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Abstract

We consider a dividend optimization problem where the objective is to maximize

the expected value of total dividends paid during the lifetime of a company. The capital

process is assumed to be a jump-diffusion, and dividends are paid out continuously until

the capital process hits a default barrier. At any time, the company may distribute

dividends at full rate; however, this would bring the capital process closer to the ruin

barrier. Hence, we need to find a strategy (from a given admissible set) that will

resolve this trade-off optimally. Here, we show that the structure of the optimal policy

depends on the parameters of the problem. We identify an optimal policy for different

cases, and we show how to compute the value function of the problem.



SIÇRAMA DİFÜZYON MODELİ İÇİN KÂR PAYI EN İYİLEME

Firdevs Ulus

Matematik, Yüksek Lisans Tezi, 2010

Tez Danışmanı: Yard. Doç. Dr. Semih Onur Sezer

Anahtar Kelimeler: Kâr payı ödemesi, olasılıksal optimal kontrol, sıçrama difüzyonlar

Özet

Bu çalışmada bir şirketin ömrü boyunca ödediǧi toplam kâr paylarının beklenen

deǧerinin maksimuma çıkarıldıǧı bir kâr payı eniyileme problemi incelenmektedir. Ser-

maye süreci sıçrama difüzyon olarak varsayılmakta ve kâr payları, sermaye süreci

varsayılan bariyere deǧinceye kadar sürekli olarak daǧıtılmaktadır. Herhangi bir za-

manda şirket kâr paylarını maksimum oranda daǧıtabilir; ancak bu, sermaye sürecini

iflas bariyerine daha çok yakınlaştıracaktır. Bu yüzden, verilen bir kabul edilebilir

kümeden öyle bir strateji seçilmelidir ki bu ödünleşim en iyi şekilde çözümlenebilsin. Bu

çalışmada en iyi strateji yapısının problemin parametrelerine baǧlı olduǧu bulunmuştur.

Farklı durumlar için en iyi strateji tanımlanmış ve problemin deǧer fonksiyonunun nasıl

hesaplanacaǧı gösterilmiştir.
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Introduction

Maximization of the expected cumulative discounted dividend pay-outs is a well-
known problem that has been studied over decades. High dividend is desirable to
increase the present value of the dividends. However, it also increases the likelihood of
hitting the ruin barrier early. Hence, it is required to find a dividend payment strategy
that will resolve this conflict optimally. For the compound Poisson model, this problem
was solved by Gerber (1969), and the optimal policy is found as ”barrier strategy”, i.e.
whenever the surplus exceeds some barrier level b, all the excess income is paid out as
dividends and no dividends are paid out below that surplus level.

More recently, stochastic optimal control techniques have been used for the same
problem. One of the important studies belongs to Gerber and Shiu (2004). They find
explicit expressions for the expectation and the moment-generating function of sum
of the discounted dividends for a barrier type of dividend policy. Another important
study is done by Taksar (2000). In that paper, the maximization of dividend flow is
considered with different types of conditions imposed upon a company and different
types of re-insurances. In most of these cases, the optimal policy is found as a barrier
strategy. Azcue and Miller (2005) also consider the dividend maximization problem
considering both the re-insurance policy and the dividend distribution strategy. They
proved the existence of a band strategy, which will be explained below.

The most related study with this thesis is carried out by Jeanblanc-Picqué and
Shiryaev (1995). The objective of that article is to maximize the total discounted
dividends from time zero to the bankruptcy time τ . Cash reserve is taken as the
difference between the cumulative net earnings and the cumulative dividends. Let Xt

denote the cash reserve at time t, and Rt denote the accumulated net revenues up
through time t. For Rt the model which was used by Radner and Shepp (1996) is
employed. According to this, Rt evolves as an arithmetic Brownian Motion. In other
words,

dRt =

 µdt+ σdWt 0 < t < τ

0 t > τ

where µ is expected rate of net revenue; σ is volatility of these revenues; and Wt is
standard Brownian motion. In that paper, impulse control theory is applied in order
to obtain an optimal dividend policy. The problem is solved for three cases of dividend
policies. First, the dividend is paid at a constant rate and this rate is taken as a
bounded measurable function of capital and the optimal policy is found as a barrier
strategy. In the second case, it is assumed that there is a fixed cost for paying dividend
and the dividend process is taken as a multivariate point process, (Ti, ξi). Here Ti’s
are random times of payments of dividends, and ξi’s are the non-negative amounts of
dividends paid at time Ti’s. In this case the optimal policy is not a barrier, but a
band strategy. In other words, if the initial surplus exceeds some level b, b− a amount
of dividends is paid out where a is some other level to be determined. The strategy
continues as the amount of initial surplus being a. Otherwise, the payment of the
dividend is made whenever the capital process reaches level b, and there is no payment

ix



under this level. In the third case, the dividend policy is taken as an arbitrary non-
negative, non-decreasing, non-anticipating process (whose paths are right-continuous
with left-limits).

In addition to Jeanblanc-Picqué and Shiryaev (1995), Boguslavskaya (2003) solves
the same problem for the same three cases, with the usage of some liquidation value,
which is a salvage value of the firm’s assets at the time of bankruptcy.

Paulsen and Gjessing (2006) find a solution of dividend optimization problem for
two different cases. First the return on investments is constant and the surplus gen-
erating process is compound Poisson with exponentially distributed claims; secondly
return on investments and the surplus generating process are Brownian motions with
drift. Alvarez and Virtanen (2006) considers the same problem in the presence of cash
flow uncertainty and transaction costs. Thonhauser and Albrecher (2006), solves the
dividend optimization problem by introducing a value function not only considering
the expected dividends but also the time value of ruin. Yin, Song, Yang (2009) finds
an optimal barrier policy when the dividends are paid to the share holders according
to a barrier strategy for more general surplus processes.

This thesis considers the dividend optimization problem in the case similar to the
first case considered by Jeanblanc-Picqué and Shiryaev (1995). The main difference
here is that the capital process is taken as a jump diffusion process. In other words,
capital process is assumed to be a Brownian motion that jumps according to Poisson
process. This way, the existed problem is extended to the case where firm’s revenue
may exhibit jumps, due to the financial crisis, etc.

We expect to have a barrier type of optimal strategy and with this intuition in
mind the problem is modelled as a stochastic control problem. Dynamic programming
approach is employed to solve it. We construct the value function and the optimal
policy, up to proving the validity of some assumptions.

• In Chapter 1, general information about Brownian motion and stochastic calculus
is provided as preliminaries.

• In Chapter 2, the problem and the required notation is introduced.

• In Chapter 3, a special case of the problem is considered. The optimal dividend
policy is found as to pay at a constant rate.

• In Chapter 4, the problem is considered for a rather general case, and both the
value function and the optimal policy are derived.

• In Chapter 5, one can find the conclusion and the possible future study of this
thesis.

• In Chapter 6, additional approaches to prove some of the statements are provided.

x



Chapter 1

Preliminaries

1.1 Brownian Motion

Definition 1.1. A stochastic process W = {Wt}t∈[0,∞) is called Wiener Process or

Brownian Motion if the following conditions are satisfied:

• It starts at 0: W0 = 0

• It has stationary independent increments.

Having stationary increments mean Wt − Ws and Wt+h − Ws+h has the same

distribution for all t, s, h ≥ 0. Having independent increments mean for every

choice of ti ≥ 0 with t1 < t2 < ... < tn and n ≥ 1; Wt2 −Wt1 , ...,Wtn −Wtn−1 are

independent random variables.

• For every t > 0,Wt has normal distribution, with mean zero and variance t; i.e.,

Wt ∼ N(0, t).

• It has continuous sample paths.

Using the definition and the properties of the conditional expectation under natural

filtration of Brownian motion, it is easy to see that Brownian motion is a martingale.

Brownian sample paths do not have bounded variation on any finite interval [0, T ].

This means that

sup
π

n∑
i=1

|Wti(w)−Wti−1
(w)| =∞,

where the supremum is taken over all possible partitions π : 0 = t0 < ... < tn = T

of [0, T ]. On the other hand, quadratic variation of the Brownian Motion on interval

[0, T ] is T ; i.e.

lim
‖π‖→0

n∑
i=1

|Wti(w)−Wti−1
(w)|2 = T

where ‖π‖ is the mesh of partition π: ‖π‖ = maxi ‖ti+1 − ti‖, and the convergence is

in L2-sense.
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Sample paths of Brownian motion are nowhere differentiable. This can be proved by

using the self-similarity property of Brownian motion. Unbounded variation and non-

differentiability of Brownian sample paths are major reasons for the failure of classical

integration methods.

1.2 Stochastic Calculus

Integrals with respect to Brownian motion are called Itô stochastic integrals and de-

noted as ∫ T

0

f(t)dWt.

We will make sense out of this integral for more general integrands later. First,

consider the case where the integrand is a simple process.

Definition 1.2. An adapted process which is constant over a given partition π : 0 =

t0 < t1 < ... < tn = T of [0, T ] is called a simple process.

Definition 1.3. Let ∆ be a simple process, then stochastic integral of ∆ with respect

to Brownian motion is defined as

I(T ) =

∫ T

0

∆tdWt :=
n∑
i=1

∆ti(Wti+1
−Wti).

Proposition 1.4. {I(t)}t≥0 is an adapted stochastic process, and it is a martingale.

