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Make-to-stock queues are typically investigated in the M/M/1 settings. For centralized single-item systems

with backlogs, the Multilevel Rationing (MR) policy is established as optimal and the Strict Priority (SP)

policy is a practical compromise, balancing cost and ease of implementation. However, the optimal policy is

unknown when service time is general, i.e., for M/G/1 queues. Dynamic programming, the tool commonly

used to investigate the MR policy in make-to-stock queues, is less practical when service time is general. In

this paper, we focus on customer composition: the proportion of customers of each class to the total number

of customers in the queue. We do so because the number of customers in M/G/1 queues is invariant for

any non-idling and non-anticipating policy. To characterize customer composition, we consider a series of

two-priority M/G/1 queues where the first service time in each busy period is different from standard service

times, i.e., this first service time is exceptional. We characterize the required exceptional first service times

and the exact solution of such queues. From our results, we derive the optimal cost and control for the MR

and SP policies for M/G/1 make-to-stock queues.

Key words : Make-to-Stock, M/G/1 queue, priority classes, customer composition, multilevel rationing,
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1. Introduction

Market segmentation and customer differentiation are widely accepted ways to increase profitabil-

ity. A common way to differentiate among customers is to provide different service levels for dif-

ferent customer classes. For example, in a make-to-stock system, service level is often measured by

product availability on the shelf. In this case, the service level is directly influenced by allocation
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policies and inventory levels. An important research and managerial question is whether customer

classes requesting the same product should be prioritized and if so how to prioritize them. In our

examination of this question, we analyze inventory control strategies for a supplier using a central-

ized inventory to serve a single product to n classes of customers. Assuming that class 1 has the

highest priority and class n has the lowest priority, we model the underlying production system as

an M/G/1 queue.

Many policies are available to handle production and inventory control. Broadly speaking, how-

ever, inventory control policies can be characterized by whether customer types are prioritized, and

whether allocation decisions are made when production starts or are postponed until production

is completed. In this paper, we focus on centralized inventory control policies with postponement

of the allocation decision. Note that because postponing allocation provides extra information, it

should result in the same or a lower total cost as not postponing.

We assume that demand that is not immediately satisfied from stock is backlogged. Similar to

earlier literature, we consider a first-come-first-served (FCFS) policy analyzed by Sanajian and

Balcıog̃lu (2009) along with the following two centralized inventory control policies that use a

base-stock level control for their production decision:

MR Policy Under a Multilevel Rationing policy, there are non-decreasing threshold inventory

levels Rr, r= 1, . . . , n+1 with R1 = 0 and Rn+1 = S. If the inventory level, I, is between Rr +1 and

Rr+1 i.e., Rr < I ≤Rr+1, only demand requests of classes 1 to r are satisfied on a FCFS basis. If

the inventory level is between Rr + 1 and Rr+1, even if there are pending orders from classes r+ 1

to n, the completed product is placed in inventory. When there is no stock, a finished product is

allocated to the highest-priority customer backlogged (in a FCFS fashion within this class). When

the inventory reaches Rn+1, the base-stock level, production stops.

SP Policy The Strict Priority policy is a special case of MR policy when R1 =R2 = · · ·=Rn = 0.

That is, as long as there is stock in the centralized inventory, demand requests are satisfied on

a FCFS basis. When there are backlogs, a finished product is allocated to the highest-priority

customer among those with pending orders in the system.
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Ha (1997a and 1997b) was the first to discuss inventory rationing problems in a centralized

make-to-stock system with different classes of customers. For exponentially distributed production

times, Poisson arrivals and lost sales, Ha (1997a) shows that the multilevel rationing (MR) policy

is optimal. Ha (1997b) extends this work to the backlog case with two classes of customers and

shows that a stationary critical-level policy is optimal. de Véricourt et al. (2002) show that the

MR policy is the optimal policy for the M/M/1 make-to-stock queues. de Véricourt et al. (2001)

introduce the strict priority (SP) policy and compare the FCFS, SP, and MR policies for an

M/M/1 queueing system, and demonstrate that the MR policy outperforms the other two. Ha

(2000) considers an M/Ek/1 make-to-stock system with lost sales, where Ek denotes k-stage Erlang

service time, and characterizes the optimal stock allocation policy. Gayon et al. (2009) propose

a heuristic to approximate these levels for systems with Erlangian service times. Applications of

rationing inventory have been also investigated when supply is ample; see Arslan et al. (2007) and

references therein.

In this paper, we consider the SP and MR policies for a centralized single product multi-class

M/G/1 system. While the characterization of the optimal FCFS policy in this setting is known, we

are the first to consider the MR and SP policies. We focus on cases where the product allocation

is postponed to the end of production when it is allocated to one customer, possibly according

to the customer priority. Note that this allocation does not change the total inventory level, but

may reduce costs. We ignore additional information, such as the length of time since the start of

production of the current item, something which might be both available and valuable in M/G/1

settings. For example, both Ha (2000) and Gayon et al. (2009) consider Erlangian service times

and use information on production status. While not using additional information might increase

the costs of these policies relative to the optimal control policy, however, it keeps implementation

simple and increases practicality.

Observe that in the MR system, the rate of change of the inventory level varies dynamically

according to the rationing levels; this also changes customer composition, i.e., the proportion of

each customer class out of the total number of customers in this queue. Note that because the total
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number of customers is invariant for every non-idling and non-anticipating policy (for a rigorous

definition of such policies see e.g., Bertsimas, 2007), the various controls only change customer

composition.

To express customer composition under MR and SP policies, we consider a series of multi-priority

class M/G/1 queues. In these queues, the first service time in each busy period is different from

other service times, i.e., these queues have exceptional first service times in their busy periods. We

show that with a careful choice of the exceptional first service times, their customer composition

will be the same as the original M/G/1 system.

We obtain closed form expressions for the optimal cost and base-stock level for an M/G/1

make-to-stock system under the SP policy. We also derive a computational approach to obtain the

optimal cost and rationing levels for the MR policy for an M/G/1 system, i.e., with general service

times. Previous work found these optimal controls using dynamic programming for exponential

(or Erlang), service times, but when the service times are not exponential, dynamic programming

is less practical. For example, Gayon et al. (2009) highlighted the difficulty finding the optimal

controls in M/Ek/1 settings when the number of customer types is large. However, because the

customer composition methodology employs a series of queues it allows the solution of systems

with numerous customer types, as we demonstrate numerically in Section 3.4.2. We also show that

the cost of the SP system is equivalent to the cost of a FCFS system with an appropriately defined

backlog cost. Our theoretical and numerical results support the applicability of both the SP and

MR policies for single product multi-class M/G/1 systems.

As discussed above, our solution for the SP and MR policies relies on (i) the exact analysis of

a multi-priority M/G/1 queue with postponement and exceptional first service times in its busy

periods, and (ii) characterizing the relevant exceptional first service times. Because the derivation

of both is technical and intricate, we only present it in EC.1. In Section 2, we present the multi-

class M/G/1 system and the terminology used in the paper. In Section 3, we derive the optimal

rationing levels, base-stock levels, and costs of the FCFS, SP and MR policies. The proofs of the

main results in Theorems 1 and 2 appear in Section 4 and the rest of the proofs appear in EC.2.
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2. Modeling a Single Product Multi-Class M/G/1

The single product multi-class M/G/1 system we consider has a supplier that produces a single

product and caters to demand arising from n distinguishable classes. We assume that the demand

of each class r (type r demand) follows a Poisson process with a rate λr, r= 1,2, . . . , n. We use the

terms type r and class r interchangeably. We model the general production times as i.i.d with a

mean 1/µ and a second moment m2. Let b(·) and b̃(·) denote the probability density function and

its Laplace Transform (LT), respectively.

We assume that unsatisfied demand is backlogged. Thus, for stability, we require ρ := λ/µ < 1,

where λ=
∑n

r=1 λr. The backlog cost of class r is br per unit backlogged per unit time. Without

loss of generality, we assume that b1 > b2 > · · ·> bn (if two distinct classes have the same backlog

cost, we aggregate them to a single class). Customers are prioritized according to their backlog

costs, i.e., classes 1 to n from highest to lowest. The system incurs a holding cost of h per unit per

unit time.

This model gives rise to a multi-class system where the server can work on one production order

at a time. For this problem, we consider a centralized continuously-reviewed inventory system. We

use a production control according to a base-stock level, S: thus, production stops, and the server

becomes idle when the inventory level reaches S. We consider three different systems, corresponding

to three different production control policies: the FCFS, SP, and MR systems. (From now on,

we use these short terminologies, e.g., “SP system” rather than “multi-class single-item M/G/1

make-to-stock system with postponement of the product allocation to the end of production under

an SP control policy.”)

Let I (t) denote the inventory level at time t in the system, and note that I (t) < 0 implies a

backlog in the system. Let Br(t) be the number of type r backlogs in the system. In the FCFS

and SP systems, if any class is backlogged at time t, we have I (t) < 0; then I (t) < 0 implies a

backlog of size |I (t)|. However, in the MR system, we can have positive inventory on hand while

some customer classes are backlogged; thus, I (t)> 0 and
∑n

r=2Br (t)> 0 is possible.
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A standard method to express I (t) in a single class production system with base-stock level

control, when only I (t)< 0 implies a backlog, is to consider the shortfall process N (t) := S− I (t),

e.g., Baron (2008) and references therein. Then, N (t) is identical to the number of orders in an

M/G/1 queue facing (a) allocation, (b) demand, and (c) service processes that are identical to

those faced by the original system. A shortfall N (t)≤ S implies that the inventory in the system

has S−N (t) units; a shortfall N (t)>S implies a backlog of |S−N (t)|=N (t)−S units. We use

the shortfall queue to match the original FCFS and SP inventory systems to a queueing model.

We use a reasoning similar to the one that guides the use of the shortfall queue when analyzing

the three systems mentioned above. That is, we derive the cost of each system by analyzing a

multi-class M/G/1 queue with the same allocation, demand, and service processes as in the original

system.

An important observation with respect to the shortfall process, N (t), is that it is invariant under

all non-idling and non-anticipating control policies. Because N (t) is invariant, we have:

N(t) = (S− (I(t))
+

) +
n∑
r=1

Br(t), (1)

where (x)
+

:= max(0, x).

Earlier we defined customer composition as the proportion of each customer class in the total

number of customers in a queue. Given Eq. (1), knowing the customer composition resulting from

specific priorities and allocation rules in this queue is sufficient to represent the cost of this control

for the relevant system. To express the relevant customer compositions in the SP and MR systems

when they have a backlog, we construct multi-class single-item M/G/1 queues with postponement

of allocation and exceptional first service times in busy periods. We name these queues “backlog

queues” for simplicity. We will elaborate upon the ideas of customer composition and backlog

queues in the next section.

3. The Costs and Optimization of the Three Policies

We use the backlog queues to derive the exact cost of the SP and MR systems in Sections 3.2 and

3.3, respectively. For the sake of completeness (and better comparative analysis), in Section 3.1
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we begin with the optimal control and corresponding cost for the FCFS system. We compare the

performances of the three systems in Section 3.4.

