Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms

James C. Orr1, Victoria J. Fabry2, Olivier Aumont3, Laurent Bopp1, Scott C. Doney4, Richard A. Feely5, Anand Gnanadesikan6, Nicolas Gruber7, Akio Ishida8, Fortunat Joos9, Robert M. Key10, Keith Lindsay11, Ernst Maier-Reimer12, Richard Matear13, Patrick Monfray1†, Anne Mouchet14, Raymond G. Najjar15, Gian-Kasper Plattner1,9, Keith B. Rodgers1,10,16, Christopher L. Sabine3, Jorge L. Sarmiento10,17, Reiner Schlitzer17, Richard D. Slater10, Ian J. Totterdell18†, Marie-France Weirig17, Yasuhiro Yamanaka8 & Andrew Yool18

Today’s surface ocean is saturated with respect to calcium carbonate, but increasing atmospheric carbon dioxide concentrations are reducing ocean pH and carbonate ion concentrations, and thus the level of calcium carbonate saturation. Experimental evidence suggests that if these trends continue, key marine organisms—such as corals and some plankton—will have difficulty maintaining their external calcium carbonate skeletons. Here we use 13 models of the ocean–carbon cycle to assess calcium carbonate saturation under the IS92a ‘business-as-usual’ scenario for future emissions of anthropogenic carbon dioxide. In our projections, Southern Ocean surface waters will begin to become undersaturated with respect to aragonite, a metastable form of calcium carbonate, by the year 2050. By 2100, this undersaturation could extend throughout the entire Southern Ocean and into the subarctic Pacific Ocean. When live pteropods were exposed to our predicted level of undersaturation during a two-day shipboard experiment, their aragonite shells showed notable dissolution. Our findings indicate that conditions detrimental to high-latitude ecosystems could develop within decades, not centuries as suggested previously.

Ocean uptake of CO2 will help moderate future climate change, but the associated chemistry, namely hydrolysis of CO2 in seawater, increases the hydrogen ion concentration [H+] . Surface ocean pH is already 0.1 unit lower than preindustrial values. By the end of the century, it will become another 0.3–0.4 units lower1–6 under the IS92a scenario, which translates to a 100–150% increase in [H+] . Simultaneously, aqueous CO2 concentrations [CO2(aq)] will increase and carbonate ion concentrations [CO32−] will decrease, making it more difficult for marine calcifying organisms to form biogenic calcium carbonate (CaCO3). Substantial experimental evidence indicates that calcification rates will decrease in low-latitude corals1,2,6, which form reefs out of aragonite, and in phytoplankton that form their tests (shells) out of calcite7, the stable form of CaCO3. Calcification rates will decline along with [CO32−] owing to its reaction with increasing concentrations of anthropogenic CO2 according to the following reaction:

\[CO_2 + CO_3^{2−} + H_2O \rightarrow 2HCO_3^{−} \] (1)

These rates decline even when surface waters remain supersaturated with respect to CaCO3, a condition that previous studies have predicted will persist for hundreds of years8,9. Recent predictions of future changes in surface ocean pH and carbonate chemistry have primarily focused on global average conditions1,2,10 or on low latitude regions8, where reef-building corals are abundant. Here we focus on future surface and subsurface changes in high latitude regions where planktonic shelled pteropods are prominent components of the upper-ocean biota in the Southern Ocean, Arctic Ocean and subarctic Pacific Ocean11–14. Recently, it has been suggested that the cold surface waters in such regions will begin to become undersaturated with respect to aragonite only when atmospheric CO2 reaches 1,200 p.p.m.v., more than four times the preindustrial level (4 × CO2) of 280 p.p.m.v. (ref. 9). In contrast, our results suggest that some polar and subpolar surface waters will become undersaturated at ~2 × CO2, probably within the next 50 years.
Changes in carbonate

