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Abstract

This study argues that Nash equilibria with less variations in players’ best responses

are more appealing. To that regard, a notion measuring such variations, the entropic

selection of Nash equilibrium, is presented: For any given Nash equilibrium, we consider

the cardinality of the support of a player’s best response against others’ strategies that

are sufficiently close to the behavior specified. These cardinalities across players are then

aggregated with a real-valued function on whose form we impose no restrictions apart

from the natural limitation to nondecreasingness in order to obtain equilibria with less

variations. We prove that the entropic selection of Nash equilibrium is non-empty and

admit desirable properties. Some well-known games, each of which display important

insights about virtues / problems of various equilibrium notions, are considered; and,

in all of these games our notion displays none of the criticisms associated with these

examples. These examples also show that our notion does not have any containment

relations with other associated and well-known refinements, perfection, properness and

persistence.
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1 Introduction

The concept of Nash equilibrium is central in the theory of games, and as put by Myerson

(1978), “it is one of the most important and elegant ideas in game theory”. On the other

hand, Nash’s pointwise stability may create multiplicity of equilibria some of which do

not satisfy local stability and produce outcomes which can be criticized on grounds of not

corresponding to intuitive notions about how plausible behavior should look like. In order to

alleviate these problems, important refinements of Nash equilibrium have been developed.

Indeed, perfection by Selten (1975), properness by Myerson (1978), and persistence by Kalai

and Samet (1984), among others, have been standards in the theory of games.

However, below we display that, some undesirable variations in the best responses of

players still remain in a perfect and proper equilibria. In this game, none of the pure
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I II

1\2 I II

I (1, 1, 0) (1, 0, 1)

II (1, 1, 1) (0, 0, 1)

1\2 I II

I (1, 0, 1) (0, 1, 0)

II (0, 1, 0) (1, 0, 0)

Table 1: A 3-player game: Player 1 chooses rows, player 2 columns and player 3 matrices

strategies is weakly dominated for any of the players, and it can easily be verified that this

game has two Nash equilibria, s1 = (II, I, I) and s2 = (I, 1/2I +1/2II, 1/2I +1/2II); and,

only s2 is perfect and proper.1

We argue that this particular undominated Nash equilibrium, which is neither perfect

nor proper, is more desirable on account of displaying less variations in players’ best re-

sponses. This is because of the following: Every players’ only best response to any of the

other players’ strategies that are sufficiently close to the one given in s1, is as given in s1.

Thus, the number of (pure) actions in any player’s best response against the other players’
1Perfection follows because (1) no matter what the levels of player 2 and 3’s mistakes (around mixing I

and II with equal probabilities) are, action I for player 1 is the only best response, as long as these mistakes

are strictly positive; and (2) every finite normal form game has to possess a perfect equilibrium, which, in

fact, has to be a Nash equilibrium as well.
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strategies that are sufficiently close to the one given in s1, is 1, showing that players’ best

responses do not exhibit any variations around s1. On the other hand, when s2 is consid-

ered, the players choosing mixed strategies (players 2 and 3) clearly have 2 (pure) actions

in their best responses no matter how close the others’ strategies are. Therefore, player 2

and 3’s best responses are exhibiting more variations around s2.

In 2 player coordination games, the mixed strategy Nash equilibrium which is perfect

and proper (but, not persistent) displays the same type of undesirable variations. Kalai

and Samet (1984) refers to this observation as the lack of strong neighborhood stability.2

The example borrowed from Kalai and Samet (1984) and given in table 2, illustrates this

particular point. Only pure strategy Nash equilibria satisfy our criteria and the perfect

1\2 I II

I (1, 1) (0, 0)

II (0, 0) (1, 1)

Table 2: A 2-player coordination game

and proper equilibrium with totally mixed behavior does not. This is because in the pure

strategy Nash equilibria, the best response of any player against the other’s strategies that

are sufficiently close to the one specified, involves only the pure strategies specified in these

equilibria. Thus, the number of (pure) actions in a player’s best response against the
2Adopting rationalistic interpretation in normal form games (for a formal discussion of these ideas, see

