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ABSTRACT 

With the increasing speed and decreasing size of microprocessors and microchips the 

sizes of their heat sinks are continuously shrinking from mini size to micro size. The most 

practical and extensively used micro heat sinks are plain microchannels. They find application 

in many areas. 

 

The proposed study aims at filling the gap in single-phase fluid flow and boiling heat 

transfer in microchannels at high mass velocities in the literature. This thesis presents a two-

part study. In both part, fluid flow was investigated over a broad range of mass velocity in a 

microchannel with different inner diameters. De-ionized water was used as working fluid, and 

the test section was heated by Joule heating. The wall temperatures and pressure drops were 

measured and processed to obtain heat transfer coefficients, Nusselt numbers, and friction 
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factors as output. It was found that existing theory for developing flow in conventional scale 

could fairly predict experimental data on developing flows in microscale for both laminar and 

turbulent conditions.  

 

In the second part of the study, boiling heat transfer experiments have been carried out 

for the same microchannel configurations. Heat transfer coefficients and qualities were 

deduced from local temperature measurements. It was found that high heat removal rates can 

be achieved at high flow rates under subcooled boiling conditions. It was observed that heat 

transfer coefficients increase with mass velocity, whereas they decrease with local quality and 

heat flux. Moreover, experimental heat flux data were compared with partial boiling 

correlations and fully developed correlations. 
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ÖZET 

 

 

 Mikroişlemcilerin ve mikroçiplerin hızlarıyla beraber boyutları da küçüldükçe onları 

soğutan ısı alıcıları da mini boyuttan mikro boyuta devamlı olarak küçülmeye başlamıştır. Bu 

mikro ısı alıcılarının en çok kullanılanı düz mikrokanallardır. Düz mikrokanallar birçok 

alanda uygulama alanı bulmaktadırlar. 

 

 Bu çalışma, literatürdeki mikrokanallardaki yüksek akış debilerinde tek-fazlı sıvı akışı 

ve kaynama ısı transferi alanındaki boşluğu doldurmak için yapılmıştır. Bu tez, iki bölümden 

oluşmaktadır. Her iki bölümde de, sıvı akışı farklı iç çapı olan mikrokanallarda geniş bir kütle 

akısı aralığında incelenmiştir. De-ionize su akışkan olarak kullanılmış ve test bölümü 

elektrikle ısıtılmıştır. Duvar sıcaklıkları ve basınç düşüşleri ölçülerek ısı transferi katsayısını, 

Nusselt numaralarını ve sürtünme faktörlerini hesaplamak için kullanılmıştır. Makro boyut 
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için önerilen olgunlaşmakta olan akış teorilerinin hem laminer hem de türbülanslı 

durumlardaki deneysel sonuçları orta seviyede tahmin ettiği görülmüştür.  

 

Çalışmanın ikinci kısmında ise, aynı mikrokanallar için kaynama ısı transferi deneyleri 

yapılmıştır. Isı transferi katsayısı ve kütle kalitesi lokal sıcaklık verilerinden ve deneysel 

koşullardan elde edilmiştir. Aşırı soğutulmuş kaynama şartlarında yüksek akış debilerinde 

yüksek soğutmanın elde edilebileceği görülmüştür. Ayrıca, ısı transfer katsayısının kütle 

akısıyla beraber arttığı, lokal kütle kalitesi ve ısı akısıyla beraber azaldığı gözlemlenmiştir. 

Bununla birlikte deneysel olarak elde edilen ısı akısı verileri kısmi kaynama ve olgunlaşmış 

aşırı soğutulmuş kaynama korelasyonları ile karşılaştırılmıştır. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Brief Introduction to Microchannels 

 

Since Richard Feynman’s motivating speech “There’s Plenty of Room at the 

Bottom” [1] the world has witnessed in its history the most rapid development in 

technology. Electronic devices have been aggressively miniaturized, so that 

microelectronics became the most significant technology of the last century. Until 

recently, the development of non-electronic devices miniaturization remained behind 

the miniaturization trend in microelectronics. In the 1970s, silicon technology has lead 

to the fabrication of non-electronic microdevices [2]. This improvement introduced us 

with MEMS devices which are known as microelectromechanical systems. The research 

on microchannel cooling originated from the early work of Tuckerman [3], in the 1980s. 

Extensive literature reviews on heat and fluid flow in microchannels are now available 

in the literature. 

 

 

Figure 1.1: Size characteristics of microchannel devices [4] 

 



2 
 

With the increasing speed and decreasing size of microprocessors and microchips, 

high heat transfer rates are urgently needed for various applications which attracted the 

attention of many researchers. Some of the approaches developed over the past decade 

include the incorporation of densely packed fins [5-6], plate fin surfaces [7], and micro 

pin-fins in single phase [8-9] and two-phase applications [10]. Recent developments in 

electronic and integrated circuit technology created a need for higher heat dissipation 

rates in small sizes. Reducing hydraulic diameters provides a larger surface area per unit 

volume for a given fluid flow through the channel. However reducing dimensions in 

order of micrometers in microchannels introduced numerous problems such as high 

pressure drops, complexity in design, manufacturing and flow instabilities [11-13]. To 

solve the above issues and convert microchannels into effective heat sinks, some basic 

issues need to be considered such as cost-effective manufacturing processes, reliable 

operation, and outstanding thermal and hydraulic performance characteristics for given 

fluid flow conditions.  

 

1.2 Potential Applications 

 

As mentioned above, with the increasing needs in current microelectromechanical 

devices, heat sinks are continuously shrinking from mini size to micro size. The most 

extensively used and practical micro heat sinks are plain microchannels, which find 

applications in many areas such as in microreactors, fuel cells, drug delivery, 

micropropulsion, and automotive industry besides electronics cooling. Because of their 

widespread usage, they attracted the attention of many researchers, which gave rise to 

many studies on single-phase as well as on flow boiling. Single-phase and two-phase 

heat transfers have been considered as an important heat removal mechanism for 

cooling applications in micro scale and were proposed as prominent thermal 

management solution. New emerging technologies resulting in local heating such as 

nano-scale plasmonic applications [14-16] and near field radiative energy exchange 

between objects [17-20] could greatly benefit from single- phase and two-phase heat 

transfer at high flow rates in micro/nano-scale.  
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Figure 1.2: Drug delivery test section [21] 

 

As seen in Fig. 1.2, microchannels are also widely used in drug delivery 

applications. Current efforts in the area of drug delivery include the development of 

targeted delivery, in which the drug is only active in the target area of the body [22]. 

Cancerous tissues would be great application for this situation.  

Another major industrial success is the invention of MEMS usage for inkjet 

printer heads in the 1990s [22]. (Fig. 1.3) The printer head consists of microfabricated 

silicon structure, which serves as an ink storage, a heating element to put the fluid in 

motion, and a nozzle. The fluid is pushed through the nozzle due to the formation of a 

bubble near the heating element. This bubble is generated by the vaporization of the ink. 

The bubble propels the fluid towards the exterior, forming a jet that destabilizes under 

the action of capillary forces. Droplets created in this way have a size similar to that of 

the nozzle diameter, which is generally on the order of magnitude 50 μm. These 

droplets strike the paper, forming the basic spot. Smaller satellite droplets also exist, 

and form a sort of procession accompanying the principal drop. 
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Figure 1.3: A printer head of a inkjet made using MEMS technology [22] 

 

MEMS had been used for airbags activation during the years [22]. (Fig. 1.4) It 

consists of an integrated system on silicon, which can incorporate both electronic parts 

and electromechanical parts to detect physical impact. This detection part is in the order 

of hundred micrometers large and is located in the middle of the chip.  

