Inorganic carbon acquisition in potentially toxic and non-toxic diatoms: the effect of pH-induced changes in seawater carbonate chemistry

Scarlett Trimborna,*, Nina Lundholmcb, Silke Thomsa, Klaus-Uwe Richtera, Bernd Krocka, Per Juel Hansenb and Björn Rosta

aAlfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
bMarine Biological Laboratory, University of Copenhagen, Strandpromenaden 5, DK-3000 Helsingør, Denmark

Correspondence
*Corresponding author, e-mail: scarlett.trimborn@awi.de

Received 12 July 2007; revised 21 November 2007
doi: 10.1111/j.1399-3054.2007.01038.x

The effects of pH-induced changes in seawater carbonate chemistry on inorganic carbon (Ci) acquisition and domoic acid (DA) production were studied in two potentially toxic diatom species, Pseudo-nitzschia multiseries and Nitzschia navis-varingica, and the non-toxic Stellarina stellaris. In vivo activities of carbonic anhydrase (CA), photosynthetic O2 evolution and CO2 and HCO3\(^-\) uptake rates were measured by membrane inlet MS in cells acclimated to low (7.9) and high pH (8.4 or 8.9). Species-specific differences in the mode of carbon acquisition were found. While extracellular carbonic anhydrase (eCA) activities increased with pH in P. multiseries and S. stellaris, N. navis-varingica exhibited low eCA activities independent of pH. Half-saturation concentrations (K\(_{1/2}\)) for photosynthetic O2 evolution, which were highest in S. stellaris and lowest in P. multiseries, generally decreased with increasing pH. In terms of carbon source, all species took up both CO2 and HCO3\(^-\). K\(_{1/2}\) values for inorganic carbon uptake decreased with increasing pH in two species, while in N. navis-varingica apparent affinities did not change. While the contribution of HCO3\(^-\) to net fixation was more than 85% in S. stellaris, it was about 55% in P. multiseries and only approximately 30% in N. navis-varingica. The intracellular content of DA increased in P. multiseries and N. navis-varingica with increasing pH. Based on our data, we propose a novel role for eCA acting as Ci-recycling mechanism. With regard to pH-dependence of growth, the ‘HCO3\(^-\) user’ S. stellaris was as sensitive as the ‘CO2 user’ N. navis-varingica. The suggested relationship between DA and carbon acquisition/Ci limitation could not be confirmed.

Introduction

Marine diatoms are key players in the ocean carbon cycle, accounting for at least 40% of the marine primary production (Nelson et al. 1995). Until recently, the effect of inorganic carbon availability on photosynthesis has been largely ignored in marine phytoplankton ecology.
particularly because dissolved inorganic carbon (DIC) is always in excess relative to other nutrients. In seawater, C_i is mainly found in the form of HCO$_3^-$ (approximately 2 mmol l$^{-1}$) but also comprises low and variable concentrations of dissolved CO$_2$ (approximately 5–25 µmol l$^{-1}$). The pH, which reflects the partitioning of the carbon species, is usually about 8.2 in air-equilibrated surface waters. Elevated pH in ocean surface waters is mainly caused by intense primary production during periods with high concentrations of phytoplankton cells, e.g. towards the end of bloom periods (Hansen 2002). Intense photosynthetic activity can result in pH values as high as 9 in open marine environments (Hinga 2002) and even up to 10 in coastal lagoons and fjords (Hansen 2002). Rising atmospheric CO$_2$ levels caused by human-induced activities such as fossil fuel burning has affected seawater carbonate chemistry. Present day surface ocean pH is approximately 0.1 units lower than preindustrial values owing to the uptake of ‘anthropogenic’ CO$_2$ into the ocean and its subsequent dissociation resulting in an increase of the H^+ concentration. By the end of this century, it is expected that the seawater pH will have dropped by 0.4 units relative to preindustrial values (Wolf-Gladrow et al. 1999, Intergovernmental Panel on Climate Change 2007). In view of this ocean acidification as well as variations in pH during blooms, the role of inorganic carbon (C_i) acquisition has received increasing attention in phytoplankton ecology and physiology.

The enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) fixes CO$_2$ into organic carbon compounds. Owing to the poor affinity of RubisCO for CO$_2$ (K_M of 20–70 µmol l$^{-1}$ for eukaryotic phytoplankton, Badger et al. 1998), phytoplankton cells employ carbon-concentrating mechanisms (CCMs) to increase the CO$_2$ concentration at the catalytic site of this enzyme. The operation of a CCM in phytoplankton cells significantly increases the efficiency of carbon fixation, thus reported apparent half-saturation concentrations ($k_{1/2}$) values for CO$_2$ in microalgae are <1–8 µmol l$^{-1}$ (Raven and Johnston 1991).

Modes of CCMs have been found to vary in terms of efficiency as well as regulation between taxonomically different groups of phytoplankton (Giordano et al. 2005). This relates to the extent to which either CO$_2$ or HCO$_3^-$, or both carbon sources, are actively transported across the plasmalemma, as well as to the presence and location of carbonic anhydrase (CA). This enzyme accelerates the otherwise slow rate of conversion between HCO$_3^-$ and CO$_2$. Extracellular carbonic anhydrase (eCA) activity has been suggested to be involved in HCO$_3^-$ utilization by converting HCO$_3^-$ to CO$_2$, which is subsequently taken up by cells (Sültemeyer 1998, Elzenga et al. 2000). The physiological role of intracellular carbonic anhydrase (iCA) is still not fully understood, but it is possibly involved in different processes (Badger 2003, Badger and Price 1994, Sültemeyer 1998). Another important, but often neglected, component of a CCM is the capacity of the cell to reduce the loss of accumulated C_i by minimizing the CO$_2$ efflux through the cell membrane (Raven and Lucas 1985, Rost et al. 2006a, 2006b).

CCMs contribute to the competitive fitness of phytoplankton species, especially under changing pH levels. While bloom-forming diatom species operate an efficient and regulated CCM that allows maintenance of high growth rates even under elevated pH (Rost et al. 2003), slow-growing diatom species may not be able to compensate for decreasing CO$_2$ concentrations under these conditions. Previous studies indicate that diatoms possess highly regulated and efficient CCMs with respect to changes in CO$_2$ supply (Burkhardt et al. 2001, Rost et al. 2003). However, whether these are general characteristics of diatoms have yet to be rigorously tested.