Aumann and Brandenburger (1995) and Kuhn (1996)) delivers a very counterintuitive observation associated

with the mixed strategy Nash equilibrium in coordination games: Even though this game is played once

and there are no communication phases, a player perfectly anticipates the mixed behavior of the other

due to which that player becomes indifferent between his actions and can choose a specific mixed strategy

which in turn makes the other be able to randomize between his. In order to eliminate this counterintuitive

aspect, Nash (1950) offers a second interpretation, that is referred to as the mass action interpretation, and

is less demanding on players: “[i]t is unnecessary to assume that the participants have full knowledge of the

total structure of the game, or the ability and inclination to go through any complex reasoning processes.”

What is assumed is that there is a population of participants for each position in the game, which will be

played throughout time by participants drawn at random from the different populations. If there is a stable

average frequency with which each pure strategy is employed by the “average member” of the appropriate

population, then this stable average frequency constitutes a Nash equilibrium. We refer the reader to Barlo

and Carmona (2011) for more on this subject.
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other player’s strategy that is sufficiently close to the one given in any pure strategy Nash

equilibria, is 1. Hence, players’ best responses do not exhibit any variations around those

Nash equilibria. On the other hand, the mixed strategy Nash equilibrium clearly involve

2 (pure) actions in each of the player’s best responses against any strategy of the other no

matter how close it is to the specified one. Therefore, the mixed strategy Nash equilibrium

involves more variations in players’ best responses.

In order to formalize these ideas, we propose a low-cost technology, the notion of en-

tropic selection of Nash equilibrium.3 Given any Nash equilibrium, we evaluate its entropy,

measuring its variations, as follows: For any player, we consider the cardinality of that

player’s best response when the others can choose any one of the strategies that are ar-

bitrarily close to the one specified in that particular Nash equilibrium. In fact, given any

neighborhood from which the others’ strategies can be drawn, a player’s best response is

a probability distribution. Following the intuition borrowed from information theory (we

refer the reader to the original source by Shannon (1948)), we use a weaker form of entropy

to measure the variations of players’ best responses around a given strategy profile. To be

precise, we consider the cardinality of the support of each player’s best response against

others’ strategies that are sufficiently close to the one specified. It turns out that we do not

need to employ the standard definition of classic entropy, and this weaker version suffices

to deliver the desired results.

By employing finiteness and linearity, we show that for any given strategy profile (not

necessarily in equilibrium) the entropy of a player’s best response is nonincreasing in how

close the neighborhoods considered are. It is also established that this particular integer

achieves a lowerbound (greater or equal to one). Thus, inherently every strategy involves an

entropy figure, this particular lowerbound, separately for each player. Then, this entropy

vector is aggregated with a real-valued function. A natural restriction, on which our results

do not depend, is that this aggregation function has to be nondecreasing, in order to obtain a

strategy with less variations. Consequently, the resulting complete and continuous preorder

defined on the set of strategy profiles, thence, calls for the strategy with a lower aggregated
3The notion of entropic selection does not necessarily have to be used in conjunction with the set of Nash

equilibrium. In fact, our existence theorem does not put any limitations on the set on which this notion is

desired to be employed.
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entropy figure to be ranked higher than one with a higher entropy figure. Using these

results, we establish that for any given aggregation function and any non-empty subset of

the strategies, an entropic selection exists.

We consider many well-known examples, each of which display some important insights

about virtues / problems of various equilibrium notions. It is shown that in all of these

games the concept of entropic selection of Nash equilibrium displays none of the criticisms

associated with these examples. That is, our notion shows solid performances. In fact,

using these examples we also show that the entropic selection of Nash equilibrium does not

have any containment relations with the notions of perfection, properness and persistence.4

Following the display of these solid performances of our notion, a serious drawback

of entropic selection of Nash equilibria is identified: It may be consist of a unique Nash

equilibrium which involves the play of a weakly dominated strategy. That is why, in what

follows the notion of the entropic selection of undominated Nash equilibrium is considered,

and we show that all of the above results, including existence and solid performances,

continue to hold. Moreover, an additional desirable property is obtained: If the set of

undominated Nash equilibrium contains a pure strategy profile, then that pure strategy

Nash equilibrium has to be in the entropic selection of the undominated Nash equilibrium,

and there cannot be any other mixed strategy Nash equilibria in that selection.

