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Introduction



0 1 Introduction

1.1 Preface

Lattice-gas cellular automata (LGCA)1 and even more lattice Boltzmann
models (LBM) are relatively new and promising methods for the numeri-
cal solution of (nonlinear) partial differential equations. Each month several
papers appear with new models, investigations of known models or methodi-
cally interesting applications. The field of lattice-gas cellular automata started
almost out of the blue in 1986 with the by now famous paper of Frisch, Has-
slacher and Pomeau. These authors showed, that a kind of billiard game2

with collisions that conserve mass and momentum, in the macroscopic limit
leads to the Navier-Stokes equation when the underlying lattice possesses a
sufficient (hexagonal in two dimensions) symmetry. A few years later lattice
Boltzmann models arose as an offspring of LGCA. Their higher flexibility
compared to LGCA led to artificial microscopic models for several nonlinear
partial differential equations including the Navier-Stokes equation.
I have followed the exciting development of both methods since 1989 and from
time to time have given courses on this topic at the Department of Physics and
Electrical Engineering at the University of Bremen (Germany). The present
book is an extended version of my lecture manuscript.
The word ‘introduction’ in the title implies two things. Firstly, the level of
presentation should be appropriate for undergraduate students. Thus meth-
ods like the Chapman-Enskog expansion or the maximum entropy principle
which are usually not taught in standard courses in physics or mathematics
are discussed in some detail. Secondly, in an introduction many things have
to be left out. This concerns, for instance, models with several colors which
allow the simulation of multiphase flows3 or magnetohydrodynamics. Only a
few applications of LGCA or LBM to physical problems can be considered.
Interesting topics like the divergence of transport coefficients in 2D are not
discussed. The interested reader will find, however, references pointing to orig-
inal articles (especially in the ‘What else?’ sections).
The lattice-gas cellular automata require special programming techniques
which are only sparsely discussed in the widely scattered literature. The book
will hopefully fill a gap in this respect (see Subsections 3.1.2, 3.1.4, 3.2.2).
Several program codes will be made available via internet (http://www.awi-
bremerhaven.de/Modelling/LGCA+LBM/index.html).
Many mathematical text books and courses contain lots of definitions, theo-
rems and proofs - and not much else. In this respect the current book is rather
‘unplugged’: the emphasis is more focused on presenting the main principles
1 The abbreviations are explained in Table 6.6.5 on page 268.
2 Goldenfeld and Kadanoff (1999) compare the time development of lattice-gas

cellular automata with a square dance.
3 When I had almost finished my manuscript I became aware of the wonderful book

by Rothman and Zaleski (1997). Simulation of multiphase flows is a major topic
in that book.
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and not on teaching proof techniques. Nonetheless the proofs of several essen-
tial theorems are presented in detail.
Last but not least, I would like to add a few comments on the exercises. Prob-
lems with one star (∗) should be very easy to solve (in a few minutes); those
with two stars require more thinking or somewhat lengthy (‘... after some al-
gebra ...’) calculations. Exercises with three stars are very different. Some of
them require quite a bit of programming; others address more advanced stuff
which has not been treated here. And finally, some of the three star exercises
point to open problems which I have not solved myself.

Acknowledgements:

The following people supported me in one or the other way by teaching me
mathematics and physics, introducing me to LGCA, providing PhD positions,
asking stimulating questions, proofreading etc. Ernst Augstein, Uwe Dobrindt,
Fritz Dröge, Lars-Peer Finke, Silvia Gladrow, Vladimir Gryanik, Wolfgang
Hiller, Matthias Hofmann, Heiko Jansen, Charilaos Kougias, Gerrit Lohmann,
Ferial Louanchi, Christof Lüpkes, Ralf Nasilowski, Dirk Olbers, Christoph
Völker, Armin Vogeler, Werner Wrede, Richard Zeebe.
I am grateful to them all.
Three anonymous referees made useful comments.
I also thank Stefanie Zöller (Springer Verlag) for support.

Further reading:
Succi, S., The Lattice Boltzmann Equation - for Fluid Dynamics and Beyond,
Oxford University Press, Oxford, 2001.
This book is excellent!



2 1 Introduction

1.2 Overview

The plan of the book is as follows (compare Fig. 1.2.1). In an introductory
section the Navier-Stokes equation and several approaches to solve it are dis-
cussed. In Chapter 2 cellular automata (CA) are treated in some detail in
order to show the special character of lattice-gas cellular automata. CA rules
are usually not restricted by conservation laws which is a nice feature when
simulating growth processes. The spatial propagation of properties is part of
the local updating rule. In contrast, lattice-gas cellular automata obey cer-
tain conservation laws and the updating is splitted into a local ‘collision’ and
a propagation to the nearest-neighbor sites. This splitting makes it easier to
construct models with desired macroscopic properties. The CA chapter can
be skipped in first reading.
Chapter 3 on lattice-gas cellular automata starts with the historically first
LGCA, namely the HPP model. This is the simplest model that aimed to
simulate the Navier-Stokes equation (but failed to do so!). The emphasis here
is on a discussion without digging too much into theory. Special programming
techniques like multi-spin coding are explained in detail.
The FHP model is the first successful LGCA. Starting from the Boolean mi-
crodynamics the macroscopic equations will be derived up to first order (Euler
equation) by a multi-scale expansion (Chapman-Enskog). The second order
which yields the Navier-Stokes equation will be addressed later on in the
chapters on statistical mechanics (Section 4.2) as well as in the one on lattice
Boltzmann models (Section 5.2.3).
The difference between failure (HPP) and success (FHP) depends on the sym-
metry of the underlying lattice. The tensor of rank four formed from products
of the lattice vectors is part of the advection term and has to be isotropic.
The main problem in proposing a LGCA for simulations of flows in three
dimensions is to find a lattice with sufficient symmetry. In Section 3.3 the
lattice tensors of rank two and four for several lattices will be calculated and
investigated for isotropy.
If one restricts oneself to single-speed models the only lattice feasible for
three-dimensional simulations is the four-dimensional face-centered hypercube
(FCHC). Several possible collision rules for this model are outlined in Section
3.5. As an alternative to FCHC multi-speed models are available. When the
collision rules are carefully chosen these models conserve energy in addition to
mass and momentum and therefore are called thermal models (Section 3.7).
Another alternative for simulation in 3D is the pair-interaction (PI) model
(Section 3.6). The collision rules of this model are simple in 2D as well as in
3D and thus allow coding using bit-operators.
In Chapter 4 some relevant concepts from statistical mechanics are dis-
cussed. Specifically the Boltzmann equation, its five collision invariants, and
its (global) equilibrium distribution (Maxwell-Boltzmann) are presented. The
chapter contains a proof of Boltzmann’s famous H-theorem. For many appli-
cations the complicated collision integral can be substituted by a relaxation
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toward equilibrium by a term that is proportional to the deviation of the ac-
tual distribution from its (local) equilibrium. With this so-called BGK approx-
imation it is possible to derive the Navier-Stokes equation by the Chapman-
Enskog expansion on few pages (Section 4.2). In addition, this chapter contains
a section on the maximum entropy principle which will be applied later on in
the derivation of equilibrium distributions for lattice Boltzmann models.
Chapter 5 is devoted to lattice Boltzmann models. This chapter is almost
selfcontained. Readers who are only interested in LBMs (and not in LGCA)
can start here but should read at some point Section 3.3 on lattice tensors.
However, some remarks in this chapter only make sense to those who are fa-
miliar with LGCA.
In Section 5.1 some problems with LGCA are listed and the transition from
LGCA to LBM is sketched. The section on the D2Q9 model is in some re-
spect the pendant to the FHP4 section in Chapter 3 in that this BGK model
is discussed in full detail. The equilibrium distributions are calculated from
the maximum entropy principle, the Navier-Stokes equation is derived by
Chapman-Enskog expansion and implementations of various boundary condi-
tions are discussed. This model is applied to ocean circulation in Section 5.7.
The stability of the D2Q9 and other LBMs is discussed in Section 5.6.
Although the use of the maximum entropy principle is a very elegant method,
it hides the much wider freedom in choosing equilibrium distributions. Alter-
natively, one may start from a reasonable ansatz for the distributions and then
fix the free parameters during or after the multi-scale expansion such that the
desired equations (Navier-Stokes or other partial differential equations) are
obtained (Section 5.4).
This ansatz method is used to derive LBMs for diffusion equations (linear as
well as nonlinear in any number of dimensions) in Section 5.8. These mod-
els can easily be extended to LBMs for reaction-diffusion equations. With the
same methods thermal LBMs can be constructed (Section 5.5). LBMs for sim-
ulation in 3D are described in Section 5.3. The appendix contains a section on
Boolean algebra, some lengthy calculations and code listings of FHP collision
rules.

4 Although the underlying lattices are different!
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Fig. 1.2.1. Overview
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1.3 The basic idea of lattice-gas cellular automata and
lattice Boltzmann models

Lattice-gas cellular automata (LGCA) and lattice Boltzmann models (LBMs)
are methods for the simulation of fluid flows5 which are quite distinctive from
molecular dynamics (MD) on the one hand and methods based on the dis-
cretization of partial differential equations (finite differences, finite volumes,
finite elements, spectral methods) on the other hand. Here the basic idea
of LGCA and LBM will be sketched and the differences compared to other
methods will be outlined.

1.3.1 The Navier-Stokes equation

The flow of incompressible fluids can be described by the Navier-Stokes equa-
tion6

∂u

∂t
+ (u∇)u = −∇P + ν∇2u (1.3.1)

together with the continuity equation7

∇ · u = 0 (1.3.2)

where ∇ is the nabla operator, u is the flow velocity, P = p/ρ0 the kinematic
pressure, p the pressure, ρ0 the constant mass density and ν the kinematic
shear viscosity. Different fluids like air, water or olive oil are characterized
by their specific values of mass density and viscosity (νair = 1.5 · 10−5 m2

s−1, νwater = 10−6 m2 s−1, νolive oil = 10−4 m2 s−1). Incompressible flows
of these fluids obey the same form of equation (Navier-Stokes) whereas their
microscopic interactions are quite different (compare gases and liquids!). The
Navier-Stokes equation is nonlinear in the velocity u which prohibits its an-
alytical solution except for a few cases. Numerical methods are required to
5 ... and several other processes which can be described on the macroscopic level

by partial differential equations ...
6 The viscous term of the equation was derived in different ways by Claude Louis

M. H. Navier (1785-1836) and Sir George Gabriel Stokes (1819-1903). The Navier-
Stokes equation in tensor notation reads:

∂tuα + uβ∂xβuα = −∂xαP + ν∂xβ∂xβuα.

7
r · u = 0 is derived from the general continuity equation

∂ρ

∂t
+r · (ρu) = 0

by setting ρ = constant.
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simulate the time evolution of flows. On the other hand, the nonlinear ad-
vection term is most welcome because it is responsible for many interesting
phenomena such as solitons (nonlinear waves), von Karman vortex streets
(regular vortex shedding behind an obstacle) or turbulence.

The Reynolds number and dynamic similarity of flows

Flows with small velocities are smooth and are called laminar. At very high
velocities they become turbulent. The transition from laminar to turbulent
flows does not depend only on velocity as will be shown below. Consider
the flow past an obstacle, such as a sphere, a cylinder or a plate. What are
the characteristic scales of the flow? Obviously the flow field will depend on
the (unperturbed) upstream speed U and the linear size (diameter L) of the
obstacle. The fluid is characterized by its kinematic viscosity ν. The three
parameters U , L and ν have dimensions [length time−1], [length] and [length2

time−1]. It is easy to see that from these parameters one can form essentially
one dimensionless number, namely the Reynolds number

Re =
UL

ν
. (1.3.3)

The parameters U and L can be used to scale all quantities in the Navier-
Stokes equation (the primed quantities are measured in units of U and L):
u′ = u/U , x′ = x/L, ∇′ = L ·∇, ∇′2 = L2 · ∇2, t′ = t · U/L (the advection
time scale L/U is the time for the unperturbed flow to pass the linear size of
the obstacle), P ′ = P/U2 (the kinematic pressure has the dimension of energy
per mass). Inserting the scaled quanties into the Navier-Stokes equation leads
to

∂u′

∂t′
U2

L
+
(
u′∇′)u′

U2

L
= −∇′P ′

U2

L
+ ν∇′2u′

U

L2

or after division by U2/L

∂u′

∂t′
+
(
u′∇′)u′ = −∇′P ′ +

1
Re
∇′2u′. (1.3.4)

The scaled Navier-Stokes equation equation (1.3.4) does not contain any scale
and only one dimensionless quantity, namely the Reynolds number. Thus for
a given type of flow (say the flow past a sphere) the scaled velocity of a
stationary flow will depend only on the scaled spatial coordinate and the
Reynolds number:

u′ =
u

U
= fu

(x

L
,Re

)
(1.3.5)

where the function fu depends on the geometry of the problem (the type of
flow). The same is true for the scaled pressure:

P ′ =
P

U2
= fP

(x

L
,Re

)
. (1.3.6)
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Thus all flows of the same type but with different values of U , L and ν
are described by one and the same non-dimensional solution (u′, P ′) if their
Reynolds numbers are equal. All such flows are said to be dynamically similar.

The value of the Reynolds number provides an estimate of the relative im-
portance of the non-viscous and viscous forces. The pressure gradient usually
plays a passive role, being set up in the flow as a consequence of motions of
a rigid boundary or of the existence of frictional stresses (Batchelor, 1967).
Thus the flows can be characterized by the relative magnitudes of advection
and viscous forces:

|(u∇) u|
|ν∇2u| ≈ U2/L

νU/L2
=
U · L
ν

= Re. (1.3.7)

Flows with small Reynolds numbers (Re � 1) are laminar, von Karman vortex
streets are observed at intermediate values (Re ≈ 100) and turbulent flows
occur at very high Reynold numbers (Re � 1). The fact that flows can be
characterized by Re and the law of dynamic similarity were first recognized
by Stokes (1851) and Reynolds (1883).
The law of dynamic similarity provides the link between flows in the real
world where length is measured in meters and the simulation of these flows
with lattice-gas cellular automata and lattice Boltzmann models over a lattice
with unit grid length and unit lattice speed. In these models the viscosity is
a dimensionless quantity because it is expressed in units of grid length and
lattice speed. These dimensionless flows on the lattice are similar to real flows
when their Reynolds numbers are equal.

1.3.2 The basic idea

The fact that different microscopic interactions can lead to the same form of
macroscopic equations is the starting point for the development of LGCA. In
addition to real gases or real liquids one may consider artificial micro-worlds
of particles ‘living’ on lattices with interactions that conserve mass and mo-
mentum. The microdynamics of such artificial micro-worlds should be very
simple in order to run it efficiently on a computer. Consider, for example, a
square lattice with four cells at each node such that one cell is associated with
each link to the next neighbor node (compare Fig. 3.1.1 on page 39). These
cells may be empty or occupied by at most one particle with unit mass m = 1.
Thus each cell has only two possible states and therefore is called a cellular
automaton. Velocity and thereby also momentum can be assigned to each par-
ticle by the vector connecting the node to its next neighbor node along the
link where the particle is located. These vectors are called lattice velocities.
The microscopic interaction is strictly local in that it involves only particles at
a single node. The particles exchange momentum while conserving the mass
and momentum summed up over each node. After this collision each particle
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propagates along its associated link to its next neighbor node. The micro-
dynamics consists on a repetition of collision and propagation. Macroscopic
values of mass and momentum density are calculated by coarse graining (cal-
culation of mean values over large spatial regions with hundreds to thousands
of nodes).
Do these mean values obey the Navier-Stokes equation? The answer is nega-
tive for the model just sketched (discussed in more detail in Section 3.1). This
model was proposed by Hardy, de Pazzis and Pomeau in 1973 (HPP model). It
took more than 10 years before Frisch, Hasslacher and Pomeau (1986) found
the third essential condition in addition to mass and momentum conservation:
the lattice has to possess a sufficient symmetry in order to ensure isotropy of
a certain tensor of fourth rank formed from the lattice velocities. In 2D, for
example, 4-fold rotational symmetry (square lattice) is not enough whereas
hexagonal symmetry (triangular lattice; FHP model; see Section 3.2) is suffi-
cient.
A further condition should be mentioned here. The microdynamics must not
possess more invariants than required by the desired macroscopic equations
because such so-called spurious invariants can alter the macroscopic behavior
by unphysical constraints (compare Section 3.8).
The importance of the work of Frisch, Hasslacher and Pomeau (1986) can
hardly be overestimated. Their finding of the lattice symmetry condition
started an avalanche of LGCA models. Finding a lattice with sufficient sym-
metry for simulations in 3D was a tough job. Wolfram (1986) showed that
lattice tensors over the face-centered hypercube (FCHC) are isotropic up to
rank 4.

Lattice Boltzmann models were first based on LGCA in that they used the
same lattices and applied the same collisions. Instead of particles, LBMs deal
with continuous distribution functions which interact locally (only distribu-
tions at a single node are involved) and which propagate after ‘collision’ to the
next neighbor node. Coarse graining is not necessary any more. In the begin-
ning this was considered as the main advantage of LBMs compared to LGCA.
The next step in the development was the simplification of the collision oper-
ator and the choice of different distribution functions. This gives much more
flexibility of LBMs, leads to Galilei invariant macroscopic equations without
scaling of time, and allows to tune viscosity. Most recently LBMs living on
curvilinear coordinate systems have been proposed.

Exercise 1. (**)
Consider flows that are affected by an external force such as gravity. Discuss
the consequences for the similarity of flows. How many independent dimen-
sionless numbers are required to characterize the flow?
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1.3.3 Top-down versus bottom-up

The conventional simulation of fluid flows (and other physical processes) gen-
erally starts from nonlinear partial differential equations (PDEs). These PDEs
are discretized by finite differences (Ames, 1977; Morton and Mayers, 1994),
finite volumes (Bryan, 1969), finite elements8 (Zienkiewicz, and Taylor, 1989
and 1991), or spectral methods (Machenhauer, 1979; Bourke, 1988). The result-
ing algebraic equations or systems of ordinary differential equations are solved
by standard numerical methods. Although this ‘top-down’ approach seems to
be straightforward it is not without difficulties. In many textbooks on the
numerical solution of partial differential equations the authors put much em-
phasis on the truncation error which is due to the truncation of Taylor series
when going from differential to finite differences whereas physicists are usu-
ally more concerned whether or not certain quantities are conserved also by
the discretized form of the equations. This latter property is most important
for integrations over long time scales in closed domains like, for instance, in
the simulation of the world oceans or in coupled atmosphere-ocean models. A
small leakage would transform the ocean into an empty basin after some time.
Numerical instabilities are another problem of this type of numerical methods
(Courant, Friedrichs and Lewy, 1928; Phillips, 1956 and 1959).

LGCA and LBM are different variants of the ’bottom-up’ approach (Fig. 1.3.1)
where the starting point is a discrete microscopic model which by construction
conserves the desired quantities (mass and momentum for Navier-Stokes equa-
tion). These models are unconditional stable (LGCA) or show good stability
properties (LBM). The derivation of the corresponding macroscopic equations
requires, however, lengthy calculations (multi-scale analysis). A major prob-
lem with the bottom-up approach is to detect and avoid spurious invariants
which is, by the way, also a problem for the models derived by the top-down
approach. The construction of LGCA or LBM for given macroscopic equations
seems to require some intuition. Meanwhile at least for LBM there exists a
recipe for the construction of appropriate microdynamics when the conserved
quantities of the physical process are known (compare Section 5.4).

1.3.4 LGCA versus molecular dynamics

Another bottom-up approach is molecular dynamics (MD) (Verlet, 1967;
Evans and Morriss, 1983; Heyes et al., 1985; Mareschal and Kestemont, 1987;
Boon and Yip, 1991; Rapaport, 1995). In MD one tries to simulate macro-
scopic behavior of real fluids by setting up a model which describes the mi-
croscopic interactions as good as possible. This leads to realistic equations of
state whereas LGCA or LBM posses only isothermal relations between mass
8 These finite methods can be combined with multigrid techniques; see, for example,

Hackbusch (1985).
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density and pressure. The complexity of the interactions in MD restricts the
number of particles and the time of integration. A method somewhat in be-
tween MD and LGCA is maximally discretized molecular dynamics proposed
by Colvin, Ladd and Alder (1988).
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Fig. 1.3.1. Top-down versus bottom-up (see text).
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Cellular Automata

“Cellular automata are sufficient simple to allow detailed mathemat-
ical analysis, yet sufficient complex to exhibit a wide variety of com-
plicated phenomena.”
Wolfram (1983)

Cellular automata (CA) cannot and should not be covered comprehensively in
this book. The current chapter shall give the reader a glimpse of the manifold
arrangements and the peculiarities of CA. It will serve as a background for the
discussion of a special type of cellular automata, namely lattice-gas cellular
automata.

2.1 What are cellular automata?

CA can be characterized as follows (e.g., Wolfram, 1984b or Hedrich, 1990;
see below for a formal definition):

• CA are regular arrangements of single cells of the same kind.

• Each cell holds a finite number of discrete states.

• The states are updated simultaneously (‘synchronously’) at discrete time
levels.

• The update rules are deterministic and uniform in space and time.

• The rules for the evolution of a cell depend only on a local neighborhood
of cells around it.

Not all of these criteria are always fulfilled. The cells can be positioned, for
example, at the nodes of a (quasiperiodic) Penrose lattice (Penrose, 1974,
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1979) or at random (Markus and Hess, 1990). A random connection of cells
was proposed by Richard Feynman (Hillis, 1989). The update rules of certain
CA include probabilistic elements (compare the FHP lattice gas automata,
Section 3.2).

The formal definition of CA follows Kutrib et al. (1997). The cells can be
imagined as positioned at the integer points of the D-dimensional Euclidean
lattice L = ZZD. The finite set of possible states of each of the cells is equal
and will be denoted by Q1.

The state of a cell i at a new time level t + 1 depends on the states of cells
j in a finite neighborhood2 N ⊂ ZZD at time t3. The elements n ∈ N are to
be interpreted as the relative coordinates of neighboring cells (with (0, ..., 0)
as relative coordinate of cell i). The neighborhood N may be interpreted as
an interconnection between the cells.

A mapping l : N → Q is called a local configuration4. It contains exactly the
information to update a cell. The mode of operation of a cell is completely
determined by its local rule r : QN → Q where QN is the set of all mappings
f : N → Q. The CA updating is called homogeneous when the neighborhoods
N and N ′ of the cells i and i′ map onto each other by a translation and when
the same local rule is applied to all cells.

The global configuration of a CA (i.e. the ensemble of the state of all cells) at
a certain time is called a (global) configuration g. CA are working in descrete
time. The global configuration g at time t leads to a new global configuration
g′ at time t+ 1 whereby all cells enter a new state according to the local rule
synchronously. The associated global rule is a mapping R : QL → QL.

2.2 A short history of cellular automata

Around 1950 cellular automata5 were introduced by Stanislas Ulam, John von
Neumann, and Konrad Zuse6. Ulam simulated the growth of patterns in two
and three dimensions (compare Ulam, 1952 and 1962; Schrandt and Ulam,
1970). John von Neumann proposed a self-reproducing cellular automaton

1 For example, Q = {0, 1} for a binary automaton
2 The neighborhood includes the cell i. There are, however, particular update rules

that do not depend on the state of i at time t.
3 A random process whose future probabilities are determined by its most recent

values is called a Markov process. If not otherwise stated the updating of CA is,
however, a deterministic process.

4 We will also denote an actual state of a neighborhood N as the local configuration.
5 Other names: cellular spaces, tesselation automata, homogeneous structures, cel-

lular structures, tesselation structures, iterative arrays.
6 Some scientists even regard the paper by Wiener and Rosenblueth (1946) as the

first one in this field.
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(von Neumann, 1966) which at the same time realized a universal Turing
machine (Turing, 1936; Hopcroft, 1984). Each of the approximately 200000
cells of von Neumann’s CA holds 29 different states. A few years ago this CA
has been implemented for the first time on a computer (Signorini, 1989).
Zuse published his ideas concerning the application of cellular automata to
physical problems in a monograph (Zuse, 1969; English translation 1970).
Some of his formulations already resemble to the HPP lattice-gas cellular
automata proposed four years later by Hardy et al. (1973). In addition to
hydrodynamic problems Zuse had in mind models for electrodynamics and
quantum theory. The most far-reaching vision was his concept of the universe
as a cellular automaton encompassing a gigantic number of cells (Zuse, 1982).

As far as number of citations can tell something about the flow of ideas, Zuse’s
monograph (1969; 1970) did not have a major impact (but see Alasyev et al.,
1989; Case et al., 1990; Fredkin, 1990; Toffoli, T. and N. Margolus, 1990;
Rothman and Zaleski, 1994).

In 1970 John Horton Conway introduced the game ‘Life’, a two-dimensional
CA with simple update rules but complex dynamics (compare Section 2.4.3).
Martin Gardner made cellular automata very popular by a series of papers on
‘Life’ in Scientific American (Gardner, 1970, 1971a,b,c; see also: Berlekamp,
Conway and Guy, 1984).
The first lattice-gas cellular automata (LGCA) - special kinds of cellular au-
tomata for the simulation of fluid flow and other physical problems - was
proposed in 1973 by Hardy, Pomeau and de Pazzis. Its name HPP is derived
from the initials of the three authors. Although the HPP model conserves
mass and momentum it does not yield the desired Navier-Stokes equation in
the macroscopic limit.
In 1983 Stephen Wolfram revived the interest in CA by a series of papers
(Wolfram, 1983, 1984a,b,c). The one-dimensional arrays of cells considered by
Wolfram expressed complex patterns when initialized randomly and updated
by simple deterministic rules depending on the state of the cell and a few of
its neighbors.
In 1986 Frisch, Hasslacher and Pomeau discovered that a CA over a lattice
with hexagonal symmetry, i.e. with a somewhat higher symmetry than for
the HPP model, leads to the Navier-Stokes equation in the macroscopic limit.
The theoretical foundations of lattice gas automata were given soon after by
Wolfram (1986) and Frisch et al. (1987).

2.3 One-dimensional cellular automata

Wolfram (1983, 1984a,b) investigated one-dimensional cellular automata. He
introduced a division into four universal classes. Even the study of the branch
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concerned with one-dimensional cellular automata is far from completed be-
cause only a small subset of possible rules has been explored and a theoretical
understanding is still in its infancy (Wolfram, 1985).

One-dimensional cellular automata consist of a number of uniform cells ar-
ranged like beads on a string. If not stated otherwise arrays with finite number
of cells and periodic boundary conditions will be investigated, i.e. the beads
form a necklace (compare Fig. 2.3.1). The states of all cells form a (global)
configuration of a CA.

Fig. 2.3.1. One-dimensional cellular automata with the two possible states per cell:
empty or occupied (marked with a cross).
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The state of cell i at time t is referred to as a(t)
i . The finite number of possible

states k <∞ are labelled by non-negative integers from 0 to k−1, i.e. a(t)
i ∈ ZZk

(mathematicians call the set of integers modulo k the residue class ZZk). The
state of each cell develops in time by iteration of the map

a
(t)
i = F [a(t−1)

i−r , a
(t−1)
i−r+1, ...a

(t−1)
i , ..., a

(t−1)
i+r ] (2.3.1)

i.e. the state of the ith cell at the new time level t depends only on the state
of the ith cell and the r (range) neighbors to the left and right at the previous
time level t− 1. The arbitrary (in general nonlinear) function F is called the
automata rule, the update rule or just the rule. An alternative formulation of
the rule (2.3.1) reads

a
(t)
i = f


 j=r∑

j=−r

αja
(t−1)
i+j


 (2.3.2)

where the αj are integer constants and thus the function f has a single integer
as argument.

Exercise 2. (**)
Why can (2.3.1) and (2.3.2) be equivalent formulations?
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Number of automata rules

Consider a CA with k = 2 possible states per cell and a range r = 1. The
possible combinations of the arguments of the automata rule F are listed in
two different representations in Tables 2.3.1 and 2.3.2.

Table 2.3.1. An example of an automata rule for a CA with k = 2 and r = 1.

a
(t−1)
i−1 a

(t−1)
i a

(t−1)
i+1 a

(t)
i

0 0 0 0 0

1 0 0 1 1

2 0 1 0 0

3 0 1 1 0

4 1 0 0 1

5 1 0 1 0

6 1 1 0 0

7 1 1 1 0

Table 2.3.2. An example of an automata rule for a CA with k = 2 and r = 1.

1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0

0 0 0 1 0 0 1 0

There are 8 different combinations (in general: k2r+1). Interpretation of
{a(t−1)

i−1 , a
(t−1)
i , a

(t−1)
i+1 } (columns 2 to 4 in Table 2.3.1) as the bit pattern (with

the highest bit to the left) of an integer in binary representation yields the
numbers 0 to 7 (listed in the first column). In the last column of Table 2.3.1 one
of the possible rules is given in tabular form. It consists of a certain sequence
of zeros and ones which also can be interpreted as the binary representation
of an integer. Each bit pattern of length 8 corresponds to an automata rule.
Therefore it follows immediately that there exist 28 = 256 different rules (in
general: kk2r+1

). CA in 1D with updating rules depending only on the site
itself and the sites immediately adjacent to it on the left and right will be
denoted as elementary cellular automata (Wolfram, 1983, p. 603). Instead of
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the tabular form (bit pattern) the automata rules are often referred to by
the corresponding integer between 0 and 255 which is called the rule number.
Thus the rule 00010010 given in Table 2.3.1 is denoted as rule 18. Similar rule
number can also be defined for automata with more than two states per cell.
Because the number of rules rapidly increases with k and r (compare Table
2.3.3) only a small part of all possible rules has been investigated.

Table 2.3.3. The number of possible rules for cellular automata with k states per
cell and a range r. Listed are only the cases where the number is smaller than 10100

(Gerling, 1990b).

k/r 1 2 3

2 28 232 2128

3 327 − −

4 464 − −

5 5125 − −

Subclasses of rules

Subclasses of rules can be obtained by applying the following definitions:

• Additive rules: f is a linear function of its argument modulo k. Remark:
These rules obey a special additive superposition principle and therefore
are accessible to an algebraic analysis (Martin et al., 1984).

• Totalistic rules: αj ≡ 1 ∀j in (2.3.2), i.e. the cell and all its neighbors
in the range r contribute equally and for k = 2 only the sum of occupied
cells matters.

• Symmetric rules: F [ai−r, ..., ai+r] = F [ai+r, ..., ai−r].

• Rules with memory: a(t)
i depends on a(t−1)

i (otherwise: rules without mem-
ory or peripheral rules).

• Legal7 rules: rules which do not change the null configuration8 (”nothing
comes of nothing“).

7 Please note that some authors require that legal rules should also be symmetric.
8 The null configuration is the (global) configuration where all cells are empty. In

CA with legal rules it is also called the quiescent configuration.
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Exercise 3. (**)
Cellular automata with k = 2, r = 1:

• How many rules are symmetric?

• How many rules are legal symmetric?

• How many rules are totalistic?

• How many rules have memory?

Exercise 4. (***)
Prove the following theorem: All legal symmetric rules of cellular automata
with k = 2 and r = 1 form an additive group with elements 0, f0 = ai−1 +
ai + ai+1, f1 = ai−1 · ai + ai · ai+1 + ai−1 · ai+1, f2 = ai−1 · ai · ai+1, f3 =
(ai − ai−1)(ai − ai+1), f4 = f1 · f3.

Cellular automata as a discretization of partial differential equa-
tions? Lattice-gas cellular automata - a special type of cellular automata -
are relatively new numerical schemes to solve physical problems ruled by par-
tial differential equations. One could ask whether cellular automata can be
interpreted as discrete models of partial differential equations.
Consider the diffusion equation

∂C

∂t
= κ

∂2C

∂x2
(2.3.3)

as an example of a partial differential equations of first order in time. The
discretization forward in time and symmetric in space reads

C
(t)
i = C

(t−1)
i +

∆t · κ
(∆x)2

[
C

(t−1)
i+1 − 2C(t−1)

i + C
(t−1)
i−1

]
(2.3.4)

=
j=1∑

j=−1

αjC
(t−1)
i+j

= f


 j=1∑

j=−1

αjC
(t−1)
i+j


 . (2.3.5)

Here f is the identity. Eq. (2.3.5) is of the same form as the map (2.3.2) which
defines the automata rule. However, there are fundamental differences:

• The coefficients αj in (2.3.5) in general are real numbers and not integers.

• The number of states of Ci is infinite.

• In general Ci in Eq. (2.3.4) is not bounded whereas the result of f() in
Eq. (2.3.2) is limited to the range 0 to k − 1 (modulo constraint).
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• Whereas the development in time of the finite number of states is always
stable the iteration of (2.3.4) can lead to instability, i.e. the absolute value
of the concentration Ci goes to infinity (try to iterate (2.3.4) with a time

step ∆t below or slightly above the stability limit ∆tc =
(∆x)2

2κ
).

• The diffusion equation (and many other partial differential equations in
mathematical physics) are based on conservation laws whereas for most of
the automata rules no conservation laws are known.

Although there are some formal similarities between discretization of partial
differential equations and cellular automata rules the differences dominate.
Only special types of cellular automata provide discrete models for partial
differential equations of mathematical physics. The connection between the
differential equations and lattice gas automata is not formal but deeply rooted
in the ground of conservation laws.

Irreversibility and Garden of Eden configurations

An important feature of (most) CA is their local irreversibility, i.e. under
certain local rules different initial (global) configurations may be transformed
into the same final configuration. As a consequence of irreversibility not all
possible (global) configurations can be reached by time evolution of the CA.
The unreachable configurations can only be initialized and therefore are called
Garden of Eden configurations.

Under most local rules cellular automata behave locally irreversible, i.e. dif-
ferent initial configurations are mapped onto the same final configuration.
For deterministic rules each configuration has a definite post-configuration
(descendant) which can result, however, from several initial configurations
(ancestors). Hence the trajectories traced out by the time evolution of several
configurations may coalesce, but may never split. A trivial example is provided
by a CA with the totalistic null rule: the first iteration transforms arbitrary
initial configurations into the null configuration. In a reversible system all
configurations have definite post- and pre-configurations. Thus the number of
accessible configurations is constant in time (Liouville’s theorem) and is equal
to the number of all possible configurations.

As a consequence of irreversibility there exist configurations that can be ini-
tialized but are unreachable during the development in time of the CA. Such
configurations are called Garden of Eden configurations (Moore, 1962; Aggar-
wal, 1973). These configurations are not at all seldom. Under the null rule,
for example, all configurations except for the null configuration lay in Par-
adise. Table 2.3.4 gives the fraction of reachable configurations for several
rules of elementary cellular automata. Further investigations of Garden of
Eden configurations can be found in Voorhees (1990, 1994, 1996), Voorhees
and Bradshaw (1994) and Schadschneider and Schreckenberg (1998).
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One of the basic decision problems of CA is to decide for a given local rule,
whether its global rule has a Garden of Eden (Kutrib et al., 1997). It has
been shown to be undecidable for two- and higher-dimensional CA (Kari,
1990; Durand, 1994) while it is decidable for one-dimensional CA (Amoroso
and Patt, 1972).

Table 2.3.4. Reachable configurations of elementary cellular automata (k = 2,
r = 1) with periodic boundary condions; compare Wolfram (1983). Fr ≤ 1 is the
fraction of reachable configurations (the number of all possible configurations is 2N

where N is the number of cells).

Rule Fr Remarks

0 1/2N null rule is trivially irreversible

4 1/2N−1 no two adjacent sites have the same value

90 1/2 if N is odd; even number of cells have value one

90 1/4 if N is even

126 depends on N ; limN→∞ Fr → 0

204 1 identity transformation is trivially reversible

Exercise 5. (**)
How many configurations of the cellular automata with N = 10, k = 2, r = 1,
periodic boundary conditions, and rule 56 belong to the Garden of Eden?

Exercise 6. (**)
Which rules for cellular automata with k = 2, r = 1, periodic boundary
conditions, and N = 4 or N = 5 are reversible?

The irreversible behavior of cellular automata is reflected also in the evolution
in time of the information-theoretical (Shannon) entropy S which is defined
as usual (but an arbitrary multiplicative constant or a different base for the
logarithm9 can be chosen) by

S := −
∑

i

pi log2 pi (2.3.6)

(see, for example, Wolfram, 1983)10, whereby pi is the probability of the
(global) configuration i. The increase in entropy S(t) with time (compare
Exercise 9) is a reflection of local irreversibility of CA.
9 The natural logarithm is more appropriate for calculations involving differentia-

tion.
10 Please note that Wolfram defines the entropy with a different sign: SW :=

+
∑

i
pi log2 pi which actually gives the ‘information content’.
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Exercise 7. (*)
Prove:

lim
x→0

x log2 x = 0

Exercise 8. (**)
Which distribution pi belongs to an extremum of S?

Exercise 9. (**)
Calculate S(t) for t = 1 to 100 for the CA with k = r = 2, periodic bound-
ary conditions, N = 10 cells, and the totalistic rule 2. The initial ensemble
encompasses all possible configurations with equal probabilities.

2.3.1 Qualitative characterization of one-dimensional cellular
automata

The following rule numbers refer to legal totalistic rules with two states per
cell k = 2 and range r = 2:

a
(t)
i = f




j=2∑
j=−2

a
(t−1)
i+j︸ ︷︷ ︸

=: s


 (2.3.7)

The argument s can take on values between 0 and 5 only11. Accordingly a
rule is defined by six numbers bi ∈ {0, 1}. The sequence b5b4b3b2b1b0 can be
interpreted as the binary representation of an integer between 0 and 63 which
refer to the various totalistic rules. Example: rule 20 → b5b4b3b2b1b0 = 010100

a
(t)
i = 1 if

j=2∑
j=−2

a
(t−1)
i+j = 2 or 4 and

a
(t)
i = 0 otherwise.

Wolfram (1984a,b) has investigated a large number of one-dimensional au-
tomata with legal totalistic rules, two states per cell k = 2, range r = 2 and
random initial conditions. He proposed the following classification12 with four
different types of behavior:

1. The final configuration is homogeneous.
Rules: 0,4,16,32,36,48,54,60,62.
Analogue in continuous dynamical systems: limit point.

11 For arbitrary k and r: 0 ≤ s ≤ (k − 1)(2r + 1).
12 Different classification schemes have been proposed by several authors (Stauf-

fer, 1989; Gerling, 1990a; Binder, 1991; Twining 1992; Cattaneo et al., 1995;
Makowiec, 1997).
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2. The development in the course of time leads to simple time-independent
or time-periodic patterns.
Rules: 8,24,40,56,58.
Analogue in continuous dynamical systems: limit cycles.

3. Generation of chaotic patterns.
Rules: 2,6,10,12,14,18,22,26,28,30,34,38,42,44,46,50.
Analogue in continuous dynamical systems: strange attractors.

4. The development in the course of time leads to complex local patterns
which in part may be long-lived.
Rules: 20,52.
There is no analogue in continuous dynamical systems.

Table 2.3.5. Legal totalistic cellular automata: Classification (approximately!) ac-
cording to Wolfram (1984b).

k = 2 k = 2 k = 2 k = 3

Type r = 1 r = 2 r = 3 r = 1

1 0.5 0.25 0.09 0.12

2 0.25 0.16 0.11 0.19

3 0.25 0.53 0.73 0.60

4 0 0.06 0.06 0.07

The following figures show the development in time of one-dimensional cellular
automata with k = 2 possible states per cell, range r = 2,N = 100 orN = 400
number of cells, periodic boundary conditions, and legal totalistic rules. The
initial configuration (upper line) is set randomly with equal probability to 0
(white) and 1 (black). All figures show the configurations at N consecutive
time levels (from top to bottom).
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Fig. 2.3.2. Cellular automaton with k = 2 possible states per cell, range r = 2, N =
400 number of cells, periodic boundary conditions, and random initial configuration
(upper line). The figure shows the configurations at 400 consecutive time levels (from
top to bottom). The CA with totalistic rule 2 applies under Wolfram’s third class.
The connection between CA and Sierpinski carpets are discussed, for example, in
Wolfram (1983) or Peitgen et al. (1992).
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Fig. 2.3.3. 1D CA with k = 2, r = 1, N = 100, periodic boundary conditions,
totalistic rule 20 (Wolfram’s class 4): the nine plots show the configurations at the
first hundred time levels starting from different random initial configurations.
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Fig. 2.3.4. Same as Fig. (2.3.3) except totalistic rule 52 (Wolfram’s class 4).
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Fig. 2.3.5. 1D CA with k = 2, r = 1, N = 100, periodic boundary conditions,
totalistic rules 2, 6, 10, 12, 14, 18, 22, 26, 28 (from left to right and from top to bottom;
Wolfram’s class 3): the nine plots show the configurations at the first hundred time
levels starting from the same random initial configuration.



28 2 Cellular Automata

2.4 Two-dimensional cellular automata

In two dimensions there is much more freedom for arranging the cells and
defining the neighborhoods for the updating rules. Here only the simplest con-
figurations will be considered. Various other arrangements will be presented
in the chapter on lattice-gas cellular automata.

2.4.1 Neighborhoods in 2D

Von Neumann neighborhoods of range r are defined by

N
(vN)
i,j :=

{
(k, l) ∈ L∣∣|k − i|+ |l − j| ≤ r

}
(2.4.8)

and Moore neighborhoods of range r by

N
(M)
i,j :=

{
(k, l) ∈ L∣∣|k − i| ≤ r and |l − j| ≤ r

}
. (2.4.9)

Fig. 2.4.6. Neighborhoods in 2D of range 1 and 2: von Neumann (upper), Moore
(lower).
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2.4.2 Fredkin’s game

Fredkin proposed a cellular automata game with simple rules which leeds
to self-replication in a trivial sense, i.e. without configurations that contain
universal Turing machines. The game is defined as follows (Gardner, 1971b).
Each cell has two possible states: alive (occupied) or dead (empty). All cells are
updated simultaneously. Count the number of live cells of the four neighbors
(von Neumann neighborhood of range 1; compare Fig. 2.4.6). Each cell with
an even number (0, 2, 4) of live neighbors will be dead at the next time level
and alive otherwise. It can be shown that any initial pattern of live cells
will reproduce itself four times after 2n iterations (n depends on the initial
pattern). The four replicas will be displaced 2n cells from the vanished original.
Fig. 2.4.7 shows an example where n = 2.

Fig. 2.4.7. Fredkin’s game: after 2n iterations the original pattern of live cells
has disappeared and four replicas have shown up at a distance of 2n cells from the
vanished original. n depends on the initial pattern and is equal to 2 in the example
shown here.

t = 1 t = 2 t = 3

t = 4 t = 5
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2.4.3 ‘Life’

At the beginning of the 70’s Conway introduced the ‘Life’: a two-dimensional
synchronous cellular automaton which simulates the evolution of a society of
living organisms.
‘Life’ is defined by two rules involving eight neighbors (Moore neighborhood
of range 1; compare Fig. 2.4.6):

• Each live site will remain alive the next time-step if it has two or three
live neighbors, otherwise it will die.

• At a dead site new live will be born only if there are exactly three live
neighbors.

‘Life’ contains many patterns which remain stable from iteration to iteration
when not disturbed by other objects (see Fig. 2.4.8 for some examples).

Fig. 2.4.8. The patterns shown here remain stable from generation to generation.

The development in time of initial random configurations with equal proba-
bilities of 1/2 for dead or alive is shown in Figures (2.4.9) and (2.4.10). In the
limit of large domain size and time approximately 3 % of all cells are alive
(compare Fig. 2.4.11).
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Fig. 2.4.9. ‘Life’ on a 10 times 10 array with periodic boundary conditions. The
figure shows the random initialization with equal probability for dead or alive (upper
left) and the configurations at the eight successive time levels (from left to right and
downward).
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Fig. 2.4.10. ‘Life’ on a 50 times 50 array with periodic boundary conditions. Upper
left: Random initialization with equal probability for dead or alive. The other plots
show the configurations at time levels 141 to 148.
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Fig. 2.4.11. ‘Life’ on a 50 times 50 array with periodic boundary conditions:
percentage of alive cells as a function of time (iterations). The limit for large domain
size and time is not yet reached.
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Exercise 10. (**)
Find all stable configurations with an extension of 3 times 3 cells at most.

Exercise 11. (*)
The rule of Conway’s ‘Life’ is one of many possible rules for a two-state cellular
automaton in two-dimensions when the rule takes into account the states of
the nearest neighbors and the cell itself. One can wonder whether the self-
organized critical regime can occur for ‘Life’ only or can occur for many other
of the possible rules. Suppose a supercomputer needs only one microsecond
to investigate one single rule. How long does it take to analyse all the possible
rules?

Further reading:
Sigmund (1993), Alstrøm and Leão (1994), Vandewalle and Ausloos (1995),
Bak (1996), Heudin (1996), Pulsifer and Reiter (1996), Nordfalk and Alstrøm
(1996), de la Torre and Martin (1997), Malarz et al. (1998).

2.4.4 CA: what else? Further reading

Books, proceedings, reviews:

• Codd (1968)

• Burks (1970)

• Wolfram (1986)

• Jackson (1990, chapter 10)

• Gutowitz (1991),

• Wolfram (1994)

• Vollmar et al. (1996)

• Voorhees (1996)

• Kutrib et al. (1997)

• 2nd Conference on Cellular Automata for Research and Industry, Theo-
retical Computer Science, 217(1), 1999.

Articles:

• Invertible CA: Toffoli and Margolus (1990).

• Elementary reversible CA: Takesue (1987, 1989, 1990).

• Additive invariants: Hattori and Takesue (1991).

• Staggered invariants: Takesue (1995).
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• Normal forms of CA: see references in Kutrib et al. (1997).

• Fractals: Peitgen et al. (1998).

• Simulation of traffic flow with cellular automata: Nagel and Schreckenberg
(1992), Schreckenberg et al. (1995), Benjamin et al. (1996), Brankov et al.
(1996), Chopard et al. (1996), Fukui and Ishibashi (1996a,b), Ishibashi
and Fukui (1996a,b), Kerner et al. (1996), Rickert et al. (1996), Barlovic
et al. (1998), Emmerich et al. (1998), Huang (1998), Nagel et al. (1998),
Schadschneider and Schreckenberg (1998), Wang et al. (1998).

• Biology: Stuart A. Kauffman (1984, 1986, 1991) applied CA with complex
interconnection to biological problems; Ermentrout and Edlestein-Keshet
(1993) give a review of biologically motivated CA.
Bandini et al. (1998), Bastolla and Parisi (1998a,b), Mielke and Pandey
(1998), Siregar et al. (1996, 1998), Zorzenon Dos Santos (1998), O’Toole
et al. (1999).

• Statistical mechanics: Rujàn (1987)

• Pattern formation: Lindgren et al. (1998).

• Quantum cellular automata: Watrous (1995), Richter and Werner (1996),
Tougaw and Lent (1996)

• More papers can be found in the following journals:

– Complex Systems

– Physica D (for example: volume 45, p. 3-479, 1990 and volume 103,
1997).

2.4.5 From CA to LGCA

Despite of their simple update rules cellular automata can display complex
behavior which is a prerequisite to use them as a simulation tool for physi-
cal (biological, chemical, ...) phenomena like, for example, fluid flow. CA are
very easy to implement and are especially well suited for massively parallel
computers because of the local character of the update rules. By construction
they are unconditionally numerically stable.

Before CA are to be used for the simulation of physical processes the following
items have to be addressed:

1. Many physical laws are based on the conservation of certain quantities.
The Navier-Stokes equation, for example, expresses the conservation of
mass and momentum. The cellular automata used for simulation should
hold corresponding conserved quantities. As will be shown later on one of
the main problems in the construction of lattice-gas cellular automata is
to avoid the occurence of additional (non-physical or spurious) invariants.
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2. Nonstatic physical phenomena involve the transport of certain quanti-
ties. The propagation of information in CA is not possible for most rules.
Among the elements of the group G = (0, f0, f1, f2, f3, f4; +) introduced
in Exercise 4, for example, only one special element (f0) can generate
propagation.

3. The desired physical behavior of a lattice-gas cellular automata will show
up in the macroscopic limit which can be derived from a theory of sta-
tistical mechanics on a lattice. The application of certain concepts of sta-
tistical mechanics requires that the microdynamics, i.e. the update rules,
are reversible.

Only a small subset of CA holds the appropriate number of conserved quanti-
ties, is able to propagate these quantities or has reversible rules. Based on the
discussion of CA given above it is not clear whether or not CA exist with all
three properties and if so, how to construct such CA for a given phenomenon.