Some diatom species produce the neurotoxic amino acid, domoic acid (DA). Toxic diatoms cause ecological and economic problems because of the accumulation of DA in the marine food web. Understanding toxin production is complicated because both toxic and non-toxic strains of the same species co-exist, and it is currently not clear what induces DA production (Bates et al. 1998). Lundholm et al. (2004) suggested that elevated pH-triggers DA production in different strains of Pseudo-nitzschia. The physiological response of toxic diatoms to changes in pH is still poorly known, and to date, no study has characterized the CCMs of toxic diatoms. Furthermore, it has not yet been investigated whether the increase of intracellular content of DA is dependent on the pH-dependent changes in carbon acquisition.

The aim of the present study was to investigate the effect of pH on C_i acquisition as well as on toxin production in three marine diatom species. Cellular uptake of CO$_2$ and HCO$_3^-$ during steady-state photosynthesis of the two potentially toxic species Pseudo-nitzschia multiseries (a bloom-forming cosmopolitan species) and Nitzschia navis-varingica (which occurs in coastal marine areas and in marine ponds) as well as the non-toxic Stellaria stellaris (a widely distributed species) was estimated by membrane inlet mass spectrometric (MIMS) measurements. This approach was used to determine substrate preferences for CO$_2$ and HCO$_3^-$ as well as possible shifts in carbon source and cellular leakage (CO$_2$ efflux/gross C_i uptake) with changing pH. To further characterize the CCM of each species, measurements of iCA and eCA activities were performed by monitoring 13C18O exchange from doubly labelled 13C18O$_2$.

Physiol. Plant. 133, 2008
Materials and methods

Culture and experimental conditions

Stellarina stellaris (isolate from the Sound, Denmark), *N. navis-varingica* (VHL987) and *P. multiseries* (OKPm013-2) were grown in dilute batch cultures in sterile-filtered (0.2 μm) unbuffered seawater, enriched with nutrients, trace metals and vitamins according to f/2 medium (Guillard and Ryther 1962). Silicate was added to a concentration of 317 μmol l⁻¹. Experiments were carried out using a light:dark cycle of 16:8 h at a constant temperature of 15°C. A photon flux density of 200 μmol photons m⁻² s⁻¹ was applied using daylight fluorescence lamps that provided a spectrum similar to that of sunlight. The applied photon flux density ensured that neither growth nor production of DA was light limited (Bates et al. 1998). Each treatment was incubated in triplicate in sterile 2.4-l borosilicate bottles. Gentle rotation of the culture flasks five times a day ensured that the cells were kept in suspension.

The medium used for the experiments was adjusted by addition of HCl or NaOH to low pH (7.9) and high pH (8.4 for *S. stellaris* and *P. multiseries*, and 8.9 for *N. navis-varingica*) on the National Bureau of Standards (NBS) scale. This corresponds to CO₂ concentrations of 31, 9.2 and 2.2 μmol kg⁻¹, respectively (Table 1). pH was measured using a pH/ion meter (model pMX 3000/pH; WTW, Weilheim, Germany) that was calibrated (two-point calibration) on a daily basis. Daily or twice-daily dilutions with fresh media ensured that the pH level remained constant (±0.05 units) and that the cells stayed in the mid-exponential growth phase. High pH levels were selected based on the upper pH limits observed in the selected species, ensuring that growth rates were not affected by the pH levels chosen. Growth rates were about 0.70 day⁻¹ in *S. stellaris*, 0.95 day⁻¹ in *P. multiseries* and 0.59 day⁻¹ in *N. navis-varingica*. Cell concentrations ranged between 500 and 3000 cells ml⁻¹ for the three species.

Determination of seawater carbonate chemistry

Alkalinity samples were taken from the filtrate (Whatman GFF filter; approximately 0.6 μm) and stored in 300-ml borosilicate flasks at 4°C and measured in triplicate by potentiometric titration with an average precision of 8 μEq kg⁻¹ (Brewer et al. 1986). Total alkalinity was calculated from linear Gran Plots (Gran 1952). DIC samples were sterile-filtered (0.2 μm) and stored in 13-ml borosilicate flasks free of air bubbles at 4°C until they were measured with a total carbon analyzer (Shimadzu TOC-5050A ’s-Hertogenbosch, The Netherlands) with an average precision of 17 μmol kg⁻¹ in triplicate.

The carbonate system was calculated from alkalinity, DIC, silicate, phosphate, temperature and salinity using the CO2Sys program (Lewis and Wallace 1998). Equilibrium constants of Mehrbach et al. (1973) refitted by Dickson and Millero (1987) were used. The carbonate chemistry was kept constant over the duration of the experiment (Table 1).

Sampling

After acclimation for at least 7 days, cells were harvested by gentle filtration over an 8-μm membrane filter (Isopore; Millipore, Schwalbach/Ts., Germany). Subsequently, the cells were washed with CO₂-free f/2 medium buffered with 50 mmol l⁻¹ HEPES (pH 8.0). The samples were then used for determination of carbon (C₆) fluxes and CA activities with the MIMS. Samples for determination of Chl a were then taken after the measurements and stored at −80°C. Chl a was subsequently extracted in 10 ml acetone (overnight in darkness at 4°C) and determined with a Turner Designs Fluorometer.

