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Abstract

The parallel adaptive model PLASMA has been developed for modeling a barotropic
atmosphere. This model adapts the computational grid at every time step according to a
physical error indicator. Thus, compared to uniform grid experiments the number of grid
points is reduced significantly. At the same time, the error increases only slightly, when
comparing with uniform grid solutions.

For the discretization of the underlying spherical shallow water equations a Lagrange-
Galerkin method is used. The unstructured triangular grid is maintained by the grid
generator amatos and the large linear systems are solved by the parallel solver interface
FoSSI. Experimental convergence is shown by means of steady-state and unsteady analyt-
ical solutions. PLASMA yields satisfactory results for quasi standard experiments, that
is the Rossby-Haurwitz wave and zonal flows over an isolated mountain.

Key words: Atmospheric flow, Shallow water equations, Adaptive grid, Parallelization,
Analytical test cases
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1 Introduction

Atmospheric flows are largely determined by nonlinear interactions between pro-
cesses at widely varying spatial and temporal scales. Thus, the realistic represen-
tation of these nonlinear multi-scale interactions is important for climate modeling
as well as for numerical weather prediction. Considering the large-scale circulation,
the interaction between zonal flow and planetary Rossby waves plays a crucial role
for climate variability on time-scales from seasons to decades. To study these and
other multi-scale interactions, the application of a global atmospheric model with a
flow-dependent, i.e. dynamically adaptive grid may be appropriate.

The purpose of this paper is to introduce the new, adaptive global atmospheric model
PLASMA (Parallel LArge-scale Self-adaptive Model of the Atmosphere). Within
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PLASMA, the model equations are solved on an unstructured, triangular grid, which
is dynamically adapted to the evolving atmospheric flow every time step. The
dynamic grid adaptation allows spatial resolution to increase locally over regions
of interest within the whole model domain, thus keeping the computational costs
limited.

Nowadays, atmospheric models with fixed, uniform horizontal resolution are most
common. These models can resolve nonlinear multi-scale interactions only over a
very limited range of spatial scales. To overcome this limitation, several approaches
for a locally increased spatial resolution over areas of interest have been developed
especially for atmospheric regional models (see also [18] for an overview). The most
important approaches are nested grids, stretched grids and dynamically adapted
grids.

Nested modeling systems have been developed since the 1970s for numerical weather
prediction, e. g. [12], and later on for regional climate modeling, e. g. [22]. The nest-
ing technique consists in embedding a high-resolution regional model into a low-
resolution model, where the latter provides the time-dependent boundary forcing
for the high-resolution model. The nesting technique can be either one-way, see
[12], or two-way interactive, see [50, 34]. In simpler one-way nesting, large-scale
information is given to the regional model, but no feedback from the high-resolution
model to the low-resolution nesting model is possible. Two-way nesting includes feed
back from the regional domain to the large scales, thus reducing potential mismatch
between the high-resolution model and the low-resolution model.

An alternative technique for variable-resolution models is the stretched grid ap-
proach. Pioniering work on this approach for grid point models has been done by
Staniforth and Mitchell in [46]. By stretching grid intervals outside a fixed, uni-
form fine-resolution area of interest uniformly over the rest of the globe, a single
global variable-resolution grid is obtained. The main advantage of this approach
is that it includes the two-way feedback between large-scale and regional-scale cir-
culation. Stretched-grid regional climate simulations are becoming more common
since the 1990s (see the studies [13, 18, 35]) and leading to the international SGMIP
(Stretched-Grid Model Intercomparison Project) initiative, see [17]. For spectral
models, a stretched grid can be obtained by applying a stretching coordinate trans-
formation, see [42]. Several global atmospheric models are based on this approach,
together with a rotation of the poles, see [11, 25].

The stretched grid approach with one fixed area of interest has been further de-
veloped in [19] to a grid design with multiple areas of interests which allows the
simulation of different regional climates simultaneously. Even more flexibility with
respect to areas and features of interest can be gained with dynamically stretched
grids based on time-dependent global coordinate transformations. By redistributing
a constant number of grid points a dynamically adapted moving grid is obtained.
Probably the first atmospheric application of this method was developed by Dietach-
mayer and Droegemeier [14] solving the one-dimensional viscous Burger’s equation.
One- and two-dimensional adaptive advection problems have been treated in [27]
whereas in [39] a 3D anelastic, non-hydrostatic model based on this time-dependent
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coordinate transformation has been developed.

Instead of moving the grid with time, another dynamic grid adaptation technique
inserts or removes grid points depending on a feature or process of interest. The
first atmospheric model using this technique, a 3D limited-area model, has been
introduced in [44] and [43]. More recently Bacon et al. [2] have developed the oper-
ational Multiscale Environmental Model with Grid Adaptivity (OMEGA), which is
an adaptive non-hydrostatic regional weather and dispersion model.

On the way to the development of 3D global dynamically adaptive models, several
spherical adaptive 2D shallow water models have been developed. The spherical
shallow water equations comprise the essential physical phenomena that are included
in the full set of primitive equations. Thus, they provide a test environment for the
horizontal discretization methods and the adaptive grid refinement before going to
the development of full 3D models.

Statically adaptive shallow water models on the sphere have been introduced in [41],
[16] and [5]. Until now, spherical dynamically adaptive shallow water models are not
wide-spread. Recently, Jablonowski proposed in [28, 29] an adaptive grid refinement
technique for the hydrostatic Lin-Rood dynamics package based on a conservative
and monotonic finite volume discretization in flux form. The corresponding dynam-
ical core on the sphere has been run in a 2D shallow water model configuration as
well as in a full 3D hydrostatic configuration. The proposed grid refinement tech-
nique has been developed for a quadrilateral latitudinal-longitudinal grid using a
block-structured data-layout.

