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Understanding polar firn densification is crucial for reconstructing the age of greenhouse gas concentrations
extracted from ice cores, and for the interpretation of air in ice as a dating tool or as a climate proxy. Firn den-
sification is generally modeled as a steady burial and sintering process of defined layers, where the structure
of the layering is maintained along the whole firn and ice column. However, available high-resolution density
data, as well as firn air samples, question this picture and point to a lack of understanding of firn densifica-
tion. Based on analysis of high-resolution density and calcium concentration records from Antarctic and
Greenland ice cores, we show for the first time that also impurities may have a significant impact on the den-
sification. Analysis of firn cores shows a correlation between density and the calcium ion (Ca++) concentra-
tion, and this correlation increases with depth. The existence of this relationship is independent of the local
climatic conditions at the core sites analyzed. The strong positive correlation between the density and the
logarithm of Ca++ concentration indicates that impurities induce softening and lead to faster densification
over a wide range of concentrations. In one core, the impurity effect manifests itself so strongly that the den-
sity develops a seasonal cycle closely following the seasonal cycle of Ca++. Our results clearly show that the
structure of the firn layering changes with depth and suggest that the increased variability in density ob-
served in deep firn, recently described as a universal feature of polar firn, may arise from the influence of
Ca++ and/or other impurities. The impurity effect is likely to have direct implications on our understanding
of glacial firn densification and on glacial gas age estimates.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

As snow accumulates on the surface of the large ice sheets in
Greenland and Antarctica, the firn below compacts to ice, a process
fundamental to glaciology and to the reconstruction of paleo-
climate. When the density of firn increases roughly by a factor of
three from ~300 kg/m3 at the surface to more than 820 kg/m3, all
pores in the firn are closed off and air, younger than the surrounding
ice, is entrapped in air bubbles. This typically happens at depths be-
tween 50 and 120 m, at which the ice is already a few hundred to a
few thousand years old (Schwander et al., 1997).

Knowledge of the age difference between ice and air is necessary
to reconstruct the age of the air extracted from ice cores, with climate
implications including the relative lead or lag between temperature
and greenhouse gas concentrations during climate transitions.
Recently, it has been shown that the entrapped air in the ice is also
related to local orbital insolation variations (Bender, 2002; Raynaud
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et al., 2007). The orbital signal in the ice would permit dating ice
core records independently from other methods (Kawamura, 2009;
Kawamura et al., 2007) if the complete chain of processes involved
in the signal formation at the surface, in the firn column and at the
firn-ice transition was understood. Presently, it is believed that local
insolation affects the microstructure of the firn at the surface, which
is unaltered during the densification and recrystallization process in
the firn. However, fundamental processes controlling densification
and therefore air entrapment in ice are not fully understood.

Several firn models attempt to predict firn densification and are
based on the concept of isothermal hot pressure sintering. The
models consider the overburden pressure as driving force (Kameda
et al., 1994), the microscopic approach for the geometrical theory of
pressure sintering of mono-sized spherical powders (Arnaud et al.,
2000; Kameda et al., 1994) or couple the firn densification with
heat diffusion (Goujon et al., 2003). Critical densities, at which the
main densification process changes from grain boundary sliding to
plastic deformation (Arnaud et al., 2000; Salamantin et al., 2006)
are included in order to take care of the changing densification rate
with depth. Main focus of the model studies is the prediction of air
close-off within the firn column and thus detection of the age of the
entrapped air (Arnaud et al., 2000; Goujon et al., 2003).

However, for several ice cores located in very low accumulation
rate areas (such as Dome C or Vostok), a systematic mismatch
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Table 1
Locations and references of the analyzed and presented firn cores.

Firn
core

Lat ° Lon ° Elevation
m a.s.l.

Ann. mean Temp.

(°C)

Ann.
mean
Accm.
rate
m w.e.