 

 

Figure 1.4: Device for the detection and command of airbag activation, based on 

MEMS technology [23] 
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As indicated previously, microchannels have numerous applications in the current 

research and industry. Possible applications are summarized in Table 1.1.  

 

Table 1.1: A list of applications of microchannels [22] 

 

Nowadays, the market for MEMS technology is estimated to be worth of several 

tens of billions of dollars [22]. In USA, there existed 1.6 MEMS per person in 2000 on 

average, and this number is now estimated to be 4 MEMS per person. Today, numerous 

industries are involved in MEMS technology as shown in Table 1.2. This table is 

supplied by DARPA group, which consists of 22 companies involved in the field of 

MEMS (essentially in the United States). The numbers were released in its 2001 annual 

report [22]. 

Industry Application 

Pharmaceutics Drug discovery, drug testing, process quality control 

Medical Drug delivery, in vivo diagnostics 

Diagnostics (IVD) Point of care analysis, total analysis systems 

Food Industry Food diagnostics, packaging (smart sensors), functional food testing 

Biotechnology DNA chips, protein chips, cell chips 

Chemistry  Lab-on-a-chip concept, microreaction 

Process Industry Process control, profile measurements (arrays of sensors), on-line 

measurements 

Environmental Soil (also agriculture), water and air quality measurements 

Automobile Industry Fuel Injection, oil quality monitoring, exhaust gas analysis 

Consumer 

Electronics 

Ink-jet printers, local cooling of electronics 



6 
 

Table 1.2: Markets of the MEMS [22] 

 

 

1.3 Microfabrication of Microchannels  

 

This section provides brief information about microfabrication of microchannels. 

The material selection and microfabrication of microchannel devices is important due to 

their wide thermal and industrial applications. To provide a succesfull microfabrication 

process flow, parameters should be carefully considered such as material substrate, 

wafer selection, and selecting appropriate microfabrication technique. With the 

increasing significance of MEMS technology, polymers have been used more widely 

than glass materials in microfabrication of microchannels. Silicon is the most preferred 

material as a substrate. Other materials can be also used as substrate such as metals, 

copper, steel, quartz, sapphires, and polymers. While deciding on the substrate material 

checking machinability and compatibility for metal deposition is also essential in 

addition to the cost of the substrate material. For example, silicon has a high cost but its 

machinability and compatibility for metal deposition is very good. On the other hand, 

plastic has a low cost but its machinability and compatibility for metal deposition is 

poor. A comparison for some substrate materials is given in Table 1.3. 

Technological Field Market 2003 ($ Millions) 

Inertial measurements 700-1400 

Microfluidics and chemical 

testing/processing 

3000-4450 

Optical MEMS (MOEMS) 450-950 

Pressure Measurement 1100-2150 

RF Technology 40-120 

Other 1230-2470 
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Table 1.3: Substrate materials comparison [4] 

Substrate material Cost Compatibility for metal 

deposition 

Machinability 

Silicon High Good Very good 

Plastic Low Poor Poor 

Ceramic Medium Fair Poor 

Glass Low Good Poor 

 

Another crucial point is wafer cleaning, which should be performed before the 

substrate deposition to the wafer. The cleaning process is called RCA (Radio 

Corporation of America) cleaning, which operates at high temperatures and consists of 

chemical processes such as oxidation and chemical vapor deposition.  RCA cleaning 

process steps can be defined briefly as below: 

 Firstly, all organic coatings should be removed in strong oxidants. 

(Generally mixture of concentrated sulfuric acid and hydrogen peroxide is 

used.) 

 Organic residues should be removed from the wafer. 

 Finally, thin oxide layers and ionic contaminants should be removed 

carefully. 

Generally typical IC fabrication processes and particular micromachining 

processes have been developed for microsystems applications. Main fabrication 

processes are oxidation, lithography, etching, EDM, and PDMS Molding methods. In 

the following subsections these methods will be briefly introduced.  
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1.3.1 Oxidation 

 

As mentioned before, silicon is one of the most preferred materials for substrate 

selection. The interface between Si and silicon dioxide is very good. In this process, 

oxide is needed to form barrier for diffusion, to form insulating film, to separate 

different levels, and to isolate device. There are two types of oxidation: Dry Oxidation, 

Wet Oxidation. Wet oxidation is faster than dry oxidation. The reason of this solid 

solubility of (OH) in SiO2 surface is several orders of magnitude higher than that of O2, 

and the diffusion rate of (OH) in SiO2 is higher because (OH) is smaller compared to O2 

molecule. 

 

1.3.2 Lithography 

 

Lithography is the process of transferring patterns of geometric shapes on a mask 

to a thin layer of photosensitive material covering the wafer. The whole process must be 

carried out in an ultra-clean condition (in a clean room). Firstly, patterns are transferred 

to an imagable photoresist layer. Photoresist is a liquid film that can be spread out onto 

a substrate, exposed with a desired pattern, and developed into a selectively placed layer 

for subsequent processing. Overview of the photolithography process is summarized 

below: 

 Surface Preparation 

 Coating 

 Pre-Bake 

 Alignment 

 Exposure 

 Development 

 Post-Bake 

 Processing Using the photoresist as masking film 

 Stripping 

 Post Processing Cleaning (Ashing) 
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1.3.3 Etching 

 

Etching is the process of transferring the image in mask and photoresist to 

underlying layer. It removes surface damage after mechanical polishing. This process 

also helps to show and identify crystal defects. Below parameters should be considered 

during the process. 

 Etch rate 

 Etch rate reproducibility 

 Etch rate uniformity 

 Selectivity (ratio of etch rate of required material over others) 

 Surface damage, safety 

 Etch anisotropy 

 

a) Wet Etching 

 

Wet etching is the purely chemical which has lack of anisotropy but highly 

selective process. It results less damage compared to plasma etching. However, process 

control in wet etching is poor for dimensions < 2μm. Due to surface tension, deep 

trenches are difficult to etch. It is easy process since requires less expensive equipments. 

 

b) Dry Etching 

 

Dry etching minimizes most of the wet etching problems such as reaching deep 

trenches and etching for dimensions < 2μm. In addition, process control can be better 

achieved. It is less sensitive to small changes in temperature. In dry etching, both 

chemical and physical processes take place.  

 

c) RIE (Reactive Ion Etching) 

 

In RIE, the substrate is placed inside a reactor in which several gases are 

introduced. Plasma is struck in the gas mixture using an RF power source, breaking the 

gas molecules into ions. The resulting ions are accelerated, and react at the surface of 

the material which is being etched. This is known as the chemical part of reactive ion 
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etching. There is also a physical part which is similar in nature to the sputtering 

deposition process. If the ions have high enough energy, they can knock atoms out of 

the material to be etched without a chemical reaction. 

 

d) DRIE (Deep Reactive Ion Etching) 

 

A special subclass of RIE which continues to grow rapidly in popularity is deep 

RIE (DRIE). In this process, etch depths of hundreds of microns can be achieved with 

almost vertical sidewalls. Two different gas compositions are alternated in the reactor. 

The first gas composition creates a polymer on the surface of the substrate, and the 

second gas composition etches the substrate. The polymer is immediately sputtered 

away by the physical part of the etching, but only on the horizontal surfaces and not the 

sidewalls. Since the polymer only dissolves very slowly in the chemical part of the 

etching, it builds up on the sidewalls and protects them from etching. 