Here, we have developed a different dynamically adaptive shallow-water model, the
model PLASMA. The requirements for underlying grid refinement strategy had
been: (i) high flexibility in providing areas with high and low resolution, (ii) no
abrupt changes in grid resolution, (iii) grid refinement depending on a feature or
process of interest, (iv) automated refinement and coarsening of the grid. Further-
more, we have to demand stability of the numerical method for different spatial
resolutions.

To fullfill these requirements, we approximate the sphere by a polyhedron consisting
in an adaptive, unstructered triangular grid with the nodes situated on the sphere.
The grid is generated by the mesh generator amatos, see [7]. Its refinement strat-
egy is controlled by the atmospheric flow processes. A Lagrange-Galerkin method
is used to discretize the governing equations. The Lagrange-Galerkin method is
a combination of the semi-Lagrangian method for the temporal and the finite el-
ement method for the spatial discretization. These discretization methods lead to
large linear systems of equations which are solved by means of parallel linear solver
interfaces, provided by the package FoSSI, see [20].

The governing continuous equations of PLASMA are described in section 2, whereas
their numerical discretization by a Lagrange-Galerkin method is given in section 3.
The dynamically adaptive grid generation technique is presented in section 4 followed
by the introduction of the parallel linear solver interfaces in section 5. In section
6, PLASMA is validated with special emphasis on the study of the convergence
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properties. This is achieved by means of several known shallow water test cases,
including steady analytical and non-analytical cases, see [49]. Furthermore, recently
introduced unsteady analytical test cases in [33] are applied. In order to demonstrate
the ability of PLASMA to simulate the most important feature of the extratropical
large-scale circulation, planetary Rossby-waves, numerical experiments are presented
in section 6 as well. The paper concludes with a summary.

2 Spherical shallow water equations

PLASMA is based on the spherical shallow water equations. These barotropic equa-
tions are derived from the non-divergent primitive equations in R3 for a homoge-
neous atmosphere with small vertical velocity components, see e. g. [24, 37, 31]. In
PLASMA the spherical shallow water equations are used in a scalar formulation in
terms of the prognostic variables vorticity, divergence and geopotential.

At first, some notation is introduced, the constants a = 6.371221 · 106 m for the
Earth radius, Ω = 7.292 ·10−5 1/s for the Earth’s angular velocity and g = 9.81 m/s2

for the Earth’s acceleration due to gravity. Further, the equations are considered in
a time interval (0, T ) ⊂ R and in the spatial domain S = {x ∈ R3 | |x| = a}. For
two vectors x,y ∈ R3 the scalar product is denoted by x · y.

The advective formulation of the spherical shallow water equations in cartesian
coordinates, known from e. g. [10, 49, 23, 9], can be written as

du

dt
+∇S Φ = −f k× u− |u|2

|x| k,

d(Φ− ΦB)

dt
+ (Φ− ΦB) divS u = 0,

u · k = 0.

(1)

Here, u(x, t) ∈ R3 and Φ(x, t) ∈ R are the wind field and the geopotential height
field, k(x) = x

|x| is the normal vector in vertical direction, f = 2Ω (0, 0, 1) · k is

the Coriolis parameter and ΦB(x) ∈ R is the given geopotential height field of
the Earth’s orography. The material derivative of a function h is defined by dh

dt
=

∂th + u · ∇S h, the horizontal gradient by ∇S h = ∇h − (k · ∇h)k, the horizontal
divergence of a vector field v by divS v = div(v−v·kk) and the horizontal Laplacian
by ∆S h = divS ∇S h. System (1) is equivalent to the scalar formulation of the
spherical shallow water equations which consists of the prognostic equations

dζ

dt
+ ζ δ + f δ = −u · ∇S f,

dδ

dt
+ ∆S Φ− f ζ = −(k× u) · ∇S f − J(u),

d(Φ− ΦB)

dt
+ (Φ− ΦB) δ = 0

(2)
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and the Helmholtz decomposition

−∆S ψ = ζ,

∆S χ = δ,

rotS ψ +∇S χ = u.

(3)

The prognostic variables are vorticity, divergence and the geopotential field denoted
by ζ(x, t), δ(x, t),Φ(x, t) ∈ R, respectively. The diagnostic variables are the wind
field u, the stream function ψ(x, t) ∈ R and the velocity potential χ(x, t) ∈ R. The
functional J is defined by J(u) =

∑3
i,j=1(∇S ui)j(∇S uj)i + u · u.

3 Lagrange-Galerkin method

The model PLASMA computes the numerical solution of a viscous version of system
(2), (3). Because viscosity vanishes asymptotically, this solution can be interpreted
as a vanishing viscosity limit of system (2), (3). For that purpose, the Lagrange-
Galerkin method, e. g. see [47], is applied to the viscous spherical shallow water
equations. The Lagrange-Galerkin method is a combination of the semi-Lagrangian
method for the temporal and the finite element method for the spatial discretization
on the sphere. Grid adaptation is accomplished in every time step. Based on a
physical error indicator, in the time step n a new triangulation T n+1 of S is created
with the grid generator in section 4. A linear system of equations for the prognostic
variables at time tn+1 is constructed with the finite element method on T n+1. In
doing so, on the right hand side the semi-Lagrangian method leads to trajectory
computations and interpolations of variables at time step n on the triangulation
T n.

3.1 Artificial viscosity

Numerical modeling of advection dominated processes has to deal with energy trans-
port from larger to smaller physical wave lengths. Because the computational grid
gives a lower limit for the discrete wave lengths an energy accumulation in the small
scales can lead to numerical instabilities, e. g. see [36]. One possiblity to circumvent
this phenomenon is damping with artificial viscosity.

