 
such 
sup 
sure 
t's 
take 
taken 
tell 
tends 
th 
than 
thank 
thanks 
thanx 
that 
that's 
thats 
the 
their 
theirs 
them 
themselves 
then 
thence 
there 
there's 
thereafter 
thereby 
therefore 
therein 
theres 
thereupon 
these 
they 
they'd 
they'll 
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they're 
they've 
think 
third 
this 
thorough 
thoroughly 
those 
though 
three 
through 
throughout 
thru 
thus 
to 
today 
together 
too 
took 
toward 
towards 
tried 
tries 
truly 
try 
trying 
twice 
two 
un 
under 
unfortunately 
unless 
unlikely 
until 
unto 
up 
upon 
us 
use 
used 
useful 
uses 
using 
usually 
uucp 
value 
various 
very 
via 
viz 

vs 
want 
wants 
was 
wasn't 
way 
we 
we'd 
we'll 
we're 
we've 
welcome 
well 
went 
were 
weren't 
what 
what's 
whatever 
when 
whence 
whenever 
where 
where's 
whereafter 
whereas 
whereby 
wherein 
whereupon 
wherever 
whether 
which 
while 
whither 
who 
who's 
whoever 
whole 
whom 
whose 
why 
will 
willing 
wish 
with 
within 
without 
won't 
wonder 
would 

would 
wouldn't 
yes 
yet 
you 
you'd 
you'll 
you're 
you've 
your 
yours 
yourself 
yourselves 
zero 
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Porter Stemming Rule 
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No Title Supervisor   ExpertSurvey 

1 COMPARATIVE#1 STUDY#1 SMART#1 SCHOOL#2 NORMAL#1 USAGE#1 
ICT#1  Prof. Dr. Rose Alinda Binti Alias   5 

2 
DECISION#1 SUPPORT#1 SYSTEM#1 BASED#1 NEURAL#1 NETWORKS#1 
SELECT#1 CANDIDATES#1 COMPUTER#1 SCIENCE#1 DEGREE#1 
PROGRAM#1  

Prof.Madya Dr.Mohd Noor Bin Md Sap   1 

3 Prototyp#1 Virtual#1 Intellig#1 Map#1 System#1  Prof Dr Ahmad Zaki b Abu Bakar   5 

4 Resourc#1 usag#1 analyz#1 distribut#1 threat#1 simul#1 intrus#1 detect#1 system#1 
hose#1  PM Dr Mohd Azaini b Maarof   2 

5 Active#1 Reaction#1 analyz#1 distribut#1 threat#1 simul#1 parallel#1 Intrusion#1 
Respons#1 system#1 PM Dr Mohd. Aizaini Maarof   2 

6 Knowledg#1 Manag#1 Applicat#1 Support#1 Commun#1 Practic#1 High#1 Level#1 
Learn#1 Institut#1  

Prof. Madya Dr. Shamsul bin 
Shahibuddin, En. Mohammad Nazir bin 
Ahmad @ Sharif 

  5 

7 Applicat#1 Fuzzi#1 Logic#1 Decis#1 Support#1 System#1 Select#1 Subject#1 
Univers#1  PM. Abd. Manan Ahmad   1 

8 CLASS#1 TIMETABLING#1 MODIFIED#1 GENETIC#1 ALGORITHM#1  PROF. MADYA DR. SAFAAI BIN 
DERIS   1 

9 Comput#1 Control#1 System#1  P.M. Dr. Mohd Aizaini Bin Maarof   2 

10 Content#1 Manag#1 Framework#1 Malaysian#1 Govern#1 Web#1 Site#1 PROF. ZAMRI B. MOHAMED   5 

11 Critic#1 Success#1 Factor#1 Manag#1 Dot.Com#1 Compani#1 PM DR HARIHODIN B SELAMAT   5 

12 Denial#1 Servic#1 Attack#1 Detect#1  Prof Dr Abdul Hanan b Abdullah   2 

13 Develop#1 Univers#1 Knowledg#1 Commun#1 Sm#1 Technolog#1 PM Dr. Rose Alinda Alias, Professor Dr. 
Ahmad Zaki bin Abu Bakar   5 

14 Develop#1 Web#1 Base#1 Tourism#2 Informat#1 System#1 Sarawak#1 Board#1  Prof Zamri b Mohamed   5 

15 Develop#1 Prototyp#1 Johor#1 Tourism#1 Informat#1 System#1 Web#1 Environ#1 PM Dr. Mohd. Noor bin Md. Sap   5 

16 Easi#1 Link#1 Informat#1 Centr#1 Administr#1 (Elica)#1 PM Dr Shamsul b Sahibuddin   5 

17 Electron#1 Commerc#1 Comput#1 Shop#1  PM Dr Harihodin b Selamat   7 

18 
Enhanc#1 Custom#1 Relationship#1 Process#1 Southern#1 Sumatra#1 District#1 
Office#1 P.T#1 Telekomunikasi#1 Indonesia#1 Tbk#1 Integrat#1 Multipl#1 
Commun#1 Servic#1  

PM Dr Abdul Samad  b Hj Ismai   4 

19 Informat#1 Commun#1 Technolog#1 Manag#1 Guidelin#1 Small#1 medium#1 
Industri#1 rural#1 area#1  

PROFESSOR ZAMRI BIN 
MOHAMED, Encik Md. Hafiz Bin 
Selamat, Encik Mohd. Zaidi Bin Abdul 
Rozan 

  5 

20 Beam#1 Search#1 Implement#1 Solv#1 Person#1 Comput#1 Configur#1 Problem#1  PM Abdul Manan Ahmad   1 

21 IMPLEMENTATION#1 CONSTRAINT#1 BASED#1 SCHEDULING#1 NURSE#1 
SHIFT#1 CRYSTAL#1 WARD#1 HOSPITAL#1 UNIVERSITY#1 (HUSM)"#1  

Professor Dr. Safaai Bin Deris, PM Safie 
Bin Mat Yatim, PM Abdul Manan   1 

22 Informat#1 Secur#1 Polici#1 Univers#1 Teknolog#1 MARA#1  Prof  Dr Abdul Hanan b Abdullah   2 

23 Integrat#1 Workspac#1 Aware#1 Collabor#1 Case#1 Tool#1  PM DR. Shamsul Sahibuddin, Pn 
Mazleena   4 

24 Islamic#1 E-Organiz#1  PM Dr Shamsul b Sahibuddin   5 

25 Guidelin#1 Form#1 Improve#1 Effectiv#1 Supervis#1 control#1 ICT#1 Project#2 
govern#1 sector#1 Leader#1 Committe#1  Prof Zamri b Mohamed   7 

26 Reengin#1 Magazin#1 Ordere#1 System#2 Replac#1 Structur#1 Analysi#1 Object#1 
Orient#1 Design#1 UML#1  PM Dr Mohd Noor b Md Sap   1 