In order to simplify the problem of constructing cellular automata for given
physical processes lattice-gas cellular automata (LGCA) differ somewhat from
the CA discussed above in that the update is split into two parts which are
called collision and propagation (or streaming). The collision rule of LGCA can
be compared with the update rule for CA in that it assigns new values to each
cell based on the values of the cells in a local neighborhood. After the collision
step the state of each cell is propagated to a neighboring cell. This split of
the update guarantees propagation of quantities while keeping the proper up-
date rules (collisions) simple. Because of this difference of LGCA from the CA
discussed here so far some authors do not consider LGCA as proper CA and
prefer to speak of lattice gases (see, for example, Hénon, 1989b). This latter
notation might, however, lead to confusion. “There are at least two, almost
independent, lattice gas communities: one community ... usually moves bits or
numbers around a lattice while conserving momentum; the other community,
mostly solid-state theorists, focuses almost exclusively on the Ising model.”
(Quoted from J. Stat. Phys., Vol. 68, Nos. 3/4, p. 611, 1992.)
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Lattice-gas cellular automata

3.1 The HPP lattice-gas cellular automata

The first lattice-gas cellular automata (LGCA) was proposed in 1973 by
Hardy, de Pazzis and Pomeau. It is named HPP after the initials of the three
authors. The HPP model is the simplest1 LGCA which will be discussed in
some length. Today HPP is of interest mainly for historical reasons2 because
it does not lead to the Navier-Stokes equation in the macroscopic limit. In the
current chapter specific coding techniques for lattice-gas cellular automata3

like multi-spin coding will be introduced.

3.1.1 Model description

HPP is a two-dimensional lattice-gas cellular automata model over a square
lattice. The vectors ci (i = 1, 2, 3, 4) connecting nearest neighbors (compare
Fig. 3.1.1) are called lattice vectors or lattice velocities. More precisely, the
lattice velocities are given by the lattice vectors divided by the time step
∆t which is always set equal to 1. So lattice vectors and lattice velocities
have different dimensions but the same numerical values. The meaning of the
ci can be easily recognized from the respective context. At each site (node)
there are four cells (Fig. 3.1.2) each associated to a link with the nearest
neighbor. These cells may be empty or occupied by at most one particle. This
exclusion principle (Pauli principle) is characteristic for all lattice-gas cellular

1 The model of Boghosian and Levermore (1987) for Burger’s equation in one spatial
dimension will not be discussed here.

2 There are still some applications: Chopard and Droz (1991) use HPP as a random
generator.

3 There are only few papers which give hints to specific coding techniques for
lattice-gas cellular automata; see, for example, Kohring (1991), Wolf-Gladrow
and Vogeler (1992), and Slone and Rodrigue (1997).
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automata. It will lead to equilibrium distributions of Fermi-Dirac4 type for
the mean occupation of the cells. All particles have the same mass m (which
will be set to 1 for simplicity) and are indistinguishable.

The evolution in time is deterministic and proceeds as an alternation of lo-
cal collisions C (only particles at the same node are involved) and streaming
S (also called propagation) along the appropriate links to the nearest neigh-
bors. The evolution operator E is defined as the composition of collision and
streaming:

E = S ◦ C. (3.1.1)

To each particle a momentum of magnitude mci is assigned. The collision
should conserve mass and momentum while changing the occupation of the
cells. For HPP there is only one collision configuration. When two particles
enter a node from opposite directions and the other two cells are empty a
head-on collision takes place which rotates both particles by 90◦ in the same
sense (compare Fig. 3.1.3). All other configuration stay unchanged during
the collision step. In passing we note that twofold application of the collision
operator leads back to the initial configuration:

C2 = I, (3.1.2)

where I is the identity operator.

The HPP model respects a particle-hole symmetry, i.e. the operator F - which
interchanges particles and holes - commutes with the evolution operator E .
As a consequence of this symmetry the model has similar properties at low
and corresponding high mass densities (Hardy et al., 1973).

At each time step particles are interchanged between the sub-lattice consisting
of points with even indices (the ‘white’ sub-lattice) and the sub-lattice consist-
ing of points with odd indices (the ‘black’ sub-lattice; imagine a chessboard).
Therefore there exist two decoupled particle populations on the lattice. This
decoupling is characteristic for the square lattice (compare the decoupling of
solutions at even and odd time steps - sometimes called the chessboard in-
stability - in finite differences; see, for example, Orszag, 1971 or Rood, 1987).

As already noted above the HPP model does not obey the desired hydrody-
namic equations (Navier-Stokes) in the macroscopic limit. We will prove later
on that this deficit is due to the insufficient degree of rotational symmetry
of the lattice. Certain tensors composed of products of the lattice velocities -
so-called lattice tensors - are not isotropic over the square lattice. See Section
3.3 for an extensive discussion of these tensors. This anisotropy would mani-
fest itself, for example, in the flow past a non-rotational symmetric obstacle in
4 Fermi-Dirac distributions are well known from quantum mechanics. Particles with

half-odd-integer spins like the electron, proton, or neutron are called fermions;
they obey Fermi-Dirac distributions.
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Fig. 3.1.1. The square lattice of the HPP model. The four arrows labelled by a,
b, c, and d indicate the lattice velocities ci. Particles are interchanged between the
black (small points) and the white (small circles) sub-lattices (chess board).
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that the drag depends on the relative orientation of the obstacle with respect
to the lattice.
In addition to mass and momentum there exist additional conserved quanti-
ties for the HPP model. For example, the difference in the number of particles
parallel and anti-parallel to a lattice axis does not change by collisions or
propagation. These ‘spurious invariants’ are undesirable because they restrict
to a certain degree the dynamics of the model and have no counterpart in the
real world.
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Fig. 3.1.2. HPP: collision and propagation. Filled circles denote occupied cells and
open circles empty cells. a) Part of the lattice before collision (e.g. after propagation);
there is only one collision configuration (two particles in opposite cells at the same
node; on the left). b) After collision (e.g. before propagation): the configuration of
the cells at node on the left side has changed. c) After propagation: all particles have
moved along the links to their nearest neighbors (the lattice outside the part shown
was assumed to be empty, e.g. no propagation of particles from ‘outside’).
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c) after propagation
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Fig. 3.1.3. HPP: collisions. a) There is only one collision configuration (head-on
collision) for HPP: two cell on opposite links are occupied and the two other cells
are empty. After collision the formerly empty cells are occupied and vice versa. b)
Same as a) but showing the associated momentum vectors. Both momentum vectors
are rotated by 90◦. Mass and momentum are conserved.
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3.1.2 Implementation of the HPP model: How to code lattice-gas
cellular automata?

The coding techniques discussed here will be also applicable to other LGCA
like FHP or PI. The FCHC model requires a different approach (discussed in
Section 3.5).

FORTRAN or C? Which programming language is best suited for the
coding of LGCA? Of course there will be no unique answer to this question
and often discussions with various people resemble religious controversies5. I
propose the following criteria:

• The computer codes should be portable, i.e. programming in machine spe-
cific language (Assembler) is excluded.

• The computation demand of hydrodynamic problems is usually large.
Therefore the model should be written in a language for which optimizing
compilers (vectorization, parallelization) are available on super-computers.
Thus BASIC or PASCAL are excluded and one has to choose between C
or FORTRAN.

The specific coding techniques for LGCA can be applied in C as well as
in FORTRAN. Comparison of computation time shows only a very small
advantage of C (Wolf-Gladrow and Vogeler, 1992). The code of the collisions
is much easier to grasp in C than in FORTRAN. Nevertheless, the ‘translation’
from C to FORTRAN is straightforward (compare Table 3.1.1).

Multi-spin coding

The most important technique for LGCA is multi-spin coding6. The exclusion
principle makes it possible to describe the state of a cell by one bit which
is set to 0 if the cell is empty and to 1 if it is occupied. There is no special
data type for bits either in C nor in FORTRAN. However, several bits (32 on
Sun-Workstation; 64 on CRAY-J90) can be packed into one unsigned (C) or
integer (FORTRAN) variable. In standard C there exist bit-operators which
act bitwise7 on whole unsigned variables. In FORTRAN you may find bit-
functions with the same effects. These bit-functions do not belong to the
FORTRAN standard but are available on almost all machines.
5 I was taught that ‘FORTRAN is a dead language’ already in the 70ies.
6 Although the term ‘multi-spin coding’ which is related to the spins of Ising models

has been coined by Creutz et al. in 1979, this technique has been described already
in the article of Hardy et al. (1976) and it was first mentioned by Friedberg and
Cameron (1970).

7 Example: decimal 65 | 39 reads in binary notation on an 8-bit machine
(01000001) | (00010111) = (01010111) and therefore 65 | 39 = 103.
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Table 3.1.1. Some elements and constructions in C and FORTRAN.

C FORTRAN Remarks

----------------------------------------------------------------

a & b iand(a,b) bit operators are

a | b ior(a,b) standard in C;

a ^ b ieor(a,b) bit functions are

~a not(a) (almost always available)

extensions in FORTRAN

a<<3 ishift(a,3) left shift of bits by

3 positions

a>>4 ishift(a,-4) right shift

a = a | (1<<3) a = ibset(a,4) set 4th bit

#define A 5 parameter (A=5) in C: global define

unsigned a[3] integer a(3) 1D array with 3 elements

a[0],a[1],a[2] a(1),a(2),a(3) elements

for(i=0;i<3;i++){ do i=1,3 loops

} enddo

a % b mod(a,b) a modulo b

----------------------------------------------------------------

Table 3.1.2. Bit-operators in C: & and; | inclusive or; ∧ exclusive or; ∼ not.

a b a & b a | b a ∧ b ∼ a

0 0 0 0 0 1

1 0 0 1 1 0

0 1 0 1 1 1

1 1 1 1 0 0

The core of the HPP program, namely the coding of collision and streaming,
encompasses only a few lines. Here is the code in C:
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/* --- grid ---

b a
\ /
\ /
\ /
+

/ \
/ \
/ \

c d */

last = LENGTH - 1; /* --- shift last bit --- */
XMAX1 = XMAX - 1;
YMAX1 = YMAX - 1;

/* ----- collision ----- */
for(x=0; x<XMAX; x++)
for(y=0; y<YMAX; y++) {
change = ( (a1[x][y] & c1[x][y] & ~(b1[x][y] | d1[x][y])) |

(b1[x][y] & d1[x][y] & ~(a1[x][y] | c1[x][y])) )
& nsb[x][y];

a2[x][y] = a1[x][y] ^ change;
b2[x][y] = b1[x][y] ^ change;
c2[x][y] = c1[x][y] ^ change;
d2[x][y] = d1[x][y] ^ change; }

/* ----- propagation in a-direction ------ */

for(x=1; x < XMAX1; x++) {
for(y=1; y < YMAX1; y += 2) {

/* note: brackets are necessary,
because in C the + has a higher priority than the >> */

/* black to white: */
a1[x][y] = (a2[x][y-1] >> 1) + (a2[x-1][y-1] << last);
a1[x][y+1] = a2[x][y]; }} /* white to black: */

A few comments on the code are now in order:

• Each unsigned variable can store LENGTH (= 64 on CRAY computers)
bits. The number of grid points is XMAX*LENGTH in x-direction and
YMAX in y-direction (compare Fig. 3.1.1).
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• The states of all cells are stored in the two-dimensional (2D) arrays a1,
b1, c1, d1, where a, b, c, d assign the different lattice directions (lattice
velocities). a1[0][0] contains the ‘a-bits’ of the nodes from 1 to LENGTH
of the first line.

• The location of obstacles is stored in the 2D array nbs (non-solid bit): bits
in nbs are set to 1 outside of the obstacles and 0 otherwise.

• In the first loop a variable change is calculated. It contains the information
whether or not a collision will happen: the bits in change are set to 1 if
the configurations (a, b, c, d) = (1010) or (0101) are present and the node
is located outside of obstacles.

• Subsequently, the bit arrays a1, b1, c1, d1 are concatenated by ‘exclusive
or’ with the variable change. This changes the state bits (interchange of
0 and 1; compare Table 3.1.2). The results of this operation are stored
in the auxiliary arrays a2, b2, c2, d2. The introduction of these auxiliary
arrays ensures a very fast updating on vector computers. These arrays are
also useful in the propagation step.

• In Fig. 3.1.1 the propagation is shown only for the a-directions (upwards
and to the right). In the program listing the propagation in a-direction is
shown only for the inner nodes. The propagation for nodes on the bound-
aries has to be treated separately according to the appropriate boundary
conditions.

– The propagation from the white to the black sub-lattice consists of a
storage in different arrays.

– The propagation from the black to the white sub-lattice is more in-
volved. To simplify the following discussion let us assume that number
of bits per integer is only 4 (the parameter LENGTH in the code).
The propagation of a2[0][5] and a2[1][5] to a1[1][6] (compare Fig. 3.1.1)
will be considered. First all bits of a2[1][5] will be shifted to the right
whereby the rightmost bit drops out. The resulting void at the left
boundary of a2[1][5] will be filled up automatically by a 0. Yet, this po-
sition must be occupied by the rightmost bit of the neighbor element
a2[0][5]. To isolate this bit all bits in a2[0][5] are shifted to the left
by LENGTH-1 (= ‘last’ in the code) digits whereby zeros fill up from
the right. Now a2[1][5] after a right shift and a2[0][5] after LENGTH-1
left shifts could be concatenated by exclusive or. But the addition of
these two shifted integers yields the same result and is faster on some
computers due to chaining8 (compare Kohring, 1991 and Wolf-Gladrow
and Vogeler, 1992).

8 Chaining is the process of passing the output of one vector operation directly
as input into another vector operation. As soon as the first element of the first
operation’s result is output, the second operation can begin. This allows partial
overlapping of vector instruction execution.
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Example: LENGTH = 4; last = 3;
a2[0][5] = (1001); a2[1][5] = (1011);
a2[1][5] >> 1 = (0101); a2[0][5] << last = (1000)
a1[1][6] = (1101)

3.1.3 Initialization

Before the evolution of the LGCA can start the various arrays have to be ini-
tialized. At time t = 0 the bits are set by random processes with probabilities
such that the mean values over a large number of nodes (typically 32 times 32
or 64 times 64) approximate the given initial values for mass and momentum
density. Thus the question arises, how to choose appropriate probabilities for
given mass and momentum density?
The state of the LGCA is fully described by the Boolean fields ni(t, rj) where
the index i which runs from 1 to 4 (or alternatively from a to d) indicates the
directions, ni is the occupation number which may be 0 or 1, t is the (discrete)
time and rj are the coordinates of the nodes. Mean occupation numbers Ni

are calculated by averaging over neighboring nodes

Ni(t,x) = 〈ni(t, rj)〉 . (3.1.3)

The mean occupation numbers can take on values between 0 and 1. Mass
ρ(t,x) and momentum density j(t,x) are defined by

ρ(t,x) =
4∑

i=1

Ni(t,x) (3.1.4)

and

j(t,x) = ρu =
4∑

i=1

ciNi(t,x) (3.1.5)

(u is the flow velocity) with the lattice velocities ci

c1 =
1√
2
(1, 1) (3.1.6)

c2 =
1√
2
(−1, 1)

c3 =
1√
2
(−1,−1) (3.1.7)

c4 =
1√
2
(1,−1)

which obey
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4∑
i=1

ci = 0 (lattice symmetry!) (3.1.8)

and
4∑

i=1

ciαciβ = 2δαβ, (3.1.9)

where the Latin indices refer to the lattice vectors and run from 1 to 4 whereas
the Greek indices assign the cartesian components of the vectors and therefore
run from 1 to 2. This convention will be used also in all other chapters.

The theoretical background for the calculation of the equilibrium occupation
numbers will be developed not until the next chapter (the section on the FHP
model contains some results relevant for HPP). Instead a simple ansatz for
Ni will be made which is linear in ρ and j

Ni = ξρ+ ηcij. (3.1.10)

The coefficients ξ and η can be calculated from the constraints (3.1.4) and
(3.1.5):

ρ =
4∑

i=1

Ni

=
∑

i

ξρ+ ηj
∑

i

ci︸ ︷︷ ︸
= 0

= 4ξρ (3.1.11)

which yields ξ = 1/4;

j =
4∑

i=1

ciNi

= ξρ
∑

i

ci︸ ︷︷ ︸
= 0

+
∑

i

ηci(cij)

= 2ηj (3.1.12)

thus η = 1/2 and therefore

Ni =
ρ

4
+

1
2
cij. (3.1.13)
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I.e., for j = 0 the occupation numbers are independent of direction (they
can still depend on location which corresponds to pure density perturbations)
whereas non-vanishing momenta imply occupation numbers which vary with
direction.
The Boolean arrays ni will be initialized with probabilities9 pi such that the
Ni give the desired distributions of ρ and j when summed up according to
Eqs. (3.1.4) and (3.1.5). The relations between the Boolean arrays ni and the
mass and momentum density are illustrated in Fig. 3.1.4.

Fig. 3.1.4. Relations between microscopic (Boolean arrays ni) and macroscopic
(mass and momentum density) level.
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Exercise 12. (*)
Construct occupation numbers Ni which vary with direction but yield j = 0.

Exercise 13. (**)
How long does it take for the distribution (3.1.13) to relax toward equilibrium
distribution? What does the relaxation time constant depend on?

3.1.4 Coarse graining

The calculation of mean values for mass and momentum density is called
coarse graining. Although it is possible to average over space, time or a com-
bination of space and time, spatial coarse graining is much faster than the
9 Unfortunately there is no standard for random generators. Portable random gen-

erators can be found for example in ‘Numerical Recipes’ (Press et al., 1992a,b).
Different types of random generators (multiplicative congruential, shift-register
and lagged Fibonacci) are discussed by Slone and Rodrigue (1997).
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other alternatives. For the purpose of coarse graining the domain is divided
into a number of subdomains which are large enough (usually 32 times 32 or
64 times 64 nodes) to obtain reliable (low noise) averages and small enough
as to allow a large ‘physical domain’ under the constraint of a given limit of
core memory.
The following more technical notes can be skipped in a first reading. The
main computational load is the counting of the 1-bits in the unsigned (in-
teger) arrays. On some computers a fast routine for counting the 1-bits in
an integer is available. On the CRAY, for example, this is the FORTRAN
function POPCNT (population count). Nothing similar is available in C. But
one can use the FORTRAN function in C. Include the following lines into the
code

#include <fortran.h>
fortran int POPCNT(); /* counts the number of 1-bits

in a 64 bit word */

and apply POPCNT to unsigned variables:

int n;
unsigned u;

u = 7;
n = POPCNT(u);

If no machine specific population count is available one can use the following
routine which applies a look-up table (see Kohring, 1991, for the FORTRAN
version):

/* ------- popcount for 32-bit unsigned ------ */

unsigned lu16[65536]; /* global */

void makelu16()
{
/* ----- make look-up table ----- */

int ilu,ibi;
for(ilu=0; ilu<65536; ilu++) {

lu16[ilu] = 0;
for(ibi=0; ibi<16; ibi++) {
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if( (ilu & bits[ibi]) > 0) lu16[ilu] += 1;
}

}
} /* --- end of makelu16 --- */

int popcount(unsigned u)
{
/* --- count bits --- */

int pop;
pop = lu16[(u&65535)] + lu16[( (u>>16)&65535 )];
return(pop);

} /* --- end of popcount --- */
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3.2 The FHP lattice-gas cellular automata

In 1986 Frisch, Hasslacher and Pomeau showed that a lattice-gas cellular au-
tomata model over a lattice with a larger symmetry group than for the square
lattice yields the incompressible Navier-Stokes equation in the macroscopic
limit. This model with hexagonal symmetry is named FHP according to the
initials of the three authors. The discovery of the symmetry constraint was the
start for a rapid development of lattice-gas methods. The theoretical founda-
tions where worked out by Wolfram (1986) and by Frisch et al. (1987). Within
the following years many extensions and generalizations (FCHC for 3D sim-
ulations, colored models for miscible and immiscible fluids) were proposed.
These models allow a wide range of applications.

After concentrating more on coding techniques in the HPP chapter the focus
of the current section will be on the theory of lattice-gas cellular automata.
Especially the equilibrium distribution and the macroscopic equations will be
derived.

3.2.1 The lattice and the collision rules

The FHP lattice is composed of triangles (compare Fig. 3.2.1). It is invariant
under rotations by n · 60◦ modulo 360◦ (hexagonal symmetry) about an axis
through a node and perpendicular to the lattice plane. At each node and each
link to the nearest neighbor there is a cell which may be empty or occupied by
at most one particle (exclusion principle). All particles have the same mass
m (set to 1 for simplicity) and are indistinguishable. The state of a node
can be described by six bits. The exclusion principle leads to an equilibrium
distribution of the mean occupation numbers of Fermi-Dirac type. Each cell
is associated with a lattice vector ci which connects a node with its nearest
neighbor in direction i. The lattice vectors ci are also called lattice velocities
because the time step ∆t is always set to 1 in lattice-gas cellular automata
and therefore ci and ci/∆t have the same numerical values. Because all par-
ticles have the same mass m = 1, ci is also the particle’s momentum. The
respective meaning of ci can be recognized from the context.
As for HPP there are 2-particle head-on collisions (compare Fig. 3.2.2). The
initial state10 (i, i+3) can be transformed into one of two different final states
(i+1, i+4) or (i−1, i+2) (rotation by 60◦ to the left or right) while conserving
mass and momentum density. If one chooses always one and the same final
10 The description of the state of a node will be given in terms of indices of the

occupied cells whereby the cell index i > 0 is understood as modulo 6. The index
i = 0 will be assigned to rest particles (see below).
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state the model becomes chiral11: it is not invariant with respect to spatial
reflections (parity transformation). This is an undesired property because the
hydrodynamic equations do not break parity symmetry. To restore reflection
symmetry on the macroscopic level the choice between the different final states
will be made by a random process with equal probabilities for rotation to the
left and to the right. Thus in contrast to HPP the FHP model encompasses
nondeterministic rules.
The generation of random numbers is a time consuming process. Therefore a
pseudo-random choice is used where the rotational sense changes by chance for
the whole domain from time step to time step (i.e. only one random number
per time step has to be generated) or the sense of rotation changes from node
to node but is constant in time (i.e. random numbers have to be generated
only in the initial step for all nodes).
The 2-particle collisions conserve not only mass and momentum but also the
difference of the number of particles that stream in opposite directions (the
same invariant as for HPP). This additional invariant has no counterpart in
‘real world hydrodynamics’ and therefore is called a spurious invariant. It
further restricts the dynamic of the lattice-gas cellular automata and can lead
to deviations from hydrodynamic behavior on the macroscopic scale. The in-
variance of the particle differences can be destroyed by symmetric 3-particle
collisions which conserve mass and momentum (compare Fig. 3.2.2). 2- and
3-particle collisions form a minimal set of collisions for FHP. This version of
FHP is called FHP-I. Introduction of additional collisions like 4-particle colli-
sion, 2-particle collision with spectator and collisions including rest particles
lead to various variants (FHP-II, FHP-III: see, for example, Frisch et al., 1987
and Hayot and Lakshmi, 1989). The corresponding macroscopic equations all
have the same form (universality theorem) and differ only in their viscosity co-
efficients. As a rule of thumb the viscosity coefficient decreases with increasing
number of collisions.

The 3-particle collisions destroy a spurious invariant. Unfortunately no
method exists to detect all invariants of a given lattice-gas cellular automata
model. Of course this is an unsatisfactory situation in the light that the in-
variants play an essential role in the equilibrium distributions of the mean
occupation numbers. Indeed Zanetti (1989) found spurious invariants for all
variants of the FHP model. Fortunately these staggered invariants are not
set to values above a certain noise level by the usual initialization procedure
and obviously are not generated by interactions with obstacles. So they do
not influence the macroscopic dynamic too much. A discussion of the Zanetti
invariants will be given in Section 3.8.

Frisch et al. (1987) give a discussion of a unified theory for the lattice-gas
cellular automata HPP, FHP and FCHC. This excellent paper may be heavy
fare for the beginner. The following discussion is restricted to the FHP model
without rest particles (FHP-I) but from time to time more general results
11 The word chiral derives from the Greek word for ‘hands’.
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Fig. 3.2.1. The triangular lattice of the FHP model shows hexagonal symmetry.
The lattice velocities ci are represented by arrows.
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from Frisch et al. (1987) will be quoted.
The essential properties of the FHP model read:

1. The underlying regular lattice shows hexagonal symmetry.

2. Nodes (also called sites) are linked to six nearest neighbors located all at
the same distance with respect to the central node.

3. The vectors ci linking nearest neighbor nodes are called lattice vectors or
lattice velocities

ci =
(
cos

π

3
i, sin

π

3
i
)
, i = 1, ..., 6. (3.2.1)

with |ci| = 1 for all i.

4. A cell is associated with each link at all nodes.

5. Cells can be empty or occupied by at most one particle (exclusion princi-
ple).

6. All particles have the same mass (set to 1 for simplicity) and are indistin-
guishable.

7. The evolution in time proceeds by an alternation of collision C and stream-
ing S (also called propagation):

E = S ◦ C, (3.2.2)

where E is called the evolution operator.

8. The collisions are strictly local, i.e. only particles of a single node are
involved.

r is the position vector of a node and r + ci are the position vectors of its
nearest neighbors. Each pair of lattice vectors (ci, cj) is associated with an
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Fig. 3.2.2. All possible collisions of the FHP variants: occupied cells are represented
by arrows, empty cells by thin lines.
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element of the isometric group12 G which transforms ci into cj by a rotation
of n · 60◦. The first three moments of the lattice velocities ci read:∑

i

ci = 0 (symmetry of the lattice!) (3.2.3)

∑
i

ciαciβ = 3δαβ (3.2.4)

∑
i

ciαciβciγ = 0 (3.2.5)

where the sum over i always runs from 1 to 6. The Latin indices refer to
the lattice vectors and run from 1 to 6 whereas the Greek indices assign
the cartesian components of the vectors and therefore run from 1 to 2. To
each node a bit-state n(r) = {ni(r), i = 1, ..., 6} will be assigned where the
ni ∈ {0, 1} are Boolean variables. The streaming (propagation) is defined by

ni(r) = Sni(r − ci). (3.2.6)

Collisions take place synchronously at every node and transform the initial
state of a node s = {si, i = 1, ..., 6} into the final state s′ = {s′i, i = 1, ..., 6}
according to the collision rules described above. A certain transition probability

A(s→ s′) ≥ 0 (3.2.7)

is assigned to each pair of initial and final state. The transition probabilities
satisfy the normalization

∀s :
∑
s′
A (s→ s′) = 1 (3.2.8)

The only combinations of six real numbers ai which fulfill the constraints

∀s, s′ :
∑

i

(s′i − si)A (s→ s′) ai = 0 (3.2.9)

are linear combinations of 1 (for all i) and ci, i.e. mass and momentum conser-
vation. This is indeed the case for FHP. The Zanetti invariants are non-local
invariants.
The transition probabilities are invariant with respect to each element of the
isometric group G:

∀g ∈ G, ∀s, s′ : A (g(s) → g(s′)) = A (s→ s′) . (3.2.10)

The FHP model fulfills the detailed balance
12 Isometries are mappings g which keep the distances d(α, β) of arbitrary points α,
β invariant: d(g(α), g(β)) = d(α, β). Rotations and reflections are isometries.
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A(s→ s′) = A(s′ → s), (3.2.11)

i.e. the probabilities for each collision and its inverse collision are equal. For
the derivation of the equilibrium distribution (compare Theorem 1) the weaker
condition of semi-detailed balance (or Stueckelberg condition13)

∀s′ :
∑

s

A(s→ s′) = 1 (3.2.12)

is sufficient.

There are 26 = 64 different states for a node of the FHP-I model. The tran-
sition probabilities A(s→ s′) form a 64× 64 transition matrix Ass′ . The two
constraints (3.2.8) and (3.2.12) are equivalent to the statement that the sums
of each line or each column of Ass′ are equal to 1.

Exercise 14. (*)
How does the transition matrix Ass′ look like? Write down the submatrix
which contains the 2- and 3-particle collisions.

Exercise 15. (**)
Prove: the 2- and 3-particle collisions locally (at a single node) conserve only
mass and momentum.

Exercise 16. (*)
Consider a system with three possible states (a, b, c) and transition probabil-
ities
1.)

A(a→ b) = 0.5 A(b→ a) = 0.5
A(b→ c) = 0.5 A(c→ b) = 0.5
A(c→ a) = 0.5 A(a→ c) = 0.5

or 2.)

A(a→ b) = 0.8 A(b→ a) = 0.2
A(b→ c) = 0.8 A(c→ b) = 0.2
A(c→ a) = 0.8 A(a→ c) = 0.2

13 Stueckelberg (1952) showed that this condition is sufficient to prove the H-
theorem.
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or 3.)

A(a→ b) = 0.8 A(b→ a) = 0.3
A(b→ c) = 0.7 A(c→ b) = 0.4
A(c→ a) = 0.6 A(a→ c) = 0.2.

Calculate the distribution (a, b, c)t for large t given the initial value
(a, b, c)t=0 = (1, 0, 0) for all three cases. In which cases is detailed or semi-
detailed balance fulfilled?

3.2.2 Microdynamics of the FHP model

For hydrodynamics certain averaged quantities like mass and momentum den-
sity are of interest. To understand the behavior of these averaged quantities
a description of lattice-gas cellular automata in terms of statistical mechanics
will be formulated. First the analogue to the Hamilton equations in classical
statistical mechanics will be considered.

Boolean description of the microdynamics

The state of the cells of the lattice-gas cellular automata is described by the
Boolean14 arrays ni(t, r):

ni(t, r) =

{
1 if cell i is occupied
0 if cell i is empty

where r and t indicate the discrete points in space and time. The time evolu-
tion in terms of Boolean arrays reads:

ni (t+ 1, r + ci) = ni(t, r) ∧
{[(ni ∧ ni+1)& (ni+1 ∧ ni+2)& (ni+2 ∧ ni+3)
& (ni+3 ∧ ni+4)& (ni+4 ∧ ni+5)]
| [ni&ni+3& ∼ (ni+1 | ni+2 | ni+4 | ni+5)] (3.2.13)
| [ξ&ni+1&ni+4& ∼ (ni | ni+2 | ni+3 | ni+5)]
| [∼ ξ&ni+2&ni+5& ∼ (ni | ni+1 | ni+3 | ni+4)] }

14 A short introduction to the Boolean algebra can be found in Appendix 6.1.
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where the occupation numbers ni on the right side refer to the input-states
at node r and time t. The symbols

& = AND
| = OR (inclusive or) (3.2.14)
∧ = XOR (exclusive or)
∼ = NOT.

have been used. ξ is a Boolean random variable which determines the sense of
rotation for the 2-particle collisions (denoted ‘xi’ in the program code listed
below). Eq. (3.2.13) looks rather nasty to people who do not use Boolean
algebra every day. The interpretation is however simple. Eq. (3.2.13) states
that the state of cell i at node r + ci at time t + 1 is given by ni(r, t) when
no collision happens or (exclusive!) ni(r, t) is changed by collision before its
value is propagated to r + ci. The following collisions are taken into account:

1. A symmetric 3-particle collision happens at node r at time t when the
nj (j = 1, ..., 6) are alternating occupied and empty. When a 3-particle
collision happens and ni is occupied at input cell i will change to the
empty state, whereas in a 3-particle collision with ni empty initially cell
i will be occupied after collision.

2. If a 2-particle collision happens where on input cells i and i+3 are occupied
(and all other cells empty) ni will change to 0.

3. If a 2-particle collision happens where on input cells i + 1 and i + 4 are
occupied (and all other cells empty) and the Boolean random variable ξ
is 1 such that the rotation of the outgoing particles is in the clockwise
direction (otherwise ni would not change!).

4. If a 2-particle collision happens where on input cells i + 2 and i + 5 are
occupied (and all other cells empty) and the Boolean random variable
ξ is 0 such that the rotation of the outgoing particles is in the counter-
clockwise direction.

The four different cases correspond to the last five lines on the right hand side
of Eq. (3.2.13). ni is changed if any one of the collisions happens. Therefore
the various collision terms are connected by inclusive or. The exclusive or
between ni(r, t) and the collision terms enforces a change when any one of
the collisions happens.
The coding of the FHP model is based on the Boolean formulation of the
microdynamics. The code in C reads as follows (nsbit is the non-solid bit
which is set to 1 in the fluid and to 0 inside obstacles; it is used here to
suppress collisions inside obstacles):
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/* loop over all sites */

for(x=0; x<XMAX; x++) {
for(y=0; y<YMAX; y++) {
a = i1[x][y];
b = i2[x][y];
c = i3[x][y];
d = i4[x][y];
e = i5[x][y];
f = i6[x][y];

/* two-body collision
<-> particles in cells a (b,c) and d (e,f)

no particles in other cells
<-> db1 (db2,db3) = 1 */

db1 = (a&d&~(b|c|e|f));
db2 = (b&e&~(a|c|d|f));
db3 = (c&f&~(a|b|d|e));

/* three-body collision <-> 0,1 (bits) alternating
<-> triple = 1 */

triple = (a^b)&(b^c)&(c^d)&(d^e)&(e^f);

/* change a and d
<-> three-body collision triple=1

or two-body collision db1=1
or two-body collision db2=1 and xi=1 (- rotation)
or two-body collision db3=1 and noxi=1 (+ rotation)

<-> chad=1 */

xi = irn[x][y]; /* random bits */
noxi = ~xi;

nsbit = nsb[x][y]; /* non solid bit */

cha = ((triple|db1|(xi&db2)|(noxi&db3))&nsbit);
chd = ((triple|db1|(xi&db2)|(noxi&db3))&nsbit);
chb = ((triple|db2|(xi&db3)|(noxi&db1))&nsbit);
che = ((triple|db2|(xi&db3)|(noxi&db1))&nsbit);
chc = ((triple|db3|(xi&db1)|(noxi&db2))&nsbit);
chf = ((triple|db3|(xi&db1)|(noxi&db2))&nsbit);
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/* change: a = a ^ chad */

k1[x][y] = i1[x][y]^cha;
k2[x][y] = i2[x][y]^chb;
k3[x][y] = i3[x][y]^chc;
k4[x][y] = i4[x][y]^chd;
k5[x][y] = i5[x][y]^che;
k6[x][y] = i6[x][y]^chf;

/* collision finished */
}}

Exercise 17. (**)
Write the analogue of Eq. (3.2.13) for the case where rest particle collisions
(compare Fig. 3.2.2 e) are included.

Arithmetic description of the microdynamics

The transition from the Boolean to the arithmetic formulation of the mi-
crodynamics can be achieved by formal substitutions (compare Table 3.2.1).
However, this procedure is too laborious. Instead the collision function ∆i is
introduced by

ni(t+ 1, r + ci) = ni(t, r) +∆i. (3.2.15)

The collision function can be constructed according to the following recipe:

• For each collisional configuration, i.e. one that will lead to a change of the
occupation numbers, a product of the ni (if ni = 1) respectively (1 − ni)
(if ni = 0) for i = 1, ..., b (b total number of lattice velocities) is written.
This product yields 1 if the specific configuration is given and 0 otherwise.

• For nondeterministic collision rules (FHP) the products defined above are
multiplied by a random variable ξ, (1− ξ) or 1, respectively.

• The products receive positive or negative sign according to whether ni in-
creases or decreases when changing from input (before collision) to output
(after collision) state.

• All products are added up.

To give an example let us consider the HPP model. There are only two col-
lisional configurations, namely (1, 0, 1, 0) and (0, 1, 0, 1). The corresponding
products read

ni+1ni+3(1− ni)(1− ni+2) and nini+2(1− ni+1)(1− ni+3)
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where ni increase in the former case and decreases in the latter. Thus the
collision function is given by

∆i = ni+1ni+3(1− ni)(1− ni+2)− nini+2(1− ni+1)(1− ni+3).

Table 3.2.1. ‘Translation’ of Boolean expressions into arithmetic formulas.

a b

AND OR XOR NOT

a&b a | b a ∧ b ∼ a

a · b a+ b− a · b a+ b− 2 · a · b 1− a

0 0 0 0 0 1

1 0 0 1 1 0

0 1 0 1 1 1

1 1 1 1 0 0

The analogous procedure yields for the FHP-I model

∆i(n) = ni+1ni+3ni+5(1 − ni)(1 − ni+2)(1 − ni+4)
−nini+2ni+4(1− ni+1)(1− ni+3)(1− ni+5)
+ξni+1ni+4(1− ni)(1 − ni+2)(1 − ni+3)(1− ni+5) (3.2.16)
+(1− ξ)ni+2ni+5(1− ni)(1− ni+1)(1 − ni+3)(1 − ni+4)
−nini+3(1 − ni+1)(1 − ni+2)(1 − ni+4)(1 − ni+5)

where n = {ni, i = 1, ..., 6}. The conservation of mass and momentum at each
node can be expressed as follows

∀n :
6∑

i=1

∆i(n) = 0 (3.2.17)

and

∀n :
6∑

i=1

ci∆i(n) = 0. (3.2.18)

These equations imply corresponding conservation laws for the Boolean arrays
ni ∑

i

ni(t+ 1, r + ci) =
∑

i

ni(t, r) (3.2.19)
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and ∑
i

cini(t+ 1, r + ci) =
∑

i

cini(t, r). (3.2.20)

Exercise 18. (*)
Derive Eq. (3.2.17).

3.2.3 The Liouville equation

Now lattice-gas cellular automata will be considered from the viewpoint of
statistical mechanics. In classical statistical mechanics the deterministic de-
scription of systems with many degrees of freedom by Hamiltonian equations
is abandoned and replaced by a probabilistic approach (Gibbs’ ensemble: in-
stead of deriving equilibrium values from the long time limit of a single system,
one calculates them as mean values over a large hypothetical set of ‘equiva-
lent’ systems 15; some authors prefer to avoid the introduction of ensembles:
see, for example, Ma, 1993). One can proceed quite similar for lattice-gas cel-
lular automata. The microscopic description of the FHP model encompasses
already probabilistic elements (choice of the sense of rotation for 2-particle
collisions). To avoid confusion because of these two different types of proba-
bilities the reader should - at least for a while - consider the microdynamics
as a deterministic process (like it is indeed for HPP).
Consider a lattice L of final extend with periodic (cyclic) boundary condi-
tions. The phase space Γ (Gibbs) is defined as the set of all possible states
s(.) of the lattice L. At time t = 0 an ensemble of initial states is given with
probabilities P (0, s(.)) ≥ 0 which add up to 1:∑

s(.)∈Γ

P (0, s(.)) = 1.

Each member of the ensemble evolves according to the microdynamics of the
lattice gas. This implies the conservation of probabilities

P (t+ 1,Ss(.)) = P
(
t, C−1s(.)

)
(3.2.21)

or
15 Gibbs (1902) writes in his preface: “For some purposes, however, it is desirable to

take a broader view of the subject. We may imagine a great number of systems
of the same nature, but differing in the configurations and velocities which they
have at a given instant, and differing not merely infinitesimally, but it may be
so as to embrace every conceivable combination of configuration and velocities.
And here we may set the problem, not to follow a particular system through its
succession of configurations, but to determine how the whole number of systems
will be distributed among the various conceivable configurations and velocities at
any required time, when the distribution has been given for some one time.”
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P (t+ 1, Es(.)) = P (t, s(.)) . (3.2.22)

Eq. (3.2.22) is called the Liouville equation because of its close analogy to the
Liouville equation in classical statistical mechanics (compare page 137).
In the case of nondeterministic microdynamics like for FHP the Liouville equa-
tion has to be replaced by the more general Chapman-Kolmogorov equation

P (t+ 1,Ss(.)) =
∑

s(.)∈Γ

∏
r∈L

A (s(r) → s′(r))P (t, s(.)) . (3.2.23)

Exercise 19. (*)
How many different states are possible a) at a single node and b) on a lattice
with N nodes? When does this number exceed 1010?

3.2.4 Mass and momentum density

In the framework of the probabilistic description ensemble mean values
q (n(t, ...)) for observables q are defined by

〈q (n(t, ...))〉 :=
∑

s(.)∈Γ

q (s(.))P (t, s(.))

By far the most important observables are the mean occupation numbers

Ni(t, r) = 〈ni (t, r)〉

which are used to define the mass

ρ(t, r) :=
∑

i

Ni(t, r)

and momentum density

j(t, r) :=
∑

i

ciNi(t, r).

These quantities are defined with respect to nodes and not to cells or area16.
The density per cell d is calculated by division of ρ by the number of cells per
node b (= 6 for FHP-I):

d =
ρ

b
. (3.2.24)

The flow velocity is defined by the (non-relativistic) relation momentum den-
sity = mass density · velocity:

16 The area per node is
√

3/2 (compare Fig. 3.2.1).
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j(t, r) = ρ(t, r)u(t, r).

Of course the microscopic conservation equations (3.2.19) and (3.2.20) imply
conservation of the averaged quantities∑

i

Ni(t+ 1, r + ci) =
∑

i

Ni(t, r), (3.2.25)

∑
i

ciNi(t+ 1, r + ci) =
∑

i

ciNi(t, r) (3.2.26)

3.2.5 Equilibrium mean occupation numbers

After many definitions in the previous subsections now one of the main results
of the theoretical analysis of the FHP model will be derived, namely the
equilibrium occupation numbers Neq

i . Frisch et al. (1987) proved the following
theorem which is valid for HPP, FHP and FCHC:

Theorem 1. (Frisch et al., 1987)
The following statements are equivalent:

1. The Neq
i ’s are a solution of equation (3.2.23).

2. The Neq
i ’s are a solution of the set of b equations

∀i = 1, ..., b : ∆i(N) :=
∑
ss′

(s′i − si)A (s→ s′)
∏
j

N
sj

j (1−Nj)
(1−sj) = 0.

(3.2.27)

3. The Neq
i ’s are given by the Fermi-Dirac distribution

Neq
i =

1
1 + exp (h+ q · ci)

(3.2.28)

where h is a real number and q is a D-dimensional vector.

Proof. The complete proof is given in Appendix C of Frisch et al. (1987).
Here only the step from 2. to 3. will be discussed. The semi-detailed balance
condition and the nonexistence of spurious invariants has to be taken into
account. In the following the superscript ‘eq’ will be dropped in order to keep
the notation simple.
Define

N̆i :=
Ni

1−Ni

and

Π :=
b∏

j=1

(1−Nj).
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Eq. (3.2.27) may be written as

∆i

Π
=
∑
ss′

(s′i − si)A(s→ s′)
∏
j

N̆
sj

j = 0. (3.2.29)

Multiply Eq. (3.2.29) by log N̆i, sum over i and use

∑
i

(s′i − si) log N̆i = log

∏
j N̆

s′
j

j∏
j N̆

sj

j

to obtain ∑
ss′

A(s→ s′) log


∏j N̆

s′
j

j∏
j N̆

sj

j


∏

j

N̆
sj

j = 0. (3.2.30)

Semi-detailed balance∑
s

A(s→ s′) =
∑
s′
A(s→ s′) = 1

implies that ∑
ss′

A(s→ s′)


∏

j

N̆
sj

j −
∏
j

N̆
s′

j

j


 = 0. (3.2.31)

Combining Eqs. (3.2.30) and (3.2.31), one obtains

∑
ss′

A(s→ s′)


log


∏j N̆

s′
j

j∏
j N̆

sj

j


∏

j

N̆
sj

j +
∏
j

N̆
sj

j −
∏
j

N̆
s′

j

j


 = 0. (3.2.32)

The relation (x > 0, y > 0)

x log
x

y
+ y − x = −

∫ y

x

log
t

y
dt ≤ 0 (3.2.33)

where equality being achieved only when x = y will be exploited. The left hand
side of (3.2.32) is a linear combination of expressions of the form (3.2.33) with
nonnegative weights A(s→ s′). For it to vanish, one must have∏

j

N̆
sj

j =
∏
j

N̆
s′

j

j whenever A(s→ s′) 6= 0.

This is equivalent to

∀s, s′ :
∑

i

log(N̆i)(s′i − si)A(s→ s′) = 0. (3.2.34)
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Eq. (3.2.34) means that log(N̆i) is a collision invariant. Now assuming that
only mass and momentum are conserved and no spurious invariants exist, one
concludes that

log(N̆i) = −(h+ q · ci),

which is the most general collision invariant (a linear combination of the mass
invariant and of the D momentum invariants). Reverting to the mean popu-
lations Ni = N̆i/(1 + N̆i), one obtains (3.2.28). q.e.d.

Calculation of the Lagrange multipliers at small flow speeds

The determination of the Lagrange multipliers17 h and q is constrained by
the conserved quantities

ρ =
∑

i

Ni =
∑

i

1
1 + exp (h+ q · ci)

(3.2.35)

and
ρu =

∑
i

Nici =
∑

i

ci

1 + exp (h+ q · ci)
. (3.2.36)

These equations apply also for HPP where the problem of the determination
of the Lagrange multipliers can be reduced to a cubic equation (Hardy et al.,
1973). In contrast to HPP, for the FHP model explicit solutions are known
only in a few special cases.
The Lagrange multipliers can be calculated by an expansion for small Mach
numbers Ma := U/cs, i.e. for speeds U = |u| well below the sound speed cs.
The somewhat lengthy calculations in Appendix 6.2 apply to FHP and HPP.
The equilibrium distributions for FHP-I read

Neq
i (ρ,u) =

ρ

6
+
ρ

3
ci · u + ρG(ρ)Qiαβuαuβ +O (u3

)
(3.2.37)

with
G(ρ) =

1
3

6− 2ρ
6− ρ

(3.2.38)

and
Qiαβ = ciαciβ − 1

2
δαβ. (3.2.39)

The term quadratic in u will lead to the nonlinear advection term in the
Navier-Stokes equation. This is the reason to expand the Neq

i up to second
order.
17 The Fermi-Dirac distribution (3.2.28) could be derived from a maximum entropy

principle whereby the constraints of mass and momentum conservation are cou-
pled to the entropy (Shannon) by Lagrange multipliers like h and q. This method
will be discussed in some detail in Section 4.3 and applied in Section 5.2.
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Frisch et al. (1987) have shown that the generalization of (3.2.37) to (3.2.39),
namely

Neq
i (ρ,u) =

ρ

b
+
ρD

c2b
ciαuiα + ρG(ρ)Qiαβuαuβ +O (u3

)
(3.2.40)

with

G(ρ) =
D2

2c4b
b− 2ρ
b− ρ

(3.2.41)

and

Qiαβ = ciαciβ − c2

D
δαβ . (3.2.42)

(b number of cells per node, D dimension) is valid for HPP, FHP-I, FHP-II,
FHP-III and FCHC.

Exercise 20. (*)
Specify the equilibrium distribution for HPP and compare it with the linear
distribution (3.1.13) which was used for initialization in Section 3.1.

3.2.6 Derivation of the macroscopic equations: multi-scale analysis

The derivation of macroscopic equations by multi-scale analysis is one of the
most demanding topics in the whole book. In the current section the expansion
will be followed up to first order only. The calculation of all second order
terms is too involved to be shown here in detail. The multi-scale analysis
will be discussed again in a special section devoted to the Chapman-Enskog
expansion (Section 4.2) and will be applied up to second order in Section 5.2
in the context of lattice Boltzmann models.
In the former subsection the distribution functions for a global (homogeneous)
equilibrium were derived. The interesting aspects of fluid flows and of nature
in general lie, however, in its variations in space and time. One can think of
the ‘real world’ as a patchwork of thermodynamic equilibria whose parameters
like mass, momentum or energy18 density show slow changes in space, such
that every point can be characterized by the local values of mass, momentum
and energy density.

For FHP equilibrium mean occupation numbers Neq
i have been derived which

depend continuously on tunable parameters, namely the mean values of the
conserved quantities mass and momentum density. At the beginning of a nu-
merical simulation a distribution of mass and momentum density will be ini-
tialized which varies on large (compared to the lattice unit19) spatial scales
18 Energy does not play a role for FHP and many other LGCA because it does

not exist as an independent quantity or because it is not conserved by certain
collisions whereas so-called thermal LGCA include an energy equation (compare
Section 3.7).

19 Lattice unit = distance between neighboring nodes = 1 for FHP
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ε−1 (measured in lattice units; ε is a small number). In the course of time
three phenomena can be distinguished with respect to their characteristic
time scales:

1. Relaxation toward local equilibrium with time scale ε0: very fast. Few col-
lision are necessary to reach local equilibrium (compare Fig. 3.2.6). Note
that the number of collisions per time interval is a function of mass den-
sity. Thus the characteristic time scale ε0 is large at low and high mass
densities where collisions are rare.

2. Sound waves (perturbations of mass density) and advection with time
scale ε−1: fast, but slower than relaxation toward local equilibrium.