Due to these reasons, for the application of the Lagrange-Galerkin method the vis-
cous spherical shallow water equations are considered. They consist of the system
(2), (3) and the additional artificial viscosity terms −ν∆S ζ, −ν∆S δ and −ν∆S Φ
on the left hand sides of the equations in system (2), respectively. In doing so, the
space dependent viscosity parameter ν(x, t) ∈ R≥0 is chosen proportional to the lo-
cal grid resolution ∆x. Thus, the asymptotic limit of the discrete viscous spherical
shallow water equations yields a numerical solution of system (2).
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3.2 Semi-Lagrangian method

The semi-Lagrangian method is an appoximation of the material derivative dh
dt

of a
scalar function h, see [45]. Within one time step, each grid point x is treated as a
Lagrangian particle and dh

dt
at the point x is approximated by a difference quotient

along the trajectory of the point. In PLASMA, trajectories are computed by a
first order explicit Euler method which leads to a first order approximation of the
material derivatives.

Let us consider a function h(x, t) ∈ R within the time step tn → tn+1. The material
derivative dh

dt
is derived on each grid point x ∈ S implicitly at time tn+1. Therefore,

the trajectory function X is considered starting at x fulfilling the equation

∂τX(x, tn+1; τ) = u(X(x, tn+1; τ), τ), X(x, tn+1; tn+1) = x

for τ ∈ [tn, tn+1]. This system is solved with the time extrapolated
value u(x, tn+1) by an explicit Euler method yielding the numerical solution
X∗(x) = X∗(x, tn+1; tn) = X(x, tn+1; tn) + O(∆t2). Using dh

dt
(x, tn+1) =

h(x,tn+1)−h(X(x,tn+1;tn),tn)
∆t

+ O(∆t), we obtain the first order approximation of the
material derivative at the point X∗ for a smooth (Lipschitz continuous) h

dh

dt
(x, tn+1) =

h(x, tn+1)− h(X∗(x), tn)

∆t
+O(∆t). (4)

3.3 Finite element method on the sphere

The starting point for the finite element method is the weak formulation of system
(2), (3) at time tn+1. For the clarity of presentation, in this section we confine
ourselves to the treatment of the vorticity equation in (2). Let us denote hn+1(x) =
h(x, tn+1) for a function h(x, t). Then, the weak formulation of the vorticity equation
is given by

∫

S

(
dζ

dt

n+1

+ (ζn+1 + f) δn+1

)
ϕdσ

+

∫

S

ν∇S ζ
n+1 · ∇S ϕdσ =

∫

S

(−un+1 · ∇S f
)
ϕdσ

for arbitrary test functions ϕ(x) ∈ R. With the approximations

ζn+1 δn+1 =
1

2
(ζn+1 δn + ζn δn+1) +O(∆t), un+1 = un +O(∆t)
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Figure 1: Triangulation T n+1 on S at time tn+1.

and the semi-Lagrangian time derivative in Eq. (4) one obtains the linearized semi-
discrete formulation of the vorticity equation

∫

S

(
ζn+1 (1 +

∆t δn

2
) + δn+1 ∆t (f +

ζn

2
)

)
ϕdσ

+ ∆t

∫

S

ν∇S ζ
n+1 · ∇S ϕdσ =

∫

S

(ζn(X∗)−∆tun · ∇S f)ϕdσ. (5)

At every time step the grid is adapted to the dynamical model situation. Therefore,
a physical error indicator is derived for model variables at time tn, see section 4.1.
Based on this error the triangulation T n+1 with N points is created on S for the
new time tn+1, see Fig. 1 and section 4.2. Piecewise linear basis functions (ϕi)i=1,..,N

with respect to T n+1 are considered and the approach

ζn+1(x) =
N∑

i=1

ζn+1
i ϕi(x), δn+1(x) =

N∑
i=1

δn+1
i ϕi(x)

is chosen for the model variables. The semi-Lagrangian method leads to the evalua-
tion of the upwind points X∗ and of ζn(X∗) in Eq. (5). Because ζn is piecewise linear
on S, this function evaluation can be taken as a linear interpolation of ζn. Thus,
Eq. (5) yields a linear system of equations for the unknown coefficients (ζn+1

i )i=1,..,N

and (δn+1
i )i=1,..,N , which is solved at every time step, see section 5. Numerical ex-

periments have yielded the heuristic perception, that stability as well as accuracy
properties are much better with a piecewise quadratic choice for the geopotential
Φn+1.
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4 Adaptive grid generation

Knowing the model variables at the time tn on the triangulation T n of S an adapted
triangulation T n+1 is created. Therefore, a physical error indicator is employed to
mark individual elements of T n for refinement and coarsening, respectively. The
grid generator amatos uses these marks to modify T n and to create the adapted
triangulation T n+1 for the time tn+1.

4.1 Physical error indicator

Let the triangulation T n be the set of all elements of the grid on S at time tn. An
error estimator η of the numerical solution ζ, δ, Φ of the system (2), (3) is a function,
which assigns a scalar value η(T ) to every grid element T ∈ T n. η(T ) represents the
quality of ζ, δ, Φ in T . Until now there is no rigorous mathematical error estimator
for the spherical shallow water equations. That is why the physical error indicator

η(T ) =




∫

T

ζ2 + δ2 dσ




1
2

, for T ∈ T n

is introduced resulting in the corresponding global error indicator ηg =(∑
T∈T n η(T )2

) 1
2 . This choice of η(T ) is based on the perception, that high flow

gradients will lead to high discretization errors. η is uniformly distributed, if there
is a constant value η0 that the relation η(T ) = η0 holds for all T ∈ T n. Thereby,
η0 can be expressed by η0 = ηg√

Ne
, with the number of grid elements Ne. The trian-

gulation T n+1 for the future time tn+1 is constructed with the aim, that η is nearly
uniformly distributed. If η is already uniformly distributed, the triangulation re-
mains unmodified, that is T n+1 = T n. If η is not uniformly distributed, a tolerance
interval 0 < η < ηg < η is fixed. Due to experimental results, the values η = 4

5
ηg

and η = 6
5
ηg are chosen for the model. Then, the sets

F := {T ∈ T n| η(T ) >
η√
N e

}, C := {T ∈ T n| η(T ) <
η√
N e

}

are defined which contain the elements that differ too strongly from the mean value.
In T n the members of the subsets F and C are now marked for refinement and
coarsening, respectively.

