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Abstract

The classi�cation of G-Protein Coupled Receptor (GPCR) sequences is

an important problem that arises from the need to close the gap between the

large number of orphan receptors and the relatively small number of anno-

tated receptors. Equally important is the characterization of GPCR Class

A subfamilies and gaining insight into the ligand interaction since GPCR

Class A encompasses a very large number of drug-targeted receptors. In this

thesis, a method for Class A subfamily classi�cation using sequence-derived

motifs which characterizes the subfamilies by discovering receptor-ligand in-

teraction sites is proposed. The motifs that best characterize a subfamily

are selected by the proposed Distinguishing Power Evaluation (DPE) tech-

nique. The experiments performed on GPCR sequence databases show that

the proposed method outperforms state-of-the-art classi�cation techniques

for GPCR Class A subfamily prediction. An important contribution of this

thesis is to discover key receptor-ligand interaction sites which is very impor-

tant for drug design.
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Özet

G-protein ile e³le³mi³ reseptörlerin (GPER) s�n��and�r�lmas�, fonksiyonu

belirlenememi³ ancak amino asit dizilimi belirlenmi³ çok say�daki reseptörün

fonksiyonunu tahmin edebilmeyi mümkün k�lmas� aç�s�ndan çok önemlidir.

GPER proteinleri aras�nda A s�n�f� reseptörlerin çok say�da ilaç taraf�ndan

hedef al�n�yor olmas� sebebiyle, A s�n�f� reseptörlerin aktivasyon mekaniz-

malar�n�n derinlikli ³ekilde anla³�labilmesi ise ayr�ca önem te³kil etmektedir.

Bu tezde, reseptörlerdeki amino asit dizilimi verisinden üretilmi³ moti�er kul-

lan�larak A s�n�f�ndaki reseptör ailelerinin s�n��and�r�lmas�n� sa§layan, üret-

ti§i moti�er yoluyla da A s�n�f� reseptörlerinin aktivasyon mekanizmalar�na

�³�k tutan bir yöntem sunulmaktad�r. Alt-s�n��ar� en iyi ³ekilde tan�mlayan

moti�eri seçebilmek için Ayr�³t�r� Güç De§erlendirmesi tekni§ini sunuyoruz.

Yap�lan deneyler, geli³tirdi§imiz yöntemin hal�haz�rda bulunan GPER pro-

teinleri A s�n�f� reseptörlerinin s�n��and�rmas� tekniklerine k�yasla daha yük-

sek ba³ar� oranlar� yakalad�§�n� göstermi³tir. Bu tezin bir di§er katk�s� da ilaç

tasar�m�nda faydal� olabilecek, reseptör aktivasyonunda rol oynayan anahtar

bölgelerin bulunmas�d�r.
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1 Introduction

The G-Protein Coupled Receptor (GPCR) protein sequences are of very high

interest to researchers in the drug design industry and in many other areas as

more than 50% of modern drugs target GPCRs [3]. These receptors control

pathways and mechanisms that govern many of the important functions in

many di�erent species, including humans. The GPCRs play a key role in

sensing a very diverse set of signals ranging from visual to olfactory. This

is because GPCRs have a primary function in establishing the sensory and

regulatory connection of the cell with the outside world as they both act

as receptors for outside ligands (ligands range from photons inducing sight

to small peptides inducing neurological e�ects) and actuators for internal

processes.

The ability of the GPCRs to regulate important functions is well-recognized

in the drug design e�orts: some pharmaceutical research companies like No-

rak, Arena, 7TM, Novasite, and Predix are exclusively focused on GPCR

drug discovery, while most major pharmaceutical giants have GPCR-targeting

drugs such as Zyprexa of Eli Lilly, Clarinex of Schering-Plough, Zantac of

GlaxoSmithKline, and Zelnorm of Novartis[3].

Due to their signi�cant role, it is very important to be able to distin-

guish which ligands that a speci�c GPCR interacts with and which parts of

the sequence have a particularly important role. The nature of this signal

transduction is complex and the binding of the ligand constitutes only the

�rst step of this process [4]. Upon binding of the ligand to the receptor,

certain interactions are established which trigger conformational changes in

the GPCR and initiate the signal transduction process [5]. Determining the
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functionally important interactions between the ligand and the receptor is

of paramount importance for drug design purposes. Being able to correctly

identify the sites that regulate binding of a GPCR to a ligand can signi�-

cantly reduce the set of potential ligands. Achieving this goal can also enable

us to assess the mechanics of ligand-activation for these receptors.

On this pursuit, sequence remains to be the primary source of informa-

tion for a large number of GPCR receptors because it is extremely di�cult

to get the structure of these proteins with methods like X-Ray Crystallogra-

phy and Nuclear Magnetic Resonance (NMR) as these methods fail to work

properly on proteins that are embedded in the cell membrane. Consequently,

researchers use high-throughput screening methods to discover the activat-

ing small structures that have been chemically synthesized. The aim of these

screening e�orts is to identify the important characteristics of the receptor.

If a computational method can identify the sites that are signi�cant in the

physiology of the receptor, these high-cost screening e�orts can be avoided �

saving both time and resources.

As a result, there are two presiding goals for computational methods in

GPCR research: �rstly, to classify GPCR sequences with respect to sub-

families within Family A which contains more than 80% of human GPCRs

(as shown in Figure 2), secondly and most importantly to identify the key

ligand-interacting sites using the sequence alone.

In response to the above requirements, a classi�cation technique that

also pinpoints ligand-receptor interaction sites has been developed. To the

best of the author's knowledge, this is the �rst classi�cation technique that

makes the ligand-receptor interaction sites transparent to drug designers.
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The proposed technique involves identifying the frequent residue triplets in

the sequence, calculating their distinguishing power among the subfamilies

and deducing rules from this information. Since these triplets are speci�c to a

subfamily where the GPCR is exposed to the ligand they should be involved

in either recruiting the ligand to the receptor or actually binding the ligand.

Therefore, these potential interaction sites are called key sites throughout

this thesis. These rules are then used in classi�cation and the combination

of rules for a particular subfamily directs us towards the interaction sites.

To be able to increase the classi�cation quality, the locations that each of

these triplets occur very frequently have been determined through statistical

measures and then this information has been used to con�ne the classi�ca-

tion dataset attributes to these motifs. The proposed methods have been

implemented and tested on real GPCR sequences and the experiments show

that the proposed methods outperform state-of-the-art classi�cation meth-

ods. The best performing GPCR classi�er classi�es the GPCRpred class A

dataset with 76% accuracy; whereas the proposed method demonstrates up

to 90.7% accuracy on the same testing set.

Given the high performance of the proposed method, it is only natural to

think that the discovered motifs pinpoint the most important binding sites.

The rationale is that if these sites were not related to binding, then they

would not have been conserved in all the sequences in a subfamily. However

if these sites regulated binding to all the GPCR Class A ligands, then they

would occur in all the sequences and they would not have any distinguishing

power. The motifs that occur in all or most of the members of a particular

subfamily and do not occur in other subfamilies are identi�ed, and this hints
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that the proposed method identi�es binding sites speci�c to the ligands of a

particular subfamily.
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2 Related Work and Contribution

A technique commonly employed in classi�cation is Support Vector Machines

(SVM) which have also been utilized in GPCR classi�cation. One good ex-

ample in which SVMs are used for GPCR classi�cation is the GPCRpred

server [6]. In GPCRpred, 20 di�erent SVMs are built for di�erent levels

of classi�cation where the feature vectors are derived from the dipeptide

composition of each protein. The reported classi�cation accuracy for each

level of classi�cation is quite high, ranging over 90%. Other studies indicate

that SVM classi�cation gives better results compared to BLAST and pro�le

HMMs [7]. Despite the strong results achieved by using SVM as reported

in [8, 7] SVM-based classi�cation techniques fail to pinpoint precisely which

physico-chemical properties of the receptor were decisive in determining the

corresponding ligand. It would be helpful to report the common physico-

chemical qualities that are attributed to a particular ligand's receptors be-

cause such information could potentially be used in drug design e�orts.

Hidden Markov Models (HMM) are one of the classi�cation tools em-

ployed in GPCR classi�cation. A very good example is the PRED-GPCR

server [9] where 265 signature pro�le HMMs have been constructed and con-

sequently employed in the classi�cation of GPCR sequences. Intended for

predicting if a given sequence is a member of the GPCR family, it is not

optimal to perform subfamily level classi�cation. Yet, it demonstrates the

use of HMMs in GPCR classi�cation. As a consequence of using HMMs,

the classi�cation technique is very opaque and it is not straightforward to

discover the key ligand interacting sites of the receptors from the pro�le.

There are a number of metrics that have been used in sequence analysis
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literature to make classi�cation e�orts more successful. A technique em-

ployed in the work of Cui et al. in [10] is to construct a feature vector for

representation of the structural and physico-chemical properties of an amino

acid. The amino acids in a sequence are divided into 3 categories, namely hy-

drophobic (CVLIMFW), neutral (GASTPHY), and polar (RKEDQN). Each

of these groups is described by three descriptors, namely composition (C),

transition (T) and distribution (D). These capture the amino acid composi-

tion of a sequence in 21 parameters (1 value for the composition, 1 value for

the transition and 5 values for the distribution, for each category and there

are 3 categories). This abstracted representation of an amino acid sequence

has also been used in some very recent GPCR classi�cation studies [11].

