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Abstract

Networks have currently been used to model real life complex systems and

they have provided additional understanding for characterizing structure-function-

dynamics relationships of these complex architectures. Here we investigate statistical

and spectral properties and the connections between local motifs and global behavior

of networks that are formed from condensed matter systems, particularly proteins,

as well as micelles, polymeric melts and Lennard-Jones clusters.

Proteins are considered as interacting residue networks. Pathways for informa-

tion transfer manifested in the average path lengths are analyzed, where the energy

of residue-residue interactions are imposed as edge weights in networks. Systematic

removal of “low energy” interactions reveals that the network contains significant

number of redundancies that provide high local clustering. The information transfer

is achieved by a small number of highly clustered groups of residues, which makes

the hub architecture different from that of scale-free networks. This result is then

extended to protein complexes, where two proteins (ligand and receptor) interact,

in order to identify essential pair-wise interactions between two proteins.

In the presence of local clustering, establishing a relationship between local

structure and global properties is far from trivial. But for certain cases, applying

a bottom-up approach, a relation between nearest neighbors and next-to-nearest

neighbors is obtained and this relation is observed in different networks formed

from condensed matter systems, as well as perfect lattice models.
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To further investigate the association between local order and global structure,

residue networks are considered in further detail. To outline local order, we com-

pared residue networks to perfect lattice systems by creating self-avoiding chains on

chains via Metropolis Monte Carlo method that capture three dimensional structure

of protein chains as much as possible. Results show that, proteins conform to close

packed ordered structures with significant voids irrespective of the underlying lattice

bases.

Finally, we analyzed the spectral properties of networks used throughout the

thesis. Spectral changes while breaking and rewiring the edges revealed the im-

portance and roles of short and long-ranged contacts in determining the network

structure. Comparison of spectra distributions of different networks constructed

from condensed matter systems supported the result from statistical parameters

that these systems have structural similarities.
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Özet

Ağlar, son zamanlarda gerçek hayatta karşılaşılan karmaşık sistemleri mod-

ellemek için kullanılmaya başladı ve bu ağlar bu karmaşık yapılardaki, yapı-işlev-

dinamik ilişkilerinin nitelendirilmesinde önemli katkılar sağladı. Biz burada pro-

teinler, miseller, polimer eriyikler ve Lennard-Jones öbekleri gibi yoğun madde sis-

temlerinden oluşturulan ağlardaki istatistiksel ve spektral özelliklerle birlikte yerel

motifler ve genel davranış arasındaki ilişkileri incelemekteyiz.

Proteinler, etkileşen rezidü ağları olarak göz önüne alınırlar. Bilgi iletimi için

kullanılan yollar, rezidüler arası etkileşim enerjilerinin bağlantı ağırlığı olarak mod-

ellendiği ağ yapılarında ortalama yol uzunluğu ile incelendi. “Düşük enerjili” etk-

ileşimlerin sistematik olarak koparılması, ağ yapılarında yerel öbeklenmenin yüksek

olmasını sağlayan yedek bağlantıların oldukça fazla sayıda olduğunu ortaya çıkardı.

Ölçeksiz ağlardan farklı olarak, bilgi iletimi büyük oranda öbeklenmiş az sayıda grup

arasındaki etkileşimler ile sağlanmakta. Bu sonuç iki proteinin (ligand ve reseptör)

etkileşimi ile oluşan protein komplekslerine genişletilerek iki protein arası önemli

etkileşim çiftlerinin tanımlanmasında kullanıldı.

Yerel öbeklenmenin mevcut olduğu durumlarda yerel yapı ile genel özellikler

arası ilişki bariz değildir. Fakat, bazı özel durumlar için, tabandan başlayan bir

yaklaşım ile ilk komşular ile bir sonraki komşular arasında bir ilişki türetildi ve bu

ilişki yoğun madde sistemleri ve mükemmel kafes modellerinden elde edilen ağlarda

gözlendi.

v



Yerel düzen ve genel yapı arasındaki ilişkinin daha fazla irdelenmesi için rezidü

ağları detaylı olarak ele alındı. Yerel düzeni ortaya koymak için, rezidü ağları

mükemmel kafes yapılarından Metropolis Monte Carlo metodu kullanılarak elde

edilen kendi üzerine dönmeyen zinciler ile kıyaslandı. Sonuçlar proteinlerin kul-

lanılan kafes yapısından bağımsız olarak önemli miktarda boşluk içeren yoğun düzenli

yapılara uyduğunu gösterdi.

Son olarak tez boyunca kullanılan ağ yapıları spektral özellikler bakımından

analiz edildi. Bağlantıların koparılması ve rastgele bağlanması sırasında gözlenen

spektral değişimler kısa ve uzun menzilli bağlantıların ağ yapısını belirlemedeki

önemlerini ortaya koydu. Yoğun madde sistemlerinden elde edilen ağların spek-

trum dağılımı kıyaslamaları, istatistiksel değişkenlerde elde edilen sonuçla paralel

olarak, bu sistemlerin yapısal benzerlikler barındırdıklarını gösterdi.
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Before to dust you shall return
There is one thing that you must learn

Sorrow and pain your soul shall burn
Joy and bliss to light shall turn

∼

Dünya dediğin bir bakışımızdır bizim
Ceyhun nehri kanlı gözyaşımızdır bizim

Cehennem, boşuna dert çektiğimiz günler
Cennetse gün ettiğimiz günlerdir bizim

– Ömer Hayyam



Chapter 1

Introduction

1.1 Background

For the last two decades, complex network study has gained a lot of importance

in a wide range of areas. Understanding the structure of the World Wide Web

[2, 3] is crucial to categorize and catalog the web pages to utilize efficient search

mechanisms. Social scientists investigate social networks to understand information

flow and relationships in large social systems such as movie actors [1], scientific. co-

authorship [4] and sexual contacts [5]. Understanding and preventing the spread of

epidemic diseases requires careful analysis of the underlying relationships in complex

networks [6, 7, 8]. All these problems from different realms of science share a common

area of study called complex networks.

Networks were known in mathematics since Euler’s famous Königsberg prob-

lem led to a new area of study called graph theory. From a mathematical perspec-

tive, much of the work in this area is on random graphs [9], which deals with graphs

obtained by random processes. Although random graphs were extensively studied

in the mathematics community, particularly by Erdös and Rényi [10], realization

that real life systems may be represented by network structures accelerated complex
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network studies, in the 1990s.

One of the earliest results of real life networks was obtained by Stanley Mil-

gram in the 1960s [11]. He took about 60 letters, which were all addressed to the

same person in Boston, and distributed these letters to randomly selected people in

Nebraska. The aim was to get these letters to their destination in Boston, but each

person could only send the letter to another whom s/he knows on a first-name basis.

Although only a fraction of the letters reached their destination through a chain of

people, Milgram found that on the average it required about six steps to get a letter

to its destination. This result provided basis for the famous phrase, six degrees of

separation, and the result that two randomly selected persons can be connected with

a small number of links is generally known as the small-world phenomenon.

Networks have been used extensively in many fields of study, in last decade

[2, 4, 3, 5, 1]. In this study, a procedure to obtain subgraphs that would imitate

certain aspects of the whole graph has been developed. Most cases in the literature

studied vulnerability in the case of node removal [12, 13]; here, edge removal is

studied and generalized as a subgraph deduction method. Further, certain relations

between local and global measures of a network that are suggested by our numerical

studies are sought. Finally these methodologies and network theory will be applied

to some topics of materials science to understand and differentiate structures of

various materials.

1.2 Models of Networks

There are different models for networks that try to capture the structure of

real world networks. The simplest one is random graphs. These graphs are obtained

by distributing a fixed number of connections between nodes. If there are N nodes

and each node has k connections on average, one has to randomly distribute Nk/2

connections between these N nodes to form a random graph. This type of graphs
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was studied by Erdös and Rényi.

One can easily show that a random network has a logarithmically scaled short-

est path in the limit for large N . A certain node will have k first neighbors on the

average, k2 second neighbors, k3 third neighbors and so on. In general, the diameter,

D, can be aproximated by equating number of Dth neighbors to the network size

N . Thus, the diameter of a random network will be D = lnN/ ln k. Logarithmic

scaling of the largest distance with network size is one sign of small-world behavior.

In real life, there is considerable overlap of neighbors, a property that lacks

in random networks, and leading to their failure to explain most of the real world

networks. In other words, a node’s neighbors have a significant tendency to be inter-

connected, i.e. a person’s friends are probably also friends with each-other. This

property is called clustering in general. Clustering coefficient (C) is defined as a

measure for this property, where it is the ratio of the number of connections among

a node’s neighbors to the number of total possible pairs among its neighbors averaged

throughout the network. It can be shown that, for a random graph C = k/N , which

becomes quite small for a large network. It has been observed that, for various

real life networks, the value of C is significantly larger than that of random graphs

[14, 2, 15, 4, 16, 8, 1]. A network with a high clustering coefficient and small average

shortest path is called a “small-world network”.

1.2.1 Watts-Strogatz Model

In order to capture the high clustering coefficient, as well as the logarithmically

scaling average path length between any two nodes, Watts and Strogatz [17, 1]

proposed a model for generating networks. Their aim was to obtain an underlying

regular lattice with some random long range connections to provide shorter pathways

on the average. They started with a one dimensional regular lattice that is closed

on to itself so as to form a ring. Every node in the network has initially the same

number of connections, k, so that each node is connected to its k/2 neighbors (see

3



Figure 1.1. Description of Watts-Strogatz model [1].

Figure 1.1). They then consider each connection in the graph and rewire it with

a probability β. For small β, this gives a mostly regular graph with few random

shortcuts. For β = 1, the resulting graph will be completely random. The value of

k will be preserved.

For small values of β, the clustering coefficient of the resulting network will

be close to the ordered counterpart, which is considerably high. Conversely, the

addition of several long range shortcuts has a dramatic effect on the characteristic

path length. They reduce the average path length to values comparable to those of

random graphs.

Inspired by this model, different variations of the model have been proposed.

Newman and Watts [18] suggested a model that adds shortcuts, instead of rewiring

links. This model provides a better basis for analysis, because it eliminates the

possibility of a disconnected network, which is a risk in the original model. Another

model employs addition of new nodes that are randomly connected to the original

nodes [19, 20]. Both of these models show small-world behavior and result in similar

networks to the original model.
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1.2.2 Decentralization and other models for Small-World

Kleinberg [21, 22] suggested that, Watts-Strogatz model is not a good repre-

sentation of real networks. His argument was based on Milgram’s experiment. In

Milgram’s experiment each person on the chain is unaware of the overall structure

of the network. They only use the local information to choose the next person on

the chain. Yet, on the average, they manage to get to the target in a few steps.

Kleinberg argued that a decentralized algorithm that only uses local data to decide

on the next node could not always find the shorter paths in Watts-Strogatz model.

In fact, he showed that, only a certain random connecting scheme would allow a

decentralized algorithm to find the shortest paths. His model starts out with a

two-dimensional regular lattice. He then adds random long range shortcuts between

i and j with a probability that is proportional to d−ri,j , where di,j is the Euclidian

distance between nodes i and j. Kleinberg showed that for r = 2, there exists a

simple decentralized algorithm for finding the short paths. For any other value of

r, finding these short paths are much harder.

Another alternative model for small world was proposed by Albert and Bara-

basi [23]. Their objective was to recover the structure of the World Wide Web,

where there are a small number of nodes with a lot of connections and a lot of nodes

with very small connections. The model starts with a number of nodes and at each

time step a new node with fixed number of edges is added to the network. These

edges are connected to the existing network with a procedure called preferential

attachment, where the probability that a new node will be connected to an existing

node is proportional to the number of connections of the existing node.

1.2.3 Weighted Networks

Although networks provide useful tools for analysis, pure topology of the struc-

ture is only a first approximation to represent the underlying system. For example,
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mapping the internet backbone in a network structure could be useful, but to get

a meaningful analysis, one has to incorporate the traffic and capacity data to the

network. One simple way is to differentiate the connections from each other by

assigning each a weight that represents the data. In other words, one introduces

heterogeneity into the network.

The study of weighted networks is relatively new, because one tends to thor-

oughly understand the limitations of the simpler problem first. In certain cases,

weighted networks can be considered as a special case of homogenous networks.

Newman [24] showed that a weighted network with positive integer weights could be

replaced with a homogenous network having multiple edges so that the adjacency

matrices, which is a matrix that defines the interactions between nodes, are identi-

cal. For most cases, these two networks behave similarly, but in general one has to

work with the weighted network.

In order to characterize the weighted networks, several new parameters are

defined. It has been observed that individual edge weights themselves do not pro-

vide enough information [25]. As connectivity distribution is a defining parameter

for homogeneous networks, weight distribution is also crucial in the structure of a

weighted network. Any correlations between these distributions may affect network

behavior. In the presence of weights, one can modify the usual network descriptors.

For example, similar to the degree of a node, one can define the strength of a node by

simply adding the weights of connections that emerge from the node [25, 26]. One

can also modify the clustering coefficient so that it will reflect the weight structure

[25]. Furthermore, in the presence of weights two useful optimal path definitions can

be utilized. The first one is called “strong’ path”, which minimizes the maximum

weight along a path over all possible paths. The second one is called “weak path”

that minimizes the total weight along a path over all possible paths [27, 28, 29].
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1.3 Motivation

The main goal of this thesis is to investigate network properties and partic-

ularly analyze the relationship between local and global parameters of a network

by selecting the residue networks as the main case study. By “local” we refer to

network properties only stem from the local neighborhood of a given node. By con-

trast, “global” refers to how the same node relates to the overall features of the

whole network. For example, how the neighbors of a node are distributed provide

local information about the network structure, whereas paths traversing between

nodes would provide information about the global behavior of a network.

1.3.1 Information pathways in residue networks

Interactions, delay, and feedback are the three key characteristics of complex

systems. Using these features, entities at different time and length scales com-

municate with great accuracy, efficiency and speed [30]. Self-assembling molecular

systems are complex fluids with robust and adaptable architectures. Proteins, whose

internal motions are decisive on their folding, stability, and function, are exquisite

examples of these. Proteins are under constant bombardment in their environment

e.g. in the cell where other small and large molecules are densely and heteroge-

neously distributed, or in the test tube with only water around, displaying ceaseless

fluctuations around their folded structure. Since proteins function efficiently, accu-

rately and rapidly in the crowded environment of the cell, they are expected to be

effective information transmitters by design. The fact of the protein being func-

tional or not depends on the size of these fluctuations and how they are instilled,

making use of the concerted action of residues located at different regions of the pro-

tein [31, 32, 33, 34]. It is, therefore, of utmost interest to investigate how proteins

respond to changes in the environment under physiological or extreme conditions.

The response of any structure to perturbations depends on its general archi-
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tecture. For proteins, local, regular packing geometries [35] cannot provide short

distances between highly separated residues for fast information transmission. In

fact, it has been shown that random packing of hard spheres similar to soft con-

densed matter is observed in a set of representative proteins [36]. Consistent with

the concurrent requirement of order and randomness in the protein structure, we

[15] and others [37, 38, 39], have recently shown that proteins are organized within

the small-world network topology. A network is referred to as small-world if the

average shortest path between any two vertices scales logarithmically with the to-

tal number of vertices, provided that a high local clustering is observed [1]. Such

properties are common in many real-world complex networks [20, 40], and there are

examples from a diverse pool of applications such as WWW [41], the internet [42],

math co-authorship [4], power grid [1] and residue networks [15].