We have computed modern-day ocean carbonate chemistry from observed alkalinity and dissolved inorganic carbon (DIC), relying on data collected during the CO2 Survey of the World Ocean Circulation Experiment (WOCE) and the Joint Global Ocean Flux Study (JGOFS). These observations are centred around the year 1994, and have recently been provided as a global-scale, gridded data product GLODAP (ref. 16; see Supplementary Information). Modern-day surface $[\text{CO}_3^{2-}]$ varies meridionally by more than a factor of two, from average concentrations in the Southern Ocean of 105 μmol kg$^{-1}$ to average concentrations in tropical waters of 240 μmol kg$^{-1}$ (Fig. 1). Low $[\text{CO}_3^{2-}]$ in the Southern Ocean is due to (1) low surface temperatures and CO2-system thermodynamics, and (2) large amounts of upwelled deep water, which contain high $[\text{CO}_2(aq)]$ from organic matter remineralization. These two effects reinforce one another, yielding a high positive correlation of present-day $[\text{CO}_3^{2-}]$ with temperature (for example, $R^2 = 0.92$ for annual mean surface maps). Changes in $[\text{CO}_2^-]$ and $[\text{CO}_2(aq)]$ are also inextricably linked to changes in other carbonate chemistry variables (Supplementary Fig. S1).

We also estimated preindustrial $[\text{CO}_3^{2-}]$ from the same data, after subtracting data-based estimates of anthropogenic DIC (ref. 17) from the modern DIC observations and assuming that preindustrial and modern alkalinity fields were identical (see Supplementary Information). Relative to preindustrial conditions, invasion of anthropogenic CO2 has already reduced modern surface $[\text{CO}_3^{2-}]$ by more than 10%, that is, a reduction of 29 μmol kg$^{-1}$ in the tropics and 18 μmol kg$^{-1}$ in the Southern Ocean. Nearly identical results were found when, instead of the data-based anthropogenic CO2 estimates, we used simulated anthropogenic CO2, namely the median from 13 models that participated in the second phase of the Ocean Carbon-Cycle Model Intercomparison Project, or OCMIP-2 (Fig. 1c).

To quantify future changes in carbonate chemistry, we used simulated DIC from ocean models that were forced by two atmospheric CO2 scenarios: the Intergovernmental Panel on Climate Change (IPCC) IS92a ‘continually increasing’ scenario (788 p.p.m.v. in the year 2100) and the IPCC S650 ‘stabilization’ scenario (563 p.p.m.v. in the year 2100) (Fig. 1). Simulated perturbations in DIC relative to 1994 (the GLODAP reference year) were added to the modern DIC data; again, alkalinity was assumed to be constant. To provide a measure of uncertainty, we report model results as the OCMIP median ± 2σ. The median generally outperformed...
individual models in OCMIP model–data comparison (Supplementary Fig. S2). By the year 2100, as atmospheric CO$_2$ reaches 788 ppmv under the IS92a scenario, average tropical surface [CO$_3^{2-}$] declines to 149 ± 14 μmol kg$^{-1}$. This is a 45% reduction relative to preindustrial levels, in agreement with previous predictions14,19. In the Southern Ocean (all waters south of 60°S), surface concentrations dip to 55 ± 5 μmol kg$^{-1}$, which is 18% below the threshold where aragonite becomes undersaturated (66 μmol kg$^{-1}$).

These changes extend well below the sea surface. Throughout the Southern Ocean, the entire water column becomes undersaturated with respect to aragonite. During the twenty-first century, under the IS92a scenario, the Southern Ocean’s aragonite saturation horizon (the limit between undersaturation and supersaturation) shoals from its present average depth of 730 m (Supplementary Fig. S3) all the way to the surface (Fig. 2). Simultaneously, in a portion of the subarctic Pacific, the aragonite saturation horizon shoals from depths of about 120 m to the surface. In the North Atlantic, surface waters remain saturated with respect to aragonite, but the aragonite saturation horizon shoals dramatically; for example, north of 50°N it shoals from 2,600 m to 115 m. The greater erosion in the North Atlantic is due to deeper penetration and higher concentrations of anthropogenic CO$_2$, a tendency that is already evident in present-day surface waters of the Weddell Sea become slightly undersaturated with respect to calcite. Nonetheless, in 2100 surface waters of the Weddell Sea become 50 years later than with the IS92a scenario. In 2100, Southern Ocean surface waters generally remain slightly supersaturated with respect to aragonite. However, the models also simulate that the Southern Ocean’s average aragonite saturation horizon will have shoaled from 730 m to 60 m, and that the entire water column in the Weddell Sea will have become undersaturated (Fig. 2). In the north, all surface waters remain saturated under both scenarios. North of 50°N, the annual average aragonite saturation horizon shoals from 140 m to 70 m in the Pacific, whereas it shoals by 2,000 m to 610 m in the North Atlantic. Therefore, under either scenario the OCMIP models simulated large changes in surface and subsurface [CO$_3^{2-}$]. Yet these models account for only the direct geochronological effect of increasing atmospheric CO$_2$ because they were all forced with prescribed modern-day climate conditions.