Similarly Atchley et al. in [12] have de�ned around 500 amino acid at-

tributes which have been summarized into �ve continuous attributes through

multivariate statistics. Such techniques which summarize the amino acids of

a sequence in a number of continuous parameters are easier to integrate with

many of the pre-existing classi�cation tools or algorithms. However, such

methods which summarize the entire sequence in a number of numeric met-

rics fail to pinpoint speci�c residues which are important in determining key

ligand receptor interaction sites. Therefore, in order to identify the potential

ligand-receptor interaction sites, these techniques were not used.

There have been numerous motif-based approaches to GPCR classi�ca-

tion. In [13], the functions of a number of orphan receptors were predicted

through multiple alignments of Class A GPCRs. In [14], [15], Chou et al.

demonstrate the relationship between the amino acid composition of a GPCR

sequence and its type within the amine subfamily. Another motif-based ap-
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proach is to use GPCR "�ngerprints" that are speci�c to the GPCR seven-

helices structure [16], [17]. This method entails the use of well-conserved

short sequence bursts that correspond to the loops, trans-membrane regions

or the termini of the GPCR. The fact that each �ngerprint is derived from

di�erent regions of the GPCR makes it more robust to error. The more than

270 �ngerprints found in the PRINTS database allow for protein signatures

to be developed for di�erent levels of the GPCR superfamily [18]. The au-

thors of [19] have combined the di�erent kinds of motifs and used a swarm

intelligence rule extraction algorithm to create classi�cation rules. A more

detailed description of these motif-based and other types of GPCR classi�ers

can be found in [20].

A recent technique, proposed in [1], entails a di�erent approach than

others to GPCR classi�cation. A multitude of classi�cation algorithms (10

in total) are tested at each level of the GPCR classi�cation hierarchy and

the algorithm which performs best at each level is chosen. Classi�cation of

a sequence across the GPCR hierarchy is handled by the best classi�cation

algorithm at that particular level as it progresses down the classi�cation

tree. Despite combining the strength of di�erent classi�cation algorithms,

the downside of this work is that the classi�cation method is very opaque. For

sequence representation, 26 physico-chemical properties are selected on which

they have applied Principal Components Analysis (PCA) and selected the

best 5 components. Therefore, neither the sequence representation nor the

classi�cation algorithms are able to give us detailed information about which

particular property of the sequence has led to the reported class prediction.

This method cannot even give us a very clear perception of which physico-
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chemical component is most helpful because PCA combines all of them in

order to produce its components.

The GRIFFIN project, which aims to predict GPCR - G protein coupling,

employs an SVM-HMM hybrid which combines the e�ciency of HMM with

the predictive power of SVM in a SVM-HMM hybrid [21]. Most sequences

are classi�ed using HMM at the �rst stage which is signi�cantly more e�cient

than SVM. However, when HMM fails to make a classi�cation for the families

or subfamilies for which it has been speci�cally trained, it passes the data on

to an SVM. This SVM model (at the second stage) uses some other features

and makes a classi�cation based on them. If it fails to make a su�ciently

con�dent guess, there is a second SVM which also looks for a parameter and

makes the �nal decision about that sequence. A similar SVM/HMM hybrid

classi�er is not appropriate for the planned approach because one of the goals

is to determine the key ligand-receptor binding sites with clear motifs. This

classi�cation approach cannot give clear-cut rules about why it makes certain

classi�cations hence is eliminated as an option in this study.

The prevailing picture from these articles is that in the trade-o� between

transparency (i.e. the classi�er's ability to report which characteristics of the

input determines the classi�cation) and accuracy, most pre-existing GPCR

classi�cation tools have shifted heavily towards accuracy. The contribution

of this thesis is to propose a GPCR classi�er which maintains a high degree of

transparency while achieving classi�cation accuracy that is at least as good

as the preexisting classi�ers. The method proposed can pinpoint possible

ligand-receptor interaction sites for each subfamily of the pharmaceutically

signi�cant Class A receptors.
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3 Preliminaries and Problem De�nition

In section 3.2, background information on the GPCR proteins and their

structural properties is given. In section 3.3, the formal de�nition of the

GPCR classi�cation problem is provided. In section 3.4 the various amino

acid grouping schemes are introduced.

3.1 Background on Proteins

Proteins are organic polymers that are made up of amino acids connected

by peptide bonds. Proteins carry out most of the functions within the body.

They are made up of a chain of amino acids that fold and take di�erent

shapes. The sequence of the amino acids in a protein is mainly determined

by the encoding DNA sequence. There are 20 standard amino acids with

di�erent physico-chemical properties. The amino acids and their properties

are summarized in Figure 3.1. The proteins are vital to the healthy func-

tioning of humans and most other known organisms. For humans and most

other developed species, proteins are essential in almost every aspect of life

from metabolism to immune responses to signal transduction (GPCR pro-

teins perform signal transduction).

The amino acids can be clustered together depending on di�erent prop-

erties. Depending on the type of study, di�erent characteristics of the amino

acids gain importance and therefore the properties on which the clustering

is based can change. However, in general, it is possible to classify the amino

acids into three broad classes: charged (negatively or positively), polar and

hydrophobic as shown in Figure 3.1. During folding, the hydrophobic amino
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acids tend to cluster together and away from the surface of the proteins in

general as most proteins function in aqueous environments. As one might

expect, the oppositely charged or polarized amino acids tend to attract one

another with similarly charged or polarized amino acids tend to remain apart.

However protein folding is a complex procedure that is e�ected by a wide

range of other factors as well. Protein folding is very important because the

protein's structure is vital to its function. In trans-membrane proteins, as

the phospholipid layer is hydrophobic, the trans-membrane regions tend to

have hydrophobic helices which �t well into the membrane structure.

3.2 Background on GPCR Proteins

The largest and most diverse family of trans-membrane receptors is the G-

protein-coupled receptor family. This family of receptors is activated by a

diverse range of ligands or stimuli such as small peptides, amino acid deriva-

tives, light, taste or smell [22]. The activated receptors signal the cell through

G-proteins coupled to the intra-cellular region of the receptor. Due to their

important role in signal transduction, more than half of the modern drugs

target this particular protein superfamily [3]. The generally accepted classi-

�cation for GPCRs in vertebrates is as follows: rhodopsin-like (Family A),

secretin-like (Family B), glutamate-like (Family C), adhesion and Frizzled/-

Taste2 [23, 24]. This hierarchy is illustrated in Figure 2. Family A is the

family of highest interest from a pharmaceutical research perspective as more

than 80% of all human GPCRs are in this family alone [25]. In addition the

number of sequences in this family is signi�cantly higher than the others.

Therefore, the classi�cation e�orts are focused within Family A.

10



Figure 1: The table of amino acids found in eukaryotes, clustered with respect
to their side chain charge at physiological pH 7.4, copied from [2].
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Figure 2: The GPCR classi�cation hierarchy

Despite the signi�cant volume of pharmaceutical research on GPCRs,

the three-dimensional structures have been very hard to discover. Currently

there are only four known GPCR structures in their inactive states [23].

The identi�cation of orthosteric ligands has been similarly di�cult: despite

having identi�ed more than 1000 genes encoding GPCRs, only few highly

selective synthetic ligands for these GPCRs can be designed [26]. One of the

reasons that identifying orthosteric full agonists has been so di�cult is that

G-protein activation requires various interactions at key sites between the

receptor and the hormone [23]. Further complicating is that the orthosteric

binding sites across members of a single GPCR subfamily are often highly

conserved making speci�city a major problem [26].

One of the key challenges in GPCR research is identifying these key in-

teraction sites governing receptor agonism and conserved over the sequences

in the same subfamily. These sites would be highly bene�cial to drug design

e�orts. Another important challenge is the classi�cation of orphan GPCR

sequences. A sequence is called an orphan GPCR if it has high similarity

to known and annotated GPCR sequences but nothing is known about its

12



structure or the activating ligand. As the gap between the number of iden-

ti�ed sequences and the number of annotated sequences grows so does the

number of orphan GPCRs. Therefore, there is a strong need for successful

classi�cation of GPCR sequences especially those in the family most relevant

to human drug design: Family A. This thesis is focused on classi�cations

between the subfamilies of Family A.

An important property of the GPCRs is that certain amino-acid residues

are well conserved across the family [13]. This property has been exploited

in multiple studies to synthesize new GPCRs [27, 28]. The well conserved

amino-acid residue property has been exploited in this study while de�ning

the motifs.

It is also worth noting that all GPCRs share a particular structural out-

line. This structure, common to all GPCR sequences, is an extra-cellular

amino terminus, an intra-cellular carboxyl terminus and 7 trans-membrane

helices separated by intra-cellular and extra-cellular loops [23] as seen in

Figure 3.

