Provided by Sabanci University Research Database

Metadata, citation and similar papers at core.ac.uk

Test-aware Combinatorial Interaction Testing

Cemal Yilmaz
Faculty of Engineering and Natural Sciences
Sabanci University
Istanbul 34956, Turkey
cyilmaz@sabanciuniv.edu

ABSTRACT

Combinatorial interaction testing (CIT) approaches system-
atically sample a given configuration space and select a set
of configurations, in which each valid t-way option setting
combination appears at least once. A battery of test cases
are then executed in the selected configurations. FExist-
ing CIT approaches, however, do not provide a system-
atic way of handling test-specific inter-option constraints.
Improper handling of such constraints, on the other hand,
causes masking effects, which in turn causes testers to de-
velop false confidence in their test processes, believing them
have tested certain option setting combinations, when they
in fact have not. In this work, to avoid the harmful conse-
quences of masking effects caused by improper handling of
test-specific constraints, we compute t-way test-aware cov-
ering arrays. A t-way test-aware covering array is not just
a set of configurations as is the case in traditional covering
arrays, but a set of configurations, each of which is asso-
ciated with a set of test cases. We furthermore present a
set of empirical studies conducted by using two widely-used
highly-configurable software systems as our subject applica-
tions, demonstrating that test-specific constraints are likely
to occur in practice and the proposed approach is a promis-
ing and effective way of handling them.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms

Reliability, Experimentation

1. INTRODUCTION

General-purpose, one-size-fits-all software solutions are gen-
erally not acceptable in many application domains. For ex-
ample, web servers (e.g., Apache), databases (e.g., MySQL),
and application servers (e.g., Tomcat) are required to be cus-
tomizable to adapt to particular run-time contexts and ap-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

plication scenarios. One way to support software customiza-
tion is to provide configuration options through which the
behavior of the system can be controlled.

While having a configurable system promotes customiza-
tion, it creates a combinatorial configuration space, which
may need extensive QA to validate. Since the size of a con-
figuration space grows exponentially in the number of con-
figuration options, exhaustively testing all configurations is
generally not feasible. Therefore, a fundamental question
is: Which of the option setting combinations (i.e., configu-
rations) should be tested?

One solution approach, called combinatorial interaction
testing (CIT), systematically samples the configuration space
and tests only the selected configurations [2,5,8,14,21]. CIT
methods take as input a configuration model that defines the
valid configuration space for the software under test. This
model typically includes a set of configuration options, each
of which takes a value from a small number of discrete set-
tings, and a set of system-wide constraints among configu-
ration options. Given the model, these methods compute
a t-way covering array — a set of configurations, in which
each valid combination of option settings for every combi-
nation of ¢ options appears at least once [5]. The system is
then tested by running its test suite in all the configurations
selected.

Covering arrays were initially proposed for testing input
combinations of programs [5] and later adapted for testing
software configuration spaces. In this work, we argue that
there is a quite important distinction between using cover-
ing arrays for input combination testing and using them for
configuration testing, which necessitates the development of
dedicated approaches.

In input combination testing, each combination included
in the covering array typically represents a concrete input
to a test case and the software is tested with all of the input
combinations selected. On the other hand, in configuration
testing, each combination in the covering array represents
a configuration, which barely passes as a test case. For ad-
equate testing, a battery of external test cases need to be
executed in all of the configurations selected.

External test cases may have assumptions about the un-
derlying configurations; not all test cases may run in all con-
figurations. In a study, we observed that 1% (378 test cases)
and 46% (337 test cases) of all the test cases examined for
Apache (a web server) and MySQL (a database management
system) were configuration-dependent, i.e., had test-specific
inter-option constraints. When the constraint of a test case

https://core.ac.uk/display/11742564?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ol 02 03 o4l 2 3 ol 02 03 o4 tests [o1 02 03 o4 tests
T 1 1 1[s P P 0 1 1 1 Tt 1 1 L {213
1 1 0 o|S P P 0O 1 0 0 aullt 1 o0 o {123)
1 0 1 0|S P P 0 0 1 0 a1 o0 1 0 {1243)
1 0 0 1|S P P 0 0 0 1 1 o0 o0 1 {12 3)
0 1 1 O0|P S P 0 1 1 0 {1 1 1 o0 {12}
0o 1 0 1|P S P o 1 0 1 {1 1 o0 1 {12}
0o 0 1 1|P S P 0o 0 1 1 {1 0o 1 1 {12}
0O 0 0 0|P S P 0 0 0 o0 {L#l|1 0o o0 o (12}

(a)

(b)

Figure 1: A traditonal 3-way covering array vs. a 3-way test-aware covering array.

is not met by a configuration, the test case simply skips the
configuration, i.e., refuses to run in the configuration.
Existing covering array-based testing approaches do not

provide a systematic way of handling test-specific constraints.