4.2 Grid generation

Triangular adaptive grid generation involves an unstructured problem. Therefore,
advanced techniques for refinement, data structures and data handling are required.
These techniques are implemented in the mesh generation library amatos (Adaptive
Mesh generator for Atmospheric and Oceanic Simulation) [6]. The main paradigm
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Figure 2: The initial mesh based on a bucky ball triangulation.

underlying amatos’ data organization is the strict separation of (mainly integer) grid
generation related operations and (mainly floating point) numerical operations. A
gather/scatter step has to take place prior to data processing. The main advantage
of this small overhead is that numerical operations can be performed on consecutive
data structures, facilitating low level and automatic compiler optimization.

The grid generation part comprises an object oriented data management structure.
The mesh consists of mesh atoms: nodes, edges and cells. Edges have knowledge
of their neighbors, providing the main connectivity information. Mesh refinement
is achieved by a bisection-of-marked-edge strategy [40, 4]. This refinement strat-
egy leads to conforming meshes (i.e. meshes without hanging nodes) and yields a
favourable lower bound for the smallest interior angles of cells. Furthermore, this
strategy is very simple from the algorithmic point of view, since it does not need to
track exceptional refinements, and is well suited for the generation of space-filling
curve orderings (see below). Finally, coarsening a locally refined mesh is easily
achieved. A binary tree data structure maintains locally refined meshes efficiently.
Especially, element search operations are accelerated to O(logm) operational com-
plexity, where m is the number of mesh cells.

When using amatos, a coarse initial mesh has to be specified. Two parameters con-
trol the mesh refinement: a fine level defines a mesh level of uniform refinement,
while a coarse level defines the minimum level of refinement (i.e. the lowest per-
mitted resolution). The local degree of grid refinement is controlled by an iterative
refinement or coarsening according to the sets F and C. amatos is capable of han-
dling plane and spherical two-dimensional meshes. In spherical geometries, newly
inserted mesh nodes are projected to the sphere’s surface by central projection. An
initial mesh based on a bucky ball triangulation [26] is shown in Fig. 2.

An important problem with unstructured meshes on high performance computing
devices is the mesh partitioning. amatos uses a space-filling curve (SFC) approach
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to find a mesh partitioning. The SFC resembles the refinement process and needs
only one bit shift per refined element [7]. This type of SFC preserves neighborhood
relations and yields connected domains. Perfect load balancing is achieved with a
small increase in the edge cut compared to other partitioning techniques [8].

amatos supports finite element calculations by a flexible run-time management of
arbitrary element types. Unknowns in elements are allowed to be located on nodes,
edges and cell interiors of the mesh (see section 3.3). The unknowns or degrees of
freedom are sorted by the SFC in consecutive order. This leads to matrix bandwidth
reduction and significant improvement of convergence in preconditioned CG-like
methods [7].

5 Linear equations solver interface

Choosing an appropriate linear solver for a highly complex finite element model is
a challenging task. Especially with growing problem complexity during the devel-
opment of the model, formerly successful algorithms may turn out to be no longer
applicable. Therefore, a variety of powerful solvers is needed that can be easily ex-
changed. The linear equations solver applied in PLASMA is attached via the Family
of Simplified Solver Interfaces (FoSSI, see [20]) which provides a very simple user
interface to MPI-parallel iterative solvers from PETSc, hypre, PILUT, AZTEC, see
[3, 15, 30, 48], and even to the direct solver MUMPS, see [1].

FoSSI makes accessible a variety of parallel algorithms and methods such as Krylov
subspace iterators like CG, GMRES, BiCGStab preconditioned by domain decom-
position (PETSc, AZTEC, hypre), multilevel incomplete factorization (PILUT) or
algebraic multigrid (hypre) and parallel multifrontal direct methods (MUMPS).
These are frequently tested, state-of-the-art parallel libraries, offering superior per-
formance and providing efficient memory usage. It is noteworthy, that libraries such
as PETSc and hypre also offer several methods to select solvers, even from external
solver libraries. However, compared to FoSSI there are still many limitations in
the flexibility, e.g. concerning different interfaces and data structures in different
libraries.

FoSSI is implemented as a collection of interface routines to the different solver li-
braries. By this, it is possible to modify each interface independently from the others,
e.g., for using new solver features or upgrading to a new solver library release with
syntax changes. All FoSSI-interfaces consist of only one routine with a task specify-
ing parameter, allowing the selection of several operations and configuration options
in one call. Furthermore, the same interface may be called several times for different
phases of the problem solution such as matrix structure setup, matrix value feed,
factorization, solution and clean-up. Many linear problems may be kept in memory
simultaneously. As it is even possible to define a separate MPI-communicator on
each problem, several linear problems can be treated in parallel.

Benefiting from the flexiblity of FoSSI a couple of linear solvers have been tested
within PLASMA. After comparative performance tests, restarted GMRES(15) taken
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from PETSc preconditioned with global algebraic multigrid (BoomerAMG from
hypre) is currently used, see section 6.4.