27 Knowledg#2 Cent#1 Contribut#1 Metric#1 Manag#1  Prof Dr Ahmad Zaki b Abu Bakar, En 
Mohd Zaidi b Abdul Rozan   5 

28 Manag#1 Tutor#1 System#1 Propag#1 Plants-Liv#1 Skill#1 Subject#1  PM Dr Rahman b Ahmad   8 

29 Mobil#1 Protect#1 System#1 Assoc. Prof. Dr. Shamsul Bin 
Sahibuddin   4 

30 Neural#1 Fuzzi#1 Handwritten#1 Digit#1 Recognit#1  PM Dr Siti Mariyam bt Hj Shamsudin   3 

31 Develop#1 Comput#1 Game#1 Engine#1 simul#1 strategi#1 style#1 Prof. Dr. Ahmad Zaki Abu Bakar   5 

32 FSKSM#1 Sharenet#1 Implement#1 creat#1 knowledg#1 share#1 cultur#1  PM Abdul Manan b Ahmad   1 

33 Prototyp#1 Develop#1 Plan#1 Informat#1 System#1 Techniqu#1 Tool#1  PM Dr Rose Alinda Alias   7 

34 Develop#1 Strateg#1 Manag#1 Assessment#1 System#1 IPTS#1 weightag#1 
method#1 :#1 ITP-YPJ#1  

PM DR ROSE ALINDA BT Alias, Pn 
Zeti Darleena   5 

35 Develop#1 Object#1 Orient#1 IKS#1 Administr#1 System#1  PM Dr Rose Alinda bt Alias   5 

36 Implement#1 Infomediari#1 Concept#1 E-Learn#1 ENviron#1  PM Dr Rahman b Ahmad   8 

37 Hypermedia#1 Applicat#1 Model#1 Combin#1 UML#1 HDM#1  Prof Dr Safaai b Deris   1 

38 Recurr#1 Neural#1 Network#1 Predict#1 Hous#1 Price#1  PM Dr Siti Mariyam bt Hj Shamsudin   1 

39 Enhancement#1 MOO#1 Tool#1 Distanc#1 Learn#1  PM Dr. Shamsul Sahibuddin   7 

40 Effectiv#1 Hybrid#1 Bound#1 Volum#1 Seri#1 Strategi#1 Detect#1 Collis#1 N#1 
Rigid#1 Convex#1 Object#1 Interact#1 Virtual#1 Environmen#1  PM Daut Daman   3 

41 Speech#1 Recognit#1 Isolat#1 Word#1 Sampl#1 Support#1 Vector#1 Machin#1  PM DR SITI MARIAM BINTI HJ   3 
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SHAMSUDIN,  EN MD SAH BIN HJ 
SALAM 

42 Grai#1 Scale#1 Fingerprint#1 Image#1 Minutia#1 Detect#1 Ridg#1 Line#1 
Algorithm#1  Prof Dr Ghazali Sulong   3 

43 Neural#1 Network#1 time#1 seri#1 forecast#1  PM Dr Salihin b Ngadiman   1 

44 Implement#1 Knowledg#1 Manag#1 Higher#1 Learn#1 Institut#1 Case#1 studi#1 
FSKSM#1  

PM Dr Shamsul b Sahibuddin, Pn 
Norhawaniah bt Zakaria   5 

45 Rainfal#1 Forecast#1 Neural#1 Network#1 base#1 Massiv#1 Meteorolog#1 Data#1 P.M. Dr. Mohd Noor bin Md. Sap   1 

46 Comparison#1 Classif#1 Result#1 Undiscret#1 Discret#1 Data#1 Back#1 Propag#1 
Rough#1 Set#1  PM Dr Siti Mariyam bt Hj Shamsudin   1 

47 Neural#1 Network#1 Optimiz#1 Genet#1 Algorithm#1 Speech#1 recognit#1  PM Dr Zulkifli Mohamad   3 

48 Enhancement#1 Dick#1 Carei#2 (2001)#1 Model#2 Step#1 develop#1 intellig#1 
learn#1 system#1  PM Noraniah bt Mohd Yassin   8 

49 Informat#1 system#1 Qualiti#1 Servic#1 Assessment#1 :#1 Custom#1 Autom#1 
Support#1 System#1 (CASS)#1 Telekom#1  

PROF MADYA DR ROSE ALINDA 
BTE ALIAS   5 

50 Comparison#1 linear#1 summat#1 techniqu#1 neural#1 network#1 model#1 decis#1 
support#1 student#1 intak#1 Higher#1 Educat#1 Institut#1  PM Dr Mohd Noor b Md Sap   1 

51 Perform#1 Comparison#1 Java#1 RMI#1 CORBA#1 Multi-Level#1 Market#1 
Busi#1 Structur#1  PM. DR. Rose Alinda Alias   5 

52 Collabor#1 environ#1 JPA#1 top#1 manag#1 :#1 Manag#1 Profession#1  PM Dr Shamsul b Sahibuddin   5 

53 Properti#1 Consult#1 Computer#1  Pm Abdul Manan b Ahmad   1 

54 Knowledg#1 Audit#1 Portal#1 Public#1 Higher#1 Educat#1  PM Dr Rose Alinda Alias   5 

55 Small#1 Medium#1 Industri#1 Commun#1 Portal#1  PM Safie Mat Yatim, En Norhashim Abu 
Samah   5 

56 UPSI#1 Educat#1 Commun#1 Portal#1  PM Dr Shamsul Sahibuddin   5 

57 Knowledg#1 Manag#1 System#1 Prof Dr Ahmad Zaki b Abu Bakar   5 

58 Seminar#1 Manag#1 Monitor#1 Portal#1  Prof Dr Safaai b Deris   1 

59 PRODUCT#1 INFORMATION#1 SEARCHING#1 WAP#1  PM Dr Mohd Azaini b Maarof   2 

60 Project#1 Time#1 Manag#1 Commun#1 System#1  Prof Dr Safaai b Deris   1 

61 Protein#1 Secondari#1 Structur#1 Predict#1 Amino#1 Acid#1 Sequenc#1 Neural#1 
Network#1 Classifi#1 Base#1 Dempster#1 Shafer#1 Theori#1  

Prof Dr Safaai b Deris, PM Dr Rosli Md 
Illias   1 

62 Evaluat#1 System#1 E-Learn#1 Portal#1  PM Dr Mohd Noor b Md Sap   5 

63 World#1 Islamic#1 Trade#1 Busi#1 Game#1 (WITNES)#1 Prototyp#1  En Noor Azam b Mohd Sheriff   3 

64 Prototyp#1 System#1 Person#1 Firewal#1 Prof. Dr. Abdul Hanan Bin Abdulah   2 

65 Prototyp#1 Profit#1 Loss#1 Statement#1 Analysi#1 Simul#1 Model#1 Fuzzi#1 
Logic#1  Prof Dr Ahmad Zaki b Abu Bakar   5 

66 Region#1 Base#1 Digit#1 Image#1 Segment#1 Pixel#2 Caste-Mark#1 Discrimin#1  PM Dr Mohd Noor b Md Sap, Pm Dr 
Harihodin b Selamat   1 