These approaches typically compute a single covering array
and then execute all test cases in all of the configurations
selected, implicitly assuming that all test cases can run in
all configurations. However, when this assumption does not
hold, existing approaches greatly suffer from masking effects
— test skips that prevent some option-related behavior from
being tested [9]. Masking effects in turn cause testers to de-
velop false confidence in their test processes, believing them
to have tested certain option setting combinations, when
they in fact have not.

In this work, to avoid the harmful consequences of mask-
ing effects caused by improper handling of test-specific con-
straints, we propose three approaches to compute t-way test-
aware covering arrays. The covering arrays we compute are
not just a set of configurations as is the case in existing ap-
proaches, but a set of configurations, each of which is associ-
ated with a set of test cases. Two of the proposed approaches
are geared towards minimizing the number of configurations
included in test-aware covering arrays, whereas the third ap-
proach aims to minimize the number of test runs. To evalu-
ate the proposed approach, we conducted a set of feasibility
studies by using two widely-used highly-configurable soft-
ware systems as our subject applications. In these studies,
we demonstrate that test-specific constraints are likely to
occur in practice and not taking them into account causes
masking effects. Furthermore, the results of these studies
suggest that the proposed approach is a promising and effi-
cient way of handling test-specific constraints.

2. THE APPROACH

Figure 1a illustrates masking effects in a hypothetical test
scenario. In this scenario, the system under test has 4 con-
figuration options (01,02, 08, and 04), each of which takes
a boolean value (0 or 1). The test suite contains 3 test
cases (t1, t2, and t8). There is no system-wide constraint.
However, the first two test cases have a test-specific con-
straint. Test case tI runs only in configurations in which
0l = 0 and test case t2 runs only in configurations in which
0l = 1. When the constraint of a test case is not satisfied by
a configuration, the test case skips the configuration (i.e., re-
fuses to run in the configuration). Test case t3, on the other
hand, has no test-specific constraint. There are 20 valid 3-
way option setting combinations to cover for ¢/ and t2, and
32 combinations for t3. The system is tested by using a

traditional 3-way covering array. Since traditional covering
array-based testing approaches do not provide a systematic
way of taking test-specific constraints into account, all the
test cases are executed in all of the configurations selected.
Literals P and S indicates a test success or a test skip, re-
spectively.

Consider test case t1. Since t1 skipped the first 4 config-
urations, the 3-way option setting combinations for options
02, 083, and o4 that appear in the first 4 configurations were
actually not tested by t1. As these 4 combinations appear
nowhere else in the covering array, t1 never had a chance to
test them. Following the same reasoning, test case ¢2 never
had a chance to test the 4 valid 3-way option setting com-
binations which happened to be present only in the last 4
configurations. As a result, 8 out of 72 (11%) valid 3-pairs
were masked due to the test skips. A t-way option setting
combination-test case pair is referred to as a t-pair in the
remainder the paper.

Note that expressing test-specific constraints as system-
wide constraints in configuration models does not solve the
problem. One reason is that constraints for different test
cases may conflict with each others. This is indeed the
case in our running example; ¢/ does not run in configu-
rations in which o has one setting and ¢2 does not run in
configuration in which the same option has the other set-
ting. Globally enforcing such conflicting constraints would
not generate any configurations. Another reason is that,
even if the test-specific constraints do not conflict, enforcing
them across all the test cases may prevent test cases from
exercising some valid combinations, which are invalidated
by other test cases. For example, enforcing the test-specific
constraint of ¢ on t3 would prevent t3 from testing any
combinations in which o = 1.

To prevent harmful consequences of masking effects caused
by improper handling of test-specific constraints, we define
a t-way test-aware covering array. In this approach, we take
as input a configuration model of the system under test. The
configuration model includes 1) a set of configuration options
and their discrete settings, 2) a set of system-wide inter-
option constraints which are to be enforced globally across
the entire configuration space, and 3) a set of test cases to-
gether with their test-specific inter-option constraints which
are to be enforced per test case basis. Given a configuration
model and a value of ¢, a t-way test-aware covering array is
a set of configurations, each of which is associated with a set
of test cases such that

1) None of the configurations violate the system-wide con-
straints.

2) No test case is scheduled to be executed in a configu-
ration that violates the test-specific constraints of the
test case.

3) For each test case, each valid combination of option
settings for every combination of ¢ options appears at
least once in the set of configurations in which the test
case is scheduled to be executed.