3. Diffusion with time scale ε−2: distinctly slower than sound waves and
advection.

Let us consider, for example, spatial variations on the scale of ε−1 = 100 lat-
tice units which may be due to an obstacle in a flow (compare the von Karman
vortex street shown in Fig. 3.6.5). The relaxation toward local equilibrium
proceeds on a time-scale of order ε0 = 1, i.e. in a few time steps20. Sound
waves21 and advection show time scales of the order of ε−1 = 100 whereas
diffusion with time-scales of ε−2 = 10 000 is much slower.
The microdynamics of the lattice-gas cellular automata contain all of these
phenomena. We will now apply the so-called multi-scale technique to ‘pick out’
the processes of interest here, namely the hydrodynamic modes. Correspond-
ing to the differentiation given above one introduces three time variables:

t? (discrete)
t1 = εt?

t2 = ε2t?

where the last two scales will be considered as continuous22 variables. With
respect to space only two scales have to be distinguished because sound waves
and advection as well as diffusion act on similar spatial scales:

r? (discrete)
r1 = εr? (continuous)

20 At reasonable mass densities, because otherwise there are not enough collisions.
21 Impressive sound waves are created, for example, when an obstacle like the plate

in Fig. 3.6.5 is suddenly put into an initially homogeneous flow.
22 Over longer time scales a thing or two are smoothed out.
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N
(0)
i will refer to mean occupation numbers for given local values of ρ and

u. The N
(0)
i are given by the global form of the equilibrium distributions

(3.2.37) but where ρ and u are the local values of mass density and velocity,
i.e. N (0)

i (r, t) ≡ Neq
i (ρ,u). The actual occupation numbers Ni(t, r) are close

to the equilibrium values and therefore can be expanded about N (0)
i :

Ni = N
(0)
i (t, r) + εN

(1)
i (t, r) +O (ε2) (3.2.43)

Terms of higher than linear order in ε will be neglected. The linear corrections
do not contribute to the local values of mass and momentum density:∑

i

N
(1)
i (t, r) = 0 and

∑
i

ciN
(1)
i (t, r) = 0 (3.2.44)

which follows from

ρ =
∑

i

Ni(t, r) =
∑

i

N
(0)
i (t, r) and (3.2.45)

j =
∑

i

ciNi(t, r) =
∑

i

ciN
(0)
i (t, r). (3.2.46)

In the Chapman-Enskog expansion of the Boltzmann equation (Chapman,
1916, 1918; Enskog, 1917; Chapman and Cowling, 1970; Cercignani, 1990) ε
is the Knudsen number Kn, i.e. the ratio between the mean free path length l
and the characteristic length scale of the system L which can be the diameter
of an obstacle (for example: flow past a sphere) or the size of the whole do-
main. The hydrodynamic (continuous) regime is characterized by small Knud-
sen numbers whereas finite size effects play a role at Knudsen number of order
1 or higher (Knudsen flows).
The microscopic conservation laws (3.2.25) and (3.2.26) are the starting point
for the multi-scale analysis. The mean populations after collision and prop-
agation are expanded up to second order in ε around its values before the
collision step:{

1
ci

}
Ni(t+ 1, r + ci) =

{
1
ci

}
[ Ni(t, r) + ∂tNi + ciα∂xαNi

+
1
2
∂t∂tNi +

1
2
ciαciβ∂xα∂xβ

Ni (3.2.47)

+ciα∂t∂xαNi +O (∂3Ni

)
]

In what follows the fast (local) relaxation processes will be neglected in the
theoretical description because one is only interested in the hydrodynamic
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behavior of the lattice-gas cellular automata. The derivations in time and
space are substituted in Eq. (3.2.47) according to the scalings given above:

∂t −→ ε∂
(1)
t + ε2∂

(2)
t (3.2.48)

∂xα −→ ε∂(1)
xα
. (3.2.49)

Insertion of Eqs. (3.2.43), (3.2.47), (3.2.48) and (3.2.49) into Eqs. (3.2.25) and
(3.2.26) leads to

∑
i

{
1
ci

}
[Ni(t+ 1, r + ci)−Ni(t, r)]

=
∑

i

{
1
ci

}[
ε∂

(1)
t N

(0)
i + ε2∂

(1)
t N

(1)
i + ε2∂

(2)
t N

(0)
i + ε3∂

(2)
t N

(1)
i

+εciα∂(1)
xα
N

(0)
i + ε2ciα∂

(1)
xα
N

(1)
i +

1
2
ε2∂

(1)
t ∂

(1)
t N

(0)
i +

1
2
ε3∂

(1)
t ∂

(1)
t N

(1)
i

+ε3∂(1)
t ∂

(2)
t N

(0)
i + ε4∂

(1)
t ∂

(2)
t N

(1)
i + ε4∂

(2)
t ∂

(2)
t N

(0)
i + ε5∂

(2)
t ∂

(2)
t N

(1)
i

+
1
2
ε2ciαciβ∂

(1)
xα
∂(1)

xβ
N

(0)
i +

1
2
ε3ciαciβ∂

(1)
xα
∂(1)

xβ
N

(1)
i + ε2ciα∂

(1)
t ∂(1)

xα
N

(0)
i

+ε3ciα∂
(1)
t ∂(1)

xα
N

(1)
i + ε3ciα∂

(2)
t ∂(1)

xα
N

(0)
i + ε4ciα∂

(2)
t ∂(1)

xα
N

(1)
i

]
= 0.

To first order in ε one obtains

∂
(1)
t

∑
i

N
(0)
i + ∂(1)

xβ

∑
i

ciβN
(0)
i = 0 (3.2.50)

and
∂

(1)
t

∑
i

ciαN
(0)
i + ∂(1)

xβ

∑
i

ciαciβN
(0)
i = 0 (3.2.51)

or
∂

(1)
t ρ+ ∂(1)

xβ
(ρuβ) = 0 (continuity equation) (3.2.52)

∂
(1)
t (ρuα) + ∂(1)

xβ
P

(0)
αβ = 0 (3.2.53)

where

P
(0)
αβ ≡

∑
i

ciαciβN
eq
i

=
ρ

2
δαβ + ρG(ρ)T (MA)

αβγδ uγuδ︸ ︷︷ ︸
−→ advection term

+O (u4
)

(3.2.54)
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is the momentum flux tensor in first approximation. The momentum advection
tensor23 T (MA) is a tensor of 4th rank

T
(MA)
αβγδ =

∑
i

ciαciβQiγδ. (3.2.55)

It is isotropic and given by (compare Section 3.3, Eq. (3.3.10)):

T
(MA)
αβγδ =

∑
i

ciαciβQiγδ =
∑

i

ciαciβ

(
ciγciδ − 1

2
δγδ

)

=
3
4

(δαγδβδ + δαδδβγ − δαβδγδ) .

Accordingly the components of the momentum flux tensor in first approxima-
tion read

P (0)
xx =

3
4
ρG(ρ)

(
u2 − v2

)
+
ρ

2

P (0)
yy =

3
4
ρG(ρ)

(
v2 − u2

)
+
ρ

2
(3.2.56)

P (0)
xy = P (0)

yx =
3
2
ρG(ρ)uv

whereas the momentum flux tensor in the ‘real world’ (i.e. in the Navier-Stokes
equation) is

Pxx = ρu2 + p

Pyy = ρv2 + p (3.2.57)
Pxy = Pyx = ρuv.

Identification of
ρ

2
(1− g(ρ)u2) with the pressure p leads to

P (0)
xx = ρg(ρ)u2 + p

P (0)
yy = ρg(ρ)v2 + p (3.2.58)

P (0)
xy = P (0)

yx = ρg(ρ)uv

23 The name is derived from the fact that this tensor is part of the nonlinear advec-
tion term. It occurs, however, also in the dissipative terms of the Navier-Stokes
equation.
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which looks similar to the momentum flux tensor (3.2.57) except for the factor
g(ρ) = G(ρ)/2. For small values of u2 the pressure is given by the ‘isothermal’
relation

p =
ρ

2
= c2sρ (3.2.59)

with the sound speed cs = 1/
√

2. It can be shown that invariance under
Galilei transformations constrains the g-factor to be equal to 1 (compare
Exercise 21). Here

g(ρ) =
3− ρ

6− ρ
(3.2.60)

is always smaller than 1 (actually smaller than 1/2). Similar expressions apply
to other lattice models. Thus this g-factor breaks the Galilean invariance.
The deviation of g from 1 is caused by the underlying lattice which is only
invariant under certain discrete translations but not under arbitrary Galilei
transformations. It will be shown later that this ‘disease’ can be cured when
other distribution functions (Boltzmann instead of Fermi-Dirac) are applied.
This is the case in lattice Boltzmann models. The occurrence of Fermi-Dirac
distributions in LGCA is a consequence of the exclusion principle. Therefore
if one sticks to this essential feature of any LGCA the g-disease can be treated
only symptomatically24, namely by a rescaling of time

t −→ t

g(ρ)
. (3.2.61)

The equation for the incompressible regime can be derived from the compress-
ible equation by ignoring all density variations except in the pressure term25.
Setting ρ to the constant and uniform value ρ0 and applying the rescaling of
time leads to

ρ0g(ρ0)
∂u

∂t
+ g(ρ0)(u∇)u = −∇

(ρ
2
− ρ0

2
g(ρ0)u2

)
or

∂u

∂t
+ (u∇)u = −∇P (3.2.62)

with the kinematic pressure

P =
(

ρ

2ρ0g(ρ0)
− u2

)
(3.2.63)

24 The symptomatic treatment of the g-disease does not solve all problems.
D’Humières et al. (1987) have shown that vorticity is advected at speed g(d)u 6= u.
In order to fix this problem they have proposed a model with 8 bits over the FHP
lattice (see Subsection 3.2.10 for details).

25 For some fine points see Majda, 1984.
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Eq. (3.2.62) is the Euler equation (Navier-Stokes without dissipation) of the
FHP model. Eq. (3.2.52) is the continuity equation for the mass density ρ. It
will not change when terms of order ε2 are included.

The terms of order ε2 are calculated by Frisch et al. (1987) and Hénon (1987b).
Adding up terms of order ε and ε2 while neglecting terms of order εu3, ε2u2

and ε3u leads in the same incompressible limit as discussed before to the
Navier-Stokes equation

∇ · u = 0
∂tu + (u∇)u = −∇P + ν∇2u

(3.2.64)

where ν is the (scaled) kinematic shear viscosity (ν = ν(u)/g(ρ0); the un-
scaled shear viscosity ν(u) for different FHP models is given in Table 3.2.2;
compare also Fig. 3.2.4). Thus we have attained the object of our desire: the
incompressible Navier-Stokes equation!

Please note that the FHP models do not possess an energy equation. In the
FHP-I model mass and (kinetic) energy conservation are essentially identical.
In models with rest particles, some collisions do not respect conservation of
(kinetic) energy. lattice-gas cellular automata with energy equations will be
discussed in Section 3.7.
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Fig. 3.2.3. The Reynolds coefficient R∗ as a function of the density per cell d for
FHP-I, FHP-II and FHP-III. FHP-I: 2-particle and symmetric 3-particle collisions;
FHP-II: additional collisions involving rest particles and 2-particle collisions with
spectator; FHP-III: additional 4-particle collisions (collision saturated model). The

Reynolds coefficient is defined as R∗ :=
Re

L ·Ma
=

csg(d)

ν(d)
; Rmax

∗ = maxd (R∗) =

R∗(dmax); d is the density per cell (Eq. 3.2.24), cs sound speed, g(d) density depen-
dent g-factor, and ν(u) (unscaled) kinematic shear viscosity.
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Table 3.2.2. Analytical values for three different FHP models. ν(u) (unscaled) kine-
matic shear viscosity; η(u) (unscaled) kinematic bulk (compressional) viscosity (taken
from Frisch et al., 1987). d is the density per cell (Eq. 3.2.24).
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Fig. 3.2.4. The g-factor, unscaled kinematic bulk viscosity (ξ(u)), and the unscaled
(ν(u)) and scaled (ν) kinematic shear viscosity as functions of the density per cell
(d) for the models FHP-I, FHP-II and FHP-III (compare Table 3.2.2). The bulk
viscosity vanishes in FHP-I.
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Exercise 21. (**)
Show that the generalized (g-factor) substantial derivative

∂u

∂t
+ g (u∇)u (3.2.65)

is invariant under Galilei transformations if and only if g ≡ 1.
Hint: it will be sufficient to consider the special Galilei transformation

x′ = x+ ct; c = const

y′ = y

(3.2.66)
z′ = z

t′ = t
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Exercise 22. (**)
Calculate the components of the momentum flux tensor P (0)

αβ for HPP from
the formula

ρG(ρ)T (MA)
αβγδ +

c2

D
ρδαβ . (3.2.67)

What’s wrong with the advection term?

3.2.7 Boundary conditions

The coding of boundary conditions (BC) is an essential part of the LGCA
(and any other numerical) method. There are at least five different types of
BC:

1. Periodic BC are often used even if it is not realistic because they are so
easy to code.

2. Inflow BC (example: channel flow).

3. Outflow BC (example: channel flow) can be very difficult to deal with, es-
pecially when waves try to leave the model domain (compare, for example,
Orlanski, 1976, Røed and Smedstad, 1984, and Stevens, 1991).

4. No-slip BC (u = 0) apply to solid boundaries (walls, obstacles).

5. Slip BC, i.e. the velocity component normal to the boundary and the
normal derivative of the tangential component vanish (un = 0 and
∂ut/∂n = 0), apply to solid boundaries where the frictional force adjacent
to the wall is not resolved.

Even when constraints are formulated only for the velocity one usually also
requires conservation of mass26. Whereas in channel flows a small violation
of mass conservation could be tolerable, because each fluid element leaves the
domain after some time anyway, such a violation is not acceptable for flows
in closed domains where a small but steady leakage, for example, would lead
to an empty basin after a while.
The coding of the first two types of BC is obvious not only for FHP but for
any kind of LGCA or LBM and therefore needs no further comment. Since
the beginning of simulations with FHP the following heuristic procedures for
the implementation of no-slip and slip conditions are used (d’Humières and
Lallemande, 1987):

• No-slip: Collision on boundary points are skipped. Instead the incoming
particles are turned around by 180◦. In the next propagation step they will
leave the node in their former incoming direction. The mean value over in-
state and out-state yields u = 0. This flipping of the incoming particles is

26 However, momentum is most often not conserved at the boundaries.
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also called bounce-back rule. The kinetic equation for this implementation
of the no-slip condition reads

ni(xb + ci, t+ 1) = ni+3(xb, t)

where xb is a boundary point and as usual the indices are understood
modulo 6.
This node-oriented implementation of the no-slip BC has the advantage
that it is independent of the orientation of the wall (for alternative imple-
mentations see Rem and Somers, 1989, Cornubert et al., 1991, and Ziegler,
1993).

• Slip: Collisions on boundary points are skipped. Instead the incoming par-
ticles are reflected like a light ray (specular reflection) at the wall. The
mean value over in-state and out-state yields un = 0 and the tangen-
tial momentum of the particles is conserved. The kinetic equation for this
implementation of the no-slip condition reads

ni(xb + ci, t+ 1) = ni−3(xb, t).

Only several years later Cornubert et al. (1991) have investigated discrep-
ancies of the distribution functions in the boundary layer due to these kind
of implementations of boundary conditions. For FHP they found anisotropic
Knudsen layers adjacent to obstacles. The effective boundary of obstacles is
not identical with the node locations but lies somewhat outside the outer nodes
of the obstacle. The precise location depends on the direction (anisotropic)
and is smaller than the distance to the next neighbor node in the fluid region.
Especially for small obstacles this effect has to be taken into account.

3.2.8 Inclusion of body forces

In principle body forces, i.e. a change of momentum, can be applied on the
macroscopic or microscopic level. The macroscopic method, however, requires
at each time step the calculation of mean values (coarse graining), change of
the momentum j and re-initilization. Of course this procedure is computa-
tionally much too demanding. Thus only a microscopic method is feasable.
Body forces F which may vary in space and time but are independent of the
flow velocity u can be realized by flipping particles with velocity −ci into
particles with velocity ci (for forces parallel to ci). The probability of this
flipping has to be proportional to the magnitude of F .
The following results are from Appendix D in Frisch et al. (1987). Boolean
transition variables ξ′ss′ are defined such that their mean values

〈ξ′ss′〉 = B (s→ s′) (3.2.68)

are a set of transition probabilities associated to the body-force. The transition
probabilities satisfy normalization
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s′
B (s→ s′) = 1 (3.2.69)

and mass conservation∑
i

(s′i − si)B (s→ s′) = 0 ∀s, s′, (3.2.70)

but do not satisfy momentum conservation (which is desired of course!), semi-
detailed balance and G-invariance. In case I (body-force f independent of
velocity) they are further constrained by

f =
∑
s,s′,i

ci (s′i − si)B (s→ s′)
(

d

1− d

)p

(1− d)b (3.2.71)

where p =
∑

j sj and b is the number of cells per node. If f is space and/or
time dependent, so are the B (s→ s′)’s.

In case of a force linear in velocity

fα = CαβUβ (3.2.72)

the B (s→ s′)’s are constrained by

0 =
∑
s,s′,i

ci (s′i − si)B (s→ s′)
(

d

1− d

)p

(1− d)b , p =
∑

j

sj , (3.2.73)

and

Cαβ =
D

c2
(1− d)b−1

∑
s,s′,i

ciα (s′i − si)B (s→ s′)
(

d

1− d

)p∑
j

sjcjβ

(3.2.74)
where p =

∑
j sj .

In order to illustrate the method let us consider the simplest example, namely
time-independent homogeneous forcing in the direction of a particular lattice
velocity, say in x-direction. We can flip particles with velocity −c6 = c3 =
(−1, 0) into particles with velocity c6 = (1, 0) whenever this is possible while
leaving all other particles unchanged (compare Fig. 3.2.5). Already after one
time step the domain mean x-velocity, ux(t), increased from zero (its initial
value) to approximately 0.2. This extreme acceleration leads to high Mach
numbers after a few time steps. Thus in simulations of incompressible flow
problems the flipping rate has to be lowered.

3.2.9 Numerical experiments with FHP

Here the results of some numerical calculations will be discussed. The code
written in C is accessible (see the web address given in the Preface).
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Fig. 3.2.5. Inclusion of body-forces: The plot shows the increase of domain mean
x-velocity, ux(t), due to flipping of particles with velocity −c6 = c3 = (−1, 0) into
particles with velocity c6 = (1, 0) whenever this is possible (FHP-I, d = 0.3).
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1. Relaxation toward equilibrium (compare program ‘exper1.c’): The FHP-I
model is initialized with a distribution which is spatially homogenous but
far from equilibrium. At a density ρ ≈ 2 enough collisions occur in order
to drive the occupation numbers toward their equilibrium values (compare
Fig. 3.2.6).

2. Propagation of sound waves: Here sound waves are excited by a density
perturbation (compare Fig. 3.2.7 upper left). The waves propage isotrop-
ically with a speed of cs = 1/

√
2.

3. Flow past an obstacle: Our next goal is the simulation of the flow past an
obstacle. Wether the flow is laminar or turbulent depends on the Reynolds
number Re which is defined by

Re :=
U · L
ν

(3.2.75)

where U is a characteristic flow speed (usually the flow speed far upstream
of the obstacle), L is a characteristic spatial scale of the obstacle (for an
obstacle in the form of a circular cylinder, for example, L is the radius or
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Fig. 3.2.6. Relaxation toward equilibrium for FHP-I: The model is initialized with
a distribution which is spatially homogenous but far from equilibrium. The domain
size is 320 times 320 nodes. For simplicity periodic boundary conditions are applied.
At a density ρ ≈ 2 enough collisions occur in order to drive the occupation numbers
toward their equilibrium values (dashed lines) which are almost reached after 10
time steps. The mean values over the time levels 30 to 60 compares very well with
the theoretical values according to equilibrium distribution (3.2.37).
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diameter of the cross-section), and ν is the kinematic shear viscosity. From
experiments it is known that eddies are formed and shedded when the
Reynolds number becomes larger than about 50. A so-called von Karman
vortex street will build up (compare the beautiful pictures in the book of
van Dyke, 1982).
How can one simulate a flow with Re ≈ 90 with FHP-II? The flow speed

has to be small compared to the sound speed c
(FHP-II)
s =

√
3/7 ≈ 0.65.

So u = 0.2 is a good value. The density per cell d should be below 0.5
(the scaling factor g(d) vanishes at d = 0.5) and is chosen here as d = 2/7
which results in a density per node ρ = 2. The scaled kinematic viscosity
at this density is approximately 0.8. The only free parameter is the size
of the obstacle L which can be calculated from
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Fig. 3.2.7. Propagation of sound waves: The FHP-I model is initialized with van-
ishing velocity and constant density (≈ 2) except for a positive radial symmetric
density perturbation near the center of a domain with 960 times 960 nodes. The
plots show the mean densities calculated over subdomains (macrocells) of 32 times
32 nodes at four different time levels. The values of the contour lines are always
2.1, 2.2, 2.3, 2.4, 2.5. The propagation of the density perturbation is isotropic and the
speed of propagation is consistent with the sound speed cs = 1/

√
2 (in 300 time

steps the sound will propagate over a distance of 300/32/
√

2 ≈ 13 sidelengths of
macrocells).
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L =
Re · ν
u

=
88 · 0.88

0.2
= 388 (3.2.76)

(see results in Fig. (3.2.8)).
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Fig. 3.2.8. Flow past a plate. The FHP-II model is initialized with a homogenous
flow in x-direction with speed u = 0.2 (in lattice units). The lattice encompasses
4096 times 1792 nodes. The width of the plate is 388. At a density per node ρ = 2.1
the (scaled) kinematic viscosity is 0.88. Thus the Reynolds number is 88. The figure
shows the flow minus the mean flow velocity after t = 260, 000 time steps.
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Please note that the type of boundary conditions are essential. If one
applies periodic boundary conditions the simulation addresses flow past a
periodic array of cylinders. In contrast to flow past a single cylinder the
flow may be steady even at a Reynolds number of 100 (Gallivan et al.,
1997).

Fig. 3.2.9. Flow past a circular cylinder. Lattice with 6400 times 2560 nodes. The
uppermost plot shows the result after 20000 time steps for the FHP-I model (the flow
velocity averaged over the whole domain has been substracted in both plots in order
to make the pertubations better visible). If 3-particle collisions are left out the flow
field looks quite different (lower plot).
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Exercise 23. (*)
Consider typical flow velocities in the atmosphere and oceans. At which spatial
scales the Reynolds numbers are 1, 1000 and 106?

3.2.10 The 8-bit FHP model

D’Humières et al. (1987) proposed a model with two populations (n0,m0) that
represent rest particles. With 2 bits up to 3 rest particles can be described:
(n0, m0) = (0,0) no, (1,0) one, (0,1) two and (1,1) three rest particles. All
collisions conserving mass and momentum are included (‘collision saturated’).
The collisions a) to c) in Table 3.2.2 proceed independent of the number of rest
particles. The collisions leading to creation and destruction of rest particles
are all included, except a few cases which take place with probability x, y,
or z (compare Figures 3.2.10 and 3.2.11). It can be shown that for x = 0.5,
y = z = 0.2, there exists a value for d for which g(d) = 1 and dg(d)/dd = 0.
D’Humières et al. recommend a model with x = 1/2, y = z = 1/6 which
gives g = 1.0 at d = 0.21. The model violates semi-detailed balance (compare
Exercise 24). Numerical experiments show that vorticity is advected close to
the flow speed U0. The 8-bit-FHP model is probably already too complex
to allow coding with bit-operators. The use of look-up tables makes it much
more clumpsy than the 7-bit-FHP models.

Exercise 24. (*)
Show that the 8-bit FHP model of d’Humières et al. (1987) violates semi-
detailed balance.

Exercise 25. (***)
Repeat the simulation of the flow past a cylinder with the FHP-II model.
Compare the computational time for constant Reynolds number by varying
the upstream velocity or the size of the system. Analyze the differences in
the flow pattern when applying the random or the chiral two-particle head-on
collision.
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Fig. 3.2.10. FHP-8-bit model: collisions involving rest particles; occupied cells
are represented by arrows, empty cells by thin lines, the number of rest particles is
indicated by the number in the central circle.
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Fig. 3.2.11. FHP-8-bit model: collisions involving rest particles (continued); oc-
cupied cells are represented by arrows, empty cells by thin lines, the number of rest
particles is indicated by the number in the central circle.
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3.3 Lattice tensors and isotropy in the macroscopic limit

All lattice-gas cellular automata are based on extremely discretized phase
spaces. Nevertheless it is to be expected that the spatial discretization will be
smoothed out on scales which are much larger than the grid spacing27. Things
are less obvious for the discretization of the velocities. Calculation of mean
values over an angular direction is restricted to a range of 2π which contains
only a few velocities (six for FHP). The multi-spin coding yields tensors which
consist of the components of the lattice velocities. These tensors are invariant
with respect to elements of the associated finite symmetry group but in general
not with respect to arbitrary orthogonal transformations (including continu-
ous rotations). A sufficient condition for ‘reasonable’ macroscopic equations
encloses the isotropy of lattice tensors (to be defined below) of 2nd and 4th
rank. The lattice tensors with odd rank vanish because of the symmetry of
the lattices.

Group theoretical methods allow quite general propositions concerning the
isotropy of tensors of this special form (Wolfram, 1986). Discussion of group
theoretical concepts is outside the scope of this work. Explicit expressions
for the most general isotropic tensors will be given and lattice tensors and
generalized lattice tensors for the various lattice-gas cellular automata will be
calculated. Note that the results apply also to the lattice Boltzmann models
discussed later on in Section 5.

3.3.1 Isotropic tensors

Definition: A tensor Tα1α2...αn of nth rank is called isotropic if it is invari-
ant with respect to arbitrary orthogonal transformations O (rotations and
reflections)

Tα1α2...αn = Tβ1β2...βnOα1β1Oα2β2 ...Oαnβn . (3.3.1)

The most general isotropic tensors up to 4th rank are provided by the following
theorem.

Theorem 2. (Jeffreys and Jeffreys, 1956; Jeffreys, 1965)

1. There are no isotropic tensors of rank 1 (vectors).

2. An isotropic tensor of rank 2 is proportional to δαβ.

3. An isotropic tensor of rank 3 is proportional to εαβγ
28.

27 There is still the problem of a selected reference system which violates Galilean
invariance and which can produce problems in the macroscopic limit.

28 Levy-Civita symbol εαβγ : ε123 = ε231 = ε312 = 1, ε132 = ε321 = ε213 = −1, and
zero otherwise.
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4. There are three different (linear independent) tensors of rank 4

δαβδγδ, δαγδβδ, δαδδβγ ,

which can be combined to the most general form

Tαβγδ = aδαβδγδ + bδαγδβδ + cδαδδβγ , (3.3.2)

where a, b and c are arbitrary constants.

A proof of the theorem can be found in Jeffreys (1965).
Isotropic tensors of rank n ≥ 4 consist only of products of second rank δ
tensors (for example: δαβδγδδεζ and all tensors that result from cyclic permu-
tation of indices) when n is even or of products of δ and ε tensors when n is
odd.

In two dimensions the isotropic tensor of rank 4 (3.3.2) has the following
non-vanishing components:

T1111 = T2222 = a+ b+ c,

T1122 = T2211 = a,

(3.3.3)
T1212 = T2121 = b,

T1221 = T2112 = c.

In particular, the tensor δαβγδ is non-isotropic (δαβγδ is 1 if all indices are
equal and 0 otherwise; it is a generalization of the Kronecker symbol δαβ).
The same is true for δαβγδεζ.

3.3.2 Lattice tensors: single-speed models

Let us define the following tensors of rank n

Lα1α2...αn =
∑

i

ciα1ciα2 ...ciαn (3.3.4)

where ciαν are the cartesian components of the lattice velocities ci. We will
call these tensors the lattice tensors. Because of their special structure they
are invariant with respect to the symmetry group of the lattice and they are
symmetric in all of their indices. From these symmetries it follows that these
tensors can have a maximal number N of independent components of

N =
(
n+D − 1

n

)
=

(n+D − 1)!
n!(D − 1)!
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where D is the (spatial) dimension. Example: A symmetric tensor T of rank 2

in two dimensions has at most N =
(

3
2

)
=

3!
2!1!

= 3 independent components:

T =

(
a b

b c

)
.

In lattice-gas cellular automata with one speed (HPP, FHP, FCHC) the mo-

mentum advection tensor (MAT) of 4th rank T
(MA)
αβγδ (compare Eq. 3.2.55)

occurs in the macroscopic form of the momentum balance. It can be rewritten
in terms of the lattice tensors of rank two and four:

T
(MA)
αβγδ =

∑
i

ciαciβQiγδ

=
∑

i

[
ciαciβciγciδ − 1

2
ciαciβδγδ

]

= Lαβγδ − 1
2
Lαβδγδ. (3.3.5)

A sufficient condition for the isotropy of T (MA)
αβγδ is the isotropy of Lαβ and

Lαβγδ. T
(MA)
αβγδ is non-isotropic if Lαβ is isotropic while Lαβγδ is non-isotropic.

Other combinations do not occur in the models considered. In what follows we
use the notation DkQb of Qian et al. (1992) where k is the spatial dimension
and b is the number of lattice velocities (including c0 = 0 for rest particles).

Square lattice: HPP (D2Q4)

Lattice velocities:

ci =
(

cos
2πi
4
, sin

2πi
4

)
i = 1, 2, 3, 4.

The lattice tensor of rank 2

LHPP
αβ = 2

(
1 0
0 1

)
= 2δαβ

is isotropic.
The lattice tensor of rank 4

LHPP
αβγδ = 2 δαβγδ (3.3.6)

is non-isotropic. As a consequence the HPP model fails to yield the Navier-
Stokes equations in the macroscopic limit.
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Fig. 3.3.1. The lattice velocities of the HPP (D2Q4) lattice.
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Triangular lattice: FHP (D2Q7)

The triangular FHP lattice has hexagonal symmetry. Lattice velocities:

c0 = (0, 0)

ci =
(

cos
2πi
6
, sin

2πi
6

)
i = 1, ..., 6 (3.3.7)
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Fig. 3.3.2. The lattice velocities of the FHP (D2Q7) lattice.
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The lattice tensors of rank 2

LFHP
αβ = 3 δαβ (3.3.8)

and rank 4
LFHP

αβγδ =
3
4

(δαβδγδ + δαγδβδ + δαδδβγ) (3.3.9)

are isotropic. The momentum advection tensor reads

T
(MA)
αβγδ =

3
4

(δαγδβδ + δαδδβγ − δαβδγδ) . (3.3.10)

Thus, FHP yields the Navier-Stokes equation in the macroscopic limit.

FCHC (D4Q24)

The investigation of the lattice tensors of the FCHC model is left to the reader
(Exercise 26).

Exercise 26. (**)
The 24 lattice velocities of the FCHC model are given by

(±1,±1, 0, 0), (±1, 0,±1, 0), (0,±1,±1, 0),
(±1, 0, 0,±1), (0,±1, 0,±1), (0, 0,±1,±1).

Calculate the lattice tensors of rank 2 and 4 and show that they are isotropic.

3.3.3 Generalized lattice tensors for multi-speed models

Later on multi-speed29 lattice-gas cellular automata and multi-speed lattice
Boltzmann models will be discussed. The associated lattice tensors of rank 4
are usually non-isotropic because the symmetry group of the corresponding
lattices is not large enough (note that the situation is different for the multi-
speed FHP model where the symmetry of each single-speed sub-lattice is large
enough). But isotropy of 4th rank tensors can be recovered by introducing
weights wi for the different speeds. These generalized lattice tensors

Gα1α2...αn =
∑

i

wiciα1ciα2 ...ciαn (3.3.11)

29 Models with several different speeds have been encountered before, namely the
FHP variants with rest particles (FHP-II, FHP-III). Particles with vanishing
speed have no influence on the isotropy of the lattice tensors. Therefore only
models with different non-vanishing speeds are called multi-speed models.
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occur naturally in the multi-scale analysis of multi-speed models. The weights
correspond to different occupation numbers for the different speeds in the
global equilibrium with vanishing macroscopic velocities.
The following sub-sections can be skipped in the first reading and should be
revisited when the appropriate multi-speed model is discussed.

D2Q9

Lattice velocities:

c0 = (0, 0),
c1,3, c2,4 = (±1, 0), (0,±1), (3.3.12)

c5,6,7,8 = (±1,±1).

Fig. 3.3.3. The lattice velocities of the D2Q9 lattice.
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The lattice tensor of rank 2
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L
(D2Q9)
αβ = 6δαβ

is isotropic. The lattice tensor of rank 4 with the following non-vanishing
components

L
(D2Q9)
1111 = L

(D2Q9)
2222 = 6

L
(D2Q9)
1122 = L

(D2Q9)
2211 = 4

L
(D2Q9)
1212 = L

(D2Q9)
2121 = 4

L
(D2Q9)
1221 = L

(D2Q9)
2112 = 4

is non-isotropic.
Introducing the weights wi = 1 for speed 1 (i = 1, ..., 4) and wi = 1/4 for
speed

√
2 (i = 5, ..., 8) leads to isotropic generalized lattice tensors of rank 2

G
(D2Q9)
αβ = 3δαβ (3.3.13)

and rank 4
G

(D2Q9)
αβγδ = δαβδγδ + δαγδβδ + δαδδβγ . (3.3.14)

D2Q13-WB

Weimar and Boon (1996)

c0 = (0, 0) rest particle
c1,2, c3,4 = (±1, 0), (0,±1) 1-particles

c5,6,7,8 = (±1,±1)
√

2-particles
c9,10, c11,12 = (±2, 0), (0,±2) 2-particles

(3.3.15)



96 3 Lattice-gas cellular automata

Fig. 3.3.4. The lattice velocities of the D2Q13-WB lattice.
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The lattice tensor of rank 2

L
(D2Q13−WB)
αβ = 14 δαβ

is isotropic whereas the lattice tensor of rank 4

L
(D2Q13−WB)
αβγδ = 4 (δαβδγδ + δαγδβδ + δαδδβγ) + 26 δαβγδ

is non-isotropic. The weights wi = 4 for speed 1, wi = 5 for speed
√

2, and
wi = 1 for speed 2 lead to isotropic generalized lattice tensors of rank 2

G
(D2Q13−WB)
αβ = 36 δαβ (3.3.16)

and rank 4

G
(D2Q13−WB)
αβγδ = 20 (δαβδγδ + δαγδβδ + δαδδβγ) . (3.3.17)

D2Q21

The D2Q21 lattice was introduced by Fahner (1991).

c0 = (0, 0) rest particle
c1,2, c3,4 = (±1, 0), (0,±1) 1-particles

c5,6,7,8 = (±1,±1)
√

2-particles
c9,10, c11,12 = (±2, 0), (0,±2) 2-particles

c13,...,16, c17,...,20 = (±2,±1), (±1,±2)
√

5-particles

(3.3.18)

The lattice tensor of rank 2

L
(D2Q21)
αβ = 34 δαβ

is isotropic whereas the lattice tensor of rank 4

L
(D2Q21)
αβγδ = 36 (δαβδγδ + δαγδβδ + δαδδβγ)− 2 δαβγδ

is non-isotropic. The weights wi = 2 for speed 1 and wi = 1 otherwise lead to
isotropic generalized lattice tensors of rank 2

G
(D2Q21)
αβ = 36 δαβ (3.3.19)

and rank 4
G

(D2Q21)
αβγδ = 36 (δαβδγδ + δαγδβδ + δαδδβγ) (3.3.20)
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Fig. 3.3.5. The lattice velocities of the D2Q21 lattice.
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D3Q15

Multi-speed lattice Boltzmann models in 3D will be defined in Section 5.3.
The lattice D3Q15 has the following lattice velocities

c0 = (0, 0, 0) rest particle
c1,2, c3,4, c5,6 = (±2, 0, 0), (0,±2, 0) (0, 0,±2) 2-particles

c7,...,14 = (±1,±1,±1)
√

3-particles
(3.3.21)
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Fig. 3.3.6. The lattice velocities of the D3Q15 lattice.
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The lattice tensor of rank 2

L
(D3Q15)
αβ = 16 δαβ

is isotropic whereas the lattice tensor of rank 4

L
(D3Q15)
αβγδ = 8 (δαβδγδ + δαγδβδ + δαδδβγ) + 16 δαβγδ

is non-isotropic. The weights wi = 2 for speed
√

3 and wi = 1 for speed 2 lead
to isotropic generalized lattice tensors of rank 2

G
(D3Q15)
αβ = 24 δαβ (3.3.22)

and rank 4
G

(D3Q15)
αβγδ = 16 (δαβδγδ + δαγδβδ + δαδδβγ) . (3.3.23)

D3Q19

The model D3Q19 has the following lattice velocities

c0 = (0, 0)
c1,2, c3,4, c5,6 = (±1, 0, 0), (0,±1, 0) (0, 0,±1)

c7,...,10, c11,...,14, c15,...,18 = (±1,±1, 0), (±1, 0,±1), (0,±1,±1).
(3.3.24)

The lattice tensor of rank 2

L
(D3Q19)
αβ = 10 δαβ

is isotropic whereas the lattice tensor of rank 4

L
(D3Q19)
αβγδ = 4 (δαβδγδ + δαγδβδ + δαδδβγ)− 2 δαβγδ

is non-isotropic. The weights wi = 2 for speed 1 and wi = 1 for speed
√

2 lead
to isotropic generalized lattice tensors of rank 2

G
(D3Q19)
αβ = 12 δαβ (3.3.25)

and rank 4
G

(D3Q19)
αβγδ = 4 (δαβδγδ + δαγδβδ + δαδδβγ) . (3.3.26)
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Fig. 3.3.7. The lattice velocities of the D3Q19 lattice.
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3.3.4 Thermal LBMs: D2Q13-FHP (multi-speed FHP model)

For thermal lattice Boltzmann models (Navier-Stokes plus energy equation)
isotropic lattice tensors up to rank 6 are required.

ci = (0, 0) i = 0

ci =
(

cos
2πk
6
, sin

2πk
6

)
i = 1, 2, ..., 6; k = i (3.3.27)

ci = 2
(

cos
2πk
6
, sin

2πk
6

)
i = 7, 8, ..., 12; k = i− 6
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Fig. 3.3.8. The lattice velocities of the D2Q13-FHP (multi-speed FHP) lattice.
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The lattice tensors of rank 2

L
(D2Q13−FHP )
αβ = 15δαβ (3.3.28)

and of rank 4

L
(D2Q13−FHP )
αβγδ =

51
4

(δαβδγδ + δαγδβδ + δαδδβγ) (3.3.29)

are isotropic.

3.3.5 Exercises

Exercise 27. (*)
Prove Theorem 2 for the special case of tensors of rank 2 in two dimensions.
Do reflections play any role?

Exercise 28. (*)
Show that isotropic tensors of the same rank and dimension form a linear
space.

Exercise 29. (*)
Prove that there are no isotropic tensors of rank 1.

Exercise 30. (**)
Prove (in 2D) that Tαβγδ = δαβγδ is not isotropic. Note: δαβγδ is 1 when
all indices are equal and 0 otherwise. Thus it is the generalization of the
Kronecker symbol δαβ .

Exercise 31. (**)
Prove (in 2D) that Tαβγδ = δαβδγδ is isotropic.
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3.4 Desperately seeking a lattice for simulations in three
dimensions

Frisch, Hasslacher and Pomeau (1986) found out that in addition to mass and
momentum conservation lattice-gas cellular automata for the Navier-Stokes
equation must reside on a grid with ‘sufficient’ symmetry. The importance of
this insight can hardly be overestimated. Thus the first task in the develop-
ment of a LGCA for simulations in 3D is to find a lattice with appropriate
symmetry. This is not as easy as in 2D.

3.4.1 Three dimensions

In close analogue to 2D where lattice vectors ci were defined by the corners of
regular polygons let us define ci in 3D by the corners of regular polytopes. In
three dimensions only a few regular polytopes, namely the Platonic solids30,
lead to lattice vectors of equal length. There are exactly five Platonic solids:
tetrahedron, hexahedron (cube), octahedron, dodecahedron and icosahedron
(compare Table 3.4.1 and Fig. 3.4.1).

The cube and the octahedron are dual to each other in the following sense:
the mid-points of the faces of a cube yield the corners of an octahedron and
the mid-points of an octahedron yield the corners of a cube. In the same sense
dodecahedron and icosahedron are dual to each other. The tetrahedron is self-
dual: its dual solid is also a tetrahedron.
Rotations and reflections which transform the solid onto itself form a group
which is referred to as the symmetry group of the solid. Each rotation or re-
flection which transforms the solid onto itself does the same thing with the
dual solid embedded. Therefore dual regular polytopes show identical symme-
tries and their corresponding symmetry groups are isomorphic (Ledermann,
1985a). There may be further polytopes with the same symmetry group which,
however, are not regular.
In order to be useful as building blocks of a lattice-gas cellular automata,
a polyhedron must show a large enough symmetry group (this constraint is
fulfilled only by the dodecahedron and its dual partner the icosahedron) and
in addition must fill the whole space31. The cube is the only Platonic solid
whichs completely fills the space without gaps (Ledermann, 1985a). Thus in
3D there is no polyhedron which respects all constraints.
30 Definition of Platonic solids: convex polytopes, bounded by regular congruent

polyhedrons and with equal number of edges meeting at each corner.
31 Actually it is required that all corners (which are nodes of the lattices) are con-

nected to an equal number of nodes by the lattice vectors ci. Gaps between the
polytopes could lead to nodes with a smaller number of nearest neighbors. As an
analog in 2D consider the parqueting of the plane with octagons.
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Fig. 3.4.1. The five Platonic solids.

Tetrahedron

Hexahedron (Cube) Octahedron

Dodecahedron Icosahedron
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Table 3.4.1. The five Platonic solids: number of faces F , edges E and corners C.
Euler’s polyhedron theorem: F −E + C = 2

polyhedron F E C dual solid

tetrahedron 4 6 4 tetrahedron

hexahedron (cube) 6 12 8 octrahedron

octrahedron 8 12 6 hexahedron (cube)

dodecahedron 12 30 20 icosahedron

icosahedron 20 30 12 dodecahedron

Table 3.4.2. Lattice tensors of ranks 2 to 6 for the five Platonic solids: isotropic
(+) or not (−) (from Wolfram, 1986). The number of lattice vectors is equal to the
number of corners C.

polyhedron C 2 3 4 5 6

tetrahedron 4 + − − − −
hexahedron (cube) 8 + + − + −
octrahedron 6 + + − + −
dodecahedron 20 + + + + −
icosahedron 12 + + + + −

Historical remark: In ‘Mysterium Cosmographicum’ (1596) Johannes Kepler
(1571-1630) has suggested that the distances of the then known planets - Mer-
cury to Saturn - are constrained by the Platonic solids which are alternatingly
inscribed and circumscribed to spheres. (compare Fig. 3.4.2).

3.4.2 Five and higher dimensions

A further possibility is to find lattices in higher dimensions with sufficient
symmetry. The quantities of interest can then be obtained by appropriate
projections from higher dimensions down to 3D. In five and higher dimen-
sions there are only three regular polytopes32 for each dimension, namely the
32 These three regular polytopes exist also in lower dimensions.
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Fig. 3.4.2. In ‘Mysterium Cosmographicum’ (1596) Johannes Kepler (1571-1630)
has suggested that the distances of the then known planets - Mercury to Saturn - are
constrained by the Platonic solids which are alternatingly inscribed and circumscribed
to spheres. The six spheres correspond to the six planets, Saturn, Jupiter, Mars,
Earth, Venus, Mercurius, separated in the order by cube, tetrahedron, dodecahedron,
octahedron and icosahedron (adapted from Weyl, 1989).

simplex33, the hypercube34 and its dual solid. The corresponding lattice ten-
sors of rank 4 are isotropic only for D < 3 for the simplex and only for D < 4
for the hypercube and its dual solid.
33 The set of all vectors x which respect the constraints

x = λ1x1 + ... + λrxr, xi ∈ RD, λi ∈ R, λi ≥ 0,

r∑
i=1

λi = 1,

are referred to as simplex [x1, ...,xr]. Despite of some degenerated cases 2, 3, and
4 points lead to a line segment, a (planar) triangle and a tetrahedron as simplices
(Ledermann, 1985a, p. 108).

34 The hypercube γD in D dimensions has 2D corners ±e1 ± ... ± eD. Its 2 · D
‘surfaces’ are (D − 1)-dimensional hypercubes. γ1 is a line segment, γ2 a square,
and γ3 a cube (Ledermann, 1985b). ei = (0, ..., 0, 1, 0, ..., 0) are the standard base
vectors.
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3.4.3 Four dimensions

The last chance lies in four dimensions where in addition to the simplex, the
hypercube and its dual solid there exist further three regular polytopes which
can be characterized by the Schläfli symbols35 {3, 4, 3}, {3, 3, 5}, and {5, 3, 3}.
The {3, 4, 3}-polytop is referred to as face-centered hypercube (FCHC). It
has 24 corners with coordinates which are permutations of (±1,±1, 0, 0). The
corresponding lattice tensors are isotropic up to 4th rank inclusively. Thus
FCHC is the lattice searched for! The 24 lattice vectors of FCHC read

(±1,±1, 0, 0), (±1, 0,±1, 0), (±1, 0, 0,±1),
(3.4.1)

(0,±1,±1, 0), (0,±1, 0,±1), (0, 0,±1,±1).

The projections of FCHC into 3D space are shown in Figures 3.4.3 and 3.4.4.
There are 12 velocities with ci4 = 0 (Fig. 3.4.3) and two times 6 velocities
with ci4 = ±1 (Fig. 3.4.4).

The other regular polytopes {3, 3, 5} and {5, 3, 3} are dual to each other. The
{3, 3, 5} polytope has 120 corners and the corresponding lattice tensors are
isotropic up to 8th rank inclusively. The {3, 3, 5} and {5, 3, 3} polytopes have
not been mentioned by Wolfram (1986) as alternatives for applications in
lattice-gas automata. One reason at least is simplicity: FCHC has much less
corners than the {3, 3, 5} polytop.
Further reading on regular polytopes: Coxeter (1963).

Exercise 32. (***)
Is it possible to build a space-filling lattice from the regular polytop {3, 3, 5}
alone?

Exercise 33. (***)
Prove the polyeder theorem of Leonard Euler (1707-1783): The number C of
corners plus the number F of faces equals the number E of edges plus 2:

C + F = E + 2.

Exercise 34. (**)
Prove that the Platonic solids are the only regular polyhedrons in 3D. Hint:
Apply the polyeder theorem of Euler.

35 Compare Appendix 6.5.
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Fig. 3.4.3. The projection (along the 4th axis) of the lattice velocities of the FCHC
lattice for ci4 = 0.
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3.5 FCHC

D’Humières, Lallemand and Frisch (1986) proposed the face-centered hyper-
cube (FCHC) as a lattice with sufficient symmetry for hydrodynamic simu-
lations in 3D but without specifying collision rules. Those were given for the
first time by Hénon (1987a) and later on modified by Rem and Somers (1989),
Somers and Rem (1989) and others.

The 24 vectors of the FCHC lattice are listed in Section 3.3. The collision
rules have to respect the following constraints:

1. The number of particles is conserved in each collision (conservation of
mass).

2. The momentum is conserved in each collision.

3. There are no conserved quantities except of mass and momentum (no
spurious invariants).
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Fig. 3.4.4. The projection (along the 4th axis) of the lattice velocities of the FCHC
lattice for ci4 = ±1.
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4. The exclusion principle is valid: at each node there sits at most one particle
per lattice velocity (or per cell).

5. The collision rules share the symmetry of the lattice or, in other words,
they are invariant under arbitrary transformations by elements of the
isometric (symmetry) group G.

6. The collisions respect the semi-detailed balance.

The FHP-model with six lattice velocities (FHP-I) has only 26 = 64 different
states per node. Therefore the collision rules could be derived ‘by hand’. On
the contrary, for FCHC there are 224 = 16 777 216 different states. Thus the
collision rules have to be specified by an automatic algorithm.

3.5.1 Isometric collision rules for FCHC by Hénon

Despite the constraints given above there is space for almost unnumerable
many different collisions. Therefore Hénon (1989a) introduced further con-
straints (referred to as Hénon constraints):
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1. Every collision is an isometry36 (isometric collision rules). Motivation:

• An isometry is simpler than an arbitrary transformation.

• The general constraints 1 and 4 are fulfilled automatically.

• All collisions of HPP and FHP (without rest particles) are isometries.

2. The isometry depends only on the total momentum.

3. The isometry which is to be applied will be chosen by random out of the
optimal (with respect to low viscosity, see below) isometries.

Despite the first two Hénon constraints there exists in addition to the identity
at least one nontrivial isometry for each total momentum.
The various isometries contribute differently to the shear viscosity which
should be kept as low as possible. Hénon could quantify these contributions
and thereby classify the optimal isometries. This isometric group G contains
1152 elements. It can be created by five generators.
In order to keep the collisions easy to take at a glance, Hénon introduced
a kind of normal form of the components of momentum q1, q2, q3, q4. Note
that this is not a further constraint to the collision rules. For every state
there exists an isometry which transforms that state into a state (normalized
momenta) with

q1 ≥ q2 ≥ q3 ≥ q4 and (q4 = 0 or q1 + q4 < q2 + q3). (3.5.1)

Thereby the problem of constructing collision rules for FCHC is simplified
considerably because there exist only 37 different normalized momenta.
Each collision proceeds by successive application of three isometries:

1. Transformation of the initial state by an isometry g ∈ G into the state
with the appropriate normalized momentum.

2. Application of an optimal isometry M (proper collision).

3. Transformation with g−1 ∈ G back to the original coordinates.

Thus the total transformation reads g−1 ◦M ◦ g.