67 Tool#1 Design#1 Web#1 Base#1 Support#1 Collabor#1 Learn#1  PM Dr Harihodin b Selamat   5 

68 Trap#1 detach#1 design#1 Simpl#1 Network#1 Manag#1 Protocol#1 (SNMP)#1 
wireless#1 applic#1 protocol#1 (WAP)#1 Client#1 Server#1 System#1  Prof Dr. Shamsul Sahibuddin   4 

69 Intellig#1 Mobil#1 Agent#1 Open#1 Architectur#1 Distribut#1 Applicat#1  Prof Dr Safaai b Deris   1 

70 Decis#1 Support#1 System#1 Neural#1 Network#1 Bank#1 Loan#1 Applicat#1  PM Dr Mohd Noor Md Sap   1 

71 School#1 Disciplin#1 Decis#1 Support#1 System#1  PM Abdul Manan b Ahmad   1 

72 decis#1 support#1 system#2 servic#1 qualiti#1 inform#1 IPTS#1  PM Dr Rose Alinda bt Alias   5 

73 Agenci#1 Manag#1 Smart#1 System#1 PM. SAFIE MAT YATIM, PM. DR. 
SAFAAI DERIS   5 

74 Qualiti#1 Assuranc#1 System#1 Top#1 Empire#1 Sdn#1 Bhd#1  Prof. Madya Dr. Ab. Rahman Ahmad   6 

75 Softwar#1 Standard#1 Control#1 System#1  Prof Dr. Hanan b Abdullah   2 

76 Assembl#1 Line#1 Balanc#1 Workstat#1 System#1 Heurist#1 Method#1 Prof. Madya Dr. Ab Rahman Ahmad, Dr. 
Masine bte Md Tap   3 

77 Student#1 Informat#1 System#1  En Nadzari b Shaari, Prof Dr Safaai b 
Deris   5 

78 student#1 disciplin#1 system#1 school#1 involv#1 merit#1 demerit#1 process#1  PM Abdul Manan b Ahmad   1 

79 Electron#1 Document#1 Deliveri#1 System#1 PM Dr Mohd Noor b Md Sap   5 

80 Data#1 Recoveri#1 System#2 Disc#1 Forens#1 Window#1 Operat#1 PROF MADYA DR. SHAMSUL 
SAHIBUDDIN   5 

81 Intellig#1 tutor#1 system#1 :#1 Possibl#1 Statist#1 Topic#1  PM Noraniah bt Mohd Yassin   8 

82 Faraid#1 knowledg#1 inform#1 technolog#1 Base#1 Web#1  PM Abdul Manan Ahmad   5 

83 Staff#1 Informat#1 Manag#1 System#1 Base#1 Lotu#1 Note#1 :#1 Mydin#1 
Mohammad#1 &#1 Son#1 Sdn#1 Bhd#1  Dr Shamsul b Sahibuddin   5 

84 Knowledg#1 Manag#1 System#1 Solv#1 ISO#1 9000#1  Dr. Azizah Binti Abdul Rahman, En. 
Azlan Bin Mohd Zain   5 

85 Student#1 Perform#1 Assessment#1 System#1  PM Noraniah Mohd.Yassin   8 
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86 Online#1 Vehicl#1 Sale#1 System#1  P.M. Safie Mat Yatim, P.M. Dr. Mohd. 
Noor Md. Sap   5 

87 develop#1 incom#2 statement#1 individu#1 tax#1 calcul#1 on-lin#1 system#1  PM Dr Shamsul b Sahibuddin   5 

88 Custom#1 Profil#1 System#1 TELEKOM#1 BERHAD#1  Prof. Madya Dr. Harihodin Selamat   7 

89 Decis#1 Support#1 System#1 Vehicl#1 Bui#1 Plan#1 Hire#1 Purchas#1  PM Dr Shamsul b Sahibuddin, Pn 
Norhawaniah bt Hj Zakaria   5 

90 APPLICATION#1 ENHANCED#1 GENETIC#1 ALGORITHM#1 CLASS#1 
TIMETABLING#1 PROBLEM#1  Prof. Dr. Safaai bin Deris   1 

91 Effect#1 Malaysian#1 Smart#1 School#1 Public#1 Univers#1 Curriculum#1 
Structur#1 Term#1 Basic#1 Subject#1  PM Abdul Manan b Ahmad   1 

92 RETRACE#1 TRAVELING#2 SALESMAN#2 PROBLEM:#1 EXTENSION#1 
PROBLEM#1  

PROF. MADYA DR. SAFAAI BIN 
DERIS   1 

93 Trademark#1 Match#1 Algorithm#1 base#1 Simplifi#1 Featur#1 Extraction#1  Dr Dzulkifli Mohamad   3 

94 Visual#1 Larg#1 Data#1 Set#1 Triangular#1 DTM#1  PM Daut Daman   3 

95 Busi#1 Advertis#1 Web#1  PM Dr Mohd Azaini b Maarof   2 

96 Workflow#1 Manag#1 System#1 Strata#1 Titl#1 Applicat#1 Feder#1 Land#1 Mine#1 
Depart#1 PM Dr Rose Alinda bt Alias   5 

97 System#1 Analysi#1 Comparison#1 Data#1 Flow#1 Diagram#1 Case#1  PM Dr Rose Alinda Binti Alias   5 

98 Recognit#1 Plate#1 number#1 locat#1 statist#1 method#1  Dr. Dzulkifli Mohamad   3 

99 Transit#1 System#1 Design#1 Function#1 Orient#2 Object#1  Pn Azizah binti Abdul Rahman, Pn Nor 
Hawaniah binti Zakaria   5 

100 Effect#1 Architectur#1 Exact#1 Forecast#1 Backpropag#1  Prof Dr. Safaai bin Deris   1 

101 Electron#1 Commerci#1 System#1 base#1 Letter#1 Credit#1  PM. Dr. Abdul Hannan Abdullah   2 

102 Build#1 Prototyp#1 Data#1 Warehous#1 Case#1 Studi#1 FAMA#1  PM Dr. Abdul Hannan Abdullah   2 

103 Leadership#1 Knowledg#1 Manag#1 Portal:#1 Prototyp#1  Prof. Dr. Ahmad Zaki bin Abu Bakar   5 

104 Explore#1 Notion#1 Servic#3 Assessment#1 Context#1 Informat#1 System#1 
Qualiti#1 (ISSQ)#1 Malaysian#1 Public#1  

Associate Professor Dr. Rose Alinda 
binti Alias   5 

105 Decis#1 Support#1 System#1 Rural#1 Digit#1 Divid#1 Program#1  Prof. Zamri bin Mohamed   7 

106 Develop#1 Web#1 Creation#1 Manag#1 Tool#1  PM Noraniah Mohd Yassin   8 

107 Develop#1 MSCIT#1 Learn#1 Portal#1 Prototyp#1 Case#1 Studi#1 FSKSM#1 
MSc#1 Programm#1  Dr. Azizah binti Abdul Rahman   5 

108 Prototyp#1 Flood#2 Manag#1 Support#1 System#1 Nation#1 Forecast#1 Center#1 
Depar#1 Irrigat#1 Drainag#1  PM Dr. Rose Alinda binti Alias   5 