The solution of multi-class M/G/1 queues with exceptional first service times and the derivation

of the LT of the required exceptional service times are presented in EC.1.

3.1. The FCFS Policy

Recall that N(t) denotes the number of orders in the shortfall queue at time t. Let P (i) := P (N = i)

be the steady-state probability of having i orders in the shortfall queue.

Because all customers are treated the same, the average backlog cost per customer is bF :=∑n

r=1 λrbr/λ. Therefore, for a given base-stock level S, the average cost for the FCFS policy is

CF (S) := h
S∑
i=0

(S− i)P (i) + bF
∞∑

i=S+1

(i−S)P (i), (2)

and letting F (i) :=
∑i

j=0P (j), the optimal base-stock level, SF
∗
, that minimizes this cost is, see

e.g., Veatch and Wein (1996),

SF
∗

= min{i : F (i)> bF/(h+ bF )}. (3)

Note that P (i) can be obtained in closed form using Eq. (12) in Kerner (2008) after setting

λi = λ as

P (i) = (1− ρ)
i−1∏
j=0

1− b̃j(λ)

b̃(λ)
, i= 1, ... (4)

where b̃j(·) is the LT of the residual service time observed by an order arrival that sees j orders in

the shortfall queue. This LT can be obtained recursively from Eq. (4) in Kerner (2008):

b̃j(s) =
λ

s−λ
[b̃(λ)

1− b̃j−1(s)

1− b̃j−1(λ)
− b̃(s)], j ≥ 1,

where b̃0(s) = b̃(s).
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3.2. The SP Policy

We next express the cost of the SP system with a base-stock level S. Let P (Br = i) denote the

steady-state probability of having i backlogs from class r. The average cost for the SP system is

CSP (S) := h
S∑
i=0

(S− i)P (i) +
n∑
r=1

br

∞∑
i=0

iP (Br = i) = h
S∑
i=0

(S− i)P (i) +
n∑
r=1

brE[Br], (5)

where E[Br] is the expected number of backlogs of type r.

Observe that because the holding cost is independent of the classes, the shortfall queue is suf-

ficient to express the holding cost in this system. When N (t) > S, the inventory in the system

has N (t)−S backlogs. But because the backlog costs differ among classes, the shortfall queue is

insufficient to express these costs. We obtain E[Br] by constructing the SP backlog (SPB) queue.

We then use E[Br] to characterize the optimal SP control policy and its corresponding cost.

3.2.1. The SP Backlog Queue We construct the SPB queue to obtain the probabilistic

description of the shortfall queue during periods with no inventory. To differentiate between queues,

we use the terms customers in the SP system, orders in the shortfall queue, and job in the SPB

queue.

We construct the SPB queue by specifying its (a) allocation, (b) arrival, and (c) service processes.

As proved in Theorem 1, our construction ensures that the job composition in the SPB queue will

match the customer composition in the SP system when there is no inventory in the system, i.e.,

when N(t)≥ S.

Step (a): at the end of each service completion, the SPB queue will remove the oldest job with

the smallest r index, making it a priority queue with the same priorities as the SP system when it

has no inventory.

Step (b): the arrival process of jobs of type r to the SPB queue will follow a Poisson process

with rate λr, r= 1,2, . . . , n. Thus, the arrival processes for the SP system and the SPB queues are

identical (in distribution).

Step (c): the first service time in each busy period of the SPB queue will be the equilibrium

(steady-state) residual service time observed by an order arrival who finds S orders in the shortfall
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queue upon its arrival. We let b̃SPB0 (·) denote the LT of this equilibrium residual service time.

When an exceptional first service time has ended, if there are other jobs in the SPB queue, all

service times until the SPB queue clears all its jobs, follow a regular service distribution, with a

LT b̃ (·).

We set the service process to include the exceptional first service time in step (c) because every

order arrival that sees S orders in the shortfall queue creates a backlog. Thus, the service times

of the first jobs in the busy periods of the SPB queue are identical in distribution to the residual

service times of the customers in service in the SP system once a period with backlog starts.

To summarize: our construction in steps (a-c) indicates that the SPB queue is an M/G/1 priority-

queue with postponement and exceptional first service times in its busy periods. These exceptional

first service times have a LT b̃SPB0 (·) identical to the LT of the equilibrium residual service times

observed by an arrival to the shortfall queue that sees S orders in front of it. The LT of the other

service times is that of regular service times, b̃(·).

Let P SPB
r (i) denote the steady-state probability of having i jobs of class r in the SPB queue.

We next state our first main result. Its proof is given in Section 4.

Theorem 1. The steady-state probability of having i backlogs from class r in the SP system is

P (Br = i) = [1−F (S− 1)]P SPB
r (i), r= 1,2, ..., n, i= 1, ... (6)

Note that Theorem 1 demonstrates that the probability of having n type r backlogs in the SP

system is identical to the probability of having n type r jobs in the SPB queue given the system is

out of stock. The latter depends of course on b̃SPB0 (·). While, the theorem does not provide these

probabilities, they are not required to express the cost function given in Eq. (5), all we need is the

expected number of type r backlogs in the system. Given Theorem 1, this expectation is identical

to the expected number of type r jobs in the SPB queue given the system is out of stock. Thus,

we next characterize it.

The customer composition in the SPB queue is an essential building block in our analysis of
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the SP and MR systems, and is given in Theorem 2 below. The proof of the theorem requires the

derivations from EC.1 and is given in Section 4.

Theorem 2. Customer composition: The ratio of expected number of type r customers,

E[NSPB
r ], to the expected number of total customers, E[NSPB], in the SPB queue is

E[NSPB
r ]

E[NSPB]
:=

1− ρ
ρ

(
1

1− ρ+
r

− 1

1− ρ+
r−1

)
, (7)

where λ+
r :=

∑r

i=1 λi and ρ+
r := λ+

r /µ for r= 1, . . . , n.

Observe that, surprisingly, the ratio in Eq. (7) is independent of bSPB0 (·), and this ratio only

depends on the first moments of the queue’s arrival and service processes.

3.2.2. Deriving the Optimal SP Policy de Véricourt et al. (2001) show that the optimal

cost of the SP system in the M/M/1 settings can be obtained by considering a FCFS single class

M/M/1 queue with a specific backlog cost. Theorem 3 uses Theorems 1 and 2 to extend this result

to the M/G/1 system and show that the specific backlog cost only depends on the first moment

of the (regular) service time.

Theorem 3. Optimal SP policy: The cost of the SP policy with base-stock level S is the same

as that of a FCFS single class M/G/1 queue with weighted backlog cost:

bSP =
n∑
r=1

λr(1− ρ)br
λ(1− ρ+

r )(1− ρ+
r−1)

. (8)

Thus, the cost of the SP policy can be written as

CSP (S) = h
S−1∑
i=0

(S− i)P (i) + bSP
∞∑
i=S

(i−S)P (i), (9)

and the optimal base-stock level SSP
∗

that minimizes Eq. (9) is

SSP
∗

= min{i : F (i)> bSP/(h+ bSP )}. (10)
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Observe that according to Theorem 3, finding the optimal base-stock level and cost of the SP

system requires only the solution of a standard single class FCFS M/G/1 queue. More specifically,

we do not need to solve the SPB queue or characterize its exceptional first service times. Therefore,

we find CSP (SSP
∗
) as we found CF (SF

∗
), by setting the backlog cost to bSP , as given in Eq. (8),

and we express SSP
∗

and its corresponding cost using Eq.s (10) and (9), respectively.

3.3. The Multilevel Rationing Policy

Let CMR := C(R1 = 0,R2, ...,Rn+1 = S) be the long-run average cost of the MR system given

rationing levels R1,R2, ...,Rn+1. In this section, we derive the closed form expression for this cost.

The idea in developing this expression is similar to the one used for analyzing the SP policy. Specif-

ically, we derive the customer composition within each relevant inventory range, I(t) ∈ (Ri,Ri+1]

for i= 1, ..., n and I(t)≤ 0, by considering a properly defined backlog queue.

The proof of the following corollary relies on Theorem 2.

Corollary 1. We can assume without loss of generality that Rr >Rr−1 for r= 2, . . . , n+ 1.

3.3.1. The MR Backlog Queues Here we construct a series of backlog queues for each class

r = 1, ..., n + 1. We denote class r backlog queue by BQr. In Theorem 5 we show that the job

composition in the backlog queues is identical to the relevant customer composition in the MR

system.

We constructed the SPB queue by carefully constructing its (a) allocation, (b) arrival, and (c)

service processes when I(t)≤ 0. We follow steps (a)-(c) below, formulating BQr for I(t)≤Rr as

a two-priority M/G/1 queue with postponement and exceptional first service times in its busy

periods.

Step (a): we set BQr as a two-priority queue in which priority is given to the jobs of classes

1, ..., r− 1 over jobs of class r.

The intuition behind step (a) is that once the inventory hits a rationing level and the customer

composition changes, only the priority of a single class of customers changes; all other classes are
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treated as before. For example, once the inventory falls below Rn + 1, classes 1, ..., n− 1 remain

high-priority, receiving items from inventory upon arrival; and only the priority of class n customers

changes from high to low. Therefore, BQn is a two-priority queue in which jobs of types 1, ..., n−1

are high-priority, and jobs of type n are low-priority.

Step (b): we set the arrival processes of all job types to be Poisson, and let the high- and

low-priority jobs arrival rates at BQr be λ+
r−1 :=

∑r−1

i=1 λi and λr, respectively. This queue ignores

customers of classes r+ 1, ..., n.

We set the arrival rates of the low and high-priority jobs in BQr as defined in step (b) because:

Observation 1. For any class r = 2, · · · , n, once the inventory level in the original system

decreases to Rr, type r customers become low-priority until the inventory climbs to Rr + 1 again.

During these periods the inventory level might downcross Rj for other classes j < r, making them

low-priority customers and backlogging their demand. It is possible that all stock will be depleted

and all demand backlogged. However, before the inventory climbs to level Rr, the system first

clears the backlogs of classes j < r. In other words, from the point of view of class r, classes 1 to

r − 1 remain a single class of high-priority customers as long as I(t) ≤ Rr. Similarly, as long as

I(t)≤Rr, classes j > r are low-priority and, therefore, their arrivals do not affect the system times

experienced by classes j ≤ r.

Observation 1 implies that any change of class r backlog in the MR system corresponds to a

change of the low-priority job in BQr and to a change in the high-priority job in BQj for j > r.

However, this change of the class r backlog does not affect BQj for j < r. Thus, we ignore class r

when considering BQj for j < r, i.e., the backlog queues of higher priority classes.

Step (c): we set the service process of the BQr to have exceptional first service times in busy

periods and regular service times with LT of b̃(·) otherwise. We set the LT of the exceptional service

times to be the LT of the residual service times observed by a high-priority arrival at BQr+1 that

sees Rr+1 −Rr jobs in the queue. We let ∆r := Rr+1 −Rr for r = 1, ..., n and denote this LT by

b̃r∆r
(·). (With this notation, b̃nS(·) is identical to b̃SPB0 (·), the LT of the exceptional first service
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times in the SPB queue.)