A major source of GPCR sequences is the GPCRDB [29]. The objective

of the GPCRDB e�ort is to centrally collect and distribute all known GPCR

sequences and their annotated functions. The GPCRDB contains thousands

of annotated GPCR sequences and its content is easily accessible via either

an interactive web-interface or easy-to-use web services. The intuition ver-

i�cation dataset was collected from the GPCRDB as described in Section

5.1. The performance comparison experiments are based on datasets used

for training other classi�cation servers.
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Figure 3: Representative snake-diagram of a GPCR

3.3 Classi�cation Problem

To de�ne the GPCR classi�cation problem, �rst a formal de�nition of the

GPCR sequence dataset needs to be given.

De�nition 1 GPCR Sequence Dataset is a set of tuples (σ, χ), where

• σ is the sequence that encodes a protein from the GPCR Family A.

• χ denotes the subfamily of the protein encoded by σ.

Classi�cation takes a training dataset whose class-membership informa-

tion is utilized to extract rules for classi�cation. This algorithm takes a

testing set of sequences alone and produces the predictions for their families.

The formal de�nition of the structure of the classi�cation problem is de�ned

below:
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De�nition 2 GPCR Classi�cation Problem is to build a classi�er C by

training on the GPCR sequence dataset D which predicts the χ values of the

elements of the testing dataset T .

The presence/absence of the discovered motifs are the attributes of each

sequence. The classi�cation function aims to capture the relationship be-

tween the motifs in an e�ort to identify the correct subfamily to which a

given sequence belongs. Classi�ers identify the characteristics of the data by

learning the trends in the data using statistical methods. This is achieved by

studying the attributes of each member of a class (in this case, subfamily)

and identifying those that best distinguish one from another.

The inherent di�culty of the problem at hand is that, the attributes to

be used in classi�cation need to be discovered before being able to employ

any classi�cation algorithm. The raw data is in the form of a sequence of

amino acids that constitute a GPCR protein when synthesized. Therefore an

attribute/feature selection step through data mining techniques is needed.

The objective of the feature selection technique is to select the attributes

that are most relevant to the classi�cation problem at hand. A novel motif

evaluation metric called Motif Speci�city Measure, and a motif extraction

algorithm called Distinguishing Power Evaluation which uses this metric are

developed.

The agonism of a synthetic ligand (drug) may not be simply associated

with occupying the binding site but instead it may be determined by whether

it can form the complex interactions of the endogenous ligand [23]. It is

also known that the key ligand interaction sites of the receptors in a given

subfamily should be well-preserved. This is pointed out by empirical data
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which supports that it is very hard to achieve speci�city within a subfamily

- i.e. what binds to one member of a subfamily often binds to all [26].

Therefore, identifying sites of ligand-receptor interaction would be important

in helping drug design.

De�nition 3 Interaction Site Identi�cation Problem is to identify the

amino-acid residues preserved across the sequences in the same subfamily

which constitute the key ligand-receptor interaction sites.

To identify the di�erent regions of a GPCR, it is essential to identify

the trans-membrane helices. TMHMM is a widely recognized computational

trans-membrane region prediction tool [30], [20]. Since the trans-membrane

helices are buried in the lipid membrane, they are mostly made up of hy-

drophobic amino acids. These regions can be captured by hidden Markov

models since their transition and emission rates show a signi�cant di�erence

for the helical regions of GPCR proteins. TMHMM does exactly this: it

uses a hidden Markov model (HMM) to predict the position of the trans-

membrane helices. When the trans-membrane helices, we have information

about the extra-cellular and intra-cellular loops of a given protein sequence

as well. The current version of TMHMM is 2.0 and it can be accessed at

http://www.cbs.dtu.dk/ services/TMHMM/.

3.4 Amino Acid Grouping Schemes

A common practice in sequence-based studies is to reduce the 20-letter al-

phabet to a smaller number by grouping the amino acids together. The most

signi�cant bene�t of reducing the amino acid alphabet is that it creates a
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smaller set of possible motifs. This reduces the search space of all motifs,

making classi�cation more robust to random changes in the DNA. Certain

amino acids with similar physico-chemical properties could replace one an-

other during these random changes without disturbing neither the protein

structure nor function such as, Isoleucine, Leucine, Valine and Alanine. By

generalizing similar amino acids into a single group and representing all of

them with a single letter in the reduced alphabet, more robust motifs that are

less prone to error in the face of evolutionary DNA changes can be identi�ed.

An important problem here is to de�ne which amino acids can be consid-

ered similar. There are a number of basic physico-chemical properties such as

hydrophobicity, charge, mass etc which can be used as a basis of grouping but

any such attempt needs to prioritize over some others to perform a successful

grouping. It should also reduce the number of clusters to a small number

to be worth using any reduction scheme at all. Given these restrictions, a

reduction table to optimize the capability to capture GPCR binding proper-

ties had previously been designed and used in [8]. There is previous work by

Davies et al. [31] which focuses exclusively on optimizing these amino acid

groupings. The grouping schemes taken from this paper were those that were

found by the highest cross-validation fold for both the seeded and random

initialization techniques. Finally, a small adjustment to the Davies seeded

reduction scheme was made to create Davies seeded 2, resulting in four dif-

ferent amino acid reduction schemes as shown in Table 1. In this table, each

amino acid is represented by its single-letter code. Sezerman's grouping gave

the best results and was used in the rest of the study.

In order to see the e�ects of grouping, experiments without any grouping

17



G
ro
u
p
in
g
S
ch
em

e
A

B
C

D
E

F
G

H
I

J
K

D
av
ie
s
R
an
d
om

S
G

D
V
IA

R
Q
N

K
P

W
H
Y

C
L
E

M
F

T
D
av
ie
s
S
ee
d
ed

1
S
G
E

D
P

R
W
N

K
Q

H
L
V
IM

F
Y

C
A
T

D
av
ie
s
S
ee
d
ed

2
S
G
E

D
P

R
W
N

K
Q
H

L
V
IM

F
Y

C
A
T

S
ez
er
m
an

IV
L
M

R
K
H

D
E

Q
N

S
T

A
G

W
C

Y
F

P

T
ab
le
1:

T
h
e
am

in
o
ac
id

gr
ou
p
in
g
al
te
rn
at
iv
es

te
st
ed
.

18



were carried out as well. Unless the grouping schemes provide a signi�cant

boost to the accuracy of the classi�cations - hence the con�dence of the

conclusions - no grouping techniques are superior, because using a grouping

scheme blunts the quality with which the interaction sites are identi�ed.

The information content of non-reduced motifs is higher; therefore, they

are preferable to any grouping scheme in case the respective distinguishing

abilities are comparably powerful.

Sezerman grouping gave the best results among these alternatives; there-

fore, all results reported will be according to Sezerman's grouping.
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4 Method

The method proposed in this thesis to solve the classi�cation problem de-

scribed above can be summarized as follows:

1. Motif distillation by Motif Speci�city Measure (Motif de�nition is in

4.1 and MSM de�nition is in 4.2)

2. Distinguishing Power Evaluation of distilled motifs

3. Decision Tree induction from selected motifs

4. Identi�cation of key ligand interaction sites through rule extraction

from decision tree.

5. Classi�cation of subfamilies using "key ligand interaction site motif"

presence.

The classi�cation rules are simply rules dictating the presence or absence of

some motifs. The design of the motifs allows us to predict ligand interaction

sites from sequence information alone. Throughout this section, the term

class will be used to denote the subfamily to which a sequence belongs for

the sake of simplicity. As the classi�cation problem is single-level, this should

not create any ambiguity.

4.1 Motif De�nition

Sequence information in its raw form � without feature extraction � cannot

be used to perform any classi�cation. Machine learning algorithms are more
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e�ective when the input data have few but distinguishing attributes. There-

fore, extracting distinguishing motifs from the sequence information would

positively e�ect the accuracy of supervised learning methods in general. The

motifs are also required to clearly represent some location-speci�c properties

of the sequences because the objective of this study is two-fold: to determine

key interaction sites as well as perform classi�cation. This requirement has

led us to depart from the other motif de�nitions in literature such as [10, 1]

and de�ne a novel motif.

The intuition was that within a subfamily, certain amino-acid triplets at

speci�c positions of the same exo-cellular region would be preserved over the

di�erent sequences in the subfamily. This intuition is illustrated in Figure 4:

the ligand that binds to the receptor interacts very strongly with a number

of key sites (highlighted in blue), which is captured by the motif de�nition.

It can be speculated that these amino-acids might be fundamental to the

binding process because otherwise they would not have been conserved. As

there is not a su�ciently large number of GPCR structures to determine

location in a spatial sense, the use of the word location from here on refers

to a sequential location. Sequential location means the location of the amino

acids within the entire sequence; a linear sense of positioning where the start

is the �rst amino acid of the sequence and the end is the last amino acid in

the sequence. With location de�ned as such, the conserved sites should be

excellent motifs for classi�cation if the intuition holds. If conserved sites point

to key interaction sites in the binding process the motifs of one subfamily

should not occur in another subfamily � otherwise the same ligands would

bind to receptors of both subfamilies and they would be classi�ed in the same
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subfamily. This intuition is experimentally veri�ed in section 5.1. The motifs

are designed with this intuition.