Figure 1b presents as an example a 3-way test-aware cov-
ering array created for our running example. None of the
test-specific constraints are violated in this test suite. There-
fore, no masking effects occur. Furthermore, all valid 3-pairs
get to be tested.

Next, we present three algorithms to compute test-aware
covering arrays. The first two algorithms are geared towards
minimizing the number of configurations, whereas the third
algorithm is geared towards minimizing the number of test
runs required.

2.1 Algorithm 1: Maintaining a separate con-
figuration submodel for each test case

The roots of this work stem from one of our earlier works [9],
in which we introduced a feedback driven adaptive combina-
torial testing process. In that work, to realize the proposed
process in practice, we developed an approach to generate
test-aware covering arrays. However, since test-aware cov-
ering arrays were not the main focus of the work, very little
details about the approach were provided. We here provide
further details.

In this approach, we maintain a separate configuration
submodel for each test case. The configuration submodel
of a test case, in addition to inheriting all system-wide con-
straints, includes the test-specific constraints.

We first generate a separate covering array for each test
case (i.e., for each configuration submodel) by using a tradi-
tional covering array generator as our computational primi-
tive. We then merge the individual covering arrays created
for the test cases to obtain a test-aware covering array for
the entire test suite.

We in this work use a well-known tool, called ACTS [15],
to generate traditional covering arrays. However, the pro-
posed approach is readily available to be used with other
generators that support seeding.

ACTS takes as input a configuration model. The model
includes configuration options, their settings, system-wide
constraints, and a seed. The seed is a set of configurations
fed to the tool. Given a strength of the array (i.e., t), ACTS
generates a t-way covering array around the seed. Conceptu-
ally, ACTS treats all the t-way option setting combinations
included in the seed as already covered and generates new
configurations to cover the rest of the combinations.

Algorithm 1 presents the proposed approach. For each
test case T, we first compute a seed (line 3). The seed, out
of all the configurations that have been so far included in the
covering array ca, contains those configurations that do not
violate the constraint of the test case. We then feed ACTS
with the seed and the configuration submodel of the test
case, ConfigModel. (line 4). The result is a traditional cov-
ering array created for the test case at hand. The test case
is then scheduled to be executed in all of the configurations
selected.

The seed is created to reduce the total number of config-
urations needed. Since ACTS adds new configurations only

Algorithm 1 Computes a t-way test-aware covering
array by maintaining a separate configuration sub-
model for each test case

Input ¢: Covering array strength

Input ConfigModel: System-wide configuration model

1: ca < empty

2: for each test 7 do

3 seed; <+ computeSeed(ConfigModel, ca)
4 car < computeCA(t, ConfigModel,, seed:)
5: car <+ reduce(car)
6 ca < ca U ca,
7: end for
8: return ca

to cover t-way combinations that are not already covered
by the seed, having the seed forces the test cases to share
configurations.

As the next step, we perform a post-mortem analysis to
further reduce the number of configurations by eliminating
the configurations that do not contribute to the coverage
of t-way combinations for the test case (line 5). This step
is needed only for those covering array generators, such as
ACTS, that do not automatically eliminate non-contributing
configurations in the seed.

The reduction is performed as follows: We iterate over all
the configurations included in the newly computed covering
array. For each configuration, we compute all the t-way
option setting combinations present in the configuration. If
there is at least one combination which is not covered by any
other configuration, we keep the configuration. Otherwise,
we filter out the configuration, thus reduce the number of
configurations.

We then merge the covering array, ca., created for the
test case with the system-wide covering array ca (line 6).
Finally, after processing all the test cases, we output the
computed t-way test-aware covering array (line 8).

One downside of this approach is that the optimization
is carried out per test case basis. While the problem is
being solved for a test case, the coverage requirements of the
remaining test cases waiting to be processed are not taken
into account. This leads to loss of opportunity for further
reducing the number of configurations.

2.2 Algorithm 2: Maintaining a single system-
wide configuration model

In this section, to alleviate the shortcomings of the previ-
ous approach, we propose a greedy approach that maintains
a global view of the test-specific constraints.

At each iteration, we select a configuration which covers
the maximum number of t-pairs (i.e., t-way option setting
combination-test case pairs) that have not been covered by
the previous iterations (i.e., previous configurations). The
iteration ends when there is no valid t-pair left uncovered.

Algorithm 2 depicts the high-level view of the approach.
We maintain a pool that keeps track of the valid t-pairs yet
to be covered. As the pairs are covered, they are removed
from the pool. The pool initially contains all valid t-pairs
(line 2). At each iteration, we pick the best row that covers
the maximum number pairs currently present in the pool
(line 4). A row in this context refers to a configuration

Algorithm 2 Computes a t-way test-aware covering
array by maintaining a single system-wide configu-
ration model.