3.5.2 FCHC, computers and modified collision rules

Despite the extreme simplification of the original problem of constructing
collision rules for FCHC by Hénon the coding of these rules require the in-
troduction of a very large look-up table that contains the final state (after
collision) for each initial state (before collision). The necessary memory can
be estimated as follows. The coding of a single state requires 24 bits. On a
36 Isometries are mappings g which keep the distances d(α, β) of arbitrary points α,
β invariant: d(g(α), g(β)) = d(α, β). Rotations and reflections are isometries.
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CRAY two states can be packed into one word (8 bytes = 64 bits). Thus for
the storage of 224 = 16 777 216 initial and the same number of final states 8
times 16 777 216 bytes or approximately 130 Mbytes are required. This is a
severe obstacle for computers with small memories.
Relatively few applications of the FCHC model have been published. A paper
of Chen et al. (1991c) on the flow through porous media is especially remark-
able. The calculations were performed on a CRAY-YMP (core size of a few
hundred Mbytes). The size of the look-up table which actually should contain
16 million entries could be somewhat reduced by exploiting the hole-particle
symmetry. The propagation has been coded in CRAY-Assembler. Despite all
these machine-specific measures the update rates per node are not higher than
those of the PI model (compare Section 3.6) in 3D which is coded in standard
C (Wolf-Gladrow and Vogeler, 1992). For a fair comparison of the two mod-
els, however, the different values of the shear viscosities have to be taken into
account.
The collision rules were simplified quite drastically by Rem and Somers (1989)
even risking the violation of the semi-detailed balance. The resulting look-up
table requires only 40 kbytes. Computer experiments show good agreement
with theoretical predictions such as Fermi-Dirac distribution and the shear
viscosity as a function of density. Yet, the shear viscosity is three times higher
than its optimal value.
In addition to his isometric collision rule Hénon has proposed a purely random
rule: The final state will be randomly chosen out of all states with the same
mass and momentum as the initial state. The values of the shear viscosity for
both rules proposed by Hénon are comparable (Hénon, 1987a).

3.5.3 Isometric rules for HPP and FHP

Hénon applied his method for the construction of isometric collision rules
also to the HPP and the FHP model (without restparticles). For HPP one
obtains collision rules which are identical to those of the original formulation:
the head-on collision is the only collision. The model is too simple to allow
additional collisions. On the other hand the Hénon constraints are not too
restrictive to forbit all nontrivial transformations.
For the FHP model the isometric collision rules read

(i, i+ 3) → (i+ 1, i+ 4) or (i− 1, i+ 2),
(i, i+ 2, i+ 4) → (i+ 1, i+ 3, i+ 5) or (i, i+ 2, i+ 4),
(i− 1, i, i+ 2) → (i− 2, i, i+ 1),

(i+ 1, i+ 2, i+ 4, i+ 5) → (i, i+ 2, i+ 3, i+ 5) or
(i, i+ 1, i+ 3, i+ 4),
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i.e. the two-particle, the three-particle, the two-particle with observer and the
four-particle collisions. The only difference in relation to the original formu-
lation (compare Section 3.2) occurs for the three-particle collision: according
to the isometric rules the particle velocities will be changed with a probabil-
ity of 1/2 instead of 1 as in the original rules. This can be interpreted as an
indication that the three-particle collision does not contribute much to the
reduction of the shear viscosity. This collision was introduced to destroy a
spurious invariant.

3.5.4 What else?

• Implementation of the FCHC model: in the 4th dimension the model en-
compasses only two ‘layers’ and periodic boundary condition.

• The fourth component of the momentum behaves like a passive scalar
(Frisch et al., 1987).

• Variants of the FCHC model are listed in Table 3.5.1.

• Further reading: Rivet et al. (1988), Shimomura et al. (1988), Hénon
(1989), Cancelliere et al. (1990), Dubrulle et al. (1990), Ladd and Frenkel
(1990), Vergassola et al. (1990), Rivet (1991), Benzi et al. (1992), Hénon
(1992), van der Hoef et al. (1992), Verheggen (1992), van Coevorden et al.
(1994), Adler et al. (1995).

Exercise 35. (**)
Classify the 64 different states at each node of the FHP-I model according to
particle number and momentum.

Exercise 36. (**)
How many different 3-momenta can be realized in the FCHC model?

Concluding remark: If one restricts oneself to models with a single lattice
speed there exists only the FCHC model for hydrodynamic simulations in
3D. The collision rules of the FCHC model are much more complicated than
those of the FHP model. Later on we will discuss multi-speed models as an
alternative to FCHC.
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Name Rest Semi-detailed Rmax
∗ Rmax

∗ References

particles balance Boltzmann measured

FCHC-1 0 Yes 2.00 2.0 Hénon (1987), Rivet (1987)

FCHC-2 0 Yes 6.44 - Hénon (1989)

FCHC-3 0 Yes 7.13 6.4 Hénon (1989), Rivet (1988a,b)

FCHC-4 0 Yes 7.57 - Hénon (1989)

FCHC-5 3 Yes 10.71 - Hénon (1989)

FCHC-6 0 No 17.2 - Dubrulle (1988)

FCHC-7 3 No (∞) 7.9 Dubrulle et al. (1990)

FCHC-8 3 No 99.7 13.5 Dubrulle et al. (1990)
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3.6 The pair interaction (PI) lattice-gas cellular
automata

The FCHC model for hydrodynamic simulations in 3D has complicated colli-
sion rules and thus requires large look-up tables. Extension to problems with
a free surface or to magneto-hydrodynamics seems to be extremely involved.
In 1989 Nasilowski proposed a lattice-gas cellular automata which runs in 2D
over a square lattice as well as in 3D over a cubic grid. In contrast to FHP or
FCHC the state of a cell of the PI model is characterized by D+ 1 (D spatial
dimension) bits instead of only one. The interaction37 at a node consists of
a succession of interactions between pairs of cells (thus the name PI = pair
interaction). The splitting into pair interactions allows an efficient coding with
bit-operators (C) or bit-functions (FORTRAN) also in 3D.

A complete discussion of the pair interaction lattice-gas cellular automata has
been given by Nasilowski (1991). Here only the main ideas of the PI-approach
will be explained and consequentely the presentation is restricted to the two-
dimensional case. The extension to 3D is straightforward.

3.6.1 Lattice, cells, and interaction in 2D

The PI model in 2D is based on the square lattice (compare Fig. 3.6.1). As
usual the development in time proceeds by an alternating sequence of local
interaction (only cells of a single node are involved) and propagation to the
nearest neighbor nodes. The lattice splits into two sub-lattices38:

• At even time levels the particles reside on nodes with even indices (white
circles).

• At odd time levels the particles reside on nodes with odd indices (black
circles).

As for HPP, FHP and FCHC there is a cell on each link at each node. The
state of a cell of the PI model is characterized by D+1 bits nJ (J = 0, 1, ..., D)
where D is the dimension: n0 is called the mass bit and nj (j = 1, ..., D) are
the momentum bits. By convention in this section uppercase indices run from
0 to D whereas lowercase indices run from 1 to D. The momentum bits are
subject to the constraint
37 We speak of interaction instead of collision because some of the rules of the PI

lattice-gas cellular automata cannot be described as collisions between particles.
38 Points with a combination of an even and an odd index will never be occupied

by particles. Therefore they will not be called nodes and they are not shown in
Fig. 3.6.1.
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nj ≤ n0 (3.6.1)

which can be interpreted as ‘the momentum of empty cells vanishes’. The
vector linking two neighboring nodes is termed c (lattice velocity). The com-
ponents of c take on the values 1 or−1. The links to the neighboring nodes and
the corresponding cells of a node will be labelled a, b, c, d (compare Fig. 3.6.2).
The corresponding lattice velocities are given by ca = (1, 1), cb = (−1, 1),
cc = (−1,−1), cd = (1,−1). The momentum m is defined component-wise:

mj′ := nj′vj′ , j′ = 1, ..., D (3.6.2)

(remark: no summation convention here!). This definition is rather unusual
because in general the momentum does not point to the same direction as the
velocity. This can be illustrated by considering all possible states of cell a:

1. Mass bit n0 = 0 → all momentum bits vanish (according to eq. 3.6.2): the
cell is empty.

2. Mass bit n0 = 1, all momentum bits vanish: rest particle.

3. n0 = n1 = 1, n2 = 0: particle with x-momentum only.

4. n0 = n2 = 1, n1 = 0: particle with y-momentum only.

5. n0 = n1 = n2 = 1: particle with momentum in the diagonal direction; this
is the only case where m and c point to the same direction.

Fig. 3.6.1. The sub-lattices of the PI lattice-gas cellular automata in 2D
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What was Nasilowski’s motivation to introduce the somewhat strange defini-
tion of the momentum? There are at least two good reasons:

1. The component-wise definition of the momentum allows a splitting of the
interaction into pair interactions (see below).
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Fig. 3.6.2. Structure of the nodes and cells of the PI lattice-gas cellular automata.
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2. The symmetry of the square lattice is not sufficient to assure the isotropy
of 4th rank lattice tensors (compare HPP and Section 3.3 on lattice ten-
sors). The component-wise definition of the momentum introduces a new
degree of freedom in that ‘the momentum can fluctuate with respect to
the direction of velocity’. This freedom may open a new route to isotropy.

The interaction is composed of the following sequence of pair interactions
(compare Fig. 3.6.3):

1. Interaction in x-direction between the cells a and b and between the cells
c and d

2. followed by interaction in y-direction between the cells a and d and be-
tween the cells b and c.

Fig. 3.6.3. PI: interaction between pairs of cell first in x-, then in y-direction.
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The pair interaction rules are designed according to the maxim ‘whatever is
not forbidden is allowed’. Nasilowski (1991) formulates three constraints:



118 3 Lattice-gas cellular automata

1. The interaction must conserve mass and momentum (as all good lattice-
gas cellular automata should do).

2. The interaction must be reversible, i.e. the mapping between initial and
final state is one-to-one. This allows the calculation of the statistical equi-
librium by applying the Gibbs formalism.

3. The interaction should yield a maximal change of the state of a node. The
identity fulfills the first two constraints but leads to spurious (additional)
invariants as, for example, the particle number on each diagonal of the
lattice. Such invariants will produce deviations from the hydrodynamic
behavior in the macroscopic limit and therefore should be avoided.

The rules given by Nasilowski (1991, p. 107) obey the first and second con-
straint and encompass all allowed pair interactions (compare also Fig. 3.6.4)
which most probably lead to the maximal change.

3.6.2 Macroscopic equations

The rather lengthy calculations of the equilibrium distribution and the multi-
scale expansion has been given by Nasilowski (1991). The first order terms
of a multi-scale expansion and the rescaling of certain quantities leads for
ρ0 = 1/2 to the continuity equation

∇ · u = 0 (3.6.3)

and the Euler equation

(∂t + u∇)u + ∇P = 0 (3.6.4)

where
P =

p

ρ0
=

4
9
ρ (3.6.5)

is the kinematic pressure. The hydrodynamic velocity u is related to the
momentum density q by

u =
8
9
q (3.6.6)

where the hyper-momentum density q is defined component-wise by

qJ = 2−D
∑
v
vJ 〈nv J 〉 (3.6.7)

with the hyper-velocity v = (v0, v1, ..., vD) = (1, c). In particular, q :=
(q1, ..., qD) is the momentum density, and ρ := q0 is the mass density. The
viscosity resulting from the second order terms of the multiscale expansion is
anisotropic: a tensor of 4th order instead of a scalar.
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Fig. 3.6.4. Pair interaction in horizontal (x-) direction: all possible configurations
and changes. Open cycles denote empty cells, filled cycles denote occupied cells, and
arrows indicate the momentum.

1.) ~6~@@I
-� ~6~@@I

2.) ~~ - -� ~-~
3.) ~���Æ�� -� ~���Æ��
4.) Æ��Æ�� -� Æ��Æ��
5.) ~-Æ�� -� ~-Æ��
6.) ~6~6 -� ~���@@I ~
7.) ~���~� -� ~6~
8.) ~6~� -� ~@@I ~
9.) ~~ -� ~-� ~
10.) ~6Æ�� -� Æ��6~
11.) ~Æ�� -� Æ��~



120 3 Lattice-gas cellular automata

Fig. 3.6.5. Simulation with PI-LGA of a Karman vortex street in 2D at a Reynolds
number of 80 (Wolf-Gladrow et al., 1991): flow past a plate with upstream on the
left. The figure shows the perturbation of the velocity after 80, 000 time steps. The
homogeneous flow field was subtracted to make the eddies clearly visible. The lattice
consists of 6400 times 3200 nodes.
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3.6.3 Comparison of PI with FHP and FCHC

The PI-LGCA has some disadvantages compared with FHP and FCHC. PI
can only be applied at the particular mass density ρ0 = 1/2 and the viscos-
ity is non-isotropic. On the other hand, the advantages are impressive. The
pressure does not depend explicitly on the velocity and simulations in 3D are
possible with portable code (Wolf-Gladrow and Vogeler, 1992). As an example
Vogeler and Wolf-Gladrow (1993) have calculated drag coefficients for flows
past obstacles in two and three dimensions.

Exercise 37. (*)
PI in 2D and 3D: How many different states are possible at a single node?
How large is the number of states on a lattice with only four nodes?

Exercise 38. (**)
Does the result of the interaction depend on the order of the pair interactions?

Exercise 39. (**)
Find nontrivial rules for a pair interaction between the cell a and c and be-
tween b and d (‘diagonal pair interaction’).

3.6.4 The collision operator and propagation in C and FORTRAN

C:

IXM = 32; IXM1 = IXM - 1;
IYM = 1024; IYM1 = IYM - 1;

LAST = LENGTH - 1; /* the last bit */

/* ----- interaction on 1. sub-lattice ----- */
/* ----- interaction: x-direction ----- */
/* ----- pair a <--> b ----- */

for(ix=0; ix < IXM; ix++)
for(iy=1; iy < IYM1; iy++) {

ab0 = a10[ix][iy] & b10[ix][iy];
ba0 = a10[ix][iy] ^ b10[ix][iy];
nab1 = ~(a11[ix][iy] | b11[ix][iy]);
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chab0 = ba0 & nab1;

chab1 = ab0 & ~(a11[ix][iy] ^ b11[ix][iy]);

chab2 = ((ba0 & nab1) | ab0) & (a12[ix][iy] ^ b12[ix][iy]);

/* array_1 --> array_2 */

a20[ix][iy] = a10[ix][iy] ^ chab0;
b20[ix][iy] = b10[ix][iy] ^ chab0;

a21[ix][iy] = a11[ix][iy] ^ chab1;
b21[ix][iy] = b11[ix][iy] ^ chab1;

a22[ix][iy] = a12[ix][iy] ^ chab2;
b22[ix][iy] = b12[ix][iy] ^ chab2; }

/* ... interactions c <-> d, a <-> d, b <-> c ... */

/* propagation: */

/* --- a-direction --- */

for(ix=0; ix < IXM; ix++)
for(iy=0; iy < IYM; iy++) {

a10[ix][iy] = a20[ix][iy];
a11[ix][iy] = a21[ix][iy];
a12[ix][iy] = a22[ix][iy]; }

/* --- b-direction --- */

for(ix=0; ix < IXM1; ix++)
for(iy=0; iy < IYM; iy++) {
b10[ix][iy] = (b20[ix][iy]>>1) + (b20[ix+1][iy]<<LAST);
b11[ix][iy] = (b21[ix][iy]>>1) + (b21[ix+1][iy]<<LAST);
b12[ix][iy] = (b22[ix][iy]>>1) + (b22[ix+1][iy]<<LAST); }

FORTRAN:

IXM = 32
IXM1 = IXM - 1
IYM = 1024
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IYM1 = IYM - 1

c last bit
LAST = LENGTH - 1

c ----- interaction on 1. sub-lattice -----
c ----- interaction: x-direction -----

c ------------------ pair (a,b)

DO iy=1,IYM
DO ix=1,IXM

ab0 = iand(a10(ix,iy),b10(ix,iy))
ba0 = ieor(a10(ix,iy),b10(ix,iy))
nab1 = not(ior(a11(ix,iy),b11(ix,iy)))

c --- change ?

chab0 = iand(ba0,iand(nab1,sb1(ix,iy)))
chab1 = iand(ab0,not(iand(ieor(a11(ix,iy),
1 b11(ix,iy)),sb1(ix,iy))))
chab2 = iand(ior(iand(ba0,nab1),ab0),
1 iand(ieor(a12(ix,iy),b12(ix,iy)),sb1(ix,iy)))

c --- set new values

a20(ix,iy) = ieor(a10(ix,iy),chab0)
b20(ix,iy) = ieor(b10(ix,iy),chab0)
a21(ix,iy) = ieor(a11(ix,iy),chab1)
b21(ix,iy) = ieor(b11(ix,iy),chab1)
a22(ix,iy) = ieor(a12(ix,iy),chab2)
b22(ix,iy) = ieor(b12(ix,iy),chab2)

ENDDO
ENDDO

c ... interactions c <-> d, a <-> d, b <-> c ...

c propagation:

c --- a-direction ---

DO iy=1,IYM
DO ix=1,IXM
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a10(ix,iy) = a20(ix,iy)
a11(ix,iy) = a21(ix,iy)
a12(ix,iy) = a22(ix,iy)

ENDDO
ENDDO

c --- b-direction ---

DO iy=1,IYM
DO ix=1,ixm1

b10(ix,iy) = ishft(b20(ix,iy),-1)
1 + ishft(b20(ix+1,iy),LAST)

b11(ix,iy) = ishft(b21(ix,iy),-1)
1 + ishft(b21(ix+1,iy),LAST)

b12(ix,iy) = ishft(b22(ix,iy),-1)
1 + ishft(b22(ix+1,iy),LAST)
ENDDO
ENDDO
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3.7 Multi-speed and thermal lattice-gas cellular
automata

The macroscopic equations derived from the microdynamics of lattice-gas cel-
lular automata include 4th rank tensors which are composed of the lattice
velocities and therefore are referred to as lattice tensors (compare Section 3.3
and especially Eq. (3.3.4)). The isotropy of these tensors, which depend on
the symmetry of the underlying lattice, is an essential condition to obtain the
Navier-Stokes equations. Hasslacher (1987) has shown that models with sev-
eral different non-vanishing lattice speeds may be equivalent to models with a
single speed but larger symmetry group. The resulting 4th rank tensors include
speed dependent weights and are referred to as generalized lattice tensors. By
appropriate choice of the weights these tensors can be isotropic for relative
low symmetry of the lattice. In contrast to single speed models the pressure
in multi-speed models does not depend explicitly on the flow velocity. The
collision rules can be chosen such that in addition to mass and momentum
also kinetic energy will be conserved. Such models are called thermal LGCA.

Models with several different speeds have been encountered before, namely the
FHP variants with rest particles (FHP-II, FHP-III). Particles with vanishing
speed have no influence on the isotropy of the lattice tensors. Therefore only
models with different non-vanishing speeds are called multi-speed models.

3.7.1 The D3Q19 model

D’Humières, Lallemand, and Frisch proposed already in 1986 - together with
FCHC - a multi-speed model in 3D with 19 lattice velocities (Eq. 3.3.24) and
three speeds (0, 1, and

√
2). The collisions shall conserve mass ρ, momentum

j and kinetic energy density ρεK which are defined as follows

ρ =
∑

I

NI

j = ρu =
∑

I

NIcI

ρεK =
∑

I

NI
c2I
2

where the index I = (σ, i) indicate the speed (σ = 0, 1, 2 for the rest particles
and particles with speed 1 and

√
2, respectively) as well as the direction i.

The exclusion principle and semi-detailed balance lead to Fermi-Dirac distri-
butions for the mean occupation numbers
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NI = fFD(QI) =
1

1 + exp(QI)

whereby
QI = α+ βcI · u + γc2

I

is a linear superposition of the collision invariants. The Lagrange multipliers
α, β, and γ can be calculated by expansion for small Mach numbers (compare
analogous calculations for FHP).
The D3Q19 model is the first lattice-gas cellular automata with an energy
term in the distribution function. This raises the question why similar terms
do not occur in the other models (FHP, FCHC, PI).

• For FHP without rest particles mass and kinetic energy density are iden-
tical:

2ρεK =
∑

i

Ni c2
i︸︷︷︸

=1

=
∑

i

Ni = ρ

• FHP with rest particles: the collisions including rest particles do not con-
serve kinetic energy.

• PI: the kinetic energy density can be defined by

ρεK :=
∑

i

p2
i

2m

(particle mass m = 1); some of the interactions do not conserve energy.

• FCHC: same as for FHP, i.e. the kinetic energy density is proportional to
the mass density for the version without rest particles and the collisions
including rest particles do not conserve kinetic energy.

The advection term of the macroscopic momentum equation of the D3Q19
model contains the following 4th rank tensor

Tαβγδ =
β2

0

2

∑
I

dσ(1 − dσ)(1− 2dσ)︸ ︷︷ ︸
= wσ

cIαcIβcIγcIδ

where dσ are the equilibrium occupation numbers at vanishing flow speed (the
zeroth order term of the Taylor expansion) which depend only on the lattice
speed and not on direction. The new feature - compared to single speed models
- is the occurrence of the weights

wσ = dσ(1− dσ)(1 − 2dσ)

which can influence the transformation properties (isotropy) of Tαβγδ (of
course the coefficient β2

0/2 does not play a role). The tensor Tαβγδ of the
D3Q19 model is isotropic if
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d1(1− d1)(1− 2d1) = 4d2(1 − d2)(1 − 2d2) (3.7.1)

(d’Humières et al., 1986; compare also Section 3.3), i.e. the occupation num-
bers of speed-1 and speed-

√
2 particles must respect a certain ratio. In other

words, the tensor is isotropic only at a certain ‘temperature’ where the right
number of high energy states are excited. For small densities (dσ � 1) rela-
tion (3.7.1) can be approximated by d1 = 4d2, i.e. the occupation numbers
of cells with speed 1 must be four times as high as for cells with speed

√
2

(compare Fig. 3.7.1 for the ratio of d2/d1 for finite values of d1). Thus a cer-
tain non-isotropy of the occupation numbers ensures the isotropy of the tensor
Tαβγδ.

Fig. 3.7.1. The figure shows one solution of the cubic equation d1(1−d1)(1−2d1) =
4d2(1 − d2)(1 − 2d2) (solid line). For small values of d1 it can be approximated by
d1 = 4d2 (broken line).
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Exercise 40. (*)
Which interactions of the PI model violate energy conservation?

Exercise 41. (***)
Propose collision rules for D3Q19.
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3.7.2 The D2Q9 model

Chen et al. (1989) reduced the multi-speed model of d’Humières et al. (1986)
to 2D. They proposed collision rules and performed some numerical experi-
ments. The model encompasses 9 lattice velocities:

c0 = (0, 0) rest particle
c1,2 = (±1, 0) 1-particles
c3,4 = (0,±1) 1-particles
c5,6,7,8 = (±1,±1)

√
2-particles.

All particles have the same mass. Only collisions between two particles are
considered (compare Fig. 3.7.2):

1. Head-on collision of two particles with speed c = 1: as for HPP both
particles are rotated (in the same sense) by 90◦.

2. Head-on collision of two particles with speed c =
√

2: as for HPP both
particles are rotated (in the same sense) by 90◦.

3. Collision between a
√

2-particle and a rest particle: two particles with
speed c = 1 leave the node under ±45◦ with respect to the incoming√

2-particle. The inverse process is also allowed.

4. Collision between a
√

2-particle and a particle with speed c = 1 from
different quadrants: the

√
2-particle will be rotated by 90◦ whereas the

velocity of the 1-particle will be reversed (identical to rotation by 180◦).

All these two-particle collisions conserve mass, momentum, and kinetic energy.
The third type of collisions changes the number of particles with given speed.
The tensor of 4th rank in the advection term reads

Tαβγδ = const. · (δαβδγδ + δαγδβδ + δαδδβγ)
+2 [d1(1 − d1)(1 − 2d1)− 4d2(1 − d2)(1 − 2d2)] δαβγδ.

The second part of the term, which destroys isotropy, vanishes under the same
condition (3.7.1) given by d’Humières et al. (1986). In the limit of small occu-
pation numbers one obtains d1/d4 = 4 and a kinetic energy density εK = 1/3.
In the same limit the pressure does not depend explicitly on the flow velocity.
For finite mass densities, however, there occurs an u2 term as in FHP.
Furthermore, the model allows simulation of pure heat conduction problems
(u = 0). However, this is possible with simpler lattice-gas cellular automata
(see, for example, Chopard and Droz, 1988 and 1991) or with ‘classical’ meth-
ods like finite differences. Biggs and Humby (1998) summarize their discussion



3.7 Multi-speed and thermal lattice-gas cellular automata 129

of thermal LGA as follows:
“Thermal LGA has not been applied to problems of any real significance. The
only simulation of note is that of Chen et al. (1991a) who briefly considered
the Bénard convection problem. The relative paucity of non-isothermal LGA
studies is perhaps not surprising given the relative immaturity of this level
of LGA model. The models have, however, developed to a point where seri-
ous application can be contemplated provided substantial validation work is
undertaken.”

Exercise 42. (**)
Show that the collision rules of Chen et al. (1989) contain all possible two-
particle collisions.

Exercise 43. (**)
Find three-particle collisions which conserve mass, momentum, and energy.
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Fig. 3.7.2. Collision rules proposed by Chen et al. (1989) for the D2Q9 model. The
rest-particle in rule three is indicated by a circle.
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3.7.3 The D2Q21 model

Fahner (1991) proposed a model with 21 lattice velocities in 2D (compare
Section 3.3 and especially Eq. (3.3.18)). In addition to the 9 velocities of the
D2Q9 model Fahner included the speeds 2 and

√
5. The number of possible

states per node of 221 = 2 097 152 is almost comparable with that of FCHC.
Fahner proposed the following collision rule which reminds on Hénon’s random
rule for FCHC:

• At each node mass, momentum, and kinetic energy will be calculated
(these quantities characterize the ‘macrostate’ of each node).

• The final microstate of each node will be chosen among all microstates
which are compatible with its macrostate.

To keep the number of collision states low and thus the look-up table small,
Fahner took into account only collisions with a maximum of five particles
involved. The number of these collisions is maximized by initializing a mean
mass density with two particles per node.

The equilibrium occupation numbers obey a Fermi-Dirac distribution

Ni =
1

1 + exp(−βµ+ βεi − qci)
(3.7.2)

where ci are the lattice velocities, εi = c2i ∈ {0, 1, 2, 3, 4, 5} are single-particle
energies and q, β, µ are Lagrange multipliers. The Lagrange multipliers can
be calculated by expansion for small Mach numbers. Explicit expressions can
be found in Fahner (1991).

3.7.4 Transsonic and supersonic flows: D2Q25, D2Q57, D2Q129

Kornreich and Scalo (1993) proposed multi-speed models similar to that of
Fahner (1991) but with 25, 57, and 129 lattice velocities in 2D. The Lagrange
multipliers were calculated numerically instead of applying the usual expan-
sion for small Mach numbers. The resulting numerical distribution functions
were used to determine the pressure tensor. Kornreich and Scalo found that
the velocity dependent term in the expression for the pressure does not in-
crease as fast as it can be predicted by applying the ‘expanded’ distributions.
On the contrary, this term decreases again when the (macroscopic) flow veloc-
ity u is near one of the (microscopic) lattice velocities ci. Thus, in principle
simulations of transsonic and supersonic flows are possible. These models are
not without problems. The collision rules are complicated already for the
D2Q25 model despite the fact that Kornreich and Scalo considered only two-
particle collisions. The memory demand is enormous and the viscosity is larger
than for FHP.
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3.8 Zanetti (‘staggered’) invariants

In addition to local - at one node, at one time level - invariants there may
exist some invariants which involve quantities at different nodes and different
time levels. Zanetti (1989, p. 1539) gives a simple example:
“The presence of these new invariants can be easily understood by using a
trivial one-dimensional example. Let g(x) be the linear momentum of the par-
ticles present at site x, define Ge(t) =

∑
x,even g(x, t), Go(t) =

∑
x,odd g(x, t)

as the total momentum of the particles on even or odd sites, and let the col-
lision rules conserve the momentum and the number of particles at each site.
Since the particles can only hop between nearest neighbors, Ge and Go are
exchanged at each time step. The dynamics of this one-dimensional model
allows three conserved quantities: M , Ge +Go, and H = (−1)t(Ge−Go). The
first two are the usual number of particles and the total linear momentum;
the third is due to our extremely simplified dynamics.”

3.8.1 FHP

Zanetti (1989) has found three39 staggered invariants of the FHP-III model:

Hi = (−1)t
∑
r∈Ω

(−1)bi·rc⊥i · j; i = 1, 2, 3, (3.8.1)

where c⊥i is obtained by rotating ci by π/2 counterclockwise, bi = (2/
√

3)c⊥i
is the reciprocal space vector perpendicular to ci and j =

∑
k cknk(x, t) is

the microscopic momentum density.
According to Zanetti the validity of (3.8.1) “can be verified by inspection”.
More precisely it may be shown (see Exercise 44) that the Hi are conserved by
the combination of any single collision plus propagation and for collisionless
propagation. Because the Hi are linear in the nk this provides a complete
proof of the invariance. The Zanetti invariants are also valid for FHP-I and
FHP-II which follows as a direct consequence of the proof sketched above.

3.8.2 Significance of the Zanetti invariants

Additional invariants further restrict the dynamics by changing the equi-
librium distributions which are functions of all invariants. Fortunately, the
procedures usually applied for initialization create very small values of Hk

(noise). Consequently, in the simulation reported so far there is no clear
indication of the presence of the staggered-momentum density hi(r, t) =
(−1)t(−1)bi·rc⊥i · j (i = 1, 2, 3). But ‘pathological’ initial conditions as, for

39 Note: Hi+3 = −Hi for i = 1, 2, 3
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example, 〈ρ〉 = const, 〈j〉 = 0, 〈h1〉 = 0 = 〈h3〉 and 〈h2〉 = h0 sin(2πy/W )
lead to an exitation of an oscillatory mode in jx due to a coupling of the
hydrodynamic modes with the additional (kinetic) modes of the lattice gas
(Zanetti, 1989).

Further reading: Kadanoff et al. (1989), d’Humières et al. (1989, 1990),
Bernardin (1992), Qian (1997). Ernst (1991) calculates the contribution of
the unphysical modes to the stress tensor for FHP.

Exercise 44. (**)
Consider a lattice with 3 times 3 sites which is empty except for the site (2, 2)
in the middle of the domain. Calculate the Zanetti invariants 1.) with the
initial (t = 0) configurations of Fig. 3.2.2 at site (2, 2) and 2.) after collision
and propagation (t = 1). In addition prove that Hi are conserved by a single
propagating particle.

Exercise 45. (**)
Qian et al. (1992) proposed a LGCA for diffusion in 1D with four velocities
ci (D1Q4) and two different masses mi:

ci = {2c,−2c, c,−c}
mi = {m,m, 2m, 2m}

There is only one possible collision which conserves mass, momentum and
energy: the head-on collision between a fast (hot) particle with mass m and a
slow (cold) particle with mass 2m which leads to a reversal of their velocities.
For a domain with L sites where L is divisible by four and periodic boundary
conditions find three spurious invariants staggered in space and time and one
additional spurious invariant staggered in space only.

Exercise 46. (**)
Can you find staggered invariants for HPP?

Exercise 47. (***)
Try to find staggered invariants for PI.

Exercise 48. (***)
Try to find staggered invariants for D2Q9.

Exercise 49. (***)
Modify the usual procedure to initialize a given distribution of ρ, j and
staggered-momentum densities hi (the microscopic densities corresponding
to Hi).
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3.9 Lattice-gas cellular automata: What else?

Further reading:
Textbooks: Rothman and Zaleski (1997), Rivet and Boon (to be published).
Proceedings and reviews:

• Proceedings of the workshop on Large Nonlinear Systems, Complex Sys-
tems, Vol. 1, No. 4, 1987.

• Monaco (1989)

• Doolen (1990)

• Ernst (1991)

• Chen et al. (1995)

• Boon et al. (1996)

• Biggs and Humby (1998)

Bibliographies: Doolen (1990) and J. Stat. Phys. 68 (3/4), 611-667, 1992.

Further topics:

• Mode-mode coupling, long time-tails, divergence of transport coefficients
in 2D: Kadanoff et al. (1989), Frenkel and Ernst (1989), d’Humières et al.
(1989), McNamara (1990), van der Hoef and Frenkel (1990), Ernst (1991).

• Flows in 3D: Bernsdorf et al. (1999), van Genabeek and Rothman (1999).

• Flow through porous media: Balasubramanian et al. (1987), Rothman
(1988), Kohring (1991a,b,c), Knackstedt et al. (1993), Gutfraind et al.
(1995), van Genabeek and Rothman (1996), Koponen et al. (1996, 1997),
Krafczyk et al. (1998), Matsukama (1998), Matsukuma et al. (1998), Ni-
imura (1998), Waite et al. (1998).

• Multiphase flows (’colored models‘) in 2D: Rothman and Keller (1988),
Stockman et al. (1990), Gunstensen and Rothman (1991), Kougias (1993),
Rothman and Zaleski (1994, review article), Emerton et al. (1997), Mat-
sukama (1998), Peng and Ohta (1997), Stockman et al. (1997), Tsumaya
and Ohashi (1997), Weig et al. (1997), Ebihara et al. (1998), Sehgal et al.
(1999).

• Multiphase flows in 3D: Rem and Somers (1989), Olson and Rothman
(1995, 1997).

• Flow of granular media: Karolyi et al. (1998), Manna and Khakhar (1998).

• Flow in dynamical geometry: Hasslacher and Meyer (1998)

• Poisson solver: Chen, Matthaeus and Klein (1990).
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• Magnetohydrodynamics (MHD): Chen and Matthaeus (1987), Hatori and
Montgomery (1987), Montgomery and Doolen (1987), Chen et al. (1991),
Succi et al. (1991), Chen et al. (1992), Martinez et al. (1994), Isliker et al.
(1998), Takalo et al. (1999).

• Relativistic flows: Balazs et al. (1999).

• Chemical reactions, reaction-diffusion equations: Weimar et al. (1992),
Weimar (1997), Decker and Jeulin (1997), Vanag and Nicolis (1999).

• Burgers equation: Boghosian and Levermore (1987), Cheng et al. (1991),
Nishinari and Takahashi (1998).

• Generalized semi-detailed balance condition: Chen (1995, 1997).

• Beyond the Boltzmann approximation: Boghosian (1995).

• Pattern formation: Chen et al. (1995), Bussemaker (1996), Deutsch and
Lawniczak (1999).

• Integer lattice gases, Digital Physics: Boghosian et al. (1997), Chen, Teix-
eira and Molvig (1997), Teixeira (1997).

• Quantum mechanics: Boghosian and Taylor (1997), Boghosian and Taylor
(1998), Succi (1998), Yepez (1998).

• Further reading: Kohring (1992a,b), Hashimoto and Ohashi (1997), Suarez
and Boon (1997), Tribel and Boon (1997), Buick (1998), Hashimoto et
al. (1998), Lahaie and Grasso (1998), Masselot and Chopard (1998b),
Nicodemi (1998), Tsujimoto and Hirota (1998), Ujita et al. (1998).
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Some statistical mechanics

4.1 The Boltzmann equation

The motion of a fluid can be described on various levels. The most basic decrip-
tion by the Hamilton equations for a set of classical particles or the analogous
quantum mechanical formulation prohibits itself because of the huge number
of particles. 1 cm3 of air, for example, at 0◦C and a pressure of one atmosphere
contains 2.69 · 1019 molecules. It is impossible to prepare a desired microstate
of such a system.
This fact is already taken into account by the next higher level of decription for
a system with N particles by distribution functions fN (q1,p1, ..., qN ,pN , t)
which encompass all statistical informations of all dynamical processes
(qi and pi are the generalized coordinate and momentum of particle i).
fN (q1,p1, ..., qN ,pN , t)dq1dp1 ... dqNdpN is the probability to find a parti-
cle in the interval ([q1, q1 + dq1], [p1,p1 + dp1]) while the other particles
are in infinitesimal intervals around (q2,p2) ... (qN ,pN ). Thus fN contains
especially the various correlations between particles. fN obeys the Liouville
equation

∂fN

∂t
−

3N∑
j=1

(
∂HN

∂qj

∂fN

∂pj
− ∂HN

∂pj

∂fN

∂qj

)
= 0 (4.1.1)

where HN is the Hamiltonian of the system.
By integration over part of the phase space one defines reduced densities

Fs(q1,p1, ..., qs,ps, t) := V s

∫
fN (q1,p1, ..., qN ,pN , t) dqs+1dps+1 ... dqNdpN

where V s is a normalization factor. It has been shown that a coupled system
of differential equations for the Fs (1 ≤ s ≤ N) is equivalent to the Liouville
equation. This system is called BBGKY after Bogoljubov, Born, Green, Kirk-
wood and Yvon who derived these equations. The BBGKY hierarchy has to
be truncated at some point to calculate approximate solutions.
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The Boltzmann equation has been derived as a result of a systematic approx-
imation starting from the BBGKY system not before 1946 (compare Bogoli-
ubov, 1962; Boltzmann derived the equation which bears his name by a differ-
ent reasoning already in the 19th century). It can be derived by applying the
following approximations: 1. Only two-particle collisions are considered (this
seems to restrict applications to dilute gases). 2. The velocities of the two
colliding particles are uncorrelated before collision. This assumption is often
called the molecular chaos hypothesis. 3. External forces do not influence the
local collision dynamics.
The Boltzmann equation is an integro-differential equation for the single par-
ticle distribution function f(x,v, t) ∝ F1(q1,p1, t)

∂tf + v∂xf +
K

m
∂vf = Q(f, f) (4.1.2)

where x = q1, v = p1/m, m = const is the particle mass, f(x,v, t) d3xd3v
is the probability to find a particle in the volume d3x around x and with
velocity between v and v + dv.

Q(f, f) =
∫
d3v1

∫
dΩ σ(Ω)|v − v1|[f(v′)f(v′1)− f(v)f(v1)] (4.1.3)

is the collision integral with σ(Ω) the differential collision cross section for the
two-particle collision which transforms the velocities from {v,v1} (incoming)
into {v′,v′1} (outgoing). K is the body force. It will be neglected in the
following discussion of the current chapter.

4.1.1 Five collision invariants and Maxwell’s distribution

It can be shown (see, for example, Cercignani, 1988) that the collision integral
possesses exactly five elementary collision invariants ψk(v) (k = 0, 1, 2, 3, 4)
in the sense that ∫

Q(f, f)ψk(v) d3v = 0. (4.1.4)

The elementary collision invariants read ψ0 = 1, (ψ1, ψ2, ψ3) = v and ψ4 =
v2 (proportional to mass, momentum and kinetic energy). General collision
invariants φ(v) can be written as linear combinations of the ψk

φ(v) = a+ b · v + cv2.

It can be further shown (see, for example, Cercignani, 1988) that positive
functions f exist which give a vanishing collision integral

Q(f, f) = 0.

These functions are all of the form
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f(v) = exp(a+ b · v + cv2)

where c must be negative. The Maxwell1 distribution

f (M) = f(x,v, t) = n

(
m

2πkBT

)3/2

exp
[
− m

2kBT
(v − u)2

]
(4.1.5)

is a special case among these solutions where u is the mean velocity

u =
1
n

∫
d3v vf(x,v, t). (4.1.6)

Please note that f (M) depends on x only implicitly via n(x), u(x) and T (x).

4.1.2 Boltzmann’s H-theorem

In 1872 Boltzmann showed that the quantity

H(t) :=
∫
d3v d3x f (x,v, t) ln f (x,v, t) (4.1.7)

where f (x,v, t) is any function that satisfies the Boltzmann equation fulfills
the equation

dH

dt
≤ 0 (4.1.8)

and the equal sign applies only if f is a Maxwell distribution (4.1.5). This is
his famous H-theorem.
Proof. We will assume that no external forces are applied and thus f(x,v, t)
obeys the following Botzmann equation

∂f

∂t
+ v ·∇f = Q(f, f).

Differentiation of (4.1.7) yields

dH

dt
=
∫
d3v d3x

∂f

∂t
(x,v, t) [1 + ln f (x,v, t)] .

Insertion of the Boltzmann equation leads to

dH

dt
= −

∫
v ·∇ [f (x,v, t) ln f (x,v, t)] d3v d3x

(4.1.9)

+
∫
d3v1 d

3v2 d
3xdΩ σ(Ω) [f ′2f

′
1 − f2f1] · | v2 − v1 | [1 + ln f1]

1 The Maxwell distribution is also referred to as Maxwell-Boltzmann distribution or
as Boltzmann distribution.
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where f1 = f (x,v1, t), f2 = f (x,v2, t), f ′1 = f (x,v′1, t), and f ′2 = f (x,v′2, t).
The first summand can be transformed into a surface integral

−
∫

F

n · vf (x,v, t) ln f (x,v, t) d3v dF (4.1.10)

where n is the (outer) normal of the surface F that enclosed the gas. Without
detailed discussion we will assume that this surface integral vanishes. The
second integral is invariant under exchange of v1 and v2 because σ(Ω) is
invariant under such exchange:

dH

dt
=
∫
d3v1 d

3v2 d
3xdΩ σ(Ω) | v2 − v1 | (f ′2f ′1 − f2f1)[1 + ln f2] (4.1.11)

Adding up half of (4.1.9) and half of (4.1.11) leads to

dH

dt
=

1
2

∫
d3v1 d

3v2 d
3xdΩ σ(Ω) | v2 − v1 | (f ′2f ′1 − f2f1)[2 + ln(f1f2)]

(4.1.12)
This integral is invariant under exchange of {v1,v2} and {v′1,v′2} because
for each collision there exists an inverse collision with the same cross section.
Therefore, one obtains

dH

dt
=

1
2

∫
d3v′1 d

3v′2 d
3xdΩ σ′(Ω) | v′2 − v′1 | (f2f1 − f ′2f

′
1)[2 + ln(f ′1f

′
2)]

and because of d3v′1d
3v′2 = d3v1d

3v2, | v′2−v′1 |=| v2−v1 | and σ′(Ω) = σ(Ω):

dH

dt
=

1
2

∫
d3v1 d

3v2 d
3xdΩ σ(Ω) | v2 − v1 | (f2f1 − f ′2f

′
1)[2 + ln(f ′1f

′
2)].

(4.1.13)
Adding up half of (4.1.12) and half of (4.1.13) leads to

dH

dt
=

1
2

∫
d3v1 d

3v2 d
3xdΩ σ(Ω) | v2−v1 | (f ′2f ′1−f2f1)[ln(f1f2)− ln(f ′1f

′
2)].

The integrand is never positive because of the inequality

(b− a) · (ln a− ln b) < 0, a 6= b > 0,

thus dH/dt ≤ 0.

It vanishes, however, when (f ′2f
′
1 − f2f1) = 0 and therefore

∂f(v, t)
∂t

= 0.

dH/dt = 0 is possible if and only if

f(v′1)f(v′2)− f(v1)f(v2) = 0 (4.1.14)
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for all v′1, v′2 that result from v1, v2 by collisions. From (4.1.14) one obtains

ln f(v′1) + ln f(v′2) = ln f(v1) + ln f(v2), (4.1.15)

i.e. ln f(v) is an additive collision invariant and thus it is of the form (linear
composition of the five collision invariants):

ln f(x,v) = a(x) + b(x) · v + c(x)v2. (4.1.16)

Therefore it follows that

f(x,v) = C(x)e
−
m(v − u(x))2

2kBT (x) (4.1.17)

where C(x), u(x) and T (x) are independent of v. However, the distribution
(4.1.17) represents no equilibrium state because if f(x,v, t1) at time t1 is of
the form (4.1.17) then it follows from the Boltzmann equation that

(
∂f(x,v, t)

∂t

)
t=t1

= −v ·∇x


C(x)e

−
m(v − u(x))2

2T (x)


 (4.1.18)

(the collision term Q(f, f) vanishes because f(x,v) is a function of collision
invariants). For the equilibrium state f must be of the form (4.1.17) and be
independent of x thus

f (eq)(x,v) = f (eq)(v) = Ce
−
m(v − u)2

2kBT (4.1.19)

with constants C, T , u. In a closed system at rest the mean velocity u must
vanish and therefore

f (eq)(v) = Ce
−
mv2

2kBT . (4.1.20)

This is the famous Maxwell velocity distribution. q.e.d.

4.1.3 The BGK approximation

One of the major problems when dealing with the Boltzmann equation is the
complicated nature of the collision integral. It is therefore not surprising that
alternative, simpler expressions have been proposed. The idea behind this
replacement is that the large amount of detail of two-body interactions is not
likely to influence significantly the values of many experimentally measured
quantities (Cercignani, 1990).
The simpler operator J(f) which replaces the collision operatorQ(f, f) should
respect two constraints:
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1. J(f) conserves the collision invariants ψk of Q(f, f), that is∫
ψkJ(f) d3xd3v = 0 (k = 0, 1, 2, 3, 4), (4.1.21)

2. The collision term expresses the tendency to a Maxwellian distribution
(H-theorem).

Both constraints are fulfilled by the most widely known model called usually
the BGK approximation. It was proposed by Bhatnagar, Gross and Krook
(1954) and independently at about the same time by Welander (1954). The
simplest way to take the second constraint into account is to imagine that each
collision changes the distribution function f(x, v) by an amount proportional
to the departure of f from a Maxwellian fM (x, v):

J(f) = ω
[
fM (x, v)− f(x, v)

]
. (4.1.22)

The coefficient ω is called the collision frequency. From the first constraint it
follows∫

ψkJ(f) d3xd3v = ω

[∫
ψkf

M (x, v) d3xd3v −
∫
ψkf(x, v) d3xd3v

]
= 0

(4.1.23)
i.e. at any space point and time instant the Maxwellian fM (x, v) must have
exactly the same density, velocity and temperature of the gas as given by
the distribution f(x, v). Since these values will in general vary with space
and time fM (x, v) is called the local Maxwellian. Other model equations are
discussed in Cercignani (1990).



4.2 Chapman-Enskog: From Boltzmann to Navier-Stokes 143

4.2 Chapman-Enskog: From Boltzmann to Navier-Stokes

Many fluid-dynamical phenomena including laminar flows, turbulence and
solitons can be described by solutions of the Navier-Stokes equation. Al-
though the form of this equation can be obtained by phenomenological rea-
soning (see, for example, Landau and Lifshitz, 1959) it is of fundamental as
well as practical interest to derive the Navier-Stokes equation (Eq. 1.3.1) from
the Boltzmann equation. Applying certain models of the microscopic collision
processes one can obtain explicit formulas for the transport coefficients. For
example, Maxwell was able to derive an analytical expression for the shear
viscosity for molecules which interact by a r−5-potential where r is their dis-
tance. It came as a surprise for him and his contemporaries that this theory
predicted a dynamic viscosity coefficient independent of density. Experiments
made thereafter indeed showed that this is a good approximation for gases
over a wide range of densities.
The derivation of the Navier-Stokes equation and its transport coefficients
from the Boltzmann equation and certain microscopic collision models runs
under the name Chapman-Enskog expansion. This method has been developed
by Chapman and Enskog between 1910 and 1920 (Chapman, 1916 and 1918;
Enskog, 1917 and 1922; see also Cercignani, 1988 and 1990). The calculations
for certain models are rather involved and may easily hide some peculiarities
of this expansion. Therefore it seems appropriate to discuss a few interesting
features before beginning with the formal derivations and to restrict the cal-
culation to a simple collision model, namely the BGK approximation.
The Chapman-Enskog or multi-scale expansion has already been used to de-
rive the Euler equation for the FHP lattice-gas cellular automata (compare
Section 3.2) and will be applied later on to derive the Navier-Stokes and other
macroscopic equations for lattice Boltzmann models (compare Section 5.2).
The transformation from the Boltzmann equation to the Navier-Stokes equa-
tion involves a contraction of the description of the temporal development of
the system (Uhlenbeck and Ford, 1963). Whereas the distribution function f
of the Boltzmann equation in general is explicitly depending on time, space
and velocity, we will see that the distribution functions f (n) of the Chapman-
Enskog expansion depend only implicitly on time via the local density, velocity
and temperature, i.e. the f (n) are not the most general solutions of the Boltz-
mann equation. It can be shown that arbitrary initial distributions relax very
fast (a few collision time scales which means of the order of 10−11 s in a gas in
3D under standard conditions) toward this special kind of distribution. The
possibility of the contraction of the description has been considered as a very
fundamental insight (Uhlenbeck and Ford, 1963).
The expansion parameter of Chapman-Enskog is the Knudsen number Kn,
i.e. the ratio between the mean free length λ (the mean distance between
two succesive collisions) and the characteristic spatial scale of the system (for
example, radius of an obstacle in a flow). When the Knudsen number is of
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the order of 1 or larger the gas in the system under consideration cannot be
described as a fluid.

As a last point one should mention that the series resulting from the Chapman-
Enskog procedure is probably not convergent but asymptotic2. This is sug-
gested by the application to the dispersion of sound (Uhlenbeck and Ford,
1963). Higher order approximations of the Chapman-Enskog method lead to
the Burnett and super-Burnett equations (Burnett, 1935, 1936) which have
never been applied systematically. One of the problems with these equations
is the question of appropriate boundary conditions (see, for example, Cercig-
nani, 1988 and 1990, for further discussion).