De�nition 4 Motif De�nition The motif is de�ned as m(τ, r, p) where

• τ is a triplet of residues from the preferred amino acid alphabet.

• r is the exo-cellular region of occurrence, where it is one of the follow-

ing: n-terminus, exo-loop 1, exo-loop 2 or exo-loop 3.

• p is the position of the �rst residue of the triplet relative to the length

of the amino acid sequence of region r.

In a previous work, it is expressed that features of length three are the

most informative for classi�cation of GPCR sequences [32]. The study uses

an SVM-based classi�er for performing GPCR Class A subfamily-level clas-

si�cations. Therefore, the reported fact that features of length three are the

most informative is valid for this study as well as other Class A subfamily

classi�cation studies.

To determine the trans-membrane regions, the TMHMM trans-membrane

helices prediction tool was used[30]. The trans-membrane regions can be pre-

dicted with high accuracy due to the very signi�cant di�erence in hydropho-

bicity with the extra-membrane regions. The TMHMM tool was picked over

other alternatives because a comparative study has found it to be the best

among a suite of tools that perform the same prediction [33]. Once the trans-

membrane regions are identi�ed, it is trivial to identify the exo-cellular re-

gions. The term region here refers to one of the four exo-cellular components

which are common to every member of the GPCR family. These exo-cellular
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Figure 4: Illustration explaining the inspiration for motifs.

components are n-terminus, exo-loop 1, exo-loop 2 and exo-loop 3 as can be

seen in Figure 3. The regions are 0-indexed such that the n-terminus region

is indexed 0, the exo-loop 1 region is indexed 1 etc.

For a motif m(τ, r, p), the position within the region is de�ned to be the

sequential position of the �rst letter of the triplet within the loop, normalized

by the length of the loop. This allows us to de�ne the notion of position

independent of the length of the region. For example a triplet appearing in

the middle of a region of size 10 and a triplet occurring in the middle of

a region of length 50 have the same relative position although one of them

starts at index 5 and the other starts at 25. This maps the position of a

triplet from a number with an inde�nite range (which varies as the number

of residues in the loop changes) to a number between 0 and 9. The position

was limited to integers between 0 and 9 because empirical study revealed
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that the average region length was 26.5 for the GPCRpred dataset. As the

residues are evaluated in consecutive strips of length three, the number of

disjoint triplets is around 10. Exact calculation of a position is given in

De�nition 5 which is illustrated by Example 1.

De�nition 5 Position Calculation For position p in region r, the triplets

that occur in that position start with index
⌊
p× |r|−1

10

⌋
where |r| denotes

the sequence length of region r and the residue indices start from 0. The

beginning residue of the �rst segment is the �rst residue (index 0). The end

of a position segment is the �rst residue of the next segment or the end of the

region if this is the last segment. The residues that occur in the such de�ned

region constitute the �rst residues of the triplets in that position where the

rest of the triplet is simply the two consecutive residues.

Example 1 Calculating triplet positions Assume that a region consists

of the following 19 residues: "ARNDCEQGHILKMFPSTWY". The triplets

at position 3 can be calculated by �lling in the necessary values to the formula

speci�ed in de�nition 5.
⌊
3× 19−1

10

⌋
= 5. The beginning of the next position

(i.e. position 4 is calculated similarly:
⌊
4× 19−1

10

⌋
= 7. The triplets that

are in position in 3 start with indices in the range [5, 7) � in other words

the triplets that start with the indices 5 and 6 fall in position 3. Therefore,

the triplets that occur at position 3 of this region are EQD and QGH. As-

sume that the given region is the n-terminus region of a sequence, then it can

be said that the motif m(QGH, 0, 3) occurs in this sequence. Table 2 shows

the starting index of each position and the triplets belonging to each position

segment for a region with the following sequence of length 19: "ARNDCE-
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Table 2: The triplets in each position of the region "ARNDCEQGHILKMF-
PSTWY"

Position Triplets in this position start
with index

Occurring Triplets

0 0 ARN

1 1,2 RND,NDC

2 3,4 DCE,CEQ

3 5,6 EQG,QGH

4 7,8 GHI,HIL

5 9 ILK

6 10,11 LKM,KMF

7 12,13 MFP.FPS

8 14,15 PST,STW

9 16 TWY

QGHILKMFPSTWY".

4.2 Motif Speci�city Measure

The total number of motifs is on the order of hundred thousands; however,

most of them occur very infrequently. The ideal motif would be one that

occurs in all the sequences that belongs to a particular subfamily but never

in a sequence from another subfamily. To evaluate how close a motif is to this

ideal, the metric should give a high value for motifs that occur frequently

in one subfamily but are very uncommon in other subfamilies. This way,

motifs that are speci�c to a particular subfamily would be rewarded whereas

motifs which occur either in few sequences or in multiple subfamilies would

be penalized.

25



Metrics with similar properties are used in the �eld of text mining. The

numerous words which occur in every text cannot be used for e�cient docu-

ment retrieval instead the most speci�c words in a query need to be selected.

The Term Frequency Inverse Document Frequency (TFIDF) [34] weight is

a metric that selects words with high occurrences in a low number of doc-

uments. The weight increases as the occurrences of a word in a document

increases; however, it is inversely proportional to the number of overall docu-

ments in which the word occurs. This allows the weight to be high for those

words that are speci�c which is highly similar to the sought-after character-

istic of the Motif Speci�city Measure. Therefore, the TFIDF weights were

the starting point in de�ning the Motif Speci�city Measure.

The Motif Speci�city Measure of a motif is composed of two components,

the �rst of which is directly proportional to the motif's presence in the target

subfamily.

De�nition 6 Presence in Family Presence of motif i in family f , PF (i, f)

is given by

PFi,f =
ni,f∑

k∈M

nk,f

(4.1)

where

• ni,f is the number of occurrences of motif i in unique sequences in

subfamily f ,

• M is the set of all motifs,

•
∑

k∈M

nk,f denotes the total number of occurrence of all motifs in subfam-

ily f .
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The second component is the Family Speci�city of a motif which is in-

versely proportional to the number of di�erent in which that particular motif

occurs. Here, deciding the occurrence of a motif in a subfamily is not trivial.

Occurrence of a motif in a single sequence out of hundreds of sequences in a

subfamily is hardly the same as a motif to be observed in more than half of

the sequences of a subfamily. Occurrence of a motif in a single sequence in

an entire subfamily can be due to numerous reasons such as wrong sequence

annotation, evolutionary connections etc. Therefore, a motif is said to occur

in a subfamily only if its occurrence rate in the subfamily is higher than a

certain percentage threshold, called the Presence Threshold.

De�nition 7 Motif Occurrence Rate in a Family The occurrence rate

of motif i(τ, r, p) in subfamily f , MORFi,f is given by

MORFi,f =

∑
s∈f

|Occurs(i, s)|

|f |
(4.2)

where

• Occurs(i, s) evaluates to 1 if motif i occurs in sequence s, otherwise 0,

• |f | is the number of sequences in subfamily f

Given the motif occurrence rate in a subfamily, the Family Speci�city can

be de�ned as follows:

De�nition 8 Family Speci�city The Family Speci�city of motif i, FSi is

given by

FSi = log
|F |∑

f∈F

|{f : MORFi,f > PT}|
(4.3)
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where

• F is the set of all subfamilies,

• MORF is the Motif Occurrence Rate in Family function de�ned above,

• PT is the Presence Threshold.

The denominator of FS simply gives the number of subfamilies for which

the occurrence rate of a particular motif is above the Presence Threshold.

The reason the Presence Threshold is introduced, is to be able to cope with

subfamilies of very di�erent sizes. In this case, with the standard method

of calculating IDF score, the total number of sequences outside the target

subfamily needs to be divided with the total number of sequences outside the

target subfamily in which the motif has been seen. This would have treated

presence in every sequence equally � regardless of its subfamily. More often

than not, the number of sequences in di�erent subfamilies di�er greatly �

sometimes even by one order of magnitude. Therefore, if a motif showed

signi�cant occurrence in only one very large subfamily, its FS score would

have been equal to that of a motif which shows signi�cant occurrences in

many subfamilies with smaller number of sequences. However, the speci�city

of the two motifs are hardly the same: the former occurs frequently in only

one subfamily outside its target subfamily whereas the latter occurs in many

di�erent subfamilies. To cope with subfamilies of very di�erent sizes the

number of subfamilies in which the motif occurs frequently, where "frequent"

is determined by the Presence Threshold, are counted. The value of Presence

Threshold should not be too high so that motifs with frequent occurrences

in a subfamily should be noted. However, it should also be high enough
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to prevent minor motifs from appearing signi�cant. The best trade-o� was

assessed to be at the 20% level and this value was used in the computations.

