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Abstract
We propose a new method to incorporate rich statistical priors,
modeling temporal gain sequences in the solutions of nonneg-
ative matrix factorization (NMF). The proposed method can be
used for single-channel source separation (SCSS) applications.
In NMF based SCSS, NMF is used to decompose the spectra of
the observed mixed signal as a weighted linear combination of
a set of trained basis vectors. In this work, the NMF decompo-
sition weights are enforced to consider statistical and temporal
prior information on the weight combination patterns that the
trained basis vectors can jointly receive for each source in the
observed mixed signal. The Hidden Markov Model (HMM) is
used as a log-normalized gains (weights) prior model for the
NMF solution. The normalization makes the prior models en-
ergy independent. HMM is used as a rich model that character-
izes the statistics of sequential data. The NMF solutions for the
weights are encouraged to increase the log-likelihood with the
trained gain prior HMMs while reducing the NMF reconstruc-
tion error at the same time.
Index Terms: Nonnegative matrix factorization, single-channel
source separation, and Hidden Markov Models.

1. Introduction
Nonnegative matrix factorization [1], is an important tool that
is used often in source separation problems, especially when
only one observation of the mixed signal is available [2]. In
single-channel source separation, NMF uses the training data to
train a set of basis vectors for each source. Then NMF is used
to decompose the spectrogram of the observed mixed signal as
a weighted linear combination of the trained basis vectors for
all sources that are involved in the mixed signal. The spectro-
gram estimate for each source is found by summing the decom-
position terms that include its corresponding trained basis vec-
tors. Prior information about the NMF decomposition results
is usually considered to improve the separation performance of
NMF. This prior information can be harmonicity and temporal
smoothness of the source signals [2], or sparsity and temporal
continuity [3].

In this work, we try to make better use of the available train-
ing data. NMF is usually used to decompose the spectrogram
of training data of each source into a trained basis matrix and a
trained gains matrix. In separation stage, the trained basis ma-
trices for all sources are only used and the trained gain matrices
are usually ignored. The columns of the trained gains matrix
represents the valid gain combination sequences for a certain
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type of source signal. This gains matrix can be used to train
a prior model for the valid weight pattern sequence for each
source. The prior models can guide the NMF decomposition
weights during the separation stage to find the solution that can
be considered as valid weight pattern sequences for the underly-
ing source signal and also minimizing the NMF reconstruction
error. The trained gain matrix is used here to build a HMM
prior model for each source. The columns of the trained gain
matrices are normalized and their logarithm is taken and used
to train the prior HMM for each source. After observing the
mixed signal, NMF is used to decompose the spectrogram of the
mixed signal as a weighted linear combination of the columns
of the trained basis matrices. The decomposition weights are
jointly encouraged to increase the log-likelihood with their cor-
responding trained prior HMMs. The proposed algorithm uses
HMM, which is a rich model to represent the statistical distri-
bution of any sequential training data. Temporal relations be-
tween frames are also modeled in the HMM. Since the HMMs
are trained using normalized data, there is no restriction on the
energy level of the testing data compared to the training data.
Moreover, the source signals can have different energy levels in
the mixed signal without any limitations.

The remainder of this paper is organized as follows: In
section 2, a mathematical formulation of the SCSS problem is
given. In sections 3 and 4, we give a brief explanation about
NMF and show the training processes of the NMF bases mod-
els and the HMM prior gain models for the source signals. In
section 5, the separation process is presented. In the remain-
ing sections, we present our observations and the results of our
experiments.