Etching aspect ratios of 50 to 100 can be achieved. The process can easily be used 

to etch completely through as silicon substrate and etch rates are 3-4 times higher than 

wet etching. It provides high silicon etching rates, good profile control, high selectivity 

to masking material, and tolerable nonuniformity.    

 

1.3.4 EDM 

 

EDM (Electrical Discharge Machining) is a microfabrication process for 

microchannels and micro heat sinks. Material is removed from the work piece by series 

of rapidly recurring current discharges between the two electrodes, separated by a 

dielectric liquid and subject to an electric voltage. When the distance between the two 

electrodes is reduced, the intensity of the electric field in the volume between the 

electrodes becomes greater than the strength of the dielectric, which allows current to 

flow between the two electrodes. EDM is generally used for precise cutting in 

microchannel technology.  
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Figure 1.5: EDM Machine [24] 

 

1.3.5 PDMS Molding 

 

Polymethylsiloxan (PDMS) is a material that is optically clear and generally 

considered to be inert, non-toxic, and non flammable. PDMS molding process is 

mixing, degasing, and casting PDMS onto a mold. Generally 10:1 mixture of PDMS 

pre-polymer and a curing agent cast or spin-coated sputtered onto master molds. A 

weight or clamps (sandwich mold) used for minimizing the PDMS layer on top of 

master molds. Vacuum pump is used to remove air bubbles from the system. Main 

advantages of PDMS molding method are: 

 

 There is no need of expensive equipment such as injection molding and 

hot embossing machines for polymer replication. 

 Low temperatures (~65 ̊C) operation is available for curing PDMS.  
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1.4 Objectives and Major Challenges of This Work 

 

The proposed study involves two parts, which are namely single-phase flow and 

boiling heat transfer in microchannels at high flow rates. Single-phase flow part aims at 

filling the gap in heat and fluid flow in microchannels at high mass velocities in the 

literature. For this purpose, it is intended to investigate single-phase fluid (de-ionized 

water) flow over a broad range of mass velocity (1300 kg/m
2
s-7200 kg/m

2
s) in 

microtubes with inner diameters of ~ 250 µm and ~ 685 µm. Besides comparing the 

experimental results in fully developed flow to the theory, the focus of this study is on 

thermally developing flows. It is aimed at measuring wall temperatures, pressure drops 

and processing to obtain heat transfer coefficients, Nusselt numbers and friction factors.  

In boiling heat transfer part of the study, the emphasis is on again high mass 

fluxes unlike in the literature. Thus, the current study addresses the lack of information 

about boiling heat transfer at high flow rates and aims at presenting necessary 

experimental data. For this, an experimental study was conducted at high flow rates in 

the same microtubes configuration as in the case of single-phase flow part. Mass flux 

was changed from 1000 kg/m
2
s to 7500 kg/m

2
s, and two phase heat transfer coefficients 

and mass qualities were deduced from local temperature measurements. The effect of 

mass velocity and quality on boiling heat transfer coefficient was investigated.   

To meet the objectives presented above the following research plan was 

implemented: 

 Preparation of a leak-proof experimental setup.  

 Integration of tested microtubes to the experimental setup. 

 Integration of pressure and thermal sensors into the experimental setup at 

desired locations. 

 Installation of Data Acquisition system. 

 Development of data acquisition program by using Labview® software. 

 Acquiring pressure and temperature data from the system at the desired 

experimental conditions. 

 Reduction of experimental data into single-phase heat transfer coefficients, 

Nusselt numbers, friction factors, two-phase heat transfer coefficients, and local 

qualities. 
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 Comparison of single-phase heat transfer coefficients with existing theory for 

fully developed and thermally developing conditions. 

 Comparison of two-phase heat transfer coefficients with correlations and theory 

for subcooled flow boiling conditions and partial flow boiling conditions.  

 

1.4.1 Literature Survey for Single-Phase Flow Part 

 

Many experimental studies on microchannels related to the laminar flow [25-27], 

laminar to turbulent transition [28-38], and turbulent flow [39-42] are present in the 

literature. 

 

 Owhaib et al. [26] experimentally investigated heat transfer characteristics of R 

134a through circular microchannels of 1.7, 1.2 and 0.8 mm inner diameters. They 

compared the results to both the correlations for the heat transfer in macroscale channels 

and the correlations suggested for microscale geometries. The results showed a good 

agreement between the classical correlations and the experimental data in the turbulent 

region. However, none of the correlations suggested for microchannels agreed with the 

experimental data. In addition to that, they observed that, the heat transfer coefficients 

were almost identical for three diameters in the laminar regime 

 

Hrnjak et al. [27] focused on investigating fully developed liquid and vapor flow 

through rectangular microchannels with hydraulic diameters varying from 68.5 to 304.7 

μm and with aspect ratios changing from 0.09 to 0.24. They used liquid and vapor R 

134a as the testing fluid. During the experiments, they varied Reynolds number from 

112 to 9180. They used pressure drop data to find the friction factors in the laminar 

region, the transition region, and the turbulent region. They concluded that there is no 

indication of deviation from the existing theory for microchannels.  

 

Morini [30] presented a review on convective heat transfer in microchannels. He 

analyzed the main experimental results on convective flow in microchannels with 

regard to the predictive correlations of the existing friction factors, the laminar- to- 

turbulent transition, and the Nusselt numbers. He showed that a chronological decrease 



14 
 

in the observed deviations is related to the increase of the reliability/accuracy of the 

recent experimental data.  

 

Celata et al. [61] performed an experimental analysis of the friction factor in a 

capillary tube having a diameter of 130 μm by using R 114 as the test fluid. They 

observed the behavior of the laminar-to-turbulent transition for Reynolds numbers 

ranging between 100 and 8000. Experiments indicate that in the laminar flow regime 

the friction factors are in good agreement with the conventional theory.  

 

Morini [33] showed that many experimental results on the laminar-to-turbulent 

transition in microchannels can be explained by using “Obot-Jones model”, which is 

obtained by means of the conventional theory for large size channels. He represented 

that “Obot-Jones” model helps to understand the role of the cross-section geometry and 

of the wall roughness on the transition from laminar to turbulent flow through micro-

channels. Also even if “Obot-Jones” model is valid for large size channels, he compared 

the model to the experimental data. The results showed that the model is suitable for 

micro-channels with a hydraulic diameter greater than 40 μm for predicting the laminar-

to-turbulent flow transition.  

 

Rands et al. [38] conducted an experimental study characterizing the laminar-

turbulent transition for water flow in circular microtubes. They employed microtubes 

with diameters in the range of 16.6-32.2 μm over Reynolds numbers 300-3400. They 

used two independent approaches to identify the transition from laminar to turbulent 

flow. The first method was determining the transition where friction factor times 

Reynolds number deviated from the value of 64. The other method was the relations 

among Reynold number, length, diameter of the tube and Eckert number, which based 

on the mean temperature rise. They claimed that both methods showed the transition to 

occur in the Reynolds number range between 2100-2500, which is consistent with 

macroscale tube flow behavior.  

 

Lorenzini et al. [28] investigated the compressible flow of nitrogen inside circular 

microchannels of diameters between 26 μm to 508 μm and of different surface 

roughness for the laminar, transitional, and turbulent flow conditions. They looked at 

5000 experimental data. Their data confirmed that in the laminar regime the agreement 
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with the conventional theory was very good in terms of friction factors for both rough 

and smooth microtubes. They found that the transitional regime started at Reynolds 

numbers no smaller than 1800.  