The organization of the paper is as follows: The next section presents the preliminaries.

In section 3, we characterize the entropic selection of Nash equilibria, and after proving

its existence its desirable properties are displayed. In section 4, a problem related to weak

domination is illustrated, and its solution, the entropic selection of undominated Nash

equilibrium is presented. In the same section, we prove its existence and establish that all

of the desirable properties are maintained.
4It should be mentioned that when solving these examples we often use the symmetric aggregation

function obtained by the simple addition of the entropy figures. But, it is important to emphasize that these

observations do not depend on this particular specification of the aggregation function, and hold for any

strictly increasing aggregation function.
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2 Definitions and Notations

Let Γ = 〈N, (Ai)i∈N , (ui)i∈N 〉 be a finite normal–form game, where Ai is a finite non-empty

set of actions of player i ∈ N , and ui : ×i∈NAi → R is agent i’s von Neumann Morgenstern

utility function. We keep the standard convention that A = ×i∈NAi and A−i = ×j 6=iAj .

A mixed strategy of player i is represented by si ∈ ∆(Ai) ≡ Si, where ∆(Ai) denotes the

set of all probability distributions on Ai and si(ai) ∈ [0, 1] denotes the probability that si

assigns the pure strategy ai with the obvious restriction that
∑

ai∈Ai
si(ai) = 1. Hence, a

strategy profile is denoted by s ∈ ×i∈NSi ≡ S. Again, S−i ≡ ×j 6=iSj .

Define the best response of player i to s−i by BRi(s−i) = {si ∈ Si : ui(si, s−i) ≥
ui(s′i, s−i), ∀s′i ∈ Si}. s∗ is a Nash equilibrium if for every i ∈ N , s∗i ∈ BRi(s∗−i). The set of

Nash equilibria of Γ is denote byN (Γ) ⊂ S. An action ai ∈ Ai is weakly dominated for player

i, if there exists a′i ∈ Ai with ui(ai, a−i) ≤ ui(a′i, a−i) for all a−i ∈ A−i and this inequality

holds strictly for some a−i ∈ A−i. A strategy profile s ∈ S is undominated if si(ai) = 0 for

any ai ∈ Ai that is weakly dominated. The set of undominated Nash equilibrium of Γ is

denote by N d(Γ) ⊂ S. For any given ε > 0, we say that s ∈ S is an ε–perfect equilibrium

if si(ai) > ε for all i ∈ N and ai ∈ Ai, and for all i ∈ N we have ui(s) ≥ ui(s̃i, s−i) for all

s̃−i ∈ Si. On the other hand, s is ε–proper equilibrium if it is ε–perfect and for every pair of

ai, a
′
i ∈ Ai the following condition holds: ui(ai, s−i) > ui(a′i, s−i) implies si(ai) ≥ si(a′i). s is

perfect (proper), if there exists {εk} and {sk} with the property that εk > 0 and limk εk = 0

and sk an εk–perfect (ε–proper, respectively) equilibrium for each k and limk sk = s. R is

a retract of S if R = ×i∈NRi where for any i ∈ N , Ri is a non-empty convex and closed

subset of Si. For any given K ⊂ S, it is said that R absorbs K if for every s ∈ K, for any

i ∈ N it must be that BRi(s−i)∩Ri 6= ∅. Any retract absorbing itself is a Nash retract and

a retract is an essential Nash retract if it absorbs a neighborhood of itself. Moreover, it is

said to be a persistent retract, if it is an essential Nash retract and is minimal with respect

to this property. s ∈ S is a persistent equilibrium if it is a Nash equilibrium contained in a

persistent retract.