Proof. Since both ∆t and Wt are adapted, I(t) is also adapted. Now, check martingale

property. Let s < t,

Es[I(t)− I(s)] = Es

∑
s≤ti,ti+1≤t

∆ti

(
Wti+1

−Wti

)
=

∑
s≤ti,ti+1≤t

Es∆ti

(
Wti+1

−Wti

)
.

Use the tower property of conditional expectation noting that ti ≥ s

Es[I(t)− I(s)] =
∑

s≤ti,ti+1≤t

EsEti

[
∆ti

(
Wti+1

−Wti

)]
=

∑
s≤ti,ti+1≤t

Es∆tiEti

(
Wti+1

−Wti

)
.

Note that Eti

(
Wti+1

−Wti

)
= 0. So, it is shown that EsI(t) = I(s).

Since I(t) is a martingale and I(0) is 0; we can conclude that EI(t) = 0 for all

t ≥ 0.

Using the definition of stochastic integral, I(t), for simple processes and following

the similar tricks as it is done in the previous proof, one can easily show the following

property of I(t), so called Itô isometry
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EI2(t) =
∑
i

∆2
ti

(ti+1 − ti) =

∫ t

0

∆2
sds.

Now, consider the stochastic integration for general integrands. The approach to de-

fine the integral is to approximate the integrand ∆t with simple processes {∆n(t)}n∈ N.

Note that this approximation (in L2 space) is possible if E
∫ T

0
∆2
sds <∞. So, we have

a sequence of simple processes {∆n(t)}n such that

lim
n→∞

E
∫ T

0

(∆n(t)−∆(t))2 dt = 0.

For each n the stochastic integral In(T ), is well defined since integrand is simple

process, so we define I(T ) as the limit (in L2) of In(T )’s as n tends to infinity, i.e.

I(T ) =

∫ T

0

∆(s)dWs := lim
n→∞

∫ T

0

∆n(s)dWs.

Using this definition one can prove the following properties of Itô stochastic integral:

• {I(t)}t≥0 is a continuous martingale.

• Linearity of I(t):∫ T

0

(∆t +Qt) dWt =

∫ T

0

∆tdWt +

∫ T

0

QtdWt.

• Itô isometry:

EI2(t) = E
∫ T

0

∆2
tdt.

• Quadratic variation of I(T ) is
∫ T

0
∆2
tdt.

Now, we will introduce Itô Rule as a tool of calculating stochastic integrals and

proceeding with some operations on them. Assume that f is twice continuously differ-

entiable function and write ∆Wt = Wt+∆t −Wt for the increment of W on [t, t + ∆t].

The Taylor expansion gives:

f(Wt + ∆Wt)− f(Wt) = f ′(Wt)∆Wt +
1

2
f ′′(Wt)(∆Wt)

2 + ....

Note that if we take a differentiable function instead of Wt, the first term of this

Taylor expansion gives the classical chain rule of differentiation. However for Brownian

motion, we know that the quadratic variation is not negligible. Moreover, using the

definition of the stochastic integration one can interpret (dWt)
2 as dt.

In the light of this discussion, we can state the Itô formula for a twice continuously

differentiable function f as

f(Wt)− f(Ws) =

∫ t

s

f ′(Wu)dWu +
1

2

∫ t

s

f ′′(Wu)du,

3



for s < t. In differential form it can be written as

df(Wt) = f ′(Wt)dWt +
1

2
f ′′(Wt)dt.

Definition 1.5. Let {∆t}t≥0 and {Qt}t≥0 be two adapted stochastic processes. A

process X is called an Itô process if it has the following form:

Xt = X0 +

∫ t

0

∆sdWs +

∫ t

0

Qsds,

for all t ≥ 0. Note that in differential form, this can be written as dXt = ∆tdWt+Qtdt

with given X0.

Remark 1.6. Quadratic variation of Xt is
∫ t

0
∆2
sds, in differential notation it is to

write (dXt)
2 = ∆2

tdt.

For an Itô process Xt Itô formula gives

df(Xt) = f ′(Xt)dXt +
1

2
f ′′(Xt)(dXt)

2.

It can be written in terms of dWt and dt as:

df(Xt) =

[
Qtf

′(Xt) +
1

2
∆2
tf
′′(Xt)

]
dt+ ∆tf

′(Xt)dWt.

Finally, for a two dimensional function f(t, x) whose partial derivatives fx, ft, and

fxx are continuous, the Itô formula is extended as

df(t,Xt) = ft(t,Xt)dt+ fx(t,Xt)dXt +
1

2
fxx(t,Xt)(dXt)

2,

where Xt is an Itô process. Again, one can rewrite it such that it depends on dt and

dWt.

For these and other results, the reader may refer to Shreve (2004), Mikosch (2008)

and Steele (2001).
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Chapter 2

Problem Statement

In this chapter, the notation is introduced and the problem is stated briefly. First of all,

the revenue process is denoted by R ≡ {Rt}t≥0. Different from the model introduced by

Jeanblanc-Picqué and Shiryaev (1995), jumps are added to this process, and R follows

the following dynamics:

dRt = µdt+ σdWt − αdNt. (2.1)

Here, µ, σ and Wt are used in the same way that was introduced in the Introduction

above. In other words, µ is expected rate of net revenue; σ is the volatility of these

revenues; and Wt is standard Brownian motion. Moreover, N is an independent simple

Poisson process with rate Λ, and α is the loss occurring because of unfavorable events.

In the case of an insurance company these undesirable events usually represent the

claims the company is supposed to cover.

Throughout this thesis, it is assumed that the dividend is paid continuously at a rate

of Xt and it is u(Xt), where u is a measurable function bounded above by some K > 0.

This upper bound can be considered as the maximum rate of distributing dividends

the company can afford. According to this, company’s capital process X ≡ {Xt}t≥0,

which was stated as the difference between the net revenue and the total dividends,

now satisfies

dXt = (µ− u(Xt))dt+ σdWt − αdNt, with X0 = x, (2.2)

provided that the equation (2.2) admits a unique solution.

The objective of the company is to select the dividend process u(·) in order to max-

imize the present value of all the dividend payments over the lifetime of the company.

Here, we assume that the company goes bankrupt at the first time the capital reserves

hit the level zero. That is, we let τ denote this bankruptcy time, and we define it as

τ := inf{t ≥ 0 : Xt ≤ 0}. (2.3)

The interest rate is denoted by λ, and for a fixed dividend policy u(·) expected

total discounted dividends can be calculated as Ex
∫ τ

0
e−λtu(Xt)dt. Since we need to

5



maximize the total discounted dividends, the objective is to compute

V (x) = sup
u∈D

Ex

∫ τ

0

e−λtu(Xt)dt, (2.4)

where D is the collection of all such admissible u(·)’s, which use only the information

generated by observations from X, and which are bounded in [0, K].

Note that we expect to have a barrier type of solution. Also, we expect that

the ”barrier” b is determined according to the value function V in the following way:

u∗(x) = K if V ′(x) ≤ 1 ( x > b), and u∗(x) = 0 if V ′(x) > 1 (x < b). In the light

of this, we first consider a very special case in which the optimal policy is to pay the

maximum rate of dividend for all x. Therefore, we expect to have V ′(x) < 1 for all x.

Later, we consider a rather general case, in which, V ′(x) is allowed to be greater than

1.

6



Chapter 3

A Special Case

In this section, it is shown that the optimal dividend policy is to pay at the constant

rate K under some assumptions.

Let us define the function

fK(x) = Ex

∫ τ

0

e−λtKdt, (3.1)

where τ := inf{t ≥ 0 : Xt ≤ 0} and dXt = (µ − K)dt + σdWt − αdNt. Clearly, the

function fK(·) is non-decreasing. Also, if x = 0 then τ = 0 by definition, so fK(0) = 0.

On the other hand, as x tends to infinity, τ also tends to infinity.

fK(∞) =

∫ ∞
0

e−λtKdt = K/λ

by monotone convergence theorem. Below we show that this function is the value

function of our problem under the condition f ′(·) ≤ 1, on R+.

Remark 3.1. On (0,∞), fK satisfies

−λfK(x) + (µ−K)f ′K(x) +
1

2
σ2f ′′K(x) + Λ

(
fK(x− α)− fK(x)

)
+K = 0. (3.2)

To prove this remark, one may follow the steps provided in the next chapter in

order to calculate the value function for general case. The only difference is that here

the dividend policy u is taken as K, while in the next chapter we consider the value

function where u is taken as the optimal policy. Further explanation is provided in the

Appendix.

Lemma 3.2. If f ′K(x) ≤ 1 for all x ≥ 0, then u∗(x) = K and the value function

coincides with the function fK(·).

Proof. First note that if f ′K(x) ≤ 1, then for any admissible strategy u(·) ∈ [0, K] we

have

−λfK(x) + µf ′K(x) +
1

2
σ2f ′′K(x) + Λ

(
fK(x− α)− fK(x)

)
+ u(x)(1− f ′K(x)) ≤ 0.

(3.3)
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One can see this by rewriting (3.2) as

−λfK(x) + µf ′K(x) +
1

2
σ2f ′′K(x) + Λ

(
fK(x− α)− fK(x)

)
+K(1− f ′K(x)) = 0.

1− f ′K(x) ≥ 1 and 0 ≤ u(·) ≤ K imply the inequality (3.3).

Now, let u(·) be an admissible policy, and let X(u) denote the corresponding capital

process. That is,

dX
(u)
t = (µ− u(X

(u)
t− ))dt+ σdWt − αdNt.

Define τn := inf{t ≥ 0 : X
(u)
t ≥ n}. Let τ (u) denotes the ruin time for this particular

process.