The intuition behind step (c) is as follow: for the SPB queue, we set the distribution of the

exceptional first service times as the equilibrium residual service time observed by arrivals that

see S orders in the shortfall queue. In the SP system, the first service times depend on all orders

in the system because all arrivals reduce the inventory towards 0 (the level where the customer

composition changes). However, in BQr only high-priority jobs in BQr+1 correspond to customers

that may reduce the inventory in the system to Rr. Consider high-priority job arrivals in BQr+1

that see Rr+1−Rr high-priority jobs. Every such arrival corresponds to a customer that decreases

the inventory in the system to Rr − 1 or creates a class r backlog. With our construction, every

such high-priority arrival corresponds to jobs that start the busy period in BQr. Therefore, we set

the first service times in busy periods in BQr as the equilibrium residual service times observed by

high-priority arrivals that see Rr+1−Rr high-priority jobs in BQr+1. This choice makes the service

time of the first jobs in busy periods of BQr identical, in distribution, to the required residual

service times. As Theorem 5 below states, this construction together with steps (a) and (b) results

in a job composition in BQr that is identical to the relevant (classes 1, ..., r) customer composition

in the MR system when I(t)≤Rr.

To summarize: For r= 2, ..., n, BQr is a two-priority M/G/1 queue with high- and low-priority

customer arrival rates λ+
r−1 =

∑r−1

i=1 λi and λr, respectively, and exceptional first service times in its

busy periods. The LT of the exceptional first service times is b̃r∆r
(·) and the LT of regular service

times is b̃(·).

For completeness, we think of the shortfall queue of the MR system as the n+ 1 backlog queue,

BQn+1. We let λn+1 := 0 and set the first exceptional service times to be regular service times with

a LT b̃n+1
0 (·) = b̃(·). This implies that all jobs in BQn+1 form a single high-priority class.

Note that we can calculate the backlog of class 1 customers from BQ2 (this is (i−R2)+ where

i is the number of high-priority customers in BQ2). However, as shown in Theorem 2, finding the

expected number of customers in a backlog queue can be done in closed form. Thus, to reduce

the computational burden, we use BQ1. The exceptional first service times for this queue are the
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residual service times seen by high-priority arrivals at BQ2 that see ∆1 high-priority jobs in the

queue, i.e., its LT is b̃1
∆1

(·).

Let ρb be the server utilization in BQr, and 1/µ1 and m1
2 be the first and second moments of

the exceptional first service times in BQr. Both 1/µ1 and m1
2 can be obtained using b̃r∆r

(s) that

can be derived using Theorem EC.2 presented in EC.1.2. (For notational convenience and because

the context is clear, we omit the superscript r from ρb, µ1, and m1
2 in BQr.) Due to PASTA, the

mean of service time is 1/µ with probability ρb, and 1/µ1 with probability 1− ρb, thus

ρb =
λ+
r (1− ρb)
µ1

+
λ+
r ρb
µ

=
λ+
r µ

µ1µ+λ+
r (µ−µ1)

. (11)

Let E[NBQr ] and E[NBQr
l ] denote the expectation of the number of all (total) and low-priority

jobs in BQr, respectively. Also, for r= 1, .., n+ 1, let PBQr
h (i) and PBQr

l (i) denote the steady-state

probability of having i high- and low-priority jobs in BQr, respectively. Next we derive close form

expressions for E[NBQr ] and E[NBQr
l ], and generalize Eq. (2), which is given for the distribution

of the total number of orders in a FCFS M/G/1 queue, to the distribution of the number of

high-priority jobs in BQr. We define
∏l

i=k (·) := 1 for k > l.

Theorem 4. Consider BQr. Then,

1. The expected number of type r jobs in BQr is

E[NBQr
l ] =

∞∑
j=0

jPBQr
l (j) =E[NBQr ]

λr
λ+
r

1− ρ+
r

(1− ρ+
r )(1− ρ+

r−1)
, (12)

where ρ+
r = λ+

r /µ for r= 1, . . . , n, ρ+
0 := 0, λ+

r =
∑r

i=1 λi as before, and

E[NBQr ] = (1− ρb)λ+
r

(λ+
r )2m2/µ1 + (1− ρ)(λ+

r m
1
2 + 2/µ1)

2(1− ρ)2
. (13)

2. The probability of having i high-priority jobs in BQr is,

PBQr
h (i) =

λ+
r−1 (1− (ρb−λrE[A]))

λ+
r

i−1∏
j=0

1− b̃r−1
j (λ+

r−1)

b̃(λ+
r−1)

, i= 1, ... (14)

where ρb is given in Eq. (11), E[A] is given in Lemma EC.2 and b̃r−1
j (·) are given in Theorem

EC.2.
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The proof of Theorem 4 relies on Theorem 2 and uses a similar derivations to that in Kerner

(2008). Note that PBQr
h (i) is a function of b̃r−1

j (·) that can be obtained recursively using Algorithm

1 given in EC.1.3 starting with b̃n0 (·) = b̃(·).

Finally, the system’s inventory and backlog probabilities can be obtained from BQj with j =

2, ..., n+1 and j = 1, ..., n, respectively, as given in Theorem 5 below. Although the proof of Theorem

5 is similar to the proof of Theorem 1 for the SP system, it requires more work. The proof ties

BQr to BQr+1 using induction, and then ties BQr to the MR system. Table 1 below summarizes

the relations between these queues and the MR system.

Table 1 Relations between backlog queues and the MR system

rth backlog queue (r+ 1)st backlog queue The MR system

Queue is relevant: Once the total number of when I (t)≤Rr.
high-priority jobs in the (r+ 1)st

backlog queue increases to 4r.

The first service time The residual service time of a The residual service time of
in a busy period high-priority job that sees 4r a customer arrival
corresponds to: high-priority jobs in this queue of classes 1 . . . r that finds

upon arrival. both I(t) =Rr and Br(t) = 0.

The busy period starts A high-priority job arrival to A customer arrival that
(and the idle period ends) this queue that sees 4r decreases I(t) to Rr − 1
with a job arrival high-priority jobs upon arrival. when Br(t) = 0 or increases
that corresponds to: Br(t) to 1 when I(t) =Rr.

The busy period ends A service completion that When the inventory increases
(and the idle period starts), reduces the total number of to Rr while Br (t) = 0 or
corresponds to: high-priority jobs when the class r backlog

in this queue to 4r. decreases to 0 (this can only
happen while I(t) =Rr).

Low-priority customers: The lowest high-priority jobs Customers of class r.
in this queue.

High-priority customers: All but the lowest high-priority Customers of
jobs in this queue, i.e., jobs classes 1 to r− 1.
of classes 1 · · · r− 1.

Let FBQr
h (i) :=

∑i

j=0P
BQr
h (j) and F̄BQr

h (i) = 1−FBQr
h (i).

Theorem 5. (i) The steady-state probability of having i backlogs from class r in the MR system

is,

P (Br = i) =
n+1∏
j=r+1

F̄
BQj

h (∆j−1− 1)PBQr
l (i), r= 1,2, ..., n, i= 0,1, ... (15)

(ii) The steady-state probability of having Rr− i inventory units in the MR system is,

P (I =Rr− i) =
n+1∏
j=r+1

F̄
BQj

h (∆j−1− 1)PBQr
h (i), r= 2, ..., n+ 1, i= 0,1, ...,∆r−1− 1. (16)
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3.3.2. The Cost of the MR Policy Here we express CMR in closed form using the backlog

queues defined above. Combining Theorems 4 and 5 the total cost of the MR system is (no further

proof is provided):

Theorem 6. The long-run average cost of the MR policy is

CMR = h
n+1∑
r=2

[
n+1∏
j=r+1

F̄
BQj

h (∆j−1− 1)

∆r−1−1∑
i=0

(Rr− i)PBQr
h (i)

]

+
n∑
r=1

br

[
n+1∏
j=r+1

F̄
BQj

h (∆j−1− 1)E[NBQr
l ]

]
. (17)

We remind that E[NBQr
l ] and PBQr

h (i) are given in closed form in Theorem 4. To calculate Eq.s

(13) and (14), we obtain the LTs of the exceptional first service times in BQr by recursively using

Theorem EC.2. While the cost in Eq. (17) is a closed form expression, it is quite cumbersome

because it uses the LT of different equilibrium residual service times.

3.3.3. Searching for the Optimal MR Policy For a given set of rationing levels

R1, . . . ,Rn+1, if Ri =Ri+1 · · ·=Rj, we first aggregate customers of classes i, . . . , j as a single class

and normalize their backlog costs using Theorem 2. Then, we calculate the cost of the MR system

using Theorem 6. We start with BQn+1 that is a FCFS M/G/1 queue with an arrival rate λ =∑n

i=1 λi and obtain the probabilities P
BQn+1
h (i) using Eq. (4). To obtain the probabilities PBQr

h (i)

for BQ2, . . . ,BQn+1, we use Eq. (14) that requires b̃r−1
j (·). We calculate these LTs using Theorem

EC.2. Finally, we obtain E[NBQr
l ] using Theorem 4 without calculating PBQr

l (i). With the exact

cost CMR calculated using this procedure for given rationing levels, we can search over different

vectors of (R1,R2, ...,Rn+1) to find the optimal rationing levels and the corresponding cost.

3.4. Comparison of the Three Policies

To compare the MR, SP, and FCFS M/G/1 systems, as before, we let CF (SF
∗
), CSP (SSP

∗
) and

C∗MR denote the optimal cost of the FCFS, SP and MR systems, respectively.



Author: Strategies for a
16 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

3.4.1. Theoretical Comparison Note that the SP control is a special case of the MR control

and that the customer composition in the SP system leads to lower backlog costs than in the

FCFS system while maintaining the same holding cost. Observation 2 below summarizes this and

provides theoretical support for the use of the MR and SP policies rather than the FCFS policy in

M/G/1 make-to-stock queues. The observation is given without a more detailed proof.

Observation 2. We have

C∗MR ≤CSP (SSP
∗
)≤CCF (SF

∗
).

3.4.2. Numerical Comparison Our methodology can be used to find the optimal control

and cost for 2, 5, and 10 customer classes. Since M/M/1 make-to-stock systems have been investi-

gated (de Véricourt et al. 2001), we consider two service times with a squared-coefficient of variation

(variance to squared mean ratio) cv2 6= 1: (i) deterministic, with a mean of 1 and cv2 = 0, and (ii)

the 2-stage Mixed Generalized Erlang (MGE2) distribution with cv2 = 2, MGE2(µ1 = 1.05523, µ2 =

0.09477, a1 = 0.99504) (Altıok, 1997, p. 42–43), a mean of 1 and density

f(y) =
(1− a1)µ1−µ2

µ1−µ2

µ1e
−µ1y +

a1µ1

µ1−µ2

µ2e
−µ2y.