4.2.1 The conservation laws

Conservation laws can be obtained by multiplying the Boltzmann equation
with a collision invariant ψk(v) (ψ0 = 1, ψα = uα for α = 1, 2, 3 and
ψ′4 = 1

2m|v − u|2) and subsequent integration over d3v. The integrals over
the collision integral Q(f, f) vanish by definition. Therefore∫

d3v ψk(∂t + vα∂xα)f(x,v, t) = 0 (4.2.1)

and thus (in 3D)

∂tρ+ ∂xα(ρuα) = 0 (4.2.2)
ρ∂tuα + ρuβ∂xβ

uα = −∂xβ
P̂αβ (4.2.3)

ρ∂tθ + ρuβ∂xβ
θ = −2

3
∂xαqα −

2
3
P̂αβΛαβ (4.2.4)

with

n(x, t) =
∫
d3v f(x,v, t) (4.2.5)

ρ(x, t) = mn(x, t) (m = const) (4.2.6)
(4.2.7)

ρuα(x, t) = m

∫
d3v vα f(x,v, t) (4.2.8)

2 Asymptotic series are discussed, for example, in Bender and Orszag (1978). De-
spite their missing convergence these series can be extremely useful. Bender and
Orszag give a number of neat examples.
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θ(x, t) = kBT (x, t) =
m

3n

∫
d3v (vα − uα)(vα − uα) f(x,v, t)

(4.2.9)

Λαβ =
m

2
(∂xβ

uα + ∂xαuβ) (4.2.10)

P̂αβ = m

∫
d3v (vα − uα)(vβ − uβ) f(x,v, t) (4.2.11)

qα(x, t) =
m2

2

∫
d3v (vα − uα)(vβ − uβ)(vβ − uβ) f(x,v, t)

(4.2.12)

Although the conservation equations are exact they are useless until one can
solve the Boltzmann equation and apply the solution f to calculate (4.2.5)
to (4.2.12). Please note that P̂αβ is different from the momentum flux tensor
introduced in Eq. (3.2.54) in that it does not contain the advection term.

4.2.2 The Euler equation

Inserting f (0) = f (M) (the Maxwell distribution, compare Eq. 4.1.5) into Eqs.
(4.2.5) to (4.2.12) leads to the following approximation of the conservation
laws

∂tρ+ ∂xα(ρuα) = 0 (continuity equation)
ρ∂tuα + ρuβ∂xβ

uα = −∂xαp (Euler equation)

∂tθ + uβ∂xβ
θ = − 1

cv
θ ∂xαuα

where p = nkBT = nθ is the pressure and cv = 3/2 is the heat capacity
at constant volume. The heat flux q vanishes in this approximation. The
continuity equation is already in its final form. The dissipative terms in the
equation of motion have to be derived from higher order approximation.

4.2.3 Chapman-Enskog expansion

The distribution function is expanded as follows

f = f (0) + εf (1) + ε2f (2) + ... (4.2.13)

The symbol ε is often used in two different ways:



146 4 Some statistical mechanics

1. One speaks of an expansion as a power series in the small quantity ε, i.e.
|ε| � 1. In the case of Chapman-Enskog the Knudsen number Kn can be
considered as the small expansion parameter.

2. The formal parameter ε in the expansions allows one to keep track of
the relative orders of magnitude of the various terms. It will be considered
only as a label and will be dropped out of the final results by setting ε = 1.

As an example consider the expansion f = f (0)+εf (1). In discussions one may
consider f (0) and f (1) as quantities of the same order of magnitude and argue
that the second term of the expansion is small because ε is a small quantity
whereas in the formal calculations f (1) is small compared to f (0) and ε is only
a label to keep track of the relative size of the various terms. The ε in this
second sense can be set equal to one after finishing all transformations.
According to the expansion (4.2.13) the conservation laws (Eqs. 4.2.2 - 4.2.4)
can be formulated as follows

∂tρ+ ∂xα(ρuα) = 0

ρ∂tuα + ρuβ∂xβ
uα = −

∞∑
n=0

εn∂xα P̂
(n)
αβ

ρ∂tθ + ρuβ∂xβ
θ = −2

3

∞∑
n=0

εn(∂xαq
(n)
α + P̂

(n)
αβ Λαβ)

where
P̂

(n)
αβ := m

∫
d3v f (n)(vα − uα)(vβ − uβ) (4.2.14)

and

q(n)
α :=

m2

2

∫
d3v f (n)(vα − uα)|v − u|2.

Because f depends on t only via ρ, u and T the chain rule

∂tf = ∂ρf ∂tρ+ ∂uαf ∂tuα + ∂θf ∂tθ

applies. Inserting (4.2.13) into the derivatives of f with respect to ρ, uα and
T yields

∂ρf = ∂ρf
(0) + ε∂ρf

(1) + ε2∂ρf
(2) + ...

∂uαf = ∂uαf
(0) + ε∂uαf

(1) + ε2∂uαf
(2) + ...

∂θf = ∂θf
(0) + ε∂θf

(1) + ε2∂θf
(2) + ...

The expansions of ∂tρ, ∂tuα and ∂tT have to be defined such that they are
consistent with the conservation laws in each order of ε. The terms of the
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formal expansion3

∂t = ε∂
(1)
t + ε2∂

(2)
t + ... (4.2.15)

will be derived from the conservation laws as follows:

∂
(1)
t ρ := −∂xα(ρuα) (4.2.16)

∂
(n+1)
t ρ := 0 (n > 0)

∂
(1)
t uα := −uβ∂xβ

uα − 1
ρ
∂xβ

P̂
(0)
αβ (4.2.17)

∂
(n+1)
t uα := −1

ρ
∂xβ

P̂
(n)
αβ (n > 0)

∂
(1)
t θ := −uβ∂xβ

θ − 2
3ρ

(
∂xαq

(0)
α + P̂

(0)
αβ Λαβ

)
∂

(n+1)
t θ := − 2

3ρ

(
∂xαq

(n)
α + P̂

(n)
αβ Λαβ

)
(n > 0)

Application of these definitions leads to an expansion of ∂tf into a power
series in ε:

∂tf =
(
ε∂

(1)
t + ε2∂

(2)
t + ...

)(
f (0) + εf (1) + ε2f (2) + ...

)
= ε∂

(1)
t f (0) + ε2(∂(1)

t f (1) + ∂
(2)
t f (0)) + ε3...

Inserting the expansion of the distribution function f into the collision integral
Q(f, f) of the Boltzmann equation with BGK approximation4 yields

Q(f, f) = −ω
(
f − f (0)

)
= −ω

(
εf (1) + ε2f (2) + ...

)
=: J (0) + εJ (1) + ε2J (2) + ... (4.2.18)

where
3 The reason for starting the ∂t expansion by a term linear in ε will become apparent

from the discussion later on. The expansions of f or ∂t alone can be multiplied
by arbitrary powers of ε because the powers of ε only label the relative size of
the different terms in each expansion. When expansions of different quantities
are combined, however, the powers of ε have to be related such that the terms of
leading order yield a meaningful balance.

4 The BGK approximation will be applied here in order to simplify the calculations.
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J (0)
(
f (0)

)
= 0 (4.2.19)

J (1)
(
f (0), f (1)

)
= J (1)

(
f (1)

)
= −ωf (1) (4.2.20)

J (2)
(
f (0), f (1), f (2)

)
= J (2)

(
f (2)

)
= −ωf (2) (4.2.21)

...

where the collision frequency ω is a constant. In general, i.e. no BGK approx-
imation of the collision integral, the J (n) depend on all f (k) with k ≤ n (as
indicated on the left hand sides of Eqs. 4.2.20 and 4.2.21) whereas for the
BGK approximation J (n) depends only on f (n). This simplification is due to
the fact that the collision integral in the BGK approximation is linear in f .
The spatial derivative ∂x on the left hand side of the Boltzmann equation is
of the same order as the leading term in the time derivative, i.e.

∂xα = ε∂(1)
xα
. (4.2.22)

This looks like the first term of an expansion. In space, however, only one
macroscopic scale will be considered because different macroscopic processes
like advection and diffusion can be distinguished by their time scales but act
on similar spatial scales.

Equating terms of same order in ε of the Boltzmann equation leads to the
following set of equations:

J (0)
(
f (0)

)
= 0 (4.2.23)

∂
(1)
t f (0) + vα∂

(1)
xα
f (0) = J (1)

(
f (0), f (1)

)
= −ωf (1) (4.2.24)

∂
(1)
t f (1) + ∂

(2)
t f (0) + vα∂

(1)
xα
f (1) = J (2)

(
f (0), f (1), f (2)

)
= −ωf (2)

...

Eq. (4.2.23) is fulfilled because J vanishes for Maxwell distributions. f (1) can
readily be calculated from Eq. (4.2.24)

f (1) = − 1
ω

(
∂

(1)
t f (0) + vα∂

(1)
xα
f (0)

)
. (4.2.25)

This equation states that the lowest order deviations f (1) from a local Maxwell
distribution f (0) are proportional to the gradient in space and time of f (0).
The calculation of f (1) is much more involved when the collision integral is
not approximated (see, for example, Huang, 1963).

The next step is the calculation of P̂ (1)
αβ according to Eq. (4.2.14)
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P̂
(1)
αβ = m

∫
d3v(vα − uα)(vβ − uβ)f (1)

= −m
ω

∫
d3v(vα − uα)(vβ − uβ)(∂(1)

t f (0) + vγ∂
(1)
xγ
f (0)).

Insertion of (4.2.16) and (4.2.17) leads to (from now on the superscript (1)

will be dropped for the sake of simplicity)

∂tf
(0)(ρ,u) =

∂f (0)

∂ρ

∂ρ

∂t
+
∂f (0)

∂uγ

∂uγ

∂t

= −f
(0)

m

∂(ρuγ)
∂xγ

+
m

kBT
(vγ − uγ)f (0)

(
uδ
∂uγ

∂xδ
+

1
ρ

∂P̂
(0)
γδ

∂xδ

)

= −ρf
(0)

m

∂uγ

∂xγ
− f (0)

m
uγ

∂ρ

∂xγ
+

m

kBT
(vγ − uγ)f (0)uδ

∂uγ

∂xδ

+
m

kBT
(vγ − uγ)f (0) 1

ρ
δγδ

∂p

∂xδ

and

vγ∂xγf
(0) = vγ

∂f (0)

∂ρ

∂ρ

∂xγ
+ vγ

∂f (0)

∂uδ

∂uδ

∂xγ

= vγ
f (0)

m

∂ρ

∂xγ
+ vγ

m

kBT
(vδ − uδ)f (0) ∂uδ

∂xγ
.

The various integrals are readily evaluated

− 1
m

∂uγ

∂xγ

∫
d3v(vα − uα)(vβ − uβ)f (0) = −δαβ n

kBT

m

∂uγ

∂xγ

1
m

∂ρ

∂xγ

∫
d3v(vα − uα)(vβ − uβ)(vγ − uγ)f (0) = 0

m

kBT
f (0)

(
uδ
∂uγ

∂xδ
+

1
ρ
δγδ

∂p

∂xδ

)∫
d3v(vα − uα)(vβ − uβ)(vγ − uγ)f (0) = 0

m

kBT

∂uδ

∂xγ

∫
d3v(vα − uα)(vβ − uβ)vγ(vδ − uδ)f (0)

= (δαβδγδ + δαγδβδ + δαδδβγ)n
kBT

m

∂uδ

∂xγ
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and thus

P̂
(1)
αβ = −nkBT

ω

[
(δαβδγδ + δαγδβδ + δαδδβγ)

∂uδ

∂xγ
− δαβ

∂uγ

∂xγ

]

= n
kBT

ω




2
∂u

∂x

∂u

∂y
+
∂v

∂x

∂u

∂z
+
∂w

∂x
∂u

∂y
+
∂v

∂x
2
∂v

∂y

∂v

∂z
+
∂w

∂y
∂u

∂z
+
∂w

∂x

∂v

∂z
+
∂w

∂y
2
∂w

∂z


 .

Neglecting density and temperature variations the divergence of P̂ (1)
αβ reads

∂P̂
(1)
αβ

∂xα
= µ

[
2
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
+

∂2v

∂x∂y
+

∂2w

∂x∂z

]
ex + ...

= µ

[
∂

∂xβ

(
∂uα

∂xβ

)
+

∂

∂xα

(
∂uβ

∂xβ

)]
= µ

[∇2u + ∇(∇ · u)
]

where
µ = n

kBT

ω
(4.2.26)

is the dynamic shear viscosity. Thus one obtains the Navier-Stokes equation

∂tuα + uβ∂xβ
uα = −∂xαP + ν∂xβ

∂xβ
uα + ξ∂xα∂xβ

uβ (4.2.27)

where the kinematic shear (ν) and bulk (ξ) viscosities are equal and given by

ν =
kBT

ωm
= ξ. (4.2.28)
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4.3 The maximum entropy principle

In 1948 Shannon [418, 419] proposed a theory which allows us to quantify
‘information’. The statistical measure of the lack of information is called the
information theoretical or Shannon entropy. Equilibrium distributions can be
derived from the maximum entropy principle.

The following presentation closely follows Stumpf and Rieckers (1976).
First consider a discrete set Z := {z1...zN} with N elements. A message5

is defined as a selection of one or several elements of Z. The informational
measure of the message is defined by that knowledge which is necessary to
denote a certain element or a selection of elements. What is the elementary
unit of this measure? If the set Z encompasses only one element the selection
of this element does not augment our knowledge. There is no real message until
the number of elements in Z is at least two. Obviously the decision between
two alternatives is the smallest unit of information one can think of: it is
called a bit which is the short form of ‘binary digit’. The larger the number
of elements in Z, the more information is connected with the selection of a
certain element of Z. The measure of the information gained can be traced
back to a sequence of alternative decisions. The number of elements N can
be written down in binary form. The number of binary digits is a measure
of information. Or the elements zj can be aranged in the form of a binary
tree (compare Fig. 4.3.1) where the number of branching points from the
root to one of the end points equals the number of bits. These procedures
work for sets with N = 2n elements and yield the measure of information
I(N) = n = log2N for the selection of a single element. This definition is
generalized to sets with arbitrary number of elements by

I(N) = log2N,

i.e. I(N) is not necessary an integer anymore.

Further the measure of information is additive with respect to the choice of
several (α) elements out of a set with N elements

I(N,α) = α · I(N)

and the choice of two elements out of a direct product of two sets Z1 and Z2

5 The notation has its roots in the theory of communication. One of the basic
problems in this context is the reliable transmission of messages from a source
via a channel to a receiver. Often the messages to be transmitted have meaning
like, for example, the news you hear on the radio. This, however, is not always
the case. In transmitting music, the meaning is much more subtle then in the
case of a verbal message. In any case, meaning is quite irrelevant to the problem
of transmitting the information.
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Fig. 4.3.1. The information for the selection of a certain element out of a set of
N = 2n elements is defined as the number of alternative decisions necessary when
going from the root to a certain end point. The selection of a certain elements out
of 8 elements requires three binary decisions.
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I(NZ1⊗Z2) = I(NZ1) + I(NZ2).

Now consider probability distributions instead of sets. Let us start with discrete
probability distributions P with a finite number of entries:

P := {P1...PN} ,
N∑

k=1

Pk = 1

corresponding to the set of events

Ω := {x1...xN} .

The task is to find a measure of information I(P ) for a probability distribution
as a whole. Let’s first consider two special cases:

• The sharp distribution: Pi = δil, i.e. each measurement will yield the re-
sult xl. The sharp distribution contains a lot of information: if you know
this probability distribution you can be sure of the output of your next
measurement. Because one event out of N possible events is selected the
measure

I(P ) = log2N

suggests itself.
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• The normal distribution: Pi = 1/N , i.e. every possible event has the same
probability. The normal distribution can be understood as a consequence
of the Laplacian principle of the insufficient reason: “If there is no reason
to single out a certain event for given information concerning an exper-
imental situation, a normal distribution is to be assumed.” (Stumpf and
Rieckers, 1976, p.14). Obviously the normal distribution contains the min-
imal amount of information, thus

I(P ) = 0.

The measure of information I(P ) for a general distribution I(P ) = I(P1...PN )
is based on four postulates:

1. I(P ) is an universal function.

2. I(P ) is additive concerning the (still to be determined) statistical infor-
mation for single elements i(Pk) as well as for the composition of direct
products:

I(P1...PN ) =
N∑

k=1

i(Pk)

I(PΩ1⊗Ω2) = I(PΩ1) + I(PΩ2).

3. I(P ) = 0 for the normal distribution and I(P ) = log2N for the sharp
distribution.

4. The statistical information of a single element i(P ) is defined on 0 ≤ P ≤ 1
and is continuous.

Theorem 3. The statistical measure of information I(P ) over the set of
events Ω with N elements, which fulfills the above given postulates 1 to 4,
is uniquely given by

I(P ) = I(P1...PN ) =
N∑

i=1

Pi log2 Pi + log2N. (4.3.1)

The proof can be found, for example, in Stumpf and Rieckers (1976).

Lemma 1. The maximum value Imax of I(P ) is given by the sharp distribu-
tion:

Imax(P ) = log2N.

Exercise 50. (*)
Prove Lemma 1.
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The information theoretical entropy or Shannon entropy S is defined as follows:

S(P1...PN ) := Imax − I(P1...PN ) = −
N∑

i=1

Pi log2 Pi. (4.3.2)

It is a measure for the lack of information: S vanishes for the sharp distribu-
tion and becomes maximal for the normal distribution.
The generalization of I(P ) for continuous sets of events is given by

S[f ] := −k
∫
f(x) ln f(x) dx, (4.3.3)

i.e. the function S = S(P ) is replaced by a functional S = S[f ] over the
probability density f . The transition from the case of discrete distributions
to probability densities f is not as simple as it looks. For example, there is no
maximal measure of information and because f can be a generalized function
the integral 4.3.3 could be meaningless (see Stumpf and Rieckers, 1976, for a
detailed discussion).

The most important theorem of this section reads:

Theorem 4. (Maximum entropy principle) If the probability density f(x)
with the normalization ∫

f(x) dx = 1

obeys the following m linear independent constraints∫
Ri(x)f(x) dx = ri 1 ≤ i ≤ m

then the probability density which maximizes the lack of information while
respecting the m+ 1 constraints is uniquely given by

f(x) = exp

[
−λ0 −

m∑
i=1

λiRi(x)

]
(4.3.4)

where the Lagrange multipliers λ0, λ1, ..., λm are unique functions of the
values r1, ..., rm.

Proof. The proof essentially consists of two parts. Here only the derivation of
the distribution (4.3.4) shall be discussed in detail. The second part, namely
the proof that the Lagrange multipliers are uniquely determined by the values
r1, ..., rm, can be found in Stumpf and Rieckers (1976, p. 20).

The extremum of a functional under given constraints is sought after. An
extended functional Ŝ[f ] is defined by coupling the constraints via Lagrange
multipliers η0, ...ηm to the Shannon entropy S[f ]:



4.3 The maximum entropy principle 155

Ŝ[f ] := S[f ]− k (λ0 − 1) Tr[f ]− k
m∑

i=1

λi Tr[(Ri − ri)f ]

= −k Tr
[
f

(
ln f + λ0 − 1 +

m∑
i=1

λi(Ri − ri)

)]
.

For reasons which become obvious in a moment the ηj have been written as
follows:

η0 = k(λ0 − 1)

ηi = kλi 1 ≤ i ≤ m.

The trace of f is defined as

Tr[f ] :=
∫
f(x) dx. (4.3.5)

From this definition it immediately follows

Tr[c · f ] =
∫
c · f(x) dx = c

∫
f(x) dx = c T r[f ]

where c is a constant.

The vanishing of the functional derivative of Ŝ[f ] with respect to f is a
necessary condition for an extremum of S[f ]:

δŜ[f ]
δf

= 0

Functional derivatives are calculated analogously to the rules for ordinary
derivatives (see, for example, Großmann, 1988):

δŜ[f ]
δf

= −k
{

ln f + λ0 +
m∑

i=1

λiRi

}

and therefore

ln f = −λ0 −
m∑

i=1

λiRi

respectively

f = exp

[
−λ0 −

m∑
i=1

λiRi

]
.

q.e.d.

The maximum entropy principle will be applied later on to calculate equilib-
rium distributions for lattice Boltzmann models.
Further reading: The proceedings edited by Levine and Tribus (1979) and
especially the paper by Jaynes (1979).
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Exercise 51. (**)
Find si (i = 0, 1, ..., l) such that∑

i

cisi(x, t) = S(x, t)

under the constraint ∑
i

si(x, t) = 0

by minimizing
V =

∑
s2i .

The lattice velocities ci satisfy∑
i

ci = 0, and
∑

i

c2
i = n.

Exercise 52. (**)
The Renyi entropy (Renyi, 1970) of order α is definiered as follows:

Sα := − 1
α− 1

ln
N∑

i=1

pα
i , α ∈ R, α 6= 1.

Calculate
lim
α→1

Sα.
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Lattice Boltzmann Models

5.1 From lattice-gas cellular automata to lattice
Boltzmann models

Lattice-gas cellular automata for Navier-Stokes equations are plagued by sev-
eral diseases. Only for some of them therapies and cures could be found (com-
pare Table 5.1.1).

Table 5.1.1. Diseases of lattice-gas cellular automata: its causes and therapies and
cures.

disease cause therapy/cure remarks

non-isotropic lattice higher symmetry HPP → FHP

advection tensor of 4th of lattice

term rank is add inner degree HPP → PI

non-isotropic of freedom

multi-speed models

violation of Fermi-Dirac rescaling FHP, FCHC, PI

the Galilei distributions (symptomatic

invariance treatment)

spurious regular as much collisions Zanetti

invariants lattices as possible invariants

noise Boolean averaging enormous memory

variables (coarse graining) demand

pressure depends multi-speed Chen et al. 1989

explicitly on models

velocity
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Historically the following stages in the development of lattice Boltzmann mod-
els1 (LBM) can be distinguished:

1. Lattice Boltzmann equations have been used already at the cradle of
lattice-gas cellular automata by Frisch et al. (1987) to calculate the vis-
cosity of LGCA.

2. Lattice Boltzmann models as an independent numerical method for hy-
drodynamic simulations were introduced by McNamara and Zanetti in
1988. The main motivation for the transition from LGCA to LBM was
the desire to get rid of the noise. The Boolean fields were replaced by
continuous distributions over the FHP and FCHC lattices. Fermi-Dirac
distributions were used as equilibrium functions.

3. Linearized collision operator (Higuera and Jiménez, 1989).

4. Boltzmann instead of Fermi-Dirac distributions.

5. The collision operator, which is based on the collisions of a certain LGCA,
has been replaced by the BGK (also called single time relaxation) approx-
imation by Koelman (1991), Qian et al. (1992) and others. These lattice
BGK models (LBGK) mark a new level of abstraction: collisions are not
anymore defined explicitly.

Multi-speed LBGK models are most popular today. However, more complex
collision operators are still in use in models of multi-phase flows (Rothman
and Zaleski, 1994).

5.1.1 Lattice Boltzmann equation and Boltzmann equation

The microdynamics of LGCA are described by kinetic equations of the type

ni (x + ci∆t, t+∆t) = ni (x, t) +∆i (5.1.1)

(compare, for example, eq. 3.2.15 where ∆t was set to 1). ∆i is the collision
function of the respective model. Discrete equations of the form (5.1.1) are
referred to as lattice Boltzmann equations. The correspondence to the Boltz-
mann equation

∂f

∂t
+ v∇f = Q (5.1.2)

(Q is the collision integral; external forces have been neglected) can be shown
by expansion of the left hand side of eq. (5.1.1):

1 A lattice Boltzmann model encompasses a lattice, an equilibrium distribution and
a kinetic equation which is called lattice Boltzmann equation (LBE). In the liter-
ature you will find other names like ‘lattice Boltzmann equation’ or ‘Boltzmann
cellular automata’ instead of lattice Boltzmann model.
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ni (x + ci∆t, t+∆t) = ni (x, t) +∆t
∂ni

∂t
+ ci∆t∇ni +O

(
(∆t)2

)
.

Neglecting higher order terms, one obtains

∂ni

∂t
+ ci∇ni =

∆i

∆t

which by substituting ni → f , ci → v, ∆i/∆t → Q gives the Boltzmann
equation (5.1.2).

Sterling and Chen (1996) show that this is more than pure formal correspon-
dence. They derive the lattice Boltzmann equation as a special discretization
of the Boltzmann equation. The Boltzmann equation with BGK approxima-
tion reads

∂f

∂t
+ v∇f = −1

τ

(
f − f (eq)

)
.

The distribution function f depends on space, velocity and time: f(x,v, t).
The v-space is discretized by introducing a finite set of velocities, vi, and
associated distribution functions, fi(x, t), which are governed by the discrete
Boltzmann equation:

∂fi

∂t
+ vi∇fi = −1

τ

(
fi − f

(eq)
i

)
(please note that this equation is different from the discretized Boltzmann
equation, see below). The discrete Boltzmann equation will be nondimen-
sionalized by the characteristic length scale, L, the reference speed, U , the
reference density, nr, and the time between particle collisions, tc,

∂Fi

∂t̂
+ ci∇̂Fi = − 1

τ̂ ε

(
Fi − F

(eq)
i

)
(5.1.3)

where ci = vi/U , ∇̂ = L∇, t̂ = t ·U/L, τ̂ = τ/tc, Fi = fi/nr. The parameter

ε = tc
U

L

may be interpreted as either the ratio of collision time to flow time or as the
ratio of mean free path to the characteristic length (i.e., Knudsen number).
A discretization of eq. (5.1.3) is given by:

Fi

(
x̂, t̂+∆t̂

)− Fi

(
x̂, t̂
)

∆t̂
+ cix

Fi

(
x̂ +∆x̂, t̂+∆t̂

)− Fi

(
x̂, t̂+∆t̂

)
∆x̂

+ciy
Fi

(
x̂ +∆y, t̂+∆t̂

)− Fi

(
x̂, t̂+∆t̂

)
∆y

+ciz
Fi

(
x̂ +∆z, t̂+∆t̂

)− Fi

(
x̂, t̂+∆t̂

)
∆z

= − 1
τ̂ ε

(
Fi − F

(eq)
i

)
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where ∆t̂ = ∆t · U/L. Lagrangian behavior is then obtained by the selection
of the lattice spacing divided by the time step to equal the lattice velocity
(∆x̂/∆t̂ = ci):

Fi

(
x̂, t̂+∆t̂

)− Fi

(
x̂, t̂
)

∆t̂
+
Fi

(
x̂ + ci∆t̂, t̂+∆t̂

)− Fi

(
x̂, t̂+∆t̂

)
∆t̂

=
Fi

(
x̂ + ci∆t̂, t̂+∆t̂

)− Fi

(
x̂, t̂
)

∆t̂
= − 1

τ̂ ε

(
Fi − F

(eq)
i

)
. (5.1.4)

Thus two terms on the left hand side cancel each other and thereby the method
becomes explicit. Choosing ∆t = tc, multiplying eq. (5.1.4) by ∆t̂ and drop-
ping all carets leads to the (BGK) lattice Boltzmann equation

Fi (x + ci∆t, t+∆t)− Fi (x, t) = −1
τ

(
Fi − F

(eq)
i

)
(5.1.5)

Sterling and Chen (1996, p.200) give the following interpretation of Eq.
(5.1.5)2:

“This equation has a particular simple physical interpretation in which
the collision term is evaluated locally and there is only one streaming
step or ‘shift’ operation per lattice velocity. This stream-and-collide
particle interpretation is a result of the fully Lagrangian character of
the equation for which the lattice spacing is the distance travelled by
the particle during a time step. Higher order discretizations of the dis-
crete Boltzmann equation typically require several ‘shift’ operations
for the evaluation of each derivative and a particle interpretation is
less obvious. ... It did not originally occur to the authors” [i.e. McNa-
mara and Zanetti in 1988] “that the LB method could be considered
a particular discretization for the discrete Boltzmann equation (G.
McNamara, private communication).”

2 Readers not familiar with lattice-gas cellular automata should skip this quotation.
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Table 5.1.2. From the Boltzmann equation to the lattice Boltzmann equation.

Boltzmann equation:

∂f

∂t
+ vrf = Q

Boltzmann equation (BGK approximation):

∂f

∂t
+ vrf = − 1

τ

(
f − f (eq)

)
discrete Boltzmann equation:

∂fi

∂t
+ virfi = − 1

τ

(
fi − f

(eq)
i

)
non-dimensional discrete Boltzmann equation:

∂Fi

∂t̂
+ cir̂Fi = − 1

τ̂ ε

(
Fi − F

(eq)
i

)
discretized Boltzmann equation:

Fi

(
x̂, t̂+∆t̂

)
− Fi

(
x̂, t̂
)

∆t̂
+ cix

Fi

(
x̂+∆x̂, t̂+∆t̂

)
− Fi

(
x̂, t̂+∆t̂

)
∆x̂

...

= − 1

τ̂ ε

(
Fi − F

(eq)
i

)
lattice Boltzmann equation:

Fi (x+ ci∆t, t+∆t)− Fi (x, t) = − 1

τ

(
Fi − F

(eq)
i

)

5.1.2 Lattice Boltzmann models of the first generation

The following remarks are mainly of historical interest and should be skipped
by readers not familiar with LGCA.
LGCA are plagued by noise which can be suppressed by coarse graining over
large domains and/or time intervals. Thus low noise levels are costly in terms
of memory and computer time (see Dahlburg et al., 1987, for further discus-
sion). In order to get rid of this noise McNamara and Zanetti (1988) proposed
to use directly the mean occupation numbers instead of the Boolean fields.
The lattice Boltzmann equation (LBE) had been applied already before by
Wolfram (1986) and Frisch et al. (1987) as an analytical tool to calculate the
viscosity coefficients of LGCA. McNamara and Zanetti for the first time used
the LBE as a numerical scheme.

The mean occupation numbers Fi (0 ≤ Fi ≤ 1) develop in time according to
the following kinetic equation
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Fi(r + ci, t+ 1) = Fi(r, t) +Ωi ({Fj(r, t)}) , (5.1.6)

where the form of the collision operator Ωi is identical to the arithmetic form
of the microscopic collision operator of the corresponding LGCA. For FHP,
for example, the Boolean (discrete) variables ni in (3.2.17) are replaced by
mean (continuous) occupation numbers Fi:

Ωi(N) = Fi+1Fi+3Fi+5(1− Fi)(1 − Fi+2)(1− Fi+4)
−FiFi+2Fi+4(1 − Fi+1)(1− Fi+3)(1 − Fi+5)
+ξFi+1Fi+4(1 − Fi)(1− Fi+2)(1 − Fi+3)(1 − Fi+5) (5.1.7)
+(1− ξ)Fi+2Fi+5(1− Fi)(1 − Fi+1)(1− Fi+3)(1− Fi+4)
−FiFi+3(1 − Fi+1)(1− Fi+2)(1 − Fi+4)(1− Fi+5).

This type of LBM has been improved by Higuera and Jiménez (1989). They
could show that the nonlinear collision operator which evaluation is time con-
suming can be approximated by a linear operator.
Further reading: Benzi et al. (1992) give an extensive review on LBMs based
on the FHP and FCHC models.
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5.2 BGK lattice Boltzmann model in 2D

Lattice Boltzmann models (LBMs) of the first generation are plagued by the
same problems as the corresponding lattice-gas cellular automata except for
the noise. Modern LBMs with Boltzmann distribution functions, several lat-
tice speeds and BGK approximation of the collision operator are free of all
problems mentioned in Table 5.1.1. In this chapter a detailed discussion of
such a model in 2D will be given. The derivations of the equilibrium distribu-
tions and the Navier-Stokes equation will be presented in full length. We will
refer to this model as the D2Q9-LBM.

A LBM has three main ingredients:

1. the lattice: D2Q9 (multi-speed model),

2. the equilibrium distributions: Maxwell (see below),

3. the kinetic equation: BGK approximation.

On the contrary, a LGCA is basically defined by the lattice and the collision
rules.
Koelman (1991) defines his LBM for the Navier-Stokes equation over the
lattice with the following lattice velocities ci

cK
0 = (0, 0)

cK
1,2,3,4 = (±a,±b)

cK
5,6 = (±2a, 0)

cK
7,8 = (0,±2b)

where the lattice constants a and b are restricted by a2/3 ≤ b2 ≤ 3a2. The

special choice a = b =
1√
2
c and rotation of the lattice velocities by 45◦ leads

to the D2Q9 lattice (compare Section 3.3 and Fig. 5.2.1) with

c0 = (0, 0)
c1,3, c2,4 = (±c, 0), (0,±c) (5.2.1)

c5,6,7,8 = (±c,±c).
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Fig. 5.2.1. The D2Q9 lattice.
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In what follows the D2Q9 lattice will be used exclusively.
The mass density, ρ, and the momentum density, j, are defined by sums over
the distribution functions Fi(x, t)

ρ(x, t) =
∑

i

Fi(x, t) (5.2.2)

j(x, t) = ρ(x, t)v(x, t) =
∑

i

ciFi(x, t) (5.2.3)

For vanishing velocities a global equilibrium distributionWi (“fluid at rest”) is
defined. In the vicinity (small Mach numbers) of this resting equilibrium, dis-
tribution functions can be written as sums of the Wi and small perturbations
fi(x, t)

Fi(x, t) = Wi + fi(x, t) (5.2.4)

with |fi(x, t)| << Wi.
The Wi should be positive to assure positive mass density. They are chosen
of Maxwell type in the following sense. The lattice velocity moments up to
fourth order over the Wi shall be identical to the respective velocity moments
over the Maxwell distribution

wB(v) = ρ0

(
m

2πkBT

)D/2

exp
[−mv2/2kBT

]
(5.2.5)

(D dimension, ρ0 mass density, m particle mass, v particle speed, kB Boltz-
mann constant, T temperature). Thus the odd moments vanish∑

i

Wiciα = 0

∑
i

Wiciαciβciγ = 0

and the even moments read∑
i

Wi =
∫
dvwB(v) = ρ0 (5.2.6)

∑
i

Wiciαciβ =
∫
dvwB(v)vαvβ = ρ0

kBT

m
δαβ (5.2.7)

∑
i

Wiciαciβciγciδ =
∫
dvwB(v)vαvβvγvδ

= ρ0

(
kBT

m

)2

(δαβδγδ + δαγδβδ + δαδδβγ). (5.2.8)

Note that the constraint (5.2.8) is more rigorous than pure isotropy (compare
Section 3.3).
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Exercise 53. (**)
Calculate the velocity moments up to fourth order over the Maxwell distribu-
tion in D ≥ 2 dimensions.

Nonnegative solutions of Eqs. (5.2.6 - 5.2.8) for the Wi can be found whenever
the number of lattice velocities ci is large enough. For the D2Q9 lattice (5.2.1)
one obtains (see Section 5.2.1 for derivation):

W0/ρ0 =
4
9

W1/ρ0 =
1
9

W2/ρ0 =
1
36

kBT

m
=
c2

3
.

The evolution of the LBM consists of the recurring alternation between tran-
sition to the local equilibrium and propagation of the distributions to neigh-
boring sites according to the lattice velocities. The BGK (compare Section
4.1.3) kinetic equation reads

Fi(x + ci∆t, t+∆t)− Fi(x, t) = −∆t
τ

[
Fi(x, t)− F

(0)
i (x, t)

]

+
∆tciα
12c2

[Kα (x, t) +Kα (x + ci∆t, t+∆t)]

(5.2.9)

or

Fi (x + ci∆t, t+∆t) = (1− ω)Fi (x, t) + ωF
(0)
i (x, t)

+
∆tciα
12c2

[Kα (x, t) +Kα (x + ci∆t, t+∆t)]

(5.2.10)

where τ is the collision time, ω = ∆t/τ is the collision frequency, and K is
an applied body force. The local equilibrium distributions F (0)

i depend only
on the local values of mass and momentum density

F
(0)
i (x, t) = F

(0)
i (ρ (x, t) , j (x, t)) .

They can be derived by applying the maximum entropy principle under the
constraints of mass and momentum conservation (see Section 5.2.2). Up to
second order in j one obtains
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F
(0)
i (ρ, j) =

Wi

ρ0

{
ρ+

m

kBT
ci · j +

m

2ρkBT

[
m

kBT
(ci · j)2 − j2

]}
(5.2.11)

or more explicitly

Fi =
4
9
ρ

[
1− 3

2
u2

c2

]
i = 0

Fi =
1
9
ρ

[
1 + 3

ci · u
c2

+
9
2

(ci · u)2

c4
− 3

2
u2

c2

]
i = 1, 2, 3, 4

Fi =
1
36
ρ

[
1 + 3

ci · u
c2

+
9
2

(ci · u)2

c4
− 3

2
u2

c2

]
i = 5, 6, 7, 8.

Application of the multi-scale technique (Chapman-Enskog expansion) yields
the Navier-Stokes equation with pressure p = ρkBT/m, kinematic shear vis-
cosity

ν =
kBT

m

(
1
ω
− 1

2

)
∆t =

c2

3

(
1
ω
− 1

2

)
∆t =

2− ω

6ω
c2∆t =

c2

3

(
τ − ∆t

2

)
(5.2.12)

and an advection term with Galilean invariance3. The Galilean invariance
breaking g-factor (compare Section 3.2) never arises (see Section 5.2.3).
The above given presentation of the LBM contains all informations necessary
to set up the computer code. The algorithm proceeds as follows:

1. For given initial values of mass ρ(x, t) and momentum density j(x, t)
calculate the equilibrium distributions F (0)

i (ρ(x, t), j(x, t)) according to
Eq. (5.2.11) and set Fi = F

(0)
i . Remark: Global equilibrium distributions

(5.2.11) but with different values of ρ and j are used for local initialization,
i.e. in the beginning there is a patchwork of local equilibria which is far
from a global equilibrium.

2. Apply the kinetic equation (5.2.10), i.e. add the (non-equilibrium) dis-
tribution function Fi(x, t) and the equilibrium distribution function
F

(0)
i (x, t) with the appropriate weights (1 − ω) and ω, and then prop-

agate it to the next neighbor (except for the distribution of ‘rest particles’
with c0 = 0).

3. Calculate from the propagated distributions new values of ρ(x, t) and
j(x, t) according to the definitions (5.2.2) und (5.2.3).

4. The next time step starts with the calculation of new equilibrium distri-
butions. Thereafter proceed with the second step of the algorithm.

3 But: There is always a disturbing fly or two in the ointment. Qian and Orszag
(1993) and Qian and Zhou (1998) have shown that a higher order term (slightly
compressible regime) leads to frame-velocity-dependent viscosity.
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In BGK-LBMs collisions are not explicitly defined. They are kind of fictive
and make themselves felt only by the transition to local equilibrium (the
term ω F

(0)
i (x, t) in the kinetic equation). On the other hand for LGCA the

collisions are explicitly defined and the distribution functions are theoretical
constructs which can not be observed on the lattice because of their continuous
nature.

5.2.1 Derivation of the Wi

The D2Q9 model includes three different speeds (compare Table 5.2.1). The
Wi for directions with identical speeds are equal for reason of symmetry.

Table 5.2.1. Lattice speeds, cells and Wi of the D2Q9 lattice.

c2
i cells number of cells Wi

0 0 1 W0

1 1, 2, 3, 4 4 W1

2 5, 6, 7, 8 4 W2

The non-vanishing elements of the even moments up to fourth order read:

• 0. moment: ∑
i

Wi = W0 + 4W1 + 4W2 = ρ0 (5.2.13)

Remark: The only equation which includes W0. It will be used to calculate
W0.

• 2. moment: ∑
i

c2i1Wi = 2c2W1 + 4c2W2 = ρ0
kBT

m
(5.2.14)

Remark: (kBT )/m will be calculated from Eqs. (5.2.14) and (5.2.15).

∑
i

c2i2Wi = 2c2W1 + 4c2W2 = ρ0
kBT

m

Remark: This constraint is identical with (5.2.14).

• 4. Moment:

∑
i

c4i1Wi = 2c4W1 + 4c4W2 = 3ρ0

(
kBT

m

)2

(5.2.15)



5.2 BGK lattice Boltzmann model in 2D 169

Remark: W1 will be calculated from Eq. (5.2.15).

∑
i

c4i2Wi = 2c4W1 + 4c4W2 = 3ρ0

(
kBT

m

)2

Remark: This constraint is identical with (5.2.15).

∑
i

c2i1c
2
i2Wi = 4c4W2 = ρ0

(
kBT

m

)2

(5.2.16)

Remark: W2 will be calculated from Eq. (5.2.16).

The solution reads:

W0/ρ0 =
4
9

W1/ρ0 =
1
9

W2/ρ0 =
1
36

kBT

m
=
c2

3
.

One readily confirms that the first and third moments of the lattice velocities
over Wi vanish.

5.2.2 Entropy and equilibrium distributions

Koelman defines the relative entropy4 density by

S(ρ, j) := − k

m

∑
i

F
(0)
i (ρ, j) ln

F
(0)
i (ρ, j)
Wi

. (5.2.17)

The weighting by 1/Wi in the logarithmic factor will lead to equilibrium
distributions of the form F

(0)
i = Wie

h(ρ,j,ci) and implies S = 0 for F (0)
i =

Wi. The equilibrium distributions F (0)
i will be calculated by maximizing the

entropy for given constraints which for the case under consideration are the
mass and momentum density
4 Kullback (1959) and Cover and Thomas (1991) are standard references on relative

entropy.
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ρ(ρ, j) =
∑

i

F
(0)
i (ρ, j)

j(ρ, j) =
∑

i

ciF
(0)
i (ρ, j).

The functional

Ŝ := S + Ãρ+ B̃ · j

= − k

m

∑
i

F
(0)
i (ρ, j) ln

F
(0)
i (ρ, j)
Wi

+ Ã
∑

i

F
(0)
i (ρ, j) + B̃

∑
i

ciF
(0)
i (ρ, j)

encompasses the constraints coupled by Lagrange multipliers Ã und B̃. The
necessary conditions for an extremum of Ŝ read

∀i :
∂Ŝ

∂F
(0)
i

= − k

m

[
ln
F

(0)
i

Wi
+ 1

]
+ Ã+ B̃ · ci = 0. (5.2.18)

The solutions of (5.2.18) are of the form

F
(0)
i = Wie

A(ρ, j) + B(ρ, j) · ci

with
A =

m

k
Ã− 1, and B =

m

k
B̃.

A and B can be determined by Taylor series expansions of F (0)
i around j = 0

(same procedure as for the FHP lattice-gas cellular automata). Because of the
symmetry of the D2Q9 lattice the ansatz

A(ρ, j) = A0(ρ) +A2(ρ)j2 +O(j4)
B(ρ, j) = B1(ρ)j +O(j3).

is sufficient. The expansion of F (0)
i around j = 0 reads

∂F
(0)
i

∂jα
= (2A2jα +B1ciα)F (0)

i

→ B1ciαWie
A0 at j = 0

∂2F
(0)
i

∂j2α
=
[
(2A2jα +B1ciα)2 + 2A2

]
F

(0)
i

→ (B2
1c

2
iα + 2A2)Wie

A0 at j = 0

∂2F
(0)
i

∂jα∂jβ
= (2A2jα +B1ciα)(2A2jβ +B1ciβ)F (0)

i

→ B2
1ciαciβWie

A0 at j = 0
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and finally up to terms of second order in j

F
(0)
i = Wie

A0

{
1 +B1ci · j +

B2
1

2
(ci · j)2 +A2j

2

}
. (5.2.19)

Now the definitions of ρ and j will be exploited to calculate the unknown
coefficients A0(ρ), A2(ρ) and B1(ρ):

∑
i

F
(0)
i = ρ = eA0

{
ρ0 +

B2
1

2
ρ0
kBT

m
j2 + ρ0A2j

2

}
(5.2.20)

∑
i

ciF
(0)
i = j = eA0B1ρ0

kBT

m
j. (5.2.21)

The vector equation (5.2.21) reduces to a scalar constraint

B1 =
1

eA0

m

ρ0kBT
,

i.e. an auxiliary condition is required to solve for all three unknowns (A0, A2,
B1). Solving Eq. (5.2.20) for A2 yields

A2 = −B
2
1

2
kBT

m
+

1
j2

(
ρ

ρ0eA0
− 1
)

︸ ︷︷ ︸
(∗)

.

To obtain A2 independent of j (as implied by the ansatz) the expression (∗)
must vanish. This is the third constraint looked for. It immediately follows
that

eA0 =
ρ

ρ0
, B1 =

m

ρkBT
, and A2 = − 1

2ρ2

m

kBT
.

Insertion into (5.2.19) finally yields the equilibrium distributions

F
(0)
i (ρ, j) =

Wi

ρ0

{
ρ+

m

kBT
ci · j +

m

2ρkBT

[
m

kBT
(ci · j)2 − j2

]}
. (5.2.22)

Koelman (1991) used 1/ρ0 instead of 1/ρ in the coefficient of the third term
which is a good approximation for small Mach numbers.

Further reading: Karlin et al. (1998) construct local equilibrium functions,

F
(0)
i , that maximize the entropy SK =

∑
i F

(0)
i

√
F

(0)
i .
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5.2.3 Derivation of the Navier-Stokes equations by multi-scale
analysis

The derivation of the macroscopic equations (Navier-Stokes) proceeds in close
analogy to the multi-scale analysis discussed in Section 4.2 and for the FHP
model in Section 3.2. For the BGK-LBM the calculation of terms of second
order in the expansion parameter ε is much simpler than for LGCA. Here the
complete derivation of the Navier-Stokes equation will be given.
The distributions Fi(x, t) are expanded around the equilibrium distributions
F

(0)
i (x, t)

Fi(x, t) = F
(0)
i (x, t) + εF

(1)
i (x, t) + ε2F

(2)
i +O(ε3) (5.2.23)

with ∑
i

F
(1)
i (x, t) = 0,

∑
i

ciF
(1)
i (x, t) = 0,

(5.2.24)∑
i

F
(2)
i (x, t) = 0,

∑
i

ciF
(2)
i (x, t) = 0,

i.e. the perturbations F (1)
i (x, t) and F

(2)
i (x, t) do not contribute to the mass

and momentum density. The small expansion parameter ε can be viewed as
the Knudsen number Kn which is the ratio between the mean free path and
the characteristic length scale of the flow.

The left hand side of the kinetic equation (5.2.10) and the forcing term are
expanded into a Taylor series up to terms of second order (∆xi = ∆t · ci):

Fi(x + ci∆t, t+∆t) = Fi(x, t) +∆t∂tFi +∆tciα∂xαFi

(5.2.25)

+
(∆t)2

2
[
∂t∂tFi + 2ciα∂t∂xαFi + ciαciβ∂xα∂xβ

Fi

]
+O (∂3Fi

)

and

∆t

c2
ciα
12

[Kα(x, t) +Kα(x + ci∆t, t+∆t)]

(5.2.26)

=
∆t

c2
ciγ
6
Kγ(x, t) +

(∆t)2

c2
ciγ
12
[
∂tKγ + ciβ∂xβ

Kγ

]
+O

[
(∆t)3

]
.
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As for the FHP model two time scales and one spatial scale with the following
scaling will be introduced

∂t → ε∂
(1)
t + ε2∂

(2)
t

(5.2.27)
∂xα → ε∂(1)

xα
.

Conservation of mass and momentum

The expansions given above are substituted into the kinetic equation (Eq.
5.2.10)

0 = Fi(x + ci∆t, t+∆t)− Fi(x, t) + ω
[
Fi(x, t)− F

(0)
i (x, t)

]
−∆t
c2
ciα
12

[Kα(x, t) +Kα(x + ci∆t, t+∆t)]

which leads to

0 =︸︷︷︸
(5.2.25)

Fi(x, t) +∆t∂tFi +∆tciγ∂xγFi

+
(∆t)2

2
[
∂t∂tFi + 2ciγ∂t∂xγFi + ciβciγ∂xβ

∂xγFi

]
+O [∂3Fi

]− Fi(x, t) + ω
[
Fi(x, t)− F

(0)
i (x, t)

]
−∆t
c2
ciγ
6
Kγ(x, t)− (∆t)2

c2
ciγ
12
[
∂tKγ + ciβ∂xβ

Kγ

]
+O

[
(∆t)3

]
=︸︷︷︸

(5.2.23),(5.2.27)

ε∆t
[
∂

(1)
t F

(0)
i + ciγ∂

(1)
xγ
F

(0)
i

]

+ε2∆t
[
∂

(1)
t F

(1)
i + ∂

(2)
t F

(0)
i + ciγ∂

(1)
xγ
F

(1)
i

]
+ε2

(∆t)2

2

[
∂

(1)
t ∂

(1)
t F

(0)
i + 2ciγ∂

(1)
t ∂(1)

xγ
F

(0)
i

+ciβciγ∂(1)
xβ
∂(1)

xγ
F

(0)
i

]
+ εωF

(1)
i

+ε2ωF (2)
i − ε

∆t

c2
ciγ
6
Kγ

−ε2 (∆t)2

c2
ciγ
12

[
∂

(1)
t Kγ + ciβ∂

(1)
xβ
Kγ

]
+O [ε3]
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Please note that the leading order of the body forcing was set proportional to
ε. Sorting according to orders in ε yields

0 = εE
(0)
i + ε2E

(1)
i +O [ε3] (5.2.28)

with

E
(0)
i = ∂

(1)
t F

(0)
i + ciγ∂

(1)
xγ
F

(0)
i +

ω

∆t
F

(1)
i − ciγ

6c2
Kγ (5.2.29)

E
(1)
i = ∂

(1)
t F

(1)
i + ∂

(2)
t F

(0)
i + ciγ∂

(1)
xγ
F

(1)
i +

∆t

2
∂

(1)
t ∂

(1)
t F

(0)
i

+∆tciγ∂
(1)
t ∂(1)

xγ
F

(0)
i +

∆t

2
ciβciγ∂

(1)
xβ
∂(1)

xγ
F

(0)
i (5.2.30)

+
ω

∆t
F

(2)
i −∆t

ciγ
12c2

∂
(1)
t Kγ −∆t

ciγ
12c2

ciβ∂
(1)
xβ
Kγ .