Input ¢: Covering array strength

Input ConfigModel: System-wide configuration model

1 ca — empty
. tpairs < compute TPairsToCover(t, ConfigModel)
while tpairs is not empty do
row < pickBestRow(ConfigModel, tpairs)
tpairsCovered < getTPairsCovered(ConfigModel, row)
tpairs < tpairs — tpairsCovered
ca < ca U row
end while
: return ca

OO DG W

together with a set of test-cases that are scheduled to be
executed in the configuration.

Once a row is selected, we compute the set of t-pairs cov-
ered by the row (line 5) and remove these pairs from the
pool (line 6). We then append the selected row to our test-
aware covering array (line 7). Finally, when all the required
pairs are covered (i.e., when the pool is empty), we output
the computed test-aware covering array (line 9).

An integral part of the approach is computing the “best”
row at each iteration. In this work, as a proof of concept, we
implement this functionality using Answer Set Programming
(ASP). ASP [16,19] is a declarative programming paradigm,
which represents a computational problem as a “program”
whose models, called “answer set”, correspond to the solu-
tions. ASP solvers are then used to find the answer sets for
the program.

Algorithm 2 depicts our ASP encoding for an example
scenario. This encoding computes the best row at a given
iteration during the creation of a 2-way test-aware covering
array for a simple configuration model. The configuration
model contains three options (01, 02, and 03). Option o1
and o2 take a binary value (i.e., 0 and 1), whereas 03 takes
0, 1, or 2. There is no system-wide constraint. The system
is tested using two test cases (t1 and ¢2). Test case tI skips
all the configurations in which ol = 1. Test case ¢t2 has no
constraint.

We now explain the encoding in a nutshell with no in-
tention to introduce ASP. For more details about ASP, the
interested reader may refer to an introduction [10] or a ded-
icated book [1].

In the configuration to be selected (cfg), each and every
option must have exactly one valid setting:

1 {cfg(Opt,Val) : setting(Opt,Val)} 1 :- opt(Opt).

Configuration cfg is a valid configuration for test case T,
if it is not an invalid configuration for the test case:
validCfg(T) :- test(T), not invalidCfg(T).

All the configurations in which 07 = 1 are invalid for test
case t1 (t1 does not run in such configurations):
invalidCfg(tl) :- cfg(ol, 1).
Whereas the following line, as an example, indicates that
2-way option setting combination (o1 = 0, 02 = 1) is a valid
combination that needs to be covered for test case t1.

tpair(ol, 0, 02, 1, t1).

% test cases
test(t1;t2).

% configuration options and their settings
opt(ol;02;03).
setting(ol;02,0;1) .setting(03,0;1;2).

% configuration to be selected

1 {cfg(Opt,Val) : setting(Opt,Val)} 1 :- opt(Opt).
% the definition of a valid config. for a test T
validCfg(T) :- test(T), not invalidCfg(T).

% test constraints:

% an example test constraint: tl skips when ol=1
invalidCfg(t1) :- cfg(ol, 1).

hooe.

% pairs to cover:

% an example t-pair to cover
tpair(ol, 0, 02, 1, t1).
Y

% the definition of a covered pair

covered(01,V1,02,V2,T) :- cfg(01,V1), cfg(02,V2),
validCfg(T),
tpair(01,V1,02,V2,T).

% the optimization criteria
#maximize {covered(01,V1,02,V2,T)}.

Figure 2: ASP encoding for computing the “best”
row at a given iteration.

Note that facts about invalid configurations and t-pairs
to cover are configuration model specific and can be pop-
ulated by an external driver, such as the one depicted in
Algorithm 2.

A 2-way option setting combination (01 = VI, 02 = V2),
where O1 and O2 are options and V1 and V2 are valid set-
tings, is considered to be covered for a test case T in config-
uration cfg, if 1) O1 = V1 and O2 = V2 in cfy, 2) cfg is a
valid configuration for T, and 3) the combination needs to
be covered for T

covered(01,V1,02,V2,T) :- cfg(01,V1), cfg(02,V2),
validCfg(T),

tpair(01,V1,02,V2,T).

Finally, the following directive ensures that we pick the
configuration that covers the maximum number of 2-pairs
previously uncovered:

#maximize {covered(01,V1,02,V2,T)}.

For the simplicity of the discussion, we discussed our so-
lution approach over an ASP encoding provided for a simple
configuration model. Adapting the encoding to more com-
plex configuration models and /or to compute higher strength
covering arrays (i.e., t > 2) is straightforward. For exam-
ple, in our experiments (Section 3), we developed a tool that
automatically generated the ASP encoding for a given con-
figuration model and a value of t.