Now, we write d
(
e−λtfK(Xt)

)
. First, we consider the case without jump and write

it using Itô rule:

d
(
e−λtfK(Xt)

)
= −λe−λtfK(Xt)dt+ e−λt

(
f ′KdXt +

1

2
f ′′K(dXt)

2

)
= −λe−λtfKdt+ e−λt

[(
f ′K(µ− u) +

1

2
σ2f ′′K

)
dt+ σf ′KdWt

]
= e−λt

[(
− λfK + (µ− u)f ′K +

1

2
σ2f ′′K

)
dt+ σf ′KdWt

]

Secondly, it is written for a jump time, say Tn.

e−λTnfK(XTn)− e−λTnfK(XTn−) = e−λTn
(
fK(XTn− − α)− fK(XTn−)

)
.

Thus, in general

d
(
e−λtfK(Xt)

)
= e−λt

[
− λfK(Xt) + (µ− u)f ′K(Xt) +

1

2
σ2f ′′K(Xt)

]
dt

+e−λtσf ′K(Xt)dWt + e−λt
[
fK(Xt − α)− fK(Xt)

]
dNt. (3.4)

Then, we write dNt as d
(
Nt − Λt

)
+ d
(
Λt
)

in order to use compensated Poisson

process. Note that
[
Nt − Λt

]
t≥0

is a martingale. This can be seen by considering

Es

[
(Nt+s)− Λ(s+ t)

]
. By no memory property of Poisson process, it is known that

Es(Nt+s) = Ns + Λt

Thus, it is now easy to see that

Es

[
(Nt+s)− Λ(s+ t)

]
= Ns + Λt− Λs− Λt = Ns − Λs.

8



In order to use the properties of martingale processes we now rewrite (3.4) as:

d
(
e−λtfK(Xt)

)
= e−λt

[
− λfK(Xt) + (µ− u)f ′K(Xt) +

1

2
σ2f ′′K(Xt)

]
dt+ e−λtσf ′K(Xt)dWt

+ e−λt
[
fK(Xt − α)− fK(Xt)

]
d
[
Nt − Λt

]
+ Λe−λt

[
fK(Xt − α)− fK(Xt)

]
dt.

As a result we get

e−λ(t∧τ (u)∧τn)fK(X
(u)

t∧τ (u)∧τn
)− fK(x) =∫ (t∧τ (u)∧τn)

0

e−λs
(
− λfK(X

(u)
s− ) + (µ− u)f ′K(X

(u)
s− ) +

1

2
σ2f ′′K(X

(u)
s− )

+Λ
(
fK(X

(u)
s− − α)− fK(X

(u)
s− )
))
ds

+

∫ t∧τ (u)∧τn

0

e−λs
(
fK(X

(u)
s− − α)− fK(X

(u)
s− )
)[
dNs − Λds

]
+

∫ t∧τ (u)∧τn

0

e−λsσf ′K(X
(u)
s− )dWs.

Note that {Nt − Λt}t≥0 is martingale and fK is bounded. Thus, the integral with

respect to {Nt − Λt} is also martingale. On the other hand, f ′K is assumed to be

bounded. Then, the integral with respect to Wt is also a martingale. Therefore, the

expectations of these two integrals will be zero, and taking the expectations we obtain

Exe−λ(t∧τ (u)∧τn)fK(X
(u)

t∧τ (u)∧τn
)− fK(x) =

Ex

∫ (t∧τ (u)∧τn)

0

e−λs
(
− λfK(X

(u)
s− ) + (µ− u)f ′K(X

(u)
s− ) +

1

2
σ2f ′′K(X

(u)
s− )

+Λ
(
fK(X

(u)
s− − α)− fK(X

(u)
s− )
))
ds

(3.5)

≤ Ex

∫ t∧τ (u)∧τn

0

e−λs
[
− u(X

(u)
s− )
]
ds.

Here the inequality follows thanks to (3.3).

Note that as t→∞ we have

e−λ(t∧τ (u)∧τn)fK(X
(u)

t∧τ (u)∧τn
)→ e−λ(τ (u)∧τn)fK(X

(u)

τ (u)∧τn
)∫ (t∧τ (u)∧τn)

0

e−λs
[
− u(X

(u)
s− )
]
ds→

∫ (τ (u)∧τn)

0

e−λs
[
− u(X

(u)
s− )
]
ds.
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So applying the bounded convergence theorem, we obtain

Exe−λ(τ (u)∧τn)fK(X
(u)

τ (u)∧τn
)− fK(x) ≤ Ex

∫ τ (u)∧τn

0

e−λs
[
− u(X

(u)
s− )
]
ds. (3.6)

When n→∞, we have τn →∞ since X
(u)
t <∞, for t <∞. Moreover, we have

e−λ(τ (u)∧τn)fK(X
(u)

τ (u)∧τn
) = 1{τ (u)<∞}e

−λ(τ (u)∧τn)fK(X
(u)

τ (u)∧τn
) + 1{τ (u)=∞}e

−λ(τn)fK(X(u)
τn ).

Hence if we let n→∞, we have

1{τ (u)<∞}e
−λ(τ (u)∧τn)fK(X

(u)

τ (u)∧τn
)→ 1{τ (u)<∞}e

−λ(τ (u))fK(X
(u)

τ (u)) = 0

since τ (u) is defined as the bankrupt time for the policy u and f(0) = 0. Similarly,

1{τ (u)=∞}e
−λ(τn)fK(X(u)

τn )→ 0 as n→∞.

Note that we use the fact that fK is bounded when we take this limit. Then by

bounded convergence theorem, we get

Exe−λ(τ (u)∧τn)fK(X
(u)

τ (u)∧τn
)→ 0, as n→∞.

Also note that the monotone convergence theorem gives

Ex

∫ τ (u)∧τn

0

e−λs
[
− u(X

(u)
s− )
]
ds→ Ex

∫ τ (u)

0

e−λs
[
− u(X

(u)
s− )
]
ds, as n→∞.

Finally, letting n→∞ in (3.6) yields

fK(x) ≥ Ex

∫ τ (u)

0

e−λsu(X
(u)
s− )ds.

Since this inequality holds for any admissible strategy u(·), it follows that u∗(x) =

K, and fK(·) is the value function of the problem.
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Chapter 4

A Rather General Case

In this chapter, we study the problem without the assumption that f ′K(·) ≤ 1 on R+,

where fK(·) is defined in (3.1).

4.1 Dynamic programming equation

Note that the first arrival time T1 of the Poisson process N is a regeneration time

for the problem in (2.4). In other words, assume a company starts with the optimum

dividend policy and continue with it until τ ∧ T1. If bankrupt happens before T1, the

company stops; and if the bankrupt happens after T1, it continues with optimal policy

where X0 is taken as the value of XT1 = XT1− − α. Then, it must be same as the

company applies the optimal policy starting with X0 = x and continue until the end,

i.e. τ . Hence, we expect the value function to satisfy

V (x) = sup
u(·)∈[0,K]

Ex

[∫ τ∧T1

0

e−λtu(Xt)dt+ 1{T1≤τ}e
−λT1V (XT1− − α)

]
.

Until the first arrival time, T1, the process X coincides with a pure diffusion process

Y satisfying

dYt = (µ− u(Yt)) + σdWt, with Y0 = x. (4.1)

Note that this process is independent from N . Moreover, on the event {τ < T1}, τ
coincides with the ruin time τ̃ of the process Y . Thus, value function can be rewritten

as:

V (x) = sup
u(·)∈[0,K]

Ex

[∫ τ̃∧T1

0

e−λtu(Yt)dt+ 1{T1≤τ̃}e
−λT1V (YT1− − α)

]
. (4.2)

Now, organize the right hand side above. First, consider the first term:

Ex

∫ τ̃∧T1

0

e−λtu(Yt)dt = Ex

∫ ∞
0

1{t<T1}1{t<τ̃}e
−λtu(Yt)dt.
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Using Fubini theorem, we can rewrite it as:∫ ∞
0

Ex
[
1{t<T1}1{t<τ̃}e

−λtu(Yt)
]
dt.

Note that Yt is independent from the Poisson process N . Therefore, it is possible

to write the first term as∫ ∞
0

Ex
[
1{t<T1}

]
Ex
[
1{t<τ̃}e

−λtu(Yt)
]
dt.

Now, we can use the fact that the first expectation above is e−Λt, and we can write∫ ∞
0

(
e−ΛtEx

[
1{t<τ̃}e

−λtu(Yt)
])
dt.

Finally, using the Fubini theorem and the property of indicator function, the first

term is written as

Ex

∫ τ̃

0

e−(Λ+λ)tu(Yt)dt. (4.3)

Now, consider the second term of (4.2) and rewrite it using tower property of

conditional expectation.

Ex
(
1{T1≤τ̃}e

−λT1V (YT1− − α)
)

= Ex
(
Ex
[
1{T1≤τ̃}e

−λT1V (YT1− − α)|W
])
.

Given Brownian motion W , the distribution of T1 is exponential with parameter Λ

since T1 is independent from W . Using the definition of expectation, we write it as

Ex

∫ ∞
0

(
Λe−Λt1{t≤τ̃}e

−λtV (Yt − α)
)
dt = Ex

∫ τ̃

0

(
Λe−(Λ+λ)tV (Yt − α)

)
dt. (4.4)

Thus, we can now use (4.3) and (4.4) to rewrite (4.2).