 

Hetsroni et al. [31] showed that the behavior of the flow in micro-channels, at 

least down to 50 μm diameters, has no differences with the macro-scale flow. For 

smooth and rough microchannels the transition from laminar to turbulent flow occurred 

between 1800< Rcr<2200, which was supported by flow visualization and flow 

resistance data. These studies indicate that the existing theory could provide reasonable 

predictions for microscale laminar and turbulent flows, while the agreement between 

the theory and experimental results was not very good for laminar-turbulent flow 

transition.  

 

There are a few experimental studies present in the literature related to single-

phase thermally developing flows in microchannels [32,35, 43-44], because high 

pressures are typically needed for having thermally developing flows. Thus, high flow 

rates should be attained to see significant developing effects in microchannels.  

 

Shen et al. [43] conducted experiments to investigate single phase convective heat 

transfer in a compact heat sink consisting of 26 rectangular microchannels with 

dimensions of 300 μm in width and 800 μm in depths. They performed tests over 

Reynolds number range of 162-1257, the inlet liquid temperatures of 30, 50, and 70 ̊C, 

and the heating powers of 140-450 W. They found that the friction factors and local and 

average Nusselt numbers significantly departed from those of conventional theories. 

Additionally, they observed that the hydraulically developed but thermally developing 

flows have a decreasing Nusselt number trend with the non-dimensional axial distance.  

 

Mishan et al. [44] performed an experimental study in microchannels of Dh = 440 

μm and used water as working fluid. Their experimental results about pressure drop and 

heat transfer confirmed that the conventional theory was applicable for water flow 

through microchannels if entrance effects are included.  

 

With the change in bulk fluid temperature at high flow rates, the flow may also 

become turbulent at a certain location downstream the inlet of the channel as a 
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consequence of fluid property changes. Particularly for short microchannels, developing 

effects could be sensed at high flow rates and the resulting increased heat transfer 

characteristics could be greatly exploited in many applications. The present study is 

aimed to fill the lack of information about single phase flow under these conditions in 

micro scale. Moreover, with the enhancement in micropumping capabilities, single 

phase flow could be performed at higher mass velocities so that the gap in this area 

could be filled with new studies. To investigate single phase flow at high flow rates in 

micro scale, an experimental study was conducted at high flow rates in micro tubes with 

a inner diameter of 250 micrometer and 685 micrometer. De-ionized water was used as 

working fluid, and the test section was heated by Joule heating. Mass flux was changed 

from 1300 kg/m
2
s to 7200 kg/m

2
s, and heat transfer coefficients were deduced from 

local temperature measurements.  

 

1.4.2 Literature Survey for Boiling Heat Transfer Part 

 

Boiling heat transfer has been considered as an important heat removal 

mechanism for cooling applications in micro scale and was proposed as a prominent 

thermal management solution. Many studies were conducted to shed light on boiling 

heat transfer in microchannels [45-58].  

Kosar et al. [45] investigated flow boiling of water in microchannels with a 

hydraulic diameter of 227 μm possessing 7.5 μm wide reentrant cavities on the side 

walls. They obtained average two-phase heat transfer coefficients and CHF conditions 

over a range of heat fluxes (28-445 W/cm
2
) and mass velocities (41-302 kg/m

2
s). They 

found that high boiling numbers and Reynolds numbers to promoted convective boiling, 

while nucleate boiling dominated at low Reynolds numbers and Boiling numbers. They 

also provided a criterion for the transition between nucleate and convective boiling. 

They showed that existing correlations did not provide satisfactory agreement with heat 

transfer coefficients but did predict CHF well.  

Huh et al. [46] used a rectangular microchannel (Dh=103.5 μm and 133 μm) to 

perform an experimental study. They studied experimental local boiling heat transfer 

coefficients, bubble inception, growth, and departure. They performed the tests at mass 

fluxes of 77.5, 154.9, and 309.8 kg/m
2
s and heat fluxes of 180-500 kW/m

2
. They 



17 
 

observed that in the middle of the test channel nucleate boiling was the dominant heat 

transfer mechanism. They also observed periodic oscillations of pressure drop 

particularly at higher mass and heat fluxes.  

Lee et al. [47] studied microchannels of different widths (from 102 μm to 997 μm) 

and of channel depth of 400 μm. They pointed that experimental results allow a critical 

assessment of the applicability of existing models and correlations in predicting the heat 

transfer rates and pressure drops in microchannel arrays, and lead to the development of 

models for predicting the two-phase pressure drop and saturated boiling heat transfer 

coefficient.  The common feature of the performed research is focused on saturated flow 

boiling at low mass velocities (G<1000 kg/m
2
s).  Critical heat flux and boiling 

instabilities imposed limitation to the extension of micro scale cooling capabilities to 

higher heat fluxes [49, 50].  

Wang et al. [49] carried out a study to investigate stable and unstable flow boiling 

phenomena in a single microchannel having a hydraulic diameter of 155 μm. They 

identified stable and unstable flow boiling modes, and flow pattern maps in terms of 

heat flux, mass flux, and exit vapor quality. They found that unstable flow boiling 

occurred in the single microchannel if the exit vapors quality xe >0.013.  

Bogojevic et al. [50] carried out an experimental study on boiling instabilities in a 

microchannel silicon heat sink with 40 parallel rectangular microchannels, having a 

length of 15 mm and a hydraulic diameter of 194 μm. They observed that boiling lead to 

asymmetrical flow distribution within microchannels that resulted in high temperature 

non-uniformity and the simultaneously existence of different flow regimes along the 

transverse direction. They observed two types of two-phase flow instabilities with 

appreciable pressure and temperature fluctuations, which depended on the heat to mass 

flux ratio and inlet water temperature. These two types of two-phase flow instabilities 

were named as high amplitude/low frequency (HALF) and low amplitude/high 

frequency (LAHF). They also observed that the inlet water subcooling condition 

affected the magnitudes of the temperature oscillations in two-phase flow instabilities 

and flow distribution within the microchannels.  

Kosar et al. [13] investigated flow boiling under unstable boiling conditions in 

three different micro-fin pin heat sinks using water and R-123 as working fluids. They 

used the flow images and FFT (Fast Fourier Transformation) of pressure signals to 
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explain experimental results. They observed that no significant pressure fluctuations 

with respect to time averaged pressure drop were evident for the tested micro-pin fin 

heat sinks before and after flow boiling instability initiates. They recorded a step change 

in the pressure signals with the inception of unstable boiling. A sharp increase in the 

magnitude peaks of the FFT profiles was observed in the device operated with R-123, 

while there was no significant change in the FFT profiles in the devices operated with 

water.  

Due to the increasing trend in critical heat flux and suppression of boiling 

instabilities with increasing mass velocity flow boiling is becoming more and more 

attractive at higher mass velocities, where subcooled boiling conditions are expected at 

high mass velocities. Thus, with the shift from low to high flow rates, a transition in 

both boiling heat transfer (saturated boiling heat transfer to subcooling boiling heat 

transfer) and critical heat flux (dryout type critical heat flux to departure from nucleate 

boiling critical heat flux) from one mechanism to another is likely to occur [51]. 

However, CHF (Critical Heat Flux) is a mechanism that should be paid attention 

is subcooled flow boiling. There exist some prediction tools in the literature [52-55]. 

Lee et al. [54] measured and examined CHF for subcooled flow boiling in mini/micro-

channel heat sinks using HFE 7100 as working fluid. They achieved high subcooling by 

pre-cooling the working fluid. They observed high subcooling was reduced by both 

bubble departure diameter and void fraction beyond the bubbly regime. They also 

showed that CHF was triggered by vapor blanket formation along the micro-channel 

walls. They developed a systematic technique to modify existing CHF correlations to 

more accurately account for features unique to mini/micro-channel heat sinks. Their 

technique was shown to be successful at correlating micro-channel heat sink data 

corresponding to different hydraulic diameters, mass velocities and inlet temperatures. 