2. Problem formulation
The main aim of SCSS is to find estimates of source signals that
are mixed on a single observation channel y(t). This problem
is usually formed in the short time Fourier transform (STFT)
domain as follows:

Y (t, f) =

Z∑
z=1

S(z)(t, f), (1)

where Y (t, f) is the STFT of y(t), t represents the frame in-
dex, f is the frequency-index, S(z)(t, f) is the unknown STFT
of source z in the mixed signal, and Z is the number of sources
in the mixed signal. Assuming independence of the sources,
we can write the power spectral density (PSD) of the mea-
sured signal as the sum of source signal PSDs σ2

y(t, f) =∑Z
z=1 σ

2
z(t, f) where σ2

y(t, f) = E(|Y (t, f)|2). We can ap-
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proximately write the PSDs in matrix form as follows:

Y =

Z∑
z=1

S(z), (2)

where S(z), z ∈ {1, .., Z} are the unknown PSDs of the source
signals, and they need to be estimated using the observed mixed
signal and training data for each source. The PSD for the mea-
sured signal y(t) is calculated by taking the squared magnitude
of the DFT of the windowed signal.

3. Nonnegative matrix factorization
Nonnegative matrix factorization is used to decompose any non-
negative matrixV into a nonnegative bases matrixB and a non-
negative gains matrix G as V ≈ BG. The solutions for B
and G can be found by minimizing the following Itakura-Saito
(IS) divergence cost function [4]:

min
B,G

DIS (V ||BG) , (3)

where

DIS (V ||BG) =
∑
a,b

(
V a,b

(BG)a,b
− log

V a,b

(BG)a,b
− 1

)
.

This divergence cost function is a good measurement for the
perceptual difference between different signals [4]. The IS-
NMF solution for equation (3) can be iteratively computed by
using the following multiplicative update rules of B and G as
follows [4]:

B ← B ⊗

(
V

(BG)2

)
GT(

1
BG

)
GT

, (4)

G← G⊗
BT

(
V

(BG)2

)
BT

(
1
BG

) , (5)

where 1 is a matrix of ones with the same size of V , the op-
eration ⊗ is an element-wise multiplication, all divisions and
(.)2 are element-wise operations. The matrices B and G are
initialized by positive random noise.

4. Training the source models
The power spectrogram of the training data for each source
S

(z)

train is calculated. The multiplicative update rules in equa-
tions (4) and (5) are used to decompose the power spectrogram
for each source into trained basis matrix and trained gains ma-
trix as follows:

S
(z)

train ≈ B
(z)G

(z)

train, (6)

within each iteration, we normalize the columns of B(z) and
find G(z)

train accordingly. After computing the basis and gains
matrices for each source training data, all the basis matrices are
used in the mixed signal decomposition as shown in equation
(7). We use the gains matrices to train prior models for the
possible pattern sequences that each source signal can possibly
have in the gains matrix. For each gains matrix G(z)

train for each
source, we normalize its columns and compute the logarithm
of the normalized columns, and use them to train its gain prior
HMM with Gaussian mixture GMM as the emission distribu-
tion. Using the Baum-Welch algorithm [5], we train a fully con-
nected HMM for each source in an unsupervised fashion. We

hope that the HMM learns phonetic classes or musical sound
clusters as its states, when we train in this fashion. The reason
for normalization is to make the prior models insensitive to the
energy level of the signals, which leads to an energy indepen-
dent prior model. Normalization is done using the L2 norm.

5. Signal separation
After observing the mixed signal y(t), the power spectral den-
sity Y of the mixed signal is computed using STFT. NMF de-
composes the power spectrogram Y with the trained basis ma-
trices that were found from solving equation (6) as follows:

Y ≈
[
B(1), ...,B(z), ...,B(Z)

]
G or Y ≈ BG. (7)

Then the initial spectrogram estimate of each source can be cal-
culated as

S̃
(z)

= B(z)G(z) for any z. (8)
The only unknown that we need to find is the gains matrix
G since the bases matrix B is fixed. The matrix G with N
columns is a combination of submatrices, and each column gn
of G is a concatenation of subcolumns g(z)n . Each subma-
trix G(z) represents the gain combination that its correspond-
ing basis matrix B(z) contributes in the PSD of the observed
mixed signal. For each submatrix G(z) there is a correspond-
ing trained prior HMM for its corresponding log-normalized
columns. We need the solution ofG in equation (7) to minimize
the IS-divergence cost function in equation (3), and the corre-
sponding log-normalized columns of each submatrixG(z) inG
to maximize the log-likelihood with its corresponding trained
gain prior HMM. Combining these two objectives, the solution
of G should minimize the following regularized IS-divergence
cost function:

C (G) = DIS (Y ||BG)−R(G). (9)

Where DIS (Y ||BG) is the regular IS-divergence cost func-
tion, and R(G) is the weighted sum of the log-likelihoods of
the log-normalized columns of the gain submatrices under the
trained HMMs. For each log-likelihood of the gain submatrix
G(z) there is a corresponding regularization parameter λ(z).
R(G) can be written as follows:

R(G) =

Z∑
z=1

λ(z)L(G(z)), (10)

where λ(z) is the regularization parameter of the log-likelihood
of source z. The log-likelihood for the sequence of the log-
normalized columns that corresponding to the submatrix G(z)

for source z can be written as follows:

L(G(z)) = log p

log
g
(z)
1∥∥∥g(z)1

∥∥∥
2

, .., log
g
(z)
n∥∥∥g(z)n

∥∥∥
2

, .., log
g
(z)
N∥∥∥g(z)N

∥∥∥
2

 .

(11)
To find the multiplicative update rule solution for G in

equation (9), we follow the same procedures as in [3, 2]. We
express the gradient with respect to G of the cost function in
equation (9)∇GC as the difference of two positive terms∇+

GC
and∇−GC as follow:

∇GC = ∇+
GC −∇

−
GC. (12)

The cost function is shown to be nonincreasing under the update
rule [3, 2]

G← G⊗ ∇
−
GC

∇+
GC

, (13)



where the operations ⊗ and division are element-wise as in
equation (5). We can write the gradients as

∇GC = ∇GDIS −∇R(G), (14)

where ∇R(G) is a matrix with the same size of G and it is a
combination of submatrices as follows:

∇R(G) =



λ(1)∇L(G(1))
.
.

λ(z)∇L(G(z))
.
.

λ(Z)∇L(G(Z))


. (15)

The gradient for the IS-cost function and the log-likelihood can
also be written as the difference of two positive terms as fol-
lows:

∇GDIS = ∇+
GDIS −∇−GDIS , (16)

and
∇R(G) = ∇+R(G)−∇−R(G). (17)

We can rewrite equations (12, 14) as:

∇GC =
(
∇+

GDIS +∇−R(G)
)
−
(
∇−GDIS +∇+R(G)

)
.

(18)
The final update rule in equation (13) can be written as follows:

G← G⊗
∇−GDIS +∇+R(G)

∇+
GDIS +∇−R(G)

, (19)

where
∇GDIS = BT 1

BG
−BT Y

(BG)2
, (20)

∇−GDIS = BT Y

(BG)2
, and ∇+

GDIS = BT 1

BG
. (21)

To find the gradients for the log-likelihood in equations

(10, 11), let log
g(z)

n∥∥∥g(z)
n

∥∥∥
2

= xn, given a set of data x =

{x1, ..,xn..,xN}, a state sequence q1, .., qn.., qN ∈ |Q|, and
the trained HMM parameters Λ = {A,E, π}, where A is the
transition matrix with entries aij = p (qn+1 = j|qn = i), E
is the set of weights, means and covariances parameters of the
GMM emission probabilities, and π = p(q1 = i) is the initial
state probabilities, the likelihood can be calculated as follows:

p(x1:N |Λ) =
∑
q1:N

p (x1:N |q1:N ,Λ) p (q1:N |Λ) , (22)

where p (q1:N |Λ) =
∏

n p (qn|qn−1,Λ) is the multipli-
cation of transition probabilities, and p (x1:N |q1:N ,Λ) =∏

n p (xn|qn,Λ) is the multiplication of the GMM emission
probabilities which are defined as:

p(xn|qn = j,Λ) =

K∑
k=1

γjkn, (23)

γjkn =
wjk

(2π)d/2
∣∣Σjk

∣∣1/2 exp

{
−

1

2

(
xn − µjk

)T
Σ−1

jk

(
xn − µjk

)}
,

whereK is the number of Gaussian mixture components,wjk is
the mixture weight, d is the vector dimension, µjk is the mean
vector and Σjk is the diagonal covariance matrix of the kth