6 Model validation

PLASMA is validated by means of numerical experiments. The validation process
is carried out in two steps. At first, a convergence study considering analytical
solutions of the spherical shallow water equations is performed. Although these
solutions are rather artificial, the distance to an analytical solution is the only pos-
sibility to evalutate the error of a numerical solution. After that, simulations of
Rossby-Haurwitz waves and of planetary Rossby waves forced by orography have
been carried out.

Two kinds of experiments have been performed; uniform grid experiments and adap-
tive grid experiments. In a uniform grid experiment the grid of the model remains
temporally fixed. In an adaptive grid experiment the grid is adapted at every time
step according to the physical error indicator described in section 4.

The model simulations have been shown by performing adaptive grid experiments
instead of uniform grid experiments, that up to 75% fewer grid points can be used
still obtaining nearly the same accuracy. Certainly, the dimension of the problem
size, that is proportional to the number of grid points, differs to the dimension of
the computational costs. That is because adaptive grid experiments include more
computations per grid point, for instance the computation of the error indicator
and the grid adaptation. Further, a reliable comparison of computational costs,
especially to methods already in use, is rather complicated, because the model code
is optimized for adaptive grid experiments, but not for uniform ones.

6.1 Analytical solutions

In this section all numerical experiments have been carried out with an integration
time of T = 5 day. Various initial conditions have been given by different known
analytical solutions. For the empirical convergence tests the relative L2-errors η(Φ)
of the geopotential have been considered. Therefore, η(Φ) has been computed for
different grid resolutions. For the uniform grid experiments, the grid resolution
∆x has ranged from 261 km up to 1041 km. For the adaptive grid experiments,
the parameter ∆x indicates the finest grid resolution. The corresponding coarsest
resolutions are denoted in table I. The time step ∆t is chosen such, that the Courant-
Friedrichs-Levy (CFL) number u∆t

∆x
equals u 900 s

854 km
for all experiments in this section.

This yields u∆t
∆x

< 0.1 with a maximum velocity of 80 m/s.

Numerical solutions converge to the analytical ones for the steady state case as well
as for the unsteady case. In all experiments the experimental order of convergence
is about 1.0, which seems to be appropriate due to the applied first order method in
time, see the trajectory approximation in section 3.2. The adaptive grid experiments

11



Preprint 2007, Alfred Wegener Institute, Germany, M. Läuter, et al.

∆x, finest resolution [km] 261 428 522 854 1041
coarsest resolution [km] 1041 1701 2058 3339 3938

Table I: Adaptive grid experiment, parameter ∆x with the range of grid resolution.

need between about a half and a quarter the number of grid points compared to the
uniform grid experiment and show only slightly larger L2-errors.

6.1.1 Solid body rotations

After writing down a general solid body rotation, a steady-state and an unsteady
version are used to initialize two experiments. Therefore, let us choose arbitrarily
(for the experimental set-up, see values below) a vector c ∈ R3 with |c| = 1, a
maximal velocity u0 and a constant d0. Then the solid body rotation

usbr(x, t) = u0 ϕt(c)× k,

Φsbr(x, t) =
−(u0 ϕt(c) · k + Ω · x)2

2
+

(Ω · x)2

2
+ d0

(6)

with the orography field

ΦB(x) =
(Ω · x)2

2
(7)

is an analytical solution of the spherical shallow water equations, see [33, Example
3]. Here, Ω = (0, 0,Ω)T is the Earth’s angular velocity vector and ϕt with

ϕt(c) =




cos(Ωt) sin(Ωt) 0
− sin(Ωt) cos(Ωt) 0

0 0 1


 c

is a linear rotation map. With the choice of parameters

c = (0, 0, 1)T, u0 = 2πa/(12 day), d0 = 29400 m2/s2 (8)

the functions usbr and Φsbr in Eq. (6) are a steady-state solution of the spherical
shallow water equations, with orography given by Eq. (7) as well as with ΦB ≡
0. This solution coincides with [49, test 2]. With the choice of parameters c =
(− sin π

4
, 0, cos π

4
)T, u0 = 2 πa/12 m/day, d0 = 133681 m2/s2 the functions usbr and

Φsbr in Eq. (6) are an unsteady solution of the spherical shallow water equations,
with orography given by Eq. (7).

The relative L2-errors of the geopotential η(Φ) for the steady-state and unsteady
solid body rotation are displayed in Fig. 3. Numerical solutions converge to the
analytical solutions with experimental orders of convergence of about 1.01 and 0.76,
respectively. The uniform grid experiment uses 20482 points. The adaptive grid
experiment uses 11331 (10300) grid points in the steady-state (unsteady) case at
time T = 5 day and for ∆x = 261 km. The corresponding relative L2-errors are
2.4 · 10−4 respectively 5.0 · 10−5 greater than for the uniform case. Hence, the
adaptive grid experiment needs only half the number of grid points, but leads to
only a slightly greater L2-error compared to the uniform grid experiment.

12
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Figure 3: Solid body rotations, relative L2-errors η(Φ) at time T = 5 day; uniform
grid experiments - solid line, adaptive grid experiments - dashed line; left: steady-
state solution, right: unsteady solution.