V (x) = sup
u(·)∈[0,K]

Ex

[∫ τ̃

0

e−(λ+Λ)t[u(Yt) + ΛV (Yt − α)]dt

]
=: JV (x)

where the operator J is defined as

Jw(x) := sup
u(·)∈[0,K]

Ex

[∫ τ̃

0

e−(λ+Λ)t[u(Yt) + Λw(Yt − α)]dt

]
(4.5)

in terms of a given bounded function w(·) defined on R+ (w(·) is set to zero on R−.)

Note that the problem in (4.5) is in terms of the process Y defined in (6.1).

Remark 4.1. (i) For two bounded functions w1(·) ≤ w2(·), we have Jw1(·) ≤ Jw2(·).
(ii) If w(·) is non-decreasing on R+, then so is Jw(·).
(iii) If 0 ≤ ||w(·)|| ≤ K/λ, then we have 0 ≤ ||Jw(·)|| ≤ K/λ.
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Proof. The first claim is immediate by the definition of the operator Jw in (4.5). The

monotonicity of x 7→ Jw(x) on R+ is also obvious.

Next, for a bounded function 0 ≤ ||w(·)|| ≤ K/λ, we have

0 ≤ Jw(x) = sup
u(·)∈[0,K]

Ex

[∫ τ̃

0

e−(λ+Λ)t[u(Yt) + Λw(Yt − α)]dt

]
≤ Ex

[∫ ∞
0

e−(λ+Λ)t

[
K + Λ

K

λ

]
dt

]
=
K(λ+ Λ)

λ

∫ ∞
0

e−(λ+Λ)tdt

=
K(λ+ Λ)

λ

1

λ+ Λ
=
K

λ
.

4.2 Further properties of the operator J in (4.5)

Below we study the maximization problem in (4.5) and study the properties of the

function Jw(·) under the following assumption.

Assumption 4.2. Below, w(·) is some given continuous function which is zero on R−.

On R+, it is non-decreasing, and bounded above by K/λ.

Note that we are looking for the value function satisfying JV = V , so we want w

to satisfy the properties of the value function. Remember that the value function is

defined as:

V (x) = sup
u∈D

Ex

∫ τ

0

e−λtu(Xt)dt.

It is clear that this function is non-decreasing, since τ is non-decreasing with respect

to initial surplus x. Also, one can show that limx→∞ V (x) ≤ K
λ

since τ tends to ∞ as

x tends to ∞; and u is bounded above by K.

Now, since we expect to have a barrier type of optimal dividend policy, let us

introduce the dividend policy ur(x) := K1{x>r} for some r > 0. Besides, denote the

respective capital process with Y (r) and the ruin time of it with τ̃ (r), and let us define

the operator

Hrw(x) := Ex

[∫ τ̃ (r)

0

e−(λ+Λ)t[ur(Y
(r)
t ) + Λw(Y

(r)
t − α)]dt

]
, (4.6)

which is the expected reward until the process Y (r) hits the default barrier.
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Lemma 4.3. On [0, r], the function Hrw(·) in (4.6) has the explicit form

Hrw(x) = C(eρ1x − eρ2x)− eρ2x
∫ x

0

2Λe−ρ2yw(y − α)

σ2(ρ2 − ρ1)
dy + eρ1x

∫ x

0

2Λe−ρ1yw(y − α)

σ2(ρ2 − ρ1)
dy

(4.7)

where ρ1 < 0 < ρ2 are the roots of the equation

−(λ+ Λ) + µρ+
1

2
σ2ρ2 = 0.

On [r,∞) we have

Hrw(x) =
K

λ+ Λ
+ er1x

[
B +

∫ x

r

2Λe−r1yw(y − α)

σ2(r2 − r1)
dy

]
+ er2x

∫ ∞
x

2Λe−r2yw(y − α)

σ2(r2 − r1)
dy

(4.8)

where r1 < 0 < r2 are the roots of the equation

−(λ+ Λ) + (µ−K)r +
1

2
σ2r2 = 0.

In (4.7-4.8) above, the constants B,C are set such that the function Hrw(·) satisfies

the linear system (in B,C)

Hrw(r+) = Hrw(r−) and H ′rw(r+) = H ′rw(r−). (4.9)

The function Hrw(·) satisfies Hrw(0) = 0, Hrw(∞) = K+Λw(∞)
λ+Λ

. It is smooth on R+,

has bounded derivative, and solves

−(λ+ Λ)Hrw(x) + (µ− ur(x))(Hrw)′(x) +
1

2
σ2(Hrw)′′(x) + ur(x) + Λw(x− α) = 0,

(4.10)

except possibly at x = r.

Proof. Define φ(x) as

φ(x) := C(eρ1x − eρ2x)− eρ2x
∫ x

0

2Λe−ρ2yw(y − α)

σ2(ρ2 − ρ1)
dy + eρ1x

∫ x

0

2Λe−ρ1yw(y − α)

σ2(ρ2 − ρ1)
dy

for 0 < x < r, and

φ(x) :=
K

λ+ Λ
+ er1x

[
B +

∫ x

r

2Λe−r1yw(y − α)

σ2(r2 − r1)
dy

]
+ er2x

∫ ∞
x

2Λe−r2yw(y − α)

σ2(r2 − r1)
dy

for x > r. We can choose B and C such that φ(r+) = φ(r−) and φ′(r+) = φ′(r−).

Note that φ(x) also satisfies φ(0) = 0, which is obvious by definition of φ(x). To

show limx→∞ φ(x) =: φ(∞) = [K + Λw(∞)]/(λ+ Λ), take limit as x tends to ∞:
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lim
x→∞

φ(x) =
K

λ+ Λ
+ lim

x→∞

B +
∫ x
r

2Λe−r1yw(y−α)
σ2(r2−r1)

dy

e−r1x
+ lim

x→∞

∫∞
x

2Λe−r2yw(y−α)
σ2(r2−r1)

dy

e−r2x

Using L’Hôpital’s rule it is easy to calculate the following.

lim
x→∞

φ(x) =
K

λ+ Λ
− 2Λw(x− α)

σ2(r2 − r1)r1

+
2Λw(x− α)

σ2(r2 − r1)r2

=
K

λ+ Λ
+

2Λw(x− α)

σ2(r2 − r1)r1

r1 − r2

r1.r2

.

Since r1.r2 = −2(Λ+λ)
σ2 ,

φ(∞) =
K + Λw(∞)

λ+ Λ
.

Now, we will show that φ satisfies the differential equation given by 4.10.

Consider the case where x < r. Since ur(x) = 0, one now needs to show:

−(λ+ Λ)φ(x) + µφ′(x) +
1

2
σ2φ′′(x) + Λw(x− α) = 0. (4.11)

Using the definition of φ(x) for x < r, φ′(x) and φ′′(x) can be easily found as:

φ′(x) = C(ρ1e
ρ1x − ρ2e

ρ2x)− ρ2e
ρ2x

∫ x

0

2Λe−ρ2yw(y − α)

σ2(ρ2 − ρ1)
dy

+ρ1e
ρ1x

∫ x

0

2Λe−ρ1yw(y − α)

σ2(ρ2 − ρ1)
dy.

φ′′(x) = C(ρ2
1e
ρ1x − ρ2

2e
ρ2x)− ρ2

2e
ρ2x

∫ x

0

2Λe−ρ2yw(y − α)

σ2(ρ2 − ρ1)
dy

+ρ2
1e
ρ1x

∫ x

0

2Λe−ρ1yw(y − α)

σ2(ρ2 − ρ1)
dy − 2Λ

σ2
w(x− α).

The direct calculation and also using the fact that ρ1 and ρ2 satisfy the equation

−(λ+ Λ) + µρ+
1

2
σ2ρ2 = 0,

it is easy to show that 4.11 holds.

Similarly, for x > r, the differential equation that φ(x) needs to satisfy becomes:

−(λ+ Λ)Hrw(x) + (µ−K)H ′rw(x) +
1

2
σ2H ′′rw(x) +K + Λw(x− α) = 0. (4.12)

Again we calculate φ′(x) and φ′′(x), this time for x > r; then plug them into the

equation 4.12. It is obvious to see that equation holds.
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Now, consider d
(
e−(λ+Λ)tφ(Y

(r)
t )
)
. Remember that Y (r) is defined as the capital

process when there is no jump and when the dividend policy is taken as ur. Thus, it

evolves according to:

dY (r) = (µ− ur(Y (r)))dt+ σdWt

Using Itô rule, we can write the following.

d
(
e−(λ+Λ)tφ

)
= −(λ+ Λ)e−(λ+Λ)tφdt+ e−(λ+Λ)t

(
φ′dY

(r)
t +

1

2
φ′′(dY

(r)
t )2

)
= −(λ+ Λ)e−(λ+Λ)tφdt+ e−(λ+Λ)t

[(
φ′(µ− u) +

1

2
σ2φ′′

)
dt+ σφ′dWt

]
= e−(λ+Λ)t

[(
− (λ+ Λ)φ+ (µ− u)φ′ +

1

2
σ2φ′′

)
dt+ σφ′dWt

]
Define τ̃

(r)
n as the exit time for this process, i.e. τ̃

(r)
n := inf{t ≥ 0 : Y

(r)
t ≥ n} and

using the differential equation above, write

e−(λ+Λ)(t∧τ̃ (r)∧τ̃ (r)
n )φ(Y

(r)

t∧τ̃ (r)∧τ̃ (r)
n

)− φ(x) =∫ (t∧τ̃ (r)∧τ̃ (r)
n )

0

e−(λ+Λ)s
(
− (λ+ Λ)φ(Y

(r)
s− ) + (µ− ur)φ′(Y (r)

s− ) +
1

2
σ2φ′′(Y

(r)
s− )
)
ds

+

∫ t∧τ̃ (r)∧τ̃ (r)
n

0

e−λsσφ′(Y
(r)
s− )dWs.