In addition to this direct geochronological effect, ocean [CO$_3^{2-}$] is also altered by climate variability and climate change. To quantify the added effect of future climate change, we analysed results from three atmosphere–ocean climate models that each included an ocean carbon-cycle component (see Supplementary Information). These three models agree that twenty-first century climate change will cause a general increase in surface ocean [CO$_3^{2-}$] (Fig. 3), mainly because most surface waters will be warmer. However, the models also agree that the magnitude of this increase in [CO$_3^{2-}$] is small, typically counteracting less than 10% of the decrease due to the geochronological effect. High-latitude surface waters show the smallest increases in [CO$_3^{2-}$] and even small reductions in some cases. Therefore, our analysis suggests that physical climate change alone will not substantially alter high-latitude surface [CO$_3^{2-}$] during the twenty-first century.

Climate also varies seasonally and interannually, whereas our previous focus has been on annual changes. To illustrate how climate variability affects surface [CO$_3^{2-}$], we used results from an ocean carbon-cycle model forced with the daily National Centers for Environmental Prediction (NCEP) reanalysis fields21 over 1948–2003 (see Supplementary Information). These fields are observation-based and vary on seasonal and interannual timescales. Simulated interannual variability in surface ocean [CO$_3^{2-}$] is negligible when compared with the magnitude of the anthropogenic decline (Fig. 3b). Seasonal variability is also negligible except in the high latitudes, where surface [CO$_3^{2-}$] varies by about ±15 μmol kg$^{-1}$

Figure 3 | Climate-induced changes in surface [CO$_3^{2-}$]. a, The twenty-first century shift in zonal mean surface ocean [CO$_3^{2-}$] due to climate change alone, from three atmosphere–ocean climate models—CSIRO-Hobart (short dashed line), IPSL-Paris (long dashed line) and PIUB-Bern (solid line)—that each include an ocean carbon-cycle component (see Supplementary Information). b, The regional-scale seasonal and interannual variability is simulated by an ocean carbon-cycle model forced with reanalysed climate forcing.

Figure 4 | Key surface carbonate chemistry variables as a function of P_{CO_2}. Shown are both [CO$_3^{2-}$] (solid lines) and [CO$_3^{2-}$(aq)] (dashed lines) for average surface waters in the tropical ocean (thick lines), the Southern Ocean (thickest lines) and the global ocean (thin lines). Solid and dashed lines are calculated from the thermodynamic equilibrium approach. For comparison, open symbols are for [CO$_3^{2-}$] from our non-equilibrium, model-data approach versus seawater P_{CO_2} (open circles) and atmospheric P_{CO_2} (open squares); symbol thickness corresponds with line thickness, which indicates the regions for area-weighted averages. The nearly flat, thin dotted lines indicate the [CO$_3^{2-}$] for seawater in equilibrium with aragonite (‘Arag. sat.’) and calcite (‘Calc. sat.’).
when averaged over large regions. This is smaller than the twenty-first-century’s transient change (for example, ~50 µmol kg\(^{-1}\) in the Southern Ocean). However, high-latitude surface waters do become substantially less saturated during winter, because of cooling (resulting in higher \([\text{CO}_2(aq)]\)) and greater upwelling of DIC-enriched deep water, in agreement with previous observations in the North Pacific\(^2\). Thus, high-latitude undersaturation will be first reached during winter.

Our predicted changes may be compared to those found in earlier studies, which focused on surface waters in the tropics\(^3\) and in the subarctic Pacific\(^2,22,23\). These studies assumed thermodynamic equilibrium between CO\(_2\) in the atmosphere and the surface waters at their \textit{in situ} alkalinity, temperature and salinity. If, in the equilibrium approach, the \(p_{\text{CO}_2}\) is taken only to represent seawater \(p_{\text{CO}_2}\), then the results agree with our non-equilibrium approach when the sets of carbonate chemistry constants are identical (Fig. 4). However, assuming equilibrium with the atmosphere leads to the prediction that future undersaturation will occur too soon (at lower atmospheric CO\(_2\) levels), mainly because the anthropogenic transient in the atmosphere actually lags that in the ocean. For example, with the equilibrium approach, we predict that average surface waters in the Southern Ocean become undersaturated when atmospheric CO\(_2\) is 550 p.p.m.v. (in the year 2050 under IS92a), whereas our non-equilibrium approach, which uses models and data, indicates that undersaturation will occur at 635 p.p.m.v. (in the year 2070). Despite these differences, both approaches indicate that the Southern Ocean surface waters will probably become undersaturated with respect to aragonite during this century. Conversely, both of these approaches disagree with a recent assessment\(^7\) that used an incorrect input temperature was used inadvertently.