Gaussian model for state j. The likelihood in equation (22)
can be calculated using the forward-backward algorithm [5] as
follows:

p(x1:N |Λ) =

|Q|∑
j=1

αn(j)βn(j) for any n, (24)

where

αn(j) =

|Q|∑
i=1

αn−1(j)aijp (xn|j) ∀j = 1, ..., Q,

α1(j) = πjp (x1|j) ∀j = 1, ..., Q,

(25)

βn(j) =

|Q|∑
i=1

aijp (xn+1|j)βn+1(j) ∀j = 1, ..., Q, and

βN (j) = 1, ∀j = 1, ..., Q.
(26)

The gradient of the log-likelihood in equation (11) can be found
using (24). The gradient with respect to the data point gn of the
log-likelihood in equation (24) can be found as follows:

∇gn
[log p(x1:N )] =

∑|Q|
j=1 βn(j)∇gn

[αn(j)]∑|Q|
j=1 αn(j)βn(j)

, (27)

where

∇gn
[αn(j)] =

|Q|∑
i=1

αn−1(j)aij∇gn
[p (xn|j)] . (28)

Note that βn(j) and αn−1(j) are not functions of gn. The gra-
dient ∇gn

[p (xn|j)] can also be written as the difference of
two positive terms

∇gn
[p (xn|j)] = ∇+

gn
[p (xn|j)]−∇−gn

[p (xn|j)] , (29)

these gradients can be calculated after replacing xn with

log
g(z)

n∥∥∥g(z)
n

∥∥∥
2

in equation (23). The component a of these gra-

dient vectors can be calculated as follows:

∇−
gn

[p (xn|j)]a =

K∑
k=1

−γjkn (Σjkaa )
−1

µjka

g
(z)
an

+
g(z)an∥∥∥g(z)n

∥∥∥2
2

log
g(z)an∥∥∥g(z)n

∥∥∥
2

 ,

(30)

∇+
gn

[p (xn|j)]a =

K∑
k=1

−γjkn (Σkaa )
−1

µjka
g(z)an∥∥∥g(z)n

∥∥∥2
2

+
1

g
(z)
an

log
g(z)an∥∥∥g(z)n

∥∥∥
2

 .

(31)
Since the HMMs are trained by log-normalized columns, we
know that the values of the mean vectors µ are always nega-
tive. The values of the vectors g are always positive, so the
values from equations (30) and (31) will be always positive. To
calculate the gradients for each submatrix in equations (15,17):
first, we calculate all values of α and β using equations (25, 26)
for all HMM states and all observations after replacing each xn

with log
g(z)

n∥∥∥g(z)
n

∥∥∥
2

. Second, equations (27) to (31) are used to cal-

culate the gradient of each column in the submatrix. We repeat
these procedures for each submatrix and construct the prior gra-
dients matrix in (15,17). We calculate the gradients in equation
(21) and use them to derive the update rules for G in equation
(19). The initialization of the matrix G is done by running one
regular NMF iteration without any prior. Calculating the gradi-
ent of the log-likelihood in equation (27) gives us the chance to
scale the values of α and β as shown in [5] to avoid any numeri-
cal problem. Since the same scale will appear in both numerator
and denominator of equation (27), then this scale will not affect
the values of the gradients of the log-likelihood.

Normalizing vectors in the prior model in training and test-
ing is beneficial in situations where the source signals occur



with varying energy levels. Normalization gives the prior mod-
els a chance to work with any energy level that the source sig-
nals can take in the mixed signal regardless of the energy levels
of the training signals. It is important to note that, normaliza-
tion during the separation process is done only for maximizing
the log-likelihood with the prior models only. The general solu-
tion for the cost function in equation (9) is not normalized. The
normalization is done for the prior to match the energy level of
the training signals that are used to train the HMMs.