Reference

B20 78.833 −36.500 2147 0.099 Wilhelms,
1996;
Bigler et
al., 2002

B29 76.0039 −43.4920 2874 −31.6 0.153 Wilhelms,
1996

B31 −75.3489 −3.2582 2669 −44.3 0.063 Oerter et
al., 2000;
Sommer et
al., 2000

B32 −75.0014 0.0042 2882 −44.5 0.061 Oerter et
al., 2000;
Sommer et
al., 2000

B33 −75.1002 6.2991 3160 −46.1 0.044 Oerter et
al., 2000;
Sommer et
al., 2000
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between the observed nitrogen isotopic composition during glacial
periods and the predictions from firn densification models was
found (Landais et al., 2006; Sowas et al., 1992). For example, the com-
parison of two EPICA gas records from Dome C and Dronning Maud
Land (Loulergue et al., 2007) revealed, that the firn densification
models overestimate the age difference between the ice and the gas
phase at Dome C during the last glacial period. Since all firnification
models are tuned to describe modern conditions encountered in
polar firn, this essentially represents a modern analog problem.

Current firn models do not account for small scale variability with-
in the firn column and the few existing high-resolution measure-
ments question the current conception of firn densification (i.e.
Freitag et al., 2004; Gerland et al., 1999; Hörhold et al., 2011). Firn
is extremely stratified with layer thicknesses of less than 10 cm. Den-
sity, hardness, grain size and grain shape, for example, vary strongly
between layers. This layering induces a distinct variability in the den-
sity profile, which is not captured by the common density measure-
ments on a meter resolution or by current firnification models.

High-resolution measurements of firn density by Gamma- or
X-ray absorption have been performed but are still scarce (Freitag et
al., 2004; Gerland et al., 1999; Hori et al., 1999).

In a recent study Hörhold et al. (2011) compiled high-resolution
density records of 17 firn cores from Greenland and Antarctica, nearly
all reaching the firn-ice transition. The observed mean density pro-
files agree well with the density profiles predicted by the firn densifi-
cation model most commonly used in the literature (Herron and
Langway, 1980). However, the analysis of the density variability
revealed a paradoxical behavior (Freitag et al., 2004; Gerland et al.,
1999; Hörhold et al., 2011). The variability in density first decreases
with depth and time, but unlike in a homogeneous medium, it in-
creases again in the middle of the firn column.

Freitag et al. (2004) explained this feature as “cross-over” behav-
ior, where initially low-density layers reach similar density values
as initially high-density layers, the former compacting faster than
the latter. This view is supported by findings of Gerland et al.
(1999) and Fujita et al. (2009). However, a well-tested explanation,
supported by detailed data comparison of density of layers from the
near surface to layers from greater depths, is still lacking.

Firn cores with sufficient annual snow accumulation show a sea-
sonal cycle in density (Bigler et al., 2002). The seasonal temperature
cycle is thought to be responsible for the creation of density variabil-
ity (Alley, 1988; Gow, 1965; Zwally and Li, 2002). Firn models usually
predict that seasonal variations in density decrease and fade out
slowly with depth in the later stage of densification (Zwally and Li,
2002). This behavior, however, is opposite to the observations
(Hörhold et al., 2011), which show an increase in density variability
with depth. This observation leads to the hypothesis of this study
that densification might be influenced by impurities. As many impu-
rity species show seasonal cycles (Bigler et al., 2002; Rasmussen et
al., 2006; Sommer et al., 2000; Svensson et al., 2005) an influence
on the densification could explain the occurrence of (seasonal) vary-
ing density layers at greater depth.

In this paper we report for the first time a close correlation be-
tween density and impurities that evolves with depth. From the im-
purity data set available we have chosen the calcium ion (Ca++)
because it is available for the largest number of cores and shows a
well described seasonality in Greenland and Antarctica. Note, howev-
er, that also other impurities may have an influence on firn densifica-
tion. To demonstrate the active role impurities play in the evolution
of density in polar firn, we first analyze density and Ca++ for a
Greenland core in which the seasonal cycles of both parameters are
most distinct. Finally we analyze all available high-resolution density
and Ca++ records to provide additional evidence, independent of
the presence of a seasonal cycle, that impurities affect densification
with increasing depth and time, and modify the initial structure of
the layering in firn.
2. Methods and data

The density data of the 5 firn cores analyzed in this study are de-
scribed in Hörhold et al. (2011). The original density data, measured
by gamma-absorption at 1–5 mm resolution, were homogenized by
manually removing core breaks and linearly interpolating over the
resulting gaps. The depth scale was converted into water equivalent
depth (w.e.) and averaged to 5 mm w.e. resolution. Details of the
gamma-absorption method are given in Wilhelms (1996, 2000). In-
formation about the position of the coring sites and their mean annu-
al temperature and accumulation rates are summarized in Table 1.