Determination of CA activity

Activity of eCA and iCA was determined by measuring the loss of 18O from doubly labelled 1C18O2 to water caused by the interconversion of CO₂ and HCO₃⁻ (Silverman 1982). The determination of CA activity was performed with a sector field multicollector mass spectrometer (Isoprime; GV Instruments, Manchester, UK) through a gas-permeable polytetrafluoroethylene membrane (PTFE, 0.01 mm) inlet system. The reaction sequence of 18O loss from initial 13C18O16O (m/z = 49), through the intermediate 13C18O16O (m/z = 47) to the final isotope 13C16O16O (m/z = 45) was recorded continuously. The 18O enrichment was calculated as:

\[
18O \log(\text{enrichment}) = \log \left(\frac{(13\text{C}^{18}\text{O}_2) \times 100}{13\text{CO}_2} \right) = \log \left(\frac{(49) \times 100}{45 + 47 + 49} \right)
\]
CA measurements were performed in 8 ml f/2 medium buffered with 50 mmol l⁻¹ HEPES (pH 8.0) at 15°C. To avoid interference with light-dependent C₃ uptake by the cells, all measurements were carried out in the dark. When chemical equilibrium was reached after injection of 1 mmol l⁻¹ NaH¹³C¹⁸O, the uncatalysed ¹⁸O loss was monitored for about 8 min prior to the addition of cells. eCA activity was calculated from the increasing rate of ¹⁸O depletion after addition of the cells (slope S2) in comparison with the uncatalysed reaction (slope S1) and normalized on a Chl a basis (Badger and Price 1989):

\[
U = \frac{(S_2-S_1) \times 100}{S_1 \times \mu g \ Chl \ a} \tag{2}
\]

iCA activity was determined in the presence of 100 µmol l⁻¹ dextran-bound sulphonamide (DBS), an inhibitor of eCA. The drop in the log(enrichment) was calculated by extrapolation of S2 back to the time of cell injection \(\Delta\) as defined by Palmqvist et al. (1994). Values of \(\Delta\) are expressed in arbitrary units per µg Chl a. Chl a concentrations in CA assays ranged from 0.13 to 1.34 µg ml⁻¹.

Determination of net photosynthesis, CO₂ and HCO₃⁻ uptake

C₃ fluxes were determined during steady-state photosynthesis with the same MIMS as for CA measurements. The method established by Badger et al. (1994) is based on simultaneous measurements of O₂ and CO₂ during consecutive light and dark intervals. Known amounts of C₃ were added to measure photosynthesis and carbon uptake rates as a function of CO₂ and HCO₃⁻ or DIC concentrations. Net photosynthesis, CO₂ uptake and HCO₃⁻ uptake were calculated according to the equations of Badger et al. (1994). All measurements were performed in initially CO₂-free f/2 medium buffered with 50 mmol l⁻¹ HEPES (pH 8.0) at 15°C. DBS was added to the cuvette to a final concentration of 100 µmol l⁻¹. Light and dark intervals during the assay lasted 6 min. The incident photon flux density was 300 µmol photons m⁻² s⁻¹. Further details on the method and calculations are given in Badger et al. (1994) and Rost et al. (2007). Chl a concentrations in the assay ranged from 0.28 to 1.57 µg ml⁻¹.

Carbon isotope fractionation

Samples for particulate organic carbon (POC) were filtered onto precombusted (500°C, 12 h) GF/F filters (approximately 0.6 µm) and stored in precombusted (500°C, 12 h) Petri dishes at −20°C. Prior to analysis, POC filters were treated with 200 µl HCl (0.1 N) to remove all inorganic carbon. POC and related δ¹³C values were subsequently measured in duplicate on an EA mass spectrometer (ANCA-SL 2020; Sercon Ltd, Crewe, UK), with a precision of ±1.5 µg C and ±0.5‰, respectively. The isotopic composition is reported relative to the PeeDee belemnite standard:

\[
\delta^{13}C_{Sample} = \left(\frac{\delta^{13}C_{Sample}}{\delta^{13}C_{PDB}} - 1\right) \times 1000 \tag{3}
\]

Isotope fractionation during POC formation (\(\varepsilon_p\)) was calculated relative to the isotopic composition of CO₂ in the medium (Freeman and Hayes 1992):

\[
\varepsilon_p = \frac{\delta^{13}C_{CO_2} - \delta^{13}C_{POC}}{1 + \delta^{13}C_{POC}} \times 1000
\]

To determine isotopic composition of DIC (\(\delta^{13}C_{DIC}\)), samples were sterile filtered (0.2 µm), fixed with HgCl₂ (approximately 140 mg l⁻¹ final concentration) and stored at 4°C. Measurements of \(\delta^{13}C_{DIC}\) were performed with a Finnegan mass spectrometer (MAT 252) at a precision of ±0.05‰. The isotopic composition of CO₂ (\(\delta^{13}C_{CO_2}\)) was calculated from \(\delta^{13}C_{DIC}\), making use of a mass balance relation (Zeebe and Wolf-Gladrow 2001):

\[
\delta^{13}C_{HCO_3}\text{⁻} = \frac{\delta^{13}C_{DIC} - (\varepsilon_a [CO_2] + \varepsilon_b [CO_3^-])}{(1 + \varepsilon_a \times 10^{-3}) [CO_2] + [HCO_3^-] + (1 + \varepsilon_b \times 10^{-3}) [CO_3^-]} \tag{5}
\]

\[
\delta^{13}C_{CO_2} = \delta^{13}C_{HCO_3\text{⁻}} (1 + \varepsilon_a \times 10^{-3}) + \varepsilon_a \tag{6}
\]

Temperature-dependent fractionation factors between CO₂ and HCO₃⁻ (\(\varepsilon_a\)) as well as between HCO₃⁻ and CO₃²⁻ (\(\varepsilon_b\)) are given by Mook (1986) and Zhang et al. (1995), respectively.

Toxin analyses

The samples for toxin analyses (600 or 1000 ml) were filtered through a 3-µm polycarbonate filter, which was never allowed to dry out. The residue on the filter was rinsed with fresh culture medium and subsequently transferred to a falcon tube and adjusted to a final volume
of 4 ml. Initial measurements on the filtered medium showed no DA (i.e. extracellular DA) in any of the treatments and consequently filtered medium was not subsequently measured. Cell counts were used for determination of toxin content per cell. Until further analysis, samples were stored at −20°C.