6.1.2 Jet streams

In a similar way as in the preceding section, we introduce a general jet stream, whose
steady-state and unsteady version is used to initialize two experiments. Therefore,
let us choose arbitrarily a vector c ∈ R3 with |c| = 1, maximal velocities u0, u1,
latitudinal angles θ0, θ1 and and a constant d0. The auxiliary axis a and the velocity
profiles up,sbr, up,jet are defined by

a =
u0 c + aΩ

|u0 c + aΩ| , up,sbr(x) = |u0 c + aΩ|
√

1− x2, ∀x ∈ [−1, 1],

up,jet(sin θ) =

{
u1 exp

(
1

(θ−θ0)(θ−θ1)
+ 4

(θ0−θ1)2

)
for θ0 ≤ θ ≤ θ1

0 else
,

where a denotes the Earth radius given in section 2. The jet stream

u(x, t) = usbr(x, t) + up,jet(ϕt(a) · k)
ϕt(a)× k

|ϕt(a)× k| ,

Φ(x, t) = Φsbr(x, t)−
arcsin(ϕt(a)·k)∫

0

tanφ (2 up,sbr up,jet + u2
p,jet) ◦ sin θ dθ + d0

(9)

with orography given by Eq. (7) is an analytical solution of the spherical shallow
water equations, see [33, Example 4]. With the choice of parameters

c = (0, 0, 1)T, u0 = 0, u1 = 2πa/(12 day),

θ0 =
π

18
, θ1 =

5π

18
, d0 = 98100 m2/s2

(10)

the functions u and Φ in Eq. (9) are a steady-state solution of the spherical shallow
water equations, with orography given by Eq. (7) as well as with ΦB ≡ 0. This
solution is similar to the undisturbed initial fields in [21]. With the choice of pa-
rameters c = (− sin π

4
, 0, cos π

4
)T, u0 = 20 m/s, u1 = 2πa/(12 day), θ0 = π

18
, θ1 = 5π

18

13
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Figure 4: Jet streams, relative L2-errors η(Φ) at time T = 5 day; uniform grid
experiments - solid line, adaptive grid experiments - dashed line; left: steady-state
solution, right: unsteady solution.

and d0 = 129629 m2/s2 the functions u and Φ in Eq. (9) are an unsteady solution
of the spherical shallow water equations, with orography given by Eq. (7).

The relative L2-errors of the geopotential η(Φ) for the steady-state and the un-
steady jet stream are displayed in Fig. 4. The significant oscillations of η(Φ) are
a model artefact which can be attributed to the anisotropic structure of the trian-
gular grid, see [33] for a detailed explanation. Numerical solutions converge to the
analytical solutions with the experimental orders of convergence of about 1.9 and
0.77, respectively. The uniform grid experiment uses 20482 points. The adaptive
grid experiment uses 5500 (5923) grid points in the steady-state (unsteady) case at
time T = 5 day and for ∆x = 261 km. The corresponding relative L2-errors are
9.4 · 10−4 respectively 1.7 · 10−4 greater than for the uniform case. Hence, similar
as in section 6.1.1 the adaptive grid experiment needs only a quarter the number of
grid points, but leads to an only slightly greater L2-error compared to the uniform
grid experiment.

6.2 Rossby-Haurwitz waves

Rossby-Haurwitz waves were first used for the validation of a shallow water model by
Phillips [38]. These are solutions of the linearized non-divergent barotropic vorticity
equation and move from west to east without change of their shape. Here, a Rossby-
Haurwitz wave with wave number R = 4 has been studied. Beside the contour
plots, conservation properties of the model have been evaluated. A uniform grid
experiment has been performed with the grid resolution ∆x = 131 km and the time
step ∆t = 137 s, which corresponds to the CFL number u 900 s

854 km
in section 6.1.

Rossby-Haurwitz waves, see [49, Test case 6] for a complete description, are given
by their zonal and meridional wind fields

u(λ, θ) = aω cos θ + aω cosR−1 θ (R sin2 θ − cos2 θ) cosRλ,

v(λ, θ) = −aωR cosR−1 θ sin θ sinRλ,

with the constant ω = 7.848 · 10−6 1/s and the longitudinal and latitudinal an-
gles λ and θ, respectively. In vector formulation, this can be reproduced by

14



Preprint 2007, Alfred Wegener Institute, Germany, M. Läuter, et al.
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Figure 5: Rossby-Haurwitz wave, contour plots for geopotential Φ after 1 and 14
days.
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Figure 6: Rossby-Haurwitz wave, rel. errors of mass, total energy and potential
enstrophy and mean values of vorticity and divergence.

u(x, 0) = u(λ, θ) i + v(λ, θ) j with the unit vectors i and j into eastward and north-
ward direction, respectively.

Contour plots for the geopotential Φ are depicted in Fig. 5, for simulation times of
1 and 14 days, respectively. The large-scale wave structure is temporally conserved,
although the meridional wave amplitude is reduced due to numerical diffusion of the
model. The values of mass m, total energy E, potential enstrophy PE, vorticity
ζ and divergence δ are given in Fig. 6, see e. g. [49] for the definitions of the
variables. While the relative errors of the global integrals are plotted for m, E and
PE, the mean values are displayed for vorticity and divergence. As a consequence
of the semi-Lagrangian approach neither m nor E nor PE are conserved in the
experiment. After 14 days, these grid size dependent errors are close to 0.1%, 2%
and 1.5%, for m, E and PE respectively. ζ and δ are prognostic model variables and
occur as right hand sides of the Poisson equations in (3). Hence, the mean values
are independent on the grid size and close to machine precision.

6.3 Zonal flow over a mountain

The orographic forcing of planetary Rossby waves has been studied by means of
15 day long experiments, initialized with two different flow fields, a solid body ro-
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Figure 7: Solid body rotation with mountain, adaptive grid experiment; contour
plot of geopotential Φ and computational grid; time T = 5 day.

tation and a jet stream. These zonal fields are disturbed by an isolated moun-
tain generating meridional disturbances and therewith planetary waves. The orog-
raphy of the mountain is given by ΦB(x) = Φmax (1− r(x)) with the auxiliary
function r(x) = min

(
1, 9

π

√
(λ(x) + π

2
)2 + (θ(x)− π

6
)2

)
and the mountain height

Φmax = 2000 gpm, where 1 gpm = 9.81 m2/s2.