High-resolution impurity data measured by Continuous Flow
Analysis (CFA) were available for the cores B20 (Bigler et al., 2002)
and B29 (Sommer, 1996) from Greenland and the cores B31, B32
und B33 (Sommer et al., 2000) from Antarctica. As only the Ca++
data were available for all five cores, we focused the study on this
species. From these 5 CFA records, B29 exhibits the most persistent
seasonal cycle in Ca++ with a peak generally centered in spring
time in Greenland (Bigler et al., 2002; Rasmussen et al., 2006). In Ant-
arctica other major impurity species appear to be in phase with
Ca++ (Sommer et al., 2000).

The Ca++ data were homogenized similarly to the density data.
Finally, the data were averaged to a resolution of 5 mm w.e., and a
small number of outliers (b1%) were removed from the Ca++ data-
sets by visually investigating the histogram. Low frequency variations
in the density records were removed using a finite impulse response
high pass filter (Bloomfeld, 1976) (cut-off frequency 0.5 m w.e.). Be-
cause impurity concentrations are always positive but show an asym-
metry towards large values (e.g. Bigler et al., 2010), we use the
logarithm of the Ca++ concentration in all cases.

As a first step in the statistical analysis, the depth dependence of
the density variability and that of the Ca++/density relationship
were analyzed on a 5 m w.e. running window. For this analysis, the
standard deviation and Pearson correlation were used as measures
of variability and of the Ca++−density relationship, respectively.
As the density and Ca++ analysis were performed on different mea-
surement devices, a slight depth uncertainty cannot be excluded. This
was accounted for by calculating the maximum cross correlation in a
20 mm w.e. window instead of a single correlation estimate. For each
analyzed firn core, the significance limits of the running correlation,
including the depth uncertainty were determined by a Monte-Carlo
experiment. In the Monte-Carlo experiment, the chemistry data



Fig. 1. Detailed density profiles (black line) over two meter-intervals and the logarith-
mized Ca++ ion concentration (red line, in ng/g) of the B29 firn core at the surface
(A), the minimum of the density variability (B) and the secondary maximum of density
variability (C).

Fig. 2. Scatter plot of the density variability and the logarithmized Ca++ concentration
(ng/g) in the depth interval of the secondary maximum density variability of B29.
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were replaced by surrogate data with the same auto covariance struc-
ture, and the correlation analysis is repeated 10,000 times. This en-
abled the determination of the statistical significance level of
correlation for each of the firn cores. We additionally show the results
disregarding the depth uncertainty (i.e. calculating the correlation
without relative shift in depth of Ca++ relative to the density) to
demonstrate that this procedure does not affect the conclusions.

In a second step of our statistical analysis we estimated the wave-
let sample spectrum using the Morley wavelet (sowas package,
Maraun and Kurths, 2004; Maraun et al., 2007) to analyze the depth
dependent behavior of density and chemistry in the frequency do-
main. Wavelet analysis is a common tool for analyzing localized var-
iations of power within a data series (Torrence and Compo, 1998),
even if the dominant modes of variability are non-stationary. It is
therefore perfectly suited for our application in which we seek to
identify annual cycles and their dependence on firn depth. Local sig-
nificance was tested against a red noise null hypothesis using
Monte Carlo experiments (Maraun et al., 2007). However, one must
note that local significance testing will result in spurious significant
patches especially as adjacent areas in the wavelet sample spectrum
are not independent (Maraun et al., 2007).

The results are quite insensitive on the choice of the interpolation
resolution (1–10 mm), the low pass filtering method (finite response
filter, or spline fit) or the cut-off frequency. Additionally, to investi-
gate potential artifacts caused by the calculation process (conversion
to water equivalent scale, interpolation/averaging, filtering and sta-
tistical analysis on a moving window), we performed the complete
calculation process on a random surrogate dataset. This consisted of
the B29 firn core data with density values replaced by a random
time series with the same auto covariance structure as the B29 densi-
ty. The results show that our statistical procedure does not produce
any systematic artifacts (Fig. A1).