We vary ρ = 0.8,0.9 while maintaining the arrival rates equal λr = ρ/n, letting br = n− r + 1,

r= 1, . . . , n (i.e., bn = 1) and h= 0.1. This gives a total of 24 tests. For each test we calculated the

ratios

∆SP :=
CSP (SSP

∗
)−C∗MR

C∗MR

× 100, ∆F :=
CCF (SF

∗
)−C∗MR

C∗MR

× 100. (18)

Table 2 presents the results of these numerical experiments and shows that using the MR and SP

policies can significantly reduce costs, compared to the optimal FCFS policy.

Table 2 ∆SP and ∆F for multiple classes of customers

n= 2 n= 5 n= 10
cv2 ρ ∆SP ∆F ∆SP ∆F ∆SP ∆F
0 0.8 0.00 9.73 1.80 22.45 4.11 18.38

0.9 0.00 12.00 2.36 26.48 5.62 30.14
2 0.8 0.00 11.93 1.72 21.95 3.11 20.39

0.9 0.00 13.00 1.98 27.85 4.02 29.87
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4. Proofs of the Main Results

In this section we provide the proofs of our two main results. In Theorem 1, we show that the

distribution of the number of customers in an M/G/1 queue with priorities that depend on the

number of customers in the system can be deduced by investigating a multi-priority M/G/1 queue

with an exceptional service time. In Theorem 2, we characterize the cost composition in such

queues.

Proof of Theorem 1. We first prove that the steady-state distribution of number of jobs in

the SPB queue is identical to the steady-state distribution of number of backlogs in the system

given that the system is out of stock:

P (S+ i) = [1−F (S− 1)]P SPB(i), i= 0,1, ..., (19)

where P SPB(i) denotes the steady-state probability of having i jobs in the SPB queue. We then

establish that the job composition in the SPB queue is identical to the customers backlog compo-

sition in the SP system given that the system is out of stock.

Eq. (19) states that P SPB(i), is identical to the steady-state probability of having S + i orders

in the shortfall queue given that N(t)≥ S.

Using Eq. (4), the steady-state probability of having (S+ i) orders in the shortfall queue is,

P (S+ i) = P (0)
S+i−1∏
j=0

1− b̃j(λ)

b̃(λ)
= P (S)

i−1∏
j=0

1− b̃S+j(λ)

b̃(λ)
, i= 0,1, ... (20)

We next obtain the steady-state probability of having i jobs in the SPB queue. The derivation

is similar to the one for the M/G/1 queue in Kerner (2008). We define qt(i, η) as the probability

that there are i jobs in the SPB queue, and remaining service time is η at time t. Therefore, we

have,

qt+dt(1, η) = qt(1, η+ dt)(1−λdt) + qt(2,0)b(η)dt+ qt(0,0)λbSPB0 (η)dt, i= 1, (21)

qt+dt(i, η) = qt(i, η+ dt)(1−λdt) + qt(i− 1, η+ dt)λdt+ qt(i+ 1,0)b(η)dt, i > 1, (22)
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where bSPB0 (·) is the density of the first exceptional service times in the SPB queue. Then, similar

to the proof of Lemma 3.1.3.1 in Kerner (2008) we have,

P SPB(i) = P SPB(0)
i−1∏
j=0

1− b̃SPBj (λ)

b̃(λ)
, (23)

where b̃SPBj (·) is the LT of the equilibrium residual service times observed by arrivals who find j

jobs in the SPB queue.

Setting λl = 0, λh = λ and b̃h0(s) = b̃SPB0 (s) = b̃S(s) (where the last equality follows by our con-

struction in step (c)) in Theorem EC.2 we get b̃SPBi (s) = b̃S+i(s) for i= 1,2, .... Therefore,

P SPB(i) = P SPB(0)
i−1∏
j=0

1− b̃S+j(λ)

b̃(λ)
, i= 0,1,2, ... (24)

We next show that Eq. (19) holds for i = 0. Let 1/µ1 denote the expected remaining service

time of an order in service in the shortfall queue observed by an arrival who finds S orders in the

shortfall queue (That is −db̃S(s)/ds|s=0 = 1/µ1). Sigman and Yechiali (2007, Eq. 1) show that

1

µ1

=
1− ρ
λP (S)

(1−F (S)).

So that,

P (S) =
1− ρ

λ
µ1

+ 1− ρ
(1−F (S− 1)). (25)

Also as in Eq. (11) the utilization of the SPB queue, ρb, is

ρb =
λµ

µ1µ+λ(µ−µ1)
= 1− 1− ρ

λ
µ1

+ 1− ρ
. (26)

Comparing Eqs. (25) and (26) we get

P (S) = (1−F (S− 1))(1− ρb) = (1−F (S− 1))P SPB(0). (27)

Therefore, Eq. (19) holds for i= 0. Substituting Eq. (27) on the right hand side of Eq. (20) together

with Eq. (24) establishes Eq. (19) for i≥ 1.

We next establish that the job composition in the SPB queue is identical to the customers

backlog composition in the SP system. Intuitively, considering Eq. (19), we observe that given step
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(a) of the construction of the SPB queue, the job is allocated in the SPB queue in the same way

as it is allocated in the SP system while N(t)≥ S. Furthermore, given step (b) in the construction

of the SPB queue, the job arrival process of type r in the SPB queue has the same distribution as

the customer arrival process of type r in the SP system. Both observations together with Eq. (19)

imply that the job composition in the SBP queue is identical to the customer composition in the

SP system. This implication establishes Eq. (6).

More formally, consider the continuous time Markov chain that represents the jobs’ distribution

in a multi-class M/G/1 queue with exceptional first service times with a density of b0(·). Let

N̄ = (L1, · · · ,Ln) denote the vector of the number of jobs of classes 1, · · · , n, īN̄ = arg minr{Lr > 0}

and k̄N̄ = {r : Lr > 0} is the set of classes with jobs waiting in the system. Then, similar to Eqs.

(21) and (22) this MC is given by:

h̄t+dt(N̄, η) = h̄t(N̄, η+ dt)(1−λdt) +
n∑
k=1

h̄t(N̄ + ek,0)b(η)dt,
n∑
j=1

Lj = 0 (28)

h̄t+dt(N̄, η) = h̄t(N̄, η+ dt)(1−λdt) +

iN̄∑
k=1

h̄t(N̄ + ek,0)b(η)dt+ h̄t(N̄− eiN̄ ,0)λiN̄b0(η)dt,
n∑
j=1

Lj = 1

(29)

h̄t+dt(N̄, η) = h̄t(N̄, η+ dt)(1−λdt) +

iN̄∑
k=1

h̄t(N̄ + ek,0)b(η)dt+
∑
k∈k̄N̄

h̄t(N̄− ek, η+ dt)λkdt,
n∑
j=1

Lj > 1

(30)

where h̄t(N̄, η) is the probability that there are Lr jobs of class r in the system, and remaining

production time is η at time t.

Next consider the continuous time Markov chain that represents the backlogs’ distribution in

the SP system during the periods that the system is out of stock. Let N = (B1, · · · ,Bn) denote the

vector of the backlogs of classes 1, · · · , n, er denote the rth unit vector, iN = arg minr{Br > 0} and

kN = {r :Br > 0} is the set of backlogged classes. Then, similar to Eq.s (21) and (22) this MC is

given by:

ht+dt(N, η) = ht(N, η+ dt)(1−λdt) +
n∑
k=1

ht(N + ek,0)b(η)dt,
n∑
j=1

Bj = 0 (31)
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ht+dt(N, η) = ht(N, η+ dt)(1−λdt) +

iN∑
k=1

ht(N + ek,0)b(η)dt+ht(N− eiN ,0)λiNb
SPB
0 (η)dt,

n∑
j=1

Bj = 1

(32)

ht+dt(N, η) = ht(N, η+ dt)(1−λdt) +

iN∑
k=1

ht(N + ek,0)b(η)dt+
∑
k∈kN

ht(N− ek, η+ dt)λkdt,
n∑
j=1

Bj > 1

(33)

where ht(N, η) is the probability that there are Br backlogs of class r in the SP system given it

is out of stock, and remaining production time is η at time t. Note that in this MC, bSPB0 (·) is

independent of class r backlogs because any arrival to the SP system that finds inventory level

equals zero creates the first backlog and starts the backlog period.

Comparing Eqs. (31), (32) and (33) with Eqs. (28), (29) and (30), respectively, we observe that

the MC representing the backlogs in the SP system given it is out of stock is identical to the

MC that represents the number of jobs in an M/G/1 queue with exceptional first service times

if b0(η) = bSPB0 (η). Therefore, since the density of the first exceptional service times in the SPB

queue is defined as bSPB0 (η), we observe that the MC representing the backlogs in the SP system

given it is out of stock is identical to the MC that represents the number of items in the SPB

queue, and consequently the distribution of backlogs of class r given the SP system is out of stock is

identical to the distribution of jobs of class r in the SPB queue. Note that this discussion essentially

establishes Eq. (19) as well. The derivation of Eq. (19) is given above as it provides the closed form

expression for these probabilities.

�

We next give the proof of Theorem 2.

Proof of Theorem 2. Consider customers of classes 1, . . . , r as high-priority with an arrival

rate λ+
r . Let E[N+

r ] and E[N−r ] denote the expected number of customers of classes 1, . . . , r and

r + 1, . . . , n in the SPB queue, respectively. We call high- and low-priority classes r+ and r−

respectively.

Using Little’s Law, we have E[NSPB] =−λw̃′(s)|s=0 and E[N−r ] =−λ−r w̃
′

r−(s)|s=0, where w̃(s)

and w̃r−(s) are the LT of the system times in a single class FCFS M/G/1 queue and customers
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of class r−, respectively. Observe that for class r = n, we have w̃n(s) = w̃h(s+ λ+
n−1(1− θ+

n−1(s)))

and note that in this case, λl = 0 and λh = λ. Therefore, we have a single class M/G/1 queue with

exceptional first service times. Using Corollary EC.1 we get w̃h(s) = w̃r−(s) = w̃(s) as given in Eq.

(EC.12). Since E[NSPB] =E[N+
r ] +E[N−r ], we have

E[N+
r ]

E[NSPB]
= 1− E[N−r ]

E[NSPB]
= 1−

−λ−r w̃
′

r−(s)|s=0

−λw̃′(s)|s=0

= 1− λ
−
r w̃

′
(s+λ+

r (1− θ+
r (s)))(1−λ+

r θ
+
′

r (s))|s=0

λw̃′(s)|s=0

,

where as in Eq. (EC.11) θ+
r (s) = b̃(s+λ+

r (1− θ+
r (s))). Since θ+

r (0) = 1, w̃
′
(0) cancels out and then

because b̃′(s)|s=0 = 1/µ, we have

E[N+
r ]

E[NSPB]
= 1− λ

−
r

λ
(1−λ+

r θ
+
′

r (s)|s=0)

= 1− λ
−
r

λ
(1− λ+

r b̃
′
(s)|s=0

1 +λ+
r b̃
′(s)|s=0

) =
λ+
r (1− ρ)

λ(1− ρ+
r )
, (34)

where ρ+
r = λ+

r /µ and ρ= λ/µ.