Few experimental studies are present in the literature related to flow boiling in 

mini/micro scale at high flow rates and under subcooled flow boiling conditions [56-

58]. Haynes et al. [57] examined subcooled flow boiling heat transfer coefficients with 

tube diameters of 0.92 and 1.95mm. The corresponding heat and mass fluxes were 11-

170 kW m
-2

 and 110-1840 kg m
-2

 s
-1

,
 
respectively. Their Reynolds number range was 

between 450 and 12000. They showed that the data in the subcooled and saturated 
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regions are well presented by the simple superposition of convective and nucleate 

boiling heat transfer mechanisms.  

Callizo et al. [58] experimentally investigated subcooled flow boiling heat transfer 

for refrigerant R-134a in vertical cylindrical tubes with 0.83, 1.22, and 1.70mm internal 

diameter. They explored the effects of the heat flux, mass flux, inlet subcooling, 

pressure, and channel diameter on the subcooled boiling heat transfer. They concluded 

that an increase in the mass flux leads (for early subcooled boiling) to an increase in the 

heat transfer coefficient.  

The literature about subcooled and low quality flow boiling is already present and 

contains some prediction tools in macro scale [51, 59-60]. However, since scaling laws 

are not applicable to two-phase and boiling flows [59], there exists a lack of data and 

information about flow boiling under subcooled boiling and high flow rate conditions in 

microscale. This thesis addresses to fill the gap in flow boiling under these conditions in 

micro scale. Moreover, with the enhancement in micropumping capabilities, flow 

boiling could be performed at higher mass velocities so that high cooling rates (>1000 

W/cm
2
) could be attained.  

To investigate flow boiling at high flow rates and under subcooled conditions in 

micro scale, an experimental study was conducted at high flow rates in micro tubes. The 

microtube sizes were used as approximately 250μm and 685μm inner diameters. 

Deionized water was used as working fluid, and the test section was heated by Joule 

heating. Mass flux was changed from 1000 kg/m
2
s to 7500 kg/m

2
s, and heat transfer 

coefficients were deduced from local temperature measurements. The effects of mass 

velocity and quality on boiling heat transfer coefficients were investigated.  In addition, 

the potential of reaching high cooling rates was also verified.   
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CHAPTER 2 

 

EXPERIMENTAL TEST SETUP AND PROCEDURE 

 

2.1 Experimental Test Setup 

 

The experimental setup consists of the test section, a storage cylinder, an Omega® 

flow meters, pressure sensors and proper tubing, and fittings. Two alligator clips, each 3 

mm wide, were attached to the heated length on the microtube surface. They were 

installed with a prescribed distance (heated length) from each other and were connected 

to a high current power supply with an adjustable DC current and high power input to 

provide Joule Heating to the 14.88cm long microtubes of ~ 254µm and ~ 685µm inner 

diameters. The heated length was adjusted to 5.65 cm.  

 

    

Figure 2.1: Schematic Experimental Test Setup 
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The sealing between the microtube and the experimental loop was accomplished 

by Conax® packing glands consisting of a gland body and a sealant. The microtube was 

connected to the experimental loop from one side, whereas the other end was exposed to 

the atmosphere to ensure atmospheric conditions at the exit. To measure local 

temperatures, three thin Omega® thermocouple wires (~ 76 μm thick) was carefully 

installed to microtube surface at desired locations using Omega® Bond. Thermocouples 

were located at xth1 = 1.82 cm, xth2 = 3.32 cm, and xth3 = 4.82cm over the heated length 

of 5.65cm.  

 

Figure 2.2: Test Section Scheme 

One additional Omega® thermocouple was installed to upstream the inlet of the 

microtube to monitor the bulk temperatures at the inlet. Inlet pressures were measured 

via Omega® pressure transducers with a 0 to 100 psi gauge pressure range. Flow rate 

data was obtained together with the voltage, current, and wall/fluid temperetaures, 

which were acquired through a LabView® interface with time and were transferred to a 

spreedsheat file for data reduction. 
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2.2 Experimental Procedure 

 

The de-ionized water flow rate was fixed at the desired value by adjusting the 

pressure difference between the inlet and exit. It was made sure that temperatures and 

pressure values obtained from the Labview® interface did not significantly change with 

time so that experiments could be conducted after steady flow conditions were reached.  

For the diabatic tests, the power was increased in ~0.3 Ampere increments. The 

current/voltage, inlet pressures and wall temperatures were acquired by acquisition rates 

of 100 data/s and were averaged over time once steady state was reached. This 

procedure was repeated for different flow rates.  

To estimate small heat losses, electrical power was applied to the test section 

before any fluid flow and experiment. The temperature difference between the ambient 

and the test section was recorded along with the corresponding power at steady state so 

that the power could be found as a function of surface temperature to calculate the heat 

loss (𝑄𝑙𝑜𝑠𝑠
 ) associated with each experimental data point.  

 

2.3 Data Reduction 

 

In this section, equations and correlations which were used to reduce experimental 

data to the analytical results will be introduced. The data obtained from the voltage, 

current, flow rate, temperature, and pressure measurements were used to obtain the 

friction factors, single-phase heat transfer coefficients, Nusselt numbers, two-phase heat 

transfer coefficients, and local qualities. 

The friction factor, f is obtained from adiabatic tests and is given by: 

2

2 i fd P
f

LG


                                                               (2.1) 

where di is inner diameter of the channel, ∆P is pressure drop, ρf is density of the 

working fluid, L is length of the channel, and G is mass velocity. Using the above 
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expression, f was evaluated for various mass velocities so that the change in f with 

Reynolds number was obtained. Reynolds number was expressed as: 

Re iGd


                                                                           (2.2) 

where  di is inner diameter of the channel, G is mass velocity, and μ is viscosity of 

the fluid. 

.

c

m
G

A
                                                                                                         (2.3) 

where 𝑚  is mass flow rate, and Ac is cross sectional area of the channel. For 

diabatic tests, the electrical input power and resistance were calculated using the 

measured voltage and current values. Assuming 1-D steady state heat conduction with 

uniform heat generation, the local inner surface temperature of the microchannel, Tw,i is 

expressed in terms of the measured local outer surface temperature, Tw,o as: 

. .
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                                                       (2.4) 

where kw is heat thermal conductivity of the wall, ro is outer radius of the channel, 

ri is inner radius of the channel, and 𝑞  is the volumetric heat generation and expressed 

as a function of net power, inner channel radius, outer channel radius, and heated length 

as: 

..

2 2

( )

( )

loss

o i h

P Q
q

r r L





                                                                                        (2.5) 

For single-phase flow, the single-phase heat transfer coefficient is obtained using 

the inner wall temperature and the net power: 
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                                                       (2.6) 

where P is electrical power, 𝑄 𝑙𝑜𝑠𝑠  is heat loss, xth is location of thermocouple, Tw,i 

is inner wall temperature, Tf is fluid temperature, Lh is heated length, and As is inner 

surface area which is expressed as: 
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s i hA d L                                                                   (2.7) 

where di is channel inner diameter, and Lh is heated length. Fluid temperatures are 

deduced from energy balance: 
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                                                                                  (2.8) 

where Ti is inlet temperature, P is electrical power, 𝑄 𝑙𝑜𝑠𝑠  is heat loss, xth is 

location of thermocouple, 𝑚  is mass flow rate, cp is specific heat, and Lh is heated 

length. The Nusselt number is calculated using the average heat transfer coefficient 

obtained from Eq. (2.6) as: 

sp i

f

h d
Nu

k
                                                                   (2.9) 

where hsp is single-phase heat transfer coefficient, di is inner diameter of the 

channel, and kf is thermal conductivity of the fluid. EES® Software is used to reduce 

the experimental data to the desired above mentioned parameters in the current study. 