For preparation of the samples, 4 ml of frozen material were thawed and subsequently centrifuged at 4°C for 15 min at 2100 g. Because diatoms partially break during freezing and thawing cycles and cell content leaks into the medium, DA had to be determined in cell pellets and supernatant. Five hundred microlitres of the supernatant was centrifuged (Eppendorf 5415 R; Eppendorf, Hamburg, Germany) for 30 s at 800 g through a spin filter (pore size 0.45 μm, Millipore-Ultrafree, Eschborn, Germany) and frozen at −20°C until LC-MS/MS analysis for measurement of DA in the cell-free fraction. Cell pellets were resuspended in 0.5 ml water–methanol (1:1 v/v), transferred to FastPrep tubes containing 0.9 g of lysing matrix D (Thermo Savant, Illkirch, France) and subsequently homogenized by reciprocal shaking at maximum speed for 45 s in a Bio101 FastPrep instrument (Thermo Savant). After homogenization, samples were centrifuged at 16 100 g at 4°C for 15 min. Supernatants were removed and centrifuged at 30 s at 800 g through a spin filter and frozen at −20°C until LC-MS/MS analysis of DA in the cellular fraction.

Mass spectrometric measurements were performed on an ABI SCIEX-4000 Q Trap, triple quadrupole mass spectrometer equipped with a TurboSpray® interface coupled to an Agilent model 1100 LC. Analyses for DA were performed in triplicate. The analytical column (250 × 4.6 mm) was packed with 5 μm Luna C18 (Phenomenex, Aschaffenburg, Germany) and maintained at 25°C. The flow rate was 1.0 ml min⁻¹ and gradient elution was performed with two eluents, where eluent A was 2 mmol l⁻¹ ammonium formate and 50 mmol l⁻¹ formic acid in water and eluent B was 2 mmol l⁻¹ ammonium formate and 50 mmol l⁻¹ formic acid in acetonitrile/water (95:5 v/v). The gradient was as follows: 9 min column equilibration with 87% A, 2 min isocratic with 87% A, then linear gradient until 10 min to 50% A, then until 11 min return to initial conditions 87% A. Total run time was 20 min. Five microlitres of sample were injected.

Measurements were carried out in the multiple reaction monitoring (MRM) mode by selecting the following transitions for DA (precursor ion > fragment ion): m/z 312>266 (quantifier) and m/z 312>161 (qualifier). Dwell times of 150 ms were used for each transition. For these studies, the following source parameters were used – curtain gas: 25 psi, temperature: 600°C, ion-spray voltage: 5500 V, nebulizer gas: 55 psi, auxiliary gas: 70 psi, interface heater: on, and declustering potential: 66 V.

Results

Photosynthesis and Ci fluxes

During steady-state photosynthesis, CO₂ and HCO₃⁻ were taken up simultaneously by all species (Table 2). Maximum rates (Vmax) and half-saturation concentrations (K1/2) were obtained from a Michaelis–Menten fit to the combined data of several independent measurements. Values for K1/2 and Vmax are given in μmol l⁻¹ and μmol (mg Chl a)⁻¹ h⁻¹, respectively. Error bars denote ±SD.

<table>
<thead>
<tr>
<th>pH (NBS)</th>
<th>S. stellaris</th>
<th>P. multiseries</th>
<th>N. navis-varingica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K1/2 (CO₂)</td>
<td>Vmax (CO₂)</td>
<td>K1/2 (DIC)</td>
</tr>
<tr>
<td>7.9</td>
<td>7.4 ± 1.7</td>
<td>258 ± 17</td>
<td>572 ± 133</td>
</tr>
<tr>
<td>8.4</td>
<td>4.0 ± 0.5</td>
<td>262 ± 9</td>
<td>304 ± 41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.6 ± 0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.3 ± 0.3</td>
</tr>
<tr>
<td>7.9</td>
<td>3.5 ± 0.5</td>
<td>363 ± 20</td>
<td>327 ± 57</td>
</tr>
<tr>
<td>8.4</td>
<td>2.2 ± 0.3</td>
<td>354 ± 15</td>
<td>223 ± 39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.0 ± 1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.6 ± 1.2</td>
</tr>
<tr>
<td>7.9</td>
<td>4.6 ± 0.7</td>
<td>262 ± 10</td>
<td>494 ± 67</td>
</tr>
<tr>
<td>8.9</td>
<td>3.1 ± 0.9</td>
<td>287 ± 19</td>
<td>301 ± 84</td>
</tr>
</tbody>
</table>

Table 2. K1/2 and Vmax of photosynthesis, net CO₂ uptake and HCO₃⁻ uptake for *Stellarina stellaris*, *Pseudo-nitzschia multiseries* and *Nitzschia navis-varingica* acclimated to low and high pH. Kinetic parameters were calculated from a Michaelis–Menten fit to the combined data of several independent measurements. Values for K1/2 and Vmax are given in μmol l⁻¹ and μmol (mg Chl a)⁻¹ h⁻¹, respectively. Error bars denote ±SD.
magnitude lower than the K_M (CO$_2$) values known for RubisCO in diatoms (approximately 30–40 μmol CO$_2$ l$^{-1}$; Badger et al. 1998).

In terms of CO$_2$ uptake, the $K_{1/2}$ values for *N. navis-varingica* and *P. multiseries* were generally between 4 and 7 μmol l$^{-1}$, only in *P. multiseries* the acclimation to high pH induced higher affinities (Table 2). The V_{max} for net CO$_2$ uptake for *N. navis-varingica* and *P. multiseries* ranged between 148 and 221 μmol (mg Chl a)$^{-1}$ h$^{-1}$. In *S. stellaris*, net CO$_2$ uptake was very low and hence no $K_{1/2}$ values could be estimated. Regarding the HCO$_3^-$ uptake, $K_{1/2}$ values in *P. multiseries* and in *S. stellaris* were generally $<$330 μmol l$^{-1}$ and decreased when acclimated to high pH. In *S. stellaris*, the V_{max} of HCO$_3^-$ uptake was slightly higher than that for *P. multiseries*. For *N. navis-varingica*, the HCO$_3^-$ uptake was low and could not be described by Michaelis–Menten kinetics.

Using the uptake kinetics obtained in the assay, the contribution of HCO$_3^-$ uptake relative to carbon fixation for the conditions of the respective incubations was estimated (Fig. 1). The preference for HCO$_3^-$ uptake strongly increased in *N. navis-varingica* with rising pH, while the different pH acclimations yielded similar ratios in *P. multiseries* and *S. stellaris*. With values larger than 85%, the preference for HCO$_3^-$ is very high in *S. stellaris*, whereas *P. multiseries* reached values of approximately 55%. In *N. navis-varingica*, the contribution of HCO$_3^-$ uptake relative to net fixation accounted for at most approximately 30% under high pH, reflecting a strong preference for CO$_2$.

eCA and iCA activity

Activity of eCA was high in *P. multiseries* and *S. stellaris* and increased with elevated pH (Fig. 2A). In *N. navis-varingica*, eCA activities were low and remained constant independent of the pH. The activities of iCA remained constant in all investigated species, independent of the pH of the acclimation (Fig. 2B).