Now consider a second system with two classes of customers where the arrival rates of high-

and low-priority customers are λ+
r−1 and λ−r−1, respectively. The expected number of high-priority

customers in this system is E[N+
r−1]. The expected number of customers of class r in the multi-

priority class can be expressed as

E[NSPB
r ] =E[N+

r ]−E[N+
r−1].

Therefore,

E[NSPB
r ]

E[NSPB]
=
E[N+

r ]−E[N+
r−1]

E[NSPB]
. (35)

Applying Eq. (34) to the r+ and (r− 1)+ customers and substituting it into Eq. (35) and letting

ρr = λr/µ we have

E[NSPB
r ]

E[NSPB]
=
λ+
r (1− ρ)

λ(1− ρ+
r )
−
λ+
r−1(1− ρ)

λ(1− ρ+
r−1)

=
(1− ρ)[(λ+

r−1 +λr)(1− ρ+
r−1)−λ+

r−1(1− ρ+
r )]

λ(1− ρ+
r )(1− ρ+

r−1)
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=
(1− ρ)[λ+

r−1 +λr−λ+
r−1ρ

+
r−1−λrρ+

r−1−λ+
r−1 +λ+

r−1ρ
+
r−1 +λ+

r−1ρr]

λ(1− ρ+
r )(1− ρ+

r−1)

=
λr(1− ρ)

λ(1− ρ+
r )(1− ρ+

r−1)
=

1− ρ
ρ

(
1

1− ρ+
r

− 1

1− ρ+
r−1

)
.

�
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Online Appendix

EC.1. Required Queueing Analysis

In this section, we derive the required analytical results to express the costs for the MR and SP

policies. Given Theorem 2 (the proof of which requires the following derivations and theorems)

expressing the cost of the SP policy only requires the solution of a FCFS M/G/1 queue. Expressing

the cost of the MR policy requires the solution of a two-priorityM/G/1 queue with postponement of

product allocation and exceptional first service times in busy periods as well as the characterization

of the first exceptional service time. In Section EC.1.1 we derive, w̃r(s), the LT of the system time

of type r customers in an n class multi-priority M/G/1 queue with exceptional first service times in

its busy periods when product allocation is postponed to the end of production. In Section EC.1.2

Theorem EC.2 outputs the LT of the exceptional first service times in the busy periods for BQr

as defined in Section 3.

EC.1.1. A Multi-Priority M/G/1 Queue with Exceptional First Service Times in Busy Periods

In this section, we consider a multi-priority M/G/1 queue with exceptional first service times in

busy periods when product allocation is postponed to the end of production. Following Chapter

3 of Takagi (1991) and Chapter 8 of Conway et al. (1967) wherever possible, we obtain the LT of

the density function of the system time of class r customers, w̃r(s), in Theorem EC.1. (Because

the models in Takagi and Conway et al. consider systems without postponement, their results

cannot be used directly to study the MR and SP policies.) To obtain w̃r(s), we consider a system

with two-priority classes in Section EC.1.1.1. In Section EC.1.1.2, we obtain Πh(z), the probability

generating function of the number of high-priority customers left in the two-priority class system

by a departing high-priority customer. We then relate Πh(z) to w̃r(s).

EC.1.1.1. A Markov-Chain Representation for the Two-Priority Class System We

consider a two-priority M/G/1 queue with exceptional first service times where high- and low-

priority customer arrival rates are λh and λl, respectively, such that λ= λh+λl. We denote the LT
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of the first exceptional service times in busy periods by b̃0(s). We solve this queue following Takagi

(1991). We focus on the discrete stochastic process Mh where {Mh
n , n= 1,2, ...} is the number of

high-priority customers left behind by the nth departing customer (either high- or low-priority) in

the two-priority class system. Let πk be the steady-state probability that an arbitrary departure

leaves k high-priority customers behind.

When vk and wk denote the probabilities of having k high-priority arrivals during a service time

with LT’s b̃(s) and b̃0(s), respectively, we have

W (z) =
∞∑
k=0

wkz
k = b̃0(λh(1− z)), (EC.1)

V (z) =
∞∑
k=0

vkz
k = b̃(λh(1− z)). (EC.2)

Like the analysis of the Markov chain embedded at departures for the M/G/1 queue (Gross and

Harris, 1998, p. 214), pjk, the transition probabilities of Mh for k≥ j− 1, j ≥ 1 are

pjk = P{Mh
n+1 = k|Mh

n = j}= vk−j+1, k≥ j− 1, j ≥ 1. (EC.3)

However, when j = 0 there are no high-priority customers in the system at the last departure

instant, and, Mh is no longer Markovian. We therefore consider a different stochastic process M̃h

that is both Markovian and tractable. We construct the transition probabilities of M̃h such that

its steady-state probabilities π̃k’s are identical to πk’s. The proof of the theorem below uses 1− ρb

to denote the probability that the server is idle. Then, π0 − (1− ρb) is the probability that there

are only low-priority customers in the system.

Lemma EC.1. The steady-state probabilities of M̃h and Mh are identical:

π̃k = πk, for k= 0,1, ...

EC.1.1.2. Deriving the Generating Functions To derive the generating functions, as in

Chapter 3 of Takagi (1991), we require the expected length of time that the server works with

the aim of satisfying low-priority customer demand. This is the sum of service times that start to
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satisfy low-priority customers but are taken over by high-priority customers and the final service

time during which no high-priority customers arrive. Conway et al. (1967, p. 169) call this the

gross processing time and define it as “the total amount of time that a job actually spends on the

machine.” Let A be the r.v. corresponding to the gross processing time.

Lemma EC.2. Consider a two-priority class M/G/1 queue with exceptional first service times in

its busy periods with a LT of b̃0(s) and regular service times with LT b̃(s) and allocation postpone-

ment. Then, the expected gross processing time in this queue is

E[A] = ρbE[A1] + (1− ρb)(b̃0(λh)E[A2] + (1− b̃0(λh))(E[A3] +E[A1])), (EC.4)

where with b̃′0(s) := db̃0(s)/ds

E[A1] =
1− b̃(λh)

λhb̃(λh)
, E[A2] = − b̃

′
0(λh)

b̃0(λh)
, E[A3] =

λhb̃
′
0(λh) + (1− b̃0(λh))

λh(1− b̃0(λh))
.

To derive the probability generating functions, we need to express π0, which involves more work

than in Takagi (1991). Considering only the high-priority departures, let κ0 denote the steady-state

probability that a departing high-priority customer leaves no high-priority customers behind if we

consider only the high-priority departures.

Lemma EC.3. Consider a two-priority M/G/1 queue with exceptional first service times. Then,

1. The steady-state probability of having no high-priority customer in the system is

λh/λ (1− (ρb−λlE[A])) . (EC.5)

2. The fraction of departures leaving no high-priority customers behind is

π0 = 1− λh
λ

(1−κ0) = 1− λh(ρb−E[A])

λ
. (EC.6)

Now, using π0, the M̃h process from Theorem EC.1, and following Takagi (1991) we show

Lemma EC.4. The probability generating function of the number of high-priority customers left

in the two-priority class system by an arbitrary departure is

Π(z) =
(1− ρb)V (z)

V (z)− z
+

(λhz+λl)(1− ρb)W (z)

λ(z−V (z))
+

(1− ρb)λl(w0(z− 1))

λ(z−V (z))
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+
(π0− (1− ρb))v0(z− 1)

z−V (z)
. (EC.7)

Using Lemma EC.4, we can obtain the probability generating function of the number of high-

priority customers in the two-priority class system with exceptional first service times in busy

periods that is required to obtain the cost of the MR system:

Lemma EC.5. In the two-priority class system, the probability generating function of the number

of high-priority customers left behind after the departure of a high-priority customer is

Πh(z) =
λ(1− ρb)V (z)

λhz(V (z)− z)
[z− (λhz+λl)W (z) +λlw0(z− 1)

λ
− (π0− (1− ρb))v0(z− 1)

1− ρb
]

+
λ(1− ρb)
λhz

[
(λhz+λl)W (z)

λ
− w0λl

λ
− (π0− (1− ρb)))v0

(1− ρb)
]. (EC.8)

In Theorem 2 we used E[N ] and E[Nr] denoting, respectively, the expected number of total and

class r orders in an M/G/1 queue with n priority classes and exceptional first service times in

busy periods. We obtain E[N ] and E[Nr] by first characterizing the LT of the system time density

function of class r customers in the system and then using Litte’s Law. Let w̃h(s) denote the LT

of the system time density function of the high-priority customers in a two-priority system with

exceptional first service times. Then:

Theorem EC.1. Consider a two-priority class M/G/1 queue with exceptional first service times

in its busy periods with a LT of b̃0(s) and regular service times with LT b̃(s). Then, the LT of the

system time density function of the type r customers is

w̃r(s) = w̃h(s+λ+
r−1(1− θ+

r−1(s))), (EC.9)

where

w̃h(s) =
b̃(s)(1− ρb)(λlw0−λ) + (π0− (1− ρb))v0λ(b̃(s)− 1)

λh(1− b̃(s))− s

+
(1− ρb)(b̃0(s)(λ− s)−λlw0)

λh(1− b̃(s))− s
. (EC.10)

and

θ+
r−1(s) = b̃(s+λ+

r−1(1− θ+
r−1(s))). (EC.11)
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Corollary EC.1. Consider a single class FCFS M/G/1 queue with exceptional first service times

in busy periods with a LT of b̃0(s) and regular service times with LT b̃(s). Then, the LT of the

system time density function in this queue is

w̃(s) =
(1− ρb)(λ(b̃(s)− b̃0(s)) + sb̃0(s))

s−λ(1− b̃(s))
. (EC.12)

EC.1.2. Exceptional First Service Time in a Two-Priority M/G/1 Queue

In this section, we derive the LT of the residual service times seen by high-priority arrivals in a

two-priority M/G/1 queue with exceptional first service times in busy periods that finds j high-

priority customers in the system, b̃hj (s). This LT is employed in Algorithm 1 to obtain the required

LT of the exceptional first service times for the next backlog queues as discussed in Section 3.3 on

MR policy.

The derivation of b̃hj (s) in Theorem EC.2 is similar to the proof of part 2 in Theorem 4 that

extends the approach of Kerner (2008) to the setting we require.

Theorem EC.2. Consider a two-priority class M/G/1 queue with exceptional first service times

in its busy periods with a LT of b̃0(s) and regular service times with LT b̃(s). Then, the LT of the

residual service time upon the arrival of a high-priority customer seeing j high-priority customers

in the system is given recursively by

b̃hj (s) =
λh

s−λh
[b̃(λh)

1− b̃hj−1(s)

1− b̃hj−1(λh)
− b̃(s)], j ≥ 1, (EC.13)

where

b̃h0(s) =
κ0λhb̃(s) + b̃(s)(1− ρb)(λlw0−λ)

κ0(λh− s)

+
(π0− (1− ρb))λv0(b̃(s)− 1) + (1− ρb)(b̃0(s)(λ− s)−λlw0)

κ0(λh− s)
. (EC.14)

From Eq.s (EC.1) and (EC.2), it follows that v0 = b̃(λh) and w0 = b̃0(λh). Also, ρb and κ0 are

given in Eq.s (11) and (EC.15), respectively (E[A] is given in Theorem EC.2). Observe that if
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b̃0(s) = b̃(s), λh = λ and λl = 0, Theorem EC.2 is identical to Corollary 2.2.1 in Kerner (2008) when

setting λn = λ for all n.