We will now calculate the zeroth and first lattice velocity moments of E(0)
i

and E(1)
i (conservation of mass and momentum density).

Terms of first order in ε

The zeroth and first lattice velocity moments of E(0)
i can be readily calculated:∑

i

E
(0)
i =

∑
i

{
∂

(1)
t F

(0)
i + ciγ∂

(1)
xγ
F

(0)
i +

ω

∆t
F

(1)
i − ciγ

6c2
Kγ

}
= ∂

(1)
t ρ+ ∂(1)

xγ
jγ

∑
i

ciαE
(0)
i =

∑
i

ciα

{
∂

(1)
t F

(0)
i + ciβ∂

(1)
xβ
F

(0)
i +

ω

∆t
F

(1)
i − ciβ

6c2
Kβ

}
(5.2.31)

= ∂
(1)
t jα + ∂(1)

xβ
P

(0)
αβ −Kα

where we have used ∑
i

ciαciβ = 6c2δαβ . (5.2.32)

The momentum flux tensor in first order of ε reads
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P
(0)
αβ :=

∑
i

ciαciβF
(0)
i =

1
ρ

(
j21 j1j2

j1j2 j22

)
+ pδαβ (5.2.33)

where p =
kBT

m
ρ is the pressure (a detailed calculation of P (0)

αβ will be given

below).

Thus to first order in ε we obtain the continuity equation

∂tρ+ ∇ · j = 0 (5.2.34)

and (in the incompressible limit: ρ = constant) the Euler equation (Navier-
Stokes equation without friction):

∂u

∂t
+ u∇u = −1

ρ
∇p+ K. (5.2.35)

Calculation of the momentum flux tensor

In the calculation of P (0)
αβ the detailed form of the equilibrium distribution has

to be taken into account for the first time. Four different summands P (0.1)
αβ to

P
(0.4)
αβ have to be evaluated. The first term reads:

P
(0.1)
αβ :=

ρ

ρ0

∑
i

ciαciβWi = ρ
kBT

m︸ ︷︷ ︸
= p

δαβ = pδαβ .

For the pressure p =
kBT

m
ρ =

c2

3
ρ the speed of sound cs is given by

cs =

√
dp

dρ
=

c√
3
.

The second summand

P
(0.2)
αβ :=

m

ρ0kBT

∑
i

ciαciβ(ci · j)Wi = 0

vanishes because it is an odd moment in ci over Wi. The third summand
reads:

P
(0.3)
αβ :=

1
2ρ0ρ

(
m

kBT

)2∑
i

ciαciβ (ci · j)2Wi.
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Prefactor:
1

2ρ0ρ

(
m

kBT

)2

· ρ0

(
kBT

m

)2

=
1
2ρ

Tensor of fourth rank:

Tαβγδ = δαβδγδ + δαγδβδ + δαδδβγ (5.2.36)

• α = β = 1:

* γ = δ = 1 → T1111 = 3 → 1
2ρ

3j21

* γ = δ = 2 → T1122 = 1 → 1
2ρ
j22

* γ 6= δ → T1112 = T1121 = 0

• α = β = 2: → 1
2ρ
(
j21 + 3j22

)
• α = 1 β = 2:

– γ = δ → T1211 = T1222 = 0

– γ 6= δ → T1212 = T1221 = 1 → 1
2ρ
· 2j1j2

P
(0.3)
αβ =

1
2ρ

j2δαβ +
1
ρ

(
j21 j1j2

j1j2 j22

)

The fourth summand reads:

P
(0.4)
αβ := − 1

2ρ0ρ

m

kBT
j2
∑

i

ciαciβWi

= − 1
2ρ

j2δαβ

Summing up all terms yields

P
(0)
αβ =

1
ρ

(
j21 j1j2

j1j2 j22

)
+ pδαβ (5.2.37)

The pressure of the D2Q9-LBM does not depend explicitly on the flow speed
(see to the contrary the FHP model) because the summand P (0.4)

αβ is exactly

compensated by a part of P (0.3)
αβ .
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Terms of second order in ε: mass

As for lattice-gas cellular automata one has to take into account terms of
second order in ε to derive the dissipative terms of the macroscopic equations.
Mass conservation leads to

0 =
∑

i

E
(1)
i

=
∑

i

∂
(1)
t F

(1)
i + ∂

(2)
t F

(0)
i + ciγ∂

(1)
xγ
F

(1)
i +

∆t

2
∂

(1)
t ∂

(1)
t F

(0)
i

+∆tciγ∂
(1)
t ∂(1)

xγ
F

(0)
i +

∆t

2
ciβciγ∂

(1)
xβ
∂(1)

xγ
F

(0)
i (5.2.38)

+
ω

∆t
F

(2)
i −∆t

ciγ
12c2

∂
(1)
t Kγ −∆t

ciγ
12c2

ciβ∂
(1)
xβ
Kγ .

The following summands vanish:

∂
(1)
t

∑
i

F
(1)
i =︸︷︷︸

(5.2.24)

0,

∂(1)
xγ

∑
i

ciγF
(1)
i =︸︷︷︸

(5.2.24)

0,

ω

∆t

∑
i

F
(2)
i =︸︷︷︸

(5.2.24)

0,

and
∆t

12c2
∂

(1)
t Kγ

∑
i

ciγ = 0.

The second term of Eq. (5.2.38) is the time derivative of the density:

∂
(2)
t

∑
i

F
(0)
i = ∂

(2)
t ρ. (5.2.39)

The spatial gradient of the body force yields

− ∆t

12c2
∂(1)

xα
Kβ

∑
i

ciαciβ = −∆t
2
∂(1)

xα
Kα. (5.2.40)

In the transformation of the following summands the time derivatives are
substituted by spatial derivative using (5.2.34) and (5.2.31):
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∆t

2
∂

(1)
t ∂

(1)
t

∑
i

F
(0)
i =

∆t

2
∂

(1)
t ∂

(1)
t ρ = −∆t

2
∂

(1)
t ∂(1)

xβ
ρuβ

=
∆t

2
∂(1)

xα
∂(1)

xβ
P

(0)
αβ −

∆t

2
∂(1)

xα
Kα

∆t∂
(1)
t ∂(1)

xα

∑
i

ciαF
(0)
i = ∆t∂(1)

xα
∂

(1)
t (ρuα)

= −∆t∂(1)
xα
∂(1)

xβ
P

(0)
αβ +∆t∂(1)

xα
Kα

∆t

2
∂(1)

xα
∂(1)

xβ

∑
i

ciαciβF
(0)
i =

∆t

2
∂(1)

xα
∂(1)

xβ
P

(0)
αβ

The sum of these three terms yields ∆t∂(1)
xα Kα/2 which cancels with the term

derived from the body force gradient (Eq. 5.2.40), i.e. inclusion of the spatial
gradient of the body force is essential to ensure that there is no mass diffusion:

∂
(2)
t ρ = 0. (5.2.41)

Terms of second order in ε: momentum

Conservation of momentum leads to

0 =
∑

i

ciαE
(1)
i

=
∑

i

ciα∂
(1)
t F

(1)
i + ciα∂

(2)
t F

(0)
i + ciαciβ∂

(1)
xβ
F

(1)
i +

∆t

2
ciα∂

(1)
t ∂

(1)
t F

(0)
i

+∆tciαciγ∂
(1)
t ∂(1)

xγ
F

(0)
i +

∆t

2
ciαciβciγ∂

(1)
xβ
∂(1)

xγ
F

(0)
i

+
ω

∆t
ciαF

(2)
i −∆tciα

ciγ
12c2

∂
(1)
t Kγ − ciαciβciγ

∆t

12c2
∂(1)

xβ
Kγ .

An approximation of F (1)
i can be derived from the first order in ε: E(0)

i = 0
⇒

F
(1)
i (x, t) = −∆t

ω
∂

(1)
t F

(0)
i − ∆t

ω
ciγ∂

(1)
xγ
F

(0)
i +

∆t ciγ
6c2ω

Kγ , (5.2.42)

i.e. deviations from local equilibrium are driven by gradients in time and space
(compare Eq. 4.2.25) and by applied body forces.
In the transformation of the following summands terms of the orderO(j2) will
be neglected (indicated by ≈ instead of =). Thus the Navier-Stokes equation
will be recovered in the limit of low Mach numbers only.



5.2 BGK lattice Boltzmann model in 2D 179

∂
(1)
t

∑
i

ciαF
(1)
i =︸︷︷︸

(5.2.24)

0

∂
(2)
t

∑
i

ciαF
(0)
i = ∂

(2)
t jα (5.2.43)

∂(1)
xβ

∑
i

ciαciβF
(1)
i =︸︷︷︸

(5.2.42)

−∆t
ω
∂

(1)
t ∂(1)

xβ

∑
i

ciαciβF
(0)
i︸ ︷︷ ︸

(∗)

−∆t
ω
∂(1)

xβ
∂(1)

xγ

∑
i

ciαciβciγF
(0)
i︸ ︷︷ ︸

(∗∗)

+
∆t

6c2ω
∂(1)

xβ
Kγ

∑
i

ciαciβciγ︸ ︷︷ ︸
= 0

∆t

2
∂

(1)
t ∂

(1)
t

∑
i

ciαF
(0)
i =

∆t

2
∂

(1)
t ∂

(1)
t jα

= −∆t
2
∂

(1)
t ∂(1)

xβ
P

(0)
αβ +

∆t

2
∂

(1)
t Kα

≈ −∆t
2
kBT

m
∂

(1)
t ∂(1)

xβ
ρδαβ +

∆t

2
∂

(1)
t Kα

⇒ ∆t

2
kBT

m
∇∇ · j +

∆t

2
∂tK (5.2.44)

∆t

2
∂(1)

xβ
∂(1)

xγ

∑
i

ciαciβciγF
(0)
i︸ ︷︷ ︸

(∗∗)

∆t∂(1)
xβ
∂

(1)
t

∑
i

ciαciβF
(0)
i︸ ︷︷ ︸

(∗)
ω

∆t

∑
i

ciαF
(2)
i =︸︷︷︸

(5.2.24)

0

The term derived from the time derivative of the body force

− ∆t

12c2
∂

(1)
t Kβ

∑
i

ciαciβ = −∆t
2
∂

(1)
t Kα ⇒ −∆t

2
∂tK (5.2.45)
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cancels with the term in Eq. (5.2.44), i.e. inclusion of the time derivative of the
body force is essential to obtain the exact form of the Navier-Stokes equation.

− ∆t

12c2
∂(1)

xβ
Kγ

∑
i

ciαciβciγ = 0

Summation of the (∗)-terms results in

∆t

(
1− 1

ω

)
∂(1)

xβ
∂

(1)
t

∑
i

ciαciβF
(0)
i︸ ︷︷ ︸

≈ kBT

m
ρδαβ

⇒ −∆t
(

1− 1
ω

)
kBT

m
∇∇ · j. (5.2.46)

The (∗∗)-terms lead to

∆t

(
1
2
− 1
ω

)
∂(1)

xβ
∂(1)

xγ

∑
i

ciαciβciγF
(0)
i

= ∆t

(
1
2
− 1
ω

)
m

kBT

1
ρ0
∂(1)

xβ
∂(1)

xγ

∑
i

Wiciαciβciγ(ci · j)

⇒ ∆t

(
1
2
− 1
ω

)
kBT

m

(∇2j + 2∇∇ · j) . (5.2.47)

By adding up (5.2.43 – 5.2.47) one finally obtains

∂
(2)
t j = ∆t

(
1
ω
− 1

2

)
kBT

m

(∇2j + ∇∇ · j) , (5.2.48)

i.e. dynamic shear and compression viscosity are equal:

µS = µK = ∆t

(
1
ω
− 1

2

)
kBT

m
. (5.2.49)

The viscosities can be tuned by an appropriate choice of the collision parame-
ter ω. The equation for iterative solution of linear systems by the simultaneous
over-relaxation (SOR) is of the same form as the BGK kinetic equation. The
SOR method is convergent for 0 < ω < 2 (Kahan, 1958). This range of ω
corresponds to positive viscosities in the BGK-LBM.
The sum of the first and second order terms yields (in the incompressible
limit) the Navier-Stokes equation:

∇ · u = 0 (5.2.50)

and
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∂tu + (u∇)u = −1
ρ
∇p+ ν∇2u + K (5.2.51)

with the kinematic shear viscosity

ν = ∆t

(
1
ω
− 1

2

)
c2

3
=
c2

3

(
τ − ∆t

2

)
. (5.2.52)

5.2.4 Storage demand

For the special case ω = 1 the kinetic equation reduces to

Fi(x + ci∆t, t+∆t) = F
(0)
i (x, t)

and the storage demand for ρ, j, 9 distributions F (eq)
i and their propagated

values Fi, i.e. 21 2D arrays, seems to be quite large. The required memory
can, however, be drastically reduced by the following two procedures:

1. One after the next F (eq)
i can be evaluated, propagated and will contribute

(independent of the other Fj) to the values of ρ and j at the next time
level. Only 7 arrays, namely ρ and j at two time levels and one array Fi,
are required, i.e. the reduction factor is 21/7 = 3.

2. Because the collisions are strictly local and the propagation is almost local
(to next neighbor nodes) the domain can be partitioned into subdomains
which can be updated one after the other using smaller auxiliary arrays.

Procedure 1 leads to some increase in the length of the code but seems to be
worth the effort especially in 3D where the reduction factor is even larger. The
second procedure requires some additional coding to treat the boundaries of
the subdomains but offers a further reduction in memory by a factor of almost
2.
The storage demand for BGK-LBM with ω 6= 1 is substantially larger be-
cause one has to keep all (non-equilibrium) distributions Fi. The advantage
is the tunable viscosity which allows simulation of flows with high Reynolds
numbers.

5.2.5 Simulation of two-dimensional decaying turbulence

In 1994 Martinez et al. published a milestone paper. They simulated two-
dimensional decaying turbulence over a square with periodic boundary con-
ditions by the BGK lattice Boltzmann model over the D2Q9 lattice and com-
pared this method to a spectral model5 which is very efficient over this simple
5 The spectral model actually does not solve the Navier-Stokes equation but the

vorticity equation
∂$

∂t
+v ·r$ = ν∇2$ where $ = (r× v)z is the z-component

of the relative vorticity.
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domain. The initial velocity distribution consists of two shear layers (real-
ized by a truncated spectral representation of δ functions at y = π/2 and
y = 3π/2) plus some noise over the whole domain. The characteristic velocity
U is defined as the root mean square value

U =
√
〈u2〉 = 0.04 (5.2.53)

und the characteristic length L is given by

L =
512
2π

(5.2.54)

where 512 is the number of grid points in each dimension. The viscosity pa-
rameter ω has been chosen such that the Reynolds number

Re =
UL

ν(ω)
(5.2.55)

is 10000.
The following Figures (5.2.2 - 5.2.5) show isocontours of the vorticity a =
(∇× u)z at four dimensionless times. Dashed lines indicate negative values.
The upper plots show the results of the spectral model and the lower plots
those of the lattice Boltzmann model. The features compare very well which
gives confidence in both methods.
What is most surprising: the LBM is as fast as the spectral model! And
the LBM keeps its efficiency in more complex geometries (porous media, for
example) whereas spectral models may not be applicable anymore. These
simulations clearly demonstrated the great potential of BGK-LBMs.
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Fig. 5.2.2. Isovorticity contour plots for time 1. Dashed lines correspond to neg-
ative values of vorticity. The values for the contours are the same for all cases
(Figures 5.2.2 – 5.2.5). Strikingly similar features can be found for the lattice Boltz-
mann simulation, as compared with the spectral simulation. (SP refers to the spectral
sumulation and LBE to the lattice Boltzmann simulation; Martinez et al., 1994)
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Fig. 5.2.3. Same as in Fig. 5.2.2 for time 5 (Martinez et al., 1994).
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Fig. 5.2.4. Same as in Fig. 5.2.2 for time 17 (Martinez et al., 1994).
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Fig. 5.2.5. Same as in Fig. 5.2.2 for time 80 (Martinez et al., 1994).
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5.2.6 Boundary conditions for LBM

“To a certain degree, achieving self-consistent boundary conditions
with a given accuracy is as important as developing numerical schemes
themselves.”
Chen et al. (1996)

The implementation of boundary conditions for LGCA has been discussed in
Section 3.2.7. The same principles as outlined there can be applied also to
LBM. In the following a self-contained discussion of no-slip and slip boundary
conditions shall be given even risking the repetition of parts of Section 3.2.7.
LGCA and LBM seem to be very attractive because the apparent ease to
implement boundary conditions even in complicated geometry like porous
media. You often can find quotes like ‘difficult geometrical boundary condi-
tions are readily handled’ in the introduction of an article only to find out that
the authors performed some simulation over a square with periodic boundary
conditions. Much more realistic is the remark of He et al. (1997) that “the
real hydrodynamic boundary conditions have not been fully understood”. Ac-
cordingly various implementations of boundary conditions will be discussed
here. Some of them have to be ruled out because they are only of first order
of accuracy. You have to find out which of the remaining ones gives satisfying
results for the actual flow problem considered.

In general, there are two ways to define a boundary: the boundary curve
may include grid nodes (‘node boundary’; the nodes on the boundary are called
‘boundary nodes’; Skordos, 1993; Inamuro et al., 1995; Noble et al., 1995a,b,
1996) or passes through the midpoints of links between nodes (‘link bound-
ary’; Cornubert et al., 1991; Ginzbourg and Adler, 1994; Ladd, 1994a,b). Node
boundaries are appropriate for periodic and inflow boundary conditions.

No-slip boundary condition

Inamuro et al. (1995) He et al. (1997)

1. The complete bounceback scheme: Instead of collision assign each Fi the
value of the Fi of its opposite direction, i.e. for a point on the lower
boundary:

in-state: F0, F1, F2, F3, F4, F5, F6, F7, F8

out-state: F0, F1, F4, F3, F2, F7, F8, F5, F6.
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2. The half-way wall bounceback: Consider a channel with periodic boundary
conditions in x-directions and walls at the lower and upper boundary. The
first and last nodes in y-direction, i.e. with indices j = 1 and j = N , are
‘dry’ (dry or wall nodes), i.e. outside the ‘wet’ domain which encompasses
nodes with j = 2 to j = N − 1 (wet or interior or fluid nodes). The
lower (upper) boundary is located half-way between the first and second
(last but one and last) nodes in y-direction. Particle distributions are
propagated between wet and dry nodes and vice versa. On the dry nodes
no collision or forcing is performed and the distributions are all bounced
back. Note that the width of the channel is one unit smaller than that
with the complete bounceback scheme.

Plane Poiseuille flow: analytic solution

Only few analytical solutions of the Navier-Stokes equation are known. One
is the plane Poiseuille flow in a channel of width 2L where the flow is steady
(∂/∂t = 0), in x-direction u = (u, v) = (u(y), 0), with constant pressure (p
and ρ = constant) and without variations in x-direction (∂/∂x = 0). The
flow is driven by a constant force K = Kex. Accordingly the Navier-Stokes
equation reduces to an ordinary differential equation for u(y)

ν
d2u

dy2
+K = 0

and the continuity equation
du(y)
dx

= 0 is satisfied. At the channel walls no-

slip boundary conditions apply, i.e. u(y) = 0 at y = −L and y = L. The
analytical solution is a parabola

u(y) =
K

2ν
(
L2 − y2

)
. (5.2.56)

Plane Poiseuille flow: numerical simulation

In the numerical simulation the velocity is initialized to zero and the mass
density to a constant value of ρ = 1. In order to start the fluid flow a constant
force has to be applied at every time step. Here the microscopic forcing method
is applied.

First the simplest no-slip scheme, namely bounceback will be used. The result
of an integration over a domain with 20 time 20 nodes is shown in Fig. 5.2.6
together with the analytical solution. The fluid is resting in the beginning and
then is slowly accelarated. After t = 1200 time steps the mean x-momentum
becomes steady (plot at lower right). The final velocity profile u(y) (+ in plot
at upper left) is compared with the analytical solution (Eq. 5.2.56) assuming
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a channel width 2L = YMAX− 1 = 19 where YMAX = 20 is the number of
nodes in y-direction. The numerical solution is zero on the boundary points
(nodes j = 1 and j = YMAX or y = ±9.5) and the profile looks similar to
a parabola. The most striking difference compared to the analytical solution
is the lower value of the maximum velocity. One can fit a parabola to the
numerical data with equal values of the maximum velocity (plot at upper
right). Deviations between this fit and the numerical values are most obvious
near the boundaries. The plot at the lower left shows the numerical solution
together with the analytical solution but the latter one now based on a smaller
channel width 2L = YMAX − 2 = 18. This solution compares very well with
the analytical solution except for the two boundary nodes. This figure suggests
the following interpretation. The boundary is located half-way between the
first and second node respectively half-way between the second to last and the
last node. Therefore the ’wet’ channel has only a width of 2L = YMAX−2 =
18. The nodes at j = 1 and j = YMAX are auxiliary nodes which take care
of the correct boundary conditions at j = 3/2 and j = YMAX − 1/2. The
velocity values on these auxiliary nodes should not be interpreted as flow
velocities (these nodes are located ‘on land’ and could by called ‘dry nodes’).

Fig. 5.2.6. No-slip boundary conditions and Poiseuille flow (see text for discussion).
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Numerical experiments with different channel widths 2L = 16, 32, 64, 128 (dif-
ferent spatial resolutions of the parabola) have been performed while keeping
constant the viscosity ν and the product of channel width and maximum
speed (by varying the forcing). Thus the Reynolds number is kept constant.
The Mach number varies but for L ≥ 16 is small compared to 1. The error
has been calculated by

Error :=
1
N

√√√√ N∑
i=1

(
û

(n)
i − û

(a)
i

)2

where the summation is over N = 14 inner points and û
(n)
i and û

(a)
i are the

normalized numerical and analytical solutions with maximum speed equal to
one. Fig. (5.2.7) shows the error as a function of L. The slop of the curve is
close to −2 which indicates that this scheme is of second order in the spatial
discretization.

Slip boundary condition

To test slip boundary condition (
∂ut

∂xn
= 0 at |y| → ∞, i.e. the normal deriva-

tive of the tangential velocity component ut vanishes on the boundary) a shear
layer with

u =

{
−U for y < 0
+U for y > 0

, v = 0

is initialized at t = 0. The analytical solution of the Navier-Stokes equation
in −∞ < y <∞ for this initial condition is known:

u(y, t) = U erf

(
y√
4νt

)
, v = 0

where erf(arg) is the error function.
The slip conditions have been implemented by reflection of the distribution
Fi on boundary nodes. The result of a numerical simulation (U = 0.1) in
a channel of finite width (2L = 18) are shown together with the analytical
solution in Fig. 5.2.8. The implementation of the simple slip scheme works
very well. Small deviations between numerical and analytical solution are to
be expected due to the finite width of the channel in the simulation.

Further reading: boundary conditions for LBM
Skordos (1993), Ziegler (1993), Ginzbourg and Adler (1994), He and Zou
(1995), Noble et al. (1995a,b), Inamuro et al. (1995), Noble et al. (1996),
Chen et al. (1996), Ginzbourg and d’Humiéres (1996), Maier et al. (1996),
Filippova and Hänel (1997), Gallivan et al. (1997), Stockman et al. (1997),
Kandhai et al. (1999).
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Fig. 5.2.7. Error of the numerical compared to the analytical solution of the
Poiseuille flow as a function of spatial resolution. The bounceback scheme is ap-
plied and the resulting data are interpretated such that the boundaries are located
between the first and second respectively between the second to last and the last node
(compare also Fig. 5.2.6C). The slop of the curve is close to −2 which indicates that
this scheme is of second order in the spatial discretization.
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Fig. 5.2.8. Shear layer flow in a channel: test of slip boundary conditions (see
text).
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5.3 Hydrodynamic lattice Boltzmann models in 3D

BGK-LBMs have been discussed so far only in two dimensions. The extension
to three dimensions is straightforward. One just has to choose a 3D lattice
and calculate appropriate equilibrium distributions. In this section we will
calculate equilibrium distributions by the method of Koelman (1991) for 3D
lattices with 19 and 15 velocities.
The derivation of the equilibrium distribution functions F (eq)

i (5.2.11) by min-
imizing the functional (5.2.18) is independent of the lattice velocities ci and
the dimension D. Only the constraints (5.2.6 to 5.2.8) for the velocity mo-
ments were used in Section (5.2). Thus one can use the form of the equilibrium
distribution functions F (eq)

i (5.2.11) with the appropriate lattice velocities ci

and weights Wi.

5.3.1 3D-LBM with 19 velocities

For hydrodynamic simulation d’Humières et al. (1986) proposed a multi-speed
lattice-gas cellular automata over a cubic lattice with 19 velocities (compare
Section 3.3). This cubic lattice D3Q19 is defined by the following velocities

c0 = (0, 0)
c1,2, c3,4, c5,6 = (±1, 0, 0), (0,±1, 0) (0, 0,±1)

c7,...,10, c11,...,14, c15,...,18 = (±1,±1, 0), (±1, 0,±1), (0,±1,±1).

The calculation of the Wi for the 3D model proceeds in close analogy with
the 2D case. There are three different speeds: 1 time speed 0 (rest particle),
6 times speed 1 (1-particles) and 12 times speed

√
2 (
√

2-particles). The even
moments yield four independent equations for the calculation of W0, W1, W2

and kbT/m:

• 0. moment: ∑
i

Wi = W0 + 6W1 + 12W2 = ρ0

• 2. moment: ∑
i

c2αxWi = 2W1 + 8W2 = ρ0
kT

m

• 4. moment: ∑
i

c4αxWi = 2W1 + 8W2 = 3ρ0

(
kT

m

)2

∑
i

c2αxc
2
αyWi = 4W2 = ρ0

(
kT

m

)2
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The solution reads

W0 =
ρ0

3

W1 =
ρ0

2

(
kT

m

)2

=
ρ0

18

W2 =
ρ0

4

(
kT

m

)2

=
ρ0

36
(5.3.1)

kT

m
=

1
3
.

The odd velocity moments over Wi vanish.

5.3.2 3D-LBM with 15 velocities and Koelman distribution

The lattice velocities of the D3Q15 lattice read

c0 = (0, 0, 0) rest particle
c1,2, c3,4, c5,6 = (±2, 0, 0), (0,±2, 0) (0, 0,±2) 2-particles

c7,...,14 = (±1,±1,±1)
√

3-particles.

There are three different speeds: 1 time speed 0, 6 times speed 2 and 8 times
speed

√
3. The even moments yield four independent equations for the calcu-

lation of W0, W2, W3 and kbT/m:

• 0. moment: ∑
i

Wi = W0 + 6W2 + 8W3 = ρ0

• 2. moment: ∑
i

c2αxWi = 8W2 + 8W3 = ρ0
kT

m

• 4. moment: ∑
i

c4αxWi = 32W2 + 8W3 = 3ρ0

(
kT

m

)2

∑
i

c2αxc
2
αyWi = 8W3 = ρ0

(
kT

m

)2
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The solution reads

W0 =
7
18
ρ0

W2 =
ρ0

16

(
kT

m

)2

=
ρ0

36

W3 =
ρ0

8

(
kT

m

)2

=
ρ0

18
kT

m
=

2
3
.

The odd velocity moments over Wi vanish.

5.3.3 3D-LBM with 15 velocities proposed by Chen et al. (D3Q15)

The equilibrium distributions are not unique and other choices are possible.
As an example we give the equilibrium distributions proposed by Chen et al.
(1992):

F eq
0 = d(0) + δ(0)v2

F eq
i = d(1) + β(1)ci · v + γ(1)(ci · v)2 + δ(1)v2 α = 1, ..., 6

F eq
i = d(2) + β(2)ci · v + γ(2)(ci · v)2 + δ(2)v2 α = 7, ..., 14

where

d(0) = d(1) =
ρ

11
, d(2) =

ρ

22
α(1) =

ρ

24
, α(2) =

ρ

12
γ(1) =

ρ

32
, γ(2) =

ρ

16

δ(0) = − 7
24
ρ, δ(1) = − ρ

48
, δ(2) = − ρ

24
.

These distributions will not be considered in the following.
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5.4 Equilibrium distributions: the ansatz method

“The question that we are most often asked about cellular automata
is the following.
‘I’ve been shown cellular automata that make surprisingly good mod-
els of, say, hydrodynamics, heat conduction, wave scattering, flow
through porous media, nucleation, dendritic growth, phase separa-
tion, etc. But I’m left with the impression that these are all ad hoc
models, arrived at by some sort of magic.’
‘I’m a scientist, not a magician. Are there well-established correspon-
dence rules that I can use to translate features of the system I want
to model into specifications for an adequate cellular-automaton model
of it?’
Physical modeling with cellular automata is a young discipline. Sim-
ilar questions were certainly asked when differential equations were
new - and, despite three centuries of accumulated experience, model-
ing with differential equations still requires a bit of magic.”
Toffoli und Margolus (1990)

The problem addressed for CA by Toffoli and Margolus exists also for lattice
Boltzmann models. However, in what follows it will be shown that a LBM for
the Navier-Stokes equation can be developed by an almost straightforward
method. In chapter 5.2 global equilibrium functions Wi for vanishing velocity
(u = 0) and constant density ρ = ρ0 were determined in close analogy to the
Maxwell distribution (more precise: the velocity moments of Wi up to fourth
order are equal to the corresponding velocity moments over the Maxwell dis-
tribution; compare Eqs. 5.2.6 - 5.2.8). Subsequently the local equilibrium dis-
tributions Fi have been derived using the maximum entropy principle. These
‘Koelman-distributions’ lead to the Navier-Stokes equation with isotropic ad-
vection, Galilean invariance and pressure which does not explicitly depend on
flow speed.
To be sure, these are not the only distributions over that lattice which in
the macroscopic limit yield the Navier-Stokes equation. This is not a problem
because the equilibrium distributions of our artificial microworld are not of
interest by themselves.
In the current section I will discuss an alternative approach to suitable equi-
librium distributions Fi whereby an ansatz for Fi will be used. After the
multiscale analysis the free parameters in the ansatz will be chosen such that
isotropy etc. are assured. This alternative approach will be of central impor-
tance for the development of lattice Boltzmann models for given differential
equations.
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To keep things simple the presentation will be restricted to a twodimensional
model. The extension to 3D is straightforward. An LBM is defined by three
ingredients:

1. A kinetic equation: here the meanwhile well-established BGK equation is
chosen.

2. A lattice with sufficient symmetry: in order to compare results with those
of the previous chapter the D2Q9 lattice is chosen; for a model based on
D2Q7 see exercise (56).

3. Equilibrium distributions: see below.

Instead of using the maximum entropy principle to derive equilibrium dis-
tributions one may propose an ansatz with free parameters. How should the
ansatz look like?

1. From lattice-gas cellular automata (FHP, FCHC, PI) and the Koelman
model we know that terms quadratic in u and ci · u in the equilibrium
distributions yield the nonlinear advection term of the Navier-Stokes equa-
tion; no higher moments are required.

2. The free parameters of the ansatz should depend only on the mass density
and the speeds |ci| but not on the directions of the ci.

This suggests the following ansatz with ten free parameters:

Fi = A0 +D0u
2 i = 0

Fi = A1 +B1ci · u + C1(ci · u)2 +D1u
2 i = 1, 2, 3, 4

Fi = A2 +B2ci · u + C2(ci · u)2 +D2u
2 i = 5, 6, 7, 8.

(5.4.1)

The definitions of mass and momentum densities give three scalar constraints

ρ :=
∑

i

Fi = A0 + 4(A1 +A2)︸ ︷︷ ︸
= ρ

+u2 (D0 + 4D1 + 4D2 + 2C1 + 4C2)︸ ︷︷ ︸
= 0

(5.4.2)

j :=
∑

i

ciFi = (2B1 + 4B2)︸ ︷︷ ︸
= ρ

u. (5.4.3)

5.4.1 Multi-scale analysis

The multi-scale analysis proceeds as in Section 5.2.3 up to Eq. (5.2.31) inclu-
sively. Not until the calculation of the momentum flux tensor P (0)

αβ the specific
form of the equilibrium distribution has to be taken into account:



198 5 Lattice Boltzmann Models

P
(0)
αβ :=

∑
i

ciαciβF
(0)
i

=
4∑

i=1

ciαciβ
[
A1 +B1ci · u + C1(ci · u)2 +D1u

2
]

+
8∑

i=5

ciαciβ
[
A2 +B2ci · u + C2(ci · u)2 +D2u

2
]

= (2A1 + 4A2) δαβ +
(
2C1u

2
α + 4C2u

2
)
δαβ

+8C2uαuβ (1− δαβ) + (2D1 + 4D2)u2δαβ

with u = (u, v) = (u1, u2). The goal is to transform the tensor

P
(0)
αβ =




2A1 + 4A2 + 2C1u
2 8C2uv

+(4C2 + 2D1 + 4D2)u2

8C2uv 2A1 + 4A2 + 2C1v
2

+(4C2 + 2D1 + 4D2)u2




into

ρ

(
u2 uv

uv v2

)
+ p δαβ.

The portion of the tensor which is independent of the flow velocity u yields
the pressure p:

p = 2A1 + 4A2.

All other terms lead to the following constraints for the free parameters

4C2 + 2D1 + 4D2 = 0 (u2 term in P (0)
11 must vanish)

2C1 = ρ (u2 term in P (0)
11 must yield ρu2)

8C2 = ρ (uv term in P (0)
12 must yield ρuv)

and therefore
C1 =

ρ

2
and C2 =

ρ

8
.

The remaining eight unknowns (A0, A1, A2, B1, B2, D0, D1, D2) are con-
strained by only four linear equations
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A0 + 4(A1 +A2) = ρ

2B1 + 4B2 = ρ

D0 + 4D1 + 4D2 = −2C1 − 4C2 = −3
2
ρ

2D1 + 4D2 = −ρ
2
.

Therefore in addition some arbitrary restrictions can be imposed. Here is just
one possibility:

A0

A1
=
A1

A2
=
B1

B2
=
D0

D1
=: r (5.4.4)

where r is a free parameter. Thus the coefficients are functions of r:

A0 =
r2

(r + 2)2
ρ, A1 =

r

(r + 2)2
ρ, A2 =

1
(r + 2)2

ρ

B1 =
r

4 + 2r
ρ, B2 =

1
4 + 2r

ρ

D0 = − r

2 + r
ρ, D1 = − 1

2 + r
ρ, D2 = − r − 2

16 + 8r
ρ

p =
2

r + 2
ρ = c2sρ (5.4.5)

The speed of sound

cs =

√
dp

dρ
=

√
2

r + 2

is tunable by the parameter r (compare Fig. 5.4.1).

The additional restriction
D1

D2
= r

leads to a quadratic equation for r with solutions r1 = 4 and r2 = −2.
The solution r2 yields negative equilibrium distribution even at small Mach
numbers and an infinite pressure. The solution r = 4 (by the way: C1/C2 also
equals 4) leads to

A0 =
4
9
ρ, A1 =

1
9
ρ, A2 =

1
36
ρ, B1 =

1
3
ρ, B2 =

1
12
ρ,

D0 = −2
3
ρ, D1 = −1

6
ρ, D2 = − 1

24
ρ, p =

1
3
ρ = c2sρ

with the speed of sound

cs =
1√
3
.
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Fig. 5.4.1. The speed of sound cs as a function of the parameter r.
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The equilibrium distribution read

Fi =
4
9
ρ

[
1− 3

2
u2

]
i = 0

Fi =
1
9
ρ

[
1 + 3ci · u +

9
2
(ci · u)2 − 3

2
u2

]
i = 1, 2, 3, 4

Fi =
1
36
ρ

[
1 + 3ci · u +

9
2
(ci · u)2 − 3

2
u2

]
i = 5, 6, 7, 8.

The distribution functions are identical to those derived by the maximum
entropy principle (compare Eq. 5.2.12 with c = 1)! These equilibrium distri-
butions were also used by Martinez et al. (1994).
In summary, the equilibrium distributions have been derived in the current
section by adjusting the free parameters of a plausible ansatz after the multi-
scale analysis such that the desired macroscopic equations will result. For the
model discussed above, there are not enough constraints to derive a unique
solution for all free parameters. This freedom can be used, for example, to
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tune the speed of sound. The equilibrium distribution derived by the maxi-
mum entropy principle is a special case of the above calculated solutions.
The alternative approach to derive equilibrium distributions opens up the
prospect to develop lattice Boltzmann models for other differential equations.
From an ansatz for the equilibrium distributions and the conservation laws
the desired properties of the macroscopic equations can be implemented into
the microscopic model by appropriate choice of the free parameter after the
multi-scale analysis. The ansatz method will be applied in the development of
thermal LBM (Section 5.5) and LBM for the diffusion equation (Section 5.8).

5.4.2 Negative distribution functions at high speed of sound

Eq. (5.4.5) suggests that the speed of sound cs might be tuned to arbitrary
values by varying the parameter r. For small or even negative r, however, the
distribution functions Fsi become negative which leads to numerical instability
very quickly. Let rc be the critical r where one of the Fsi first vanishes. It can
be shown (see Exercise 55) that rc depends on the velocity u as follows

rc =
2u2

1− u2
(5.4.6)

and therefore
cs < cs(rc) =

√
1− u2. (5.4.7)

The Navier-Stokes equation has been derived in the small Mach number limit.
Thus

Ma :=
|u|
cs

=
|u|√

1− u2
(5.4.8)

should remain small compared to 1. Consequently u2 must remain small com-
pared to 1 (singularity of M at u2 = 1) and therefore cs < 1 (compare Fig.
5.4.2).

Exercise 54. (***)
Show that even when skipping the auxiliary constraints (5.4.4) while keeping
Fsi > 0 the speed of sound cannot exceed 1.

Exercise 55. (**)
Derive eq. (5.4.6).

Exercise 56. (***)
Calculate equilibrium distributions for an LBM for the Navier-Stokes equa-
tion in 2D over the D2Q7 lattice (FHP with rest particles). This model is
called pressure-corrected LBM (PCLBM) because the pressure does not de-
pend explicitly on the flow speed.
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Fig. 5.4.2. The Mach number Ma and the speed of sound cs as a function of the
speed |u|.
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5.5 Hydrodynamic LBM with energy equation

Using the ansatz method described in Section 5.4 it is possible to develop hy-
drodynamic LBMs including an energy equation (so-called thermal models).

Alexander, Chen and Sterling (1993) proposed a thermal LBM over the
D2Q13-FHP lattice (multi-speed FHP) with the following lattice velocities
ci (compare Fig. 3.3.8):

ci = (0, 0) i = 0

ci =
(

cos
2πk
6
, sin

2πk
6

)
i = 1, 2, ..., 6; k = i

ci = 2
(

cos
2πk
6
, sin

2πk
6

)
i = 7, 8, ..., 12; k = i− 6

For the equilibrium distributions they made an ansatz including terms up to
third order in the flow velocity u

F eq
i = Aσ +Bσci ·u+Cσ(ci ·u)2 +Dσu2 +Eσ(ci ·u)3 +Gσ(ci ·u)u2, (5.5.1)

whereby the 14 free parameters Aσ to Gσ depend only on mass and internal
energy density. The index σ refers to the square of the speed which is equal
to zero, one, or two.
The BGK kinetic equation

Fi(x + ci, t+ 1) = (1− ω)Fi + ωF eq
i (5.5.2)

is applied.
Mass density (ρ), velocity (u) and internal energy (εI) are defined as follows

ρ =
∑

i

Fi (5.5.3)

ρu =
∑

i

ciFi (5.5.4)

ρεI =
∑

i

(ci − u)2

2
Fi. (5.5.5)

The desired form of the macroscopic equations

∂ρ

∂t
+

∂

∂xα
(ρuα) = 0 (5.5.6)
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ρ
∂uα

∂t
+ρuβ

∂uα

∂xβ
= − ∂p

∂xα
+

∂

∂xα

(
λ
∂uγ

∂xγ

)
+

∂

∂xβ

[
µ

(
∂uβ

∂xα
+
∂uα

∂xβ

)]
(5.5.7)

ρ
∂εI

∂t
+ρuβ

∂εI

∂xβ
= −p∂uγ

∂xγ
+

∂

∂xβ

(
κ
∂T

∂xβ

)
+µ
(
∂uβ

∂xα
+
∂uα

∂xβ

)
∂uβ

∂xα
+λ
(
∂uγ

∂xγ

)2

(5.5.8)
is obtained by the following choice for the coefficients (see Appendix 6.4)

A0 = ρ

(
1− 5

2
εI + 2ε2I

)
, A1 = ρ

4
9
(
εI − ε2I

)
, A2 = ρ

1
36
(−εI + 4ε2I

)
(5.5.9)

B1 = ρ
4
9

(1− εI) , B2 = ρ
1
36

(−1 + 4εI) (5.5.10)

C1 = ρ
4
9

(2− 3εI) , C2 = ρ
1
72

(−1 + 6εI) (5.5.11)

D0 = ρ
1
4

(−5 + 8εI) , D1 = ρ
2
9

(−1 + εI) , D2 = ρ
1
72

(1− 4εI) (5.5.12)

E1 = −ρ 4
27
, E2 = ρ

1
108

(5.5.13)

G1 = G2 = 0. (5.5.14)

Alexander et al. (1993) give no statement concerning the uniqueness of the
solution. The shear viscosity µ and the thermal conductivity κ are given by

µ = ρεI

(
1
ω
− 1

2

)
(5.5.15)

κ = 2ρεI

(
1
ω
− 1

2

)
(5.5.16)

(the compressional viscosity λ vanishes). Thus the Prandtl number is

Pr :=
µ

κ
=

1
2
. (5.5.17)

The pressure p reads p = ρεI . The temperature T is proportional to the
internal energy εI .

Exercise 57. (**)
Is it possible to define a thermal LBM over the D2Q9 lattice?

Exercise 58. (***)
Is it possible to choose the coefficients such that the Prandtl number is 1 or
even becomes a tunable parameter?
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Further reading:
Chen et al. (1995a,b) introduced an additional parameter in order to tune the
Prandtl number. McNamara et al. (1995) discussed numerical instabilities of
the models proposed by Alexander et al. (1993) and Chen et al. (1995a,b). Va-
hala et al. (1996) applied the model of Alexander et al. (1993) to free-decaying
turbulence in 2D. McNamara et al. (1997) proposed a 3D thermal LBM with
27 velocities. They apply a Lax-Wendroff scheme in order to improve nu-
merical stability. They performed simulations of Rayleigh-Bénard convection
in 2D and compared the results with those of an explicit finite-difference
(FD) solver. The computer times of LBM and FD are comparable whereas
LBM requires significantly more memory and stability is significantly poorer.
Thus they conclude that currently there is no potential advantage in using
a thermal LBM over a conventional FD solver. Hu et al. (1997) consider the
energy levels, εσ, of the three different speeds as free parameters and thereby
are able to tune the ratio of specific heats, γ. Shan (1997) proposed a two-
component LBGK in which temperature is advected as an passive scalar and
simulated Rayleigh-Bénard convection. Pavlo et al. (1998a,b) investigate lin-
ear stability of thermal LBMs. The model of Alexander et al. (1993) has been
revisited by Boghosian and Coveney (1998). They showed “that it is possible
to achieve variable (albeit density-dependent) Prandtl number even within
a single-relaxation-time lattice-BGK model”. He et al. (1998), Vahala et al.
(1998b).
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5.6 Stability of lattice Boltzmann models

Lattice Boltzmann schemes do not have an H-theorem and therefore are sub-
ject to numerical instabilities (Sterling and Chen, 1996). Linear stability anal-
ysis has been performed for various LB models (D2Q7, D2Q9, D3Q15) and
different background flows (homogeneous or shear flow) by Sterling and Chen
(1996) and Worthing et al. (1997). The stability does not only depend on
the background flow but also on the mass fraction parameters (α, β) of the
equilibrium distributions and the grid size (stability decreases with increasing
grid size).

5.6.1 Nonlinear stability analysis of uniform flows

The time evolution of BGK lattice Boltzmann models is described by the
kinetic equation

Fm(x + cm, t+ 1) = Fm(x, t)− ω
[
Fm(x, t)− F (0)

m (x, t)
]

(5.6.1)

Inspection of Eq. (5.6.1) shows that an initially uniform flow, in the sense

Fm(x, t0) = Fm(t0),

will remain uniform at all later times and thus

Fm(t+ 1) = Fm(t)− ω
[
Fm(t)− F (0)

m (t)
]
.

Furthermore, mass and momentum density are conserved and retain their
initial value

ρ(x, t) = ρ(t0) = ρ0, j(x, t) = j(t0) = j0

and therefore

Fm(t+ 1) = Fm(t)− ω
[
Fm(t)− F (0)

m (ρ0, j0)
]
.

Subtracting F (0)
m (ρ0, j0) on both sides leads to

F̃m(t+ 1) = (1− ω)F̃m(t)

with F̃m(t) = Fm(t) − F
(0)
m (ρ0, j0). The evolution is stable in the sense that

the magnitude of F̃m does not increase with time (|F̃m(t+ 1)| ≤ |F̃m(t)|) if

|1− ω| < 1 → 0 < ω < 2 or
1
ω

= τ >
1
2

(compare Fig. 5.6.1).
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Fig. 5.6.1. Stability range of BGK models.
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Exercise 59. (**)
Consider the kinetic equation

Fm(x + cm, t+ 1) = Fm(x, t) +Ωik

[
Fk(x, t)− F

(0)
k (x, t)

]
and show that for uniform flows the following equation holds

F̃ (t+ 1) = [I + Ω]F̃ (t)

where the vector F̃ (t) has components F̃m(t) = Fm(t)− F
(0)
m (ρ0, j0).

In reality, a flow is never uniform in the strict sense because some noise is al-
ways around. Therefore we have to investigate whether small spatially varying
perturbations grow or are damped with time. No general methods are known
that allow stability analysis of arbitrary nonlinear systems. In each case you
have to find special tricks (like, for instance, the construction of a Liapunov
function). To get an idea of the stability properties of the nonlinear system
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one usually expands the system up to linear terms and investigates the stabil-
ity of the resulting linear system. Before attacking the kinetic equation (5.6.1)
we will discuss the von Neumann stability analysis for two simpler equations.

5.6.2 The method of linear stability analysis (von Neumann)

The Fourier method of John von Neumann is the standard method for stability
analysis because it is applicable to arbitrary linear systems. As a first example
we will consider the linear advection equation

∂u

∂t
+ c

∂u

∂x
= 0, c > 0

which shall be solved numerically by the following finite difference scheme

uj,n+1 = uj,n − µ (uj,n − uj−1,n) (5.6.2)

where uj,n = u(xj , tn), xj = j∆x, tn = n∆t, and µ = c · ∆t/∆x. For the
difference equation (5.6.2) we make the following ansatz (‘poor man’s Fourier
transform’)

uj,n = Une
ikx = Une

ikj∆x (5.6.3)

(the actual solution is the real part) where k is the wave number of the spatial
perturbation. Inserting of (5.6.3) into (5.6.2) leads to

Un+1 = (1− µ)Un + µUne
−ik∆x = λUn

with
λ := 1− µ+ µe−ik∆x.

It follows that
|Un+1| = |λ| · |Un| = |λ|n · |U1|.

Stability in the sense that |Un+1| is bounded (i.e. limn→∞ |Un+1| < B < ∞)
yields the constraint

|λ| ≤ 1.

Here we have
|λ|2 = 1− 2µ(1− µ)(1 − cos k∆x)

which is ≤ 1 when

0 ≤ µ = c
∆t

∆x
≤ 1

or
∆x

∆t
≥ c (5.6.4)

or

0 ≤ ∆t ≤ ∆x

c
. (5.6.5)
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This is the stability condition we were looking for. According to Eq. (5.6.4)
the ‘grid speed’ cgrid := ∆x/∆t has to be as fast or faster than the advection
speed c (this holds in very similar form also for several spatial dimensions, for
other explicit numerical schemes and other hyperbolic equations whereby the
advection speed is eventually replaced by the speed of the fastes wave of the
system).