109 Enhanc#1 Decis#1 Make#1 Process#1 Project#1 Monitor#1 Environ#1 Plan#1 
Develop#1 Divis#1 Ministri#1 Health#1  Professor Zamri bin Mohamed   7 

110 Manag#1 Informat#1 System#1 Equipment#1 Efficienc#1 OEE#1 Analysi#1 Decis#1 
Make#1  PM Dr. Safaai bin Deris   1 

111 Health#1 Promot#1 Portal#1  PM Dr. Shamsul bin Shahibuddin   5 

112 Informat#1 System#1 Plan#1 Secondari#1 School#1 :#1 Case#1 Studi#1 SMK#1 
Mutiara#1 Rini#1 Skudai#1  PM Dr. Rose Alinda binti Alias   7 

113 Person#1 Budget#1 Decis#1 Support#1 System#1  PM Dr. Shamsul bin Sahibuddin   5 

114 Electron#1 Claim#1 Manag#1 System#1  PM Abdul Manan Ahmad   1 

115 Comput#1 Assist#1 Learn#1 -#1 Algebra#1 Fraction#1 EIF#1 APproach#1  PM Dr. Ab. Rahman bin Ahmad   8 

116 Pornograph#1 web#1 page#1 filter#1 system#1 Neural#1 Network#1 Model#1  PM Dr. Siti Mariyam Hj. Shamsuddin   1 

117 Zakat#1 Payment#1 System#1 Jabatan#1 Agama#1 Islam#1  PM Dr. Safaai bin Deris   1 

118 Mobil#1 Wireless#1 Ward#1 Hand#1 System#1 WiH#1  PM Dr Rose Alinda bin Alias   5 

119 Integrat#1 School#1 Manag#1 Informat#1 System#1  PM Safie bin Mat Yatim   8 

120 Smart#1 Kindergarten#1 Manag#1 System#1  Dr. Muhammad Shafie Hj Abdul Latiff   4 

121 Institut#1 Knowledg#1 Share#1 Senior#1 Officer#1 Prison#1 Depart#1  Professor Zamri bin Mohamed   7 

122 Time#1 Tabl#1 Schedul#1 System#1 Primari#1 School#1  PM Abdul Manan Ahmad   1 

123 Activiti#1 Base#1 Cost#1 Softwar#1 Manufactur#1 Industri#1  Dr. Muhammad Shafie Abdul Latiff   4 

124 Knowledg#1 Classif#1 System#1 Sistem#1 Saraan#1  Prof. Dr. Ahmad Zaki bin Abu Bakar   5 

125 Online#1 Data#1 Storag#1 :#1 Drivepod#1  PM Dr. Rose Alindabinti Alias   5 

126 Busi#1 Develop#1 Autom#1 Market#1 Basket#1 Analysi#1  PM Abdul Manan Ahmad   1 

127 Academ#1 Advisor#1 Expert#1 System#1  PM Dr. Safaai bin Deris   1 

128 Teacher#1 Perfom#1 Apraisal#1 System#1  PM Dr. Mohd Noor bin Md. Sap   1 

129 Acquisit#1 Online#1 System#1 PSZ#1  PM Dr. Mohd Noor bin Md. Sap   1 

130 Design#1 implement#1 Doubl#1 Cube#1 Data#1 Model#1  PM Dr. Harihodin bin Selamat, PM Daut 
Daman   7 

131 Text#1 Block#1 Index#1 Informat#1 Retriev#1  PM Safie bin Mat Yatim, PM Sarudin 
bin Bakri   3 
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132 Informat#1 Secur#1 Polici#1 Develop#1 Jabatan#1 Kastam#1 Diraja#1  PM Dr. Mohd. Aizaini Maarof   2 

133 Cluster-Bas#1 Compuond#1 Select#1 Fuzzi#1 Cluster#1  PM Dr. Naomie binti Salim, Dr Ali bin 
Selamat   1 

134 Online#1 Journal#2 Manag#1 System#1 Informat#1 Technolog#1  PM Dr. Naomie bin Salim   1 

135 Analysi#1 Cluster#1 Chemic#1 Data#1 Genet#1 Algorithm#1  PM Dr. Naomie binti Salim, Dr. Ali bin 
Selamat   1 

136 Task#1 Monitor#1 Product#1 Manag#1 System#1 (Case#1 Study:#1 SPMB#1 
Workshop)#1  Dr. Azizah binti Abdul Rahman   5 

137 Decis#1 Support#1 System#1 Assign#1 Machine'#1 Top#1 Empire#1 Industri#1 
Sdn#1 Bhd#1  PM Dr. Abd. Rahman bin Ahmad   6 

138 Web#1 Base#1 Job#1 Applicat#1 System#1  PM Dr. Shamsul Sahibuddin   5 

139 Predict#1 Life#1 Expectanc#1 Patient#1 Hepat#1 Support#1 Vector#1 Machin#1 
Wrapper#1 Method#1  Professor Dr. Safaai bin Deris   1 

140 Rectifi#1 Lot#1 Size#1 Method#1 Forward#1 Wagner#1 Whitin#1 Roll#1 Horizon#1 
Environ#1  PM Dr. Mohd Salihin bin Ngadiman   1 

141 Assessment#1 Perform#1 Candid#1 Find#1 System#1  Prof. Dr. Ahmad Zaki bin Abu Bakar   8 

142 Genet#1 Algorithm#1 Direct#1 Mutat#1 Solv#1 Timet#1 Problem#1  
Assoc. Prof. Dr. Mohd Salihin bin 
Ngadiman, Puan Roselina binti 
Sallehudin 

  1 

143 Human#1 Animat#1 Neural#1 Network#1  PM Dr. Siti Mariyam binti Shamsudin   1 

144 Comparison#1 Effectiv#1 Probabl#1 Model#2 Vector#1 Space#1 Compound#1 
Similar#1 Search#1  

PM Dr. Naomie binti Salim, Puan 
Razana Alwee   1 

145 Measur#1 System#1 Analysi#1 MSA#1 Automot#1 Manufactur#1 Industri#1 GR#1 
&#1 R#1  PM Dr. Mohd Salihin bin Ngadiman   6 

146 Bioactiv#1 Classif#1 Anti#1 AIDS#1 Compound#1 Neural#1 Network#1 Support#1 
Vector#1 Machine:#1 Comparison#1  Assoc. Prof. Dr. Naomie binti Salim   1 

147 Identifi#1 Molecul#1 Bioactiv#1 AIDS#1 :#1 Comparison#1 Rough#1 Set#1 
Neural#1 Network#1  PM Dr. Naomie binti Salim   1 