The Presence in Family and the Family Speci�city of a motif enable us

to capture two key properties in assessing the speci�city of a motif to a

subfamily. The Motif Speci�city Measure which determines the speci�city of

a motif to a particular subfamily is then de�ned as follows:

De�nition 9 Motif Speci�city Measure The Motif Speci�city Measure

of motif i for subfamily f , MSM(i, f) is given by

MSM(i, f) = PFi,f × FSi (4.4)

where

• PFi,f denotes motif i's Presence in Family f ,

• FSi denotes the Family Speci�city of motif i.

The Motif Speci�city Measure of a motif for a particular subfamily is pos-

itively correlated with the number of occurrences of a motif in that subfamily

but inversely correlated with the number of other subfamilies in which the

motif occurs frequently.

4.3 Distinguishing Power Evaluation

In the Distinguishing Power Evaluation (DPE) step, the training data is

used to determine the best motifs for classi�cation. The central idea is to

repeatedly build decision trees from randomly partitioned test and training

data and look for those motifs that occur very frequently in each of these
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decision trees. The aim of the DPE algorithm is not to produce a classi�er

but rather evaluation of the motifs via a thorough analysis of the data. The

�owchart of GPCRBind is shown in Figure 5.

During the DPE step, the Distinguishing Power (DP) score of each motif,

which is simply the sum of the accuracies of the decision tree in which that

motif occurs, is calculated. If a motif occurs in many decision trees which

performed high accuracy classi�cation, then using that motif as an attribute

yields a signi�cant information gain. This is due to the characteristic of the

Iterative Dichotomiser 3 (ID3) decision tree induction algorithm [35] which

splits the data with respect to the information gain of the attributes. The

ID3 algorithm uses an attribute at a decision tree node only if this attribute

yields the highest information gain at that node of the tree.

The �rst part of the DPE is to �lter the number of candidate motifs

from hundreds of thousands to hundreds. Initially every triplet, region and

position combination is a candidate motif. However, most of these motifs

occur extremely infrequently whereas some of the rest occur in most GPCR

sequences as they are characteristic to the subfamily. Neither of these types

of motifs would contribute much information to help solve the classi�cation

problem. Therefore, the motifs with the highest subfamily speci�city are

picked using the MSM which has been described in section 4.2. Algorithm 4.3

details the procedure for elimination of motifs using MSM, shortly ElimSM.

To understand Algorithm 4.3, it must be underscored that a motif's MSM

can only be evaluated with respect to a subfamily, since the MSM score

gives clues about how useful each motif will be for the classi�cation of that

particular subfamily. For each subfamily, N motifs with highest MSN scores
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Figure 5: The �owchart of GPCRBind.
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Algorithm 1 Calculating Motif Speci�city Measure (ElimSM)

Input: Set of motifs M , set of subfamilies F , cuto� value N .
Output: Set consisting of N motifs with the highest MSM value for each

subfamily
1: BestM ← {}
2: for all f ∈ F do

3: BestMf ← {}
4: Scoresf ←MSM(M, f)
5: for all m ∈M do

6: //If m is among the top scoring motifs for this subfamily, add it to
the corresponding set of best motifs.

7: if MSM (m, f) in MaxN(Scoresf ) then
8: BestMf ← BestMf ∪m
9: end if

10: end for

11: BestM ← BestM ∪BestMf

12: end for

13: return BestM

where;

• MSM(M, f) = {MSM(m, f) : m ∈M}

• MaxN takes as input a set with a score assigned to each element and
returns the N highest scoring elements of this input set.
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have been selected. SinceN is a natural number, the value ofN is determined

automatically in a hill-climbing manner by sampling the alternative cuto�

values on a training set and then selecting the value that yields the highest

accuracy. The value of N is calculated dynamically for every dataset to make

sure that the algorithm can adapt to datasets with di�erent characteristics.

In order to maximize the strength of decision trees a su�ciently good set

of attributes of each data object, which distinguishes between the various sub-

families, needs to be given. In this study, the data objects are the sequences

and their attributes are de�ned to be the presence of the motifs selected

through the MSM elimination step. Each sequence has as many attributes

as the number of selected motifs which is equal to number of subfamilies

multiplied by the number of motifs per subfamily (the value N in algorithm

4.3). Each attribute is a binary attribute denoting the presence/absence of

the corresponding motif. If the corresponding motif of an attribute occurs

in a sequence then the value of that attribute is 1 for that sequence, other-

wise it is 0. The dataset of GPCR sequences can thus be converted into a

classi�cation-ready dataset as de�ned in 10.

De�nition 10 Classi�cation Dataset The classi�cation dataset C is cre-

ated from a GPCR sequence dataset D and a set of motifs M such that;

• ∀s ∈ D, ∃s′ ∈ C,

• ∀s′ ∈ C has as many attributes as |M |,

• s′i = 1 if mi ∈M occurs in sequence s,

• s′i = 0 if mi ∈M does not occur in sequence s.
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The DPE algorithm (Algorithm 4.3) is, in its essence, a reiteration of

decision tree building. Initially the DPE score of all motifs is 0. As the

various decision trees are built and tested from random partitions of the

training data, the resulting accuracy of each tree is added to the DPE score

of every motif on that tree. If there are multiple occurrences of a motif in a

single tree, the DPE score is incremented only once. This ensures that the

motifs with high DP scores are those motifs that occur in a high number of

trees and in high accuracy trees.

The varying factor over the iterations of the DPE algorithm is the data

partitions. At each iteration, the input data of the algorithm is randomly

divided into three partitions. One of these partitions is dedicated as the test

set and the remaining partitions are merged to form a training set. The

motif elimination by MSM step is done using the training set only and the

best motifs which explain the training set are derived. The training and

test sets are converted into classi�cation datasets where the attributes are

the motifs selected in the previous step. The test set can be converted to a

classi�cation dataset format as well because the conversion only requires the

sequence, not the class information. The next step is to train a decision tree

on the classi�cation-format training set using the ID3 algorithm and classify

the test set using this decision tree. The accuracy of the tree on the test

set is added to the DPE score of every motif used in the decision tree. The

reported results have been achieved by using 20 runs.
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Algorithm 2 Distinguishing Power Evaluation

Input: Sequence Dataset D
Output: Motifs and corresponding DPE scores
1: ∀m ∈M,DPm ← 0
2: for run = 1 : TotalRuns do
3: F ← Retrieve subfamilies from D
4: P = {P1, P2, P3} ← RandomPartition (D)
5: for all Pi ∈ P do

6: TestSet← Pi

7: TrainSet← P/Pi

8: M ← FindAllMotifs (TrainSet)
9: BestM ← elimSM(M,F,N)

10: C_train← ClassDataset(BestM, TrainSet)
11: C_test← ClassDataset(BestM, TestSet)
12: decisionTree← ID3(C_train)
13: accuracy ← decisionTree.Test(C_test)
14: for all m ∈ BestM used in decisionTree do
15: DPm ← DPm + accuracy
16: end for

17: end for

18: end for
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4.4 Discovery of Key Ligand Interaction Sites

As one of the objectives is to identify the key ligand-protein interaction sites,

the classi�cation method being used should produce clear, direct yet powerful

rules for each class. The decision trees are tools that could be used for

extracting such rules and it was decided that the Iterative Dichotomiser 3

(ID3) algorithm proposed by Quinlan [35] is the best alternative. ID3 is

a simple yet powerful algorithm; its output is a decision tree which can be

parsed for the important rules which in turn yield high accuracy results. The

rule generation algorithm also serves to prune the decision tree, counteracting

over-�tting which can be considered one of the major downsides of ID3-based

decision tree induction.

The DPE score characterizes the distinguishing power of a motif, as its

name implies. Therefore, motifs with low distinguishing power are eliminated

before extracting classi�cation rules. The maximum possible DPE score of

a motif is the score that a motif would have if it occurred in all the decision

trees generated in the DPE algorithm and if all of these decision trees had

100% accuracy. Motifs with DPE scores below a threshold percentage of

this maximum DPE score are eliminated. For example, a 10% threshold

implies that motifs with less than 10% of the maximum possible DPE score

are eliminated. This threshold is called the DPE motif selection threshold

and its e�ect on runtime and accuracy is explained in Section 5.4.

The reason that the motifs who fall below the speci�ed threshold are

eliminated is that these motifs have either occurred in few trees or they have

occurred in many trees with very low accuracies. Both rarely selected motifs

and motifs that have occurred in unsuccessful trees are poorly performing
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motifs; therefore, they are eliminated.

The motifs that pass the DPE motif selection threshold are picked as the

attributes of each sequence for the induction of the �nal decision tree. The

whole training set is used to build the �nal decision tree. The selected motifs

with the highest DPE scores are used to create the �nal decision trees using

the entire body of training data available. One decision tree is produced

which, given a GPCR sequence, predicts the subfamily to which it belongs.