Carbon isotope fractionation and leakage

Carbon isotope fractionation decreased with rising pH in all investigated species (Fig. 3). The strongest reduction in ε_p was observed in *N. navis-varingica*, with ε_p being 9.8%o under low pH and 3.7%o at high pH. *S. stellaris* obtained highest fractionation values in comparison with the two other species, its ε_p ranged between 11.5 and 14.4%o.

The leakage of cells, i.e. the proportion of C$_i$ efflux compared with gross C$_i$ uptake, was estimated by MIMS through the CO$_2$ efflux recorded immediately after the light had been turned off (Badger et al. 1994). For all species, leakage was highest at the lowest CO$_2$ concentrations and levelled off towards higher CO$_2$ concentrations in the assay (Fig. 4). With increasing pH, leakage appeared to decrease mainly in *N. navis-varingica*.

![Fig. 1. Ratios of HCO$_3^-$ uptake to net photosynthesis of cells acclimated to different pH levels. Ratios from MIMS measurements were based on the rates obtained at C$_i$ concentrations of about 2 mmol l$^{-1}$.

![Fig. 2. Chl a-specific activities of (A) eCA and (B) iCA activities from cells acclimated to low and high pH. Values represent the means of triplicate incubations (±SD).](https://example.com/fig2)

![Fig. 3. Carbon isotope fractionation in different species acclimated to different pH levels.](https://example.com/fig3)

![Fig. 4. Leakage of cells as a function of CO$_2$ concentration and pH.](https://example.com/fig4)
The content of DA per cell differed with pH, both for *P. multiseries* and for *N. navis-varingica*. Increasing pH resulted in increasing content of DA (Table 3). The differences were, however, only significant between the pH levels for *P. multiseries* (Student’s *t*-test, *P* < 0.01). No DA was detected in *S. stellaris* at any of the pH levels.

Discussion

The application of MIMS techniques such as the estimation of CA activities and Ci fluxes, in combination with analyses of 13C fractionation, allowed detailed characterization of the CCM in each species. Acclimations to low and high pH were performed in unbuffered seawater with low cell densities to simulate natural conditions as closely as possible. High affinities for Ci were observed in all investigated species, indicating the operation of a CCM (Table 2). All species upregulated their CCM activity when acclimated to high pH. Despite these similarities, strong species-specific differences in the modes of carbon acquisition existed.

Photosynthetic O2 evolution

Apparent K1/2(CO2) for photosynthesis lower than K_M (CO2) of RubisCO provides evidence for the operation of a CCM (Badger et al. 1998). In our experiments, K1/2(CO2) values for photosynthesis were low in all investigated species, ranging from 2.2 to 7.4 μmol CO2 (Table 2). These values are about an order of magnitude lower than known K_M (CO2) values for RubisCO in diatoms (31–36 μmol CO2 l⁻¹ in two strains of *Cylindrotheca* sp. and 41 μmol CO2 l⁻¹ in *Phaeodactylum tricornutum*; Badger et al. 1998), indicating that the investigated species possessed highly efficient CCMs. All three species had upregulated their carbon acquisition with decreasing CO2 supply (Table 2). The observed affinities are comparable with previous findings obtained with MIMS techniques in marine diatoms (Burkhardt et al. 2001, Rost et al. 2003). By measuring the photosynthetic O2 evolution upon the addition of varying Ci concentrations and assuming equilibrium concentrations for CO2,
K\(_{1/2}(\text{CO}_2)\) values for photosynthetic O\(_2\) evolution have been estimated (Burns and Beardall 1987, Colman and Rotatore 1995, Mitchell and Beardall 1996). Mitchell and Beardall (1996) calculated the K\(_{1/2}(\text{CO}_2)\) value to be approximately 1.09 \(\text{µmol l}^{-1}\) at pH 7.5 in the sea-ice diatom *Nitzschia frigida*. Colman and Rotatore (1995) demonstrated K\(_{1/2}(\text{CO}_2)\) values of 1.44 \(\text{µmol l}^{-1}\) for *Cyclotella* sp. and 4.01 \(\text{µmol l}^{-1}\) for *P. tricornutum*. For the latter species, Burns and Beardall (1987) obtained an even lower K\(_{1/2}(\text{CO}_2)\) value of 0.53 \(\text{µmol CO}_2\) \(\text{l}^{-1}\). In summary, the CO\(_2\)/pH-induced changes in apparent Ci affinities and the generally low K\(_{1/2}(\text{CO}_2)\) for photosynthesis indicate highly efficient and regulated CCMs in the investigated species.

Carbon sources and uptake kinetics

To understand why a certain species appears to have a more or less efficient carbon acquisition, in other words different abilities to reach Ci-saturated rates in photosynthesis, the different components of the CCM must be characterized. In the present study, CO\(_2\) and HCO\(_3^-\) rates were estimated following the method of Badger et al. (1994). This approach has the advantage that it also allows determination of carbon uptake kinetics during steady-state photosynthesis. While several studies demonstrated that simultaneous uptake of CO\(_2\) and HCO\(_3^-\) occurs in marine diatoms (e.g. Burns and Beardall 1987, Korb et al. 1997, Rotatore et al. 1995, Tortell and Morel 2002), a finding that is consistent with our results, little information exists on uptake kinetics for individual carbon sources (e.g. Burkhart et al. 2001, Rost et al. 2003, Rost et al. 2006a).