148 Find#1 Coeffici#2 Fusion#1 Similar#1 Search#1 Neural#1 Network#1 Algorithm#1  PM Dr. Naomie binti Salim   1 

149 Pairwis#1 sequenc#2 align#2 select#1 effect#1 substitut#1 matric#1 gap#1 penalti#1 
paramet#1 dynam#1 Program#1  

PM Dr. Naomie binti Salim, Encik 
Muhamad Razib bin Othman   1 

150 Promot#1 Reflect#1 Practic#1 UTM'#1 Teach#1 Commun#1 User#1 Informat#1 
Technolog#1  

PM Dr. Rose Alinda binti Alias, PM Dr. 
Abdul Samad bin Ismail   5 

151 Prototyp#1 Learn#1 assess#1 applic#1 base#1 Bloom#1 Taxonomi#1 Physic#1 
Form#1 4#1  PM Dr. Mohd Noor bin Md. Sap   8 

152 Knowledg#1 Manag#2 System#1 Rosettanet#1 Implement#1 Johor#1  Prof. Dr. Ahmad Zaki bin Abu Bakar, 
En. Md. Hafiz bin Selamat   5 

153 Rain#1 Distribut#1 Cluster#1 Data#1 Mine#1 :#1 Comparison#1 Associat#1 Rule#1 
Techniqu#1 Statist#1 Method#1  PM Dr. Mohd. Noor bin Md. Sap   1 

154 Studi#1 Entrepreneuri#1 Intention#1 Informat#1 technolog#1 Technopreneur#1  Prof. Dr. Ahmad Zaki bin Abu Bakar   5 

155 Featur#1 Extraction#1 Protein#1 Homolog#1 Detect#1 Hidden#1 Markov#1 Model#1 
Combin#1 Score#1  

Nazar M. Zaki, Safaai Deris , Rosli M. 
Illias   1 

156 Electric#1 Applianc#1 Control#1 System#1 Internet#1 Base#1 Parallel#1 Port#1  Prof Dr. Abdul Hanan bin Abdullah   2 

157 Develop#1 Surfac#1 Reconstruct#1 Ship#1 Hull#1 Design#1  

Fadni Bin Forkan, Mahmoud Ali Ahmed, 
Ang Swee Wen, Siti Mariyam Hj. 
Shamsuddin, Cik Suhaimi Bin Yusof, 
Mohd. Razak Samingan, Yahya Samian 

  3 

158 CSCW#1 System#1 Office#1 Environ#1 Applicat#1  Prof Dr Mohd Aizaini Maarof   2 

159 Fingerprint#1 Classif#1 Approaches:#1 Overview#1  Leong Chung Ern, Dr. Ghazali Sulong   3 

160 Hybrid#1 Trust#1 Manag#1 Model#1 MAS#1 Base#1 Trade#1 Societi#1  Prof Dr. Aizaini Maarof, Krishna K.2   2 

161 Interact#1 Agent#1 (Argu#1 Cooper#1 Agents)#1  Ng Kee Seng, Abdul Hanan Abdullah, 
Abdul Manan Ahmad   2 

162 Technopreneurship#1 Paradigm#1 E-Busi#1  Prof. Dr. Ahmad Zaki Abu Bakar   5 

163 Dimension#1 Terrain#1 Databas#1 Design#1 Manag#1 Develop#1 Virtual#1 
Geograph#1 Informat#1 System#1  

Muhamad Najib Zamri, Safie Mat Yatim, 
Noor Azam Md. Sheriff, Ismail Mat 
Amin 

  3 

164 Model#1 Simul#1 Collis#1 Respons#1 Deform#1 Object#1  Abdullah Bade, Saandilian Devadas, 
Daut Daman, Norhaida Mohd Suaib   3 

165 Steganographi#1 :#1 Hide#1 Secret#1 Data#1 Doubtless#1 Text#1  Prof Dr. Mohd Aizaini Maarof   2 

166 Sound#1 Optimiz#1 Secur#1 System#1 Compress#1 Encryption#1 Techniqu#1  Prof Dr Mohd Aizaini Maarof   2 

167 Proxi#1 System#1 Squid#1  Prof Dr. Abd Hanan bin Abdullah   2 

168 Featur#1 Select#1 Method#1 Genet#1 Algorithm#1 Classif#1 Small#1 High#1 
Dimens#1 Data#1  Mohd Saberi Mohamad, Safaai Deris   1 

169 Crowd#1 Simul#1 Interact#1 Virtual#1 Environ#1  Muhammad Shafie Abdul Latif, 
Setyawan Widyarto   4 

170 Solv#1 Time#1 Gap#1 Problem#1 Optimiz#1 Detect#1 Step#1 Stone#1 Algorithm#1  Prof Dr Mohd Aizaini bin Maarof, Mohd 
Nizam Omar, Anazida Zainal   2 

171 Individu#1 Learn#2 Materi#1 Adaptiv#1 Hypermedia#1 System#1 Base#1 Person#1 
Factor#1 Mbti#1 Fuzzi#1 Logic#1 Techniqu#1  

Norreen Binti Haron , Naomie Binti 
Salim   8 
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172 Fuzzi#1 Decis#1 Tree#1 Data#1 Mine#1 Time#1 Seri#1 Stock#1 Market#1 
Databas#1  

Mohd Noor Md Sap, Rashid Hafeez 
Khokhar   1 

173 Multipl#1 Perspect#1 Review#1 Knowledg#1 Manag#1 Literatur#1  Dr Rose Alinda Alias   5 

174 3D#1 Object#1 Reconstruct#1 Represent#1 Neural#1 Network#1  Lim Wen Peng, Siti Mariyam 
Shamsuddin   1 

175 Develop#1 Featur#1 Extraction#1 Pattern#1 Match#1 Techniqu#1 2D#1 Image#1 
Trademark#1 Logo#1 Recognit#1  Assoc. Prof. Dr. Dzulkifli bin Mohamad   3 

176 Computer#1 Handwritten#1 Text#1 Recognit#1 System#1  Prof. Dr. Ghazali Sulong   3 

177 Computer#1 Isolat#1 Hand#1 print#1 Charact#1 Recognit#1 System#1  Prof. Dr. Ghazali bin Sulong   3 

178 Secur#1 Transact#1 Framework#1 Client-Serv#1 Base#1 E-Commerc#1  Prof. Dr. Abd. Hanan bin Abdullah   2 

179 Malai#1 Spell#1 Checker#1 &#3 End#1 Line#1 Word#1 Hyphen#1 Databas#1 
Encyclopedia#1 Scienc#1 Technolog#1 Project#1  Assoc. Prof. Dr. Naomie binti Salim   1 

180 Classif#1 Index#1 2D#1 Medic#1 Image#1 Content#1 Base#1 Retriev#1 System#1 
Digit#1 X#1 Rai#1 Film#1  

Assoc. Prof. Dr. Mohd. Noor bin Md. 
Sap   1 

181 Computer#1 Manpow#1 Plan#1 System#1 Medic#1 Doctor#1 &amp;#1 Specialist#1  Prof. Dr. Ghazali bin Sulong   3 

182 Databas#1 Secur#1 Reliabl#1 Analysi#1 Real-tim#1 Wireless#1 Update#1  Assoc. Prof. Dr. Mohd. Noor bin Md. 
Sap   1 

183 Develop#1 Model#1 Servic#1 Qualiti#1 inform#1 System#1  Prof. Dr. Rose Alinda binti Alias   5 

184 Develop#1 Collabor#1 Environ#1 Privaci#1 Confer#1 Control#1 3D#1 Protein#1 
Structur#1 Visual#1  Assoc. Prof. Safie bin Mat Yatim   3 