As a second example we consider the diffusion equation

∂T

∂t
= κ

∂2T

∂x2
.

A finite difference approximation reads

Tj,n+1 = Tj,n + κ
∆t

(∆x)2
(Tj+1,n − 2Tj,n + Tj−1,n) .

Inserting the ansatz
Tj,n = Ane

ikj∆x

leads to
An+1 = An + µ′An

(
eik∆x − 2 + e−ik∆x

)
= λ′An

with
µ′ = κ

∆t

(∆x)2

and
λ′ = 1− 2µ′(1 − cos k∆x)

The condition |λ′| ≤ 1 yields the stability condition

0 ≤ µ′ = κ
∆t

(∆x)2
≤ 1

2

or

0 ≤ ∆t ≤ (∆x)2

2κ
. (5.6.6)

5.6.3 Linear stability analysis of BGK lattice Boltzmann models

The following discussion is based on Worthing et al. (1997). The kinetic equa-
tion including external body forces Km(x, t) reads

Fm(x + cm, t+ 1) = Fm(x, t)− ω
[
Fm(x, t)− F (0)

m (x, t)
]

+Km(x, t) (5.6.7)

where Fm are the distribution functions and F
(0)
m are the equilibrium distri-

bution functions. Expansion about time-independent but otherwise arbitrary
distribution functions F (bf)

m (‘background flow’) leads to
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Fm(x, t) = F (bf)
m (x) + fm(x, t)

Fm(x + cm, t+ 1) = F (bf)
m (x + cm) + fm(x + cm, t+ 1)

F (0)
m (x, t) = F (0)

m ({Fs(x, t)})

≈ F (0)
m

(
{F (bf)

s (x)}
)

+
∑

n

(
∂F

(0)
m

∂Fn

)
{F (bf)

s (x)}
fn(x, t)

Km(x, t) = Km({Fs(x, t)})
≈ Km

(
{F (bf)

s (x)}
)

+
∑

n

(
∂Km

∂Fn

)
{F (bf)

s (x)}
fn(x, t)

Inserting the expansions into the kinetic equation (5.6.7) results in

fm(x + cm, t+ 1) = Gm(x) + (1 − ω)fm(x, t) +
∑

n

Jmn(x)fn(x, t)

where

Gm(x) = F (bf)
m (x)− F (bf)

m (x + cm)− ω
[
F (bf)

m (x)− F (0)
m

(
{F (bf)

s (x)}
)]

+Km

(
F (bf)

m (x)
)

and

Jmn =

[
ω
∂F

(0)
m

∂Fn
+
∂Km

∂Fn

]
{F (bf)

s (x)}
. (5.6.8)

Here we are interested only in instabilities with exponential growth. Therefore
we will neglect the time-independent term Gm(x) which can lead to linear
growth at most. The rectangular domain of length L and width W comprises
a lattice with nodes at (xr = 0, 1, 2, ..., L; ys = 0, 1, 2, ...,W ). We will now
Fourier transform the linear equation

fm(x + cm, t+ 1) = (1− ω)fm(x, t) +
∑

n

Jmn(x)fn(x, t). (5.6.9)

The functions f (k,l)
m (t) and fm(x, y, t) are connected by the Fourier transform

fm(x, y, t) =
∑
k,l

f (k,l)
m (t)eikx2π/Leily2π/W . (5.6.10)

Consequently one obtains

fm(x+ cx,m, y + cy,m, t+ 1)

=
∑
k,l

f (k,l)
m (t+ 1)eik(x+cx,m)2π/Leil(y+cy,m)2π/W

=
∑
k,l

f (k,l)
m (t+ 1)eikx2π/Leily2π/W eikcx,m2π/Leilcy,m2π/W
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The analysis is further simplified by the assumption that the background flow
(a shear layer or jet stream, for example) as well as the external forces depend
only on y:

Jmn(y) =
∑

q

J (q)
mne

iqy2π/W .

Inserting of the Fourier transforms into Eq. (5.6.9) one obtains

eikcx,m2π/Leilcy,m2π/W f (k,l)
m (t+ 1) = (1− ω)f (k,l)

m (t) +
∑
n,q

J (q)
mnf

(k,l−q)
n (t)

Since the x modes remain uncoupled, they are considered independently via

eikcx,m2π/Leilcy,m2π/W f (l)
m (t+ 1) = (1−ω)f (l)

m (t) +
∑
n,q

J (q)
mnf

(l−q)
n (t) (5.6.11)

It can be shown (for some fine points see Worthing et al., 1997) that Eq.
(5.6.11) can be written as a matrix iteration

f t+1 = Af t (5.6.12)

where the vector f has components f (l)
m . If the spectral radius (= magnitude

of the largest eigenvalue) of A, ρ(A), is larger than unity, then the system
is said to be linear unstable (this corresponds to the case |λ| > 1 in the two
examples with one component each discussed in Subsection 5.6.2). In case of
uniform background flow and no external forcing considered by Sterling and
Chen (1996) the matrix A reads

A = D [(1− ω) I + J ] (5.6.13)

where D is a diagonal matrix with components

Dmn = e−ikcx,m2π/Le−ilcy,m2π/W δmn, (5.6.14)

I is the identity matrix (diagonal matrix with value 1 of all diagonal compo-
nents) and the components of J are given by

Jmn = ω
∂F

(0)
m

∂Fn
. (5.6.15)

The matrix A (and therefore also its spectral radius ρ(A)) depends on the
relative wave numbers (θx = 2πk/L, θy = 2πl/W ), the uniform inital velocity
(U), the collision parameter (ω) and the rest mass parameters (α, β; see
below). Instability occurs if the maximal spectral radius (for given values of
U , ω, α and β) becomes larger than 1 for any wave number:
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max
θx,θy

ρ (A [θx, θy, U, ω, α, β]) > 1. (5.6.16)

The components of J may be calculated as follows. The equilibrium distribu-
tions for the models D2Q7, D2Q9 and D3Q15 are all of the form

F (0)
m = ρ

[
Am +Bmcm · u + Cm(cm · u)2 +Dmu2

]
with constants Am, ..., Dm. The derivatives of mass and momentum density
with respect to Fn are easy to calculate:

ρ =
∑

n

Fn, → ∂ρ

∂Fm
= 1,

j = ρu =
∑

n

Fncn, → ∂j

∂Fn
= cn

and consequently

ρu2 =
j2

ρ
, → ∂(ρu2)

∂Fn
=

2j
∂j

∂Fn
ρ− ∂ρ

∂Fn
j2

ρ2
= 2cn · u− u2.

Finally we obtain

∂F
(0)
m

∂Fn
= Am +Bmcm · cn + Cm

[
2(cm · cn)(cm · u)− (cm · u)2

]
+Dm

[
2cn · u− u2

]
.

The coefficients for the various models are listed below. The coefficients Am

include free parameters α and β (denoted as rest mass parameters) which can
be tuned in order to improve stability.

FHP (D2Q7)

Am = α, Bm = 0, Cm = 0, Dm = −1; m = 0

Am =
1− α

6
, Bm = 1

3 , Cm = 2
3 , Dm = − 1

6 ; m = 1, ..., 6.

D2Q9

Am = α, Bm = 0, Cm = 0, Dm = − 2
3 ; m = 0

Am = β, Bm = 1
3 , Cm = 1

2 , Dm = − 1
6 ; m = 1, ..., 4

Am =
1− α− 4β

4
, Bm = 1

12 , Cm = 1
8 , Dm = − 1

24 ; m = 5, ..., 8
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D3Q15

m = 0 :
Am = α, Bm = 0, Cm = 0, Dm = − 1

2 .

m = 1, ..., 6 :
Am = β, Bm = 1

3 , Cm = 1
2 , Dm = − 1

6 .

m = 7, ..., 14 :

Am =
1− 6β − α

8
, Bm = 1

24 , Cm = 1
16 , Dm = − 1

48 .

m = 0 :
Am = α, Bm = 0, Cm = 0, Dm = − 7

24 .

m = 1, ..., 6 :
Am = β, Bm = 1

24 , Cm = 1
32 , Dm = − 1

48 .

m = 7, ..., 14 :

Am =
1− 6β − α

8
, Bm = 1

12 , Cm = 1
16 , Dm = − 1

24 .

The eigenvalues of A have been calculated with a standard routine form
MATLAB. The maximum eigenvalues for the D2Q7 (FHP) model with 1.)
(u, v) = (0.2, 0), α = 0.2, θy = 0 (solid line) and 2.) (u, v) = (0.23, 0), α = 0.3,
θy = 0 (broken line) are shown in Fig. 5.6.2 as a function of the relative wave
number θx (the figure is identical to Figure 1 in Sterling and Chen (1996); this
problem served as a test of the MATLAB script). For certain wave numbers
the maximum eigenvalues become larger than unity and therefore the model
is linear unstable for this choice of parameters. Detailed results on stability
boundaries depending on the model parameters can be found in Sterling and
Chen (1996) and Worthing et al. (1997).

5.6.4 Summary

The main results of Sterling and Chen (1996) and Worthing et al. (1997) can
be summarized as follows:

• For the D2Q7 (FHP) model and homogeneous flow the wavenumber vector
k of the most unstable mode is parallel to the velocity u.
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Fig. 5.6.2. The maximum eigenvalues for the D2Q7 (FHP) model with 1.) (u, v) =
(0.2, 0), α = 0.2, θy = 0 (solid line) and 2.) (u, v) = (0.23, 0), α = 0.3, θy = 0
(broken line) are shown as a function of the relative wave number θx (compare Fig.
1 in Sterling and Chen, 1996).
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• For the D2Q9 model and homogeneous flow the wavenumber |k| of the
most unstable mode is equal to about 2.3 (k is not necessary parallel to
u). An explanation for the ‘magic’ value 2.3 is not known.

• The stability domain as a function of the rest mass parameters α and β of
the D2Q9 model shrinks with increasing lattice size. The ‘canonical’ values
α = 4/9, β = 1/9, which have been derived from maximum entropy prin-
ciple (compare Section 5.2), lie inside one of the stability islands (compare
Fig. 5.6.3).

• The D2Q7 model is less stable than the D2Q9 model in the sense that
instability occurs already at smaller flow velocities (compare Fig. 2 in
Sterling and Chen, 1996).

• The D2Q9 lattice is a projection of the D3Q15 lattice. Therefore it may
be come at no big surprise that their linear stability properties for homo-
geneous background flows show some similarities. The wavenumber |k| of
the most unstable mode is again equal to about 2.3 (Sterling and Chen,
1996).
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• The stability domain shrinks further when the background flow includes
shear. Please note that the usual linear stability analysis assumes a time-
independent background flow whereas free shear layers decay by momen-
tum diffusion. Therefore predictions from linear stability analysis are less
reliable at high viscosities where the shear flow may decay before an in-
stability has enough time to develop. Thus the unstable region is smaller
than predicted (see, for example, Fig. 9 in Worthing et al., 1997). How-
ever, the linear stability analysis works fine in the low viscosity region
(high Reynolds numbers) which is of most interest.

To the best of our knowledge linear stability analysis for D3Q19 and for ther-
mal LB models is not available yet.

Fig. 5.6.3. Contour plot of the spectral radius as a function of the rest mass
parameters α and β for the D2Q9 model. On a lattice with 64 times 64 grid points
the stability region shrinks to small islands (domains inside the contour lines). The
‘canonical’ values α = 4/9, β = 1/9, which have been derived from maximum entropy
principle, lie inside one of the stability islands.
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Exercise 60. (***)
Propose equilibrium distributions with rest mass parameters α and β for the
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D3Q19 model, investigate linear stability and compare the results with the
linear stability properties of D3Q15.
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5.7 Simulating ocean circulation with LBM

Additional forces - wind stress, Coriolis force, and frictional forces - were im-
plemented into a LB model with 9 lattice velocities in two dimensions (D2Q9).
With this extended model it is possible to simulate the wind-driven circulation
of a barotropic ocean. Model results are compared with analytical solutions
of the linearized problem by Munk and with a finite difference model of the
full nonlinear problem. The implementation of various boundary conditions
and of body forces is discussed in some detail.

5.7.1 Introduction

Despite the rapid development of computer technology during the last
decades, simulation of global ocean circulation is still limited by computer
resources because of several small scale processes which are relevant for large
scale features. Increasing computer power will not solve these problems during
the next few years. More promissing is the development of new methods like
‘active nesting’ (Spall and Holland, 1991, Fox and Maskell, 1995 and 1996) to
deal with small scale dynamics in selected areas or the application of other
numerical methods like finite elements or LB models.
Because of the strict locality of the ‘collisions’ in LB models they are espe-
cially well suited for massive parallel computers. The code is extremely simple
compared to typical ocean circulation models like MOM (Pacanowski et al.,
1991). No elliptic equation has to be solved. Here the simplest case will be
considered, namely the wind-driven circulation of a barotropic ocean in a
rectangular domain. The main goal of this work is to test whether the LB
model yields results which are in quantitative agreement with the analytical
solution of the linearized problem and with the numerical (finite differences,
finite volumes) solution of the nonlinear problem.

5.7.2 The model of Munk (1950)

One of the grand challenges of physical oceanography in the first half of the
20th century was the explanation of the western boundary currents like the
Gulf Stream, the Agulhas or the Kuroshio. Ekman (1905 and 1923), Sver-
drup (1947) and others had made important contributions to the theory of
wind-driven circulation but could not explain the intensification of the flow
near the western boundaries of oceanic basins. In the late 40ties in the time
span of only two years different approaches for the basin-wide circulation were
proposed by Stommel (1948) and Munk (1950) .
With the North Atlantic in mind Munk defined the following problem. Con-
sider a rectangular (L × H) flat-bottom barotropic (vertically integrated)
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ocean which is driven by wind stress of the form (locally cartesian coordi-
nates x, y where x is eastward and y northward)

Tx = −T0 cos
( π
H
y
)

and Ty = 0, (5.7.1)

corresponding to westerly wind in mid latitudes and easterly wind in low
latitudes. The Navier-Stokes equation contains only molecular diffusion as
dissipative process. For large scale oceanic circulation molecular diffusion does
not play a role. To get rid of the vorticity imparted by the wind Munk replaced
the molecular viscosity coefficient, ν, by the so-called eddy viscosity coefficient,
A, which is several orders of magnitude larger than ν. The Laplacian friction,
A∇2u, can be interpreted as a simple parameterization of subscale processes.
The equation of motion thus reads

∂u

∂t
+ (u∇)u + f û +

1
ρ
∇p−A∇2u + T = 0 (5.7.2)

with û = (−v, u). The Coriolis parameter f is approximated by f ' f0 + βy
(β-plane), where

f0 = 2Ω sinϕ0 and β =
(
∂f

∂y

)
ϕ0

=
2Ω cosϕ0

R
. (5.7.3)

R = 6371 km is the mean radius of the Earth, Ω = 7.29 ·10−5 s−1 the angular
velocity of the Earth and ϕ0 the reference latitude. A ≈ 104 m2 s−1 is the
horizontal eddy viscosity coefficient. This value corresponds to a typical value
of 200− 250 km for the widths of the western boundary currents (see Munk,
1950). The velocity u of an incompressible (∇ · u = 0) two-dimensional flow
can be calculated from a stream function ψ(x, y)

u = −∂ψ
∂y

and v =
∂ψ

∂x
. (5.7.4)

Taking the curl of Eq. (5.7.2) to eliminate the pressure gradient one obtains
the vorticity equation

∂

∂t
∇2ψ + J(ψ,∇2ψ) + β

∂ψ

∂x
−A∇4ψ +

(
∂Ty

∂x
− ∂Tx

∂y

)
= 0 (5.7.5)

where
J(a, b) =

∂a

∂x

∂b

∂y
− ∂a

∂y

∂b

∂x

is the Jacobi operator.

The analytical solution of the linear Munk problem

For the stationary and linear case the vorticity equation (5.7.5) simplifies:
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∇4ψ − β

A

∂ψ

∂x
= −T0

A

π

H
sin
( π
H
y
)

(5.7.6)

The characteristic length (Munk scale)

WM =
(
A

β

)1/3

(5.7.7)

gives an estimate of the width of the western boundary current (see below).
In order to resolve this current in the numerical simulation the grid spacing,
ci∆t, has to be smaller than WM (= 80 km for β = 2 · 10−11 m−1 s−1 and
A = 104 m2 s−1).

Ideally one would like to derive an analytical solution with noslip conditions
(u = 0) on all boundaries (an ocean basin bounded by continents on all
sides). In terms of the streamfunction ψ this would mean that ψ = 0 on
all boundaries, ∂ψ/∂x = 0 on the west and east boundary, and ∂ψ/∂y = 0
on the south and north boundary. These conditions cannot easily be fulfilled
exactly (consider the Fourier expansion of the meriodinal variation of the zonal
wind stress: for each term Yn of the series a solution Xn of the differential
equation has to be constructed and the sum of all these terms has to fulfill the
boundary conditions). Thus we will somewhat relax the constrains and allow

slip conditions (ψ = 0,
∂2ψ

∂y2
) at the southern and northern boundaries (these

boundary conditions are appropriate for an ocean gyre bounded on the west
and east by continents, and on the south and north by other gyres circulating
in the opposite direction).
The exact solution of Eq. (5.7.6) reads

ψM,e = −T0H
3

Aπ3
sin
( π
H
y
)

(5.7.8)
·{1 + eαrkx [p1 cos (αikx)− p2 sin (αikx)] + p3e

α3kx + p4e
α4kx

}

where α1,2 = αr ± iαi, α3, and α4 are roots of the characteristic equation

(
α2 − γ2

)2
= α (5.7.9)

and the coefficients p1 to p4 are derived from the boundary conditions. The
αn and pn have to be calculated numerically (Exercise 63).

Exercise 61. (**)
Derive the exact solution (Eq. 5.7.8) and the characteristic Eq. (5.7.9) of the
linear Munk model (hint: use a separation ansatz).
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Exercise 62. (*)
For small γ find approximate solutions of the characterstic Eq. (5.7.9).

Exercise 63. (**)
Calculate the αm and pm (m = 1, ..., 4) for A = 103 m2 s−1, mean latitude
φ0 = 30◦, L = H = 2 · 106 m.

5.7.3 The lattice Boltzmann model

We apply the lattice Boltzmann model introduced in Section 5.2, i.e. the
BGK kinetic equation (Eq. 5.2.9) over the D2Q9 lattice with the equilibrium
distributions given in Eq. (5.2.12). In the simulations of the linear Munk
problem the nonlinear terms of the distribution functions have been dropped:

Fi =
4
9
ρ i = 0

Fi =
1
9
ρ
[
1 + 3

ci · u
c2

]
i = 1, 2, 3, 4

Fi =
1
36
ρ
[
1 + 3

ci · u
c2

]
i = 5, 6, 7, 8.

Here we will discuss some details of the coding of propagation, boundary
conditions and forcing.
The grid consists of XMAX × YMAX sites where (XMAX-2) times (YMAX-
2) points are ‘wet’ and the other sites are ‘dry’, i.e. they are located outside
the domain. The boundary between land and ocean lies halfway between the
dry and the neighboring wet site (Fig. 5.7.1).



Fig. 5.7.1. Ocean model: lattice, wet (inside the dashed box) and dry (outside the
dashed box) sites, slip or no-slip boundary conditions.
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Propagation and boundary conditions. In the propagation step all distri-
butions Fi(x, t) (except the ’rest’ distribution F0(x, t)) of wet points proceed
along the corresponding link (direction ci) to the neighbor site and are stored
in a second array, say F ′i :

Fi(x, t) ⇒ F ′i (x +∆tci, t). (5.7.10)

Near the boundary on wet sites not all F ′i are occupied because no distribu-
tions are propagated from dry sites. On the other hand some distributions
from sites near the boundary make it to dry sites. The latter distributions
propagate back to wet sites according to the local boundary conditions, i.e.
in case of no-slip boundary conditions the F ′i bounce back:

Fi(x, t) ⇒ F ′i (x +∆tci, t) ⇒ F ′Ii(x, t) (5.7.11)

where F ′Ii is the distribution in the direction of −ci; in case of slip boundary
conditions the distributions are reflected at the boundary:

Fi(x, t) ⇒ F ′i (x +∆tci, t) ⇒ F ′Ri(x +∆tcRi, t) (5.7.12)

where cRi is the lattice velocity that results from reflection of the lattice
velocity ci at the boundary and F ′Ri is the distribution in the direction of cRi.
After the propagation all dry sites are empty and all wet sites are occupied.
This procedure obviously conserves total mass.

Forcing. As shown in Section 5.2 the inclusion of body forces requires changes
of the distributions whereby spatial and temporal variations of the forcing
have to be taken into account. Two difficulties immediately arise. When the
time dependence of the forcing is not explicitely given in advance, the scheme
becomes implicit, i.e. unknown values at the future time step are requested
in the forcing term. This is indeed the case for the Coriolis force where the
velocity at the new time step is required to calculate K(x +∆tci, t+∆t) =
f (−u, v)x+∆tci,t+∆t. This problem can be solved by applying a predictor-
corrector method. In the predictor, we use [K(x, t) + K(x +∆tci, t)] /2. In
the corrector we evaluate the forcing term by using the previous iterate. One
corrector seemed to be sufficient; without the corrector a numerical instability
occurs after an integration time of several weeks.
The forcing should respect conservation of total mass. Mass is conserved at
each lattice site in the case of the ’local forcing’ because∑

i

ciK(x, t) = K(x, t)
∑

i

ci = 0. (5.7.13)

On the other hand mass is in general not conserved locally under ’non-local
forcing’ ∑

i

ciK(x +∆tci, t) 6= 0. (5.7.14)
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Nevertheless, total mass should (and can) be conserved. Problems arise near
the boundaries where some forcing terms are not compensated (in terms of
mass) by contributions from other sites. This can best be illustrated by an
onedimensional example (Fig. 5.7.2; all forcings at t + ∆t). K(x1) does not
exists because x1 is a dry site; it is set to zero. K(x2) is not compensated. In
order to compensate this term and to add some forcing at x2, K(x2) is added
at x2 in such a way that after propagation the forcing at x2 is comparable to
that at neighboring sites (the details of the algorithm depend on the type of
boundary conditions).



Fig. 5.7.2. External forcing: a onedimensional example. The arrows indicate com-
pensation in terms of mass.
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LB simulation of the linear Munk problem

The linear Munk problem was integrated in a 2000 km × 2000 km domain
with central latitude at 30◦N (f0 = 7.29 ·10−5 s−1, β = 1.98 ·10−11 s−1 m−1).
The eddy diffusivity coefficient A = 104 m2 s−1 results in a width of the Munk
layer WM = 80 km which is almost twice the grid spacing (∆x = 50 km). The
characteristic speed U = 5 · 10−4 m s−1 (linear regime!) is consistent with
a wind stress coefficient T0 = 7.9 · 10−10 m s−2. The grid Reynolds number

(Re,g =
U ·∆x
A

= 2.5 · 10−3) is small compared to one.
In explicit numerical schemes the time step is limited by the fastest waves in
the system (Courant, Friedrichs und Lewy, 1928). Rossby (planetary) waves
are excited by the sudden onset of wind forcing. The free undamped waves
are governed by

∂

∂t
∇2ψ + β

∂ψ

∂x
= 0. (5.7.15)

Inserting the ansatz ψ = ψ0e
i(kx+ly−σt) (wavenumber k = (k, l), k, l ≥ 0) into

Eq. (5.7.15) one can readily derive the dispersion relation

σ(k, l) = − βk

k2 + l2
(5.7.16)

which shows that Rossby waves live on the ‘β effect’, i.e. the fact that the
rotation rate (as measured by the Coriolis parameter f) varies with latitude.
The phase speed

vph =
σ

κ
= −βk

κ3
with κ =

√
k2 + l2 (5.7.17)

is always negativ (westward propagating phase). Its magnitude becomes max-
imal for k = 2π/L and l = 0 and reads

|vph|max =
βL2

4π2
= 2 m s−1. (5.7.18)

Thus the time step has to below ∆x/ |vph|max ≈ 2500 s. Integration with
∆t = 200 s was numerically stable over the whole simulation time (15 weeks).
The global kinetic energy (Fig. 5.7.3) increases over two weeks until it reaches
a quasi steady state with oscillations due to Rossby waves. The mean (over
several weeks in quasi steady state) velocity shows excellent agreement with
the analytical solution (Fig. 5.7.4).

LB simulation in the nonlinear regime

In order to test the LBM under nonlinear conditions, simulations were per-
formed in a closed (no-slip boundary conditions everywhere) basin of size 4000
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Fig. 5.7.3. Time series of the global kinetic energy (LBM simulation of the linear
Munk problem). The oscillations in the quasi steady state are due to Rossby waves.

0 5 10 15
0

0.5

1

1.5

2

2.5

3
x 10

−5

Time (weeks)

K
in

et
ic

 e
ne

rg
y

Fig. 5.7.4. Isocontours of the velocity component u (times 104) show excellent
agreement between the analytical solution (left) and the LBM result (right).
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km × 4000 km with central latitude at 30◦N. The flow can be characterized
by two dimensionless numbers: the Rossby number

Ro =
U

βL2
(5.7.19)

measures the ratio between the advection (u∇u) and the β term (βyû), and
the Reynolds number

Re =
U L

A
(5.7.20)

is the ratio between the advection and the friction term (A∇2u). The ratio
of the Rossby and Reynolds number gives the Ekman number

EA =
A

βL3
(5.7.21)

which measures the ratio between the friction and the β term. The Reynold

number, Re =
U · L
A

, was set to 80 and the Rossby number, Ro =
U

β · L2
,

to 1.28 · 10−3. U = 0.4 m s−1 and A = 20300 m2 s−1 where calculated from
Re and Ro. The grid spacing, ∆x = 40 km, was chosen small than the Munk
width, WM = 100 km. The applied wind stress

Tx = −T0 sin2 πy

L
, Ty = 0 (5.7.22)

with T0 = 8 · 10−7 m s−2 leads to the formation of a double gyre (Fig. 5.7.5).

Exercise 64. (**)
A flow without any external body force can be characterized by a single di-
mensionless number (Reynolds number). A flow with one type of external
body force requires two dimensionless numbers (Reynolds and Froude num-
ber; compare discussion of the similarity law in Section 1.3). Here we consider
a flow with two types of body forces (Coriolis and wind stress). Do we need
three (independent) dimensionless numbers to characterize the flow?

Exercise 65. (***)
The Navier-Stokes equation contains only molecular diffusion as dissipative
process. For large scale oceanic circulation molecular diffusion does not play
a role. To get rid of the vorticity imparted by the wind Stommel (1948) intro-
duced bottom friction that is linear in the velocity u = (u, v). The appropriate
equation of motion reads

∂u

∂t
+ (u∇)u + f û +

1
ρ
∇p+ ksu + T = 0 (5.7.23)

with the (bottom) friction coefficient ks. Taking the curl of Eq. (5.7.23) one
obtains the vorticity equation
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Fig. 5.7.5. LB simulation of a double gyre: isocontours of the stream function
ψ(x, y) (times 10−4).
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∂

∂t
∇2ψ + J(ψ,∇2ψ) + β

∂ψ

∂x
+ ks∇2ψ +

(
∂Ty

∂x
− ∂Tx

∂y

)
= 0. (5.7.24)

For the stationary and linear case the vorticity equation (5.7.24) simplifies:

ks∇2ψ + β
∂ψ

∂x
= −

(
∂Ty

∂x
− ∂Tx

∂y

)
. (5.7.25)

The analytical solution of Eq. (5.7.25) in a rectangular ocean basin of length
L and width H with 0 ≤ x ≤ L and 0 ≤ y ≤ H and the boundary conditions

ψ(0, y) = ψ(L, y) = ψ(x, 0) = ψ(x,H) = 0. (5.7.26)

reads

ψ(x, y)
(5.7.27)

=
T0H

ksπ
sin
( π
H
y
)

1− e

β(L− x)
2ks sinh(αx) + e

− βx

2ks sinh(α(L − x))
sinh(αL)
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where

α =

√
β2

4k2
s

+
π2

H2
. (5.7.28)

This solution describes an asymmetrical gyre with a narrow intense western
boundary current and a wide slow southward drift in the eastern part of the
basin.
1. Write a LBM code for the Stommel problem. 2. Compare results of the LBM
code with the analytical solution of the linear Stommel model. 3. Discuss the
pattern of the gyre as a function of Rossby number.

Further reading: Salmon (1999).
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5.8 A lattice Boltzmann equation for diffusion

The formulation of lattice-gas cellular automata (LGCA) for given partial
differential equations is not straightforward and still requires ‘some sort of
magic’. Lattice Boltzmann models are much more flexible than LGCA be-
cause of the freedom in choosing equilibrium distributions with free param-
eters which can be set after a multi-scale expansion according to certain re-
quirements. Here a LBM is presented for diffusion in an arbitrary number of
dimensions (Wolf-Gladrow, 1995). The model is probably the simplest LBM
which can be formulated. It is shown that the resulting algorithm with re-
laxation parameter ω = 1 is identical to an explicit finite differences (EFD)
formulation at its stability limit. Underrelaxation (0 < ω < 1) allows stable
integration beyond the stability limit of EFD. The time step of the explicit
LBM integration is limited by accuracy and not by stability requirements.

The creation of LGCA for certain partial differential equations still seems to
require ‘some sort of magic’ (compare quotation of Toffoli and Margulos, 1990,
in Section 5.4). Here a simple LBM for diffusion is presented and it is shown
how straightforward it is to derive such a model. In addition, the resulting
algorithms are compared with an explicit finite difference (EFD) scheme.

5.8.1 Finite differences approximation

An explicit finite difference scheme for the diffusion equation

∂T

∂t
= κ∇2T (5.8.1)

(T is the concentration of a tracer, κ is the diffusion coefficient and ∇2 is
the Laplace operator in D dimensions in Cartesian coordinates) results from
forward approximation in time and central differences in space

T
(n+1)
k1,k2,...,kD

=
κ∆t

(∆x)2
(
T

(n)
k1+1,k2,...,kD

+ T
(n)
k1−1,k2,...,kD

+

...+ T
(n)
k1,k2,...,kD+1 + T

(n)
k1,k2,...,kD−1

)
+
(

1− 2D
κ∆t

(∆x)2

)
T

(n)
k1,k2,...,kD
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where equidistant and equal spacing in all dimensions have been assumed.
The scheme is stable for

0 < ∆t ≤ 1
2D

(∆x)2

κ

(see, for example, Ames, 1977; compare Subsection 5.6.2 for the case D = 1).
At the upper stability limit the scheme becomes especially simple

T
(n+1)
k1,k2,...,kD

=
(
T

(n)
k1+1,k2,...,kD

+ T
(n)
k1−1,k2,...,kD

...+ T
(n)
k1,k2,...,kD+1 + T

(n)
k1,k2,...,kD−1

)/
(2D)

that is T at the new time level is given by the mean over all neighbor values
at the previous time level.

5.8.2 The lattice Boltzmann model for diffusion

“... it is well known that 90◦ rotational invariance is sufficient to yield
full isotropy for diffusive phenomena.”
Toffoli and Margulos (1990)

According to Toffoli and Margulos (1990) it is sufficient to use a square or a
cubic lattice in two or three dimensions, respectively. The following model is
applicable in an arbitrary number of dimensions. The grid velocities (vectors
connecting neighboring grid points) are defined by

c2n−1 = (0, 0, ..., 0, 1, 0, ..., 0), c2n = (0, 0, ..., 0,−1, 0, ..., 0) n = 1, 2, ..., D

where D is the dimension.
In general, the equilibrium distributions6 T (0)

m depend on the conserved quan-
tities (here only T ), a number of parameters γk (k = 0, 1, ..., N) and on the
direction (index m). Here, grids with only one speed are considered and the
equilibrium distribution functions T (0)

m do not independent on m. T is given
as the sum over the distribution functions Tm

T (x, t) =
∑
m

Tm(x, t) =
∑
m

T (0)
m (x, t) (5.8.2)

where the summation runs over all directions (m = 1, 2, ...,M = 2D).
The diffusion equation is a linear differential equation. Hence it is reasonable
to use a linear ansatz for T (0)

m

6 We will use the notation Tm insteed of Fm for the distribution functions. The
equilibrium distribution functions for pure diffusive problems, T

(0)
m , (diffusion of

temperature or tracers) are simpler than those for flow problems, F
(0)
m .
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T (0)
m = γ0 + γ1T . (5.8.3)

Inserting (5.8.3) into (5.8.2) yields

T (0)
m =

T

2D
(5.8.4)

that is, all free parameters are already fixed by the definition of the tracer
concentration. The diffusion coefficient κ will result from the multi-scale ex-
pansion as described below.

5.8.3 Multi-scale expansion

The LBM is defined by the grid, the equilibrium distribution T
(0)
m and the

kinetic equation

Tm(x + cm, t+ 1) = (1− ω)Tm(x, t) + ωT (0)
m (x, t) (5.8.5)

which states that the distribution at the new time level (t+ 1) at the neigh-
boring site (x + cm) is a weighted sum of the distribution Tm(x, t) and the
equilibrium distribution T (0)

m (x, t). Models with parameter ω go under various
names: ‘enhanced collision’ (Higuera et al., 1989), BGK (named after Bhatna-
gar, Gross and Krook, 1954; compare, for example, Qian et al., 1992), STRA
(‘single time relaxation approximation’, Chen et al., 1991) or SOR (‘successive
over-relaxation’, Qian et al., 1992). The LBM is stable for 0 < ω < 2. Now
the macroscopic equations will be derived by a multi-scale analysis (compare
Frisch et al., 1987, for an analogous procedure for LGCA). The distribution
functions are expanded up to linear terms in the small expansion parameter ε

Tm = T (0)
m + εT (1)

m +O(ε2).

From the kinetic equation (5.8.5) one can calculate an approximation of T (1)
m

Tm(x + cm, t+ 1) = Tm(x, t) + ∂xαcmαTm + ∂tTm +O(ε2)
= (1 − ω) Tm(x, t)︸ ︷︷ ︸

= T (0)
m + εT (1)

m +O(ε2)

+ωT (0)
m (x, t)

→
εT (1)

m = − 1
ω
∂xαcmαTm − 1

ω
∂tTm +O(ε2).

Diffusion is a slow process on large spatial scales which suggests the following
scaling (same as for the derivation of the Navier-Stokes equations in Frisch et
al., 1987)
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∂t → ε2∂
(2)
t

∂xα → ε∂(1)
xα
.

The components of the grid velocities obey the following equations∑
m

cm = 0

∑
m

cmαcmβ = 2δαβ

and therefore ∑
m

cmT
(0)
m =

T

2D

∑
m

cm = 0.

Inserting the expansion and the scalings into the conservation relation for
tracer concentration, one obtains up to second order in ε

0 =
∑
m

[Tm(x + cm, t+ 1)− Tm(x, t)]

=
∑
m

[Tm(x, t) + ε2∂
(2)
t Tm︸ ︷︷ ︸

→ ∂tT

+ε∂(1)
xα
cmαTm +

1
2
ε2∂(1)

xα
∂(1)

xβ
cmαcmβT

(0)
m

−Tm(x, t) +O(ε3)]

and ∑
m

ε∂(1)
xα
cmαTm = ε∂(1)

xα

∑
m

cmαT
(0)
m︸ ︷︷ ︸

= 0

+
∑
m

ε2∂(1)
xα
cmαT

(1)
m +O(ε3)

= − 1
ω

∑
m

ε2∂(1)
xα
∂(1)

xβ
cmαcmβT

(0)
m +O(ε3) (5.8.6)

= − 1
ω

1
D
ε2δαβ∂

(1)
xα
∂(1)

xβ
T︸ ︷︷ ︸

→ ∇2T

+O(ε3)

∑
m

1
2
ε2∂(1)

xα
∂(1)

xβ
cmαcmβT

(0)
m =

1
2D

ε2δαβ∂
(1)
xα
∂(1)

xβ
T

and finally
∂T

∂t
= κ∇2T

with

κ =
(

1
ω
− 1

2

)
1
D
. (5.8.7)
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5.8.4 The special case ω = 1

For ω = 1 the kinetic equation (5.8.5) reduces to

Tm(x + cm, t+ 1) = T (0)
m (x, t)

and the diffusion coefficient is κ =
1

2D
. This LBM is identical to the finite

difference scheme at the stability limit. The right hand side of the kinetic
equation is just the mean value of the nearest neighboring sites and the dif-
fusion coefficient is the maximal value allowed by the stability condition. For
the LBM the diffusion coefficient is expressed in the units ∆t = ∆x = 1; the
diffusion coefficient at the stability limit of the EFD reads

κ =
1

2D
(∆x)2

∆t
=

1
2D

.

This scheme requires only two arrays in memory: the tracer concentrations at
two time levels.

5.8.5 The general case

In the general case one has to store M = 2D distributions in addition to the
tracer concentrations at two time levels. What do we gain from this extra
cost? In the range 0 < ω < 1 (underrelaxation) the diffusion coefficient κ is
larger than the value at the stability limit of the EFD scheme while we still
keep ∆t = ∆x = 1. In contrast to EFD, the LBM is stable in this parameter
range.

5.8.6 Numerical experiments

To test the predictions of the LBM outlined above the one-dimensional dif-
fusion equation was integrated. As initial conditions, values of an analytical
solution were used, namely

T (x, ti) =
1

2
√
πκti

exp
[
− x2

4κti

]
.

The integration starts at ti = 15/κ(ω) and ends at tf = 75/κ(ω), thus the
time interval depends on κ(ω), but in each case the integration starts with the
same numerical values and ends after the maximum decreases from ≈ 0.073 to
≈ 0.033. Fig. 5.8.1 shows the results of such an integration for ω = 0.3 together
with the analytical solution and the initial values. By appropriate choice of
ω, one can keep ∆t = 1 for ‘arbitrarily’ large diffusion coefficients: the scheme
is stable but the numerical error increases with increasing diffusion coefficient
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(compare Fig. 5.8.2). Thus, we have an explicit scheme (BGK-LBM) where the
length of the time step is no longer limited by stability requirements. The large
error at small values of ω stems from the fact that explicit approximations of
parabolic equations act like a hyperbolic system with two real finite difference
characteristics instead of only a single real characteristic of the continuous
system (Ames, 1977).

5.8.7 Summary and conclusion

A very simple LBM for diffusion in an arbitrary number of dimensions is
proposed. For ω = 1 the resulting algorithm is identical to an explicit finite
difference scheme at its stability limit. Thus the LBM scheme is not only
stable, but automatically picks the maximal allowed diffusion coefficient κ to
ensure stability of the EFD scheme.
For LGCA the transport coefficients depend on the collision rules which are
never optimal in the sense that they yield only a certain approximation of the
(continuous) local equilibrium functions (compare the various FHP models
with and without rest particles in Frisch et al., 1987, or the various collision
rules proposed for FCHC by Hénon, 1987, Rem and Somers, 1989, and van
Coevorden et al., 1994) whereas for LBM, the collisions (which do not show
up explicitly) can create local equilibrium at each time step. By reducing
the number of collision in LGCA one obtains models with higher diffusion
coefficients while stability is assured. This can be regarded as a kind of un-
derrelaxation.
In the BGK-LBM the diffusion coefficient κ is an adjustable parameter. Of
special interest is the parameter range 0 < ω < 1. The use of information
contained in the nonequilibrium distribution functions allows explicit stable
integration beyond the stability limit of the EFD scheme. Thus, the time step
is limited by accuracy and not by stability requirements.
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Fig. 5.8.1. Integration of the diffusion equation in one dimension by the BGK-
LBM with ω = 0.3. The integration starts at time ti = 15/κ(ω) with initial values

T (x, ti) =
1

2
√
πκti

exp

[
− x2

4κti

]
(dotted line) and ends at tf = 75/κ(ω). The figure

shows the numerical results (broken line) together with the analytical solution (solid
line).
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Fig. 5.8.2. Integrations of the diffusion equation in one dimension by the BGK-
LBM. The integration starts at time ti = 15/κ(ω) with initial values T (x, ti) =

1

2
√
πκti

exp

[
− x2

4κti

]
and ends at tf = 75/κ(ω). The plot shows the logarithm of

the maximum error (max{|Tnumerical solution − Tanalytical solution |}) at the end

of the integrations as a function of ω. The error increases at small values of ω (large
values of the diffusion coefficients).
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5.8.8 Diffusion equation with a diffusion coefficient depending on
concentration

By a small modification the lattice Boltzmann model proposed above can be
generalized to a model for a diffusion equation with a diffusion coefficient
depending on concentration: The constant ω will be replaced by a function
ω(T ). The multi-scale analysis proceeds as before except for Eq. (5.8.6) where
1/ω and the spatial derivative must not be exchanged:∑

m

ε∂(1)
xα
cmαTm = ε∂(1)

xα

∑
m

cmαT
(0)
m︸ ︷︷ ︸

= 0

+
∑
m

ε2∂(1)
xα
cmαT

(1)
m +O(ε3)

= −
∑
m

ε2∂(1)
xα

1
ω(T )

∂(1)
xβ
cmαcmβT

(0)
m +O(ε3)

= − 1
D
ε2δαβ∂

(1)
xα

1
ω(T )

∂(1)
xβ
T︸ ︷︷ ︸

→
[
∇ 1
ω(T )

∇T

]
+O(ε3).

Thus the macroscopic equation reads

∂T

∂t
= ∇ [κ(T )∇T ] (5.8.8)

with

κ(T ) =
[

1
ω(T )

− 1
2

]
1
D
. (5.8.9)

Comparison with an analytical solution

A few analytical solutions are known for the nonlinear diffusion equation

∂T

∂t
=

∂

∂x

[
κ(T )

∂T

∂x

]
=
∂κ

∂T

(
∂T

∂x

)2

+ κ(T )
∂2T

∂x2
. (5.8.10)

For κ(T ) = T (Logan, 1994, p. 143; a misprint has been corrected) a solution
reads

T (x, t) =
1
6t

(
A2t2/3 − x2

)
for |x| < At1/3 (5.8.11)

and T (x, t) = 0 otherwise. Fig. 5.8.3 shows the comparison between the nu-
merical solution by the lattice Boltzmann model and the analytical solution
at t = 210 for initial conditions according to eq. (5.8.11) with A = 5, t = 10
inside the interval |x| < At1/3 and T = 0 otherwise. The agreement is very
good.
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Fig. 5.8.3. Integration of the nonlinear diffusion equation (5.8.10) by the lattice
Boltzmann model. The initial distribution is marked by circles. The numerical solu-
tion at t = 210 (solid line) is indistinguishable from the analytical solution (dashed-
dotted line; not visible). The broken line shows the difference between numerical and
analytical solution multiplied by 100.

−50 0 50
−0.5

0

0.5

1

1.5

2

x

T
(x

)

5.8.9 Further reading

Elton et al. (1990) proposed a LBM for a nonlinear diffusion equation in 2D.
The collision operator is based on variants of the HPP model (extended by
one- and two-particle collisions which conserve mass but not momentum). The
diffusion coefficients are functions of the tracer density.
The LBM for reaction-diffusion systems by Dawson et al. (1993) lives on
the FHP lattice (D2Q7) and applies the BGK approximation of the collision
operator.
Qian and Orszag (1995) developed a LBM for reaction-diffusion equations.
Their diffusion model is identical to that proposed by Wolf-Gladrow (1995).
Further reading: Sun (1998), van der Sman and Ernst (1999).
Finite differences: Teixeira (1999).



240 5 Lattice Boltzmann Models

5.9 Lattice Boltzmann model: What else?

• Books: Rothman and Zaleski (1997).

• Review articles: Benzi, Succi and Vergassola (1992), Rothman and Zaleski
(1994), Qian, Succi and Orszag (1995), Biggs and Humby (1998), Chen
and Doolen (1998).

• Curvilinear coordinates, finite volumes, irregular grids, mesh refinement:
Filippova and Hänel (1998a,b), He and Doolen (1997a,b), He (1997), Kar-
lin and Succi (1998), Mei and Shyy (1998), Peng et al. (1998, 1999), Renwei
and Wei (1998), Tölke et al. (1998, 1999), Karlin et al. (1999), Xi et al.
(1999a,b).

• Flow past obstacles: Bernsdorf et al. (1998).

• Flow through porous media: Cancelliere et al. (1990), Aharonov and Roth-
man (1993), Gunstensen and Rothman (1993), Sahimi (1993), Buckles
et al. (1994), Heijs and Lowe (1995), Martys and Chen (1996), Shan
and Doolen (1996), Grubert (1997), Spaid and Phelan (1997; 1998), An-
gelopoulos et al. (1998), Bosl et al. (1998), Coveney et al. (1998), Dardis
and McCloskey (1998a,b), Freed (1998), Kim et al. (1998), Koch et al.
(1998), Koponen et al. (1998a,b), Maier et al. (1998a,b), Noble and Tor-
czynski (1998), Waite et al. (1998; 1999), Berest et al. (1999), Bernsdorf
et al. (1999), Inamuro et al. (1999), Verberg and Ladd (1999).

• Granular flow: Herrmann (1995), Tan et al. (1995), Herrmann et al. (1996).

• Multiphase flows: Gunstensen et al. (1991), Holme and Rothman (1992),
Flekkøy (1993), Shan and Chen (1993, 1994), d’Ortona et al. (1995),
Flekkøy et al. (1995), Orlandini et al. (1995), Flekkøy et al. (1996b), Hal-
liday (1996), Halliday et al. (1996), Sofonea (1996), Swift et al. (1996),
Gonnella et al. (1997; 1998; 1999), Hou et al. (1997), Kato et al. (1997),
Wagner and Yeomans (1997; 1998; 1999), Angelopoulos et al. (1998), Chen
et al. (1998a), Halliday et al. (1998), Holdych et al. (1998), Lamura et al.
(1998; 1999), Masselot and Chopard (1998a), Theissen et al. (1998), Wag-
ner (1998b), Yu and Zhao (1999).

• Magnetohydrodynamics (MHD): Chen et al. (1991), Succi et al. (1991),
Martinez et al. (1994), Sofonea (1994).

• Compressible flows, Burgers equation: Alexander et al. (1992).

• Flow past fractal obstacles: Adrover and Giona (1997).

• Turbulence and large eddy simulation (LES): Frisch (1991), Benzi et al.
(1996), Amati et al. (1996), Fogaccia et al. (1996), Hayot and Wagner
(1996), Amati et al. (1997a,b), Succi (1998), Teixeira (1998).

• Flow in dynamical geometry (blood flow): Fang et al. (1998), Krafczyk et
al. (1998a).
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• Glacier flow: Bahr and Rundle (1995).

• Rayleigh-Bénard convection: Bartoloni et al. (1993), Massaioli et al.
(1993), Benzi et al. (1994), Pavlo et al. (1998a) Vahala et al. (1998a).

• Rayleigh-Taylor instability: Nie et al. (1998), He et al. (1999a,b).

• Korteweg-de Vries equation: Yan (1999).

• Droplets: Schelkle et al. (1999), Xi and Duncan (1999).

• Crystal growth: Miller and Böttcher (1998).

• Wave propagation: Chopard and Luthi (1999).

• Maxwell’s equations: Simons et al. (1999).

• Decoupling of spatial grid from the velocity lattice: Cao et al. (1997), Pavlo
et al. (1998a).

• H-theorem for LBM: Karlin and Succi (1998), Karlin et al. (1998), Wagner
(1998a), Karlin et al. (1999).

• Quantum mechanics: Succi and Benzi (1993), Succi (1996), Meyer
(1997a,b; 1998).

• Related methods: Junk (1999).