Since fluid flows should be mostly considered as thermally developing flows under the 

conditions of the present study thermally developing flow correlations, which were 

proposed by Shah and London [62] for laminar flows, are suitable to be used for the 

comparison with the experimental data. Thus, they could be used for predicting the 

experimental data (under laminar conditions):  

1/3 * 1/3

, 1 0.517( .Re) ( )x HNu f x                                                                    (2.10) 

1/3 * 1/3

, 1 0.775( .Re) ( )m HNu f x                                                (2.11) 

where f is friction factor and x* can be defined as follow; 

*

RePrh

x
x

D
                                                                                              (2.12) 

where x is developing length and Dh is hydraulic diameter of the channel. For 

turbulent flows, the following correlations, which have been proposed by Bhatti and 

Shah [62], have been used for thermally developing flows: 
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where Nux is thermally developing Nusselt number depending on x, Num is mean 

thermally developing Nusselt number, x is developing length, Dh is hydraulic diameter, 

and Nu∞ is fully developed Nusselt number. The factor C6 can be calculated as follow; 

0.1

6 1 0.81
6

( )
3000

(0.68 )
RePr

h

x

D
C                                                                           (2.15) 

 

where x is developing length, Dh is hydraulic diameter. Nu∞ in the above 

equations is the fully developed Nusselt number for thermally developing flows [62] 

and is expressed as: 

0.8 0.40.024(Re )PrNu                                                                               (2.16) 

For boiling conditions, the two-phase heat transfer coefficient was obtained using 

the inner wall temperature and the net power: 
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                                                                                (2.17) 

where htp is two-phase heat transfer coefficient, P is electrical power, 𝑄 𝑙𝑜𝑠𝑠  is heat 

loss, di is inner diameter of the channel, Lh is heated length, Tw,i is inner wall 

temperature, and Tsat is saturation temperature. Local quality was deduced based on 

energy balance: 
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where P is electrical power, 𝑄 𝑙𝑜𝑠𝑠  is heat loss, xth is thermocouple location, 𝑚  is 

mass flow rate, cp is specific heat, Tsat is saturation temperature, Ti is inlet temperature, 

and hFG is latent heat of vaporization. Some subcooled flow boiling correlations are 

present in the literature. Kandlikar et al. [60] proposed following correlations for 

subcooled flow boiling, where 𝑞𝑤
"  is in MW/m

2
 and ∆Tsat is in K.  

" 0.7 3.33[1058( ) ( )]w FG fl LO w satq Gh F H T T                                                   (2.19) 

where G is mass flux, hFG is latent heat of vaporization, Tw is wall temperature, 

Tsat is saturation temperature, and Ffl is fluid – surface parameter that can be used 1 for 

any fluid with stainless steel. To calculate HLO, Gnielinski [60] correlation, which is 

applicable over the range 0.5<Prl<2000 and 2300<ReLO<10
4
,
 
can be used: 
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                                             (2.20) 

while the correlation of Petukhov and Popov [60] can also be used for the ranges 

of  0.5<Prl<2000 and 10
4
<ReLO<5x10

6
: 
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                                             (2.21) 

where f can be calculated as follow: 

2(1.58ln(Re ) 3.28)LOf                                                                         (2.22) 

By using equations 2.19, 2.20, 2.21, and 2.22, HLO can be calculated using the 

following equation: 
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Bergles et al. [60] proposed the following correlation for the heat flux in partial 

boiling: 

" "
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                                                       (2.24) 
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where q”FC is the forced convection heat flux, and found using equation 2.25 with 

HLO representing the single-phase liquid forced convection heat transfer coefficient. The 

parameter q”SB is the subcooled boiling correlation, which can be found from equation 

2.19. q”ONB is the onset of nucleate boiling which is expressed as: 

"

,( )FC LO w i fq H T T                                                                 (2.25) 

1.156
" 1/(1082 )

[ ]
0.556

n
nsat

ONB

T P
q


                                                      (2.26) 

where P is in bars and ∆Tsat is in K. The factor n can be calculated as follows. 

0.02340.463n P                                                                      (2.27) 

where P is in bars. 

 

2.4 Uncertainty Analysis 

 

 

The uncertainties of the measured values are given in Table 2.1 and 2.2. They 

were provided by the manufacturer’s specification sheet, whereas the uncertainties on 

friction factors and heat transfer coefficients were obtained using the propagation of 

uncertainty method developed by Kline and McClintock [63].  

This method is based on careful specifications of the uncertainties in various 

primary experimental measurements. Let wR be the uncertainty in the result and w1, 

w2,…, wn be the uncertainties in the independent variables. If the uncertainties in the 

independent variables are all given with the same ratios, then the uncertainty in the 

result having these ratios is given as: 

2 2 2 1/2

1 2

1 2

[( ) ( ) ... ( ) ]R n

n

R R R
w w w w

x x x

  
   

  
                                 (2.28) 

Here R is the result value, where x1, x2,…,xn are independent variable’s values. 

Moreover, Mean Absolute Error (MAE) is a quantity used to measure how close 

predictions are to the eventual outcomes. The MAE is given by: 
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i i
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MAE f y
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                                                                (2.29) 

where fi is the prediction, yi is the true value, and N is the number of experimental 

data. 

Table 2.1: Uncertainties in single-phase experimental parameters 

Uncertainity 

 

Error 

Flow Rate, Q (for each reading) ± 1.0 % 

Voltage supplied by power source, V ± 0.1 % 

Current supplied by power source, I ± 0.1 % 

Temperature, T ± 0.1°C   

Electrical power, P ± 0.15 % 

Pressure drop, ∆P ± 0.25 % 

Mass flux, G ± 2.7 % 

Friction factor, f ± 7 % 

Hydraulic diameter, dh ± 2 𝜇𝑚 

Heat transfer coefficient, hsp 

Nusselt number, Nu 

± 10.7 % 

± 11 % 
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Table 2.2: Uncertainties in two-phase experimental parameters 

Uncertainity Error 

Flow Rate, Q (for each reading) ± 1.0 % 

Voltage supplied by power source, V ± 0.1 % 

Current supplied by power source, I ± 0.1 % 

Temperature, T ± 0.1°C   

Electrical power, P ± 0.15 % 

Pressure drop, ∆P ± 0.25 % 

Mass flux, G ± 2.7 % 

Friction factor, f ± 7 % 

Hydraulic diameter, dh ± 2 𝜇𝑚 

Heat transfer coefficient, htp ± 11.9 % 
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CHAPTER 3 

 

RESULTS AND DISCUSSIONS 

 

3.1 Single-Phase Flow Part 

 

In this section, single-phase fluid flow experimental results will be included. 

Friction factor, local single-phase heat transfer coefficients, and ratio of theoretical 

Nusselt number to experimental Nusselt number results will be displayed and discussed.  