The �nal decision tree is then used to extract rules as described by Quin-

lan in [36]. First, each path from the root of the decision tree to the decision

nodes at the leaves are traced. The path is a sequence of nodes where each

of these nodes represents a di�erent attribute - therefore, by de�nition of the

attributes, the existence of a motif. All the nodes visited until a leaf node

form a set of conditions upon which a particular classi�cation is made. The

conjunction of the conditions that need to be met to reach a particular clas-

si�cation decision constitutes a classi�cation rule. The conditions of these

classi�cation rules can be simpli�ed by dropping the useless conditions. The

least relevant condition to the classi�cation is found using Fisher's Exact

Test [36] at 99% con�dence level. This process is repeated until there are

no conditions left or there are no conditions which can be rejected at this

signi�cance level. Each of these rules are assigned a con�dence factor (CF)

which measures how many members that satisfy the conditions of the rule

actually belong to the class proposed by the rule in the training set.

To be able to use Fisher's exact test, an appropriate alpha value had

to be selected. High alpha values would involve too many motifs; therefore,

over-�tting the training set to possibly reduce performance on a blind dataset.
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Too many motifs would also make it more di�cult to separate very signi�cant

interaction sites from those not as common. Given the above considerations

and the sensitivity of biological data, the tests were performed at the 1%

signi�cance level.

After the conditions have been simpli�ed, the rule set is evaluated as a

whole in terms of the degree of success in the absence of each rule. If the

rule set performs better or equally well when one of the rules is removed, the

rule whose absence increases the performance the most gets eliminated, and

the analysis is repeated.

Classi�cation of a sequence is decided by the rule for which the sequence

matches all the conditions. If there are more than one of such rules, then the

rule with the highest con�dence factor is picked. If the con�dence factors are

equal as well, the rule with more conditions is preferred on the grounds that

it is more speci�c.

The classi�er is the entire rule set determined as described above. Each

rule is composed of conditions which dictate the presence/absence of one

or more motifs. Here it should be noted that compliance with the "motif

presence condition" requires that a particular motif occurs in a sequence.

Similarly "motif absence condition" requires that the motif does not occur

in a sequence.

A rule composed entirely of motif absence conditions would not be of

much use or would not contribute a lot of information to the drug designers.

However, a rule with all of its conditions being absence motifs fails to pass

the Fisher's Exact Test statistical threshold simply because they appear in

too many di�erent subfamilies and are hardly unique to one class. Therefore,
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rules made entirely of motif absence conditions are dropped by the algorithm.

As a result, the design of the proposed technique is such that it ensures there

is at least one motif presence condition in any derived rule.

The classi�er proposed here is called GPCRBind. The performance of

the GPCRBind classi�er is reported in Section 5.
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5 Experimental Results

The proposed techniques were implemented in Python 2.5 and tested their

performance on real datasets and compared its performance to state-of-the-

art GPCR classi�ers. The experiments were performed in a server with 6 Intel

Xeon 2.4Ghz CPUs, 32 Gb of memory and CentOS 5.4 operating system.

The �rst set of experiments were conducted to verify the motif de�nition

as presented in Section 5.1. This veri�cation step showed that the motif

de�nition can accurately identify GPCR subfamily-speci�c features. In Sec-

tion 5.2, the classi�cation performance of the proposed method is evaluated.

The performance evaluation has been conducted in two steps: performance

comparison between an existing classi�cation server, GPCRpred, and the

method is given in Section 5.2.1; the performance evaluation on an indepen-

dent dataset and its comparison to the GPCRTree and PRED-GPCR meth-

ods is given in Section 5.2.2. The accuracy-runtime trade-o� is explained in

detail in Section 5.4. The discovered interaction sites are presented in Section

5.5.

5.1 Veri�cation of the Motif De�nition

The intuition while de�ning the motifs was that there would be certain con-

served sequences in the extracellular regions of the receptors. If the intuition

holds, the technique must be able to identify motifs with very high occurrence

rates at certain positions for each subfamily. If there are such conserved mo-

tif occurrence patterns, then this means that these motifs can be utilized for

classi�cation. To verify this intuition experiments were made on a dataset
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consisting of �ve subfamilies of the Class A GPCRs: Amine (561 sequences),

Peptide (1291 sequences), Rhodopsin (643 sequences), Prostanoid (83 se-

quences) and Olfactory (2311 sequences) from the GPCRDB database.

A statistical analysis of occurrence for every possible motif was performed

and the occurrence positions were plotted on a histogram. The x-axis of

the histogram represents the position of occurrence of the triplet within the

region. The y-axis represents the number of occurrences. If the intuition

is correct, there should be at least some amino-acid triplets which cluster

around a few positions with extremely high occurrence rates. The analysis

did indeed show that there were such occurrences and this has � to some

extent � veri�ed the intuition. You can see the histograms of such nature

with the Sezerman amino acid reduction scheme in Figures 6 to 10. What

is even more signi�cant is that these motifs are those with the highest Motif

Speci�city Measure scores. Therefore, these data-derived results verify the

intuition behind the motif de�nition and demonstrate the e�ectiveness of

MSM.

5.2 Classi�cation Results for Subfamilies of Class A

The performance of GPCRBind was compared against the literature on both

an independent training set and against a GPCR classi�cation server. The

independent dataset testing is essential to show its performance when it

performs on data that it has not previously encountered. Most often, when

GPCRBind is used to perform classi�cation of GPCR sequences, they will

be novel sequences and it is imperative to test the performance on such data

beforehand.
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Figure 6: The occurrence frequency of triplet EIG at exo-loop 2 in rhodopsin
subfamily (represented by white bars) and the other subfamilies (represented
by blue).
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Figure 7: The occurrence frequency of triplet EHI at exo-loop 2 in prostanoid
subfamily (represented by white bars) and the other subfamilies (represented
by blue).
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Figure 8: The occurrence frequency of triplet JJI at exo-loop 2 in olfactory
subfamily (represented by white bars). The other subfamilies are so insignif-
icant that they are not visible in the histogram.
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Figure 9: The occurrence frequency of triplet ICA at exo-loop 1 in amine
subfamily (represented by white bars) and the other subfamilies (represented
by blue).
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Figure 10: The occurrence frequency of triplet AIB at exo-loop 1 in peptide
subfamily (represented by white bars) and the other subfamilies (represented
by blue).
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The performance analysis was performed on the subfamilies of Class A.

Only the Class A family of GPCR sequences was used because of two reasons.

First and foremost is that the GPCRpred dataset on which the classi�er was

tested contains the subfamily information for only the sequences in Class A.

Secondly, more than 80% of the human GPCR sequences are grouped in this

family; therefore, it is the most important target of pharmaceutical research.

It should be noted that the GPCRBind algorithm requires preprocessing

of sequences by a trans-membrane prediction software (for which purpose

TMHMM was used). For some sequences the TMHMM software did not

predict a valid GPCR model. Therefore, those sequences for which TMHMM

software can make an accurate prediction were used. This is a side-e�ect that

has to be tolerated in order to discover the ligand interaction sites. As you

can see from Table 3, no sequences are lost due to this reason for some of the

subfamilies. For most of the remaining subfamilies, the amount of sequences

that were eliminated in this manner are not signi�cant. The only subfamily

for which there was a signi�cant drop in the number of sequences was the

Prostanoid subfamily.

The GPCRBind method, proposed in this thesis, requires random parti-

tioning. Due to this randomness the results of two successive runs are not

identical. Therefore, the whole method is repeated 100 times and the average

accuracy is reported.

The runtime of the algorithm versus the number of runs in the DPE step

is shown in Figure 11. The runtime is linear with the number of runs at

the DPE step as you can see in Figure 11. After the classi�cation rules are

generated, which is an o�ine step and performed only once. The classi�cation
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Figure 11: The runtime of the algorithm plotted against the number of runs
in the DPE step with 70% DPE motif selection threshold.

takes less than a second to produce a classi�cation for any given sequence.

5.2.1 Comparison with the GPCRpred Server

The performance of GPCRBind was compared against a recent GPCR clas-

si�cation server, GPCRpred, which predicts Class A subfamily membership

information. In order to keep every factor constant during the testing of

the two methods, the GPCRBind algorithm was trained with the GPCR-

pred dataset. The TMHMM-eliminated sequences were removed from the

GPCRpred dataset and the remaining sequences were classi�ed with both

the GPCRpred server and the GPCRBind algorithm. Consequently the two

techniques were trained and tested on exactly the same sequences.

For each sequence, GPCRpred �rst tries to predict if this sequence is a
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member of the GPCR superfamily or not whereas GPCRBind directly as-

sumes that this sequence is a GPCR. The reason is that GPCRBind requires

a priori determination of exo-cellular loops � which can only be achieved if

the sequence already belongs to the GPCR set of sequences. This restriction

of GPCRBind is due to its design as a discovery and exploration tool in ad-

dition to being a classi�cation tool. However, this di�erence in the way the

two classi�ers work should create only a limited problem because the results

reported in [6] claim that GPCRpred can distinguish a GPCR sequence from

a non-GPCR with an accuracy of 99.5%. The detailed classi�cation results

corresponding to GPCRBind for individual subfamilies, taken from the best

performing repetition out of 100 repetitions, is provided in Table 4. The av-

eraged accuracy of 100 repetitions of GPCRBind is also shown at the bottom

of this table. The number of runs used in the DPE step of GPCRBind is 20.