3. Results and interpretation

In the following, we present basic features of the relationship be-
tween density and impurities. They are most obvious in the Green-
land core B29 (Figs. 1–3). Density and the (logarithm of the) Ca++
concentration are uncorrelated near the surface (Fig. 1, A) but co-
vary in deeper firn (Fig. 1 B, C). The depth interval of the mid panels
marks a relative minimum in density variability. The depth interval
of the lower panel is characterized by increased density variability
(i.e. secondary maximum in density variability). Here, at 30 m w.e.
depth, density exhibits a strong seasonal cycle that is nearly indistin-
guishable from the seasonal cycle of the Ca++ concentration. This
strong relationship between the chemical and physical properties is
not limited to the seasonal cycle but is also seen in the slower varia-
tions such as the coherent inter-annual variability in the seasonal
cycle amplitudes of Ca++ and density. Density variability increases
approximately linearly with the logarithm of the Ca++ concentra-
tion in this depth interval (Fig. 2).

The Ca++ variability, including its annual cycle, is unlikely to
arise due to the density changes because the annual cycle of the
Ca++ concentration is seen throughout the core while the seasonal
cycle in density arises only in a specific depth interval. Furthermore,
Ca++ shows a constant phase relationship over entire firn core records
with other parameters such as particulate dust concentration (as Ca++
is largely dust derived), which is considered an immobile impurity
within the firn and ice matrix (Rasmussen et al., 2006). We therefore
propose that the density variability is altered with depth and adapts
to the Ca++ concentration signal. The positive correlation (i.e. high
Ca++ concentration coincidences with high density, Figs. 1C and 2)
suggests that increased impurity concentrations produce a softening
in the ice and thus an increased densification because of enhanced
creep. We hypothesize that density in deeper firn has lost its memory
of the initial layering at the surface. Characteristic features of the
snow pack in terms of density, originating from the deposition or pro-
cesses close to the surface (e.g. soft or hard snow, or the existence of
depth hoar layers) are overprinted by the effect of impurities.

The statistical analysis of the evolution of the density variability
and the density–impurity relationship with depth (Fig. 3, upper
panel) underlines this finding. At the surface, the density variability
is highest and the correlation of density and Ca++ is negligible.

image of Fig.�2


Fig. 3. Density variability and density-Ca++ correlation coefficient (upper panel) and
wavelets spectra of Ca++ concentration (middle panel) and density (lower panel) of
the B29 firn core. Upper panel: Dotted horizontal lines mark the 95% and 99% confi-
dence level in the upper panel. The three depth intervals of Fig. 1 are indicated. The
green line shows the correlation disregarding the depth uncertainty. Mid and lower
panel: The dashed vertical lines mark the position of the relative minimum and sec-
ondary maximum of the standard deviation of density. The frequency of the accumula-
tion rate is marked by a horizontal dashed line and point wise significant areas with
black contours.
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From the surface to 10 m w.e. depth, the density variability decreases
whereas the correlation between Ca++ and density increases. The
correlation reaches its highest values (r=0.7) in the depth where
the density variability shows the secondary maximum (around
30 mw.e. depth). Finally, at greater depths, as the density approaches
the ice density, the variability of the firn density decreases. The strong
correlation between impurities and density remains constant until it
gets weaker at around 50–60 m w.e. depth (Fig. 3, upper panel).
This instability is probably caused by the reduced signal to noise
ratio as the amplitude of the density variations is strongly reduced,
while the measurement error of density is constant (Wilhelms,
1996, 2000).