Since the last term is a stochastic integral, taking expectation yields

Exe−(λ+Λ)(t∧τ̃ (r)∧τ̃ (r)
n )φ(Y

(r)

t∧τ̃ (r)∧τ̃ (r)
n

)− φ(x) =

Ex

∫ (t∧τ̃ (r)∧τ̃ (r)
n )

0

e−(λ+Λ)s
(
− (λ+ Λ)φ(Y

(r)
s− ) + (µ− ur)φ′(Y (r)

s− ) +
1

2
σ2φ′′(Y

(r)
s− )
)
ds.

But it is proved that φ satisfies 4.10. Therefore, we can rewrite the last equation

as

Exe−(λ+Λ)(t∧τ̃ (r)∧τ̃ (r)
n )φ(Y

(r)

t∧τ̃ (r)∧τ̃ (r)
n

)− φ(x) =

Ex

∫ (t∧τ̃ (r)∧τ̃ (r)
n )

0

e−(λ+Λ)s
(
− ur(Y (r)

s− )− Λw(Y
(r)
s− − α)

)
ds.

Note that as t→∞ we have

e−(λ+Λ)(t∧τ̃ (r)∧τ̃ (r)
n )φ(Y

t∧τ̃ (r)∧τ̃ (r)
n

)→ e−(λ+Λ)(τ̃ (r)∧τ̃ (r)
n )φ(Y

(r)

τ̃ (r)∧τ̃ (r)
n

)

∫ (t∧τ̃ (r)∧τ̃ (r)
n )

0

e−(λ+Λ)s
(
− ur(Y (r)

s− )− Λw(Y
(r)
s− − α)

)
ds→∫ (τ̃ (r)∧τn)

0

e−(λ+Λ)s
(
− ur(Y (r)

s− )− Λw(Y
(r)
s− − α)

)
ds
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So applying the bounded convergence theorem, we obtain

Exe−(λ+Λ)(τ̃ (r)∧τ̃ (r)
n )φ(Y

(r)

τ̃ (r)∧τ̃ (r)
n

)− φ(x) =

Ex

∫ (τ̃ (r)∧τ̃ (r)
n )

0

e−(λ+Λ)s
(
− ur(Y (r)

s− )− Λw(Y
(r)
s− − α)

)
ds. (4.13)

Note that we have

e−(λ+Λ)(τ̃ (r)∧τ̃ (r)
n )φ(Y

(r)

τ̃ (r)∧τ̃ (r)
n

) =

1{τ̃ (r)<∞}e
−(λ+Λ)(τ̃ (r)∧τ̃ (r)

n )φ(Y
(r)

τ̃ (r)∧τ̃ (r)
n

) + 1{τ̃ (r)=∞}e
−(λ+Λ)(τ̃

(r)
n )φ(Y

(r)

τ̃
(r)
n

).

As n→∞, we have τn →∞ since Y
(r)
t <∞, for t <∞. Hence, we have

1{τ̃ (r)<∞}e
−(λ+Λ)(τ̃ (r)∧τ̃ (r)

n )φ(Y
(r)

τ̃ (r)∧τ̃ (r)
n

)→ 1{τ̃ (r)<∞}e
−(λ+Λ)τ̃ (r)

φ(Y
(r)

τ̃ (r)) = 0,

since τ̃ (r) is defined as the bankrupt time for the policy ur and φ(0) = 0. Similarly,

1{τ̃ (r)=∞}e
−(λ+Λ)(τ̃

(r)
n )φ(Y

(r)

τ̃
(r)
n

)→ 0,

as n tends to ∞. Note that we use the fact that φ is bounded when we take this limit.

Then by bounded convergence theorem, we get

Exe−(λ+Λ)(τ̃ (r)∧τ̃ (r)
n )φ(Y

(r)

τ̃ (r)∧τ̃ (r)
n

)→ 0, as n→∞.

Also note that the monotone convergence theorem gives

Ex

∫ (τ̃ (r)∧τ̃ (r)
n )

0

e−(λ+Λ)s
(
− ur(Y (r)

s− )− Λw(Y
(r)
s− − α)

)
ds→

Ex

∫ τ̃ (r)

0

e−(λ+Λ)s
(
− ur(Y (r)

s− )− Λw(Y
(r)
s− − α)

)
ds, as n→∞.

We can conclude that n→∞ in (4.13) results in

φ(x) = Ex

∫ τ̃ (r)

0

e−(λ+Λ)s
(
ur(Y

(r)
s− ) + Λw(Y

(r)
s− − α)

)
ds = Hrw(x).

Note that in this proof, we directly define φ(x) and by plugging it in the differential

equations and using Itô calculus we showed that it actually equals Hrw(x). However,

the intuition that how φ(x) is constructed have not been introduced. In the Appendix,

one can find a less rigorous approach which also gives that intuition.

Assumption 4.4. There exists a unique positive number r[w] > 0 such that (Hr[w]w)′(r[w]) =

1. Moreover, (Hr[w]w)′(·) > 1 on (0, r[w]), and (Hr[w]w)′(·) < 1 on (r[w],∞).
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The validity of this assumption has been studied, it has not been finalized yet. It

is an ongoing work while this thesis is being written. The solution approach that we

have employed to show it can be found in the appendix.

Corollary 4.5. The function Hr[w](·) satisfies

−(λ+ Λ)Hr[w]w(x) + (µ− u(x))(Hr[w]w)′(x) +
1

2
σ2(Hr[w]w)′′(x) + u(x) + Λw(x− α) ≤ 0,

(4.14)

for any admissible u(·) ∈ [0, K]. Moreover, with u(x) = ur[w](x) := K1{x>r[w]}, the

inequality becomes an equality.

Proof. Write (4.10) for r = r[w]:

0 = −(λ+ Λ)Hr[w]w(x) + µHr[w]w
′(x) +

1

2
σ2Hr[w]w

′′(x)

+
[
1−Hr[w]w

′(x)
]
ur[w](x) + Λw(x− α)

On (0, r[w]), Hr[w]w
′(·) > 1 by Assumption 4.4 and also for any admissible u,

u ≥ ur[w] = 0 is true. Thus, inequality holds. Similarly, on (r[w],∞), Hr[w]w
′(·) < 1

and u ≤ ur[w] = K result in the inequality.

Lemma 4.6. We have Jw(·) = Hr[w]w(·), and the optimal control process in (4.5) has

the form ur[w](x) = K1{x>r[w]}.

Proof. Let u(·) be an arbitrary admissible control, Y (u) be the corresponding capital

process; and define the exit time for this process as τ̃
(u)
n := inf{t ≥ 0;Y

(u)
t ≥ n} and

the ruin time of it as τ̃ . Then by Itô rule, we have

Exe−(λ+Λ)(τ̃∧τ̃ (u)
n )Hr[w]w(Y

(u)

τ̃∧τ̃ (u)
n

)−Hr[w]w(x) =

Ex

∫ τ̃∧τ̃ (u)
n

0

e−(λ+Λ)t

(
− (λ+ Λ)Hr[w]w(Y

(u)
t ) + (µ− u(Y

(u)
t ))(Hr[w]w)′(Y

(u)
t )

+
1

2
σ2(Hr[w]w)′′(Y

(u)
t )

)
dt

≤ Ex

∫ τ̃∧τ̃ (u)
n

0

−e−(λ+Λ)t
[
u(Y

(u)
t ) + Λw(Y

(u)
t − α)

]
dt

thanks to (4.14). Then the following inequality also holds.

lim
n→∞

[
Exe−(λ+Λ)(τ̃∧τ̃ (u)

n )Hr[w]w(Y
(u)

τ̃∧τ̃ (u)
n

)−Hr[w]w(x)
]

≤ lim
n→∞

[
Ex

∫ τ̃∧τ̃ (u)
n

0

−e−(λ+Λ)t
[
u(Y

(u)
t ) + Λw(Y

(u)
t − α)

]
dt

]
. (4.15)
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Note that τ̃
(u)
n →∞ as n→∞. First, consider the left hand side of the inequality

and rewrite it using bounded convergence theorem:

lim
n→∞

[
Exe−(λ+Λ)(τ̃∧τ̃ (u)

n )Hr[w]w(Y
τ̃∧τ̃ (u)

n
)−Hr[w]w(x)

]
=Ex lim

n→∞
e−(λ+Λ)(τ̃∧τ̃ (u)

n )Hr[w]w(Y
(u)

τ̃∧τ̃ (u)
n

)−Hr[w]w(x)

= Ex lim
n→∞

1{τ̃<∞}e
−(λ+Λ)(τ̃∧τ̃ (u)

n )Hr[w]w(Y
(u)

τ̃∧τ̃ (u)
n

)−Hr[w]w(x)

= Ex1{τ̃<∞}e
−(λ+Λ)τ̃Hr[w]w(Y

(u)
τ̃ )−Hr[w]w(x)

= 0−Hr[w]w(x)

Now, consider the right hand side of (4.15), and rewrite it using monotone conver-

gence theorem

lim
n→∞

[
Ex

∫ τ̃∧τ̃ (u)
n

0

−e−(λ+Λ)t
[
u(Y

(u)
t ) + Λw(Y

(u)
t − α)

]
dt

]

= Ex

[
lim
n→∞

∫ τ̃∧τ̃ (u)
n

0

−e−(λ+Λ)t
[
u(Y

(u)
t ) + Λw(Y

(u)
t − α)

]
dt

]

= Ex

∫ τ̃

0

−e−(λ+Λ)t
[
u(Y

(u)
t ) + Λw(Y

(u)
t − α)

]
dt.