2.3 Algorithm 3: Minimizing number of test
runs

An interesting observation is that there is a trade-off be-
tween minimizing the number of configurations and mini-
mizing the number of test runs. An attempt to minimize
one count often results in increasing the other count. This
trade-off is especially important when the cost of configur-
ing the system and the cost of running the test cases are
different.

The reason behind the trade-off is a simple one. Forcing
test cases to share configurations, thus reducing the number
of configurations, may cause a test case to execute in a num-
ber of configurations to cover a certain set of t-way option
setting combinations, which could have been covered by less
number of configurations, thus reducing the number of runs
of the test case, if the test case was not forced to share con-
figurations. On the other hand, not sharing configurations
across the test cases increases the number of configurations.

The proposed approaches presented in Section 2.1 and 2.2
are geared towards minimizing the number of configurations.
We now introduce an approach geared towards minimizing
the number of test runs.

In this approach, we slightly modify Algorithm 1 such
that, instead of creating a seed for each test case, which has
all the configurations that have been included in the covering
array so far (thus forcing the test case to share these config-
urations when possible), we create an empty seed. That is,
line 3 in Algorithm 1 is replaced with seed, <— empty. The
rest of the algorithm stays the same.

In effect, we provide each test case with freedom to select
its own configurations in order to minimize the number of
times it is executed. Test cases are scheduled to be executed
in the configurations they select.

3. EXPERIMENTS

We conducted a series of studies to 1) demonstrate that
test-specific constraints are likely to occur in practice, 2)
demonstrate that traditional covering array-based testing
approaches suffer from masking effects caused by improper
handling of test-specific constraints, and 3) evaluate the pro-
posed approach.

In the studies, we used two widely-used highly-configurable
software systems as our subject applications: Apache v2.3.11-
beta and MySQL v5.1. Apache is an HTTP server. MySQL
is a database management system. Both systems enjoy a
large developer community that actively updates and tests
them.

All the experiments were performed on a dual Intel Xeon
processor machine with 2GB of RAM, running the CentOS
5.2 operating system.

3.1 Study 1: Test-specific constraints

In our first study, to demonstrate that configuration-depen-
dent test cases are likely to occur in practice, we examined
the test suites that came with the source code distribution
of our subject applications.

Each test case in the test suites has its own test oracle
which determines whether each test case execution “passed”,
“failed”, or was “skipped”. Successful test cases simply emit
pass. Failed test cases emit fail. A test case returns skipped
when it determines that it cannot run in a given configura-
tion.

Table 1: Distribution of Apache test cases over clus-
ters, each which is identified by a unique constraint.

cluster # of # of || cluster # of # of
idx tests options idx tests options
1 172 3 10 5 3
2 74 1 11 4 1
3 26 1 12 3 2
4 22 1 13 2 2
5 21 1 14 2 2
6 16 1 15 2 1
7 11 1 16 2 1
8 8 1 17 1 1
9 7 2

To detect and identify the test-specific inter-option con-
straints, we studied the test oracles and, as needed, manu-
ally investigated the test cases, read the user manuals, and
conducted experiments. Out of 3789 and 738 test cases stud-
ied for Apache and MySQL, respectively, we identified 378
(1%) Apache test cases and 337 (46%) MySQL test cases
that run only in certain configurations, i.e., that have some
test-specific constraints.

We then determined the actual test-specific constraints for
these configuration-dependent test cases. It turned out that
the constraints involved a total of 13 and 9 unique configu-
ration options for Apache and MySQL, respectively.

One interesting remark is we observed that the test cases
formed clusters with respect to their constraints. That is,
we had clusters of test cases sharing exactly the same con-
straints. We identified 17 and 29 such clusters for Apache
and MySQL, respectively.

Table 1, as an example, provides some statistics about
the distribution of 378 configuration-dependent Apache test
cases over 17 clusters, each of which is identified with a
unique constraint. The columns in the table depict the clus-
ter indices, the number of test cases included in each cluster,
and the number of unique configuration options involved in
the constraints associated with the clusters. The first row,
for instance, indicates that 172 test cases share exactly the
same constraint involving 3 configuration options.

We observed a similar trend in MySQL test cases. Among
the 29 clusters identified, the largest cluster had 86 test cases
and the smallest cluster had 1 test case.

This observation is particularly important towards im-
proving the scalability of test-aware covering array genera-
tors. Instead of handling each and very test case, test cases
can be divided into clusters and then the covering array can
be created by using one sample test case taken from each
cluster. This could considerable reduce the number of t-pairs
that need to be dealt with at runtime. Once a test-aware
covering array is created for the sample test cases, each sam-
ple test can then be replaced with all the test cases in the
respective cluster. We followed this approach to create the
test-aware covering arrays discussed in Section 3.