For any given s ∈ S and ε > 0, define Bε(s−i) ≡ {s′−i ∈ S−i : |s′−i − s−i| < ε}. More-

over, we let Sε
i (s) ≡

{
ai ∈ Ai : ai ∈ BRi(s′−i) where s′−i ∈ Bε(s−i)

}
, and Sε(s) ≡ (Sε

i (s))
N
i=1;

Eε
i (s) ≡ |Sε

i (s)|, and Eε(s) ≡ (Eε
i (s))

N
i=1.
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For any given f : NN → R, that we call the aggregation function, we let the f–induced

entropic order be denoted by <f
E ⊂ S×S, and defined by s<f

E s′, if there exists ε̄ > 0 such

that for all ε < ε̄, f (Eε(s)) ≤ f (Eε(s′)). For any non-empty K ⊆ S, s is said to be in the

f–induced entropic selection of K, if s<f
E s′ for all s′ ∈ K. Moreover, the set of f–induced

entropic selection of K ⊂ S is denoted by Ef (K).

Lemma 1 The following hold:

1. For any s ∈ S and for any η, η′ > 0 with η < η′, it must be the case that Eη(s) ≤ Eη′(s).

2. For any s ∈ S, there exists η̄ > 0 such that for all η, η′ ∈ (0, η̄), Eη(s) = Eη′(s).

3. Suppose that K ⊆ S is non–empty and compact. Then, Ef (K) is non–empty and

compact.

Proof. The first two parts are due to the finiteness of Γ and linearity of the expected utility

function. Hence, <f
E ⊂ S × S is complete and continuous preorder. Thus, the third part

follows from Berge’s Theorem of Maximum.

The following is a general existence theorem:

Theorem 1 Ef (K) is non–empty for any non–empty K ⊂ S.

Proof. For any given f : NN → R and any non–empty K ⊂ S, let s ∈ K and from the

second part of Lemma 1 there exists ε̄ > 0 such that for all η, η′ ∈ (0, ε̄), Eη(s) = Eη′(s) ≡
E(s) ∈ NN , where Ei(s) ≤ |Ai|, hence, V ≡ ∪s∈KE(s) is a finite set in NN . Thus, f(V ) ⊂ R
is finite.

Recall that, f–induced entropic order is defined by s<f
E s′, if there exists ε̄ > 0 such

that for all η < ε̄, f (Eη(s)) ≤ f (Eη(s′)). On the other hand, we also have that s<f
E s′ if

and only if f (E(s)) ≤ f (E(s′)). This follows from (1) if f (E(s)) ≤ f (E(s′)), then there

exists ε̄1, ε̄2 > 0 such that f (E(s)) = f (Eη1(s)) = f
(
Eη′1(s)

)
≤ f (E(s′)) = f (Eη2(s′)) =

f
(
Eη′2(s′)

)
for all ηk, η

′
k ∈ (0, mink=1,2 ε̄k), hence, s<f

E s′; and (2) the reverse from our

construction.

Because that f(V ) is a finite set in R, it possesses a minimal element, f (E(s∗)), s∗ ∈ K.

Hence, by the above s∗<f
E s for all s ∈ K, thus, s∗ ∈ Ef (K).
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1\2 I II

I (1,1) (0,0)

II (0,0) (0,0)

Table 3: A 2-player game with a weakly dominated Nash equilibrium

Naturally, the choice of f : NN → R determines the selection of elements in Ef (K),

and insisting on equilibria with “less” variations calls for the aggregation function to be

strictly increasing. Furthermore, in this study, we often treat all players and the cardinality

of the support of their best responses for any given ε > 0 and s ∈ S, symmetrically. Hence,

we often concentrate on the following particular aggregation function: for any x ∈ NN ,

f(x) =
∑

i∈N xi. In fact, we suppress the notation of f whenever this particular aggregation

function is employed. We wish to emphasize that other plausible methods of aggregations

may also be constructed.5

3 Entropic Selection of Nash equilibrium

In this section, we consider the entropic selection of Nash equilibria, Ef (N (Γ)). It is worth-

while to point out that due to Theorem 1, Ef (N (Γ)) 6= ∅. On the other hand, because that

N (Γ) is non-empty and compact, Lemma 1 can be employed to obtain the following result,

which is presented without any proof.