 

3.1.1 Friction Factor Results 

 

Initially, adiabatic tests were carried out and satisfactorily compared to the 

existing conventional friction factor correlation recommended for fully developed 

laminar flows in tubes (f=64/Re). As shown in Fig. 3.1, experimental data could be 

predicted fairly well by the existing correlation for laminar flow conditions with a Mean 

Absolute Error (MAE) of 21%. This result is in agreement with the previous 

comparison studies on friction factors [28, 30, 37, 38], which also reported that friction 

factors in microchannels in fully developed flow could be predicted by the existing 

theory developed for conventional channels. Moreover, this fair prediction also implies 

that hydrodynamically developed flow conditions are present in the current study.  The 

hydrodynamic developing length for Re=1087 is 1.5cm for 254 micron tube, and 4.01 

cm for 685 micron tube, which is significantly lower than the entire channels length of 

14.88 cm and 15.24 cm, respectively. Thus, hydrodynamic fully developed flow 

conditions are not surprising in this study. 
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Figure 3.1: Friction Factors – Reynolds Number Profile 

In addition to these findings, diabatic tests have been also carried out for the same 

microchannel configuration to observe laminar-turbulent transition. The transition from 

laminar flow to turbulent flow for the same configuration is detected with the shift in 

the trend of f vs Re curve in Fig. 3.2 and Fig. 3.3 for 254 micron tube and 685 micron 

tube respectively. It can be seen that the transition of Reynolds number occurs between 

2500-3000 due to the change in the trend, which could not be characterized as an early 

transition. This transition could be also regarded as a sudden transition [28]. Lorenzini 

et al. [28] indicated that sudden laminar to turbulent transition seems to become the 

prevailing mode when the critical Reynolds number is greater than 2300 regardless  the 

surface of the microtubes (i.e. either smooth or rough). As a result, laminar to turbulent 

transition in this study could be also regarded as a sudden transition.  

For the turbulent portion of the experimental data, Colebrook correlation was used 

and compared to experimental data. A relative roughness was taken as 0.004 in the light 

of measured peak to peak roughness and microtube dimensions.  Accordingly, the MAE 

in friction factor is calculated as 19.3% and 10.3% for 254 micron tube and 685 micron 

tube respectively, which suggests that friction factor correlations for turbulent flows 

could also fairly predict turbulent flow data in micro scale. These results are in good 

agreement with the existing literature about micro scale fluid flow [28, 64]. 
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Figure 3.2: Friction Factors – Reynolds Number Profile for 254 micron tube 

 

Figure 3.3: Friction Factors – Reynolds Number Profile for 685 micron tube 

 

3.1.2 Heat Transfer Results 
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seen from these figures, single phase heat transfer coefficients increase as mass flux 

increases. In addition, we can observe that the increase in mass flux results in lower 

channel surface temperatures at constant heat fluxes. The increasing trend in local heat 

transfer coefficients with mass flux is due to developing flow conditions and also 

provides high motivation for working at high mass fluxes, so that high heat transfer 

coefficients could be reached even in single phase flow (>40000 W/m
2
̊C) as seen in 

Figs. 3.10-3.15. Heat flux values in these figures are much greater than in literature [37] 

due to the high mass fluxes and thermally developing flow conditions in this thesis. 

 

 

Figure 3.4: Inner wall temperatures – heat flux profile for thermocouple 1 in 254 

micron tube 
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Figure 3.5: Inner wall temperatures – heat flux profile for thermocouple 2 in 254 

micron tube 

 

Figure 3.6: Inner wall temperatures – heat flux profile for thermocouple 3 in 254 

micron tube 
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Figure 3.7: Inner wall temperatures – heat flux profile for thermocouple 1 in 685 

micron tube 

 

Figure 3.8: Inner wall temperatures – heat flux profile for thermocouple 2 in 685 

micron tube 
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Figure 3.9: Inner wall temperatures – heat flux profile for thermocouple 3 in 685 

micron tube 

 

 

Figure 3.10: Local single-phase heat transfer coefficients – heat flux profile for 

thermocouple 1 in 254 micron tube 
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Figure 3.11: Local single-phase heat transfer coefficients – heat flux profile for 

thermocouple 2 in 254 micron tube 

 

Figure 3.12: Local single-phase heat transfer coefficients – heat flux profile for 

thermocouple 3 in 254 micron tube 
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Figure 3.13: Local single-phase heat transfer coefficients – heat flux profile for 

thermocouple 1 in 685 micron tube 

 

Figure 3.14: Local single-phase heat transfer coefficients – heat flux profile for 

thermocouple 2 in 685 micron tube 
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Figure 3.15: Local single-phase heat transfer coefficients – heat flux profile for 

thermocouple 3 in 685 micron tube 
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corresponding experimental Nusselt number. For laminar flow conditions, Eq. 2.10 was 
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theoretical Nusselt numbers for developing flow conditions. This also strengthens the 

claim in the literature [62] that conventional correlations could be applicable to single-

phase flows in micro scale. However, they could not follow the trend in experimental 

data very well.  

In addition, the success of thermally developing flow correlations also emphasize 
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11.22cm and 15.74cm respectively, while the thermally developing lengths of 685 

micron tube for G=1300, 3100, 5200 and 5750 are 2.5cm, 5.8cm, 9.62cm and 10.59cm, 

respectively. Most of these values are greater than the heated length. Thus, developing 

effects are prevalent along the entire heated length leading to high heat transfer 

coefficients and Nusselt numbers when compared to thermally fully developed flows. 

For thermocouple locations 1 and 2 the experimental results are closer to the 

theory (MAE=19.2, 20.8, respectively) compared to thermocouple location 3 

(MAE=23.6). It can be clearly seen that while Re increases experimental results better 

agree with the theoretical results for thermocouple locations 1 and 2. This trend is 

present because thermocouples 1 and 2 are located closer to the micro tube inlet, where 

developing effects are more dominant.  

 

Figure 3.16: Ratio of theoretical Nusselt number to experimental Nusselt number 

for thermocouple 1 in 254 micron tube 
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Figure 3.17: Ratio of theoretical Nusselt number to experimental Nusselt number 

for thermocouple 2 in 254 micron tube 

 

Figure 3.18: Ratio of theoretical Nusselt number to experimental Nusselt number 

for thermocouple 3 in 254 micron tube 
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Figure 3.19: Ratio of theoretical Nusselt number to experimental Nusselt number 

for thermocouple 1 in 685 micron tube 

 

Figure 3.20: Ratio of theoretical Nusselt number to experimental Nusselt number 

for thermocouple 2 in 685 micron tube 
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Figure 3.21: Ratio of theoretical Nusselt number to experimental Nusselt number 

for thermocouple 3 in 685 micron tube 
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3.2 Boiling Heat Transfer Part 

 

Wall superheats are displayed with heat flux for thermocouples 2 and 3 in Figs. 

3.22 - 3.24. Since the saturation temperature for the thermocouple location 2 is greater 

than the saturation temperature of the thermocouple location 3 and the wall temperature 

did not increase significantly along the microtube, fewer data points are present for 

thermocouple 2.  It could be clearly seen that at a fixed wall superheat, the heat flux 

increases with mass velocity implying better heat removal rates at higher mass 

velocities.  

 

 

 

 

Figure 3.22: Heat Flux- Local ∆Tw,i at saturation for thermocouple 2 location (xth2) 

at different mass fluxes for 254 micron tube 
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Figure 3.23: Heat Flux- Local ∆Tw,i at saturation for thermocouple 3 location (xth3) 

at different mass fluxes for 254 micron tube 

 

 

 

Figure 3.24: Heat Flux- Local ∆Tw,i at saturation for thermocouple 3 location (xth3) 

at different mass fluxes for 685 micron tube 
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single-phase and nucleate boiling components for subcooled boiling conditions.  Single-

phase component is mass velocity dependent, whereas the nucleate boiling component 

is highly wall superheat dependent and mass velocity independent.  The strong mass 

velocity dependence in this study suggests that single-phase flow effects are still present 

under the working conditions of this study.  