GPCRBind had a higher overall classi�cation accuracy, but more impor-

tantly it had very high accuracy for all the subfamilies while GPCRpred

performed poorly in some of the small-sized subfamilies. If the performance

is evaluated solely based on overall accuracy, performance on large-sized sub-

families shadows classi�cation quality on smaller-sized subfamilies: The con-

fusion matrix of the best repetition of GPCRBind out of 100 repetitions is

shown in Table 5. However, the fact that the number of sequences in a sub-

family is small does not mean that it is insigni�cant. On the contrary, there

is little correlation between the number of sequences in a subfamily and its

signi�cance to biotechnology research. Therefore, an ideal classi�cation tool

should perform equally well on both small-sized and large-sized subfamilies.

GPCRBind performs extremely well on these small-sized subfamilies, achiev-
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ing 100% classi�cation performance for most of them whereas the SVM-based

GPCRpred exhibits poor results such as 37.5% for prostanoid or 55.5% for

gonadotrophin releasing hormone subfamilies.

It is evident that the DPE algorithm is very powerful in determining

distinguishing motifs for every single subfamily. This also enhances the con-

�dence in the ligand interaction sites discovered by this study. This knowl-

edge is crucial for drug designers targeting GPCRs because it enables them

to speci�cally target one subfamily but not the other.

5.2.2 Independent Dataset Comparison

To establish a new classi�cation technique, an independent dataset testing is

essential. Therefore, in the testing stage, GPCRBind was trained and tested

on separate datasets. The training and testing datasets were chosen such

that the results could be compared to state-of-the-art GPCR classi�cation

methods reported by Davies et al., in [1]. Davies et al. trained GPCRTree

on the GDS dataset and then used GPCRTree to predict the subfamily of

Class A sequences in the GPCRpred dataset. They compare their results

to those given by PRED-GPCR on the same testing set. To be able to

draw a direct comparison between GPCRTree's performance and that of the

method, GPCRBind was also trained on GPCRTree's training set, namely

the GDS dataset, and tested on the same GPCRpred dataset. As the DPE

step involves randomness, the whole method has been repeated 100 times

and the average accuracy over all the repetitions is presented. It can be

seen from the results in Table 6 that GPCRBind performed superior to other

classi�ers when executed with 20 runs in the DPE step and a DPE motif
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Subfamily Number of
sequences

Correctly
processed by
TMHMM

Amine(AMN) 221 208

Cannabinoid(CAN) 11 11

Gonadotrophin releasing hormone (GRH) 10 9

Hormone proteins(HMP) 25 24

Lysospingolipids(LYS) 9 8

Melatonin(MEL) 13 13

Nucleotide-like(NUC) 48 33

Olfactory(OLF) 87 69

Platelet activating factor (PAF) 4 4

Peptide(PEP) 381 304

Prostanoid(PRS) 38 8

Rhodopsin(RHD) 183 174

Thyrotropin releasing hormone (TRH) 7 7

Viral(VIR) 17 13

Total 1054 885 (84.0%)

Table 3: The number of sequences correctly processed by TMHMM in each
subfamily.
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Subfamily Total GPCRBind GPCRpred

Peptide 304 302 (99.3%) 301 (99.0%)

Amine 208 203 (97.6%) 204 (98.1%)

Rhodopsin 174 169 (97.1%) 174 (100%)

Olfactory 69 68 (98.5%) 60 (86.9%)

Nucleotide-like 33 29 (87.8%) 24 (73.7%)

Hormone Protein 24 24 (100%) 21 (87.5%)

Viral 13 12 (92.3%) 0 (0%)

Melatonin 13 13 (100%) 10 (76.9%)

Cannabinoid 11 9 (81.8%) 9 (81.8%)

GRH 9 9 (100%) 5 (55.5%)

Prostanoid 8 8 (100%) 3 (37.5%)

Lysospingolipids 8 8 (100%) 6 (75%)

TRH 7 6 (85.7%) 4 (57.1%)

PAF 4 1 (25.0%) 0 (0%)

Overall 885 861 (97.3%) 821 (92.8%)

100 Repetitions 885 851.3 (96.2%) 821 (92.8%)

Table 4: Classi�cation performance of GPCRBind and GPCRpred.
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Classi�er Accuracy

GPCRBind 90.7%

GPCRTree 76.2%

PRED-GPCR 73.8%

Table 6: Classi�cation accuracy of GPCRBind compared to the results re-
ported by Davies et al. [1].

selection threshold of 70%. In Table 6, the classi�cation accuracy reported

for GPCRBind is the averaged result of 100 repetitions to smooth out the

e�ect of the randomness in the DPE step. It should be noted that all of

the 100 repetitions of GPCRBind yielded results that are superior to the

previous classi�ers.

5.3 Classi�cation Results of Sub-subfamilies of Amine

Subfamily

The GPCRBind has been used to classify the sub-subfamilies of the Amine

subfamily to have a better picture about its ability to be a general GPCR

classi�er. The GPCR sequences of the sub-subfamilies of the Amine sub-

family have been retrieved from GPCRDB [29]in July 2010. In order to

e�ectively mine rules about the potential ligand-receptor interaction sites,

the algorithm has been trained on the whole data and consequently trained

on the entire dataset. Table 7 shows the number of sequences in each sub-

subfamily in the original dataset retrieved from GPCRDB compared to the

number of sequences left after the TMHMM processing.

In an e�ort to improve the classi�cation performance on the sub-subfamilies

a number of changes were implemented. The �rst of these is to reduce the
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Subfamily Number of
sequences

Correctly
processed by
TMHMM

Adrenoreceptors (ADR) 483 304

Dopamine (DOP) 317 240

Histamine (HIS) 183 136

Muscarinic Acetylcholine (MUS) 198 169

Octopamine (OCT) 91 66

Serotonin (SER) 575 477

Trace Amine (TRA) 257 216

Total 2104 1608
(76.4%)

Table 7: The number of sequences correctly processed by TMHMM in each
Amine sub-subfamily.

number of positions from 10 to 3. This was done with the intuition that 10

positions provided unnecessarily detailed positional information. Secondly,

in an e�ort to increase the runtime of the algorithm and improve the quality

of the �ndings, the absence conditions in each rule retrieved from the decision

tree were removed automatically. After the rule extraction algorithm extracts

rules from the decision tree, there are a huge number of absence conditions in

each rule. This is because a decision tree can only classify one class at each

node as it can only test for a single motif at any node. Therefore classifying

the rules extracted from the lower levels include a high number of absence

rules that do not necessarily contribute to the classi�cation but instead that

are simply relics of the classi�cation decisions made in the higher levels of

the decision tree. Therefore most of these absence rules get eliminated by

the condition �ltering step of the rule extraction method that uses Fisher's
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exact test to measure the contribution of each condition to the classi�cation

e�ort. The few absence conditions that are left in the rule body actually

reduce the potential contribution of the �ndings to drug design e�orts - drug

designers are more interested in the motifs that appear in the protein than

those that are absent. Therefore elimination of the absence conditions in a

preprocessing step of each rule, both saves computational time and improves

the contribution of the results to drug designers. The last change made was

to convert the DPE motif selection threshold to a �xed integer value, denot-

ing the number of motifs with the highest DPE score to pick for use in the

rule extraction step.

The performance of GPCRBind with the above-mentioned improvements

has been tested on the sub-subfamilies of the Amine subfamily with a DPE

motif selection threshold of 500 - i.e. top 500 motifs with respect to the

DPE scores have been selected for rule extraction. The accuracy of the

classi�cation is 81.3% and the corresponding confusion matrix is given in

Table 8.

5.4 Accuracy-Runtime Trade-o�

Two factors determine the runtime of GPCRBind: the number of runs in the

DPE step, and the DPE motif selection threshold. The number of runs in

the DPE step has a linear impact on the runtime. It was observed that af-

ter 20 runs, there is marginal contribution to the classi�cation performance.

Therefore, 20 runs were used for all the presented results. On the contrary,

evaluating the e�ect of the DPE motif selection threshold on the runtime is

non-trivial. DPE motif selection threshold aims to eliminate motifs that have
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low distinguishing power. The higher this threshold, the higher the number

of motifs selected for use in rule extraction. A larger number of motifs means

a higher number of attributes for each sequence, thus contributing more in-

formation. However, an increase in the number of attributes exponentially

increases the complexity of the rule extraction process. This non-linear and

complex relationship has been investigated by alternating the DPE motif se-

lection threshold while performing independent dataset classi�cation. Figure

12 shows the accuracy-runtime trade-o� for di�erent threshold values. In the

�gure, 100 repetitions of the whole method have been performed and the

average accuracy and runtime is reported for every threshold value. As can

be seen in the �gure, accuracy rises sharply as the threshold goes from 80%

to 75% and from 75% to 70%. However, as the threshold goes from 70% to

60%, there is only a slight increase in accuracy at the cost of a signi�cant

increase in runtime. Therefore, it was concluded that 70% is the optimum

threshold value in terms of runtime-accuracy trade-o� for training on the

GDS dataset.