Theorem 2 Ef (N (Γ)) ⊂ S is non–empty and compact.

Below, we present some well known examples in which the entropic selection of Nash

equilibrium eliminate non-plausible Nash equilibria.

The example presented in table 3, often referred to in the analysis of perfection due

to Selten (1975), displays that entropic selection of Nash equilibrium eliminates weakly

dominated Nash equilibria. The Nash equilibria are s, s′ with si(I) = 1 and si(II) = 0, and
5That is, concerns such as those put forth by Myerson in the analysis of properness (see Myerson (1978))

and those raised by Kohlberg and Mertens in the analysis of stable subsets of equilibria (refer to Kohlberg

and Mertens (1986)), may be included in the formulation of f .
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1\2 I II

I (3, 3) (0, 0)

II (0, 0) (1, 1)

III (2, 2) (2, 2)

Table 4: The Kohlberg Example

s′i(I) = 0 and s′i(II) = 1, i = 1, 2. Because that for any ε ∈ (0, 1) and any s′′−i ∈ Bε(s−i)

BRi(s′′−i) =





(1, 0) if s′′−i(I) > 0,

(α, 1− α) otherwise,

we have that Eε(s) = (1, 1) and Eε(s′) = (2, 2). Thus, only s is in the entropic selection of

Nash equilibria.6

It is important to emphasize that the notion of entropic selection of Nash equilibrium

does not display the type of weakness identified in the Kohlberg Example, which is depicted

in table 4. In this game II is a strictly dominated action for player 1, and without it, the

pure action profile (III, II) is not perfect, because II for player 2 is weakly dominated by I.

Yet, with the addition of II for player 1, it becomes perfect. However, the only equilibrium

in the entropic selection of Nash equilibrium is the pure action profile (I, I): There are

two types of Nash equilibria s1 = ((1, 0, 0), (1, 0)), and sα = ((0, 0, 1), (α, 1− α)), α ≤ 2/3.

Clearly, Eε(s1) = (1, 1), and for any α > 0, Eε(sα) = (1, 2). Moreover, when α = 0, i.e.
6A similar conclusion holds in a well-known example, given below, displaying a situation where an “in-

credible threat” (by player 2) results in (a continuum of) Nash equilibria that are weakly dominated. In

fact, this game is the normal form version of the following extensive form game: Player 1 chooses first, and

if his choice is I, then the game ends and player 1 obtains a return of 1 and player 2 a payoff of 2. On the

other hand, if player 1 chooses II, then depending on player 2’s choice, players obtain a payoff vector of

(2, 1) if player 2’s choice is I, and (0, 0) otherwise.

1\2 I II

I (1, 2) (1, 2)

II (2, 1) (0, 0)

The set of Nash equilibria of this game is given by (II, I) and (I, αI + (1 − α)II), α ≤ 1/2; and, for

s = ((0, 1), (0, 1)) we have Eε(s) = (1, 1) for all ε < 1/2, and Eε′(s′) = (1, 2) for any other Nash equilibrium

s′ and ε′ > 0 sufficiently small. Hence, the set of entropic selection of Nash equilibrium equals (II, I).
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pure action (III, II) is considered notice that Eε
1(s

0) = 1, and for ε > 0 arbitrarily small

let s̃1 = (η1, η2, 1−η1−η2) for η1, η2 ≥ 0 such that s̃1 ∈ Bε(s0
1). If s̃1 is given by η1 > 0 and

η2 = 0, then I will be player 2’s only best response. On the other hand, if η1 = 0 and η2 > 0

(for η2 small) II would be player 2’s best response. Finally, when η1, η2 > 0, then both I

and II could be in player 2’s best response, depending on the relation between η1 and η2.