• Further reading: Lavallée et al. (1989), Kingdon et al. (1992), McNamara
and Alder (1992, 1993), Nannelli and Succi (1992), Qian (1993), Qian and
Orszag (1993), Ladd (1993, 1994a,b), Chen et al. (1994), Punzo et al.
(1994), Succi and Nannelli (1994), Elton et al. (1995), Hou et al. (1995),
McNamara et al. (1995), Miller (1995), Ohashi et al. (1995), Reider and
Sterling (1995), Succi et al. (1995), Wagner and Hayot (1995), Zou et al.
(1995a,b), Flekkøy et al. (1996a), Elton (1996), (Burgers eq.) He et al.
(1996), Kaandorp et al. (1996), Lin et al. (1996), Orszag et al. (1996),
Rakotomalala et al. (1996), Sterling and Chen (1996), Chen and Ohashi
(1997), Filippova and Hänel (1997, 1998c), Giraud and d’Humières (1997),
Luo (1997a,b), Maier and Bernard (1997), Qi (1997; 1999), Qian (1997),
Qian and Chen (1997), Stockman et al. (1997; 1998), Succi et al. (1997),
van der Sman (1997), Warren (1997), Ahlrichs and Dunweg (1998), Aidun
et al. (1998), Buick and Greated (1998), Buick et al. (1998), Chen (1998),
Chen and Ohashi (1998), Chen et al. (1998b), Chenghai (1998), De Fab-
ritiis et al. (1998), Giraud et al. (1998), He and Zhao (1998), Kandhai et
al. (1998a,b; 1999), Krasheninnikov and Catto (1998), Luo (1998), Succi
and Vergari (1998), Takada and Tsutahara (1998), Ujita et al. (1998), Xu
and Luo (1998), Yan (1998), Yan et al. (1998; 1999), Kendon et al. (1999),
Klar (1999).
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5.10 Summary and outlook

Because LGCA and LBM are still in rapid development it is not possible to
give an actual and complete picture of the whole field. Instead I have tried to
introduce the basic models (HPP, FHP, FCHC, D2Q9) plus some personal fa-
vorites (like PI) together with methods from statistical mechanics (Chapman-
Enskog expansion, BGK approximation, maximum entropy principle) which
are necessary for the theory of LGCA or LBM but which are usually not part
of the curriculum for students of physics or mathematics. Knowledge of these
special methods is usually taken for granted in articles and even in reviews.
I am still fascinated by these new methods, and I guess, I am not alone. Al-
though the emergence of new numerical methods is often driven by practical
requirements by engineers and natural scientists, (applied) mathematicians
usually take the lead in the development of the schemes. However, many re-
searchers working on LGCA and LBM would call themselves most probably
physicists. Why are these kind of schemes so attractive to them? At least
three reason come to my mind. Firstly, both approaches are based on conser-
vation laws. Physicists feel at home with conservation laws. The continuity
equation and the Navier-Stokes equation express the conservation of mass
and momentum. Certain conserved quantities are related (Noether theorem)
to symmetry groups which allow us to derive equations of the fundamental
field theories by the gauge principle. Secondly, LGCA and LBM require more
(physical) theory than many other numerical methods. Whereas you can teach
to a beginner how to create and apply the simplest schemes of finite differ-
ences or spectral methods to partial differential in a few hours, this seems
not possible for LGCA, LBM, and finite elements. And the theory required
stems from statistical mechanics (Chapman-Enskog expansion, maximum en-
tropy principle) whereas for finite elements, for example, weak convergence in
Sobolev spaces is more the backyard of mathematicians. Last but not least,
it is fascinating to see the role of symmetry. The symmetry of the underlying
lattice is still important on the macroscopic level. It took more than 10 years
to discover that it is sufficient to replace a lattice with fourfold (HPP) by one
with hexagonal (FHP) symmetry in order to obtain the correct form of the
nonlinear advection term of the Navier-Stokes equation. The same symmetry
requirement even led us into four dimensions (FCHC). Chiral symmetry has
to be established by random processes (FHP). Spurious invariants have to be
detected (still not solved in general) and then to be destroyed (for example:
three-particle collisions in FHP) or not to be initialized or generated (Zanetti
invariants). And finally consequences of missing symmetry has to be scaled
away (symptomatic treatment of the violation of Galilean invariance).
As a final remark let me ask the question: What will be the future of LGCA
and LBM? Will these schemes have outcompeted the traditional methods (fi-
nite differences, finite volumes, finite elements, spectral, semi-Lagrange, ...) in
say five years from now? Or will we throw away these new schemes because
they cannot compete with the fastest of the other schemes? The application
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of a wide variety of methods at the same time already indicates that currently
(forever?) there does not exist a best scheme for all problems in the numeri-
cal solution of partial differential equations. Although finite elements are well
established since decades (the first edition of the monograph by Zienkiewicz
appeared already in 1967) the Modular Ocean Model (the work horse of phys-
ical oceanography) still applies finite volumes (Bryan, 1969; Semtner, 1997).
And the traditional methods are still under development (the same is true for
languages such as FORTRAN). Rood (1987) lists about 100 different numeri-
cal advection schemes and several new have been proposed since. LGCA and
LB models have disadvantages (how to construct models for given differential
equations, noise of LGCA, stability of LBM, large memory requirement of
LBM) which prohibit the general replacement of well-established traditional
methods.
On the other hand, LGCA and LB models have several advantages like flexi-
bility with respect to domain geometry, locality of the collisions (well adapted
to massively parallel computer) and low complexity of the code. Because LB
models are based on conservation principles they are especially suited for long-
time integrations (for instance: climate models). It has been shown already
that LGCA and LB models can compete with traditional schemes in certain
classes of problems. Therefore, it is almost certain that both methods will find
their niches.
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6.1 Boolean algebra

George Boole (1815 - 1864), English mathematician. Boolean algebra is a
mathematical structure B = (B,∪,∩, )̄ consisting of a set B and two binary
operations called union (∪) and intersection (∩) and one unitary operation
called complementation (̄ ). The system which originally inspired this collec-
tion of laws is the algebra of sets with the familiar operations of set union and
intersection.
The following relations1 hold true:

1. Closure:

(i) The union of two elements in B yields a unique element in B.
a, b ∈ B → (a ∪ b) ∈ B

(ii) The intersection of two elements in B yields a unique element in B.
a, b ∈ B → (a ∩ b) ∈ B

2. Commutativity: ∀ a, b ∈ B:

(i) a ∪ b = b ∪ a
(ii) a ∩ b = b ∩ a

3. Associativity: ∀ a, b, c ∈ B:

(i) (a ∪ b) ∪ c = a ∪ (b ∪ c)
(ii) (a ∩ b) ∩ c = a ∩ (b ∩ c)

4. Distributivity: ∀ a, b, c ∈ B:

(i) a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c)
(ii) a ∪ (b ∩ c) = (a ∪ b) ∩ (a ∪ c)

5. The idempotent laws: ∀a ∈ B
(i) a ∪ a = a

(ii) a ∩ a = a

6. Identity elements 0 and 1:

(i) In B there is the unique element 0 with the following properties:
a ∪ 0 = a and a ∩ 0 = 0 ∀a ∈ B.
0 is the identity element with respect to union.

(ii) In B there is the unique element 1 with the following properties:
a ∪ 1 = 1 and a ∩ 1 = a ∀a ∈ B.
1 is the identity element with respect to intersection.

Remark: If you consider the ordinary union and intersection of sets the
0-element corresponds to the empty set and the 1-element corresponds to
the whole set.

1 We do not speak of axioms because some of relations are redundant.
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7. Complementation: ∀ a ∈ B there exists a unique element a such that

(i) a ∪ a = 1

(ii) a ∩ a = 0.

a is called the complement of a. The elements a, b ∈ B obey the DeMorgan
laws:

(iii) a ∪ b = a ∩ b
(iv) a ∩ b = a ∪ b
Law of involution: ∀a ∈ B
(v) (a) = a

Principle of duality: The substitution

(∪,∩, 0, 1) → (∩,∪, 1, 0)

transforms true expressions of the Boolean algebra into true expressions.
Proof: All laws listed above obey the principle of duality. Law 7(v) is selfdual.

Exercise 66. (**)
Show that the structure

Btf = (B = {true, false}, AND, (inclusive)OR,NOT )

defines a Boolean algebra. Show that XOR can be expressed in terms of
AND, OR and NOT . Why is

N = (B = {true, false}, AND,XOR,NOT )(XOR = exclusive or)

not a Boolean algebra?

Exercise 67. (*)
Consider the set B = {0, 1 ∈ IN} and the operations addition modulo 2 (+)
and multiplication (·). Show: this structure obeys the laws of Boolean algebra
if complementation is appropriately defined (how?).

Exercise 68. (**)
Prove that for all elements a and b in the setB of a Boolean algebra (B,∪,∩, )̄:

(a ∩ b) ∪ (a ∩ b) = a

Exercise 69. (*)
Consider the set of integers and the operations addition (+) and multiplication
(·). Show that this structure is not a Boolean algebra.
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6.2 FHP: After some algebra one finds ...

In this appendix the Lagrange multipliers of the equilibrium distributions for
the FHP-I and the HPP model will be calculated (compare Subsection 3.2.5).
For vanishing flow velocity the occupation numbers equal each other

u = 0 =⇒ Ni =
ρ

b
= d (6.2.1)

(b number of cells per node, b = 6 for FHP-I, b = 4 for HPP; d density per
cell) and therefore

Ni(ρ,0) =
1

1 + exp[h(ρ,0)]
= d (6.2.2)

and
q(ρ,0) = 0. (6.2.3)

Because of invariance of the occupation numbers under the parity transform

u → −u, ci → −ci (6.2.4)

it follows that
h(ρ,−u) = h(ρ,u), (6.2.5)

and
q(ρ,−u) = −q(ρ,u). (6.2.6)

The Lagrange multipliers h und q will be expanded up to second order in u:

h(ρ,u) = h0(ρ) + h2(ρ)u2 +O(u4) (6.2.7)
q(ρ,u) = q1(ρ)u +O(u3). (6.2.8)

All other low order terms vanish because of the parity constraints. It is re-
markable that h2 and q1 are scalars instead of tensors of rank 2. This fact is
a consequence of the isotropy of lattice tensors (compare Section 3.3) of rank
2.
The expansions (6.2.7) and (6.2.8) will be inserted into the Fermi-Dirac dis-
tribution (3.2.28). Then the distribution is expanded in a Taylor series with
respect to u at u = 0 up to second order.

Ni(u) = Ni(u = 0) +
∂Ni

∂u
· u+

∂Ni

∂v
· v

+
1
2
∂2Ni

∂u2
· u2 +

∂2Ni

∂u∂v
· u · v +

1
2
∂2N1

∂v2
· v2 +O(u3),
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Ni(u) =
1

1 + exp[x(u)]
,

x(u) = h0 + h2u
2 + q1uci,

x(0) = h0,

Ni(h0) =
1

(1 + exp[h0])
= d,

→

exp[h0] =
1− d

d
,

h0 = ln
1− d

d
∂Ni

∂uα
=
∂Ni

∂x
· ∂x
∂uα

→︸︷︷︸
u=0

d(d− 1)q1ciα,

∂Ni

∂x
= − exp[x]

(1 + exp[x])2
→︸︷︷︸

u=0

d− 1
d

d2 = d(d− 1)

∂x

∂uα
= 2h2uα + q1ciα → q1ciα,

∂2Ni

∂u2
α

=
∂

∂uα

[
∂Ni

∂x
· ∂x
∂uα

]

=
∂2Ni

∂x∂uα
· ∂x
∂uα

+
∂Ni

∂x
· ∂

2x

∂u2
α

=
∂2Ni

∂x2
·
(
∂x

∂uα

)2

+
∂Ni

∂x

∂2x

∂u2
α

→ d(d − 1)(2d− 1)q21c
2
iα + d(d− 1)2h2,

∂2Ni

∂x2
= −exp[x](1 + exp[x])2 − exp[x] · 2(1 + exp[x]) exp[x]

(1 + exp[x])4

=
exp[x](exp[x]− 1)

(1 + exp[x])3

→ 1− d

d
(
1− d

d
− 1)d3 = d(d − 1)(2d− 1),

∂2x

∂u2
α

= 2h2.

For α 6= β:

∂2Ni

∂uα∂uβ
=

∂

∂uβ

[
∂Ni

∂x
· ∂x
∂uα

]

=
∂2Ni

∂x∂uβ
· ∂x
∂uα

+
∂Ni

∂x
· ∂2x

∂uα∂uβ
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=
∂2Ni

∂x2
· ∂x
∂uα

· ∂x
∂uβ

+
∂Ni

∂x
· ∂2x

∂uα∂uβ

→ d(d− 1)(2d− 1)q21ciαciβ ,
∂2x

∂uα∂uβ
= 0,

Ni(u) = d+ d(d− 1)q1ci · u
+

1
2
d(d − 1)(2d− 1)q21c

2
iαu

2
α + d(d− 1)h2u

2. (6.2.9)

At this point the coefficients h2 and q1 are not known yet. The expression
for Ni, however, looks much simpler now: a polynomial instead of a rational
function with an exponential function in the denominator. Next insert the Ni

according to eq. (6.2.9) into the definitions of mass and momentum density
and use the moments relations (3.2.3 - 3.2.5):

ρ =
∑

i

Ni

=
∑

i

d

︸ ︷︷ ︸
= ρ

+
∑

i

d(d− 1)q1ci · u︸ ︷︷ ︸
= 0

+
∑

i

1
2
d(d− 1)(2d− 1)q21c

2
iαu

2
α︸ ︷︷ ︸

=
1
2
3d(d− 1)(2d− 1)q21u

2

+
∑

i

d(d − 1)h2u
2

︸ ︷︷ ︸
= 6d(d− 1)h2u

2

.

From this a relation between h2 and q1 follows:

h2 =
1
4
(1− 2d)q21 ,

ρu =
∑

i

Nici

=
∑

i

dci︸ ︷︷ ︸
= 0

+
∑

i

d(d− 1)q1(ci · u)ci︸ ︷︷ ︸
= 3d(d− 1)q1u
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+
∑

i

1
2
d(d− 1)(2d− 1)q21c

2
iαu

2
αci︸ ︷︷ ︸

= 0

+
∑

i

d(d − 1)h2u
2ci︸ ︷︷ ︸

= 0

,

q1 =
2

d− 1
,

h2 =
1− 2d

(d− 1)2
,

Ni(u) = d+ 2dci · u + 2d
1− 2d
1− d

c2iαu
2
α − d

1− 2d
1− d

u2

=
ρ

6
+
ρ

3
ci · u + ρG(ρ)Qiαβuαuβ,

with
G(ρ) =

1
3

6− 2ρ
6− ρ

and Qiαβ = ciαciβ − 1
2
δαβ .
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6.3 Coding of the collision operator of FHP-II and
FHP-III in C

/* collision with 1 rest particle (FHP-II) 17.5.89 dwg */

for(ix=0; ix < IXM; ix++) {
for(iy=0; iy < IYM; iy++) {

/* i’s -> register a,...,f */

a = i1[ix][iy];
b = i2[ix][iy];
c = i3[ix][iy];
d = i4[ix][iy];
e = i5[ix][iy];
f = i6[ix][iy];
r = rest[ix][iy];

/* three body collision <-> 0,1 (bits) alternating
<-> triple = 1 */

triple = (a^b)&(b^c)&(c^d)&(d^e)&(e^f);

/* two-body collision
<-> particles in cells a (b,c) and d (e,f)

no particles in other cells
<-> db1 (db2,db3) = 1 */

db1 = (a&d&~(b|c|e|f));
db2 = (b&e&~(a|c|d|f));
db3 = (c&f&~(a|b|d|e));

/* rest particle and 1 particle */

ra = (r&a&~(b|c|d|e|f));
rb = (r&b&~(a|c|d|e|f));
rc = (r&c&~(a|b|d|e|f));
rd = (r&d&~(a|b|c|e|f));
re = (r&e&~(a|b|c|d|f));
rf = (r&f&~(a|b|c|d|e));

/* no rest particle and 2 particles (i,i+2) */

ra2 = (f&b&~(r|a|c|d|e));
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rb2 = (a&c&~(r|b|d|e|f));
rc2 = (b&d&~(r|a|c|e|f));
rd2 = (c&e&~(r|a|b|d|f));
re2 = (d&f&~(r|a|b|c|e));
rf2 = (e&a&~(r|b|c|d|f));

/* change a and d
<-> three-body collision triple=1

or two-body collision db1=1
or two-body collision db2=1 and eps=1 (- rotation)
or two-body collision db3=1 and noeps=1 (+ rotation)

<-> chad=1 */

eps = irn[ix][iy]; /* random bits */
noeps = ~eps;

cha=(triple|db1|(eps&db2)|(noeps&db3)|ra|rb|rf|ra2|rb2|rf2);
chd=(triple|db1|(eps&db2)|(noeps&db3)|rd|rc|re|rd2|rc2|re2);
chb=(triple|db2|(eps&db3)|(noeps&db1)|rb|ra|rc|rb2|ra2|rc2);
che=(triple|db2|(eps&db3)|(noeps&db1)|re|rd|rf|re2|rd2|rf2);
chc=(triple|db3|(eps&db1)|(noeps&db2)|rc|rb|rd|rc2|rb2|rd2);
chf=(triple|db3|(eps&db1)|(noeps&db2)|rf|ra|re|rf2|ra2|re2);
chr=(ra|rb|rc|rd|re|rf|ra2|rb2|rc2|rd2|re2|rf2);

/* change: a = a ^ chad */

k1[ix][iy] = i1[ix][iy]^cha;
k2[ix][iy] = i2[ix][iy]^chb;
k3[ix][iy] = i3[ix][iy]^chc;
k4[ix][iy] = i4[ix][iy]^chd;
k5[ix][iy] = i5[ix][iy]^che;
k6[ix][iy] = i6[ix][iy]^chf;
rest[ix][iy] ^= chr;

/* collision finished (except at the boundaries) */
}}
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/*
i======================================================i
i i
i c o l l i s i o n FHP-III i
i ------------------- i
i i
i ( two, three and four body collisions) i
i 162 bit-operations i
i======================================================i

collision with 1 rest particle (FHP-III)
24.6.91 Armin Vogeler */

for(ix=0; ix < IXM; ix++)
for(iy=0; iy < IYM; iy++) {

a = i1[ix][iy];
b = i2[ix][iy];
c = i3[ix][iy];
d = i4[ix][iy];
e = i5[ix][iy];
f = i6[ix][iy];
r = rest[ix][iy];
s = sb[ix][iy];
eps = irn[ix][iy];

ns = ~s; /* no solid bit */
h1 = a&c&e; /* 3 particles a,c,e */
h2 = b&d&f; /* 3 particles b,d,f */
h3 = a^c^e; /* 1 or 3 particles in a,c,e */
h4 = b^d^f; /* 1 or 3 particles in b,d,f */
h5 = a|c|e; /* at least 1 particle in a,c,e */
h6 = b|d|f; /* at least 1 particle in b,d,f */
/* 0 particles in a,c,e or!! in b,d,f and no solid */
h0 = ns&(h5^h6);
/* 2 particles in a,c,e or b,d,f and no solid */
z1 = ns&((~h3&h5)^(~h4&h6));

/* three-body collisions */

c3 = (h1^h2)&h0;
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/* head-on collisions with spectator */

c2s = z1&((a&d)^(b&e)^(c&f));

/* two- and four-body collisions */

c24 = ns&((f^a)|(a^b))&(~((f^c)|(a^d)|(b^e)));

/* rest particle and 1 particle collisions */

r1 = r&((h3&~h1)^(h4&~h2))&h0;

/* no rest particle and 2 particles collisions */

r2 = z1&h0&~r;

/* no s,c24, r1, r2 and c2s collision */
no = ~(c24|r1|r2|c2s)&ns;
le = c24&eps; /* c24 collision and left rotation */
ri = c24&~eps; /* c24 collision and right rotation */

/* change bitfield: */

/*|---| |---------| |---------| |------| |--------| |-----|*/
/*| | | | | |----|| | | ||---| | | |*/
k1[ix][iy]
=(s&d)|(ri&b^le&f)|(no&(a^c3))|(b&f&r2)|((b^f)&r1)|(~d&c2s);
k2[ix][iy]
=(s&e)|(ri&c^le&a)|(no&(b^c3))|(a&c&r2)|((a^c)&r1)|(~e&c2s);
k3[ix][iy]
=(s&f)|(ri&d^le&b)|(no&(c^c3))|(b&d&r2)|((b^d)&r1)|(~f&c2s);
k4[ix][iy]
=(s&a)|(ri&e^le&c)|(no&(d^c3))|(c&e&r2)|((c^e)&r1)|(~a&c2s);
k5[ix][iy]
=(s&b)|(ri&f^le&d)|(no&(e^c3))|(d&f&r2)|((d^f)&r1)|(~b&c2s);
k6[ix][iy]
=(s&c)|(ri&a^le&e)|(no&(f^c3))|(e&a&r2)|((e^a)&r1)|(~c&c2s);
krest[ix][iy] = r^(r1|r2); }

/*----------- end of collision ---------- */
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6.4 Thermal LBM: derivation of the coefficients

Constraints from the definitions of mass and momentum.

Mass:

ρ =
∑

i

F eq
i = A0 + 6 (A1 +A2) + (3C1 + 12C2 +D0 + 6D1 + 6D2)u2

→ constraints 1 and 2

3C1 + 12C2 +D0 + 6D1 + 6D2 = 0 (6.4.1)

A0 + 6 (A1 +A2) = ρ (6.4.2)

Momentum:

j =
∑

i

ciF
eq
i = u

[
3B1 + 12B2 +

(
9
4
E1 + 36E2 + 3G1 + 12G2

)
u2

]

→ constraints 3 and 4
3B1 + 12B2 = ρ (6.4.3)

9
4
E1 + 36E2 + 3G1 + 12G2 = 0 (6.4.4)

Conservation of mass, momentum, and energy.

The expansions (5.2.25) will be substituted into the conservation equations
for mass, momentum and energy

0 =
∑

i


 1

ci

c2
i /2


 [Fi (x + ci, t+ 1)− Fi(x, t)]

which lead to

0 =︸︷︷︸
(5.2.25)

∑
i


 1

ciα

ciαciα/2


[Fi(x, t) + ∂tFi + ciβ∂xβ

Fi +
1
2
∂t∂tFi

+
1
2
∂xβ

∂xγ ciβciγFi + ciβ∂t∂xβ
Fi +O(∂3Fi)− Fi(x, t)

]

=
∑

i


 1

ciα

ciαciα/2


[ε∂(1)

t F
(0)
i + ε2∂

(1)
t F

(1)
i + ε2∂

(2)
t F

(0)
i

+ciβε∂(1)
xβ
F

(0)
i + ciβε

2∂(1)
xβ
F

(1)
i +

1
2
ε2∂

(1)
t ∂

(1)
t F

(0)
i

+
1
2
ε2∂(1)

xβ
∂(1)

xγ
ciβciγF

(0)
i + ciβε

2∂
(1)
t ∂(1)

xβ
F

(0)
i +O(ε3)

]
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and finally sorted according to orders in ε

0 =
∑

i


 1

ciα

ciαciα/2


{ε [∂(1)

t F
(0)
i + ciβ∂

(1)
xβ
F

(0)
i

]

+ε2
[
∂

(1)
t F

(1)
i + ∂

(2)
t F

(0)
i + ciβ∂

(1)
xβ
F

(1)
i +

1
2
∂

(1)
t ∂

(1)
t F

(0)
i (6.4.5)

+
1
2
∂(1)

xβ
∂(1)

xγ
ciβciγF

(0)
i + ciβ∂

(1)
xβ
∂

(1)
t F

(0)
i

]
+O(ε3)

}

Terms of first order in ε: mass.

To first order in ε eq. (6.4.5) yields:

0 =
∑

i

[
∂

(1)
t F

(0)
i + ciα∂

(1)
xα
F

(0)
i

]

or
∂

(1)
t ρ+ ∂(1)

xα
jα = 0 (continuity equation), (6.4.6)

→ no further constraints from mass conservation.

Terms of first order in ε: momentum.

0 =
∑

i

[
ciα∂

(1)
t F

(0)
i + ∂(1)

xβ
ciαciβF

(0)
i

]
0 = ∂

(1)
t (ρuα) + ∂(1)

xβ
P

(0)
αβ . (6.4.7)

whereby
P

(0)
αβ :=

∑
i

ciαciβF
(0)
i

is the momentum flux tensor with components

P (0)
xx = 3A1 + 12A2 +

(
3
4
C1 + 12C2

)
(3u2 + v2) + (3D1 + 12D2)u2

= 3A1 + 12A2 +
(

9
4
C1 + 36C2 + 3D1 + 12D2

)
u2

+
(

3
4
C1 + 12C2 + 3D1 + 12D2

)
v2
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P (0)
xy =

(
3
2
C1 + 24C2

)
uv = P (0)

yx (6.4.8)

P (0)
yy = 3A1 + 12A2 +

(
3
4
C1 + 12C2

)(
u2 + 3v2

)
+ (3D1 + 12D2)u2

= 3A1 + 12A2 +
(

3
4
C1 + 12C2 + 3D1 + 12D2

)
u2

+
(

9
4
C1 + 36C2 + 3D1 + 12D2

)
v2

The momentum flux tensor should yield

P
(0)
αβ = ρuαuβ + p δαβ = ρ

(
u2 uv

uv v2

)
+ p δαβ . (6.4.9)

Comparison of (6.4.8) and (6.4.9) leads to:

3A1 + 12A2 = p
9
4
C1 + 36C2 + 3D1 + 12D2 = ρ

3
4
C1 + 12C2 + 3D1 + 12D2 = 0

3
2
C1 + 24C2 = ρ.

This results in the three independent constraints 5 to 7:

3A1 + 12A2 = p (6.4.10)

3
2
C1 + 24C2 = ρ (6.4.11)

and
6D1 + 24D2 = −ρ (6.4.12)

The first order terms of the moment equation lead to the Euler equation

=︸︷︷︸
(6.4.6)

ρ∂
(1)
t uα − uα∂

(1)
xβ

(ρuβ)

= ρ∂
(1)
t uα + uα∂

(1)
t ρ

∂
(1)
t (ρuα) =

= −∂(1)
xβ
P

(0)
αβ
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=︸︷︷︸
(6.4.9)

−∂(1)
xβ

(ρuαuβ + pδαβ)

= −ρuβ∂
(1)
xβ
uα − uα∂

(1)
xβ

(ρuβ)− ∂(1)
xα
p (6.4.13)

and therefore
ρ∂

(1)
t uα = −ρuβ∂

(1)
xβ
uα − ∂(1)

xα
p (6.4.14)

Terms of first order in ε: energy.

0 =
1
2

∑
i

[
∂

(1)
t ciαciαF

(0)
i + ∂(1)

xβ
ciαciαciβF

(0)
i

]

1
2
∂

(1)
t

∑
i

ciαciαF
(0)
i =

1
2
∂

(1)
t P (0)

αα = ∂
(1)
t


1

2
ρuαuα︸ ︷︷ ︸

= ρεK

+ p︸︷︷︸
= ρεI




where p is to be identified with the internal energy, i.e. p = ρεI , and 1
2ρuαuα

is the kinetic energy.

1
2
∂(1)

xβ

∑
i

ciαciαciβF
(0)
i

= ∂(1)
xβ



(

3
2
B1 + 24B2

)
︸ ︷︷ ︸

=: f1(ρ, εI)

uβ +
(

9
8
E1 + 72E2 +

3
2
G1 + 24G2

)
︸ ︷︷ ︸

=: f2(ρ, εI)

uαuαuβ




= ∂(1)
xβ

[f1(ρ, εI)uβ + f2(ρ, εI)uαuαuβ ] (6.4.15)

and thus

∂
(1)
t (ρεK + ρεI) = −∂(1)

xβ
[f1(ρ, ε)uβ + f2(ρ, ε)uαuαuβ] (6.4.16)

∂
(1)
t (ρεK) = ∂

(1)
t (

1
2
ρuαuα)

=
1
2
uα∂

(1)
t (ρuα) +

1
2
ρuα∂

(1)
t uα

=︸︷︷︸
(6.4.13),(6.4.14)

−1
2
uα[ρuβ∂

(1)
xβ
uα + uα∂

(1)
xβ

(ρuβ) + ∂(1)
xα
p
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+ρuβ∂
(1)
xβ
uα + ∂(1)

xα
p]

= −ρuαuβ∂
(1)
xβ
uα − uα∂

(1)
xα
p

−1
2
uαuα∂

(1)
xβ

(ρuβ) (6.4.17)

ρ∂
(1)
t εI = ∂

(1)
t (ρεI)− εI∂

(1)
t ρ

=︸︷︷︸
(6.4.6), (6.4.16)

−∂(1)
t (ρεK)− ∂(1)

xα
[f1uα + f2uαuβuβ] + εI∂

(1)
xα

(ρuα)

=︸︷︷︸
(6.4.17)

ρuαuβ∂
(1)
xβ
uα + uα∂

(1)
xα
p+

1
2
uαuα∂

(1)
xβ

(ρuβ)

−∂(1)
xα

[f1uα + f2uαuβuβ] + εI∂
(1)
xα

(ρuα). (6.4.18)

Substitution of p = ρεI and expansion of all terms leads to

ρ∂
(1)
t εI = ρuαuβ∂

(1)
xβ
uα︸ ︷︷ ︸

(1)

+ ρuα∂
(1)
xα
εI︸ ︷︷ ︸

(2)

+ uαεI∂
(1)
xα
ρ︸ ︷︷ ︸

(3)

+
1
2
ρuβuβ∂

(1)
xα
uα︸ ︷︷ ︸

(4)

+
1
2
uαuβuβ∂

(1)
xα
ρ︸ ︷︷ ︸

(5)

− f1∂(1)
xα
uα︸ ︷︷ ︸

(6)

− uα∂
(1)
xα
f1︸ ︷︷ ︸

(7)

− uαuβuβ∂
(1)
xα
f2︸ ︷︷ ︸

(8)

− f2uβuβ∂
(1)
xα
uα︸ ︷︷ ︸

(9)

− 2f2uαuβ∂
(1)
xα
uβ︸ ︷︷ ︸

(10)

+ ρεI∂
(1)
xα
uα︸ ︷︷ ︸

(11)

+ uαεI∂
(1)
xα
ρ︸ ︷︷ ︸

(12)

(6.4.19)

which should yield

ρ∂
(1)
t εI = − ρuα∂

(1)
xα
εI︸ ︷︷ ︸

(13)

− ρεI∂
(1)
xα
uα︸ ︷︷ ︸

(14)

(6.4.20)

Terms (1) and (10), (4) and (9), and (5) and (8) cancel each other when
f2 = ρ/2. The sum (2) + (3) + (7) + (12) gives (13) when f1 = 2ρεI . Finally,
(6) + (11) gives (14). Thus we obtain the constraints 8 and 9:
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3
2
B1 + 24B2 = 2ρεI (= f1) (6.4.21)

9
8
E1 + 72E2 +

3
2
G1 + 24G2 =

ρ

2
(= f2) (6.4.22)

Calculation of the coefficients.

B1 and B2 are constrained by (6.4.3) and (6.4.21)

3B1 + 12B2 = ρ

3
2
B1 + 24B2 = 2ρεI

which lead to the unique solution

B1 =
4
9
ρ(1 − εI) (6.4.23)

B2 =
ρ

36
(4εI − 1). (6.4.24)

A1 and A2 are constrained only by (6.4.2) and (6.4.10) and A0 only by (6.4.2):

A0 + 6A1 + 6A2 = ρ

3A1 + 12A2 = p (= ρεI).
In order to obtain a unique solution one may require (compare a similar
constraint in Section 5.4, Eq. 5.4.4) that A1/B1 = A2/B2. This leads to

A0 = ρ(1− 5
2
εI + 2ε2I), A1 = ρ

4
9
(εI − ε2I), A2 = ρ

1
36

(−εI + 4ε2I),

e.g. the expressions given by Alexander et al. (1993).

The Cν and Dν are constrained by (6.4.1), (6.4.11), and (6.4.12):

3C1 + 12C2 +D0 + 6D1 + 6D2 = 0
3
2
C1 + 24C2 = ρ

and
6D1 + 24D2 = −ρ.

The choice of Alexander et al. is consistent with these constraints.
Eν and Gν are constrained by (6.4.4) and (6.4.22):

9
4
E1 + 36E2 + 3G1 + 12G2 = 0

9
8
E1 + 72E2 +

3
2
G1 + 24G2 =

ρ

2
.

Alexander et al. (1993) have chosen G1 = 0 = G2. Then E1 and E2 are
uniquely given by

E1 = − 4
27
ρ (6.4.25)

E2 =
ρ

108
(6.4.26)
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6.5 Schläfli symbols

Regular polytopes can be characterized by Schläfli2 symbols instead of list-
ing, for example, the coordinates of the whole set of vertices. Coxeter (1963,
p.126/7) defines a polytope “as a finite convex3 region of n-dimensional space
enclosed by a finite number of hyperplanes”. A polytope is characterized by its
ensemble of vertices. Two-dimensional polytopes are called polygons. Three-
dimensional polytopes are called polyhedra. The part of the polytope that lies
in one of the hyperplanes is called a cell (each cell is a (n − 1)-dimensional
polytope; example: consider the cube where the cells are squares). The cells of
polyhedra are called faces; they are polygons bounded by edges or sides. Edges
join nearest-neighbor vertices. Thus a four-dimensional polytope Π4 has solid
cells Π3, plane faces Π2 (separating two cells), edges Π1, and vertices Π0.
A polygon with p vertices is said to be regular if it is both equilateral (all sides
are equal) and equiangular (all angles between nearest neighbor vertices are
equal). If p > 3 a polygons can be equilateral without being equiangular (a
rhomb, for example), or vice versa (a rectangle). Regular polygons are denoted
by {p} (the Schläfli symbol = number of vertices put in cranked brackets);
thus {3} is an equilateral triangle, {4} is a square, {5} is a regular pentagon,
and so on.
A polyhedron is said to be regular if its faces are regular and equal, while its
vertices are all surrounded alike. If its faces are {p}’s (i.e. regular polygons),
q surrounding each vertex, the polyhedron is denoted by the Schläfli symbol
{p, q}. In three dimensions there exist only five regular polyhedra, namely the
Platonic solids (compare Section 3.4). Consider, for instance, the cube. The
faces are squares (4 edges) and each vertex is surrounded by 3 faces. Accord-
ingly the cube is denoted by the Schläfli symbol {4, 3}. The Schläfli symbols
for the other Platonic solids read: tetrahedron {3, 3}, octahedron {3, 4}, do-
decahedron {5, 3}, icosahedron {3, 5}. Please note that the dual polytope to
{p, q} has the Schläfli symbol {q, p}.
A polytope Πn (n > 2) is said to be regular if its cells are regular and there is
a regular vertex figure4 at every vertex (‘regular surrounded’). It can be shown
that as a consequence of this definition all cells are equal ({p, q} for n = 4)
and the vertex figures are all equal ({q, r} for n = 4). A regular polytope Π4

is denoted by the Schläfli symbol {p, q, r} where the cells are {p, q} and r is
the number of cells that surround an edge. The three regular polytopes in
four dimensions

{3, 3, 3}, {3, 3, 4}, {4, 3, 3}, (6.5.1)

2 After the Swiss mathematician Ludwig Schläfli (1814-95).
3 “A region is said to be convex if it contains the whole of the segment joining

every pair of its points.” (Coxeter, 1963, p.126)
4 “If the mid-points of all the edges that emanate from a given vertex O of Πn lie in

one hyperplane ..., then these mid-points are the vertices of an (n−1)-dimensional
polytope called the vertex figure of Πn at O.” (Coxeter, 1963, p. 128)



6.5 Schläfli symbols 263

are bounded by tetrahedrons ({3, 3}) or cubes ({4, 3}). Π4 = {4, 3, 3} is the
hypercube (not FCHC!). Similarly, a regular polytope Π5 whose cells are
{p, q, r} must have vertex figures {q, r, s}, and thus will be denoted by

Π5 = {p, q, r, s}. (6.5.2)

It can be shown (Coxeter, 1963) that the parameters of the Schläfli for regular
polyhedra are constrained by “Schläfli’s criterion” which reads

1
p

+
1
q
>

1
2

for {p, q} (6.5.3)

and
sin

π

p
sin

π

r
> sin

π

q
for {p, q, r}. (6.5.4)

This and p, q, r ≥ 3 leads to

{3, 3}, {3, 4}, {4, 3}, {3, 5}, {5, 3} (6.5.5)

and

{3, 3, 3}, {3, 3, 4}, {4, 3, 3}, {3, 4, 3}, {3, 3, 5}, {5, 3, 3}. (6.5.6)

{3, 4, 3} is the face-centered hypercube (FCHC). Since Schläfli’s criterion is
merely a necessary condition, it remains to be proved that the corresponding
polytopes actually exist (this can be very laboriously!; result: all above men-
tioned polytopes exist).
Further reading: Rothman and Zaleski (1997, p. 265-270).
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6.6 Notation, symbols and abbreviations

General remarks:
Latin indices refer to the lattice vectors and run from 0 or 1 to l where l is
the number of non-vanishing lattice velocities.
Greek indices assign the cartesian components of vectors and therefore run
from 1 to D where D is the dimension.
If not otherwise stated (Einstein’s) summation convention is used, i.e. sum-
mation is performed over repeated indices (nici =

∑l
i=1 nici). No summation

will be done over primed indices (nj′vj′ 6= ∑l
j′=1 nj′vj′ ).

Table 6.6.1. Notation (miscellaneous symbols)

Symbol Meaning

∇ nabla operator

∂ partial derivative

& AND (Boolean operator)

| OR (inclusive or; Boolean operator)

∧ XOR (exclusive or; Boolean operator)

∼ NOT (Boolean operator)

∪ union (Boolean algebra)

∩ intersection (Boolean algebra)

¯ complementation (Boolean algebra)

◦ composition (of two elements; group theory)



Table 6.6.2. Notation (Latin letters)

Symbol Meaning

A Lagrange multiplier

A(s→ s′) transition probability

Ass′ transition matrix

Aν , Bν ... free parameters of equilibrium distributions

a
(t)
i state of cell i at time t

B Boolean algebra

B Lagrange multiplier

b number of lattice velocities (’bits’)

C collision operator

C number of corners

ci lattice vectors, lattice velocities

ciα cartesian component of the ith lattice velocity

cs speed of sound

cv heat capacity at constant volume

D (spatial) dimension

DkQb lattice notation (k=dimension, b=number of lattice velocities)

d density per cell

E evolution operator

E number of edges

EA Ekman number

F operator that interchanges particles and holes

F body force

F number of faces

Fm distribution functions

f Coriolis parameter

f0 Coriolis parameter at ϕ0

G isometric group

Gα1α2...αn generalized lattice tensor of rank n

G(ρ) g-factor (breaking Galilean invariance)

g(ρ) = G(ρ)/2; g-factor (breaking Galilean invariance)

g group element

H Boltzmann’s H (= - entropy)

Hi Zanetti invarinats

h Lagrange multiplier

I identity operator

I(P ) measure of information

J(f) collision operator (BGK)

J(a, b) Jacobi operator

j momentum density

Kn Knudsen number

k number of states (CA)

kB Boltzmann constant

ks friction coefficient



Table 6.6.3. Notation (Latin letters; continued)

Symbol Meaning

L a lattice

L characteristic length scale

Lα1α2...αn lattice tensor of rank n

Ma Mach number

IN the set of natural numbers (integers)

IN0 the set of non-negative integers

Ni mean occupation number (real variable)

ni occupation number (Boolean variable)

O(ε2) on the order of ε2

Oαβ orthogonal transformation matrix

P discrete probability distribution

P kinematic pressure

Pαβ momentum flux tensor

p pressure

pi probabilities

Q set of possible automata states

Q(f, f) collision integral

Qiαβ Q-tensors (FHP)

q (vectorial) Lagrange multiplier

IR the set of real numbers

Re Reynolds number

Re,g grid Reynolds number

Ro Rossby number

r range (CA)

rj cartesian coordinates of nodes

S streaming (propagation) operator

S entropy

T temperature

T
(MA)
αβγδ momentum advection tensor (MAT)

Tx,y components of the wind stress

t time

U characteristic speed

u = (u, v, w) velocity

WM Munk scale

Wi global equilibrium distributions

wi weights (generalized lattice tensors)

x = (x, y, z) cartesian coordinates

ZZk residue class (integers modulo k)

Z discrete set



Table 6.6.4. Notation (Greek letters)

Symbol Meaning

β gradient of the Coriolis parameter

Γ phase space

∆1 collision function

∆t time step

∆x spatial step size

δαβ Kronecker symbol

δαβγδ generalized Kronecker symbol

ε expansion parameter

εαβγ Levi-Civita symbol

εI internal energy density

εK kinetic energy density

θ = kBT temperature in energy units

κ diffusion coefficient

κ magnitude of wave number

λ mean free path

ν shear viscosity

ξ bulk viscosity

ξ random Boolean variable

ρ mass density

σ collision cross section

τ collision time

ψ stream function

ψn collision invariants

Ω set of events

Ω angular velocity of the Earth

Ωi collision operator

ω SOR or viscosity parameter



Table 6.6.5. Abbreviations

Acronym Meaning

BC boundary conditions

BGK Bhatnagar, Gross, Krook

CA cellular automata

EFD explicit finite difference

FCHC face-centered hypercube

FHP Frisch, Hasslacher, Pomeau

HPP Hardy, Pazzis, Pomeau

LBM lattice Boltzmann model

LBGK lattice BGK models

LGCA lattice-gas cellular automata

MD molecular dynamics

ODE ordinary differential equation

PCLBM pressure corrected lattice Boltzmann model

PDE partial differential equation

PI pair interaction

MSC multi-spin coding

NSE Navier-Stokes equation

q.e.d. quot erat demonstrandum

SOR successive over-relaxation



Index

additive rule, 18
ansatz method, 203
automata rule with memory, 18, 19
automata rule without memory, 18
automata rule, additive, 18
automata rule, legal, 18
automata rule, peripheral, 18
automata rule, symmetric, 18
automata rule, totalistic, 18

BBGKY, 137
BGK approximation, 142, 143, 163, 193,

203
binary digit, 151
bit, 151
bit-function, 42
bit-operator, 42
bit-state, 55
bitwise, 42
blood flow, 240
Boltzmann approximation, 135
Boltzmann distribution, 139
bottom friction, 227
bounce-back rule, 78
boundary condition, complete bounce-

back, 187
boundary condition, half-way bounce-

back, 188
boundary conditions, 77
boundary: link boundary, 187
boundary: node boundary, 187
breaking of Galilean invariance, 72
Burgers equation, 135, 240
Burnett equations, 144

C (programming language), 42
cell, 262

cellular automata, 7, 13
cellular automata, elementary, 18
chaining, 45
Chapman-Enskog expansion, 69
Chapman-Kolmogorov equation, 63

chessboard, 38
chessboard instability, 38
chiral, 51
coarse graining, 8

collision, 36, 38, 55
collision cross section, 138
collision frequency, 142
collision integral, 138

collision invariants, 138
collision parameter, 180
color, 134
complementation, 246

configuration, 16
configuration, global, 14
configuration, local, 14
conservation laws, 20

continuity equation, 5
Coriolis parameter, 218
crystal growth, 241
curvilinear coordinates, 240

D1Q4, 133

D2Q129, 131
D2Q13-FHP, 101, 203
D2Q13-WB, 95
D2Q21, 97, 131
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D2Q25, 131
D2Q4, 90
D2Q57, 131
D2Q7, 91
D2Q9, 94, 128, 130, 166
D3Q15, 98, 195
D3Q19, 100, 126
D4Q24, 93
detailed balance, 55
diagonal pair interaction, 121
diffusion equation, 19, 133, 233
diffusion equation, nonlinear, 238, 239
divergence of transport coefficients in

2D, 134
DkQb, 90
droplets, 241
dual solids, 104
duality, 247
dynamic similarity, 7
dynamical geometry, 134, 240

eddy viscosity coefficient, 218
edge, 262
Ekman number, 227
electrodynamics, 15, 241
elementary cellular automata, 18, 21
energy conservation, 125–127
energy equation, 203
ensemble, 63
entropy, 21
entropy, maximum entropy principle,

154
entropy, relative, 169
entropy, Renyi, 156
entropy, Shannon, 21, 154
Euler equation, 72, 118, 175
evolution operator, 38, 53
exclusion principle, 38, 51, 110

face, 108, 262
FCHC, 8, 64, 67, 93, 108, 109, 115, 126,

131, 263
Fermi-Dirac, 38, 51, 64, 72, 112
fermions, 38
FHP, 91, 112, 126, 239
FHP-I, 52
FHP-II, 52
FHP-III, 52
finite differences, 8, 230, 242

finite elements, 8
finite volumes, 8
flow in dynamical geometry, 134, 240
FORTRAN, 42
fractal obstacles, 240
friction coefficient, 218
functional derivative, 155

g-factor, 72, 76
Galilean invariance, 88, 167
Galilei transformation, 72, 76
Garden of Eden, 20, 21
generalized lattice tensors, 93, 125
Gibbs, 118
Gibbs’ ensemble, 63
glacier flow, 240
global configuration, 14
Greek indices, 47, 55
grid Reynolds number, 225

H-theorem, 241
Hénon constraints, 110, 112
Hénon’s random rule for FCHC, 131
head-on collision, 38, 41
HPP, 15, 37, 64, 66, 67, 90, 112, 239
hypercube, 106

identity operator, 38
integer lattice gases, 135
internal energy, 203
intersection, 246
invariants, non-local, 55
invariants, spurious, 52
invariants, staggered, 52
invariants, Zanetti, 52, 55
irreversible, 20
Ising model, 36
isometric collision rules, 111, 112
isometric group, 55, 110
isotropic tensors, 88, 103
isotropy, 8

Jacobi operator, 218

Karman vortex street, 68, 81, 120
Kepler, 106
Knudsen layer, 78
Knudsen number, 69, 143, 146, 159
Korteweg-de Vries equation, 241
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label, 146, 147
lack of information, 154
Lagrange multiplier, 66, 131, 154, 248
Laplacian friction, 218
Laplacian principle of the insufficient

reason, 153
large eddy simulation, 240
Latin indices, 47, 55
lattice gases, 36
lattice symmetry, 8
lattice tensors, 38, 88, 89, 125
lattice tensors, generalized, 93
lattice vectors, 37, 51
lattice velocities, 37, 51
LBGK, 158
legal rule, 18, 19, 23
Levy-Civita symbol, 88
Life, 15, 30, 34
Liouville equation, 63, 137
Liouville’s theorem, 20
local configuration, 14
local Maxwellian, 142
local rule, 14
look-up table, 49, 111, 112, 131

Mach number, 66, 178
magnetohydrodynamics, 134, 240
Markov process, 14
mass fraction parameter, 206
maximally discretized molecular

dynamics, 10
Maxwell distribution, 139, 141
Maxwell’s equations, 241
Maxwell-Boltzmann distribution, 139
memory, see automata rule with

memory, 18
message, 151
model equations, 142
molecular chaos, 138
molecular dynamics, 9
momentum advection tensor, 71
Moore neighborhood, 28
multi-scale analysis, 68, 172
multi-speed FHP, 101, 203
multi-speed LGCA, 125
multi-speed models, 93, 125, 193
multi-spin coding, 42
multiphase flows, 134, 240
Munk scale, 219

Navier-Stokes equation, 5, 73, 143, 150,
172, 175

neighborhood, Moore, 28
neighborhood, von Neumann, 28
node, 37
nodes: boundary nodes, 187
nodes: dry, wall nodes, 188
nodes: wet, interior, fluid nodes, 188
noise, 161
nondeterministic rules, 52
normal distribution, 152
normalization, 55
normalized momenta, 111
numerical distribution functions, 131
numerical instability, 9

observable, 63
occupation number, 46
one-dimensional cellular automata, 16

pair interaction (PI), 115, 126, 127
Paradise, see Garden of Eden, 20
partial differential equation, 19
Pauli principle, 38
Penrose lattice, 13
phase space, 63
PI, 112, 115, 126, 127
Platonic solids, 104
Poiseuille flow, 188
Poisson equation, 134
polyeder theorem, 108
polygon, 262
polyhedron, 262
polytope, 262
polytope, regular, 262
porous media, 134, 240
pressure depends explicitly on velocity,

125, 157
pressure-corrected LBM, 201
principle of duality, 247
propagation, 36, 38, 55
pseudo-random choice, 52

quantum cellular automata, 35
quantum mechanics, 135, 241
quiescent configuration, 18

random generator, 37, 48
random rule, 112
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Rayleigh-Bénard convection, 241
Rayleigh-Taylor instability, 241
reaction-diffusion equations, 135, 239
reduced densities, 137
reference system, 88
relativistic flows, 135
relaxation toward equilibrium, 48, 68,

79
Renyi entropy, 156
rescaling of time, 72
residue class, 16
rest mass parameters, 212
reversible, 20, 36, 118
Reynolds coefficient, 74, 114
Reynolds number, 6, 80, 227
Reynolds number, grid, 225
Rossby number, 227
rule number, 18
rule, local, 14
rule, see automata rule, 16

Schläfli symbol, 108, 262
Schläfli’s criterion, 263
self-dual, 104
semi-detailed balance, 56, 65, 85, 110,

112, 135
Shannon entropy, see: entropy, 21
sharp distribution, 152
similarity, law of dynamic, 7
simplex, 106
site, 37
sound speed, 72
sound waves, 80
spectral methods, 8
specular reflection, 78
spurious invariants, 8, 35, 39, 52, 132

staggered invariants, 52, 132
statistical mechanics, 35
stream function, 218
streaming, 36, 38, 55
Stueckelberg condition, 56
sub-lattice, 38, 115
supersonic flows, 131
symmetric rule, 18, 19
symmetry, 242
symmetry group, 88, 89, 104

thermal LBM, 203
thermal LGCA, 125
totalistic rule, 18–20, 22–24
trace, 155
traffic flow, 35
transition matrix, 56
transition probability, 55
transsonic flows, 131
turbulence, 143, 182, 240
Turing machine, 15, 29

union, 246
universality theorem, 52
universe as a cellular automata, 15
update rule, see automata rule, 16

von Karman vortex street, 68, 81, 120
von Neumann neighborhood, 28
vorticity, 72, 85
vorticity equation, 182, 218, 227

wave propagation, 241

Zanetti invariants, 52, 55, 132
Zuse, 15
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thesis, Université de Nice, 1988.
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