The efficiency of a CCM is strongly depending on the characteristics of the Ci uptake systems. Higher transport rates for CO\(_2\) and/or HCO\(_3^-\) can be achieved in two ways: either by increasing the affinities for the respective Ci species through a higher substrate-binding capacity (e.g. Amoroso et al. 1998, Matsuda and Colman 1995, Palmqvist et al. 1994) or by an increase in the number of transporters (e.g. Burkhart et al. 2001, Rost et al. 2003). According to our results, species responded differently to pH-induced changes in carbonate chemistry. *P. multiseris* used CO\(_2\) and HCO\(_3^-\) in equal quantities, which did not change with pH (Fig. 1). This is the result of an increased substrate affinity of the CO\(_2\) uptake system, which compensated for the lower CO\(_2\) availability at high pH (Fig. 1). *N. navis-varingica* was characterized by a strong preference for CO\(_2\) ('CO\(_2\) user'), although the contribution of HCO\(_3^-\) uptake relative to net fixation increased with rising pH (Table 2). The latter might be because of a larger number of HCO\(_3^-\) transporters when acclimated to high pH (Table 2). *S. stellaris* showed a strong preference for HCO\(_3^-\) ('HCO\(_3^-\) user') irrespective of the acclimation pH (Fig. 1). This observation is consistent with constitutively expressed Ci transport systems (Table 2). The large differences in preference for Ci sources in the group of diatoms is in agreement with those of Burkhart et al. (2001) who showed that *Thalassiosira weissflogii* exhibited a much higher proportion of HCO\(_3^-\) uptake relative to total Ci uptake compared with *P. tricornutum*, the latter preferring CO\(_2\) even at the highest pH level. Rost et al. (2003) showed an increasing contribution of HCO\(_3^-\) to total Ci uptake with decreasing CO\(_2\) concentrations as a consequence of both an increasing number of HCO\(_3^-\) transport components and the induction of high-affinity Ci uptake systems. Hence, based on our data and on previous investigations, marine diatoms appear to strongly differ in terms of their preferred Ci source and the regulation of its uptake.

CA activity and its dependence on the carbon source

The enzyme CA plays an important role in carbon acquisition by accelerating the otherwise slow interconversion of CO\(_2\) and HCO\(_3^-\), both inside the cell and at the cell surface. The activities of eCA strongly differed between species in our investigation (Fig. 2A), being highest with 360 \(\mu\text{g Chl}a^{-1}\) in *S. stellaris* and lowest with 80 \(\mu\text{g Chl}a^{-1}\) in *N. navis-varingica*. In other words, these values correspond to an enhancement in the interconversion between HCO\(_3^-\) and CO\(_2\) relative to the uncatalysed rate by 360 and 80% per \(\mu\text{g Chl}a\), respectively. These activities are within the same range as those reported in Burkhart et al. (2001) and Rost et al. (2003) [note that activities in these studies were erroneously stated as (mg Chl a\(^{-1}\)) instead of (\(\mu\)g Chl a\(^{-1}\)]. Mitchell and Beardall (1996) used a potentiometric approach to estimate CA activities (Wilbur and Anderson 1948) in *N. frigida*. They measured low eCA activities of 0.123 (\(\mu\text{g Chl}a\)\(^{-1}\)) Wilbur-Anderson units, which corresponds to an enhancement in the rate constants of only approximately 12% per \(\mu\text{g Chl}a\) relative to the uncatalysed rate. According to our results and those of Mitchell and Beardall (1996), we conclude that eCA plays only a minor role in carbon acquisition in the genus *Nitzschia*.

The induction of eCA activity was found to be pH dependent both in laboratory culture experiments (Sültemeyer 1998, Burkhart et al. 2001, Badger 2003, Rost et al. 2003) and in field experiments (Berman-Frank et al. 1994, Tortell et al. 2006). It is a common notion that eCA is involved in *indirect* HCO\(_3^-\) utilization by converting HCO\(_3^-\) to CO\(_2\), which could then be actively
transported through the plasma membrane and subsequently used for photosynthesis (Elzenga et al. 2000, Sultemeyer 1998, Tortell et al. 2006). It should be emphasized here that high eCA activities would provide an advantage especially for large cells because large phytoplankton are more prone to CO2 shortage in their diffusive boundary layer (Wolf-Gladrow and Riebesell 1997). Such a function of eCA in supplying CO2 from the large HCO3\(^2\) pool would, however, not apply at high pH because the equilibrium is strongly on the side of HCO3\(^2\).

In the present study, the investigated diatoms are rather large with volumes of 1030 \(\mu m^3\) for *P. multiseries*, 4350 \(\mu m^3\) for *N. navis-varingica* and 7720 \(\mu m^3\) for *S. stellaris*. Although the highest level of eCA activity was found under high pH in the largest diatom species *S. stellaris* (Fig. 2A), this species showed a strong preference for HCO3\(^2\) uptake and not for CO2 uptake (Fig. 1). Hence, the common notion that eCA supplies CO2 to the uptake systems is called into question in this situation. Here, we propose a mechanism that acts as a Ci-recycling mechanism at high pH in ‘HCO3\(^2\) user’ (Fig. 5A), i.e. CO2 leaking out of the cell would be converted by eCA to HCO3\(^2\) and subsequently taken up through HCO3\(^2\) transporters. Such a mechanism would be most efficient when the CA-mediated conversion is localized to the periplasmic space, i.e. in close vicinity to the HCO3\(^2\) transporter. It can be hypothesized that the HCO3\(^2\) transport process is linked to the eCA activity. Support for this idea comes from red blood cells where a plasma membrane HCO3\(^2\)/Cl\(^-\) transporter physically binds a CAII protein (Sterling et al. 2001). In contrast to ‘HCO3\(^2\) users’ like *S. stellaris*, the CO2 user *N. navis-varingica* was characterized by low levels of eCA even under high pH (Fig. 2A). Because of rather low eCA activities, CO2 leaking out of the cell is prevented from fast conversion to HCO3\(^2\), and a disequilibrium at the cell surface persists (Fig. 5B). Elevated CO2 in turn increases the probability that the CO2 is transported back into the cell through CO2 transport systems. We therefore suggest that low or absent eCA activities in CO2 users allow for efficient CO2 recycling at high pH (Fig. 5B).