Hence, Eε
2(s

0) = 2. Thus, s0 is also not in the entropic selection of Nash equilibrium.

Entropic selection of Nash equilibrium displays a similar performance in the game often

referred to in the discussion of “imperfections of perfection” (see Myerson (1978)), an exam-

ple given in table 5. It is basically the same game given in table 3 with a strictly dominant

strategy added for both of the players. The critical aspect is that, the addition of the strictly

dominated strategies results in pure strategy II not being weakly dominated. In this game,

1\2 I II III

I (1, 1) (0, 0) (1,−1)

II (0, 0) (0, 0) (2,−1)

III (−1, 1) (−1, 2) (−1,−1)

Table 5: Myerson’s 2-player game depicting “imperfections of perfection”

the set of Nash and perfect equilibria coincide and are equal to s1 = ((1, 0, 0), (1, 0, 0))

and s2 = ((0, 1, 0), (0, 1, 0)). On the other hand, following the same reasoning as displayed

in the discussion about the Kohlberg Example, one can show that Eε(s1) = (1, 1) and

Eε(s2) = (2, 2). Thus, the only element of the entropic selection of Nash equilibrium is s1.

The game given in table 8, due to Kalai and Samet (1984), makes a significant ob-

servation displaying a serious problem of perfectness and properness. Namely, that “very

specific set of trembles is needed to justify equilibria”. We will show that our notion, like

persistence, is free of this shortcoming. In this game it can be shown that there are three

Nash equilibria, s1 = (I, I, I), s2 = (II, II, I), and s3 = (II, II, II). Only s3 involves a

weakly dominated strategy for player 3, and the perfect and proper equilibria are given

by s1 and surprisingly s2, which in particular needs very specific trembles. Clearly, s2

is undesirable. But, when we consider the entropic selection of Nash equilibrium, it is

easy to observe that Eε(s1) = (1, 1, 1) and Eε(s3) = (1, 1, 2) (because s3 is weakly dom-
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3

I II

1\2 I II

I (1, 1, 1) (0, 0, 0)

II (0, 0, 0) (0, 0, 0)

1\2 I II

I (0, 0, 0) (0, 0, 0)

II (0, 0, 0) (1, 1, 0)

Table 6: The 3-player game of Kalai and Samet (1986)

1\2 I II III

I (1, 1) (2,−2) (−2, 2)

II (1, 1) (−2, 2) (2,−2)

III (0, 0) (1, 1) (1, 1)

Table 7: A 2-player game displaying persistence and ...

inated) for ε > 0 sufficiently small. Next, consider s2, and for any given and sufficiently

small ε > 0, let η2, η3 ≥ 0 with s̃−1 = ((η2, 1 − η2), (1 − η3, η3)) ∈ Bε(s2
−1). Then, I is

player 1’s only best response whenever η2(1− η3) > (1− η2)η3, and similarly II whenever

η2(1 − η3) < (1 − η2)η3. Thus, Eε
1(s

2) = 2, so s2 is not in the entropic selection of Nash

equilibrium because Eε(s1) = (1, 1, 1). To sum up, the only element in the entropic selection

of Nash equilibrium is given by s1.

The notions of entropic selection of Nash equilibrium and perfection and properness do

not have any containment relations. This observation has been presented in the introduction

in table 1.

Under the light of these discussions, one may wonder about the relation of our notion

with persistence. That is why, in the next two games, we display that the entropic selection

of Nash equilibrium does not have any containment relations with the notion of persistence.