After finding the suitable solution for the matrixG, the ini-

tial power spectrogram estimate S̃
(z)

of each source z is found
using equation (8). Given the initial estimated power spectral

density S̃
(z)

, the final minimum mean square error estimates of
each source STFT can be obtained through Wiener filtering [4]
as follows:

Ŝ(z) (t, f) = H(z) (t, f)Y (t, f) , (32)

where

H(z) =
S̃

(z)∑Z
r=1 S̃

(r)
, (33)

and the division is done element-wise. The estimated source
signal ŝ(z)(t) can be found by using inverse STFT of its corre-
sponding STFT Ŝ(z)(t, f).

6. Experiments and Discussion
We applied the proposed algorithm to separate a speech signal
from a background piano music signal. The main aim was to
get a clean speech signal from a single mixture of speech and
piano signals. The proposed algorithm was simulated on a col-
lection of speech and piano data at 16kHz sampling rate. For
training speech data, 540 short utterances from a single speaker
were used, we used other 20 utterances for testing. For mu-
sic data, piano music data from piano society web site [6] were
downloaded. We used 12 pieces from different composers but
from a single artist for training and left out one piece for testing.
The PSD for the training speech and music data were calculated
by using the STFT: A Hamming window with 480 length and
60% overlap was used and the FFT was taken at 512 points, the
first 257 FFT points only were used since the conjugate of the
remaining 255 points are involved in the first FFT points. We
trained 128 basis vectors for each source, which makes the size
of each trained basis matrix to be 257× 128, hence, the vector
dimension d = 128 in equation (23) for both sources. For the
HMM models, the suitable number of state Q and number of
GMM components K are always dependent on the size and the
type of the training data. In this work, we fixed the number of
states to be Q = 4 with fully connected topology and GMM
components to be K = 8 for each state for each source signal.
The test data was formed by adding random portions of the test
music file to the 20 speech utterance files at different speech-
to-music ratio (SMR) values in dB. The audio power levels of
each file were found using the ”audio voltmeter” program from
the G.191 ITU-T STL software suite [7]. For each SMR value,
we obtained 20 test utterances this way.

Performance measurement of the separation algorithm was
done using the signal to noise ratio (SNR). The average SNR
over the 20 test utterances for each SMR case are reported.

Table 1 shows the signal to noise ratio of the separated
speech signal using NMF with different values of the regular-
ization parameters λ(speech) and λ(music). First column of this
table shows the separation results of using NMF without using

the HMM gain prior models “λ(speech) = 0, λ(music) = 0”. In
the second column, we show the case where the same values
for the regularization parameters improve the separation results
for all SMR cases comparing to using NMF without any prior
information. Assuming we have some information about the
SMR of the mixed signal, we can make better choices for the
regularization parameters for each SMR case, that can lead to
better results as we can see in the last column of the table.

Table 1: SNR in dB for the speech signal using regularized NMF with
different values of the regularization parameters λ(speech) and λ(music).

SMR λ(speech) = 0 λ(speech) = 0.1 better choices
dB λ(music) = 0 λ(music) = 0.1 λ(speech) λ(music)

-5 3.69 4.21 4.54 0.1 0.01
0 7.41 7.81 7.92 0.1 0.01
5 10.75 10.90 10.90 0.1 0.1

10 13.02 13.43 13.43 0.1 0.1
15 15.75 16.06 16.51 0.01 0.5
20 17.26 17.80 21.87 0.01 100

As we can see from the last column of the table, at low SMR
we get better results when the values of λ(speech) is slightly
higher compared with high SMR. This means, when the speech
signal has less energy in the mixed signal, we rely more on the
prior model for the speech signal. As the energy level of the
speech signal increases, the values of λ(speech) decreases and
the value of λ(music) increases since the energy level of the mu-
sic signal is decreasing. We can also see that, comparing with
no prior case, we can get better separation results by choosing
suitable values for the regularization parameters.

7. Conclusion
In this work, we introduced a new regularized NMF algorithm
for single channel source separation. The energy independent
HMM prior models were incorporated with NMF solutions to
improve the separation performance.
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