Algorithm 1 in EC.1.3 below gives the LT of the residual service times observed by high-priority

arrivals who find j high-priority jobs in the queue. We can obtain the exceptional first service times

of BQr for r= 1 · · ·n using this Algorithm.

EC.1.3. The residual service times observed by high-priority arrivals in b̃rj(s)

Algorithm 1. Finding the LT of the residual service times observed by high-priority arrivals,

b̃rj(s), for j = 0, . . . ,∆r, r= 1, . . . , n

[Step 0] For level Rn+1, set r= n, b̃0(s) := b̃(s) and λh = λ+
n :=

∑n

i=1 λi, λl = λ−n := 0, λ :=
∑n

i=1 λi,

and j = 1. Calculate b̃h0(s) using Eq. (EC.14).

[Step 1] While j ≤∆r, consider the rth backlog queue:

a Obtain b̃rj(s) = b̃hj (s), where the latter is given in Theorem EC.2.

b Set j = j+ 1 and go back to Step 1.

[Step 2] While n≥ r≥ 1, consider the rth backlog queue:

a Set λh = λ+
r−1 :=

∑r−1

i=1 λi, λl := λr, and λ= λ+
r .

b Set b̃0(s) = b̃r∆r
(s), r= r− 1, j = 1.

c Calculate b̃h0(s) using Eq. (EC.14) and go back to Step 1.

Algorithm 1 implicitly assumes that the LT of regular service times, b̃(s), is known. The algorithm

starts with r= n at Step 0, setting the required parameters to characterize BQn+1: b̃0(s), λh, and

λl. Then, at Step 1.a., the algorithm uses Theorem EC.2 to return b̃rj(s), the LT of the residual

service times observed by high priority arrivals at BQr+1 who find j (= 1, . . . ,∆r) jobs in the queue.

(Note that b̃r∆r
(s) is the exceptional first service time in BQr.) At Step 2.a. the algorithm sets the

required arrival rates for BQr. (Note that at this stage, Eq. (14) can be used to obtain the implied

probabilities for this queue.) In Step 2.c., before continuing with the same steps for BQr−1, the

algorithm updates the exceptional service time for this queue (as the residual service time resulting

from BQr). The algorithm then returns to Step 1 with r= r− 1.
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EC.1.4. Proofs of the Required Queueing Analysis

Proof of Lemma EC.1. We define Ml
n as the number of low-priority customers left behind

by the nth departure and consider four cases.

1. There can be at least one low-priority customer in the system at the last departure instant; in

this case, the server continues working on the next production order. If no high-priority customers

arrive during this service time (with probability v0), the next departure (a low-priority customer)

leaves no high-priority customers behind. If exactly one high-priority customer arrives during this

service time (with probability v1), the next departure (a high-priority customer) leaves no high-

priority customers behind. Mathematically,

P{Mh
n+1 = 0|Mh

n = 0,M l
n > 0} = v0 + v1.

2. The last departure might leave the system empty. If the next customer arriving is a high-

priority customer (with probability λh/λ) and no high-priority customers arrive during its service

time (with probability w0), the next departure (a high-priority customer) leaves no high-priority

customers behind. If the next customer arriving at the idle system is a low-priority customer

(with probability λl/λ) and, at most, one high-priority customer arrives during its service time

(with probability w0+w1, see item 1 for the explanation), the next departure (a high-priority

customer with probability w1 or a low-priority customer with probability w0) leaves no high-priority

customers behind. Hence,

P{Mh
n+1 = 0|Mh

n = 0,M l
n = 0} =

λhw0

λ
+
λl(w0 +w1)

λ
= w0 +

λlw1

λ
.

3. There can be at least one low-priority customer in the system at the last departure instant;

in this case, the server continues working on the next production order. If k+ 1≥ 2 high-priority

customers arrive during this service time, the next departure (a high-priority customer) leaves k

high-priority customers behind. That is,

P{Mh
n+1 = k|Mh

n = 0,M l
n > 0} = vk+1, k≥ 1.
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4. The last departure might leave the system empty. If the next customer arriving is a high-

priority customer, and k additional high-priority customers arrive during its service time, or if

the next customer arriving at the idle system is low-priority, and k + 1 high-priority customers

arrive during its service time, the next departure (a high-priority customer) leaves k high-priority

customers behind. Hence,

P{Mh
n+1 = k|Mh

n = 0,M l
n = 0} =

λhwk
λ

+
λlwk+1

λ
, k≥ 1.

Next, we use the above cases to construct a Markov-Chain (MC) M̃h with states k = 0,1, ... .

We let its transition probabilities be pjk as in Eq. (EC.3) when k≥ j−1, j ≥ 1, and for j = 0 we let

p00 = P{Mh
n+1 = 0|Mh

n = 0,M l
n > 0}P{Mh

n = 0,M l
n > 0)}

+P{Mh
n+1 = 0|Mh

n = 0,M l
n = 0}P{Mh

n = 0,M l
n = 0}

= P{Mh
n+1 = 0|Mh

n = 0,M l
n > 0}π0− (1− ρb)

π0

+P{Mh
n+1 = 0|Mh

n = 0,M l
n = 0}(1− ρb)

π0

=
1

π0

{(v0 + v1)(π0− (1− ρb)) + (w0 +
λlw1

λ
)(1− ρb)},

and for k≥ 1

p0k = P{Mh
n+1 = k|Mh

n = 0,M l
n > 0}P{Mh

n = 0,M l
n > 0)}

+P{Mh
n+1 = k|Mh

n = 0,M l
n = 0}P{Mh

n = 0,M l
n = 0}

=
1

π0

{vk+1(π0− (1− ρb)) + (λhwk +λlwk+1)
(1− ρb)

λ
}.

Note that the normalization 1/π0 on the RHS represents the time average when the system is at

state Mh
n = 0. Finally, we observe that with the above definition

p0k = lim
n→∞

P{Mh
n+1 = k|Mh

n = 0}.

Thus, the Theorem follows as in Takagi (1991, p. 289).�
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Proof of Lemma EC.2. There are three cases:

1. With probability ρb, a low-priority customer finds the server busy upon its arrival. In this

case, the gross processing time is identical to the one in the preemptive-repeat with the re-sampling

policy as discussed by Conway et al. (1967, p. 171). Let A1 denote the r.v. corresponding to this

gross processing time; its LT ã1(s) and expectation are, respectively:

ã1(s) =
(s+λh)b̃(s+λh)

s+λhb̃(s+λh)
, E[A1] =

1− b̃(λh)

λhb̃(λh)
.

2. With probability (1−ρb)w0, a low-priority customer finds the server idle upon its arrival and

no high-priority customer arrives during the first exceptional service time. Setting z = 0 in Eq.

(EC.1), it follows that w0 = b̃1(λh). Let A2 denote the r.v. corresponding to the gross processing

time; its LT ã2(s) and expectation are, respectively (see Conway et al. 1967, p. 171):

ã2(s) =
b̃0(s+λh)

b̃0(λh)
, E[A2] = − b̃1

′
(λh)

b̃1(λh)
.

3. Finally, with probability (1− ρb)(1−w0), a low-priority customer finds the server idle upon

its arrival, but during its service time at least one high-priority customer arrives. Let A3 denote

the time the low-priority customer stays on the server before a high-priority customer arrives; its

LT ã3(s) and expectation are, respectively (see Conway et al. 1967, p. 171):

ã3(s) =
λh(1− b̃0(s+λh))

(s+λh)(1− b̃0(λh))
, E[A3] =

λhb̃1

′
(λh) + (1− b̃1(λh))

λh(1− b̃1(λh))
.

After the first high-priority customer arrives, the remaining time until the low-priority customer

departs from the system will be distributed as A1 given above. In this case, the summation of A3

and A1 will be the gross processing time for the low-priority customer.

Combining these three cases leads to Eq. (EC.4).�

Proof of Lemma EC.3. Observe that λlE[A] is the proportion of time the server works on

orders for low-priority customers. Thus, there are no high-priority customers in the system during

this time. Since ρb is the proportion of time the server is busy, by PASTA and departures see what

arrivals do we have
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κ0 = 1− (ρb−λlE[A]). (EC.15)

Note that in the M/G/1 system, only λh/λ fraction of departures are high-priority customers.

Thus, λhκ0/λ is the fraction of high-priority customers (out of all departures) that leave no high-

priority customers in this system. Therefore, in the M/G/1 system, only λh(1−κ0)/λ of departures

leave high-priority customers behind, and the theorem follows.�

Proof of Lemma EC.4. Based on Theorem EC.1, for the stochastic process M̃h, the steady-

state probabilities that a departure leaves behind k high-priority customers satisfy πk =
∑∞

j=0 πjpjk.

Based on the discussion on the transition-probabilities presented in the proof of Theorem EC.1,

for k= 0 we can write

π0 = π0p00 +π1p10,

= π1v0 + (π0− (1− ρb))(v0 + v1) + (1− ρb)[
λh
λ
w0 +

λl
λ

(w0 +w1)],

and for k≥ 1,

πk =
k+1∑
j=1

πjvk−j+1 + (π0− (1− ρb))vk+1 + (1− ρb)(
λh
λ
wk +

λl
λ
wk+1).

The probability generating function of the number of high-priority customers left in the two-

priority class system by an arbitrary departure is

Π(z) =
∞∑
k=0

zkπk = (π0− (1− ρb))(v0 + v1) + (1− ρb)[
λh
λ
w0 +

λl
λ

(w0 +w1)]

+
∞∑
k=0

zk
k+1∑
j=1

πjvk−j+1 +
∞∑
k=1

zk[(π0− (1− ρb))vk+1 + (1− ρb)(
λh
λ
wk +

λl
λ
wk+1)].

(EC.16)

Expanding the following term, which appears on the RHS of Eq. (EC.16),

∞∑
k=0

zk
k+1∑
j=1

πjvk−j+1 = π1v0

+zπ1v1 + zπ2v0
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+z2π1v2 + z2π2v1 + z2π3v0

+...

and using V (z) =
∑∞

k=0 z
kvk,

∞∑
k=0

zk
k+1∑
j=1

πjvk−j+1 = π1

∞∑
k=0

zkvk +π2

∞∑
k=0

zk+1vk (EC.17)

+π3

∞∑
k=0

zk+2vk + ...

= π1V (z) + zπ2V (z) + z2π3V (z) + ...

= V (z)
∞∑
k=1

πkz
k−1 +

π0V (z)

z
− π0V (z)

z

=
V (z)

∑∞
k=0 πkz

k

z
− π0V (z)

z

=
Π(z)−π0

z
V (z).