 

 

 

Figure 3.25: Local two-phase heat transfer coefficient – Heat flux for 

thermocouple 2 locations (xth2) at different mass fluxes for 254 micron tube 

 

 

Figure 3.26: Local two-phase heat transfer coefficient – Heat flux for 

thermocouple 3 locations (xth3) at different mass fluxes for 254 micron tube 
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Figure 3.27: Local two-phase heat transfer coefficient – Heat flux for 

thermocouple 3 locations (xth3) at different mass fluxes for 685 micron tube 

 

Figures 3.28 to 3.30 show the dependence of heat transfer coefficient on the 

quality. Heat transfer coefficients show a similar trend with quality as heat flux. With 

increasing quality, heat transfer coefficients have a decreasing trend. 

 

 

 

Figure 3.28: Local two-phase heat transfer coefficient – local qualities for 

thermocouple 2 location (xth2) at different mass fluxes 
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Figure 3.29: Local two-phase heat transfer coefficient – local qualities for 

thermocouple 3 location (xth3) at different mass fluxes for 254 micron tube 

 

 

 

Figure 3.30: Local two-phase heat transfer coefficient – local qualities for 

thermocouple 3 location (xth3) at different mass fluxes for 685 micron tube 
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In Fig. 3.31, 3.32 and Tables 3.1 to 3.4 experimental heat fluxes were compared 

with partial boiling correlations and fully developed subcooled boiling correlations. It is 

seen that at low ∆Tsat values, there is only small deviation between the experimental 

data and  partial boiling correlations (MAE % 0.5 to % 20), while subcooled fully 

developed correlations predictions could fairly predict experimental results well at only 

high ∆Tsat values. Kandlikar et al. [51] proposed that in order to use fully developed 

subcooled flow boiling correlations, ∆Tsat values should be higher than ~30̊C. In this 

study, the maximum ∆Tsat was 21 ̊C. In addition to this, at high mass fluxes there is a 

better agreement between correlations and experimental data, because for lower mass 

fluxes the corresponding Reynolds numbers are in the transition regime where the 

prediction of single-phase heat transfer coefficients are not clearly determined. 

 

 

 

Figure 3.31: q”experimental /q”predicted - ∆Tsaturation at different mass fluxes for 254  

micron tube 
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Figure 3.32: q”experimental /q”predicted - ∆Tsaturation at different mass fluxes for 685  

micron tube 

 

Table 3.1 : MAE Comparison between fully developed subcooled boiling and 

partial boiling correlations with experimental data for 254 micron tube at G=7000 

kg/m
2
s 

 

q"exp. (W/m2) q"fully (W/m2) q"partial (W/m2) ∆Tsat (C) 

2236011 2836 2.84E+06 1.87 

2344592 42426 2.66E+06 4.668 

2411027 101167 2.59E+06 6.283 

2546604 338368 2.48E+06 9.536 

2644457 893300 2.55E+06 13.36 

2729552 1502000 2.61E+06 16.04 

2771205 1658000 2.57E+06 16.64 

2827554 1456000 2.88E+06 19.39 
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Table 3.2 : MAE Comparison between fully developed subcooled boiling and 

partial boiling correlations with experimental data for 254 micron tube at G=7500 

kg/m
2
s 

 

q"exp. (W/m2) q"fully (W/m2) q"partial (W/m2) ∆Tsat (C) 

2412851 1.658 3.15E+06 0.1544 

2493864 20008 2.81E+06 3.587 

2590809 125954 2.75E+06 6.704 

2660605 243976 2.70E+06 8.42 

2802889 662367 2.61E+06 11.92 

2875264 1061000 2.62E+06 14.06 

2994732 2202000 2.83E+06 18.19 

3006188 1795000 3.28E+06 20.58 

3081557 1938000 3.18E+06 21.13 

 

Table 3.3 : MAE Comparison between fully developed subcooled boiling and 

partial boiling correlations with experimental data for 685 micron tube at G=5200 

kg/m
2
s 

 

q"exp. (W/m2) q"fully (W/m2) q"partial (W/m2) ∆Tsat (C) 

3260345 1.62E+02 2.91E+06 9.04E-01 

3353007 1.13E+04 2.98E+06 3.76E+00 

3464726 1.12E+05 3.13E+06 8.19E+00 

3554510 1.82E+05 3.13E+06 9.69E+00 
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Table 3.4 : MAE Comparison between fully developed subcooled boiling and 

partial boiling correlations with experimental data for 685 micron tube at G=5750 

kg/m
2
s 

 

q"exp. (W/m2) q"fully (W/m2) q"partial (W/m2) ∆Tsat (C) 

3245974 12.2 3.51E+06 0.3709 

3387736 138.8 3.41E+06 0.8389 

3507080 4910 3.42E+06 2.778 

3589961 120507 3.67E+06 8.207 

3700343 177017 3.65E+06 9.387 

3835184 374473 3.70E+06 12.18 
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CHAPTER 4 

 

CONTRIBUTION TO THE SCIENTIFIC KNOWLEDGE 

 

Due to aggressive cooling demands in many areas, microchannel heat sinks are 

one of the major efficient and conventional systems. This thesis aims to fill the gap in 

single-phase flow and flow boiling at high mass fluxes in microchannels. Contributions 

to the scientific knowledge of the single-phase flow part are: 

 Significant experimental data were acquired for thermally developing 

flows in microchannels. 

 Single-phase heat transfer study has conducted at high mass fluxes in 

micro scale and it has proven that, it results in high heat transfer 

coefficients. 

 

Contributions to the scientific knowledge of the flow boiling part are: 

 Significant experimental data were gathered for subcooled boiling in 

microchannels for the first time. 

 The trends in two-phase heat transfer coefficients with mass quality, heat 

and mass fluxes were revealed.  

 It was checked whether existing theory for subcooled boiling in 

conventional channels is applicable for micro scale. 
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CONCLUSIONS AND FUTURE WORK 

 

In single-phase flow part of this thesis, experimental tests were carried out in 

micro tubes of ~254 µm and ~685 µm inner diameter at mass velocities from G=1300 

kg/m
2
s to G= 7200 kg/m

2
s under thermally developing flow conditions. Higher single 

phase heat transfer coefficients were obtained with increasing mass fluxes, which is 

motivating to operate at high mass fluxes and under developing flow conditions.  

 

 Theoretical friction factors and Nusselt numbers were compared to the 

experimental findings.  

 A reasonable agreement was found between experimental results and 

theoretical predictions recommended for heat transfer in thermally 

developing flows. 

  Moreover, the transition to turbulent flow and friction factors for both 

laminar and turbulent conditions were in agreement with conventional 

correlations and existing theory. 

 

In the second part of the study, boiling heat transfer study was conducted at for 

mass velocities from G=1000 kg/m
2
s to G=7500 kg/m

2
s under subcooled boiling 

conditions. It was found that: 

 

 Heat transfer coefficients increased with mass velocity, whereas they 

decreased with local quality and heat flux.  

 Experimental data were compared with partial boiling correlations and 

fully developed subcooled boiling correlations. It was observed that partial 

boiling effects were dominant at low ∆Tsat values, while fully developed 

boiling correlations could fairly predict experimental data at high ∆Tsat 

values 

 

As a future work, it is aimed that operating at higher mass fluxes and reaching to a 

world record in cooling rates (>30000 W/cm
2
). 
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