The proposed Ci-recycling mechanisms for CO2 and HCO3\(^2\) users at elevated pH would explain results from previous studies, i.e. the correlation of high eCA activity and HCO3\(^2\) uptake and the lack of eCA in CO2 users. Burkhardt et al. (2001) observed high eCA activities and high HCO3\(^2\) uptake rates in *T. weissflogii*, while *P. tricornutum* showed a preference for CO2 and eCA activities were low. *Skeletonema costatum* combined both extremes, i.e. high eCA activities and predominant HCO3\(^2\) uptake under high pH, whereas eCA was lacking at low pH accompanied by a strong preference for CO2 (Rost et al. 2003). We consequently conclude, based on our data and that of previous investigations, that the presence or absence of eCA allows for a more efficient Ci recycling in ‘HCO3\(^2\)’ and ‘CO2’ users, respectively.

The physiological role of internally located CA (iCA) is still poorly understood (Sultemeyer 1998) because of the occurrence of multiple CA forms in the cytosol, chloroplast and mitochondria, but there is evidence that iCAs are important components of the CCM (Badger and Price 1994, Sultemeyer 1998, Badger 2003). Prior to our discussion on iCA activities, we would like to point out some of the assumptions underlying the applied approach to estimate iCA activities (Palmqvist et al. 1994). First, it should be noted that the results shown in Fig. 2B do not
differentiate between the multiple CA forms and their location. Estimates on iCA activities are also dependent on the rate of diffusive influx of 18O-labelled CO2 and thus can be altered by the diffusive properties of the cell membrane, intracellular pH and cell size and shape. In addition, Rost et al. (2003) showed that assessing iCA activities without applying inhibitors for eCA affects the absolute estimates. Because of these uncertainties, the following species comparison should be interpreted with caution.

High iCA levels were expressed in the CO2 user N. navis-varingica, while lowest activities were found in the HCO$_3^-$ user S. stellaris (Fig. 2B). Provided that iCA observed in the latter species is predominantly reflecting CA located in the cytosol, the low activity would prevent the taken up HCO$_3^-$ from being converted to CO2 and hence would remain in the form of HCO$_3^-$ for which cell membranes are highly impermeable. In contrast, high iCA levels in the CO2 user N. navis-varingica enhance the conversion of CO2 to HCO$_3^-$ in the cytosol. This interpretation of our data is supported by the observation of Price and Badger (1989) that the absence of cytosolic CA activity in Synechococcus, a HCO$_3^-$ user, is crucial for minimizing CO2 leakage. Consequently, the expression of human CA in the cytosol led to loss of the ability to accumulate internal Ci. All data together, we propose that the presence or absence of iCA functions to minimize the loss of CO2. Evidence for such a CO2-trapping mechanism is supported by a model study at the level of the chloroplast (Thoms et al. 2001). Further research in marine diatoms is needed to evaluate the potential role of iCA acting as a CO2-trapping mechanism.

Carbon isotope fractionation and leakage

Carbon isotope fractionation can provide information on modes of carbon uptake in marine phytoplankton (Raven and Johnston 1991, Rost et al. 2002). The interpretation of such data often remains complicated because of a lack of knowledge on processes involved in fractionation. In the present study, the information on the CCM derived by MIMS techniques permits a more thorough analysis of carbon isotope fractionation data. According to the model proposed by Sharkey and Berry (1985), variations in ε_p are mainly determined by the carbon source taken up and the so-called leakage (L), defined as the ratio of CO2 efflux to the total Ci uptake:

$$\varepsilon_p = a \times \varepsilon_S + L \times \varepsilon_I$$

In this equation, a represents the fractional contribution of HCO$_3^-$ to total Ci uptake and ε_S is the equilibrium discrimination between CO2 and HCO$_3^-$ (approximately $-10^{\%}$). The fractionation of the carbon-fixing enzyme Rubisco (ε_S) is assumed to be 29\%. As HCO$_3^-$ is about 10\% enriched in 13C compared with CO2 (Zeebe and Wolf-Gladrow 2001), an increasing proportion of HCO$_3^-$ uptake diminishes ε_p, which is defined relative to CO2 as the carbon source. If there is no change in carbon source, ε_p decreases with decreasing leakage. Based on these considerations, carbon isotope data may provide information on the mode of carbon acquisition and vice versa. In terms of information on the carbon source, only extreme ε_p values allow precluding one carbon source. If ε_p is lower than 0\% CO2 can be excluded as the only carbon source, while ε_p values higher than 20\% rule out HCO$_3^-$ as the only carbon source.

In our study, ε_p values were found to be in between these extreme values, being consistent with both CO2 and HCO$_3^-$ uptake. Moreover, ε_p decreases with increasing pH in all species (Fig. 3). This trend is consistent with results obtained by Burkhardt et al. (1999a, 1999b, 2001), who found ε_p to increase with decreasing pH in six marine diatom species. Reasons for this trend will be discussed in the following sections. According to Eqn 7, a higher contribution of HCO$_3^-$ uptake to net fixation will reduce ε_p. The 15\% higher HCO$_3^-$ contribution at high pH observed in N. navis-varingica (Fig. 1) would explain only 1.5\%, lower ε_p values, far less than the observed 6\% difference between pH treatments. In the other two species, the HCO$_3^-$ contribution did not change between the pH levels (Fig. 1). Consequently, most of the variation in ε_p observed in all investigated species has to result from changes in leakage. Taking the measured ε_p (Fig. 3) as well as the estimates of a obtained through the Ci flux assays, leakage was calculated according to Eqn 7 (Fig. 6). The calculated values decreased with increasing pH in all species, but between species, large differences were found. Highest values were calculated for S. stellaris (0.67 and 0.73 at high and low pH, respectively) and lowest values for N. navis-varingica (0.22 and 0.39 at high and low pH, respectively).