The wavelet analysis of the records complements the study by
showing the evolution of Ca++ concentration and density of B29 in
the frequency domain (Fig. 3, mid and lower panel). Significant spec-
tral energy in the frequency band of the mean annual accumulation
rate (~150 mm w.e./a) is present in the Ca++ concentration in the
entire record (mid panel). In contrast, the density data show a signif-
icant annual cycle only between 20 and 40 m w.e. depth (lower
panel), consistent with the findings in the depth domain (Fig. 1).
We hypothesize that with increasing depth, Ca++, or more generally
impurities, affect densification and begin to control the variability of
density.
From these first results we cannot identify the precise impurity
species affecting densification. However, in Greenland firn the various
species show clear differences in the seasonal phasing (Beer et al.,
1991; Fischer and Wagenbach, 1996; Whitlow et al., 1992), so we
can conclude that the impurity effect on density results from a signal
with the same seasonal phasing as Ca++. A possible candidate could
be particulate mineral dust. The observation that not only the season-
al cycle, but also inter-annual variations co-vary between density and
Ca++ (Fig. 1c), further constrains the choice of the driving impurity
species.

The remaining four cores show the same relationship between
Ca++ and density as B29 (Fig. 4 upper panel, supplement Figs.
A2–A5). Like in core B29, Ca++ and density are uncorrelated at
the surface. With depth, a significant correlation between the Ca++
concentration and the density develops. In the deeper firn the magni-
tude of the correlation of core B20 fromNortheast Greenland is compa-
rable to B29. In the three Antarctic cores, the correlation values are
lower, but are still highly significant (pb0.01) in most parts of the dee-
per firn. This weaker and less stable correlation can be explained by the
reduced data quality caused by lower accumulation and the lower im-
purity concentrations. Further, both the density and the impurity data
have missing sections and show outliers that might be artifacts of the
measurements. Another potential cause for the lower correlation
between density and Ca++ in Antarctic firn could be that Ca++
is not the ultimate cause of the faster densification, but some other
Ca++ related impurity such as particulate dust. In contrast to
Greenland, Ca++ levels in Antarctica are to a large part sea salt derived
(>50%) for modern conditions (Bigler et al., 2006; Fischer et al., 2007;
Sommer et al., 2000). If the true influencing impurity is not Ca++ itself
but particulate dust, then a lower correlation is to be expected in
modern Antarctic firn, because part of the Ca++ variability is sea
salt derived. In glacial times, however, the sea salt contribution to
Ca++ becomes also negligible in Antarctica (Bigler et al., 2006;
Fischer et al., 2007). This is different for Greenland, where even for
modern conditions Ca++ is mainly dust derived.

A clear difference between core B29 and these four cores is seen in
the wavelet spectra. Neither density nor Ca++ concentration (Fig. 4
mid panels) shows spectral energy concentrated at the frequency cor-
responding to the annual cycle in accumulation. At the investigated
core sites the accumulation rates vary between 44.3 (B31) and 153
(B29) mm w.e./year. The accumulation rate shows a distinct inter-
annual variability, which is strongest at the low accumulation rate
sites. Accordingly, the poor representation of the seasonal cycle of
the climate proxies in the wavelet spectra of low accumulation sites
is not a surprising result; it is well known that in low accumulation
areas the seasonal cycles of the climate proxies are not well expressed
in the depth domain of firn and ice cores because of the inter-annual
variability in accumulation. In addition, a lack of horizontal heteroge-
neity of layers might lead to spatial discontinuities in the deposition
of impurities within the firn at a drilling site. Due to wind erosion
and redistribution, essentially any signal recorded in ice cores has
larger scatter in low accumulation areas than in areas of moderate
or high accumulation.
4. Discussion

In our study, we identified for the first time a strong influence of
impurities (here represented by Ca++) on the density variability in
firn cores. Our results suggest that with increasing depth and time
the impurities severely modify the structure of the initial layering.

The impurity effect has implications for the understanding of firn
mechanics, deformation and recrystallization on the micro-scale and
the evolution of the microstructure (Kipfstuhl et al., 2009). However,
it is particularly relevant for processes governing the air enclosure
during glacial climate periods and during climate transitions, and
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Fig. 4. Density-Ca++ correlation coefficient (upper panel) and wavelets spectra of Ca++ concentration (middle panel) and density (lower panel) of the B20, B31, B32 and B33 firn
cores. Dashed lines as described in caption of Fig. 3.
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therefore may have implications for paleo-climate reconstructions.
The new findings suggest a need to revise the explanation given for
the evolution of the variability in density in firn in former publica-
tions including the work of the authors of this study.