In recent years, proteins are modeled as networks of interacting amino acid

pairs to determine their network structure and to identify the adaptive mechanisms

in response to perturbations [15, 43, 44]. Also, similar network treatments of proteins

predict collective domain motions, hot spots, and conserved sites [45, 46, 47, 33, 48].

For these networks term residue networks is used [15] to distinguish them from

protein networks which are used to describe systems of interacting proteins [49].

Statistical analysis within these works show that proteins may be treated within

the small-world network topology. In the past few years, the network treatment

of residues in proteins have been adopted to study their various features such as

conserved long-range interactions [50], functional residues [51, 52], protein-protein

association [53], and detection of structural elements [54].

In all these treatments, which have been successful in describing many impor-

tant properties of proteins and provide insight as to how they function, the identities

of individual amino acids are omitted in the calculations. In other words, specificity

is taken into account in an indirect manner, by assuming that the locations of the

different amino acid types along the contour of the polymeric chain have been op-

erational in determining the particular average three-dimensional structure. In this

viewpoint, the interactions between different pairs, triplets, etc. of amino acids are
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assumed to be smeared out, and the observed behavior once the protein is folded,

is driven by the overall structure. In fact, it has been noted that the residue non-

specific interactions contribute more to the overall stability of proteins by a factor

of about five, compared to distinct residue-residue interactions [55]. Recent studies

considered residue specific properties in networks and by assigning weights depend-

ing on the interactions between amino acids, it is suggested that the residue networks

conform to random networks graphs with ascociated percolation behaviors [56].The

question remains, however, as to the extent to which such a coarsened description

of the folded protein may be used to determine other crucial properties, especially

those pertaining to dynamics.

In this thesis, we elaborate on the paths between residue pairs, which we term

information pathways, to understand how they relate to dynamic phenomena in

proteins. In particular, it is of interest to understand allosteric interactions medi-

ated through the changes in the dynamic fluctuations around the average structure,

both in the presence and absence of conformational changes, the latter having very

recently been shown to exist in proteins through a series of NMR experiments [57].

To this end, we attribute weights to the links between residue pairs using knowledge-

based potentials [58, 59], and discuss the relationship between dynamic phenomena

occurring in proteins and the optimal path lengths obtained from these weighted

networks. We show that it is possible to extract minimal sub-graphs from the fully

connected networks of residues, where a few designed-in interactions overlaying the

backbone are sufficient to display communication path lengths of residue networks

of interactions. We also demonstrate an application of these ideas using a non-

redundant data set of interacting proteins, and extract residue pairs on the interface

of the receptor/ligand that frequently appear along information pathways.

1.3.2 Local statistics of condensed matter networks

For a completely random network where the effect of local clustering is negli-

gible, it is possible to analyze the emergence of global parameters from local distri-
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butions. In the presence of high local clustering, redundancies are introduced to a

system in terms of global behavior and incorporating these effects in estimation of

global parameters becomes rapidly complicated. In the path from local to global,

intermediate steps require additional investigation. It can be derived that for cer-

tain networks number of neighbors of a node is proportional to the average number

of neighbors of its neighbors, where this value is closely related to number of sec-

ond neighbors of a node. Several real life spatial networks, including the residue

networks fall under this category.

The study of real life networks, such as the world-wide web [16], internet [42],

power-grids [1] and math co-authorship [4], has put forth properties that distinguish

them from classical Erdös-Rnyi random networks [60]. The variety of degree dis-

tributions and other statistical measures that emerge has heightened the interest in

complex networks. With the proposition of algorithms by Watts-Strogatz [1] and

Barabsi-Albert [23] to generate real life-like networks, this area has been investigated

extensively [22, 61]. The classification of networks is mostly based on measures such

as degree distributions, average clustering, and average path length [14, 62].

In recent years, proteins were investigated as networks, by taking the amino-

acids as nodes. Termed as residue networks (RN), edges between neighboring nodes

are represented by their bonded and non-bonded interactions [15, 63, 64, 65]. Several

studies have shown that residue networks have small-world topology [15, 37, 38, 39],

characterized by their logarithmically scaling average path lengths with network size,

despite displaying high clustering. Further studies also utilized network models for

protein structures to predict hot spots [46, 45, 47, 48], conserved sites [46, 45, 47, 48,

50, 66, 67], domain motions [68, 46, 45, 47, 69, 48], functional residues [51, 33, 52, 70]

and protein-protein interactions [53]. The small-world topology of residue networks

is established, and various network properties such as the clustering coefficient, path

length, and degree distribution are used to account for, e.g. the different fold-types

in proteins [50], interfacial recognition sites of RNA [66], and bridging interactions

along the interface of interacting proteins [63]. In light of these studies, we expect

other self-organized molecular systems of synthetic origin to display similar topology.
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In fact, a hierarchical arrangement of the nodes is expected to occur in self or-

ganization of atoms and molecules under the influence of free energetic driving forces.

In graph theory, hierarchies have been quantified by the presence of (dis)assortative

mixing of their degrees, defined as nodes with high degrees having a tendency to

interact with other nodes of (low)high degrees [71]. Analytical and computational

models for generating assortatively mixed networks were proposed [72, 73]. New-

man has shown that assortatively mixed networks percolate more easily and they are

more robust towards vertex removal [72, 74]; most social networks are examples of

these. In this work, we find RN of proteins to also have assortative mixing, although

many biological networks such as protein-protein interactions and food webs were

found to display disassortative behavior.

It is expected that in networks displaying any degree of correlations, local prop-

erties of the constructed graphs will have an effect on the global features. However,

a connection between the local and global network properties and the underlying

structure of molecular systems has yet to be established. In this study, we derive

a relationship relating the nearest neighbor degree correlation of nodes, their de-

gree, and clustering coefficient. We next show that a linear relationship is valid for

two types of self-organized molecular systems: (i) Folded proteins and (ii) block co-

oligomers in a solvent that encourages micelle formation. Furthermore, simulated

configurations of Lennard-Jones clusters also approximate the findings as well as a

simple polymeric system forced into a close-packed structure under extremely high

pressure. We also show that model hexagonal close packed (HCP) structures may

be used to reproduce many of the graph properties of the above-mentioned systems.

A brief description of the model systems are summarized under the Methods sec-

tion. This study is a first step towards the design principles of complex molecular

networks.
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1.3.3 Packing of proteins

Local clustering in these networks is a direct result of their three dimensional

structure. Therefore, it is imperative to understand the effect of structure to network

parameters. Focusing on residue networks, we look for local ordering in protein

structures by generating lattice based self-avoiding chains that would approximate

the real protein chain.

Research on lattice representation of proteins dwells on two problems. The

first problem is to accelerate modeling efforts by confining conformational moves

restricted in conformational space. In this setting, the fundamental use of the un-

derlying lattice is to provide a basic grid for realizing and updating conformations

[75]. There are many folding algorithms based on these ideas and they are widely

used in the computational biology community [76]. These algorithms make use of

various lattice types [77]. Notably, Covell and Jernigan uses a face-centered cubic

(FCC) lattice; they suggest a way to identify a lattice walk that approximates the

native state [78]. Similarly, a lattice model based on the diamond cubic lattice

(equivalent to a FCC lattice with a two point basis) has been introduced for pre-

dicting folded conformations at low spatial resolution, without reference to a native

state [79]. The use of closed pack structures has been suggested in studies on local

packing of residues [80], and hydrophobic-hydrophilic interactions [81].

The chain fitting problem onto a crystal lattice in <3 using root mean square

deviation metric has been shown to be NP complete [82], if self-avoidance criteria is

strictly and rigorously enforced. Therefore various heuristic approaches have been

developed for attacking the problem. The simpler problem which does not entail the

self-avoiding property can be solved in polynomial time and two such chain-fittin

algorithms have been developed so far [83, 84].

Covell and Jernigan attempt to create all conformations on an FCC lattice

and choose the optimal conformation based on non-bonded pairwise potential en-

ergy minimization [78]. The use of dynamic programming algorithms in finding an
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optimal lattice fit to a template chain [85, 86] has been suggested as an alternate

approximate solution which iterates by minimizing a global error function. Al-

ternatively, a greedy algorithm has been proposed and this attracted considerable

attention [87]. Yet another method is the self-consistent mean field theory approach

which finds the optimal fit starting from a set of lattice points through an iterative

procedure to minimize an energy function with a lattice probability weight matrix

[88]. Although the large majority of research focuses on representing backbone fit-

ting, side chain atoms can also be accounted for without much difficulty [89].

Many studies favor crystal prototypes FCC or HCP for realistic representation

of protein energetics. Yet alternative closed pack structures which possess different

stacking patterns has never been accounted for in treating in them [77]. This is

important because altering stacking of triangular layers does not disturb closed-

packedness [90].

In our approach we introduce a Metropolis Monte Carlo scheme where the ran-

dom conformational variations on lattice sites are evaluated by structural alignment

of resulting self-avoiding lattice chains onto real protein chains by use of quaternion

based alignment algorithm [91]. Acceptance of new conformations are then based

on the root mean square deviations of aligned sequences. We then analyze resulting

self-avoiding chains and compare them to their protein counterparts by looking at

the spacial and network properties.

1.3.4 Spectral properties of networks

Spectral analysis of systems provide valuable information about their dynamic

properties. For proteins, normal mode analysis was used to analyze coupled motions

in low frequency modes and helped classification of protein motions, e.g., hinge bend-

ing and shear [92]. It has further been shown that the predominant contributions

to these motions may be described by a single, most collective mode for some pro-

teins, whereas it may be obtained from a superposition of several modes for others
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[93]. With the advent of coarse graining of biomolecular structures through residue-

based network models [43, 45, 92], it has been possible to study a large number of

protein structures. These anisotropic network models (ANMs) take into account

the three-dimensional geometry of interacting pairs of residues to study the modal

behavior of proteins. Using such information, it is possible to morph between the

apo and holo structures to gain insight into the intermediates that lead to the final

structure [94, 95, 96]. Eigenvectors corresponding to the lowest eigenvalues provides

information regarding the confromational changes during binding [97, 95, 93].

In terms of networks, spectral properties gained attention since the distribu-

tion of eigenvalues of normalized Laplacian [98] characterize several aspects of the

network such as algebraic connectivity, motif replication and bipartiteness [98, 99,

100, 101]. An extention of normalized Laplacian to three dimensions was recently

applied to the analysis of local arrangements in residue networks [102].

Here we employ spectral analysis of normalized Laplacian to networks obtained

from condensed matter system in order to characterize structural properties. Al-

though the spectra of normalized Laplacian is not unique, i.e. different networks

with identical eigenvalues may be formed, these isospectral systems behave similarly

in terms of monitored network parameters [98] and can be considered a family of

systems with similar properties.
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Chapter 2

Network descriptors

Networks are modeled with mathematical constructs called graphs. A graph

G, consists of a set of vertices V (G) (also called as nodes) and a set of edges E(G)

where an edge is an unordered pair of vertices in V (G). An edge between x and y

can be denoted in short form as xy. If an edge xy is present in the graph, x and y

are called adjacent vertices and y is denoted as a neighbor of x.

Although equality between two graphs requires that they have the same vertex

and edge sets, simple reordering of the vertices in the vertex set does not alter the

relationship in a graph. Therefore instead of equality, it is generally more conve-

nient to define isomorphism between graphs. Two graphs A and B are said to be

isomorphic if there is a bijection f from V (A) to V (B) such that f(x) and f(y) are

adjacent if and only if x and y are adjacent. Isomorphic graphs can be treated as

equal graphs without loss of generality.

A graph is called complete if every pair of its vertices are adjacent, and it is

called empty if the edge set is an empty set. The above definition of a graph assumes

a symmetric relationship between edges, i.e. if x is a neighbor of y, then y is also a

neighbor of x, and these graphs are called simple graphs. Although it is possible to

define asymmetric relations between vertices via directed edges, this work utilizes
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undirected networks therefore directed graphs are not discussed. Depending on the

model, values can be associated with edges to differentiate variations in relative

importance within the edges. These values are called weights of edges.

Subgraphs deduced from graphs usually provide important properties. A sub-

graph of a graph is a graph with vertex set and edge set that are subsets of the

parent graph. A clique is a subgraph that is complete. A path of length l from

x to y is a sequence of l + 1 distinct vertices starting with x and ending with y

such that every consecutive vertices are adjacent. A graph is called connected if

there is a path between any two vertices in the graph. A cycle is a subgraph where

every vertex has exactly two neighbors. Minimum possible cycle is a three vertex

subgraph, which is also a clique and often called a triangle. At the other extreme

graph without any cycles is called a tree. In a connected graph with cycles, there is

more than one path between any two vertices. Therefore, the shortest path length

between two vertices is generally described by the path with the smallest length.

In the presence of weights, it is also useful to use alternative optimal path length

definitions by the length of the path that minimizes a function of the edge weights

along the path.

2.1 Matrix representations

A graph is usually represented with a matrix called the adjacency matrix A.

Rows and columns of the adjacency matrix correspond to the vertices and Aij entry

is the number of edges between vertices i and j. Since all the graphs in this work

does not contain multiple edges between two vertices, adjacency matrices are binary

(i.e. Aij entry of the adjacency matrix is either 1 or 0 depending whether or not

vertices i and j are adjacent). It should be noted that the adjacency matrix fully

defines a graph and the parameters that are often used to classify networks, can be

computed directly from the adjacency matrix.
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The most common parameter that is of importance is the degree ki of vertex i.

Degree is basically the number of neighbors of a given vertex and it can be calculated

as;

ki =
N∑
j=1

Aij (2.1)

where N is the number of vertices in the graph. Higher order degree correlations

are also of importance and may be utilized to identify more distinguishing features

of the network. For instance, average nearest neighbor degree of a node i, denoted

by knn,i, is the average degree of its neighbors and may be written in terms of the

adjacency matrix.

knn,i =
N∑
j=1

N∑
m=1

AijAjm =
N∑
j=1

Aijkj (2.2)

Normalized third degree correlations (Ci), known also as the clustering coeffi-

cient, is widely used to characterize the distinctness of networks. It is defined as the

ratio of the number of interconnections between a node’s neighbors to the number

of all possible connections. Ci is closely related to the number of triangles involving

the vertex i and can be considered as a measure of local cliqueness around a vertex.

Ci =
1
2

∑N
j=1

∑N
m=1AijAjmAim
k(k−1)

2

(2.3)

While ki, knn,i, and Ci are descriptors of local structure, another common

parameter used to classify the global structure of graphs is the average shortest

path length, Li of a node. Given that the shortest path length from i to j is Lij, it

is the average number of steps that are traversed from all other nodes to node i:

Li =
1

N − 1

∑
j 6=i

Lij (2.4)

Another matrix that is associated with graphs is the Laplacian (also known as

the Kirchoff) matrix. The Laplacian of a graph L is used extensively in the graph

theory literature and bears some important aspects of a graph. It is defined as
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L = D−A, where D is a diagonal matrix with Dii = ki. The Laplacian is a positive-

semidefinite matrix and its spectrum may be used to diagnose certain underlying

features of the graph. For instance, the second lowest eigenvalue is associated with

the algebraic connectivity of the graph and it denotes how well connected the graph

is. In this study, we use the normalized Laplacian, L∗.

L? = D−
1
2 (D−A)D−

1
2 (2.5)

The spectrum of the normalized Laplacian is also used to categorize networks,

i.e. the presence of an eigenvalue at λ = 2 implies the network is bipartite, the

multiplicity of the eigenvalues at λ = 1 is a measure of motif duplication in the

network, and the second eigenvalue indicates how well the network is connected

[9, 98, 100].
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Chapter 3

Optimal paths in residue networks

One of the ways that a graph can be used to analyze is the information transfer

in the network through the connections. Here, we consider proteins as a network of

interacting residues and we elaborate on the paths between residue pairs, which we

term information pathways, to understand how they relate to dynamic phenomena

in proteins. In particular, it is of interest to understand allosteric interactions medi-

ated through the changes in the dynamic fluctuations around the average structure,

both in the presence and absence of conformational changes, the latter having very

recently been shown to exist in proteins through a series of NMR experiment [57].

To this end, we attribute weights to the links between residue pairs using knowledge-

based potential [103, 59], and discuss the relationship between dynamic phenomena

occurring in proteins and the optimal path lengths obtained from these weighted

networks. We show that it is possible to extract minimal sub-graphs from the fully

connected networks of residues, where a few designed-in interactions overlaying the

backbone are sufficient to display communication path lengths similar to that of

the full residue network. We also demonstrate an application of these ideas using

a non-redundant data set of interacting proteins, and extract residue pairs on the

interface of the receptor/ligand that frequently appear along information pathways.
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3.1 Model

3.1.1 Spatial residue networks

For the single protein calculations, we utilize 595 proteins with sequence ho-

mology less than 25% [104] and sizes spanning ca. 50 to 1000 residues. For the

receptor-ligand complexes, on the other hand, we use the non-redundant bench-

mark set of Weng and collaborators developed for testing docking algorithms that

contains an overall of 59 pairs of proteins with 22 enzyme-inhibitor complexes, 19

antibody-antigen complexes, 11 other complexes, and seven difficult test cases [105].

We form spatial residue networks from each of these proteins using their Cartesian

coordinates reported in the protein data bank (PDB) [106]. In these networks, each

residue is represented as a single point, centered on the Cβ atoms; the Cα atoms are

used for Glycine residues. Given the Cβ coordinates of a protein with N residues,

a contact map can be formed for a selected cut-off radius, rc, an upper limit for

the separation between two residues in contact. This contact map also describes a

network which is generated such that if two residues are in contact, then there is

a connection (edge) between these two residues (nodes). Thus, the elements of the

adjacency matrix, A, are given by

Aij =

 H(rc − rij) i 6= j

0 i = j
(3.1)

Here, rij is the distance between the ith and jth nodes, H(x) is the Heaviside

step function given by H(x) = 1 for x > 0 and H(x) = 0 for x ≤ 0. We adopt the

value for the cutoff distance rc = 6.7Å that includes all neighbors within the first

coordination shell around a central residue.

In the case of the weighted residue networks, we assign weights to the edges

according to the inter-residue interaction potentials of Miyazawa and Jernigan [103]
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and Thomas and Dill [59]. These are statistical potentials extracted from a protein

data base. Both potentials have been extensively tested in threading algorithms

[107, 58], protein stability and designability studies [108], folding and binding en-

ergetics, as well as amino acid classification [109]. The Miyazawa-Jernigan (MJ)

potential is based on a set of protein subunit structures exceeding 1600 in number

[103]. In their treatment of the problem, the system is taken as an equilibrium mix-

ture of unconnected residues and effective solvent atoms. The Bethe approximation

is employed to estimate the contact energies from the numbers of contacts that arise

in the sample. Excluded volume is taken into account by the inclusion of a hard-

core repulsion between the residues and a repulsive packing-density-dependent term.

The Thomas-Dill potential, on the other hand, utilizes a much smaller data set of 37

proteins [59]. The authors use the folded chain conformation as the reference state,

instead of a collection of randomly mixed particles of residues and solvent molecules

[in treatments using the Bethe approximation, the problem of reference states has

been addressed and corrections have been proposed[110]]. Thomas and Dill em-

ploy an iterative method which extracts pair potentials that incrementally drive the

system towards a lowest energy structure that corresponds to the native structure.

The main discrepancies in the statistical potentials that result from the approximate

treatment or neglect of excluded volume, chain connectivity and interdependence of

pairing frequencies are therefore intrinsically taken care of.

Here, we have repeated all the calculations using both the Miyazawa-Jernigan

and the Thomas-Dill knowledge-based potentials. Despite differences in details, the

main results and conclusions reached do not change with the choice of potential. In

what follows, we therefore report only results from the Thomas-Dill potentials. We

assign eij, value of the connection between the ith and jth residue, according to the

inter-residue interaction potential between the ith and jth residue types. Thus, the

links connecting the residue pairs with the least favorable interaction energy have

the lowest weight, i.e. the highest value.
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3.1.2 Network descriptors

The networks are classified by local and global parameters, all of which can be

derived from the adjacency matrix. In the absence of edge weights, the most general

descriptors of the network structure are average degree of a node (equation 2.1), and

the average shortest path length (equation 2.4) through the network. The average

degree of the network is thus z = 〈ki〉, where the brackets denote the average over

all nodes. The degree of the residue networks follow the Poisson distribution [15].

The shortest path length, Lhij, of a homogeneous network, where the links have

no weights, is the minimum number of connections that must be traversed to connect

residue pair i and j. In computing the shortest path between a pair of nodes, we

make use of the fact that the number of different paths connecting a pair of nodes

i and j in n steps is given by (An)ij. Thus, the shortest path between nodes i and

j is given by the minimum power, m, of A for which (Am)ij is non-zero.

In the presence of weights, it is possible to define additional path lengths so

as to take into account the skewing effects of the weights. Weights may be factored

into the path lengths using different optimality criteria. We define two criteria for

paths between two residues [27, 28, 29], weak disorder and strong disorder. In the

former one, the optimal path connecting residues i and j is the length of the path,

Lwij, that minimizes the sum of the weights along the path and it can be written as;

Lwij = length(argmin
pij

(
∑
e∈pij

w(e))) (3.2)

where pij is a path from node i to node j, e is an edge in pij and w(e) is the

weight for edge e. We employ Dijkstra’s algorithm to compute the optimal paths in

the weak disorder case. In the latter (strong disorder) case, Lsij is the length of the

shortest path that minimizes the maximum weight along the path.
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Lsij = length(argmin
pij

(max
e∈pij

w(e))) (3.3)

To obtain Lsij, we sort the links in descending order and sequentially remove

the links beginning with the highest weight (lowest energy). We continue to remove

the links until we find the bottleneck link which will cause the connectivity between

vertices i and j to be lost. We then compute the length of this remaining path in

terms of the number of intervening links. Note that once the optimal path connecting

residues i and j is determined, the path length is simply the number of connections

along the path; i.e. the step lengths themselves are not weighted.

The characteristic path length of the network is then the average over all

possible node pairs,

L† =
2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

L†ij (3.4)

where the dagger symbol, †, represents the homogeneous, weak or strong paths,

Lh, Lw, and Ls, respectively. Here, N is the number of residues in the protein. Note

that L† is a measure of the global properties, reflecting the overall efficiency of the

network, under the imposed constraints; i.e. the lower L† is, the faster information

is communicated through the network.
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3.2 Results

3.2.1 Random coils as a basis for comparison

Proteins may be modeled as networks where a special set of interactions are

imposed on chain connectivity and the extent to which such interactions are specially

designed are of interest here. In this study we generate a variety of networks based

on selected proteins. A firm basis for comparing the various networks that may be

formed from a given chain with a known contact number is a chain of the same

length and the same number of connections for each of its nodes, but a randomized

set of links between the nodes. To generate such networks, we rewire every residue

(node) randomly to another residue chosen from a uniform distribution such that

each residue has the same number of neighbors (contact number, ki), while the

contact order changes; chain connectivity is preserved by keeping the (i, i + 1)

contacts intact. Such a network corresponds to the random coil conformation of a

polymer chain at an arbitrary point in time. Degree distribution of residue networks

is Poisson [15]. It is also known from network theory that a completely random,

Poisson distributed network has the shortest path length,

Lrandom =
lnN

ln z
(3.5)

where z is the average degree of the network.

Figure 3.1 shows different shortest path lengths for residue networks. Results

are presented for the non-redundant set of 595 proteins whereby values for proteins

of size (m ± 1)10;m = 3, 5, . . . are averaged. Protein path lengths computed with

the weak disorder limit are not distinguishable from those of shortest paths on

homogeneous networks; both may be best-fitted by a line of slope 5.2. Optimization

with the strong criterion results in networks with significantly longer path lengths

(best-fitting line through the data is shown by the dashed line; slope is 9.0). For
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Figure 3.1. Optimal path lengths, Lh(•), Lw (solid line), Ls(◦), of the protein net-
works in comparison to those of the theoretical value of Poisson dis-
tributed random networks of the same size and number of neighbors
(Lrandom, eq. 3.5).

comparison, random coils have also been generated by random rewiring of the residue

networks while preserving connectivity (see text). These networks provide the same

result as a totally randomized network (no chain connectivity) of the same size

(slope is 1.0). At the other extreme, randomized weights have been imposed on the

original residue networks (dotted line). Ls for these are longer by a factor of ca. 1.3,

indicating that the weights in a protein are specifically distributed.

As shown in figure 3.1 bottom curve, it is verified that the randomized chains

behave exactly as expected from a completely random collection of nodes. Average

path lengths on the residue networks, Lh, on the other hand, are significantly higher

than the randomized networks while still preserving the approximately logarithmic

dependence on number of residues, as shown with the filled circles in figure 3.1. The

loss of high optimality (i.e. a two-fold increase in the shortest path lengths compared

to a random network) must be compensated by the emergence of functionality in

the self-organized structure. This exchange is achieved along the scaffold of the

non-random networks formed by the residues of the proteins.
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3.2.2 Optimal paths in the presence of weights

In the absence of weight information of the links (i.e. for a homogeneous

network), Lh is the only parameter we can use as a measure of the distance between

nodes in the network with N vertices. In the presence of weights, the heterogeneity

of the medium is taken into account; hence different types of optimality criteria can

be defined. In the case of weak disorder, the sum of the potentials along the optimal

path is minimized to obtain Lw. This can be interpreted as the path that causes

minimum possible total disturbance to the residues along the path. The links with

lower potentials are more likely to tolerate the disturbances. In Figure 3.1 we display

a comparison of shortest paths of homogeneous and weak disordered networks, Lh

(symbols) and Lw (line), respectively, with that of the random coil. The correlation

between the two data sets is excellent, showing that the weighted network in the

weak disorder limit behaves similar to the homogeneous network. The optimal path

in the strong disorder, on the other hand, is the path that minimizes the maximum

of the potentials along the path, which can be interpreted as the shortest path that

causes minimal maximum disturbance along the path. As exhibited in Figure 3.1 for

the strong disorder case (see the open circles and the overlaying best-fitting dashed

line), Ls is significantly larger than Lw by an average factor of 1.3.

3.2.3 Are weights imposed on the links significant for the

protein?

To answer this question, we randomly reassign the potentials attributed to

pairs of residues. This is achieved by redistributing the 210 different types of pair

potentials in the Thomas-Dill potential matrix, so that the same residue type pair

always has the same value. As such, the underlying network structure remains

unchanged, while the optimal paths that are preferred will be affected. The results

based on these networks are obtained from five realizations of this randomization.
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Two major observations are made for such networks: In the weak disorder

limit, the optimal path lengths increase (data not shown), signifying that the residue

pairs are specially distributed in the protein network so as to have similar allotment

of weights around a given node, although the values themselves have a large span

[-1.8 . . . 1.5]. Moreover, the strong paths in the weight-randomized networks are

longer (shown by the dashed line in figure 3.1), further corroborating this finding

with the more stringent constraint that key links minimizing the maximum weight

along given paths exist in the folded protein.

3.2.4 Identifying redundancies in the protein communica-

tion pathways by extracting sub-networks

We deduce sub-networks from the original residue networks of each of the

595 proteins utilized in this work by systematically removing links that have values

higher than a given cut-off value, ecut. Chain connectivity is preserved regardless of

the residue types flunking a given bond. We rely on the fact that, a protein under

external disturbance will have a higher tendency to lose communication through

high energy contacts, while the low energy ones will be more cohesive. The shortest

path lengths of each of the remaining networks are subsequently computed.

Several important cases are presented in figure 3.2, as a function of the random

coil of the same size, N , and the same original number of neighbors, z. The distri-

bution of the links is shown in the inset to this figure, and the chosen cut-off values

are marked on the distribution. Sub-networks from the original residue networks

are deduced using the edge values, whose distribution for the 210 possible residue

pair interactions are shown in the inset. Edges with values higher than a given

cut-off, ecut, are removed and the new shortest path lengths of these sub-networks

are computed; connectivity is preserved. The redundancy in the proteins is such

that, when ca. half of the long-range contacts are removed, the system still has

the same path length. Upon further removal of contacts, the paths get longer, and
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Figure 3.2. Optimal path lengths of the protein networks constructed with various
schemes as a function of the randomized counterparts of the original
networks (eq. 3.5).

they overlap with Ls at ecut = −0.6kBT (only ca. 20% of the long-range contacts

remaining). Further removal of contacts results in a sudden increase in the shortest

path lengths, exemplified by the case of ecut = −1.0kBT (slope = 22.6).

The redundancy in the proteins is such that, when ca. half of the non-bonded

contacts are disregarded, ecut = 0, the system still has the same shortest path length

as the full protein that preserves all of its contacts (compare the green line and the

black data points). Upon further removal of links, the paths get longer, and they

overlap with Ls at ecut = −0.6kBT (compare the blue line and the red data points).

At this point, only ca. 20% of the long-range contacts remain in the sub-networks.

Further removal of contacts results in a sudden increase in the shortest path lengths,

exemplified by the case of ecut = −1.0kBT. In figure 3.1, this data set is shown in

purple, along with the best fitting line (slope = 22.6, in comparison to the random

networks where the slope is one). Note also that the scatter in the data is extreme,

signifying that the logarithmic dependence of path lengths on number of residues is

lost.
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Figure 3.3. Optimal path lengths of the protein networks constructed with various
schemes as a function of the randomized counterparts of the newly con-
structed networks, Lrandom = lnN/ ln z∗.

Another way to observe this data is by plotting the shortest path lengths of the

sub-networks as a function of the random coil of the same size, N , and the modified

(reduced) number of neighbors, z∗ (figure 3.3). Although the path length increases

as networks with less contacts are formed, as expected, the slope of the best-fitting

line remains constant until ecut = −0.6kBT, i.e. coincides with the original, fully

connected network that utilizes the strong paths as was shown in figure 3.2. Further

removal of links results in a dramatic increase in the shortest paths, as exemplified

by the ecut = −1.0kBT case (purple; values on the right y-axis). Again, it is observed

that the scatter in the data increases as the sub-networks approach a linear chain

(ecut = 1.8kBT, i.e. only connectivity remains).

3.3 Discussion

A folded protein needs to perform its function under the constraints that the

overall shape is suitable for the task it undertakes, while it is not energetically penal-

ized. As a molecular machine, it needs to optimize the time it takes to communicate
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the incoming information, which, to a first approximation, may be assumed to be

linearly dependent on the shortest path length in its residue network. Excluded vol-

ume imposes another limit on the size of the molecule. As incoming information, we

refer to perturbations that are imparted on one or several of the residues. Changes

in the environmental conditions that are reflected on thermodynamic parameters,

such as the temperature, will affect the whole system. The latter are not of concern

in this study, since these may potentially change the overall network structure.

In the previous section we have displayed results that introduce several dif-

ferent perspectives to evaluate how folded proteins are organized so as to manage

their redundancies under sub-optimal conditions. Our basis for comparison is the

random coil, whereby a Poisson distributed arrangement of residues will always lead

to the most optimal path length, given by the analytical relationship of equation

3.5. The random networks constructed for figure 3.1 have the same average number

of neighbors as their folded network counterparts [z = 6.9]. They may be thought

of as compact chains that constantly change their partners at different points in

time. They, therefore, represent an average over many significantly different config-

urations, in direct opposition to the case of a folded protein, where residues always

keep the same neighbors while they fluctuate in space. For a given amount of ex-

cluded volume, decided upon by chain connectivity and the number of long-range

contacts, the random coils give a limiting value for how fast information may be

spread through the system.

On the other hand, information spreading will take on different forms in a

protein depending on the type of local perturbation that is received. Two limiting

situations may be distinguished: (i) Proteins experience constant random fluctua-

tions from the environment under the usual conditions they function; e.g. random

collisions with solvent molecules, formation of local hot spots, etc. We classify these

perturbations, extensive in number but small in the size of fluctuation they invoke,

as everyday events. (ii) At other times, there will be large perturbations that will be

targeted on specific regions, such as those occurring during binding, or approach of

a large cellular body to unspecified regions of the protein. We classify these pertur-
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bations as extreme events. The modes of response from the protein are expected to

be different for the two types of events. In other biological systems, such modified

reactions to different types of input (global vs. pathway specific noise) were also

observed and quantified; e.g. for the variation in the behavior of genetically identical

cells [111, 112].

In folded proteins, the network structure, equivalent to a coarse graining ob-

tained from the average conformation of the folded structure, is expected to remain

nearly the same under both conditions. However, the way the energy will be trans-

mitted throughout the network will differ according to the type of perturbation.

Noting that the network is mostly made up of residues held together by non-bonded

interactions, the proximity of pairs of residues will not differ; e.g., in many cases,

the structure of the bound and unbound forms of a ligand protein to its receptor is

less than the experimental uncertainty as in the case of chymotrypsin inhibitor II

[33]. However, the transfer of information (energy) along the residue network will

only occur if the fluctuations in neighboring residues are correlated along any chosen

pathway [as conformational variability increases, the communication of a signal in

a molecule, e.g. conductance, occurs with less strength and over a broader range

of values, as was recently demonstrated through unique experiments in a series of

diphenyl containing small molecule systems[113]]. For small perturbations caused

by random fluctuations, the correlations between neighboring residues are expected

not to be affected, and the most probable pathway for information transmission

is the lowest energy one i.e. Lw. For large impacts (extreme events), although

the overall network structure will be preserved due to the pressure exerted by the

compact structure of the molecule, the correlations between pairs of residues that

are weakly connected to each other will be lost. For the purpose of information

propagation, those pathways may be assumed to be non-existent; i.e. those network

connections will be lost.
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Figure 3.4. Change in network parameters of the sub-networks.

3.3.1 Properties of the residue network under varying de-

grees of external perturbations.

Usually, the impacts imparted on the protein in its usual environment will be

intermediate between the two extremes of small perturbations and large impacts.

Our analysis in figure 3.3 shows the operational limits of these molecular machines:

We may classify those perturbations that delete nearly half the non-bonded con-

tacts from being functional (i.e. ecut = 0.0kBT) as everyday events. The change

in the average path length of the protein relative to the change in that of the ran-

domly rewired counterpart (δL′/δL′random, where L′ refers to path length on the

sub-networks with the lower average connectivity, z∗) remains fixed for that range

(figure 3.3). The latter quantity is shown for the whole range of values of ecut in

figure 3.4a. In the same range of values, the average shortest path length, a size de-

pendent quantity, is also constant (figure 2.4b). The change in the average number

of neighbors of a node is also relatively small, decreasing from 6.2 to 5 (figure 3.4c).

Noting that two of these neighbors are located along the chain, at ecut = 0.0kBT an
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average node has lost one of its four non-bonded neighbors.

Further removal of the links signifies even larger perturbations to the protein.

Up to ca. ecut = −0.6kBT, where the shortest path lengths on the sub-networks

coincide with the strong paths of the original weighted residue networks (marked

by the dashed lines in figures 3.4a-c), the quantity δL′/δL′random shows a decreasing

trend (inset to figure 3.4a). In the range of ecut = −0.60.0kBT, the increase in

L is less than a factor of two for all sizes of proteins, whereas its value increases

logarithmically beyond that cut-off (ecut < −0.7kBT; see figure 3.4b). The logarith-

mic dependence of the path length on chain size is also preserved in this range (see

figures 3.2 and 3.3). Note that at this critical value of the cut-off, only about one

non-bonded contact per average node remains (figure 3.4c).

Representative proteins of α, β, α/β types are shown in figure 3.5; ribbon dia-

grams of the structures deposited in the Protein Data Bank [106] are shown in the

first column. All non-bonded contacts (thin lines) superimposed on the backbone

(thick lines) are shown in the second column. The strongest links that form the un-

derlying structure and that give the polymeric chain its protein-like path lengths are

shown in the third column. 14, 21, 13, and 18 % of the non-bonded contacts remain

in these proteins Any other interactions added to these create redundancies that

contribute to the robustness of the structure so that the protein is able to function

under the harsh conditions of the cell. In reality, depending on the size and direction

of the impact, some of the weaker links that are located far from that site may be

preserved; i.e. we do not expect the links to be lost hierarchically. Nevertheless, the

proteins reaction to the perturbation, as measured by the average path lengths of

the effectively remaining contacts, is relatively insensitive to size and direction, as

long as the most cohesive of the interactions remains intact.
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Figure 3.5. Example networks from proteins with common folds.
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3.3.2 Practical application: Optimal paths in interacting

proteins

We postulate that residues, frequently found along the paths connecting a re-

ceptor ligand pair, control the communication between the two proteins. Since

binding is an event that requires exchange of large amounts of energy, in this treat-

ment, we use the optimal paths with strong disorder which emphasize the largest

barriers to be crossed along the way. Using the benchmark set of 59 receptor-ligand

complexes [105], we seek the pairs of residues that are most significant in determining

key interactions.

We first record the pairs that form bridges between receptor and ligand for

every path that originates in the receptor and ends in the ligand; i.e. residue i is

located on the receptor and residue j is located on the ligand and they are connected

within the network formed by the protein protein complex. We then take into

account the fact that the propensity of a selected amino acid type being located

along the interaction surface significantly varies, as reported by Ma et al. [114];

e.g. TRP, ARG and GLN are the residues that are found most frequently on the

interface. Therefore, we normalize the probability of finding a residue pair along

the strong pathways, pi↔j. Thus, the conditional probability, p(i ↔ j | i, j), can

be computed by relating the probability that the pair actually appears along the

selected paths, to the probability of each of the residues in the pair being located

on the interface, qi and qj:

p(i↔ j | i, j) =
pi↔j/qiqj∑
pi↔j/qiqj

(3.6)

pi↔j is assumed to be proportional to the frequencies that these pairs are

observed in the interface along the strong paths determined in this study. qi and

qj are taken to be proportional to the propensity of the residue to be found in the

interface of either the ligand or the receptor, as reported in the literature [114]. The
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Table 3.1. Residue pairs that appear in the interface with significantly enhanced
probabilities.

Residue Pair Propensity-normalized Contact Potential
(Receptor → Ligand) probability p(i↔ j | i, j) (units of kBT)

ILE → VAL 0.130 -0.98
ALA → ILE 0.041 -0.64
ILE → ILE 0.039 -0.71
ILE → LEU 0.036 -1.04
GLU → LYS 0.032 -0.09
LEU → ILE 0.030 -1.04
VAL → VAL 0.027 -1.15

resulting conditional probabilities of the most significant pairs are listed in Table

3.1, along with the value of the TD contact potential.

Note that the pairs that are used in the paths consist mostly of the hydro-

phobic-hydrophobic interaction types, though not necessarily appearing in the order

of cohesive energy. In fact, if all amino acids are grouped in the broadest sense of

hydrophobic, polar, charged, and GLY, over 42% of all pairs that appear along the

interface and that are on the strong paths make hydrophobic-hydrophobic contacts.

Furthermore, the interactions need not be symmetric; in fact, the most significant

pairs have ILE on the receptor and VAL on the ligand (normalized probability is

0.13). The reverse arrangement does not appear to be significant. A similar obser-

vation is also made for the ALA - ILE pair. In contrast, ILE and LEU pairs appear

to be involved in specific interactions, though not with a significant preference for

the ligand or the receptor. One example ligand-receptor system of α-chymotrypsin

in complex with eglin c is shown in figure 3.6. Bridging residue pairs that are on the

largest number of pathways between the receptor and the ligand are shown in or-

ange and green, respectively. The interacting pairs are (enzyme - inhibitor): PHE39

- TYR49, PHE41 - LEU47, VAL213 - LEU45, TRP215 - LEU45; note that LEU45 in-

teracts with two residues. Note that in the large interaction surface of the protein

pairs, it is possible to identify four key interactions utilizing three residues on one

protein and four on the other.
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Ligand Receptor

Complex

Figure 3.6. Example receptor-ligand system of the enzyme eglin c in complex with
the inhibitor α-chymotrypsin; PDB code: 1acb.
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Chapter 4

Relationship between knn and k for

complex networks

A connection between the local and global network properties and the under-

lying structure of these self-organized molecular systems has yet to be established.

The problem becomes increasingly complicated, when there are deviations from a

random network, where interactions between neighbors, their neighbors, etc. are

not negligible. However, it is possible to tackle this problem with a bottom-up ap-

proach. To address this, we derive a relationship that relates the degree of a node

to the average degree of its neighbors in the presence of clustering. We show that

this relation holds for various spatial networks that are obtained from self organized

systems, condensed soft matter and regular crystalline structes.

We finally show that the correlations extend into farther neighbors of a node

for the subset of spatial networks studied here. Thus, it is possible to extend local

information to global information for some network structures.
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4.1 Relationship between knn and k in graphs with

uniform clustering

The generating function, G0(x), for the probability distribution of vertex de-

grees k is given by [115],

G0(x) =
∞∑
k=0

pkx
k (4.1)

where |x| ≤ 1, pk is the probability that a randomly chosen vertex on the graph has

degree k, and its distribution is normalized with G0(1) = 1. The G0(x) function gen-

erates the probability distribution of degrees, capturing all the discrete probability

values through the derivatives property,

pk =
1

k!

dkG0

dxk

∣∣∣∣
x=0

(4.2)

The nth moment of the distribution can thus be calculated from

〈kn〉 =
∑
k

knpk =

[(
x
d

dx

)n
G0(x)

]
x=1

(4.3)

In particular, the average degree of a vertex is 〈k〉 = z =
∑

k kpk = G′0(1).

If one randomly chooses m vertices from a graph, then the powers property of

the generating function provides a route to generating the distribution of the sum

of the degrees of those vertices by [G0(x)]m.

We define outgoing edges from the first neighbors of a randomly chosen vertex

as those that connect to vertices that are different from the first neighbors of the

originally chosen vertex. It is first necessary to define the generating function for

the distribution of the degree of the vertices one arrives at, along a randomly chosen

edge. That vertex will be reached with probability proportional to its degree, kpk,

so that the normalized distribution is generated by

∑
k kpkx

k∑
k kpk

=
G′0(x)

G′0(1)
(4.4)
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Starting from a randomly chosen vertex and following each of its edges to arrive

at the k nearest neighbors, each of the vertices arrived at will have outgoing edges

that is given by the degree of that vertex less the edge that one arrives along and

the edges that interconnect these nearest neighbors, or backlinks, b. Thus, the

generating function for the outgoing edges from each vertex is,

G1(x) =

∑
k kpkx

k−1−b∑
k kpk

(4.5)

Note that b itself depends on k.

The number of backlinks, b, is given in terms of the clustering coefficient, C,

around a given node with degree k. Using the definition of C, with the number

of interconnections, I, between its first neighbors, C = I/[k(k − 1)/2], the average

number of backlinks for each of the k neighboring nodes is, b = 2I/k = C(k − 1).

This will lead to the generating function for outgoing edges as:

G1(x) =

∑
k kpkx

(k−1)(1−C)

z
(4.6)

The generating function for the distribution of all outgoing links from the k

neighbors of the original node is then obtained from the powers property:

Gk(x) = G1(x)k =

[∑
k kpkx

(k−1)(1−C)

z

]k
(4.7)

The average number of outgoing links is computed from the first moment of

the generating function

G′k(1) =
k(1− C)(〈k2〉 − z)

z
(4.8)

knn is the nearest neighbor correlations, defined as the total number of neighbors of

a given node which emanates from a selected node of k neighbors. Thus, it is given

by the sum of the number of outgoing links, the backlinks per k neighbor and the k
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links that connect the original node to the first neighbors:

knn =
G′k(1) + 2I + k

k
= Ck +

〈k2〉(1− C)

z
(4.9)

Note that, for a finite and constant clustering coefficient, knn is always expected to

be linear in kn, with slope C. The intercept, on the other hand, depends on the

degree distribution. For example, for a Poisson distributed network, such as residue

networks as was shown in, pk = zke−z/k! , the relation takes the form

knn = Ck + (1 + z)(1− C) (4.10)

Further note that this development is not only true for constant C, but also for all

networks where C is independent of k. This is because the summation in equations

4.6 and 4.7 are again directly evaluated for 〈C〉.

4.2 Model Systems

4.2.1 Self-organized molecular structures

In this subsection we describe how the networks are constructed for the self-

organized molecular structures studied in this work.

Residue Networks (RN)

These networks are formed from experimentally determined protein structures

obtained from the Protein Data Bank (PDB) [106]. For the RN calculations we

utilize a set of 595 single-chain proteins with sizes between 54-1021 and having a

sequence homology less than %25 [104].
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Given a protein, each amino-acid is represented by a node that is centered

at the position of Cβ atoms, or the Cα atom in the case of glycine. Edges are

added between two nodes, if they are closer than a selected cutoff, rc. We call these

residue networks. We use rc = 6.7Å as in our previous work [15, 63, 102], which

is the distance where the first coordination shell ends, as computed from the radial

distribution function.

Micellar Networks (MN)

Unlike proteins, there is no experimentally available atomistic structure data

for self-organized synthetic molecules. We therefore generate such data using Dis-

sipative Particle Dynamics (DPD) simulations. DPD is a coarse grained simula-

tion methodology. The equilibrium morphology of a group of beads is obtained by

integrating out the fast motion of atoms. In addition to the random and dissipa-

tive forces, the net forces on the beads are soft and repulsive conservative forces.

Then, the simulation is carried out by integrating Newton’s law of motion. DPD

simulations allow for reaching much larger length and time scales for macromolec-

ular systems. Thus, self-organization of systems of large sizes can be observed.

Here, we simulate the micelle formation by ABC type oligomers of styrene-co-

perfluoroalkylethylacrylate in tetrahydrofuran (F beads). The co-oligomer consists

of ten styrene monomers (A beads), seven perfluoroheptane monomers (C beads)

and a linker monomer (B bead). The styrene monomers in the co-oligomer have a

tendency to interact with the solvent, whereas the fluorinated parts prefer to seg-

regate, thus resulting in micelle formation. The equilibrium morphology depends

on the concentration of oligomer in the solution [116]. A general overview of the

method and parameterization is given below:

Flory-Huggins mean-field theory of polymers explains the miscibility of poly-

mer and a given solvent by comparing the free energy of the mixture before and after

mixing. Similarly, with some modification, the DPD method can be employed to de-

scribe the thermodynamics of polymer blends, diblock copolymers and their blends
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with homopolymers. Then, the mixing energy can be related to the dimensionless

Flory-Huggins interaction parameters, χ, which is the energy difference for taking

a polymer (A) from its own environment and putting it into a solvent or another

polymer (B), normalized to kBT. χ is defined as χ = z[εAB − 1
2
(εAA + εBB)]/kBT ,

where z is the coordination number, εAA,εBB,and εAB correspond to the energies for

AA, BB and AB interactions, respectively. For soft sphere interactions in DPD, the

Flory-Huggins parameter χ can be written as, χ = 2α(αAB − αAA)(ρA + ρB)/kBT

. α is related to the pair correlation function, and aAB is the repulsion parameter

between two corresponding beads. For a density of ρ = 3 DPD units, Groot and

Warren developed the empirical relationship to calculate aii and aij parameters,

aii = 25kBT and aij ≈ aii + 3.27χij. The parameters used, and the forces involved

are given with the details of these DPD simulations in [117].

We report results from systems, in which the volume fraction, ν, of the oligomers

is 0.3, 0.6 and 0.9, respectively. We find that at these concentrations, the triblock

co-oligomers self-organize into spherical, cylindrical and lamellar morphologies as

the concentration is increased. Once the organized structures are obtained, we fo-

cus on one substructure from the simulated system; e.g., the set of oligomers that

form a complete sphere are taken as the structure, whose network will be formed.

Thus, the spherical structure is made up of 50 chains, the cylindrical structure has

100 chains, and the lamellar structure has 150 chains. Finally, we concentrate on

the fluorinated segments of these segments, which have self-organized, due to the

driving forces inherent to the system parts. By computing the radial distribution

functions around these beads, we find that the first coordination shell ends at 1.1

DPD units. We use this cutoff distance to form the network, whose properties are

studied. Chain connectivity of a copolymer is preserved, regardless of the particle

separation; i.e. (i, i+ 1) connections are always present.
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4.2.2 Other atomic/molecular structures

It is important to investigate the differences between the network properties of

self-organized molecular structures, and other systems of atomic/molecular origin;

in particular the effects of excluded volume and chain connectivity on the observed

behavior must be investigated. To this end, we also study the structure of networks

obtained from Lennard-Jones clusters (excluded volume) and polybutadiene melts

(excluded volume and chain connectivity). The coordinate data are obtained as

described below.

Lennard-Jones Clusters (LJC)

The structure of clusters of atoms is an area of intense scientific research,

since the properties of materials become size dependent, when systems are small

enough. By clusters, we refer to groups of atoms from tens to thousands of atoms.

Lennard-Jones clusters (LJC) are a group of atoms that contain purely Lennard-

Jones interactions between pairs of atoms. Geometric optimization of these clusters

requires developing efficient search algorithms, since the conformational space avail-

able to a cluster of atoms increases explosively. The atomic coordinates of LJC for

sizes 3-1000 are deposited on the Cambridge Cluster Database [118]. Many of them

are described by icosahedral motifs with an incomplete core [119]. Here we examine

clusters of sizes 350-550, in intervals of 50 atoms. The cutoff distance for adjacency

matrix construction is 1.6Å [120].

Polybutadiene Melts (PBD)

We investigate networks constructed from PBD melts that have been obtained

from molecular dynamics (MD) simulations. The system consists of monodisperse

cis-1,4-PB of 32-chains, each with 32 repeat units (C128). The initial coordinates
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of the system studied was prepared in the Amorphous Construction Module of the

Accelerys Material Studio 4.4 [121] at a density of 0.92 gr/cm3, which occupies a

cubic box of 47 Å on each side. Minimization, pre-equilibration and integration of

the equations of motions were done with the NAMD program [122]. The interaction

potentials for PBD chains reported in [123] are adopted. For all simulations, 1 fs

integration time step was used. Temperature and pressure were maintained con-

stant in the MD simulations at their prescribed values by employing the Langevin

thermostat-barostat. For the non-bonding interactions, the cut-off distance of 10 Å

was used with a switching function activated at 8 Å.

To obtain well-equilibrated samples of PBD chains with the correct chain

statistics, the initial structure, which is energy minimized for 10000 steps, is de-

pressurized by placing the chains into a larger cubic box of 300 Å on each side.

NVT simulations of this low-density system is carried out for 10 ns at 430o K. We

then cool the system to 300oK by equilibrating for an additional 20 ns. Conse-

quently, we compress it with NPT simulations at 1 atm at 430oK for 1 ns. We check

that the conformational properties (as measured by the characteristic ratio) and the

thermodynamic measurable (e.g. thermal expansion coefficient and compressibility)

are compatible with the values in reference [124]. The data used in the current

calculations are obtained from highly pressurized PBD melts via NPT simulations

at 100 GPa and 430o K. We collect data for 50 ns. PBD melts are coarse grained

by using the coordinates for the center of mass of carbon atoms in the butadiene

repeat units. The cut-off distance for network construction is chosen at 5 Å, the

ending point of the first coordination shell.

4.2.3 Lattice-based Network Models

To interpret the results obtained for the molecular structures, we attempt to

find base-models that best describe their statistical and spectral properties. Here,

we describe the regular lattices that are used as model systems for this purpose.

Their generating functions and sample basic connections based on these lattices are
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shown in table 4.1.

Ring Lattice (RL)

This is a one-dimensional lattice of nodes residing on a ring. Each node is

connected to z/2 predecessor and z/2 succeeding nodes, therefore having a total

of z connections leading to constant values of network parameters given by C =

[3(z − 1)]/[4(z − 2)] , knn = z, and L = [N(N + z − 2)]/[2z(N − 1)].

Simple Cubic (SC)

Ths is a basic cubic crystalline structure, where the nodes are placed in the

corners of a cubic lattice. Connection to only the nearest-neighbors would lead to

C = 0. Therefore, each node is connected to its first and second nearest-neighbors.

Body-Centered Cubic (BCC)

This also has a cubic unit cell, with the difference from the SC being an

additional node in the center of each cube. Again, its first and second nearest-

neighbors are connected to a node.

Face-Centered Cubic (FCC)

This is one of the close-packed structures. There are nodes at the corners and

at the centers of the faces of a cube. The network is formed by connecting the

nearest neighbors. This network is also known as second nearest neighbor diamond

(2nnd) lattice. It was shown that residue coordination in proteins can be modeled
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Table 4.1. Network models used and the generating functions for degree distribu-
tions.

Network type Size, N Generating function, G0(x)

SC 343 0.024x6 + 0.175x9 + 0.437x13 + 0.364x18

BCC 432 0.005x4 + 0.014x5 + 0.056x6 + 0.014x7 + 0.111x8 + 0.222x9+
0.005x11 + 0.056x12 + 0.222x13 + 0.296x16

FCC 500 0.008x3 + 0.096x5 + 0.384x8 + 0.512x12

HCP 500 0.004x3 + 0.032x4 + 0.076x5 + 0.028x6 + 0.060x7+ 0.080x8 +
0.224x9 + 0.048x10 + 0.064x11 + 0.384x12

as a distorted model of a 2nnd lattice [80].

Hexagonal Close Packed (HCP)

This is the other possible close-packed structure that can be formed with iden-

tical spheres. Nodes are arranged on a plane in a hexagonal formation, and stacked

on top of each other with alternating order. The first nearest neighbors are con-

nected to obtain the network.

4.3 Linear relationship between the first and sec-

ond degree correlations

4.3.1 Residue networks (RN)

We apply the results derived in section 4.1 to RN constructed from folded

protein structures. Previous studies on RN showed that these networks have high

clustering, as opposed to their random counterparts, and have comparable shortest

path lengths as the random networks; therefore, they can be considered as having
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Table 4.2. Network parameters 〈C〉 and 〈k2〉/z computed from the generated graphs
and predicted from the least squares linear fit to knn vs. k curves.

Calculatedc Predictedd

〈C〉 〈k2〉/z 〈C〉 〈k2〉/z

Residue
Networksa

595 Proteins; 〈N〉 = 254 0.38(0.02) 6.2(0.5) 0.35±0.01 5.8±0.2
N = 140− 160 0.38(0.02) 6.1(0.4) 0.32±0.01 5.7±0.2
N = 190− 210 0.39(0.02) 6.2(0.4) 0.32±0.02 5.8±0.4
N = 290− 310 0.37(0.01) 6.6(0.3) 0.36±0.01 6.2±0.2

Micellar
Networksa

ν = 0.3 0.45(0.14) 10.3(3.5) 0.40±0.02 10.5±0.8
ν = 0.6 0.43(0.15) 9.9(3.7) 0.51±0.02 10.2±0.8
ν = 0.9 0.41(0.15) 9.4(3.5) 0.51±0.02 9.6±0.6

Lennard-
Jones
Clustersb

N = 350 0.47(0.08) 15.1(7.2) 0.33±0.07 14.4±1.4
N = 400 0.47(0.08) 15.3(7.1) 0.31±0.06 14.5±1.1
N = 450 0.46(0.08) 15.4(7.0) 0.33±0.07 14.6±1.3
N = 500 0.46(0.08) 15.5(6.9) 0.33±0.07 14.6±1.4
N = 550 0.47(0.08) 15.6(6.9) 0.37±0.12 15.3±2.6

Polymeric

meltsb
T = 300 K, P = 1 atm 0.14(0.20) 3.8(2.7) 0.33±0.04 3.7±0.3
T = 430 K, P = 106 atm 0.45(0.10) 12.8(6.2) 0.52±0.03 12.4±0.7

aDegree distribution is well-described by Poisson; therefore predictions by eq. 4.9 and 4.10 lead
to the same result. Also z = 〈k〉 = 〈k2〉/z for these systems.

bDegree distributions are not well-described by Poisson. Predictions are made through eq. 4.9.
cStandard deviations calculated from the data are reported in parentheses.
dError margins on the predicted values are reported.

small-world topology. In these studies, comparisons were performed for the average

properties throughout the network between the RN and its randomly rewired coun-

terparts. Although average values do confirm that RNs have small-world properties,

detailed analyses of the individual parameters are needed to assess similarity with

artificially generated networks.

In reference [15] it was shown that the degree distributions of RN are Poisso-

nian; the mean is 6.2. Therein, it was also shown that the residues in the core have a

mean clustering coefficient of approximately 1/3, whereas this value approaches 0.5

for the nodes that reside along the surface. Averaged over the set of 595 proteins,

the clustering coefficient of RN has the value 0.38. In Figure 4.1, we display knn ver-

sus k data from three sets of proteins, N = 140− 160 (48 proteins), N = 190− 210

(29 proteins), and N = 290 − 310 (31 proteins), as well as the whole set of 595

proteins. The linearity between knn and k holds for all sizes of proteins, despite the

size differences, as well as the deviation of the clustering coefficient distribution from

Dirac delta function. We adopt Equation 4.10 to analyze the relationship between
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Figure 4.1. An example residue network (RN) where the sample protein (PDB code
1ESL), its network construction and averaged knn vs. k plots for proteins
for four cases

knn and k in RN and we find that the slope can be characterized by the average

clustering coefficient of the network. The values of 〈C〉 and z, calculated directly

from the network and predicted via Equation 4.10, are listed in Table 4.2. Nodes

with degree 1, 13, 14 and 15 are omitted since there are relatively small number

of nodes with such degrees (¡ 25) to provide meaningful statistics. Within the er-

ror bounds, the predictions of theory are valid; the only slight deviation occurs as

an underestimation of 〈C〉 for the smaller proteins where the surface effects (and

the variance in C) are more pronounced. We shall elaborate further on the surface

effects.

4.3.2 Micellar Networks (MN)

We expect other self-organized molecular structures to display network prop-

erties similar to the RN obtained from proteins, provided that they are thermo-

dynamically stable and have a given average structure around which fluctuations

are observed. Similar to the proteins, these structures follow certain organization

rules due to the (in)compatibility of their chemical units with the solvent. Other

environmental factors, such as the temperature or the concentration, play a role on
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the type of organization observed. As example systems, we choose micelles of dif-

ferent morphologies formed by the ABC type co-oligomers, whose coordinates were

obtained from DPD simulations.

At low concentrations, these oligomers organize to form spherical micelles. As

the concentration increases, adjacent spheres begin to merge and attain a cylin-

drical morphology. Further increase in the concentration results in the formation

of lamellae. In Figure 4.2a, we display the spherical, cylindrical and the lamellar

formations excerpted from oligomer concentrations of ν = 0.3, 0.6, and 0.9, respec-

tively. Styrene monomers, the linker beads and the perfluoroheptane monomers are

represented as black, red and white spheres, respectively. Note that it is the core

region (i.e. the fluorinated regions shown as white spheres) that maintains the sta-

ble morphology, while the corona formed by the red and gray beads shows large

fluctuations in conformation. Thus, we use the coordinates of the white blobs to

generate the MN. The degree and clustering coefficient distributions of three sample

networks are shown in Figure 4.2b. It is important to note that, regardless of the

type of self organization, these network parameters show a similar pattern. The

degree distribution may be approximated by a Poisson distribution.

Similar to RN, analysis of the k vs. knn relationship for MN reveals a positive

linear correlation, regardless of morphology (Figure 4.2c). The values of 〈C〉 and

z, calculated directly from the network and predicted via Equation 4.10, are also

listed in Table 4.2. Nodes with less than five and more than 15 connections are

omitted, due to the lack of statistics of blobs with so few or so many neighbors.

The slope of the best-fitting line is close to the average clustering coefficient. Thus,

theoretical predictions from the slope and intercept of the k vs. knn relation show a

good correlation with the numerical results.

The linear relationship between knn and k also predicts the increase in z with

size in RN, as well as the decrease in z with concentration (and morphology change)

in MN. The theory slightly underestimates the clustering coefficient of RN, whereas

it overestimates that of MN. This is due to surface effects: in proteins, nodes along

50



0 5 10 15 20
0.00

0.05

0.10

0.15

0,3
0,6
0,9

k

p
(k

)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0,3
0,6
0,9

C

p
(C

)

0 5 10 15
4

6

8

10

12

14

6.9±0.2

n = 0.3

k

k n
n

0 5 10 15
4

6

8

10

12

14

5.5±0.2

n = 0.6

k

k n
n

0 5 10 15
4

6

8

10

12

14

5.2±0.2

n = 0.9

k

k n
n

Figure 4.2. Self-organized micellar structures studied in this work at three different
concentrations.
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the surface have high clustering coefficients, as shown in reference [15], because

these nodes have few links that are interconnected, increasing the average clustering

coefficient. Conversely, in MN surface nodes along the core are connected to the

solvo-phillic arms of the chains. These connections, which are omitted in the cal-

culations, have the reverse effect on the average value of the clustering coefficient.

Thus, the value of C predicted for both RN and MN reflects the network structure

below the surface.

4.3.3 Lennard-Jones Clusters (LJC)

Atoms occupy a specified volume in space, and as a result, there is an upper

bound on the number of neighbors that may be within the direct interaction range

of a given node. Furthermore, since our nodes comprise of coarse-grained clusters

of atoms that are not arranged in a spherically symmetric manner, the number

of neighbors may be as large as 16 for some nodes. This is in contrast to the

maximum coordination of 12 expected of regular lattices of spherical particles. All

of the networks studied here have this property. However, the extent to which

this excluded volume effect influences the predictions of the previous subsection

is unclear. To further investigate this point, we study LJC, which are clusters of

atoms of minimized energy that interact purely via Lennard-Jones interactions. We

confine our attention to those within the size range up to 550, which is compatible

with the network sizes of RN and MN studied in previous subsections. A sample

three dimensional visualization of Lennard-Jones cluster is plotted in Figure 4.3.

We find a linear relationship between knn and k, as in the previous self-

organized systems. We observe that the degree of these systems cannot be described

by Poisson distributions. The clustering distributions, on the other hand, are iden-

tical to those of MN. We therefore utilize Equation 4.9 instead of Equation 4.10,

which provides a prediction of the average clustering from the slope, but the ratio

〈k2〉/z from the intercept. These results are also presented in Table 4.2. In all the

LJC, we find 〈C〉 to be consistently underestimated by the theory, while the 〈k2〉/z
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Figure 4.3. Three dimensional visualization of Lennard-Jones cluster with N = 500

values are well-predicted. Thus, although the excluded volume imposes restrictions

on the degree distributions, in particular it leads to assortative mixing in the graph

structure, it does not have a direct effect on the local clustering.

4.3.4 Polybutadiene Melts (PBD)

Finally, we study polymeric melts to discern the effect of connectivity on the

statistical properties of the networks. The linear relationship between knn and k is

also observed for this system at both moderate and high density. Degree distribu-

tions of both systems deviate from Poisson. At very high compressions, represented

here by the system at 430 K and 106 atm, clustering distribution is very similar to

those obtained for MN and LJC. On the other hand, at moderate densities, exem-

plified here by PBD at 300 K and 1 atm, the clustering has two maxima whereby

nearly half the nodes have C ≈ 0, while the rest have a peakish distribution centered

at C = 0.3. This leads to 〈C〉 = 0.14 with a standard deviation of 0.20. Predic-

tions via Equation 4.9 largely overestimate 〈C〉, while the 〈k2〉/z is well-predicted

at moderate density. On the other hand, at very high compressions, both quantities

are predicted via the theoretical fit, with a slight overestimation of 〈C〉.
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Putting together the results obtained thus far, we conclude that the excluded

volume leads to the assortative mixing of the local structure, described by the posi-

tive slope of between knn and k curves. Furthermore, the extrapolation of the curves

to low connectivity (k > 0) leads to a prediction of the 〈k2〉/z values. We observe

this behavior regardless of the type of system studied. Additional constraints on

the local organization of the beads would lead to further local structuring which

is measurable by the slope of these curves converging to 〈C〉. We find that chain

connectivity does not bring about such local organization of the beads, as shown by

the PBD system at moderate density. However, systems attaining dense core struc-

tures do converge to this limit. Such high densities may be attained by imposing

external factors such as the high pressure on PBD; alternatively, the core regions of

self-organized systems prefer to realize such an arrangement due to the free energetic

requirements of arranging chains with both solvo-phobic and solvo-phillic regions in

a solvent that creates the driving force for the formation of the densely packed core.

4.3.5 Model networks

We utilize ordered networks to test the linear relationship between knn and

k of Equation 4.9. Ring lattice (RL) is homogeneous, therefore it shows a delta

distribution for ki. In the other network models, derived from three-dimensional

regular structures, there is a wider distribution due to the finite size of nodes and

the resulting edge effects.

The key to using Equation 4.9 to describe the relationship between knn and k is

the uniform distribution of backlinks, which necessitates either a narrow distribution

of the clustering coefficient, or the distribution of clustering coefficient is constant

with respect to the degree (equations 4.6 and 4.7). For the homogeneous RL, this

is a spike centered at C = 2/3. For all the other model networks, the value is

0.4± 0.1 (Table 4.3). Clustering distributions for these networks are not delta, but

the invariant clustering distribution with respect to degree would still result in a

linear knn versus k. Figure 4.4 shows mean clustering values and standard deviations
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Figure 4.4. Averaged clustering vs. k plots for RN (N = 190−210), MN (ν = 0.60),
PBD (filled circles for high pressure and empty circles for low pressure
cases) and LJC (N = 500) superposed onto degree distributions for
corresponding networks.

for these model networks superposed onto degree distributions for a corresponding

network. For RN and MN, average clustering shows little variations especially for

the degrees that have statistically significant samples. Two cases of PBD show quite

different characteristics for C versus k relation. The low pressure system is loosely

packed, which results in a low degree network, and the clustering values are close to

zero. Therefore, average clustering values with respect to degree vary considerably

from the network average clustering coefficient. On the other hand, for a high

pressure, the resulting system is much denser and has a higher degree of clustering.

For degrees that are observed more frequently, average clustering remains relatively

constant. For LJC, average clustering follows a linear trend with a negative slope, yet

the slope is small (-0.02), and relation could be assumed independent with respect

to degree.

Although the parameters for model networks deviate from the assumptions

slightly, the knn versus k relation may still be investigated to see the extent to which

the variances are tolerated. Using linear fits to the knn versus k curves for SC, BCC,

FCC and HCP models (in RL, knn values are identical for each node), and applying
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Table 4.3. Network parameters 〈C〉 and 〈k2〉/z computed from the generated graphs
and predicted from the least squares linear fit to knn vs. k curves.

Calculated Predicted
〈C〉 〈k2〉/z 〈C〉 〈k2〉/z

SC 0.44(0.10) 14.8(6.8) 0.45±0.02 14.9±0.4
BCC 0.43(0.06) 11.9(5.3) 0.46±0.09 10.7±1.6
FCC 0.41(0.08) 10.4(4.7) 0.34±0.03 10.4±0.3
HCP 0.41(0.10) 10.2(4.6) 0.38±0.06 9.9±0.8

equation 4.9 to obtain the slope and the intercept values, we predict the average

clustering coefficients of these networks and the ratio 〈k2〉/z. These are compared

to the actual values from the model networks in Table 4.3. There is a high degree of

accuracy with all models, despite the fact that the clustering coefficient distributions

are not delta functions in these networks.

4.4 Local motifs and higher order relations

Relating global parameters, such as the shortest path length, to local param-

eters, such as the degree distribution, relies on the higher order degree correlations.

If one has the number of rth-nearest neighbors for a node i, ni,r, calculation of the

average shortest path is a simple summation;

Li =
1∑
r ni,r

∑
r

r ∗ ni,r (4.11)

For random networks with known degree distributions, higher order nearest

neighbors can be calculated in the limit of large number of nodes. Then the average

shortest path can be estimated as a function of the number of first and second

nearest neighbors [115]. However for an arbitrary network, this calculation is not

straightforward. Although correlations within higher degrees will affect the results,

the linear relation between k and knn obtained for certain systems (Section 4.1)
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a b
Figure 4.5. Possible cases where the neighbors of a node’s neighbors does not result

in second-nearest neighbors.

would help in estimating the second nearest neighbors.

knn accounts for the average number of neighbors that a node’s neighbor has.

Although this definition covers the number second neighbors, there are cases that

need extra attention. For a node (black) with non-zero clustering coefficient, some

of the neighbors (grey) are inter-connected, thus forming a triangle (Figure 4.5a).

Although this connection between neighbors is accounted for in knn, it should be

discarded from the number of second-nearest neigbors, as we have don in Equations

4.6-4.9.

There may also be cases where the neighbors (grey) of a node (black) share a

common neighbor (white) and they will form a diamond shape (Figure 4.5b). Here

the new node is a second-nearest neighbor, but it is counted twice.

Here, the problem lies with the counting of triangles and diamonds in a net-

work. The triangle count is directly related to the clustering coefficient, and it can

be deduced from that, while the diamond count is not trivial. Figure 4.6 shows the

dependence of number of diamonds to triangles per node with respect to each other

for residue networks of three different sets of varying sizes, between 140-160, 190-210

and 290-310. There is a clear linear relation between these two geometric motifs in

residue networks. Therefore, the actual counting of diamonds can be skipped, and
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Figure 4.6. Average diamond per node vs. average triangle per node for residue
networks.

the number of diamonds can be approximated using a simple linear equation. As a

future study, higher order motifs, such as pentagons, heptagons etc., will be inves-

tigated in relation to the number of triangles. Then, coupling this information with

higher order measures like knn might lead to an accurate approximation of higher

order nearest neighbors. From that point, relating local measures, such as degree

and clustering coefficient, to global parameters like shortest path length, would be

straigtforward.

4.5 Discussion

The study presented in this chapter is based on the premise that network struc-

tures are better classified by the distributions of their network parameters rather

than the average values. One example is with approximating residue networks de-

rived from proteins with the regular RL. Although it is relatively easy to generate a
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corresponding RL with a few randomly rewired links having the same average degree

and clustering coefficient as the RN, neither the second degree correlations nor the

global properties (e.g. path length) will be reproduced with this approach. However,

a comparison of distributions of the many parameters involved is not straightfor-

ward. We further show that, in these spatial networks, such correlations may further

extend into higher order neighboring relations, allowing a connection between local

and global network properties.

To make the problem tractable, we derive a relationship between knn and k

for networks with arbitrary degree distributions, but with narrowly distributed fi-

nite clustering (Equation 4.9). This subset of constraints is relevant to the study of

complex systems, because the results directly apply to the study of self-organized

molecular structures, which are characterized by Poissonian degree distributions,

and narrowly distributed clustering coefficients. As such, the derived linear rela-

tionship between knn and k displayed in Equation 4.10 should apply. In randomly-

packed chain systems, this relationship is expected to be lost, as is observed when

the corona region of the micellar networks (i.e. the disorganized parts of the chains

protruding into the solvent) is also included in the calculations (data not shown).

We validate the derived relationship on several model networks based on three di-

mensional regular structures, as well as those constructed from proteins and micelles

of self-organizing co-oligomers.

The close packed structures emerge as model systems that approximate the

network properties of self-organized molecular structures: They yield both the lo-

cal statistical averages and their distributions, in addition having to similar spec-

tra. However, the crystal-based structures are highly regular, not only displaying

non-logarithmic size dependence of path lengths, but also highly deviating from

the narrow distribution of Li that is characteristic of efficient information transfer

in self-organizing molecular structures. Using these model networks as the basis,

one may generate networks, by introducing a few random links, whereby the local

properties are preserved, while the desired global properties are approximated. In

a forthcoming study, we shall report a detailed analysis of RN and close-packed
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structures with such random links.
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Chapter 5

Packing of proteins

For the case of spatial networks, graph tools may be used to identify certain

characteristics of structures. Here we consider residue networks in detail and utilize

methods from graph theory to characterize packing structure in proteins.

So far it has been found that the local ordering of residues plays an important

part in the overall behavior. Furthermore, in terms of network parameters, a residue

network is better modelled with a three dimensional lattice, specifically a close

packed lattice structure like HCP or FCC [80]. To further investigate the lattice-

protein relation, we propose a scheme for mapping the protein onto a crystalline

lattice.

5.1 Model

Since the interaction of residues are our main concern, a coarse grained ap-

proach to protein structure is necessary. As in section 3.1.1, coarse graining is

achived via taking the Cα atoms of residues, thus reducing the protein to a single

chain. Cα atoms along the chain are evenly distrubuted with a spacing of 3.7Å. Our

goal here is to find a self avoiding walk on a crystalline lattice basis that will capture
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the protein chain as much as possible. We selected the basic cubic lattices (simple

cubic (SC), body-centered cubic (BCC), face-centered cubic (FCC)) and hexagonal

closed pack (HCP) as our base lattices. Mapping is optimized by the Metropolis

Monte Carlo (MMC) method [125] with the minimizing function selected as the root

mean square deviation (RMSD) from the protein chain.

As the walk on the lattice traverses along first nearest neighbors, the lattice

is formed, such that the first nearest neighbor distance is equal to the average Cα

distance for the protein in hand. Although it is possible to start with a random

self-avoiding walk, in order to improve convergence performance, we start with a

conformation that is closer to the protein. This starting conformation is obtained

by first aligning the first two residues of the protein chain with two points on the

lattice. Then the next point is selected from the nearest neighbors on the lattice that

is closer to the next residue, as well as preserving self-avoidance. This procedure

is repeated for all the remaining residues. Although this starting conformation is

fairly optimal, it just aligns the first two residues, and the rest is formed accordingly.

Therefore considering the overall alignment of the chains, there might still be room

for optimization. This optimization is done by the Metropolis Monte Carlo method

coupled with a quaternion based orientational alignment, in order to compare the

original and generated chains. In this algorithm, we choose a site at random and

flip it to a position, which will preserve the backbone connectivity as well as self-

avoidance. The acceptance is carried out with a MMC scheme, wherein the energy

function is simply set as RMSD.

The algorithm is schematically explained in Figure 5.1. First, the protein

(red line) is positioned on the lattice with two consecutive residues aligned with

lattice points. Then a best-fitting, self-avoiding chain (green line) is estimated by

selecting the lattice sites that are closest to the residue sites. After the initial self-

avoiding chain is constructed, a random transformation (either a site flip or a bond

flip) is applied to the green chain, and a new conformation is obtained at blue

line. Then, the protein is aligned to this new chain with a quaternion-based fitting

algorithm. Root mean square deviation (RMSD) of the new structure is calculated
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a b

c d

Figure 5.1. Schematic representation of the fitting algorithm.

and compared with the previous RMSD. The new conformation is accepted using

a Metropolis Monte Carlo scheme. Steps b and c in the figure together conforms

to a single Monte Carlo step. After the final chain is obtained, the packing ratio

for lattice estimation is calculated with the use of the solvent-accessible surface (red

area) of the protein. Chain sides that are inside (dark green dots) or outside (light

green dots) the surface are identified, as well as the lattice points that are inside the

surface but not used (yellow dots) for the protein fitting.
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SC BCC FCC HCP

Figure 5.2. Protein (blue) and predicted lattice chains (red) for 1aaf.

Table 5.1. Average RMSD values of self avoiding chains.

140-160 190-210 290-310
SC 3.89±0.11 4.11±0.11 4.19±0.13
BCC 4.04±0.14 3.14±0.08 3.07±0.07
FCC 2.13±0.04 2.20±0.04 2.22±0.04
HCP 2.14±0.03 2.20±0.04 2.17±0.03
RCP 2.15±0.04 2.22±0.03 2.18±0.03

5.2 Results

MMC simulations were run for three different sets of proteins with sizes be-

tween 140-160, 190-210 and 290-310. For each protein, five simulations were per-

formed. At each simulation 5000 MMC steps of bond flipping followed by 20000

MMC steps of site flipping. Bond flipping captures the overall conformation, whereas

site flipping provides local optimization. Figure 5.2 shows the three dimensional

structure for the protein and the fitted chains for 1aaf.

RMSD values for the final predicted chains are shown in Table 5.1. For larger

proteins the SC model performs worse than the other lattice bases. On the other

hand, BCC leads to better results, as the chain length increases. SC imposes stricter

constraints and has a lower coordination order than BCC. Therefore, as the size

increased, it becomes more difficult to conform to these constraints in SC, impairing

its performance.
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To further quantify the quality of fit of various lattice types, we incorporate

the relative orientations of the residues. Bond-orientational order parameter defined

by Steinhardt et al.,[126] is a well-established metric in the study of packed spheres.

This parameter is a measure of the distribution of a residue’s neighbors in three

dimensional space. Neighbors are defined as residues that are closer than a given

cut-off value, rcut, for the residue of interest. Therefore, we can use this measure to

analyze the quality of fit for lattice self-avoiding chains. Bond-orientational order

parameter for residue i is defined as;

Ql(i) =

 4π

2l + 1

l∑
m=−l

∣∣∣∣∣∣ 1

Nb(i)

Nb(i)∑
n=1

Ylm[θ(~rn − ~ri), φ(~rn − ~ri)]

∣∣∣∣∣∣
21/2

(5.1)

where Ylm[θ(~rn−~ri), φ(~rn−~ri)] are the spherical harmonic functions for a bond

vector from residue i to n, θ and φ are the polar angles of this bond. Nb(i) is the

total number of such contacts of residue i with distances closer than rcut. Since

this definition of the order parameter only depends on the vector between residues,

for even values of l, it is independent of the selection of origin and orientations of

coordinate axes. For a single protein, we average Ql(i) over all residues to obtain

the order parameter for the protein:

〈Ql〉 =
1

N

N∑
i=1

Ql(i) (5.2)

Among the different choices for l, Q6 is commonly employed as the bond ori-

entational parameter, because it concurrently yields non-zero values for hexagonal

close packed, cubic (simple, body centered, and face centered) and icosahedral con-

figurations [126]. Note that, in order to obtain a full description of a system, all Ql

with different even l values should be calculated. Thus for assigning a system to a

given lattice type, all these Ql parameters should match.
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For a system with cubic packing symmetries, Q2 is zero, therefore it will not

provide any non-trivial information for comparing SC, BCC and FCC systems stud-

ied in this work. Figure 5.3 shows orientational order parameters for l = 4, l = 6

and l = 8 for various rcut values averaged over 48 proteins with sizes in the range

140-160. Lattice fits (lines) overlaid onto orientational order parameters obtained

from the original protein coordinates (grey shaded area). For small rcut values, Ql

values for lattice fits show small variations from the protein Ql. This is expected,

since lattice point approximations are not perfect due to the constraints from lattice

structures. In Q8, the discrepancy between SC and protein persists to higher values

of rcut, indicating that SC fails to capture longer range order in proteins. For Q6,

the difference between BCC and protein is larger for short range order. Although

underlying symmetries for FCC and HCP are quite different, it is important to

note that for all three orientational order parameters presented in Figure 5.3, chains

approximating proteins using these underlying lattice points show similar ordering.

Among all regular lattices, FCC and BCC result in the best possible fits. It

is also important to note that results of FCC and BCC are consistent for different

protein sizes. It can be argued that close-packed structures have higher coordination

numbers; therefore they have a higher degree of freedom in choosing neighboring

lattice sites. We note that all the lattice structures have distinct symmetries, and

one lattice system can not be replicated with the other. For example, if the protein

itself had a conformation compatible with, say BCC, the corresponding lattice fit

would have outperformed all the others.

5.3 Which closed packing?

Almost identical performance of FCC and HCP bears the question that whether

it is possible to distinguish these two models. A common property within these

structures is that they are both maximally packed models. To see if the packing

is the driving property, we next introduce a random close packed model. FCC and
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Figure 5.3. Comparison of Q4, Q6 and Q8 for lattice fits (lines) and protein chains
(grey shaded area) for sizes in the range 140-160
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stacking A

stacking C

stacking B

a

b c

Figure 5.4. Hexagonally packed systems. a) Three possible hexagonal stackings that
would result in a close packed lattice. b) FCC lattice with A, B and C
layers shown. c) HCP lattice with A and B layers shown.

HCP both are composed of stacked hexagonal packed layers. While HCP is formed

by the doubly alternating sequences such as ABABAB.., FCC has a triple ordered

sequence such as ABCABC..., where B and C are obtained by two possible shiftings

of hexagonal layer that would conform maximum packing (shown in figure 5.4).

Any random sequence of A, B and C, with the condition that no two consecu-

tive layers are the same, would result in the same packing density as FCC and HCP.

Thus, it is easy to construct a lattice that will not have the overall symmetries of

FCC and HCP, but is still packed with the densest conformation. This provides an

ideal basis for testing whether a particular close packed system is preferable to the

other. Therefore we applied MMC fitting of proteins to randomly ordered stacking

sequences that are denoted as random closed pack (RCP).

Average RMSD values for RCP lattice are also presented in table 5.1. Within
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error bounds, the performance of RCP is identical to that of FCC and HCP. Thus,

the proteins may be modeled as a lattice as long as it is maximally packed.

5.4 Network parameters

Besides the spatial deviation, the fitting procedure may be analyzed with net-

work methodology. Here, we construct the networks from proteins and predicted

lattice chains with the same methodology mentioned in section 3.1.1. A cut-off of

6.7 Å is selected as before. We compare the distributions for network parameters

below (see figure 5.5. These are the degree distributions (a), average next-nearest

neighbor distributions (b), clustering coefficient distributions (c) and shortest path

length distributions (d) for lattice fits (lines) plotted together with the protein dis-

tributions (grey shaded area). From the degree distribution, with the exception of

BCC, it may be concluded that the lattice chains would result in nodes with higher

degree. This can be attributed to the fact that lattice structure constrains the chain

to a more dense conformation thus giving rise to a higher number of contacts. This

is also reflected in knn distribution. Although, individual degrees of nodes vary the

overall C and L distributions remains same more or less. Despite the slight differ-

ences in the distributions, the predicted lattice chains capture the network specific

properties of proteins considerably well.

5.5 Packing fraction

We are then faced with the question of what differentiates proteins from close

packed structures. Insofar as the network approachs of the present thesis is con-

cerned, the adjacency matrix of a perfect close packed lattice is modified by remov-

ing links. This corresponds to voids within the packed protein structure similar

to the voids occuring in the close packed optimized structures of LJC discussed
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Figure 5.5. Network parameters for original proteins and best fit lattices for sizes

N = 190− 210.

in section 4.2.2. We therefore analyze the final structure following the best-fitting

procedure. We consider the protein occupying a volume that is determined by the

solvent accessible surface area of the backbone only [127]. Then we characterize the

lattice points with respect to the volume occupied by the protein. It is important

to note that all the lattice types pack proteins into these volumes with considerable

voids. More than one third of the lattice sites (35% for SC, 41% for BCC, 37% for

FCC and 37% for HCP) that reside in the solvent accessible surface was not used for

residue fitting (yellow points in figure 5.1d). The fraction of lattice sites of the self

avoiding chain that arere outside the covered volume is 40% for SC, 28% for BCC,

17% for FCC and 17% for HCP. These results are in aggreement with the RMSD

values. They also suggest the number of eliminated adjacency matrix elements of

an original close packed structure.
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Chapter 6

Spectral properties of networks

In the previous chapters we have discussed the spatial networks we have studied

mainly by statistical quantitites such as degree, clustering coefficient, path lengths,

as well as their distributions. However one may also obtain a plathora of information

from a spectral characterization of the network structure, which we investigate next.

The Laplacian of a network is used extensively in the literature. Networks are

characterized using the spectra of the Laplacian. One variant of the Laplacian is the

normalied Laplacian, L∗, as described in equation 2.5 which is used in this study to

identify characteristics of the networks.

The advantage of using the normalized Laplacian spectra is that the eigen-

values are in the range 0 and 2. This makes it ideal to compare networks with

different sizes. Moreover, normalized Laplacian also contains significant informa-

tion about the network, such as motif replication, bipartiteness and connectivity

[98, 99, 100, 101]. Although there are isospectral networks with different adjacency

matrices, these networks with identical spectra share similar properties in terms

of network statistics. Therefore, the normalized Laplacian spectra may be used to

distinguish networks with similar properties, that otherwise have similar statistical

properties.
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6.1 Edge cutting in residue networks

In terms of networks statistics, the procedure of edge cutting described in chap-

ter 3 reveales that there is considerable redundancy in residue networks. Therein,

networks are constructed with connecting residues that are closer than a predefined

cutoff value (6.7 Å) and weights are added to the edges depending on the interacting

aminoacid types. Weights are selected from well known residue-residue potentials

of Thomas-Dill [59] and Miyazawa-Jernigan [103].

After network formation, edges are cut systematically. A cutoff potential, ecut

is selected and edges with interaction potentials larger than ecut are removed while

keeping the chain connectivity, regardless of the interaction potentials of bonded

aminoacids. This is done to mimic the changes in the protein when a large distur-

bance such as bonding to a ligand occurs. Under such circumstances, information

pathways that are not stable (i.e. high energy interactions) would be severed and

no longer be used. In chapter 3, we monitored the average path length in reduced

networks with changing weight cutoff to capture the effects of these events on com-

munication pathways in proteins.

Here, we repeat the procedure of removing edges and monitor the normalized

Laplacian spectra distribution for 48 proteins with sizes between 140-160. Figure

6.1a shows the fraction of edges with weights larger than ecut. Edges that conform to

chain connectivity are excluded, since they are not removed in the deletion process.

There are only a couple of residue-residue interactions with potentials greater than

0.6kBT, so it is expected that significant changes in network structure would occur

below this cutoff. At ecut = −0.1kBT, approximately half of the non-bonded edges

are deleted and at ecut = −1kBT, 90% of the non-bonded edges are removed from

the network.

Then we characterize the removed edges according to their distances along the

chain, which we call “contour distance”. The contour distance of an edge between
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Figure 6.1. Change in a) fraction of deleted edges, b) sequential distance of
deleted edges, c) fraction of short and long range edge deletions and
d)normalized Laplacian spectra distribution with weight cutoff, ecut in
units of kBT.
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two residues, di,j, is defined as the number of bonds between those along the chain.

So, if residues are numbered as consecutive integeres along the chain, the distance

for an edge that connects ith and jth residues is di,j = |i − j|. Figure 6.1b shows

the number of edges with potentials greater than ecut grouped by the distance along

the chain, where edges with di,j ≥ 10 are combined and shown as 10 in the figure.

For all the non-bonded edges about 50% are in the region di,j ≤ 4, with di,j = 3 as

maximum. These would mostly correspond to the interactions within alpha-helical

regions and turns. The other haf of the long range interactions occur between residue

pairs that have di,j > 4 combined.

Figure 6.1c displays the fraction of edges with interaction potentials greater

than ecut where edges are grouped as short range contacts (di,j ≤ 4) and long range

contacts (di,j > 4). This shows the difference between short range contacts and long

range contacts. Long range contacts are formed with aminoacids with more cohesive

interactions (more negative values), so at a given weight cutoff a larger fraction of

the long range edges remain intact. This supports the results of chapter 3 that the

shortest path length does not change significantly up to ecut = −0.6kBT.

Figure 6.1d shows the change in spectra distribution with weight cutoff. As

a descriptor of global network properties, eigenvalue spectra distribution is more

sensitive to changes in the network structure than shortest path length. For even

a very small number of edge removals (ecut = 0.5kBT), the eigenvalue spectrum

reflects this change with minor variations. Still, the overall profile remains constant

until ecut = −0.1kBT. After that, the peak around λ = 1, which is associated

with local motifs, starts to decrease and reaches to a minumum at ecut = −0.6kBT.

Further removing edges, connectivity of the graph decreases and this is reflected

with the increased number of eigenvales near zero. Moreover, as a linear chain

is a bipartite graph, the eigenvalue spectrum is symmetric around 1 and λ = 2

is present, thus leading to the increase in eigenvalues around 2. Considering the

contour distance information provided by figures 6.1b&c and 3.2, we conclude that

the essential information for constructing a protein-like network depends on proper

long-range contacts.
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6.2 Edge rewiring in residue networks

The previous section indicated the differences in edges in terms of the contour

distance. Long range edges in proteins provide fast information transfer, whereas

short range edges mostly take part in the local structure of the network. In order to

investigate the contribution of these different edge types systematically, we propose

a selective rewiring of edges according to their chain distances.

The network for a given protein is constructed, as before, by taking the Cβ

atoms of residues (Cα for Glycine) as representative points for the nodes and adding

connections between nodes that are closer than a cutoff value that is obtained from

the radial distribution function of residues in space. After constructing the net-

works, edges are randomized selectively according to their contour distances. The

connections in the network are rewired randomly for two complimentary cases. In

one case, connections with contour distances smaller than a predefined value are

kept and the rest is rewired, so that short order interactions remain intact whereas

long range interactions are randomized. In the other case, connections with contour

distances larger than a value are held and connections closer along the chain are

rewired; i.e. the long range interactions are conserved while the short range effects

are randomly distributed.

In order to eliminate differences resulting from variations in degree distribu-

tions, rewiring algorithm works under the constraint that initial degree for a node

remains constant. The algorithm starts by finding and breaking the edges that need

to be rewired under given conditions which leads to a partial network with nodes

that have free edges to be connected. Then a random pair of nodes that were not

neighbors in the original structure is selected and connected with an edge. This

process is continued until there are no nodes with free edges. It is possible to arrive

at a point where there are free edges, yet there are no possible non-neighbor pairings

available. In such cases, a random edge that was rewired previously is broken and

new possible pairings are searched randomly. This breaking and connecting loop
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Figure 6.2. Sample adjacency matrices for protein 1AEP.

is repeated until no free connections remain. Figure 6.2 shows sample adjacency

matrices of protein 1AEP before and after rewiring. Black dots on point (i, j) rep-

resents the presence of an edge between nodes i and j. Figure displays adjacency

matrices of the original protein (a) and rewired networks with keeping the short

range contacts (b), where all edges with di,j > 4 are rewired and with keeping long

range contacts (c), where all edges with di,j < 4 are reqired.

We applied the rewiring algorithm to residue networks constructed from folded

protein structures with sizes between 140-160 residues. Average C distribution, knn

distribution and k vs knn plots for a these proteins for various rewiring scenarios are

presented in figure 6.3. Figure 6.3a (upper row) shows these plots for rewiring net-

works where short range contacts are kept. Various scenarios are generated whereby

only the chain connectivity is preserved (all contacts except di,j = 1 reqired), as well

as all short range ones are preserved (di,j > 4 rewired) or part of the long range con-

tacts are preserved (di,j ≥ 16 rewired). It is important to note that knn distribution

and k vs knn plots do not change dramatically with different randomization levels.

However, clustering coefficients are effected noticeably. As more edges are rewired

(i.e. keeping only dij = 1) the behavior of networks resemble that of a random

network, where local clustering diminishes to zero.

For Figure 6.3b (lower row), similar figures are plotted by keeping long range

interactions and rewiring local contacts. Clustering coefficient shows similar behav-

ior to that of the counterpart in a. As more contacts are rewired, the network will
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Figure 6.3. Network parameters for randomly rewired proteins by various (a) short
and (b) long-range contacts

approach to a random network. knn distribution again, does not depend on rewiring,

but the individual knn values are affected. This can be better seen in the k vs. knn

plot of this set, where the slope of the curve decreases as more edges are rewired.

Thus, low degree nodes are mostly peripheral nodes and they tend to have only

local contacts, which are also closer to the bounds, thus having smaller degrees. So

in the original structure, low degree nodes have low degree neighbors which results

in a lower knn. When local contacts are rewired, most of the connections of these

peripheral nodes will be rewired, and since the degree distributions are Poisson, on

the average these will connect to higher degree nodes which results in an increase

from the original values.

Furthermore, we monitor the spectra of the normalized Laplacian as the rewiring

advances. In Figure 6.4a, local contacts are preserved and long range contacts are

rewired. When keeping only dij = 1 (i.e. chain connectivity) and rewiring the rest

of the connections, the spectrum of the network approaches to that of random net-

work, i.e. a semicircle [128]. The overall properties of the spectra and the network is

mostly captured by keeping further local contacts, for example when first 4 contacts

are kept and the rest is rewired. Conversely by preserving long range connections

and shuffling local contacts, the spectra resembles that of a random even for shuffling

the first contacts only (i.e. keeping dij ≥ 2). Thus, although chain connectivity is

crucial for capturing overall spectra, it is not sufficient. Several local contacts should

also be included along with random long-range contacts.
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Figure 6.4. Normalized Laplacian spectrum for randomly rewired with preserving (a)
short and (b) long-range contacts.

6.3 Lattice packings of proteins

Results of chapter 3 showed that residue networks and regular lattice structures

share common properties in terms of graph parameters. In chapter 5, we used lattice

based templates to generate protein chains. Although self-avoiding chains produced

on regular lattice structures can approximate protein structures, the resulting chains

occupied a volume with voids. Therefore perfect lattice models fall short of obtaining

protein models in terms of network parameters.

Here, we investigate the best fitting chains obtained by Metropolis Monte

Carlo simulations described in chapter 5 by considering the normalized Laplacian

spectra distributions (see figure 6.5 for comparison of lattice chains (lines) to proteins

(grey shaded area) with sizes between 140-160). Network parameters shown in

figure 5.5 are not sufficiently distinguishing the lattice models in terms of their fit

performances. However, normalized Laplacian spectra distributions present a better

tool for comparison. Although the overal profile is obtained, SC and BCC deviates

from the target spectra significantly. On the other hand, close packed structures

(FCC, HCP and RCP) capture the structure of residue networks quite well. Slight

increase of eigenvalues around λ = 1 in close packed structures compared to residue

networks may be attributed to the increase in local order via additional constraints

imposed on the self-avoiding chains due to the underlying lattice structure.
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Figure 6.5. Normalized Laplacian spectra distributions for self-avoiding chains ob-
tained by Metropolis Monte Carlo simulations outlined in chapter 5. Re-
sults from simple cubic (SC), body centered cubic (BCC), face centered
cubic (FCC), hexagonal close packed (HCP) and random close packed
(RCP) with the actual values from protein networks (grey shaded area).
Distributions are averaged over 58 proteins with sizes between 140-160.

6.4 Other Model Networks

To further investigate how the spectra define other close packed structures, in

addition to proteins, we analyzed normalized Laplacian spectra distribution for the

systems that are investigated in chapter 3. Banerjee and Jost previously studied

the spectra of many different model and real-life networks [129] and classified them

according to the peak locations. The multiplicity of the eigenvalue λ = 1 is of

particular interest, indicating the amount of motif duplications in the network. Also

of importance is the closeness of the smallest non-zero eigenvalue to 0, which is a

measure of the difficulty to disconnect the graph [98]. From another perspective, the

density of the eigenvalues near λ = 0 is a measure of the collectivity in the network.

The spectra of RN (N = 190 − 210), MN (ν = 0.60), LJC (N = 500), HCP

(N = 500), PBD, HCP (N = 500) are shown in figure 6.6. On the lower bottom

corner HCP with 3% randomly rewired edges is superposed on RN. Addition of a

few long range edges affects the overall structure greatly. Rewired HCP spectra is

closer to that of RN. The effect of changing morphology in MN is shown in the inset

in the region 0.9 < λ < 1.5. The spectra of the three morphologies are the same
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elsewhere. All spectra are characterized by a wide peak in the region 1 < λ < 1.5,

overlaid by a long tail at 0 < λ < 1. They are truncated at λ > 1.5. There

is evidence that the skewness of the eigenvalue distributions are directly related

to the high clustering property of these systems, e.g., compared with the spectra

presented in ref. [129] for systems of low 〈C〉 values. The lowest eigenvalue region

is associated with a global connectivity in the system, a property only present in

RN which comprise of single folded chains. Conversely, the distributions are peaked

for systems lacking chain connectivity (kurtosis is positive for LJC and HCP, and

negative for the others). Thus, although chain connectivity is not encoded in the

network construction process; i.e. nodes are connected if they are within a cutoff

distance of each other, regardless of residing on the same chain or not, the spectra

distinguish between the many chain systems (MN, PBD) and collection of non-

bonded particles (LJC, HCP) as opposed to the single chain systems of RN.

The overall spectrum of HCP is typical of the molecular structure networks.

The spectra of MN and PBD are particularly well-reproduced by that of HCP (Pear-

son correlation coefficients between HCP/RN, HCP/MN, HCP/LJC and HCP/PBD

are 0.82, 0.96, 0.82, 0.93, respectively.) The differences between the spectra of HCP

and MN are most prominent in the region λ > 1 which contains information on

the details of the local motifs, whereas the long-range effects (collectivity) in these

structures are well described by the HCP scaffold. The larger discrepancy between

the spectra of RN and HCP in the region λ > 1 is due to the wealth of local motifs

occurring in the different arrangements of secondary structural elements of proteins.

In fact, the situation may be rectified by randomly rewiring a few edges in the latter.

We will thoroughly investigate these properties of RN in a forthcoming paper.

The spectra may be qualitatively used to identify some of the subtleties of these

networks. For example, LJC spatially forms a packed structure due to the energy

minimization. Although, there are variations from a perfectly ordered structure and

missing lattice points exist, the core region shows considerable homogeneity. This

can be observed via the peak at λ = 1 and the overall clustering of frequencies in

the range λ ≥ 1.
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Figure 6.6. Normalized Laplacian spectra for the model networks
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The spectra may also be used to identify the different morphologies of MN by

focusing on the region in the vicinity of λ = 1. The region of 0.9 < λ < 1.5 in the

spectra of the different MN is magnified as an inset in figure 6.6, noting that the

rest of the spectra are exactly overlaid in these systems. As the concentration ν is

decreased from 0.9 to 0.6 to 0.3 (see figure 4.2), the morphology shifts from lamellar

to cylindrical to spherical, accompanied by increased symmetry. Each structure is

expected to contain a larger amount of the repetitive local motifs that make up the

corresponding morphology. Indeed, the spectra contain this information with a shift

towards the λ = 1 value as the spherical structure is approached.

6.5 Statistical or spectral characterization?

Throughout the study outlined in this thesis, we analyzed real structures by

looking at their contact networks. Analysis of networks based on statistical measures

such as degree, nearest neighbor degree, clustering coefficient and shortest path

length, as well as the distributions of normalized Laplacian spectra.

The question then rises as to which measure (statistical or spectral) is im-

portant in classification and characterization of networks. Edge cutting method

described in chapter 3, revealed that although certain statistical measures, such as

shortest path length remained constant up to a certain deletion of edges, other pa-

rameters such as degree changed drastically (see figure 3.4). Conversely, the spectral

distributions are quite sensitive to edge deletion and variations can be seen even for

a small amount of disturbance in the network (see figure 6.1).

Similarly, for the self-avoiding chains generated by the algorithm outlined in

section 5.1, statistical properties are insufficient in differentiating structural differ-

ences in networks (see figure 5.5). However, spectral distributions presented figure

6.5 outline small differences among these networks.
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On the other hand, in the residue network rewiring scheme (section 6.2),

rewiring long-range interactions have quite small difference in terms of spectral dis-

tributions (figure 6.4). But the change in networks can be observed more clearly in

the clustering coefficient distribution (figure 6.3).

Concluding from these facts, statistical and spectral properties do not provide

alternative to one another. In contrast, they give complemantary information about

the network and one should consider both in order to characterize any network.
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Chapter 7

Conclusions and Future Work

In this study, we utilized network models for condensed matter systems to an-

alyze key properties that will aid in the classification of condensed matter systems.

Networks are constructed from three dimensional stuctures with radial distribution

functions of nodes to define the conditions for constructing contact maps. The ul-

timate goal of such sudies is not only to distinguish and classify different packing

architectures in condensed matter systems, but also to derive coarse-grained poten-

tials for constructing networks conforming to a given set of constraints [59].

• Systematic removal of edges in residue networks depending on the interaction

potential of contacting residues revealed that they contain significant number

of redundancies.

• By identifying information pathways in proteins using optimal path lengths,

we find that in addition to chain connectivity, small number of long range

contacts govern the information flow and conformational changes in case of

extreme events.

• Furthermore, using this approach, we have been able to define key residues

that form bridges between interacting proteins. The few key contact pairs

may be used as primary links in identifying the interaction geometry, overlaid

84



by the energy lowering contributions from the rest of the pairs in solving

protein-protein interaction problems.

• We derived a relationship between nearest neighbor and next-nearest neigh-

bor correlations in networks. For networks with arbitrary degree distributions

where the clustering coefficient is independent of degree distributions, knn lin-

early depends on k with a slope defined by clustering coefficient and intercept

as a function of clustering coefficient and degree distributions.

• We showed that, the above-mentioned relation holds for various networks con-

structed from condensed matter systems, such as proteins, flurinated block

co-polymer systems that form micellar structures, polybutadiene simulations

under high pressure, clusters of identical particles obtained by minimizing

Lennard-Jones potentials and perfect lattice structures.

• Combining the fact that geometric motifs such as triangles and diamonds are

closely correlated in these systems, the relation between higher order neighbors

and immeadiate neighbors may provide insight into the scaling between local

and global parameters.

• Concentrating further on proteins, we analyze the spacial packing of residues in

the folded conformation by comparing the protein chains to self-avoiding walks

on regular lattice structures. We proposed a Metropolis Monte Carlo scheme

coupled with quaternion-based fitting step to obtain lattice approximations of

proteins.

• Comparison within different lattice systems revealed that close packed lattices

such as face-centered cubic, hexagonal close packed and random close packed

capture the spatial distribution of amino acids in proteins, indicating that the

folded structure of the protein tends to pack maximally in order to obtain

maximum coordination within the chain whereas the overall packing contains

significant void fractions.

• The normalized Laplacian spectra distributions are used to characterize struc-

tural properties. Spectral distribution changes in residue networks confirmed

the results of statistical measures. Further looking at the contacts that remains
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in the presence of large perturbations revealed that long range hydrophobic

contacts play an important role in defining global information pathways in

proteins. This is in paralel with the findings that hydrophobic interactions is

key defining measure in protein folding and further research of these reduced

systems may reveal important dynamics in folding mechanisms of proteins.

• To understand the role of short range and long range contacts, we apply a

selective rewiring method to residue networks depending on the sequential

distance of contacts. This reveals that the chain and the contacts that are

closer along the chain define the local structure whereas contacts that are

farther in terms of sequential distance govern the fast information pathways.

• Analysis of condensed matter systems considered in chapter 4 in terms of their

spectral properties showed that overall structures of these systems behave

similarly indicating that they conform to a family of systems.
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Appendix A

JResNets: A web-based service

for calculation of strong paths

in residue networks

We provide a web-based tool (JResNets) for the calculation and visualization

of strong paths for residue networks. It can be reached under the Services

link at the website: http://midst.sabanciuniv.edu

A.1 Method Overview

Input for the server is a protein structure defined by the PDB format. Addi-

tional inputs are required to form the network structure. The method starts

with the formation of a network representation for the given protein struc-

ture. Every amino acid in the protein structure (or its specified chains) is

represented with a node that is centered on the carbon atom of choice. The

nodes are connected to each other if the distance between them is smaller

than the cutoff value provided. Weights are ascociated with the connections

according to the amino acids using well known attraction potentials obtained

by Thomas-Dill [59] or Miyazawa-Jernigan [103].

The next step is the calculation of optimal path lengths and optimal path

costs. An optimal path between two nodes is defined as the shortest path that

minimizes the maximum weight along the path, and the cost for that path
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is the maximum weight. A modification of Djikstra algorithm [130] is used

to calculate the strong path costs between two nodes by changing the cost

term from the summation of weights to the maximum of weights. After the

calculation of optimal path costs, for each pair of nodes a reduced network

is constructed by removing connections with weights greater than the cost

of path between these nodes. Then optimal paths can be calculated using

breadth-first search algorithm on this unweighted reduced network.

A.2 Webserver

A.2.1 Input

The basic input form is simple (see figure A.1. The user is required to define

the protein structure either by entering the PDB-ID or by uploading a PDB

file. If PDB-ID is supplied, the server will automatically download the asco-

ciated PDB file from the Protein Data Bank [106]. Additional parameters are

required to set how the network is formed. If the user wants the results for

only a specific chain, then the chain field must be filled accordingly. A cut-

off distance is required to form the network with non-bonded interactions. A

value of 6.7 Å is pre-entered as a default value, which corresponds to the first

coordination shell [15]. A potential is selected to assign weights to connections

from amongst the alternatives of TD or MJ. Finally, the user can specify which

carbon atom of the amino acids will be used as a center for the nodes (default

is Cβ).

A.2.2 Output

A typical calculation for JresNets takes between seconds to couple of minutes

depending on the size of the protein. After the calculation, server presents a

link to download the zipped outputs (see figure A.2).

The main output is a text file where each optimal path between all pairs of

nodes are listed in the allpathways.txt with the following format:
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Figure A.1. Input screen for webserver.

Figure A.2. Output screen for webserver.

102



Figure A.3. Visualization screen for strong paths with JMol applet.

A.1 -> A.19

path #1 : A.1(MET) A.15(PRO) * A.16(GLU) * A.26(PRO) A.25(ASN) A.18(GLY) A.19(ASP)

path #2 : A.1(MET) A.15(PRO) * A.16(GLU) * A.26(PRO) A.25(ASN) A.23(GLY) A.19(ASP)

path #3 : A.1(MET) A.15(PRO) * A.16(GLU) * A.26(PRO) A.25(ASN) A.24(VAL) A.19(ASP)

A.1 − > A.19 in the output denotes the path start and end aminoacids, where

all possible optimal paths are listed in the following line as the sequences of

amino acids. The stars in the sequence denote the cost defining connections

for this pathway, e.g. in the example provided the PRO15 - GLU16 and GLU16

- PRO26 links have the highest weight. Two additional output matrices of size

N×N are also supplied where they show the optimal (lengths strong.txt) and

shortest path lengths (lengths homo.txt) for each pair of nodes.

At this point, the user also has the option to viualize paths in a page via the

web based viewer Jmol [131]. The visualizaton page has two inputs: Starting

and destination nodes. After selecting these nodes all possible optimal paths

between them are listed, where the user can choose and toggle to view the

different alternatives. Selected path superposed on to the protein will be shown

in a Jmol applet (see figure A.3).
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