It should be noted that GPCRBind is a rule extraction method, and while

training takes time on the order of hours, classi�cation of a sequence takes

milliseconds. This property of GPCRBind makes it suitable for being used

as a classi�cation server.

5.5 Interaction Site Discovery Results

Each classi�cation rule used by GPCRBind is a multitude of conditions re-

garding the presence/absence of motifs which, if satis�ed, claims that the

sequence belongs to a particular subfamily with a speci�c certainty factor.
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Figure 12: The accuracy versus runtime for the following DPE motif selection
threshold values: 60%, 70%, 75% and 80%.
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Each motif, is a triplet occurrence at a speci�c site. Therefore, in essence,

GPCRBind rules predict subfamily membership based on the presence/ab-

sence requirement of certain amino acids, each at a particular position. Rules

that characterize each subfamily by amino acid presence/absence rules at

their exo-cellular loops have been discovered through this research. The

entire set of rules is given in Table 9, which shows that GPCRBind can

successfully distinguish GPCR subfamilies with only a few motifs for each

subfamily. In Table 9 for every rule, the following information is given: the

triplet (in Sezerman encoding), the region of occurrence and the position of

occurrence within that region. Whether if the condition is for presence or

absence of the motif is also indicated. For selected subfamilies, the rule with

the highest certainty factor on Table 9 is represented on a GPCR snake-

diagram in Figure 13 which visualizes the �ndings of the method. In this

�gure, the rule with the highest CF score on Table 9 has been represented

for 5 subfamilies: AMN, HMP, PRS, RHD and TRH. Boxes (�) represent

the location of the motifs as shown on Table 9, and the size of the box is

proportional to the positions that the motif spans within that region. The

initial letter of the subfamily name is placed in the box corresponding to the

motifs of that subfamily. In cases where a rule is composed of two motif

presence conditions, one box is shown for each presence condition.

In summary this thesis has two novel contributions; a powerful classi�ca-

tion technique and a way to predict interaction sites of GPCRs from sequence

information alone.
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Figure 13: Representation of rule conditions on a GPCR snake-diagram.

6 Conclusions and Future Work

In this thesis a technique for GPCR classi�cation through the discovery

of key ligand interaction sites was proposed. The proposed methods were

implemented and tested on real datasets. The results are compared with

the state-of-the-art GPCR classi�cation techniques. Experiments show that

GPCRBind outperforms the state-of-the-art classi�cation techniques.

GPCRBind is planned to be developed by generalizing and applying it to

broader subfamilies of receptors. The only limitation for applying GPCRBind

to other receptors is the necessity of having well-de�ned region information

in the sequence. When a new and more general motif de�nition that can

work with or in the absence of well-de�ned regions is developed, the DPE

step and the remaining part of the algorithm can be directly applied. The

next step is to develop new motif de�nitions to accomplish this.



Subfamily CF Triplet
Presence/
Absence

Region Position

TRH 0.79
JAA 1 ECL2 8,9

AAA 1 ECL3 0,1

PAF 0.88
EED 1 ECL2 0,1,2,4

JEA 1 NTERM 7

LYS 0.83
EIE 1 ECL2 3,4

AKA 1 ECL2 6,8

MEL 0.96
JCK 1 ECL2 1

CEA 0 ECL3 0,1,6

AMN
0.98 HKA 1 ECL1 3,4

0.97 EBA 1 ECL1 1,5,6

HMP 0.98
JAA 1 NTERM 3,4,5

EGA 1 NTERM 3,6,7

NUC
0.94 GJI 1 ECL1 1,2

0.94 EAG 1 ECL2 3

VIR
0.75

JCK 1 ECL2 1

CEA 1 ECL3 0,1,6

0.85 ABC 1 ECL3 3,7,8

PRS 0.94 EHI 1 ECL2 2,3,4

GRH 0.61
DAE 1 ECL1 0

AJI 0 ECL1 7

Table 9: Selected rules for each subfamily.
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DPE algorithm might possibly be improved by substituting alternatives to

the ID3 algorithm. One of the �rst alternatives to ID3 is the J48 algorithm

which is a derivative of C4.5 and generally considered to be an advanced

decision tree induction algorithm. However, within the DPE algorithm, the

main object of using a classi�er is to detect the most distinguishing motif.

Instead of using a decision tree algorithm, another motif evaluation scheme

might be introduced as well. One way to accomplish this is by formulating a

"�tness score" and running an optimization algorithm to increase the �tness

as much as possible. Another alternative is to interpret the motif presence

as a coverage function and �nd the optimal coverage for the training set.

These changes to the DPE algorithm might potentially result in an improved

performance.

To improve the GPCRBind technique, alternative rule extraction meth-

ods can be tested in the future. The Particle Swarm Optimization / Ant

Colony Optimization (PSO/ACO) rule extraction algorithm described in [19]

is an alternative that deserves future testing. The motifs used in the referred

work were picked from other pre-existing resources. It is possible that the

motifs discovered by the DPE algorithm might serve the PSO/ACO algo-

rithm better and therefore result in a higher accuracy.

This thesis contributes a novel motif evaluation metric, MSM, to the

GPCR classi�cation e�ort. MSM can be generalized for use with motifs

from a whole range of domains to evaluate their performance with respect

to a given classi�cation problem. As long as the central dogma of modern

biology (which states that sequence plays a signi�cant role in the function of a

protein) stands, motif extraction/evaluation methods are required. Similarly,
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the DPE algorithm does not simply provide a solution to this particular

problem, but instead it can be applied in many other situations where motif

extraction is required. Therefore this thesis prepares the framework for these

motif extraction/evaluation algorithms to be used in a multitude of other

research projects.

GPCRBind operates on the basis that the extra-cellular regions of the

protein is known. This requires a priori parsing of the sequence to identify

the extra-cellular regions. In the future, it needs to be seen whether if extract-

ing motifs from the other regions of the protein contribute to classi�cation

accuracy. A number of small preliminary experiments done in this direction

have shown decreased classi�cation accuracy, which has led to abandoning

the idea at a rather early stage. However, testing with di�erent combinations

of motifs formed from a wider range of regions and di�erentiated classi�ers

might potentially yield better classi�cation performance.

GPCRBind can easily be adapted as a web-based classi�cation server.

Given a query sequence, TMHMM (or another trans-membrane region pre-

diction tool) is used to identify the trans-membrane helices. If the tool can

correctly identify a 7TM structure, GPCRBind is invoked and classi�cation

is performed. Otherwise, the query sequence is classi�ed as a non-GPCR.

Therefore the GPCRBind technique proposed here holds great potential to

satisfy the need for well-performing GPCR classi�ers.

GPCRBind is a GPCR classi�cation speci�c technique taking into ac-

count domain knowledge while existing classi�cation servers employ very

general classi�cation tools such as SVM or HMM which are designed to clas-

sify any type of data. The existing methods require large training sets to
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successfully learn small-sized subfamilies whereas GPCRBind can e�ectively

learn from a few sequences. Consequently the performance of the other classi-

�ers approach the performance of the proposed technique only for subfamilies

with many sequences. However, from a drug design perspective, the impor-

tance of a subfamily is not always correlated with the number of sequences

within that subfamily. As it takes advantage of problem speci�c information,

GPCRBind is more successful for this classi�cation problem and also more

helpful to biomedical researchers.

The results of the classi�cation of the Amine sub-subfamilies indicates

that the technique is more successful at distinguishing subfamilies. One rea-

son behind this fact is that the ligands of the receptors within the same

subfamily are signi�cantly more similar compared to the ligands of the re-

ceptors in the same family. As the ligands are more similar, it is only natural

to expect that the sites that recruit or bind those ligands are more similar as

well. The sub-subfamily classi�cation problem needs to be studied in greater

detail in order to create a top-down, hierarchical classi�er.

The subfamily characterization produced by this study is very success-

ful in distinguishing members of one subfamily from another � as shown in

Sections 5.2.1 and 5.2.2. The most plausible explanation for variation in

the exo-cellular regions of the sequences in two di�erent subfamilies is the

di�erence dictated by the physico-chemical requirements of binding to their

respective ligands. To illustrate, the exo-cellular variation between peptide

and amine binding GPCR sequences can only be attributed to the di�er-

ent physico-chemical properties required for binding to peptides or amines.

Therefore, the rules that GPCRBind discovers are essentially interaction sites
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between ligands and receptors in a subfamily and the ligand set of that sub-

family. If these sites were not ligand-speci�c then GPCRBind would not

have been able to distinguish members of each subfamily with high accuracy

using these rules. If these sites are indeed ligand-speci�c, given that they

are exo-cellular, there is a very strong chance that they play a major role

in receptor agonism. Since very few GPCR structures are known and very

few ligand receptor binding studies are carried out experimentally, these sites

might help to cope with the di�culty in discovering subfamily-selective drug

candidates to pharmaceutical researchers.
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