Thus, we have

Ex

∫ τ̃

0

e−(λ+Λ)t
[
u(Y

(u)
t ) + Λw(Y

(u)
t − α)

]
dt ≤ Hr[w]w(x). (4.16)

Taking supremum over u yields Jw(x) ≤ Hr[w]w(x). In particular, when we repeat

the steps above with the policy ur[w], we get an equality in (4.16) and this concludes

the proof.

Corollary 4.7. Since Jw(·) = Hr[w]w(·), Corollary 4.5 and Lemma 4.6 imply that

−(λ+ Λ)Jw(x) + (µ− u(x))(Jw)′(x) +
1

2
σ2(Jw)′′(x) + u(x) + Λw(x− α) ≤ 0,

for any admissible u(·) ∈ [0, K]. In particular, we have an equality with u(x) = ur[w](x).

4.3 A sequential construction

Using the operator J in (4.5) above, we define a sequence of functions

v0 ≡ 0 and vn+1(·) = Jvn(·), n ∈ N. (4.17)
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Remark 4.8. The sequence (vn)n∈N defined in (4.17) is non-decreasing, and each

element vn is bounded as 0 ≤ ||vn(·)|| ≤ K/λ. The limit function v∞(x) := supn∈N vn(x)

exists point-wise and satisfies 0 ≤ ||v∞(·)|| ≤ K/λ.

Proof. Since v0 ≡ 0, we have v0 ≤ v1 by Remark 4.1. Now assume that vn−1 ≤ vn,

then again by Remark 4.1, we have vn = Jvn−1 ≤ Jvn = vn+1. By induction, it follows

that vn is non-decreasing in n ∈ N, and therefore the point-wise limit v∞ exists.

Since v0 ≡ 0 each element vn is bounded as 0 ≤ ||vn(·)|| ≤ K/λ again by induction

thanks to Remark 4.1. Obviously, these bounds also hold for their limit v∞.

Lemma 4.9. The limit function v∞ satisfies v∞ = Jv∞.

Proof. Using bounded convergence theorem we obtain

v∞(x) = sup
n
vn(x) = sup

n
Jvn−1(x) = sup

n
sup
u(·)

Ex

[∫ τ̃

0

e−(λ+Λ)t[u(Yt) + Λvn−1(Yt − α)]dt

]
= sup

u(·)
sup
n

Ex

[∫ τ̃

0

e−(λ+Λ)t[u(Yt) + Λvn−1(Yt − α)]dt

]
= sup

u(·)
Ex

[∫ τ̃

0

e−(λ+Λ)t[u(Yt) + Λv∞(Yt − α)]dt

]
= Jv∞(x).

Lemma 4.10. The sequence (vn)n∈N converges to v∞ uniformly on R+ with the explicit

bounds

v∞(·)− vn(x) ≤ K

λ

(
Λ

λ+ Λ

)n
, for all n ≥ 0. (4.18)

Proof. The bounds in (4.18) hold for n = 0 since v0(·) = 0. Assume now that it holds

for some n ≥ 0. Then, by Lemma 4.9 and by induction hypothesis we have

v∞(x) = Jv∞(x) = sup
u(·)

Ex

[∫ τ̃

0

e−(λ+Λ)t [u(Yt) + Λv∞(Yt − α)] dt

]
≤ sup

u(·)
Ex

[∫ τ̃

0

e−(λ+Λ)t

[
u(Yt) + Λ

(
vn(Yt − α) +

K

λ

(
Λ

λ+ Λ

)n)]
dt

]
≤ sup

u(·)
Ex

[∫ τ̃

0

e−(λ+Λ)t [u(Yt) + Λvn(Yt − α)] dt

]
+

∫ ∞
0

e−(λ+Λ)tΛ
K

λ

(
Λ

λ+ Λ

)n
dt

= vn+1(x) +
K

λ

(
Λ

λ+ Λ

)n+1

.

This proves (4.18) for n+ 1, and the proof is complete by induction.

Remark 4.11. As the uniform limit of the functions (vn)n∈N, v∞ is also continuous

(see Lemma 4.10). Hence, it satisfies the properties in Assumption 4.2. Moreover, it

solves

v∞(·) = Jv∞(·).
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Then, by Corollary 4.7, we have

−λv∞(x) + (µ− u(x))v′∞(x) +
1

2
σ2v′′∞(x) + u(x) + Λ[v∞(x− α)− v∞(x)] ≤ 0,

(4.19)

for any u(·) ∈ [0, K]. Moreover, (4.19) becomes an equality with u(x) = ur[v∞](x) :=

K1{x>r[v∞]}.

Lemma 4.12. The limit function v∞ is the value function of the problem in (2.4).

That is; v∞(·) = V (·), and ur[v∞](x) = K1{x>r[v∞]} is an optimal policy.

Proof. As in the proof of Lemma 3.2, let u(·) be an admissible policy, and let X(u) be

the corresponding capital process. That is,

dX
(u)
t = (µ− u(Xt−))dt+ dWt − αdNt.

Note that v′∞ is bounded (see Lemmas 4.3, 4.6, and 4.7). Then, in terms of the exit

time τn := inf{t ≥ 0 : X
(u)
t ≥ n} and the ruin time τ , Ito rule gives

Exe−λ(t∧τ∧τn)v∞(X
(u)
t∧τ∧τn)− v∞(x)

= Ex

∫ (t∧τ∧τn)

0

e−λs

(
− λv∞(X

(u)
s− ) + (µ− u(X

(u)
s− ))v′∞(X

(u)
s− ) +

1

2
σ2v′′∞(X

(u)
s− )

+ Λ

(
v∞(X

(u)
s− − α)− v∞(X

(u)
s− )

))
ds

≤ Ex

∫ t∧τ∧τn

0

e−λs
[
− u(X

(u)
s− )
]
ds,

(4.20)

where the inequality is thanks to (4.19). Letting first t→∞, and then n→∞ yields

(as in the proof of Lemma 3.2)

v∞(x) ≥ Ex

∫ τ

0

e−λsu(X
(u)
s− )ds. (4.21)

This implies that v∞ ≥ V (·)
Remark 4.11 implies that with u(x) = ur[v∞](x) := K1{x>r[v∞]}, we have equalities

in (4.20-4.21).
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Chapter 5

Conclusion

In this thesis, we considered a dividend optimization problem. We tried to find the

optimal dividend payment policy to maximize the expected total discounted dividends.

The distinction of this study from the existed literature is that we consider a jump-

diffusion model for the capital process. Note that for most of the cases in the literature,

the optimal dividend policy is found as a barrier type of function. Therefore, we also

looked for a barrier type of optimal dividend policy.

After modeling the problem, we tried to solve it for two cases. In the first part, we

considered a special case and the optimal dividend payment strategy is found as to pay

at a constant rate of dividend. In the second part, a rather general case is considered.

As a result, it is shown that a barrier type of dividend payment is an optimal policy.

The barrier, which determines if the payment is necessary, depends on the parameters

of the problem. Also, the rate of the dividend payment -if the capital is greater than

the barrier- equals to the maximum rate, which is given as the upper bound for all

admissible dividend policies. Moreover, the value function is constructed in each cases.

Even though the optimal dividend payment policies and the value functions are

constructed for each cases, these constructions depend on some assumptions that we

have claimed to hold, but have not been able to prove yet. It is an ongoing work for

us to show the validity of them.

As a further study, one may deal with the same problem for different cases of divi-

dend policies. In other words, the maximization of total discounted dividend payments

in the presence of jumps in the capital process, can be considered for different type of

dividend policies, rather than considering policies that we have employed in this thesis.

For example, the dividend policies may be taken as point processes, or as more general

type of dividend policies like Jeanblanc-Picqué and Shiryaev (1995) have used in the

second case and third case of their study, respectively.
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Chapter 6

Appendix

6.1 Prooving Remark 3.1

Similar to the approach considered for general case, we first use dynamic programming

idea to write fK as

fK(x) = Ex

[∫ τ̃∧T1

0

e−λtKdt+ 1{T1≤τ̃}e
−λT1fK(YT1− − α)

]
where Y is a pure diffusion process satisfying

dYt = (µ−K) + σdWt, with Y0 = x, (6.1)

and τ̃ is the the ruin time of the process Y .

If we organize the function following the steps done for the general case, we obtain

fK(x) = Ex

[∫ τ̃

0

e−(λ+Λ)t[K + ΛfK(Yt − α)]dt

]
=: H0fK(x)

where the operator H0 is defined as

H0w(x) := Ex

[∫ τ̃

0

e−(λ+Λ)t[K + Λw(Yt − α)]dt

]
(6.2)

in terms of a given bounded function w(·) defined on R+ (w(·) is set to zero on R−.)