For both initial fields a uniform grid experiment and an adaptive grid experiment
have been performed. The time step is ∆t = 900 s, whereas the grid resolution
amounts to 131 km for the uniform grid experiments and ranges from 131 km up to
522 km for the adaptive grid experiments.

6.3.1 Solid body rotation

The first experiment is in accordance with test case 5 in [49]. The simulation has
been initialized with the steady-state solid body rotation of section 6.1.1, but with
constants u0 = 20 m/s and d0 = 58468 m2/s2. The contour plots for geopotential
Φ are depicted in the Figs. 7 and 8 for the adaptive grid experiment after 5 and
15 days. Orographic forcing by the isolated mountain is visible. The disturbance
propagates into south-easterly direction, thus the planetary waves develop into the
southern hemisphere, too. The bottom subplots in the Figs. 7 and 8 show sections
of the corresponding grids. The time dependent regions of higher resolution follow
the wave structure in the geopotential.

After 15 days, the adaptive grid experiment utilizes 21528 points, whereas the uni-
form grid experiment utilizes 81922 points. The geopotential difference fields be-
tween the adaptive grid experiment and the uniform grid experiment are depicted
in Fig. 9. While the differences after 5 days are below 4 gpm they have been grown
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Figure 8: Solid body rotation with mountain, adaptive grid experiment; contour
plot of geopotential Φ and computational grid; time T = 15 day.
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Figure 9: Solid body rotation with mountain, ”adaptive grid experiment” minus
”uniform grid experiment”; contour plots of geopotential Φ; left: time T = 5 day,
right: time T = 15 day.

up to 20 gpm after 15 days in the eddies at 45◦S. Because of a layer depth of more
than 5000 gpm, a quarter the number of grid points in the adaptive grid experiment
is sufficient to obtain a geopotential difference smaller than 0.5% compared to the
uniform grid experiment.

6.3.2 Jet stream

The second experiment has been initialized with the steady-state jet stream intro-
duced in section 6.1.2, see [32]. The contour plots for the geopotential Φ are depicted
in the Figs. 10 and 11 for the adaptive grid experiment after 5 and 15 days. Like
in section 6.3.1, the orographic forcing by the isolated mountain is visible. Now,
the disturbance propagates mainly into easterly direction due to the jet structure.
Thus, the planetary waves develop along the jet stream in the northern hemisphere
only. The bottom subplots in the Figs. 10 and 11 show sections of the correspond-
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Figure 10: Jet stream with mountain, adaptive grid experiment; contour plot of
geopotential Φ and computational grid; time T = 5 day.

ing grids. Again, the time dependent regions of higher resolution follow the wave
structure in the geopotential. Beside the planetary wave structure, refined regions
outside the original jet regions are visible. This indicates a finer resolution due to
turbulent flow structures and eddies.

After 15 days, the adaptive grid experiment utilizes 17796 points, whereas the uni-
form grid experiment utilizes 81922 points. The geopotential difference fields be-
tween the adaptive grid experiment and the uniform grid experiment are depicted
in Fig. 12. After 5 days the maximum geopotential differences are smaller than
16 gpm, but they grow up to about 60 gpm after 15 days in the region of large ed-
dies at 30◦N. Due to a layer depth of more than 9500 gpm, this corresponds to a
relative error of approximately 0.6%. Although the highest grid resolution is near
the eddies, the maximum error is located there. This could be an indication for
the fact, that the physical error indicator detects a refinement area as too small to
reproduce the turbulent flow structures absolutely correct. Nevertheless, a quarter
the number of grid points in the adaptive grid experiment is sufficient to simulate
planetary waves, that differ only 0.6% to the results in the uniform grid experiment.

6.4 Performance data for linear solver

In this section we present performance data of standard parallel solvers from
PETSc 2.2.1/hypre 1.8.2b and MUMPS 4.3.2 assessed via FoSSI as introduced in
section 5. They are applied to solve the Poisson equations in (3) within the adaptive
grid experiment in section 6.3.2, that is a jet stream overflowing an isolated moun-
tain. In this section the grid resolution ranges from 33 km up to 1041 km yielding
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Figure 11: Jet stream with mountain, adaptive grid experiment; contour plot of
geopotential Φ and computational grid; time T = 15 day.
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Figure 12: Jet stream with mountain, ”adaptive grid experiment” minus ”uniform
grid experiment”; contour plots of geopotential Φ; left: time T = 5 day, right: time
T = 15 day.
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a matrix with 572158 rows. This ratio of maximum to minimum grid resolution
clearly exceeds the ratio for the adaptive grid experiments in the sections 6.1 and
6.3. The performance data show that the solver accomplishes even this demanding
situation.

Performance data of solving the linear system using GMRES from PETSc (restarted
every 15 iterations) in combination with three different preconditioners are presented
for two to eight CPUs in table II. The first column describes the preconditioner.
AMGglob stands for global algebraic multigrid (AMG, from hypre) preconditioning,
A2AMGloc stands for restricted additive Schwarz method with overlap 2 in combi-
nation with local AMG iterations and A2ILU3 stands for restricted additive Schwarz
method in combination with a level 3 incomplete factorization from PETSc. As the
matrix is symmetric, a combination of a symmetric incomplete factorization and
a CG method was also tested. The results are omitted because this combination
yielded only minor performance. The second and the third columns contain the
number of CPUs and the iteration counts (#Its) for the solution task, respectively.
tPC and tSol give the times for the preconditioner setup and the solver in seconds.
The parallel efficiency Peff of the solver, indicating the relation of observed speedup
to optimal (linear) speedup, is given in the last column (based on the sum of the
time needed for the preconditioner setup and the solver tPC +tSol). All computations
were performed on one node of an IBM Regatta p655 with 8 Power4+ processors at
1.7 GHz.