In this study, we demonstrated that configuration-dependent
test cases are likely to occur in practice. We furthermore
learned that such test cases tend to form clusters with re-
spect to their constraints.

3.2 Study 2: Masking effects

In this study we evaluate the harmful effects of not being
able to properly handle test-specific constraints. For that
purpose, we mimic the way that the traditional covering ar-

Table 2: Configuration model for Apache.

option setting

case-filter {—disable-case-filter,—enable-case-filter }

ssl {—disable-ssl,~enable-ssl}

dav {~disable-dav,—enable-dav}

auth-digest {—disable-auth-digest,—enable-auth-digest }
echo {—disable-echo,~enable-echo}

rewrite {—disable-rewrite,—enable-rewrite}
case-filter-in {—disable-case-filter-in,—enable-case-filter-in}
bucketeer {—enable-bucketeer,~disable-bucketeer}
info {—enable-info,~disable-info}

headers {—enable-headers,—disable-headers}
vhost-alias {~enable-vhost-alias,~disable-vhost-alias}
cgi {—enable-cgi,—disable-cgi}

imagemap {—enable-imagemap,—disable-imagemap}
proxy-http {—enable-proxy-http,~disable-proxy-http}
proxy {—enable-proxy,—disable-proxy}

System-wide constraint
proxy-http = —enable-proxy-http — proxy=-enable-proxy

rays are typically used in practice. In particular, we create
a configuration model for our subject applications, create
traditional covering arrays, schedule all the test cases to run
in all the configurations selected, and quantify the conse-
quences of masking effects caused by test skips.

To carry out the study, we first created a configuration
model for each subject application. All the configuration
options that cause test skips were included in these models.

Table 2 and 3 depict the configuration model of Apache
and MySQL used in the study. Both configuration models
have 15 options and one system-wide constraint. System-
wide constraints are included in the configuration models
to avoid invalid configurations; configurations that violate
these constraints either do not get built or cause runtime
exceptions. All the configuration options in the configura-
tion model of Apache are binary, whereas the configuration
model of MySQL has 12 options with binary settings and 3
options with 3 levels of settings.

We then created traditional covering arrays with varying
strengths for our configuration models by using ACTS. For
each value of ¢t and the choice of subject application, we
created 10 covering arrays and schedule all the test cases
of interest to execute in all the configurations selected. In
this study, we consider only the configuration-dependent test
cases identified in Study 1. The rest of the test cases are
ignored.

Table 4 presents the average number of configurations and
the number of test runs we obtained (column 3 and 4).
A test case scheduled to be executed in a configuration is
counted as one test run.

To quantify the harmful consequences of masking effects
caused by improper handling of test-specific constraints, we
use a metric, called t-masked [9]. This metric counts the
number of unique t-pairs that are untested because of test
skips. To compute the value of t-masked, for each and every
test case, we first count the number of t-way option setting
combinations that are present only in the configurations that
the test skips. We then add these counts up across all the
test cases.

The last two columns of Table 4 present the 2-masked
and 3-masked values computed for the traditional covering
arrays used in the study. We observed that the traditional
covering arrays greatly suffered from masking effects caused
by test skips. For example, when t = 2, 44403 (32.68%)

Table 3: Configuration model for MySQL.

option settings

asm {NULL,enable-assembler}

linfile {NULL,enable-local-infile}

bt {NULL,with-big-tables}

ec {NULL,with-extra-charsets=complex,
with-extra-charsets=all}

innodb {with-innodb,without-innodb}

libedit {with-libedit,without-libedit}
ndbcluster {NULL,with-ndbcluster}

readline {with-readline,without-readline}
ssl {NULL,with-yassl}
ase {NULL,with-archive-storage-engine}
bse {NULL,with-blackhole-storage-engine}
fse {NULL,with-federated-storage-engine}
sql.mode {strict_all_tables, traditional, ansi}
log-format {row, statement, mixed}
b {skip-log-bin,log-bin}

System-wide constraint
ssl = NULL A

(libedit=with-libedit — readline = without-readline)

of 138246 valid 2-pairs, and, when ¢t = 3 247452 (22.21%)
of 1114099 valid 3-pairs never had a chance to be tested
(i.e., masked) in 2-way and 3-way covering arrays created
for Apache.

In the presence of masking effects, one way to reduce the
number of t-pairs being masked is to use higher strength
traditional covering arrays, i.e., use a t'-way covering array
to obtain t-way coverage, where ¢ > t. For instance, if we
use a 3-way covering array to prevent 1- or 2-way option
setting combinations from being masked, since we expect
that each 1- and 2-way combination will appear multiple
times in different 3-way combinations, the masking may be
avoided.