Note that this is the same operator with Hr defined in (4.6), with dividend policy

is taken as u = K, instead of ur = K1{x>r}. Therefore, Lemma 4.3 holds for H0 with

r = 0. In other words, on [0,∞) we have

H0w(x) =
K

λ+ Λ
+ er1x

[
B +

∫ x

0

2Λe−r1yw(y − α)

σ2(r2 − r1)
dy

]
+ er2x

∫ ∞
x

2Λe−r2yw(y − α)

σ2(r2 − r1)
dy

(6.3)

where r1 < 0 < r2 are the roots of the equation

−(λ+ Λ) + (µ−K)r +
1

2
σ2r2 = 0
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and it solves

−(λ+ Λ)H0w(x) + (µ−K)(H0w)′(x) +
1

2
σ2(H0w)′′(x) +K + Λw(x− α) = 0. (6.4)

In the next step, using the a sequential construction in which w0 ≡ 0 and wn+1(·) =

H0wn(·), for n ∈ N, one can show that w∞ satisfies H0w∞ = w∞, the sequence (wn)n∈N

converges to w∞ uniformly on R+ and finally fK = w∞. Thus, fK satisfies (6.4),

−(λ+ Λ)fKw(x) + (µ−K)(fKw)′(x) +
1

2
σ2(fKw)′′(x) +K + ΛfK(x− α) = 0.

6.2 A heuristic approach for Lemma 4.3

For x = 0, τ̃ = 0 and so Hrw(0) = 0. Also, as x tends to ∞, τ̃ also tends to ∞, so

Hrw(∞) =

∫ ∞
0

e−(λ+Λ)t [K + Λw(∞)] dt =
K + Λw(∞)

λ+ Λ
<∞.

First rewrite Hrw(x) as (for h small)

Hrw(x) = Ex

∫ h

0

e−(λ+Λ)t [ur(Yt) + Λw(Yt − α)] dt

+Ex

∫ τ̃

h

e−(λ+Λ)t [ur(Yt) + Λw(Yt − α)] dt.

Now, we can write second term as Exe−(λ+Λ)hHrw(Yh). Thus the above equality

now can be written as

0 = Ex

∫ h

0

e−(λ+Λ)t [ur(Yt) + Λw(Yt − α)] dt+ Ex
[
e−(λ+Λ)hHrw(Yh)−Hrw(x)

]
.

Note that Itô rule gives us

e−(λ+Λ)hHrw(Yh)−Hrw(x) =∫ h

0

e−(λ+Λ)t

[
−(λ+ Λ)Hrw(Yt) + (µ− ur(Yt))(Hrw)′(Yt) +

1

2
σ2(Hrw)′′(Yt)

]
dt

+

∫ h

0

e−(λ+Λ)t(Hrw)′(Yt)dWt.

The integral with respect to W gives us a martingale with zero expectation. Thus,

the equality becomes

0 = Ex

∫ h

0

e−(λ+Λ)t [ur(Yt) + Λw(Yt − α)] dt

+ Ex

∫ h

0

e−(λ+Λ)t

[
−(λ+ Λ)Hrw(Yt) + (µ− ur(Yt))(Hrw)′(Yt) +

1

2
σ2(Hrw)′′(Yt)

]
dt
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Since h is small enough we can use linear approximation around zero to write the

equation as:

0 = h

[
ur(x) + Λw(x− α)− (λ+ Λ)Hrw(x) + (µ− ur(x))Hrw

′(x) +
1

2
σ2Hrw

′′(x)

]
.

Thus, Hrw(x) should satisfy:

0 = −(λ+ Λ)Hrw(x) + (µ− ur(x))Hrw
′(x) +

1

2
σ2Hrw

′′(x) + ur(x) + Λw(x− α).

(6.5)

Now, for x ∈ [0, r), ur(x) = 0 and (6.5) becomes

0 = −(λ+ Λ)Hrw(x) + µHrw
′(x) +

1

2
σ2Hrw

′′(x) + Λw(x− α)

which is a non-homogenous second order linear equation. Let y := Hrw and yp, yh be

the particular and homogenous solutions respectively. It is clear that yh = C1e
ρ1x +

C2e
ρ2x for some C1 and C2, where ρ1 and ρ2 are the roots of 0 = 1

2
σ2ρ2 + µρ− (λ+ Λ)

i.e.

ρ1,2 =
−µ∓ (µ2 + 2σ2(λ+ Λ))

1
2

σ2

For the particular solution, yp, take y1 := eρ1x, y2 := eρ2x as two solutions for the

homogenous part. Then yp will be in the form

yp(x) = −eρ1x
∫ x

0

eρ2z(−Λw(z − α))
σ2

2
W (y1, y2)(z)

dz + eρ2x
∫ x

0

eρ1z(−Λw(z − α))
σ2

2
W (y1, y2)(z)

dz

where W is Wronskian of two functions, so W (y1, y2)(x) = (ρ2 − ρ1)e(ρ1+ρ2)x.

Thus, yp is

yp(x) =
2

σ2(ρ2 − ρ1)

[
eρ1x

∫ x

0

e−ρ1zw(z − α)dz − eρ2x
∫ x

0

e−ρ2zw(z − α)dz

]
and Hrw ≡ y = yh + yp becomes

Hrw(x) = C1e
ρ1x + C2e

ρ2x +
2

σ2(ρ2 − ρ1)

[
eρ1x

∫ x

0

e−ρ1zw(z − α)dz − eρ2x
∫ x

0

e−ρ2zw(z − α)dz

]
.

Since Hrw(0) = 0, we have C1 + C2 = 0. Let, C := C1 = −C2 and for x ∈ [0, r),

Hrw(x) is in the form

Hrw(x) = C
[
eρ1x − eρ2x

]
+

2

σ2(ρ2 − ρ1)

[
eρ1x

∫ x

0

e−ρ1zw(z − α)dz − eρ2x
∫ x

0

e−ρ2zw(z − α)dz

]
.

Now, consider the case where x ∈ (r,∞). Clearly, ur(x) = K and (6.5) becomes

0 = −(λ+ Λ)Hrw(x) + µ(Hrw)′(x) +
1

2
σ2(Hrw)′′(x) + Λw(x− α) +K −K(Hrw)′(x)
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which also is a non-homogenous second order linear equation. Similar to the previous

case let y := Hrw; and yp, yh be the particular and homogenous solutions, particularly.

Then, yh = D1e
r1x + D2e

r2x for some D1 and D2, where r1 < 0 < r2 are the roots of

0 = 1
2
σ2r2 + (µ−K)r − (λ+ Λ), i.e.

r1,2 =
K − µ∓ ((K − µ)2 + 2σ2(λ+ Λ))

1
2

σ2
.

For the particular solution, choose the two solutions as the previous case, so that

the Wronskian will be same. Thus, particular solution will be in the form

yp(x) = −er1x
∫ x

0

er2t(−K − Λw(t− α))
σ2

2
(r2 − r1)e(r1+r2)t

dt+ er2x
∫ x

0

er1t(−K − Λw(t− α))
σ2

2
(r2 − r1)e(r1+r2)t

dt.

Thus, yp is

yp(x) =
2

σ2(r2 − r1)

[
er1x

∫ x

r

e−r1t(K+Λw(t−α))dt−er2x
∫ x

r

e−r2t(K+Λw(t−α))dt

]
=

2

σ2(r2 − r1)

[
er1(x−r)

r1
2
− 1

r1

− er2(x−r)

r2
2

+
1

r2

+ er1x
∫ x

r

e−r1tΛw(t− α)dt

−er2x
∫ x

r

e−r2tΛw(t− α)dt

]
.

Now, in order to find Hrw(x) for x ∈ (r,∞), add yh and yp and also let the new

coefficients of er1x, and er2x be B1 and B2 respectively. Note that there is a constant
2k

σ2(r2−r1)

[
1
r1
− 1

r2

]
which turns out to be K

λ+Λ
since r1r2 = −2(λ+Λ)

σ2 .

Hrw(x) = B1e
r1x +B2e

r2x +
K

λ+ Λ

+
2Λ

σ2(r2 − r1)

[
er1x

∫ x

r

e−r1tΛw(t− α)dt− er2x
∫ x

r

e−r2tΛw(t− α)dt

]
.

Using the boundary condition Hrw(∞) = K+Λw(∞)
λ+Λ

one can easily show that

B2 =

∫ ∞
r

e−r2t2Λw(t− α)

σ2(r2 − r1)
dt.

When we replace B2, organize the equation, and define B := B1 we have

Hrw(x) =
K

λ+ Λ
+ er1x

[
B +

2Λ

σ2(r2 − r1)

∫ x

r

e−r1tw(t− α)dt

]
+ er2x

2Λ

σ2(r2 − r1)

∫ ∞
x

e−r2tw(t− α)dt.
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6.3 An approach to show validity of Assumption

4.4

Remember that

Hrw(x) =


C(eρ1x − eρ2x)− eρ2x

∫ x
0

2Λe−ρ2yw(y−α)
σ2(ρ2−ρ1)

dy + eρ1x
∫ x

0
2Λe−ρ1yw(y−α)

σ2(ρ2−ρ1)
dy, 0 < x < r,

K
λ+Λ

+ er1x
[
B +

∫ x
r

2Λe−r1yw(y−α)
σ2(r2−r1)

dy
]

+ er2x
∫∞
x

2Λe−r2yw(y−α)
σ2(r2−r1)

dy, x > r.

We know that this function satisfies Hrw(r+) = Hrw(r−), Hrw
′(r−) = Hrw

′(r+)

and we are looking for some r[w] such that Hr[w]w
′(r[w]) = 1. To simplify the notation

we will denote r[w] with x̂.