Hence,

Π(z) =
Π(z)−π0

z
V (z) + (π0− (1− ρb))(v0 + v1) + (1− ρb)[

λh
λ
w0 +

λl
λ

(w0 +w1)]

+
∞∑
k=1

zk[(π0− (1− ρb))vk+1 + (1− ρb)(
λh
λ
wk +

λl
λ
wk+1)] (EC.18)

=
Π(z)−π0

z
V (z) + (1− ρb)

λh
λ
W (z) + (π0− (1− ρb))(v0 + v1)

+(1− ρb)
λl
λ
w0 +

∞∑
k=1

zk(π0− (1− ρb))vk+1 +
∞∑
k=0

zk(1− ρb)
λl
λ
wk+1

=
Π(z)−π0

z
V (z) + (1− ρb)

λh
λ
W (z) + (1− ρb)

λl
λz

(W (z)−w0) + (1− ρb)
λl
λ
w0

+(π0− (1− ρb))(
V (z)

z
− v0 + zv1

z
) + (π0− (1− ρb))(v0 + v1)

=
Π(z)V (z)

z
+ (1− ρb)W (z)

λhz+λl
λz

+ (1− ρb)λl
w0(z− 1)

λz

−(1− ρb)
V (z)

z
+ (π0− (1− ρb))

v0(z− 1)

z
.

Solving for Π(z), we obtain Eq. (EC.7).�

Proof of Lemma EC.5. If the next departing customer is a high-priority customer, there

should be at least one high-priority customer present at the time of the last departure or arriving
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during the current service time. Therefore, we should ignore two types of elements appearing in

Π(z): (i) those corresponding to departures leaving no high-priority customers behind, and (ii)

those corresponding to no high-priority customers arriving during the service time. We should also

normalize the probabilities πk by multiplying them by λ/λh so that Πh(z) can be obtained. A

development similar to Eq. (EC.17) leads to

Πh(z) =
λ

λh
(
Π(z)−π0

z
V (z) + (π0− (1− ρb))v1 + (1− ρb)[

λh
λ
w0 +

λl
λ
w1]

+
∞∑
k=1

zk[(π0− (1− ρb))vk+1 + (1− ρb)(
λh
λ
wk +

λl
λ
wk+1)])

rather than Eq. (EC.18) and the proof continues to be similar to Lemma EC.4.�

Proof of Theorem EC.1. We first give the LT of the system time density function of the

high-priority customers in the two-priority class system, w̃h(s). Note that a high-priority customer

will leave behind n high-priority customers at its departure if there are n high-priority customers

arriving during its system time. This is essentially Little’s distributional law due to Haji and Newel

(1971) and Bertsimas and Nakazato (1995). Thus,

Πh(z) = w̃h(λh(1− z)),

which, after the substitution of s= λh(1− z), gives

w̃h(s) = Πh(
λh− s
λh

). (EC.19)

Combining Eq.s (EC.8) from Theorem EC.5 and (EC.19), and using Eq.s (EC.1-EC.2) yield Eq.

(EC.10).

Now we obtain w̃r(s). We first set λh = λ+
r =

∑r

i=1 λi and λl = λ−r =
∑n

i=r+1 λi . For a tagged

customer in class r ≥ 2, if there are no new arrivals after it joins the queue, the LT of its system

time density function will be w̃h(s) as given in Eq. (EC.10). Let G be the system time in this

queue. To find the actual system time of this customer, we have to include the busy periods

generated by customers in classes 1,2, .., r − 1 arriving after the tagged customer but before its

service completion, namely over G. The total system time for the tagged customer is the sum of



ec14 e-companion to Author: Strategies for a

a delay G that has a LT w̃h(s) with the delayed busy period, i.e., the busy period following this

delay. Note that busy periods induced by customers of types 1, . . . , r − 1 are similar to those in

an M/G/1 queue with arrival rate λ+
r−1; thus as Eq. (7) in Conway et al. (1967, p. 150), their LT

θ+
r−1(s) is as Eq. (EC.11). Eq. (9) in Conway et al. (1967, p. 151) provides the sum of such a delay

and its delayed busy period as Eq. (EC.9).�

Proof of Corollary EC.1. In the FCFS M/G/1 queue with a single class, Eq. (EC.6)

becomes π0 = 1− ρb since without any low-priority customers E[A] = 0 and λh = λ. Similarly, in

Eq. (EC.10) we have λl = 0. These modifications reduce Eq. (EC.10) to Eq. (EC.12).�

Proof of Theorem EC.2. We start by considering a two-priority M/G/1 queue whose excep-

tional first service times in busy periods with a LT of b̃0(·) and the other service times have a LT

of b̃(·). The LT of the system time distribution of the high-priority customers in this two-priority

class system is given in Eq. (EC.10) of Theorem EC.1. Let b̃h0(·) denote the LT of the service time

distribution of a high-priority customer who finds no high-priority customers in the system upon

its arrival. If there are no low-priority customers in the system upon the arrival of the high-priority

customer, b̃h0(·) = b̃0(·). However, if there is at least one low-priority customer in the system, b̃h0(·)

will be distributed as the residual service time of the item currently in service. Thus, the system

time of high-priority customers in this two-priority queue (with exceptional first service times with

LT of b̃0(·)) is identical to the one in a single class FCFS M/G/1 queue with an exceptional service

time with LT of b̃h0(·) and an arrival rate equals to the arrival rate of the high-priority customers.

Now, in the absence of low-priority customers, we can employ Eq. (EC.12) from Corollary EC.1

setting λ= λ+
r and observing that 1−ρb = κ0 to obtain the LT of the system time for high-priority

customers

w̃h(s) =
κ0(λh(b̃(s)− b̃h0(s)) + sb̃h0(s))

s−λh(1− b̃(s))
.

According to our construction, the w̃h(s) above equals the LT in Eq. (EC.10). Equating these

and solving for b̃h0(s), we obtain
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b̃h0(s) =
κ0λhb̃(s) + b̃(s)(1− ρb)(λlw0−λ)

κ0(λh− s)

+
(π0− (1− ρb))v0λ(b̃(s)− 1) + (1− ρb)(b̃0(s)(λ− s)−λlw0)

κ0(λh− s)
. (EC.20)

Eq. (EC.20) provides the LT of the residual service time, given that there are no high-priority

customers in the system, establishing Eq. (EC.14).

To obtain the Laplace Transform of the residual service time when there is at least one customer

in the system, we follow Lemma 3.1.1.1 due to Kerner (2008). Similar to the proof of part 1 of

Theorem 4, we define a continuous time Markov process with states (j, η) where j is the number

of high-priority customers in the system, and η denotes the remaining service time. We define

pt(j, η) as the probability that there are j high-priority customers in the system, and remaining

service time is η at time t. Furthermore, we assume the existence of limiting probabilities, i.e.,

limt→∞ pt(j, η) = p(j, η). Therefore, we have,

pt+dt(1, η) = pt(1, η+ dt)(1−λhdt) + pt(2,0)b(η)dt+ pt(0,0)λhb
h
0(η)dt, j = 1,

pt+dt(j, η) = pt(j, η+ dt)(1−λhdt) + pt(j− 1, η+ dt)λhdt+ pt(j+ 1,0)b(η)dt, j ≥ 1,

which, after taking the limit t→∞, and noting that p(0,0) = κ0 by definition, become

p(1, η) = p(1, η+ dt)(1−λhdt) + p(2,0)b(η)dt+κ0λhb
h
0(η)dt, j = 1

p(j, η) = p(j, η+ dt)(1−λhdt) + p(j− 1, η+ dt)λhdt+ p(j+ 1,0)b(η)dt, j ≥ 1.

Now, similar to the analysis in Kerner (2008) in Section 3.1.2, Lemma 3.1.3.1, and the proof of

Corollary 2.2.1, we obtain Eq. (EC.13).�

EC.2. Proofs

In this section we provide the proofs of Theorems 3, 4, and 5 as well as the proof of Corollary 1

that are presented in Section 3.
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Proof of Theorem 3. Let NSPB and NSPB
r denote the total number of jobs and the number

of type r jobs in the SPB queue, respectively. Using Theorem 1, the expected backlog in the SP

system E[B] =E[NSPB] and

E[Br] = (1−F (S− 1))
∞∑
i=0

P SPB
r (i) = (1−F (S− 1))E[NSPB

r ]

so that Eq. (5) becomes

CSP (S) = h
S−1∑
i=0

(S− i)P (i) + (1−F (S− 1))E[NSPB]
n∑
r=1

br
E[NSPB

r ]

E[NSPB]
.

We next show that (1−F (S− 1))E[NSPB] =
∑∞

i=S(i−S)P (i). To do this, recall that E[NSPB]

is the expected number of the backlogs in the original system. In other words, E[NSPB] =E[N −

S|N ≥ S] where N is the total number of orders in the shortfall queue under a FCFS policy (which

is invariant and is the same in the SP system). Then,

(1−F (S− 1))(E[N |N ≥ S]−S) = (1−F (S− 1))(
∞∑
i=S

iP (i|i≥ S)−S)

=
∞∑
i=S

iP (i)−S(1−F (S− 1))

=
∞∑
i=S

iP (i)−S
∞∑
i=S

P (i) =
∞∑
i=S

(i−S)P (i).

Substituting E[NSPB
r ]/E[NSPB] from Theorem 2 establishes Eq. (9).

Finally, given the cost in Eq. (9), the optimal base-stock level is given in Eq. (10) as in e.g.,

Veatch and Wein (1996).�

Proof of Corollary 1. If Rr+1 > Rr = Rr−1 = ... = Rr−k > Rr−k−1, as soon as the inven-

tory decreases to Rr, we consider classes r − k, r − k + 1, ..., r as a single class whose demand

is backlogged. The total backlog of all these classes will be
∑r

i=r−kE[Ni], where E[Ni] is the

average number of type i customers in the relevant backlog queue. This backlog results in a

cost of
∑r

i=r−k biE[Ni]. By aggregating these classes to a single class with a weighted back-

log cost
(∑r

i=r−k biE[Ni]
)
/
(∑r

i=r−kE[Ni]
)

we obtain the same cost. (Note that these ratios,∑r

i=r−k biE[Ni]/
∑r

i=r−kE[Ni], do not require the exact characterization of b1(·) because they are

independent of b1(·) and can be obtained using Eq. (7) in Theorem 2.)�



e-companion to Author: Strategies for a ec17

Proof of Theorem 4. 1. E[Nr] = E[NBQr ] × (% of class r jobs in BQr). Then, Eq. (12)

follows, using Theorem 2. Eq. (13) can be calculated using Little’s Law and Eq. (EC.12) in Corollary

EC.1 giving the LT of the system time in such a queue.

2. Consider BQr. To obtain PBQr
h (i), we follow Lemma 3.1.3.1 in Kerner (2008). We define a

continuous time Markov process with states (j, η) where j is the number of high-priority customers

in the system, while η denotes the remaining service time. We define pt(j, η) as the probability

that there are j high-priority customers in the system, and remaining service time is η at time

t. Furthermore, we assume the existence of limiting probabilities, i.e., limt→∞ pt(j, η) = p(j, η).