As Table 4 indicates, we observed that although using
higher strength covering arrays reduced masking effects, they
did not solve the problem entirely. For example, using the
traditional 3-way covering arrays reduced the value of 2-
masked from 44403 to 9824 compared to using the 2-way
covering arrays, and using the 4-way covering arrays further
reduced it to 240 for Apache.

Note that using a sufficiently large value of ¢ would cer-
tainly prevent all t-pairs (where t' > t) from being masked.
However, it would do so at the cost of increased number of
configurations and test runs. For instance, our 4-way cover-
ing arrays created for Apache have 160% more configurations
and test runs compared to the 2-way covering arrays.

From this study, we learned that traditional t-way cov-
ering arrays greatly suffer from masking affects caused by
improper handling of test-specific constraints. Furthermore,
using higher strength traditional covering arrays tend to re-
duce masking effects, but they do so at the cost of increased
amount of resources required for testing.

3.3 Study 3: Test-aware covering arrays

In this study, we populate our configuration models used
in Study 2 with the test-specific constraints identified in
Study 1. We then use the proposed approaches to create
test-aware covering arrays.

Table 5 presents the results we obtained. In this table,
MPT refers to the approach in which we create one config-
uration submodel for each test case (Section 2.1) and MPS
refers to the approach in which we use one system-wide con-

Table 4: Traditional covering arrays.

sut t configs test runs 2-masked 3-masked

Apache 2 10 3780 44403 n/a
(32.68%)

Apache 3 26 9828 9824 247452

(7.11%) (22.21%)

Apache 4 73 27594 240 17633

(0.02%) (1.58%)

MySQL 2 12 4044 43933 n/a
(31.16%)

MySQL 3 38 12806 6816 233178

(4.84%) (19.32%)

MySQL 4 101 34037 412 34382

(0.29%) (2.85%)

figuration model (Section 2.2). In the realization of the MPS
approach, to find the best row at each iteration, we executed
the respective ASP encoding for at most 3 minutes; the best
solution found (could be the optimal solution) in 3 minutes
is used. Both MPT and MPS aim to minimize the number
of configurations. MTR, on the other hand, refers to the
approach in which we aim to minimize the number of test
runs (Section 2.3). For each approach and the value of ¢, we
created 10 test-aware covering arrays. The table reports the
average sizes of the covering arrays obtained.

One observation is that, for the configuration models used
in the study, the t-way test-aware covering arrays had more
configurations, but not necessarily more test runs compared
to the traditional t-way covering arrays. For instance, the 3-
way test-aware covering arrays created by the MPS approach
for Apache required more configurations (68.2 vs. 26), but
less test runs (9671 vs. 9828) compared to the traditional
3-way covering array. This is typically to be expected. Han-
dling test-specific constraints typically increases the number
of configurations needed, as the t-way combinations being
masked for the test cases need to be covered in additional
configurations. However, this does not necessarily increase
the number of test runs, as the test cases are scheduled to
be executed only in configurations contributing to their cov-
erage.

We also observed that having a global view of coverage
requirements for the test cases (i.e., the MPS approach) was
better at reducing the number of configurations compared to
having a partial view of the test requirements (i.e., the MPT
approach). When ¢ = 2, MPS, compared to MPT, provided
covering arrays with 52% less configurations for Apache and
with 45% less configurations for MySQL. Similarly, when
t = 3, MPS, compared to MPT, reduced the number of
configurations by 45% and 44% for Apache and MySQL,
respectively.

Furthermore, the test-aware covering arrays prevented all
masking effects and the ones created by the MPS approach
did so at a fraction of the cost compared to using higher
strength traditional covering arrays, which were not even
able to remove all the masking effects. For example, when
t = 2, the test-aware covering arrays created by MPS, com-
pared to the traditional 4-way covering arrays, reduced the
number of configurations by 64% and 57%, and the number
of test runs by 85% and 83% for Apache and MySQL, re-
spectively. When ¢t = 3, compared to the traditional 4-way
covering arrays, the number of configurations and the num-
ber of test runs were reduced by 7% and 65% for Apache. For
MySQL, although we observed 31% increase in the number

Table 5: Test-aware covering arrays.

sut t approach configs test runs
Apache 2 MPT 54.5 4127.8
Apache 2 MPS 26.1 4044.8
Apache 2 MTR 127.2 3780.0
Apache 3 MPT 123.2 10702.9
Apache 3 MPS 68.2 9671.0
Apache 3 MTR 324.6 8901.1
MySQL 2 MPT 78.8 5015.2
MySQL 2 MPS 43.3 5722.3
MySQL 2 MTR 238.9 3891.1
MySQL 3 MPT 238.8 14062.7
MySQL 3 MPS 132.7 15990.0
MySQL 3 MTR 694.3 10815.4

of configurations (keeping in mind that the 4-way traditional
covering arrays suffered from 34382 3-pairs being masked),
the number of test runs was reduced by 53%.