Consider the 2 player game in table 7, a coordination game, where one of the pure

actions, in which players are not coordinated, is replaced by a matching pennies: Here,

the set of Nash equilibrium equals the set of persistent equilibria, and is given by s1 =

((1/4, 1/4, 1/2), (1/2, 1/4, 1/4)), s2 = ((0, 0, 1), (0, 1/4, 3/4)), s3 = ((0, 0, 1), (0, 3/4, 1/4)),

s3 = ((3/4, 1/4, 0), (1, 0, 0)), s5 = ((1/4, 3/4, 0), (1, 0, 0)). It can be observed that in this
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game sk, k = 2, 3, 4, 5, correspond to the pure strategy Nash equilibria of a standard co-

ordination game, while s1 can be associated with the totally mixed one. In this example,

because that the entropy of s1 is given by (3, 3), and those of the others are either (1, 2) or

(2, 1), s1 is not in the entropic selection of Nash equilibria.

Next, we display that there is an element in the entropic selection of Nash equilibrium

that is not persistent. To that regard consider the following game. It has 4 players, where

1\2 I II

I (1, 1) (0, 0)

II (0, 0) (1, 1)

3\4 III IV

III (1, 0) (0, 1)

IV (0, 1) (1, 0)

3\4 III IV

III (2, 2) (2, 0)

IV (0, 2) (0, 0)

Table 8: A 4-player game

first and second players are playing the game on the left in table 8, independent of the

choices of player 3 and player 4. Whereas player 3 and player 4 play the game in the middle

in table 8 when first and second players choose (I, I) or (II, II), and the game on the right

in table 8 when first and second choose (I, II) or (II, I). We will show that in this example

there exists an equilibrium which is not persistent but in the entropic selection of Nash

equilibrium.

This equilibrium is s = (1/2I+1/2II, 1/2I+1/2II, III, III). Note that first and second

players will not deviate since their payoffs are not dependent on other players actions, and

they play the mixed strategy Nash Equilibrium of the game on the left in table 8. Third

and fourth players are playing the equally weighted mixtures of games in the middle and

on the right in table 8 and so their best-response are (III, III).

Now, we will show that it is not persistent. For any ε > 0, the tremble (((1/2 − ε)I +

(1/2 + ε)II), ((1/2 − ε)I + (1/2 + ε)II), (1 − ε)III + εIV, (1 − ε)III + εIV ), the best

response against this strategy for player 1 is II. Similarly, it can easily be seen that I

will appear in player 1’s best response as well, when the above perturbation is reversed.

Moreover, for the retract given by ∆({I, II}) for players 1 and 2 and III for the others is

not persistent. Because, when players 1 and 2 choose I, I (or II, II), the persistent retract

in the middle game is (∆({III, IV }))2. Therefore, there is no persistent retract which

includes this equilibrium other than the whole game.
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Also note that, there is a persistent retract, neighborhoods around I for player 1 and 2,

∆({III, IV }) for players 3 and 4. For any strategy in this retract, the best response of first

and second players are still I. Third and fourth players best response to this tremble will

be trivially be in this retract as well. Therefore, there is a persistent retract not including

s (other than the whole game), hence, the whole game is not a minimal persistent retract.

Hence, s is not a persistent equilibrium.

We claim that s is in the entropic selection set of Nash Equilibria. Note that, there are

no pure strategy equilibria in this game. Note further that there is no equilibrium where

only one player mixes among his strategies. Therefore, in all equilibria, at least two players

randomize among their strategies. At this point recall that if a player randomizes, then his

entropy will be at least 2. Hence, in this game, we will encounter entropy vectors with at

least two numbers greater than 1. Now, consider s, and ε̄ > 0, such that for all η, η′ ∈ (0, ε̄)

we have Eη(s) = Eη′(s). Then, Eη
i (s) = 2, i = 1, 2. Third and fourth players are playing the

strategy III and if player 1 and player 2 make small mistakes (due to the strict dominance

in the game on the right) their best response will still be III, therefore Eη
3(s) = 1 = Eη

4(s),

for η > 0 sufficiently small. Then, we have an entropy vector (2, 2, 1, 1) which is the best

possible entropy vector with respect to summation aggregation f . Thus, this equilibrium is

in the entropic selection of Nash equilibrium, however is not persistent.