Because the calculated leakage is based on the assumption that the cell consists of a single compartment, an assumption obviously not matching the real structure of eukaryotic cells, it should be pointed out that the calculated leakage may only serve as an approximation of the maximal possible leakage. Any internal Ci cycling at the level of the chloroplast will decrease the leakage and subsequently ε_p (Schulz et al. 2007). Another shortcoming of the model by Sharkey and Berry (1985) is the assumption of a complete equilibrium of the carbonate system. According to Raven (1997), HCO$_3^-$ is considered as the carbon source that enters
the acidic thylakoid lumen (pH = 5). For such a low pH, the spontaneous rate of HCO₃⁻ to CO₂ conversion is sufficient to explain the observed C-fixation by RubisCO (Thoms et al. 2001). Subsequently, CA activity inside the thylakoid lumen is not necessary as previously suggested by Raven (1997). Considering that the uncatalysed conversion of HCO₃⁻ to CO₂ accounts for 22% (O’Leary et al. 1992), the CO₂ supply at the site of RubisCO in the thylakoid lumen would be isotopically lighter and hence shift εₚ to higher values. However, the latter assumes that there is no back conversion of CO₂ to HCO₃⁻ in the lumen, i.e. a complete non-equilibrium exists. In order to estimate the actual state of the carbonate system in the lumen, a detailed calculation is essential (Thoms et al. in preparation).

We also employed the MIMS to get estimates on leakage following the approach by Badger et al. (1994). Leakage was relatively low in all three species and diminished only in N. navis-varingica with increasing pH (Fig. 4). It should be noted here that these calculations are based on several assumptions, for instance, that the rate of diffusive CO₂ efflux is well represented during the first seconds of the subsequent dark phase. This approach may underestimate the real Cₑ efflux because of re-fixation of CO₂ by RubisCO in the dark (Badger et al. 1994, Rost et al. 2006b). Furthermore, a prerequisite for the application of this approach is the absence of eCA activity, which we ensured by the addition the eCA inhibitor DBS. Because eCA might act as a Cₑ-recycling mechanism, the inhibition of this enzyme may have an effect on the CO₂ efflux estimates. This underlines that new approaches are required to obtain better estimates on the important aspect of leakage.

Relationship between pH, carbon acquisition and DA production

It has been reported that higher DA production occurred at elevated pH in different strains of *P. multiseries* (Lundholm et al. 2004). To explain this effect, it has been proposed that toxin production could be induced by carbon limitation with increasing pH (Lundholm et al. 2004). In our experiments, as expected, DA was produced in the two potentially toxic species *P. multiseries* and *N. navis-varingica*, while no production was found in the non-toxic species *S. stellaris*. The content of DA increased significantly in both toxic species with increasing pH (Table 3) but was most pronounced for *P. multiseries*, where the increase in cellular DA content was more than 70-fold. This finding confirms the observation by Lundholm et al. (2004) that increasing pH induces higher DA levels. With respect to rather low values of K₁/₂ for photosynthesis in *P. multiseries* and *N. navis-varingica* (Table 2), significant DIC limitation is not indicated even under high pH. Consequently, the suggested relationship between DA and carbon acquisition/Ci limitation cannot be confirmed. It is hence likely that pH triggers the DA production in another way than by altering the carbonate chemistry. As such, external pH could affect internal pH, which in turn could alter many processes that are not associated to carbon acquisition or limitation (Hansen et al. 2007). The importance of pH should therefore be considered in future monitoring programmes for harmful phytoplankton species.

Ecological implications and conclusions

In view of the ongoing acidification of the oceans (Wolf-Gladrow et al. 1999, Orr et al. 2005) as well as elevated pH during blooms (Hansen 2002), the observed differences in CCM efficiency and regulation of the investigated diatoms may play an important role for the dominance of certain diatom species (Tortell et al. 2002, Rost et al. 2003). It is a common notion that species being able to use the large HCO₃⁻ pool may have a competitive advantage over those that rely on CO₂ and thus may be less sensitive to variations in pH (Hansen 2002, Korb et al. 1997, Nimer et al. 1997, Tortell and Morel 2002). Consequently, elevated pH should especially favour species that prefer HCO₃⁻ as their carbon source. However, the pH limit for growth for the predominant HCO₃⁻ user *S. stellaris* was already attained at pH 8.8 (Lundholm, unpublished data) although most of the DIC was present in the form of its preferred carbon source. *S. costatum* showed a strong preference for HCO₃⁻ under high pH (Rost et al. 2003), but growth was already affected above pH 8.5 (Schmidt and Hansen...
In contrast, the CO₂ user *N. navis-varingica* grew up to pH values of 10 (Lundholm, unpublished data, Kotaki et al. 2000). Similarly, the CO₂ user *P. tricornutum* (Burkhardt et al. 2001) can maintain growth up to pH 10 (Goldman et al. 1982, Humphrey 1975). Such high pH limits for growth in CO₂ users call into question the common notion that ‘HCO₃⁻ users’ have a competitive advantage over CO₂ users. According to our data and those of previous investigations, ‘HCO₃⁻ users’ are as sensitive as CO₂ users with regard to their pH/CO₂ dependence of growth. This finding is surprising because the CO₂ availability is strongly reduced at high pH and thus CO₂ users should be more prone to elevated pH. The underlying mechanisms are unclear but may point to species-specific differences in leakage (Rost et al. 2006b) as well as direct effects of pH (Hansen et al. 2007). The latter could have impact on the ionic balance of the cell and hence transporter functioning and energy requirements.

Bloom-forming phytoplankton species should be especially dependent on an efficient and regulated CCM as they maintain high growth rates even under bloom conditions when pH rises because of photosynthetic carbon consumption (e.g. Elzenga et al. 2000, Rost et al. 2003). The bloom-forming species *P. multiseries* obtained approximately 30% higher *V* max of photosynthetic O₂ evolution compared with the non-bloom-forming species (Table 2). Considering that CO₂ concentrations may be as low as 5 μmol l⁻¹ towards the end of a bloom, the high Ci affinity observed in bloom-forming species like *P. multiseries* directly translates to higher rates of carbon fixation. Moreover, bloom-forming diatom species tend to be more flexible in the use of different carbon sources (Fig. 1). These abilities may provide a competitive advantage, especially under changing conditions as they occur during a bloom. According to our results, the diatoms as group differ strongly in their mode of carbon acquisition and hence generalizations cannot be made.

References

Giordano M, Beardall J, Raven JA (2005) CO₂ concentrating mechanisms in algae: mechanisms, environmental

Rost B, Kranz S, Richter K-U, Tortell P (2007) Isotope disequilibrium and mass spectrometric studies of inorganic...
carbon acquisition by phytoplankton. Limnol Oceanogr Methods 5: 328–337

Edited by V. Hurry

Physiol. Plant. 133, 2008 105