Most likely the differences in densification rates of layers with ini-
tially varying densities still play some role in the upper meters but
lose influence with depth and time. This is based on the finding that
in the depth of the relative minimum of the variability, the correlation
between density and Ca++ reaches values already close to its maxi-
mum values (Figs. 1, 3, 4). A first statistical estimate of the impurity
effect, derived by removing the density variability linearly related to
Ca++, shows that without the impurity effect, the increase of the
density variability with depth would be strongly reduced (Fig. 5).
This is a conservative estimate of the impurity influence, as measure-
ment noise on both measurements reduces the Ca++/density rela-
tionship. Detailed microstructural analyses are needed, to better
Fig. 5. Estimate of the density variability unrelated to the impurity effect. The non-
impurity density variability is estimated by removing the part which can be explained
by a linear relationship to log (Ca++). This is performed in a moving windowwith 1 m
depth, and the fitting allows for a+−50 mm depth uncertainty. To quantify the bias of
this method, the Ca++ time series is replaced by a random surrogate and the analysis
is repeated (gray line).
discriminate the structure induced effect on densification from the
impurity effect on densification.

Our results suggest that with increasing depth firn loses its mem-
ory of the original density layering reflecting the deposition history.
The structure of the layering at the firn–ice transition may therefore
be dominated by the local distribution of the impurities. It can be as-
sumed, that deeper and older ice was initially affected by impurities
as well, since glacial ice for example shows high and strongly varying
impurity content. However, these assumptions need to be verified for
sites with very low accumulation rates.

An impurity influence on the densification will likely affect the
glacial predictions of firn models. For example, firn models that are
tuned to the modern relationship of temperature and firn properties
predict a Greenland Summit density profile at the LGM similar to
that observed today at Dome C (Antarctica) (Arnaud et al., 2000).
However, in glacial firn, the impurity concentration at Summit was
10–100 times higher than it is today. Our new results would suggest
that we can expect softening and faster densification than assumed in
the model. However, δ15 N2 measurements performed on glacial
Greenland ice, which reflect the changes in the diffusive column
length of the firn, agree rather well with the firn depth predicted by
firnification models (Landais et al., 2006). This apparently limits the
influence of Ca++ concentrations on glacial densification in Green-
land. The negative correlation of temperature and accumulation rate
with impurity content (i.e. high temperature and high accumulation
rate with low dust content and vice versa) may explain why the im-
purity effect has not been observed earlier in the data and why the
model results agree with the observations.

However, at Antarctic low accumulation sites, where Ca++ con-
centrations also increase by 1–2 orders of magnitude, the glacial bub-
ble close-off depth is notoriously over-predicted by firn models
(Landais et al., 2006). The impurity effect may therefore contribute
to solving the problem of the mismatch between predicted and ob-
served depths of firn–ice transitions determined from gas records
(Dreyfus et al., 2010; Sowas et al., 1992). A quantitative estimate of
the impurity effect on bubble enclosure cannot be achieved at this
point and requires more dedicated research efforts. Nevertheless,
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the evidenced loss of information about surface layering in the course
of the impurity influenced densification questions hypotheses invok-
ing an effect of surface irradiation on the firn layering at bubble close-
off.

An explanation for the possible link between impurity content and
densification is beyond the scope of this paper and can only be dis-
cussed in a speculative way. Observations and models of impurity ef-
fect on grain growth in deep ice (Alley, 1988; Durand et al., 2006)
may not apply here since the impurity effect in the porous firn col-
umn needs to be considered instead of the effects described in the
ice matrix.

Polar firn impurities consist of soluble contents and micro-
particles and both can be thought to alter the density of the firn. In
principle there are two ways how an increased solute concentration
may influence the intermediate densification below 12 m w.e. depth
and the bubble close-off. Doping the individual (mono-crystalline)
snow grains with ionic impurities generally increases the ductility
of ice, i.e. its creep (Kang, 2005). Thus, layers with higher impurity
content can in principle densify faster.