185 Informat#1 System#1 Plan#1  Prof. Dr. Rose Alinda binti Alias   7 

186 Malaysian#1 Technopreneurship#1 Model#1 Decis#1 Support#1 Tool#1 Kit#1  Prof. Dr. Ahmad Zaki bin Abu Bakar   5 

187 Network#1 Design#1 Secur#1 (NDS)#1  Prof. Dr. Abd. Hanan bin Abdullah   2 

188 Neural#1 Fuzzi#1 Ep#1 Applicat#1 Schedul#1 Plan#1 Forecast#1  Prof. Dr. Safaai bin Deris   1 

189 Spatial#1 Non-Spati#1 Databas#1 Enhancement#1 Hydrogil#1 Informat#1 System#1 
(HIS)#1  Assoc. Prof. Daut bin Daman   3 

190 Altern#1 Neg#1 Select#1 Framework#1 Artifici#1 Immune#1 System#1 Classif#1 
Problem#1  

Associate Professor Dr. Siti Mariyam 
Shamsuddin   1 

191 Reconstruct#1 Sketch#1 Primit#1 Object#1  Dr. Habibollah bin Haron   3 

192 Enhanc#1 Parallel#1 Thin#1 Algorithm#1 Handwritten#1 Charact#1 Recognit#1 
Neural#1 Network#1  Dr Habibollah bin Haron   3 

193 Outlier#1 Detect#1 Breast#1 Cancer#1 K-Mean#1 Isodata#1  PM Dr Mohd Noor Md Sap   1 

194 Analysi#1 Hierarch#1 Cluster#2 Neural#1 Network#1 Suggest#1 Supervisor#1 
Examin#1 Thesi#1  PM Dr Naomie Salim   1 

195 Analysi#1 Hierarch#1 Fuzzi#1 Cluster#1 Suggest#1 Supervisor#1 Examin#1 Thesi#1 
Titl#1  PM Dr. Naomie Salim   1 

196 Develop#1 Student#1 Perform#1 Evaluat#1 System#1  Dr. Azizah Abd. Rahman   8 

197 Develop#1 Custom#1 Relationship#1 Manag#1 System#1 Support#1 Tool#1 
Improve#1 Servic#1 Perpustakaan#1 Sultanah#1 Zanariah#1  Dr. Azizah Abdul Rahman   5 

198 K#1 Portal#1 Zakat#1  Dr Othman Ibrahim   7 

199 Redesign#1 project#1 monitor#1 process:#1 Case#1 studi#1 Pejabat#1 Harta#1 
Bina#1 UTM#1  

Dr. Azizah Abd. Rahman. Associate 
Prof. Dr. Rose Alinda Alias   5 

200 Comparison#1 Retriev#1 Scheme#2 Base#1 Titl#1 Abstract#1 Bibliographi#1 
Structur#1 Thesi#1 Weight#1  PM Dr Naomie Salim   1 

201 Optimiz#1 Process#1 Numer#1 Control#1 Code#1 Manufactur#1 Endmill#1 Tool#1 
Endpoint#1 Size#1 20mm#1  Dr Habibollah bin Haron   6 

202 Optimiz#1 Numer#1 Control#1 Code#1 Manufactur#1 Ball#1 End#1 25mm#1 
Tool#1  Dr Habibollah bin Haron   6 

203 Algorithm#1 Enhancement#1 Host#1 Base#1 Intrusion#1 Detect#1 System#1 
Discrimin#1 Analysi#1  Prof Dr Abdul Hanan bin Abdullah   2 

204 Develop#1 Graphic#1 User#1 Interfac#1 GUI#1 Firewal#1 Monitor#1 System#1  Prof Dr Abdul Hanan bin Abdullah   2 

205 Steganographi#1 Cryptographi#1 Apply#1 Hide#1 X-Rai#1 Image#1  Prof Dr Aizaini Maarof   2 

206 Improve#1 Two-Term#1 Backpropag#1 Error#1 Function#1 GA#1 Base#1 
Paramet#1 Tune#1 Classif#1 Problem#1  PM Dr. Siti Mariyam Hj Shamsuddin   1 
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Supervisor Code 
 
 

 CODE NAME OF SUPERVISOR 

1 Rose Alinda Alias 

2 Mohd Noor Md Sap 

3 Ahmad Zaki Abu Bakar 

4 Mohd Aizaini Maarof 

5 Shamsul Shahibuddin 

6 Abd Manan Ahmad 

7 Safaai Deris 

8 Zamri Mohamed 

9 Harihodin Selamat 

10 Abd Hanan Abdullah 

11 Abd Samad Hj Ismail 

12 Safie Mat Yatim 

13 Abd Rahman Ahmad 

14 Siti Mariyam Hj Shamsuddin 

15 Daut Daman 

16 Ghazali Sulong 

17 Mohd Salihin Ngadiman 

18 Zulkifli Mohamad 

19 Noraniah Mohd Yassin 

20 Azizah Abdul Rahman 

21 Muhammad Shafie Hj Abd Latiff 

22 Naomie Salim 

23 Ali Selamat 

24 Habibollah Haron 

25 Othman Ibrahim 
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Expert Code 
 

CODE STREAMLINE 

1 Data Mining (mdnoor, naomie, safaai, manan, mariyam, noraniah, ali, salihin ) 

2 Security (hanan, aizaini, kamarul, norbik, zailani) 

3 Graphics (mariyam, daut, ghazali, zulkifli, habib, sarudin, safieY, shafieL) 

4 Network & Collaborative (samad, shamsul, shafieL, kamarul, asri) 

5 Knowledge Management (rose, zaki, shamsul, noraniah, azizah, othman, zamri) 

6 Manufacturing (ab, salihin, habib) 

7 ISP (rose, wardah, azizah, afida, othman, harihodin, zamri) 

8 E-Learning (norazah, ab, naomie, safieY, noraniah, mdnoor) 
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Expert Code 
 

CODE STREAMLINE 

1 Data Mining (mdnoor, naomie, safaai, manan, mariyam, noraniah, ali, salihin ) 

2 Security (hanan, aizaini, kamarul, norbik, zailani) 

3 Graphics (mariyam, daut, ghazali, zulkifli, habib, sarudin, safieY, shafieL) 

4 Network & Collaborative (samad, shamsul, shafieL, kamarul, asri) 

5 Knowledge Management (rose, zaki, shamsul, noraniah, azizah, othman, zamri) 

6 Manufacturing (ab, salihin, habib) 

7 ISP (rose, wardah, azizah, afida, othman, harihodin, zamri) 

8 E-Learning (norazah, ab, naomie, safieY, noraniah, mdnoor) 
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Table 4.1 Ward’s cluster 
 