Uncertainties

The three coupled climate–carbon models show little effect of climate change on surface \(\text{CO}_2^-\) (compare Fig. 3a to Fig. 1) partly because air–sea CO\(_2\) exchange mostly compensates for the changes in surface DIC caused by changes in marine productivity and circulation. In subsurface waters where such compensation is lacking, these models could under- or over-predict how much \(\text{CO}_2^-\) will change as a result of changes in overlying marine productivity. However, the models project a consistent trend, which only worsens the decline in subsurface \(\text{CO}_2^-\); that is, all coupled climate models predict increased evaporation in the tropics and increased precipitation in the high latitudes\(^2\). This leads to greater upper ocean stratification in the high latitudes, which in turn decreases nutrients (but not to zero) and increases light availability (owing to more shallow mixed layers). Thus, at 2 \(\times\) CO\(_2\) there is a 10% local increase in surface-to-deep export of particulate organic carbon (POC) in the Southern Ocean

Ocean CO\(_2\) uptake

With higher levels of anthropogenic CO\(_2\) and lower surface \(\text{CO}_2^-\), the change in surface ocean DIC per unit change in atmospheric CO\(_2\) (µmol kg\(^{-1}\) p.p.m.v.) will be about 60% lower in the year 2100 (under IS92a) than it is today. Simultaneously, the \(\text{CO}_2^-/\text{CO}_2(aq)\) ratio will decrease from 4:1 to 1:1 in the Southern Ocean (Fig. 4). These decreases are due to the well-understood anthropogenic reduction in buffer capacity\(^8\), already accounted for in ocean carbon-cycle models.

On the other hand, reduced export of CaCO\(_3\) from the high latitudes would increase surface \(\text{CO}_2^-\), thereby increasing ocean CO\(_2\) uptake and decreasing atmospheric CO\(_2\). Owing to this effect, ocean CO\(_2\) uptake could increase by 6–13 petagrams (Pg) C over the twenty-first century, based on one recent model study\(^2\) that incorporated an empirical, CO\(_2\)-dependant relationship for calcification. Rates of calcification could decline even further, to zero, if waters actually became undersaturated with respect to both aragonite and calcite. We estimate that the total shutdown of high-latitude aragonite production would lead to, at most, a 0.25 Pg C yr\(^{-1}\) increase in ocean CO\(_2\) uptake, assuming that 1 Pg C yr\(^{-1}\) of CaCO\(_3\) is exported globally\(^9\), that up to half of that is aragonite\(^9,29\), and that perhaps half of all aragonite is exported from the high latitudes. The actual increase in ocean CO\(_2\) uptake could be much lower because the aragonite fraction of the CaCO\(_3\) may be only 0.1 based on low-latitude sediment traps\(^30\), and the latitudinal distribution of aragonite export is uncertain. Thus, increased CO\(_2\) uptake from reduced export of aragonite will provide little compensation for decreases in ocean CO\(_2\) uptake due to reductions in buffer capacity. Of greater concern are potential biological impacts due to future undersaturation.

Figure 5 | **Average surface \(\text{CO}_2^-\) in the Southern Ocean under various scenarios.** Time series of average surface \(\text{CO}_2^-\) in the Southern Ocean for the PIUB-Bern reduced complexity model (see Fig. 3 and Supplementary Information) under the six illustrative IPCC SRES scenarios. The results for the SRES scenarios A1T and A2 are similar to those for the non-SRES scenarios S650 and IS92a, respectively.
Biological impacts
The changes in seawater chemistry that we project to occur during this century could have severe consequences for calcifying organisms, particularly shelled pteropods: the major planktonic producers of aragonite. Pteropod population densities are high in polar and subpolar waters. Yet only five species typically occur in such cold water regions and, of these, only one or two species are common at the highest latitudes\(^{31}\). High-latitude pteropods have one or two generations per year\(^{12,15,32}\), form integral components of food webs, and are typically found in the upper 300 m where they may reach densities of hundreds to thousands of individuals per m\(^3\) (refs 11, 13–15). In the Ross Sea, for example, the prominent subpolar–polar pteropod _Limacina helicina_ sometimes replaces krill as the dominant zooplankton, and is considered an overall indicator of ecosystem health\(^{33}\). In the strongly seasonal high latitudes, sedimentation pulses of pteropods occur just after summer\(^{15,34}\). In the Ross Sea, pteropods account for the majority of the annual export flux of both carbonate and organic carbon\(^{34,35}\). South of the Antarctic Polar Front, pteropods also dominate the export flux of CaCO\(_3\) (ref. 36).