To find the three unknowns B, C, and x̂ we will use three equations listed below.

1. Hx̂w(x̂+) = Hx̂w(x̂−):

C(eρ1x̂ − eρ2x̂)− 2Λ

σ2(ρ2 − ρ1)

[
eρ2x̂

∫ x̂

0

e−ρ2yw(y − α)dy

−eρ1x̂
∫ x̂

0

e−ρ1yw(y − α)dy

]
=

K

λ+ Λ
+ er1x̂B +

2Λ

σ2(r2 − r1)
er2x̂

∫ ∞
x̂

e−r2yw(y − α)dy

2. (Hx̂w)′(x̂−) = 1:

1 = C(ρ1e
ρ1x̂ − ρ2e

ρ2x̂)− 2Λ

σ2(ρ2 − ρ1)

[
ρ2e

ρ2x̂

∫ x̂

0

e−ρ2yw(y − α)dy

−ρ1e
ρ1x̂

∫ x̂

0

e−ρ1yw(y − α)dy

]
3. (Hx̂w)′(x̂+) = 1:

1 = r1e
r1x̂B + r2e

r2x̂
2Λ

σ2(r2 − r1)

∫ ∞
x̂

e−r2yw(y − α)dy

From item 2, C is found as

C =

1 + 2Λ
σ2(ρ2−ρ1)

[
ρ2e

ρ2x̂
∫ x̂

0
e−ρ2yw(y − α)dy − ρ1e

ρ1x̂
∫ x̂

0
e−ρ1yw(y − α)dy

]
(ρ1eρ1x̂ − ρ2eρ2x̂)

.

and from item 3, B is found as

B =
1− r2e

r2x̂ 2Λ
σ2(r2−r1)

∫∞
x̂
e−r2yw(y − α)dy

r1er1x̂
.
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We plug these into the equation given in item 1. Below, we calculate the left hand

side, LHS, and the right hand side, RHS, of that equation separately.

LHS =
(eρ1x̂ − eρ2x̂)

(ρ1eρ1x̂ − ρ2eρ2x̂)

(
1 +

2Λ

σ2(ρ2 − ρ1)

[
ρ2e

ρ2x̂

∫ x̂

0

e−ρ2yw(y − α)dy

−ρ1e
ρ1x̂

∫ x̂

0

e−ρ1yw(y − α)dy
])

− 2Λ

σ2(ρ2 − ρ1)

[
eρ2x̂

∫ x̂

0

e−ρ2yw(y − α)dy − eρ1x̂
∫ x̂

0

e−ρ1yw(y − α)dy

]
.

LHS =
(eρ1x̂ − eρ2x̂)

(ρ1eρ1x̂ − ρ2eρ2x̂)
+

2Λ

σ2(ρ2 − ρ1)
eρ2x̂

[ ∫ x̂

0

e−ρ2yw(y − α)dy
]( ρ2(eρ1x̂ − eρ2x̂)
ρ1eρ1x̂ − ρ2eρ2x̂

− 1

)
− 2Λ

σ2(ρ2 − ρ1)
eρ1x̂

[ ∫ x̂

0

e−ρ1yw(y − α)dy
]( ρ1(eρ1x̂ − eρ2x̂)
ρ1eρ1x̂ − ρ2eρ2x̂

− 1

)

=
(eρ1x̂ − eρ2x̂)

(ρ1eρ1x̂ − ρ2eρ2x̂)
+

2Λ

σ2(ρ2 − ρ1)
eρ2x̂

[ ∫ x̂

0

e−ρ2yw(y − α)dy
](ρ2e

ρ1x̂ − ρ1e
ρ1x̂

ρ1eρ1x̂ − ρ2eρ2x̂

)
− 2Λ

σ2(ρ2 − ρ1)
eρ1x̂

[ ∫ x̂

0

e−ρ1yw(y − α)dy
](ρ2e

ρ1x̂ − ρ1e
ρ1x̂

ρ1eρ1x̂ − ρ2eρ2x̂

)

=
(eρ1x̂ − eρ2x̂)

(ρ1eρ1x̂ − ρ2eρ2x̂)
+

2Λ

σ2

e(ρ2+ρ1)x̂

ρ1eρ1x̂ − ρ2eρ2x̂
[ ∫ x̂

0

e−ρ2yw(y − α)dy −
∫ x̂

0

e−ρ2yw(y − α)dy
]
.

Now, write the right hand side of the equation given by item 1.

RHS =
K

λ+ Λ
+

1

r1

− r2

r1

er2x̂
2Λ

σ2(r2 − r1)

∫ ∞
x̂

e−r2yw(y − α)dy

+
2Λ

σ2(r2 − r1)
er2x̂

∫ ∞
x̂

e−r2yw(y − α)dy

=
K

λ+ Λ
+

1

r1

− 2Λ

σ2r1

er2x̂
∫ ∞
x̂

e−r2yw(y − α)dy.
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After rearranging the equation LHS = RHS, we have

K

λ+ Λ
+

1

r1

=
(eρ1x̂ − eρ2x̂)

(ρ1eρ1x̂ − ρ2eρ2x̂)
+

2Λ

σ2

e(ρ2+ρ1)x̂

ρ1eρ1x̂ − ρ2eρ2x̂

∫ x̂

0

(e−ρ2y − e−ρ2y)w(y − α)dy

+
2Λ

σ2

er2x̂

r1

∫ ∞
x̂

e−r2yw(y − α)dy := F (x̂).

We are looking for the unique x̂ satisfying F (x̂) = K
λ+Λ

+ 1
r1

. Note that

ρ1,2 =
−µ∓

√
µ2 + 2σ2(Λ + λ)

σ2

and

r1,2 =
−µ∓

√
(µ−K)2 + 2σ2(Λ + λ)

σ2
.

We assume K > σ2(Λ+λ)
2µ

so that K
λ+Λ

+ 1
r1
> 0.

First look at the value of F at x = 0 and as x tends to ∞.

F (0) =
2Λ

σ2

1

r1

∫ ∞
0

e−r2yw(y − α)dy ≤ 0.

lim
x→∞

F (x) = lim
x→∞

[
eρ1x

(ρ1eρ1x − ρ2eρ2x)
− eρ2x

(ρ1eρ1x − ρ2eρ2x)
+

2Λ

σ2

er2x

r1

∫ ∞
x

e−r2yw(y − α)dy+

2Λ

σ2

e(ρ2+ρ1)x

ρ1eρ1x − ρ2eρ2x

∫ x

0

(e−ρ2y − e−ρ2y)w(y − α)dy

]

=
1

ρ2

+
2Λ

r1σ2
lim
x→∞

∫∞
x
e−r2yw(y − α)dy

e−r2x
+

2Λ

σ2
lim
x→∞

∫ x
0

(e−ρ2y − e−ρ2y)w(y − α)dy

ρ1e−ρ2x − ρ2e−ρ1x
.

Using L’Hôpital’s rule, and the definitions of r1, r2, ρ1, and ρ2, this limit can be rewrit-

ten as

lim
x→∞

F (x) =
1

ρ2

+
2Λ

σ2
lim
x→∞

[
e−ρ2xw(x− α)

ρ1ρ2(e−ρ1x − e−ρ2x)
− e−ρ1xw(x− α)

ρ1ρ2(e−ρ1x − e−ρ2x)
+

(x− α)

r1r2

]
=

1

ρ2

− 2Λ

σ2
lim
x→∞

[w(x− α)

ρ1ρ2

+
w(x− α)

r1r2

]
=

1

ρ2

Below, we will check if 1
ρ2
> 1

r1
+ K

Λ+λ
. By simple calculations one can show that
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the inequality holds if and only if

σ2

−µ+
√
µ2 + 2σ2(Λ + λ)

>
K

Λ + λ
− σ2

µ−K +
√

(µ−K)2 + 2σ2(Λ + λ)

⇔√
µ2 + 2σ2(Λ + λ) +

√
(µ−K)2 + 2σ2(Λ + λ) > K

⇔√
µ2 + 2σ2(Λ + λ) > K −

√
(µ−K)2 + 2σ2(Λ + λ)

⇔

µ2 + 2σ2(Λ + λ) > K2 + (µ−K)2 + 2σ2(Λ + λ) + 2K
√

(µ−K)2 + 2σ2(Λ + λ)

⇔

0 > 2K2 − 2Kµ− 2K
√

(µ−K)2 + 2σ2(Λ + λ)

⇔

0 > 2K2 − 2Kµ− 2K
√

(µ−K)2 + 2σ2(Λ + λ)

⇔√
(µ−K)2 + 2σ2(Λ + λ) > K − µ

which is obviously true since Λ and λ are positive.

Hence, it is known that

F (0) < 0 <
1

r1

+
K

Λ + λ
<

1

ρ2

= lim
x→∞

F (x),

which means that there exists at least one x̂ satisfying

F (x̂) =
1

r1

+
K

Λ + λ
.

In the next step, the aim is to show the uniqueness of such x̂. We tried several ways

to show it. First of all, we checked if F is increasing by looking at the derivative of it.

Unfortunately, the expressions are very cumbersome. Then, we tried to show that F is

increasing at the point x̂, i.e. F ′(x̂) > 0. This would also work since if there are more

than one x̂ satisfying the condition then, at least at one of them, F will have zero or

negative derivative. Again, we have not proved or disproved inequality yet.Note that

after showing the uniqueness part one also need to show that Hx̂w(x) > 1, for x < x̂

and Hx̂w(x) < 1, for x < x̂.
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