Cluster # Document # 

1 1 22 168 4 89 13 51 63 56 87 95 14 15 111 57 73 88 152 83                       

2                               2 190 50 61 174 157 41 135 149 195 142 94 163 172 30 100 8 164 42 66 180 93 175 70 188 170 206 98 182 148

3                               3 27 103 134 58 121 6 138 84 9 167 28 37 29 60 141 64 165 55 59 25 120 78 127 140 86 74 110 137 145

                                                        122 158 181 

5 5 130 131 178 19 20 184 39 196 173 23                                       

7                               7 44 204 113 76 166 11 12 68 107 118 96 108 136 154 197 10 91 171 198 69 144 128 162 186 21 160 161 169 34

                                35 48 150 52 40 79 49 104 67 62 116 115 151 119 85 65 106 183 125 156

16 16 82 179 109 187 18 102 205 17 36 32                                       

24 24 31 54 72 71 77 117 124                                             

26 26 199 185 129 101 191 105 192 114 176 177 123 201 202                                 

33 33 53 112 132                                                     

38 38 193 194 45 147 46 81 126 143                                           

43 43 139 146 153 90 203 189                                               

47 47 97 159                                                       

75 75 80                                                         

92 92                                                           

99 99 133 155 200                                                     
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 Table 4.2          Ward' result - Sample 50:50 

    

 #Doc ExpertSurvey Predict (W) 

 1 5 5 

 2 1 1 

 3 5 1 

 4 2 5 

 5 2 3 

 6 5 1 

 7 1 5 

 8 1 1 

 9 2 1 

 10 5 5 

 11 5 5 

 12 2 5 

 13 5 5 

 14 5 5 

 15 5 5 

 16 5 2 

 17 7 2 

 18 4 2 

 19 5 3 

 20 1 3 

 21 1 5 

 22 2 5 

 23 4 3 

 24 5 5 

 25 7 1 

 26 1 3 

 27 5 1 

 28 8 1 

 29 4 1 

 30 3 1 

 31 5 5 

 32 1 2 

 33 7 7 

 34 5 5 

 35 5 5 

 36 8 2 
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 37 1 1 

 38 1 1 

 39 7 3 

 40 3 5 

 41 3 1 

 42 3 1 

 43 1 1 

 44 5 5 

 45 1 1 

 46 1 1 

 47 3 3 

 48 8 5 

 49 5 5 

 50 1 1 

 51 5 5 

 52 5 5 

 53 1 7 

 54 5 5 

 55 5 1 

 56 5 5 

 57 5 5 

 58 1 1 

 59 2 1 

 60 1 1 

 61 1 1 

 62 5 5 

 63 3 5 

 64 2 1 

 65 5 5 

 66 1 1 

 67 5 5 

 68 4 5 

 69 1 5 

 70 1 1 

 71 1 1 

 72 5 5 

 73 5 5 

 74 6 1 

 75 2 ? 
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 76 3 5 

 77 5 5 

 78 1 1 

 79 5 5 

 80 5 ? 

 81 8 1 

 82 5 2 

 83 5 5 

 84 5 1 

 85 8 5 

 86 5 1 

 87 5 5 

 88 7 5 

 89 5 5 

 90 1 1 

 91 1 5 

 92 1 ? 

 93 3 1 

 94 3 1 

 95 2 5 

 96 5 5 

 97 5 3 

 98 3 1 

 99 5 1 

 100 1 1 

 101 2 3 

 102 2 2 

 103 5 1 

   45.63% 
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Table 4.3 Ward's Result - Sample 

60:40  

    

 #Doc ExpertSurvey Predict(W) 

 1 5 5 

 2 1 1 

 3 5 1 

 4 2 5 

 5 2 3 

 6 5 1 

 7 1 5 

 8 1 1 

 9 2 1 

 10 5 5 

 11 5 5 

 12 2 5 

 13 5 5 

 14 5 5 

 15 5 5 

 16 5 2 

 17 7 2 

 18 4 2 

 19 5 3 

 20 1 3 

 21 1 5 

 22 2 5 

 23 4 3 

 24 5 5 

 25 7 1 

 26 1 3 

 27 5 1 

 28 8 1 

 29 4 1 

 30 3 1 

 31 5 5 

 32 1 2 

 33 7 7 

 34 5 5 

 35 5 5 

 36 8 2 
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 37 1 1 

 38 1 1 

 39 7 3 

 40 3 5 

 41 3 1 

 42 3 1 

 43 1 1 

 44 5 5 

 45 1 1 

 46 1 1 

 47 3 3 

 48 8 5 

 49 5 5 

 50 1 1 

 51 5 5 

 52 5 5 

 53 1 7 

 54 5 5 

 55 5 1 

 56 5 5 

 57 5 5 

 58 1 1 

 59 2 1 

 60 1 1 

 61 1 1 

 62 5 5 

 63 3 5 

 64 2 1 

 65 5 5 

 66 1 1 

 67 5 5 

 68 4 5 

 69 1 5 

 70 1 1 

 71 1 1 

 72 5 5 

 73 5 5 

 74 6 1 

 75 2 ? 



 97

 76 3 5 

 77 5 5 

 78 1 1 

 79 5 5 

 80 5 ? 

 81 8 1 

 82 5 2 

   48.78% 
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Table 4.4    Ward's Result - Sample 75:25 
    

 #Doc ExpertSurvey Predict (W) 

 20 1 3 

 21 1 5 

 22 2 5 

 23 4 3 

 24 5 1 

 25 7 5 

 26 1 3 

 27 5 5 

 28 8 5 

 29 4 5 

 30 3 1 

 31 5 1 

 32 1 3 

 33 7 2 

 34 5 5 

 35 5 5 

 36 8 1 

 37 1 5 

 38 1 1 

 39 7 3 

 40 3 5 

 41 3 1 

 42 3 1 

 43 1 1 

 44 5 5 

 45 1 1 

 46 1 1 

 47 3 3 

 48 8 5 

 49 5 5 

 50 1 1 

 51 5 5 

 52 5 5 

 53 1 7 

 54 5 1 

 55 5 5 

 56 5 5 



 99

 57 5 5 

 58 1 1 

 59 2 1 

 60 1 1 

 61 1 1 

 62 5 5 

 63 3 5 

 64 2 5 

 65 5 5 

 66 1 1 

 67 5 5 

 68 4 5 

 69 1 5 

 70 1 1 

   45.10% 
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Table 4.5 Ward's Result - Sample 80:20 

     

 #Doc ExpertSurvey Predict(W)  

 1 5 5  

 2 1 1  

 3 5 1  

 4 2 5  

 5 2 3  

 6 5 1  

 7 1 5  

 8 1 1  

 9 2 1  

 10 5 5  

 11 5 5  

 12 2 5  

 13 5 5  

 14 5 5  

 15 5 5  

 16 5 2  

 17 7 2  

 18 4 2  

 19 5 3  

 20 1 3  

 21 1 5  

 22 2 5  

 23 4 3  

 24 5 5  

 25 7 1  

 26 1 3  

 27 5 1  

 28 8 1  

 29 4 1  

 30 3 1  

 31 5 5  

 32 1 2  

 33 7 7  

 34 5 5  

 35 5 5  

 36 8 2  
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 37 1 1  

 38 1 1  

 39 7 3  

 40 3 5  

 41 3 1  

   36.59%  
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Table 4.6 Ward's Result - Sample 95:5 