Alternatively, the impurity content in terms of particulate dust is
assumed to be localized at the grain boundaries and triple junctions.
It may therefore increase the thickness of the quasi-liquid layer coat-
ing of individual grains. The migration of this quasi-liquid by capillary
forces has been hypothesized to contribute to the sintering process
during firn densification (Dash, 1989; Dash et al., 2006). Thus, higher
impurity content at the grain boundaries would lead to an accelera-
tion of the densification process. A detailed theoretical assessment
of these phenomena is not possible here; however, recent studies of
the location of impurities in poly-crystalline ice point to larger impu-
rity concentrations at the grain boundaries and smaller ones in the
bulk of the snow grains (Durand et al., 2006). Obviously this is depen-
dent on the ionic species considered but overall could support the
quasi-liquid layer effect to be a possible explanation for the observed
faster densification of high impurity layers in polar firn.

5. Conclusions

By analyzing high resolution density and Ca++ profiles in 5 firn
cores from Greenland and Antarctica, we show for the first time
that impurities have a significant impact on firn densification.

The covariance of density and the Ca++ concentration in deeper
firn implies:

1. Impurities affect densification over a wide range of concentrations
and lead to a softening of the firn. This is manifested by an increas-
ing correlation of Ca++ and density from the surface into deeper
firn, observed at all investigated cores, independent on the local
climatic conditions reflected by the core sites (see Table 1). The
impurity effect is most obvious for the high-accumulation site in
Greenland and less clear but still significant for the Antarctic, low
accumulation sites.

2. Impurities change the character of the firn layering from
deposition-dominated density layering in the upper firn to
impurity-dominated density layering in the deeper firn and at
the firn–ice transition. The observed development of seasonal cy-
cles in density, which increase with depth and which follow the
Ca++ seasonality, shows that strong seasonal cycles in impurities
can induce a seasonal cycle in firn density unrelated to the temper-
ature. This contradicts the hypothesis that the deep firn seasonal
density cycle is induced by temperature at the surface (for exam-
ple Landais et al., 2006; Zwally and Li, 2002). The relative maxi-
mum in density variability in deeper firn (Freitag et al., 2004;
Gerland et al., 1999; Hörhold et al., 2011) can likely be attributed
to the impurity effect.

3. The impurity effect may also have ramifications for the interpreta-
tion of precessional O2/N2 variations found in records derived
from air bubbles in polar ice (Bender, 2002; Kawamura et al.,
2007). These variations are caused by size-dependent fractionation
during the bubble close-off (Huber et al., 2006). Fujita et al. (2009)
link the initial layering at the surface (i.e. summer and winter
layers) and the strength of insolation with the gas transport pro-
cesses at close-off and the measured O2/N2 ratios. Our results sug-
gest that an initial seasonal density-layering loses its initial
stratigraphic information in the top 10–15 m of the firn column.
Therefore a direct line of influence of the local radiation balance
on the surface snow density cannot be the ultimate reason for
the observed O2/N2 fractionation at close-off depth. Thus, a direct
link between density and air bubbles in polar ice cannot be provid-
ed. Certainly our results do not give an alternative explanation but
an indirect influence of the impurities on the air enclosure process
needs to be discussed in the future.

4. Simplifications, presently used in firn densification models, e.g. ho-
mogeneous firn without layering or calibration to modern firn, are
critical assumptions for modeling firnification during glacial cli-
mate conditions. Firn models that use the modern spatial relation-
ship as an estimate for the temporal relationship predict slower
densification with decreasing temperature. Our data imply that
layers with high impurity concentrations reach the critical density
of pore close-off first. Following our observations the 10–100 fold
increase in impurity concentrations during glacial periods implies
a softer firn at least in Antarctica. This could be one reason why
the depth of the firn–ice transition and the ice-age gas-age differ-
ence may be overestimated during glacial periods and climatic
transitions.

Although, we identified an impurity densification relationship
using Ca++, this species is not necessarily the direct modulator of
firn densification. In future work, we will seek to identify other impu-
rity species that co-vary with Ca++ in Greenland as alternative can-
didates (such as particulate dust). The mechanism for impurity driven
modulation of the densification remains unclear and is an important
area for future investigations.

Supplementary materials related to this article can be found on-
line at doi:10.1016/j.epsl.2011.12.022.
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