Pteropods may be unable to maintain shells in waters that are undersaturated with respect to aragonite. Data from sediment traps indicate that empty pteropod shells exhibit pitting and partial dissolution as soon as they fall below the aragonite saturation horizon\(^{22,36,37}\). _In vitro_ measurements confirm such rapid pteropod shell dissolution rates\(^{38}\). New experimental evidence suggests that even the shells of live pteropods dissolve rapidly once surface waters become undersaturated with respect to aragonite\(^3\). Here we show that when the live subarctic pteropod _Clio pyramidata_ is subjected to a level of undersaturation similar to what we predict for Southern Ocean surface waters in the year 2100 under IS92a, a marked dissolution occurs at the growing edge of the shell aperture within 48 h (Fig. 6). Etch pits formed on the shell surface at the apertural margin (which is typically \(\sim\)7-μm-thick) as the <1-μm exterior (prismatic layer) peeled back (Fig. 6c), exposing the underlying aragonitic rods to dissolution. Fourteen individuals were tested. All of them showed similar dissolution along their growing edge, even though they all remained alive. If _C. pyramidata_ cannot grow its protective shell, we would not expect it to survive in waters that become undersaturated with respect to aragonite.

If the response of other high-latitude pteropod species to aragonite undersaturation is similar to that of _C. pyramidata_, we hypothesize that these pteropods will not be able to adapt quickly enough to live in the undersaturated conditions that will occur over much of the high-latitude surface ocean during the twenty-first century. Their distributional ranges would then be reduced both within the water column, disrupting vertical migration patterns, and latitudinally, imposing a shift towards lower-latitude surface waters that remain supersaturated with respect to aragonite. At present, we do not know if pteropod species endemic to polar regions could disappear altogether, or if they can make the transition to live in warmer, carbonate-rich waters at lower latitudes under a different ecosystem. If pteropods are excluded from polar and subpolar regions, their predators will be affected immediately. For instance, gymnosomes are zooplankton that feed exclusively on shelled pteropods\(^{33,39}\). Pteropods also contribute to the diet of diverse carnivorous zooplankton, myctophid and nototheniid fishes\(^{40–42}\), North Pacific salmon\(^{43,44}\), mackerel, herring, cod and baleen whales\(^45\).

Surface dwelling calcitic plankton, such as foraminifera and coccolithophorids, may fare better in the short term. However, the beginnings of high-latitude calcite undersaturation will only lag that for aragonite by 50–100 years. The diverse benthic calcareous organisms in high-latitude regions may also be threatened, including cold-water corals which provide essential fish habitat\(^{46}\). Cold-water corals seem much less abundant in the North Pacific than in the North Atlantic\(^46\), where the aragonite saturation horizon is much deeper (Fig. 2). Moreover, some important taxa in Arctic and Antarctic benthic communities secrete magnesium calcite, which can be more soluble than aragonite. These include gorgonians\(^{46}\), coralline red algae and echinoderms (sea urchins)\(^47\). At 2 × CO\(_2\), juvenile echinoderms stopped growing and produced more brittle and fragile exoskeletons in a subtropical six-month manipulative experiment\(^48\). However, the responses of high-latitude calcifiers to reduced [CO\(_2\)] have generally not been studied. Yet experimental evidence from many lower-latitude, shallow-dwelling calcifiers reveals a reduced ability to calcify with a decreasing carbonate saturation state\(^3\). Given that at 2 × CO\(_2\), calcification rates in some shallow-dwelling calcareous organisms may decline by up to 50% (ref. 9), some calcifiers could have difficulty surviving long enough even to experience undersaturation. Certainly, they have not experienced undersaturation for at least the last 400,000 years\(^{19}\), and probably much longer\(^{50}\).

Changes in high-latitude seawater chemistry that will occur by the end of the century could well alter the structure and biodiversity of polar ecosystems, with impacts on multiple trophic levels. Assessing these impacts is impeded by the scarcity of relevant data.

Received 15 June; accepted 29 July 2005.