     

 #Doc ExpertSurvey Predict(W)  

 148 1 1  

 149 1 1  

 150 5 5  

 151 8 5  

 152 5 5  

 153 1 1  

 154 5 5  

 155 1 1  

 156 2 5  

 157 3 1  

   70.00%  
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Table 4.8          Kohonen Result - Sample 

50:50 

    

 #Doc ExpertSurvey Predict (K) 

 1 5 5 

 2 1 7 

 3 5 5 

 4 2 1 

 5 2 5 

 6 5 5 

 7 1 5 

 8 1 5 

 9 2 1 

 10 5 6 

 11 5 5 

 12 2 7 

 13 5 5 

 14 5 5 

 15 5 3 

 16 5 5 

 17 7 5 

 18 4 1 

 19 5 5 

 20 1 5 

 21 1 1 

 22 2 5 

 23 4 5 

 24 5 5 

 25 7 7 

 26 1 5 

 27 5 5 

 28 8 3 

 29 4 1 

 30 3 7 

 31 5 5 

 32 1 5 

 33 7 7 

 34 5 5 

 35 5 5 

 36 8 5 
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 37 1 5 

 38 1 5 

 39 7 7 

 40 3 7 

 41 3 7 

 42 3 5 

 43 1 5 

 44 5 5 

 45 1 1 

 46 1 7 

 47 3 7 

 48 8 1 

 49 5 5 

 50 1 1 

 51 5 5 

 52 5 5 

 53 1 7 

 54 5 5 

 55 5 5 

 56 5 5 

 57 5 5 

 58 1 5 

 59 2 5 

 60 1 7 

 61 1 5 

 62 5 5 

 63 3 1 

 64 2 5 

 65 5 5 

 66 1 7 

 67 5 5 

 68 4 0 

 69 1 5 

 70 1 7 

 71 1 1 

 72 5 5 

 73 5 5 

 74 6 5 

 75 2 0 
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 76 3 5 

 77 5 5 

 78 1 7 

 79 5 5 

 80 5 5 

 81 8 5 

 82 5 3 

 83 5 5 

 84 5 5 

 85 8 0 

 86 5 5 

 87 5 5 

 88 7 1 

 89 5 5 

 90 1 5 

 91 1 7 

 92 1 7 

 93 3 5 

 94 3 7 

 95 2 5 

 96 5 5 

 97 5 5 

 98 3 1 

 99 5 5 

 100 1 5 

 101 2 5 

 102 2 7 

 103 5 5 

   43.69% 
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Table 4.9 Kohonen Result - Sample 60:40  

     

 #Doc ExpertSurvey Predict(K)  

 1 5 1  

 2 1 1  

 3 5 5  

 4 2 5  

 5 2 5  

 6 5 5  

 7 1 1  

 8 1 1  

 9 2 5  

 10 5 8  

 11 5 1  

 12 2 5  

 13 5 5  

 14 5 3  

 15 5 1  

 16 5 8  

 17 7 7  

 18 4 1  

 19 5 5  

 20 1 1  

 21 1 5  

 22 2 8  

 23 4 1  

 24 5 5  

 25 7 1  

 26 1 1  

 27 5 5  

 28 8 3  

 29 4 1  

 30 3 5  

 31 5 1  

 32 1 1  

 33 7 7  

 34 5 1  

 35 5 1  

 36 8 8  
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 37 1 6  

 38 1 5  

 39 7 7  

 40 3 3  

 41 3 5  

 42 3 3  

 43 1 1  

 44 5 5  

 45 1 5  

 46 1 5  

 47 3 3  

 48 8 8  

 49 5 5  

 50 1 5  

 51 5 5  

 52 5 1  

 53 1 7  

 54 5 5  

 55 5 1  

 56 5 5  

 57 5 5  

 58 1 3  

 59 2 3  

 60 1 5  

 61 1 1  

 62 5 5  

 63 3 3  

 64 2 7  

 65 5 5  

 66 1 5  

 67 5 5  

 68 4 3  

 69 1 1  

 70 1 5  

 71 1 5  

 72 5 5  

 73 5 8  

 74 6 7  

 75 2 8  
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 76 3 1  

 77 5 1  

 78 1 7  

 79 5 5  

 80 5 8  

 81 8 7  

 82 5 1  

   42.68%  
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Table 4.10    Kohonen Result - Sample 75:25 

    

 #Doc ExpertSurvey Predict (K) 

 20 1 1 

 21 1 2 

 22 2 1 

 23 4 4 

 24 5 5 

 25 7 5 

 26 1 5 

 27 5 5 

 28 8 5 

 29 4 2 

 30 3 5 

 31 5 5 

 32 1 2 

 33 7 7 

 34 5 5 

 35 5 2 

 36 8 3 

 37 1 5 

 38 1 7 

 39 7 0 

 40 3 2 

 41 3 5 

 42 3 2 

 43 1 0 

 44 5 4 

 45 1 5 

 46 1 6 

 47 3 4 

 48 8 1 

 49 5 5 

 50 1 2 

 51 5 5 

 52 5 5 

 53 1 1 

 54 5 5 

 55 5 5 
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 56 5 1 

 57 5 5 

 58 1 2 

 59 2 7 

 60 1 5 

 61 1 1 

 62 5 1 

 63 3 5 

 64 2 5 

 65 5 5 

 66 1 7 

 67 5 5 

 68 4 5 

 69 1 1 

 70 1 6 

   35.29% 
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Table 4.11 Kohonen Result - Sample 80:20 

     

 #Doc ExpertSurvey Predict(K)  

 1 5 5  

 2 1 5  

 3 5 5  

 4 2 5  

 5 2 5  

 6 5 1  

 7 1 1  

 8 1 7  

 9 2 2  

 10 5 5  

 11 5 5  

 12 2 3  

 13 5 2  

 14 5 2  

 15 5 5  

 16 5 5  

 17 7 1  

 18 4 1  

 19 5 1  

 20 1 1  

 21 1 1  

 22 2 5  

 23 4 1  

 24 5 2  

 25 7 1  

 26 1 1  

 27 5 5  

 28 8 8  

 29 4 2  

 30 3 1  

 31 5 5  

 32 1 1  

 33 7 2  

 34 5 5  

 35 5 5  
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 36 8 3  

 37 1 1  

 38 1 1  

 39 7 3  

 40 3 5  

 41 3 5  

   46.34%  
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Table 4.6 Kohonen Result - Sample 95:5 

     

 #Doc ExpertSurvey Predict(K)  

 148 1 1  

 149 1 7  

 150 5 1  

 151 8 8  

 152 5 1  

 153 1 1  

 154 5 5  

 155 1 1  

 156 2 2  

 157 3 2  

   50.00%  

     
 
 
 
 
 
 
 
 
 
 