Therefore, we have,

pt+dt(1, η) = pt(1, η+ dt)(1−λ+
r−1dt) + pt(2,0)b(η)dt+ pt(0,0)λ+

r−1b
r−1
0 (η)dt, j = 1,(EC.21)

pt+dt(j, η) = pt(j, η+ dt)(1−λ+
r dt) + pt(j− 1, η+ dt)λ+

r−1dt+ pt(j+ 1,0)b(η)dt, j ≥ 1,

(EC.22)

where br−1
0 (·) is the steady-state density function of the residual service time of a high-priority job

in service in BQr observed by a high-priority arrival who finds 0 high-priority jobs in this queue.

Using Eq.s (EC.21) and (EC.22), and similar to the proof of Lemma 3.1.3.1 in Kerner (2008):

PBQr
h (i) = PBQr

h (0)
i−1∏
j=0

1− b̃r−1
j (λ+

r−1)

b̃(λ+
r−1)

,

and Eq. (14) follows because PBQr
h (0) = λ+

r−1/λ
+
r (1− (ρb−λrE[A])) as given in Eq. (EC.5).�

Proof of Theorem 5. The proof of Theorem 5 requires the following lemma.

Lemma EC.6. For BQr+1 we have

P
BQr+1
h (∆r) =

1− ρ+
r

λ+
r
µr1

+ (1− ρ+
r )

(
1−FBQr+1

h (∆r− 1)
)
. (EC.23)

where λ+
r and 1/µr1 are the total arrival rate and the expected first exceptional service time in BQr,

respectively.
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Proof of Lemma EC.6. For a given b̃r0(s) (the LT of the equilibrium service times of high-

priority jobs in BQr+1 who observe no high-priority job in the queue upon their arrivals) the LT of

the first exceptional service times in BQr can be obtained using Eq. (EC.13) after setting λh = λ+
r ,

b̃r∆r
(s) =

λ+
r

s−λ+
r

[b̃(λ+
r )

1− b̃r∆r−1(s)

1− b̃r∆r−1(λ+
r )
− b̃(s)]. ∆r ≥ 1, (EC.24)

By taking the derivative of Eq. (EC.24) we get

1/µr1 =−
db̃r∆r

(s)

ds
|s=0 = − λ+

r

(s−λ+
r )

2

[
b̃(λ+

r )
1− b̃r∆r−1(s)

1− b̃r∆r−1(λ+
r )
− b̃(s)

]
|s=0

+
λ+
r

(s−λ+
r )

[
− b̃(λ+

r )

1− b̃r∆r−1(λ+
r )

db̃r∆r−1(s)

ds
− db̃(s)

ds

]
|s=0

=
1

λ+
r

−

[
− b̃(λ+

r )

1− b̃r∆r−1(λ+
r )

db̃r∆r−1(s)

ds
|s=0 +

1

µ

]
.

By solving the above recursion for −db̃r∆r
(s)/ds|s=0, we get

1/µr1 =

(
− 1

λ+
r

+
1

µ

)(
1 +

∆r−1∑
j=1

j∏
k=1

b̃(λ+
r )

1− b̃r∆r−k(λ
+
r )

)
+

∆r−1∏
k=0

b̃(λ+
r )

1− b̃rk(λ+
r )
E
[
Rh

0

]
, (EC.25)

where E [Rh
0 ] = −db̃r0(s)/ds|s=0 is the expected service time of high-priority jobs in BQr+1 who

observe no high-priority jobs in the queue upon their arrivals. (Note that E [Rh
0 ] is different from

1/µr1, because the latter includes residual service times observed by low-priority job arrivals at

BQr+1.)

From Eq. (14) for BQr+1 we have

P
BQr+1
h (j)

P
BQr+1
h (∆r)

=
(1− ρb)

∏j−1

k=0

1−b̃rk(λ+
r )

b̃(λ+
r )

(1− ρb)
∏∆r−1

k=0

1−b̃r
k

(λ+
r )

b̃(λ+
r )

=

∆r−j∏
k=1

b̃(λ+
r )

1− b̃r∆r−k(λ
+
r )
, j = 1,2, ...,∆r− 1, (EC.26)

and

P
BQr+1
h (0)

P
BQr+1
h (∆r)

=
(1− ρb)

(1− ρb)
∏∆r−1

k=0

1−b̃r
k

(λ+
r )

b̃(λ+
r )

=

∆r−1∏
k=0

b̃(λ+
r )

1− b̃rk(λ+
r )
. (EC.27)

By substituting Eq.s (EC.26) and (EC.27) in Eq.(EC.25) we get

1/µr1 =

(
− 1

λ+
r

+
1

µ

)(
1 +

∆r−1∑
j=1

P
BQr+1
h (j)

P
BQr+1
h (∆r)

)
+

P
BQr+1
h (0)

P
BQr+1
h (∆r)

E
[
Rh

0

]
. (EC.28)
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Let E [Rh] denote the expected amount of time a high-priority job actually spends on the server

in BQr+1. Observe that λ+
r E [Rh] denotes the proportion of time that the server works on high-

priority jobs in BQr+1. Therefore,

E
[
Rh
]

=
1−PBQr+1

h (0)

λ+
r

. (EC.29)

Also, in equilibrium and due to PASTA we have,

E
[
Rh
]

=
(

1−PBQr+1
h (0)

) 1

µ
+P

BQr+1
h (0)E

[
Rh

0

]
. (EC.30)

Solving for E [Rh
0 ], from Eq.s (EC.29) and (EC.30) we get,

E
[
Rh

0

]
=

(
1−PBQr+1

h (0)
)

P
BQr+1
h (0)

(
1

λ+
r

− 1

µ

)
. (EC.31)

Substituting Eq. (EC.31) in Eq. (EC.28) we get,

1/µr1 =

(
− 1

λ+
r

+
1

µ

) (−1 +F
BQr+1
h (∆r)

)
P
BQr+1
h (∆r)

=
1

λ+
r

(
1− ρ+

r

) (1−FBQr+1
h (∆r− 1)−PBQr+1

h (∆r)
)

P
BQr+1
h (∆r)

,

so that

P
BQr+1
h (∆r) =

1− ρ+
r

λ+
r
µr1

+ 1− ρ+
r

(
1−FBQr+1

h (∆r− 1)
)
.

�

Next, we prove Theorem 5. First consider BQn+1. Note that BQn+1 is defined as the shortfall

queue. Therefore, when there are i= 0, . . . ,∆n− 1 jobs in BQn+1, the MR system has (Rn+1− i)

units in inventory, which establishes Eq. (16) for r = n + 1. (Recall that, because there are no

backlogs in BQn+1, Eq. (15) does not include r= n+ 1.)

We prove Eq.s (15) and (16) for r= 1, ..., n by induction. Note that BQn is identical to an SPB

queue with two classes of jobs (classes 1, .., n− 1 high-priority and class n low-priority) where the

base-stock level of its SP system is ∆n. Therefore, from Theorem 1, the distribution of the backlogs

of class n can be calculated using BQn as given in Eq. (15) for r= n. Also, noting that all customer
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arrivals of class r < n to the MR system who find Rn−1 < I(t)≤Rn+1 are served immediately and

each decreases the inventory level by one unit, we have

P (I =Rn− i) =
[
1−FBQn+1

h (∆n− 1)
]
PBQn
h (i), i= 0,1, ...,∆n−1.

This establishes Eq. (16) for r= n.

Induction hypothesis: suppose Eq.s (15) and (16) hold for r=m+ 1.

The induction hypothesis states that the job composition in BQm+1 is identical to the customer

composition in the MR system (in the relevant range of inventory).

We next prove Eq.s (15) and (16) for r=m, i.e., the job composition in BQm is identical to the

customer composition in the MR system (in the relevant range of inventory). The proof is similar

to the proof of Theorem 1 for the SPB queue.

First assume

P
BQm+1
h (∆m + i) = [1−FBQm+1

h (∆m− 1)]PBQm(i), i= 0,1, .... (EC.32)

where PBQm(i) denotes the steady-state probability of having i jobs in BQm. Eq. (EC.32) states

that PBQm(i), is identical to the steady-state probability of having ∆m + i high-priority jobs in

BQm+1 given that the number of high-priority jobs in BQm+1 is greater than ∆m− 1.

Assuming Eq. (EC.32), we observe that given step (a) of the construction of BQm, the job is

allocated in BQm in the same way as it is allocated in the MR system while Rm−1 < I(t)≤Rm, and

type m demand is backlogged in BQm as it is in the MR system while I(t)≤ Rm. Furthermore,

given step (b) of the construction of BQm, the job arrival process of type 1, ...,m in BQm has

the same distribution of the customer arrival process of type 1, ...,m as in the MR system. Both

observations together with Eq. (EC.32) imply:

P (Bm = i|I ≤Rm+1) =
[
1−FBQm+1

h (∆m− 1)
]
PBQm
l (i), i= 0,1, ... (EC.33)

Using Eq. (16), which holds for m + 1 because of the induction hypothesis, the probability of

I ≤Rm+1 is

P (I ≤Rm+1) =
n+1∏

j=m+2

F̄
BQj

h (∆j−1− 1). (EC.34)
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This, together with Eq. (EC.33) establishes Eq. (15) for r=m.

Also, note that all customer arrivals of class 1, ...,m− 1 to the MR system who find Rm−1 <

I(t)≤Rm are served immediately and each decreases the inventory level by one unit. This implies

(together with Eq. (EC.32))

P (I =Rm− i|I ≤Rm+1) =
[
1−FBQm+1

h (∆m− 1)
]
PBQm
h (i), i= 0,1, ...,∆m−1− 1.

This together with Eq. (EC.34) establishes Eq. (16) for r=m.

To complete the proof, we now establish Eq. (EC.32).

Using Eq. (14), the steady-state probability of having (∆m + i) jobs in BQm+1 is,

P
BQm+1
h (∆m + i) = (1− ρb)

∆m+i−1∏
j=0

1− b̃mj (λ+
m)

b̃(λ+
m)

= P
BQm+1
h (∆m)

i−1∏
j=0

1− b̃m∆m+j(λ
+
m)

b̃(λ+
m)

, i= 0,1, ...

(EC.35)

where ρb denotes the utilization of BQm+1. Observe that the distribution of the total number of

jobs in BQm is identical to the distribution of the total number of jobs in an SPB queue with

exceptional first service times with a LT of b̃m∆m
. Therefore, from Eq. (24) we have

PBQm(i) = PBQm(0)
i−1∏
j=0

1− b̃m∆m+j(λ
+
m)

b̃(λ+
m)

, i= 0,1, ... (EC.36)

We next show that Eq. (EC.32) holds for i= 0. As in Eq. (11) the utilization of BQm, is

λ+
mµ

µm1 µ+λ+
m(µ−µm1 )

= 1− 1− ρ+
m

λ+
m
µm1

+ (1− ρ+
m)
. (EC.37)

By comparing Eq.s (EC.23) and (EC.37) we get

P
BQm+1
h (∆m) =

[
1−FBQm+1

h (∆m− 1)
]
PBQm(0). (EC.38)

Therefore, Eq. (EC.32) holds for i= 0. Substituting Eq. (EC.38) in Eq. (EC.35) together with Eq.

(EC.36) establishes Eq. (EC.32) for i≥ 0 and completes the proof.�


