

Template Synthesis of Boron Nitride Nanotubes Over Iron Impregnated Mesoporous Silica MCM-41 by Chemical Vapor Deposition Technique

B. Saner Okan, Z.Özlem Kocabaş, A. Nalbant Ergün, Prof. Dr. Yuda Yürüm Material Science and Engineering Department, Sabancı University, Turkey

September 15, 2011

OUTLINE

- Introduction
- Synthesis Methods of BNNTs
- Synthesis and Characterization of
 - → MCM-41
 → Boron Nitride Nanotubes (BNNTs)
- Hydrogen Uptake of Synthesized BNNTs
- Conclusion

September 15, 2011

INTRODUCTION

• There are numerous works about the synthesis and characterization of BNNTs because of

- High mechanical strength
- Good resistance to corrosion
- Low density
- Excellent thermal and electrical properties
- Suited for high temperature

• Boron nitride (BN) structures can be synthesized in crystallographic forms such as cubic (c-BN), hexagonal (h-BN), wurtzite (w-BN), and rhombohedral (r-BN)

September 15, 2011

INTRODUCTION

• Boron nitride nanotubes were theoretically predicted in 1994 and experimentally discovered in 1995.

• For the first time, multi walled-BNNTs and single walled-BNNTs have been achieved by using an adapted arc discharge technique.

 \circ Goldberg et al. synthesized pure BNNTs by laser ablation method which was also applied for the synthesis of fullerenes.

• Tang et al. demonstrated the synthesis of multi walled-BNNTs from a mixture of boron and iron oxide powders placed into an alumina crucible at 1350°C.

 Bando et al. synthesized the nanotubular BN materials via chemical vapor deposition (CVD) method using B-N-O precursors at a high temperature of 1700°C.

• Cai et al. reported a convenient synthesis route to BNNT by the reaction of boron powder, iron oxide, and ammonium chloride at 600°C for 12 h.

September 15, 2011

GROWTH OF BNNT OVER TEMPLATES

• Wang et al. prepared BNNTs, BN-bamboos and BN-fibers from borazine oligomer under the confinement of alumina anodic membrane as a template.

 \circ Li et al. produced BNNTs with a uniform diameter of about 7 nm using BCl₃ and NH₃ at relatively low temperatures (650–850°C) within the channels of mesoporous silica SBA-15.

 High-quality and high-yield BNNTs can be synthesized over mesoporous silica templates by CVD method.

5

APPLICATIONS

BNNTs with the unique material properties become promising candidate in various technical applications

- Insulating nanomaterials
- Deep-UV photoelectronic devices
- Nanovectors to carry electrical/mechanical signals within a cellular system
- Hydrogen storage medium

September 15, 2011

OBJECTIVE

 High-quality and high-yield BNNTs can be synthesized over mesoporous silica templates by CVD method.

 \circ Mesoporous MCM-41 as a template which has a regular hexagonal array of uniform pore openings with diameters between 2 and 10 nm is a good candidate.

• A simple and shorter synthesis technique for the production of BNNT over iron impregnated mesoporous silica MCM-41 at a relatively low reaction temperature by CVD method was aimed.

SYNTHESIS OF IRON IMPREGNATED MCM-41

Narrow pore size distribution (2-10 nm)
 ✓ High surface areas (1500 m²/g)
 ✓ High pore volume (1 cm³/g)
 ✓ Controllable size and morphology
 ✓ Designable chemical composition and functionalizable surface

○ Iron impregnated MCM-41 with different metal/Si ratios were obtained by microwave-assisted direct synthesis method.

CHARACTERIZATION OF IRON IMPREGNATED MCM-41

September 15, 2011

BET CHARACTERIZATION

Si/Metal mol ratio	Si/Metal mol ratio (EDX)	BET Surface Area (m²/g)	BJH Des. Pore volume (cm ³ /g)	BJH Des. Pore diameter "d _p " (nm)	d ₁₀₀ (nm)	Lattice parameter "a" (nm)	Pore wall thickness "δ" (nm)
Fe-DS-25	0,06	1253	0,53	4,0	3,9	4,50	0,70
Fe-DS-50	0,04	1582	0,59	3,9	3,9	4,50	0,71
Fe-DS-75	0,03	1289	1,32	3,5	3,5	4,04	0,73
Fe-DS-100	0,02	1108	0,82	3,5	3,5	4,09	0,74

 \checkmark The determination was based on the measurements of the adsorption isotherms of nitrogen at 77 K.

✓ The specific surface areas were evaluated with the Brunauer–Emmett–Teller (BET) method in the P/P₀ range of 0.05–0.35.

SYNTHESIS OF BORON NITRIDE NANOTUBES

Production of Iron Impregneted MCM-41 by using Microwave heating

Characterization of BNNTs

September 15, 2011

ISBB 2011

11

PURIFICATION OF BORON NITRIDE NANOTUBES

The sample obtained from the CVD treatment was mixed with about 50 mL of 4 M HCl solution and kept for 4 hours at room temperature.

At the end of purification process, the solution was filtered through filter paper with 0.45 μ m pore size and washed with distilled water

September 15, 2011

XRD CHARACTERIZATION

✓ The characteristic peaks of hexagonal-BN were observed at about $2\theta=27.3^{\circ}$ (002) and $2\theta=41.2^{\circ}$ (100).

✓ The small and broad peak near 2θ =41.2° was assigned to (111) peak of cubic-BN overlapped with (100) hexagonal-BN peak.

✓ These noticeable BN peaks showed that most of side products were removed successfully by the separation steps.

SEM CHARACTERIZATION

FTIR ANALYSES OF BNNT

100

80

60

40

20

4000

3500

3000

Transmittance/%

✓ These spectra are dominated by 1110 cm-1 band due to the c-BN structures and, 1383 cm⁻¹ and 813 cm⁻¹ bands due to h-BN structures.

 \checkmark The FTIR spectrum contained a strong and broad peak near 1400 cm⁻¹ due to in-plane sp² bonded B-N stretching vibrations.

✓ The peak near 850 cm⁻¹ assigned to the B-N-B out-ofplane bending vibration encountered in h-BN formation.

THERMAL GRAVIMETRIC ANALYSIS

✓ Iron impregnated MCM-41 seemed to be very stable at temperatures higher than 200°C.

✓ At 150°C moisture present in the sample was lost. As the temperature reached to 350°C and 500°C two sets of oxidative reactions occurred.

✓ At both of the temperatures about 5% of mass of the BNNTs were lost.

✓ Beyond 550°C the BNNTs seemed to be very stable up to 1000°C.

September 15, 2011

CONCLUSION

 \circ BN nanotubes were successfully grown over iron impregnated MCM-41 at a relatively low temperature of 750°C for 1 hour by CVD technique.

 \circ BN nanotubes were obtained after the purification procedure including HCl and HNO₃ treatments to remove impurities.

 \circ SEM image showed the formation of nano-fibrous network BN structures in the diameter range of 20 nm to 40 nm.

 \odot Both XRD and FTIR characterization results supported the formation of h-BN and c-BN nanostructures.

 \circ Oxidative TGA results indicated that the synthesized BN nanostructures were thermally stable at temperatures higher than 550°C.

 \circ Hydrogen storage measurements via IGA showed that BNNTs could adsorb 0.85 wt% hydrogen which was two times larger than for commercial CNTs.

September 15, 2011

ACKNOWLEDGEMENTS

Thanks to Mustafa Baysal of the Material Science and Engineering Program at Sabanci University for the measurement facilities of intelligent gravimetric analyser.

> Thanks to BOREN (Ulusal Bor Araştırma Enstitüsü) for the financial support

September 15, 2011