PC CPUs #Its tPC tSol Peff

AMGglob 2 14 5.05 s 6.94 s -
AMGglob 4 13 2.59 s 3.43 s 99.5 %
AMGglob 8 12 1.36 s 1.94 s 91.8 %
A2AMGloc 2 112 4.86 s 50.11 s -
A2AMGloc 4 172 2.48 s 39.94 s 65.0 %
A2AMGloc 8 234 1.33 s 33.05 s 40.0 %
A2ILU3 2 627 8.95 s 246.79 s -
A2ILU3 4 628 4.55 s 129.76 s 94.5 %
A2ILU3 8 581 2.40 s 71.34 s 86.0 %

Table II: Comparison of different parallel preconditioners from PETSc/hypre on
IBM p655

The convergence criterion is the relative reduction of the residual norm of 10−11. The
AMGglob combination has the smallest number of iterations with only 13 compared
to 172 and 628 for A2AMGloc and A2ILU3, respectively. This is represented in
the timings, too. AMGglob is much faster than any of the other combinations.
Simultaneously, the parallel efficiency shows very good results.

After choosing GMRES(15) with global AMG preconditioning (GMRES/AMGglob)
as an appropriate iterative solver for the Poisson equation, this combination is com-
pared to the direct solver MUMPS, see table III. To allow a more detailed parallel
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analysis these tests have been carried out on two 32-processor-nodes of an IBM p690
with 1.3 GHz Power4 processors with a high performance switch interconnect. The
columns CPUs, #Its, tPC and tSol in table III have the same meaning as in table II.
As the time for the setup of the matrix structure in MUMPS is significantly larger
than in GMRES/AMGglob, the total time of the solver call tCall is considered beside
the factorization time tPC and the solution time tSol. This is especially important
in an adaptive model where the mesh and hence the nonzero pattern of the matrix
may change in every time step. The parallel efficiencies Peff are calculated based on
the time tCall.

Solver CPUs #Its tPC tSol tCall Peff

GMRES/AMGglob 2 36 6.50 s 22.12 s 29.37 s -
GMRES/AMGglob 8 24 1.66 s 3.44 s 5.32 s 138 %
GMRES/AMGglob 16 23 0.97 s 2.07 s 3.21 s 115 %
GMRES/AMGglob 32 18 0.74 s 1.67 s 2.59 s 71 %
GMRES/AMGglob 64 18 0.58 s 1.29 s 2.15 s 43 %
MUMPS 2 6.19 s 3.94 s 13.22 s -
MUMPS 8 3.21 s 2.32 s 8.74 s 38 %
MUMPS 16 2.59 s 3.21 s 9.08 s 18 %
MUMPS 32 2.55 s 2.86 s 8.94 s 9 %
MUMPS 64 2.52 s 2.90 s 9.32 s 4 %

Table III: Comparison on IBM p690: GMRES(15) preconditioned with global AMG
vs. direct solver MUMPS

The reduction of the residual norm of 10−15 was stipulated, as this is approximately
the accuracy the direct solver achieves. It is seen from the parallel efficiencies Peff

that the scalability of MUMPS is rather limited while GMRES/AMGglob has the
potential for efficient application on massively parallel systems (≥ 32 CPUs). The
degradation of the performance from 32 to 64 CPUs on the IBM p690 can be ex-
plained by its architecture as the calculation with 64 CPUs is the only one that is
performed between two shared memory nodes of the machine. Further tests on a
Cray XD1 with a non hierarchical CPU interconnect even show a parallel efficiency
of 68 % for GMRES/AMGglob on 48 CPUs.

These performance experiments demonstrate that the combination of restarted GM-
RES(15) from PETSc and global algebraic multigrid (BoomerAMG from hypre) is
the best solver for the Poisson equations in (3). This combination outperforms other
combinations of the iterative solver as well as even the direct solver MUMPS.

7 Summary

PLASMA is a parallel adaptive model of the atmosphere. For the discretization
of the underlying spherical shallow water equations a Lagrange-Galerkin method, a
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combination of the finite element method and the semi-Lagrangian method, has been
employed. The unstructured triangular grid is generated with the grid generator
amatos and the large linear systems are solved with the parallel solver interface
FoSSI.

Both, uniform grid experiments as well as adaptive grid experiments can be per-
formed with PLASMA. In the adaptive case the computational grid is adapted at
every time step according to a physical error indicator. The comparison of uniform
and adaptive grid experiments documents, that the adaptive model leads to a sig-
nificant reduction of the number of grid points while the numerical error increases
only slightly. This has been shown within convergence studies for steady-state and
unsteady analytical solutions as well as for zonal flow over an isolated mountain. In
other words, if one would allow the same number of grid points for a uniform re-
spectively an adaptive grid experiment, the adaptive one would yield more accurate
results for local features of interest, compared to the uniform grid experiment.

By means of a sample of quasi standard experiments the successful numerical ap-
proximation of the spherical shallow water equations has been shown. Convergence
studies show the first order approximation for steady-state and unsteady analytical
solutions. Furthermore, PLASMA shows satisfactory results for the simulation of
Rossby-Haurwitz waves and zonal flows over an isolated mountain.

For the realization of adaptive simulations from seasonal up to annual time scales
within a simplified dynamical model of the atmosphere, PLASMA still needs im-
provement. Longer model integrations require a discrete conservation of the physical
variables mass, energy and potential enstrophy. Although, the presented simulations
already show very satisfactory results for adaptive simulations, the physical error
indicator should be further improved, especially inside turbulent flow structures.
Finally, the application of the adaptive grid in PLASMA can be assigned to a baro-
clinic multi-layer model, assuming the same horizontal grid structure throughout all
vertical layers.
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