4 Entropic Selection of Undominated Nash equilibrium

In all of the examples in the above, the notion of entropic selection of Nash equilibrium did

not involve any weakly dominated Nash equilibrium. However, this property does not hold

in general. In the game given in table 9, it can be shown that there are two Nash equilibria,

s and s′: si(I) = 0 and si(II) = 1 for i = 1, 2, 3; and, s′i(I) = s′i(II) = 1/2 for i = 1, 2,

and s′3(I) = 1 and s′3(II) = 0. Clearly, s involves a weakly dominated strategy (by player

3), and because that for ε > 0 small enough Eε(s) = (1, 1, 2) and Eε(s′) = (2, 2, 1), s is the

only point in the entropic selection of Nash equilibria.

This observation is why we continue our analysis with the entropic selection of undom-

inated Nash equilibrium.

It is important to point out that in all the games handled previously, with the exception

13



3

I II

1\2 I II

I (1, 0, 1) (0, 1, 1)

II (0, 1, 0) (1, 0, 0)

1\2 I II

I (0, 0, 0) (0, 0, 0)

II (0, 0, 0) (1, 0, 0)

Table 9: A 3-player game

of the last one (given in table 9), the entropic selection of Nash equilibrium coincides with

the entropic selection of undominated Nash equilibrium. Hence, the entropic selection of

undominated Nash equilibrium meets our objectives. Yet, obviously the problem displayed

in that example is significant.

When we restrict attention to the entropic selection of undominated Nash equilibrium,

on the other hand, we show that existence holds and a further noteworthy aspect is added

to the achievements of our notion: If the set of undominated Nash equilibrium contains

a pure strategy profile, then it has to be in the entropic selection of undominated Nash

equilibrium and there cannot be any other mixed strategy profile that involves at least one

player allocating strictly positive probabilities to two or more actions. First, we present

this result, and next handle existence.

Proposition 1 Suppose a∗ ∈ N d(Γ) and f : NN → R is strictly increasing. Then, a∗ ∈
Ef (N d(Γ)), and there is no s ∈ Ef (N d(Γ)) with si(ai), si(a′i) > 0 for some i ∈ N and

ai, a
′
i ∈ Ai with ai 6= a′i.

Proof. Clearly, for ε > 0 small enough, Eε
i (s

∗) = 1 where s∗i (ai) = 1 whenever ai = a∗i and

0 otherwise. Moreover, because that for any ε′ > 0 it must be that (1) Eε′
i (s) > 1 for some

i ∈ N , s as specified in the hypothesis; and, (2) for any s′ ∈ S it must be that Eε′
i (s′) ≥ 1,

the result follows by construction and the hypothesis that f is strictly increasing.

In words, this proposition establishes that for any given strictly increasing aggregation

function f , the f–induced entropic selection of undominated Nash equilibrium must contain

only pure strategies, whenever there exists a undominated pure strategy Nash equilibrium.

Theorem 3 Ef (N d(Γ)) is non–empty.
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Proof. Follows from Theorem 1.

Notice that the above theorem only concerns existence, and not compactness. This

is because the set of undominated Nash equilibrium may not be compact. This is dis-

played in the game given in table 10, which also establishes that the set of perfect equi-

libria is not compact. Action III of player 2 is strictly dominated, hence, N d(Γ) =

1\2 I II III IV

I (4,0) (0,0) (2,1) (3,0)

II (2,0) (2,0) (2,1) (2,0)

III (0,0) (4,0) (2,1) (3,0)

Table 10: A 2-player game with non-compact set of undominated Nash equilibria

{((sI
1, s

II
1 , sIII

1 ), (sI
2, s

II
2 , sIII

2 , sIV
2 )) :

∑
k sk

i = 1, and sk
i ∈ [0, 1], k = I, II, ...}\((0, 1, 0), (0, 0, 1, 0)),

because s′ = ((0, 1, 0), (0, 0, 1, 0)) is weakly dominated by ((1/2, 0, 1/2), (0, 0, 1, 0)).
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