Finally, using the MTR approach, as expected, reduced
the number of test runs while increasing the number of con-
figurations needed. When t = 2, MTR, compared to MPS,
reduced the number of test runs by 7% and 32% while in-
creasing the number of configurations by 387% and 452% for
Apache and MySQL, respectively. Similarly, when ¢t = 3, the
number of test runs was reduced by 8% and 32%, while the
number of configurations was increased by 376% and 423%.
Clearly, if the cost of configuring the system is negligible,
the MTR approach will be preferable.

4. RELATED WORK

The problem of generating covering arrays is NP-hard [18].
In the literature, four main types methods have been pro-
posed to generate covering arrays: greedy methods [5, 7],
heuristic search-based methods [4,12], mathematical meth-
ods [13], and random search-based methods [20]. Nie et
al. provide a comprehensive survey of these methods [18].
The proposed approaches presented in this work fall into
the category of greedy methods. However, compared to the
previous greedy approaches, the properties of the covering
arrays we compute are different.

Many approaches have been proposed in the literature to
handle inter-option constraints. Cohen et al. study the na-
ture of such constraints in real systems [6]. Mats et al. pro-

pose various techniques for efficient handling of constraints [17].

Bryce et al. introduce “soft constraints” to mark option
setting combinations that are permitted, but undesirable to
be included in a covering array [3]. These approaches are
mainly concerned with system-wide inter-option constraints.
We, on the other hand, provide various approaches to handle
test-specific constraints.

Seeding mechanisms in the generation of covering arrays
have been used to guarantee the testing of certain config-
urations [5,7,11]. However, in this work, we use a seeding
mechanism to force test runs to share configurations as much
as possible, which potentially reduces the number of config-
urations required.

5. CONCLUSION

In this work, to avoid the harmful consequences of mask-
ing effects caused by improper handling of test-specific con-
straints, we proposed three approaches to compute t-way
test-aware covering arrays. The covering arrays we compute

are not just a set of configurations as is the case in exist-
ing approaches, but a set of configurations, each of which is
associated with a set of test cases. Two of the proposed ap-
proaches are geared towards minimizing the number of con-
figurations included in test-aware covering arrays, whereas
the third approach aims to minimize the number of test runs.

To evaluate the proposed approach, we conducted a set
of feasibility studies by using two widely-used software sys-
tems, Apache and MySQL, as our subject applications.

In these studies, we first demonstrated that configuration-
dependent test cases, thus test-specific constraints, are likely
to occur in practice. We observed that 1% (378 test cases)
and 46% (337 test cases) of all the test cases examined for
Apache and MySQL were configuration-dependent. We then
demonstrated that traditional covering arrays greatly suffer
from masking effects caused by improper handling of test-
specific constraints. In the experiments, 32% (21%) of all
the required 2-pairs (3-pairs) were masked on average, i.e.,
never had a chance to get tested, when traditional 2-way
(3-way) covering arrays were used. Although using higher
strength traditional covering arrays reduced the masking ef-
fects, they did so at the cost of increased amount of resources
required for testing. On the other hand, our test-aware cov-
ering arrays prevented all masking effects from occurring
and they did so at a fraction of the cost compared to us-
ing higher strength traditional covering arrays. Finally, we
demonstrated that there is a trade-off between minimizing
the number of configurations and minimizing the number of
test runs; an attempt to minimize one count often results in
increasing the other count.

We believe that this line of research is interesting with
some potential practical impact. As the next step, we plan to
develop a generic test-aware covering array generator which
takes various types of costs into account, e.g., cost of recon-
figuration and cost of running tests.

6. ACKNOWLEDGMENTS

This research was supported by a Marie Curie Interna-
tional Reintegration Grant within the 7th European Com-
munity Framework Programme (FP7-PEOPLE-IRG-2008),
and by the Scientific and Technological Research Council of
Turkey (109E182).

7. REFERENCES

[1] C. Baral. Knowledge Representation, Reasoning, and
Declarative Problem Solving. Cambridge University Press,
Cambridge, England, 2003.

[2] R. Brownlie, J. Prowse, and M. S. Phadke. Robust testing
of AT&T PMX/StarMAIL using OATS. AT&T Technical
Journal, 71(3):41-7, 1992.

[3] R. C. Bryce and C. J. Colbourn. Prioritized interaction
testing for pair-wise coverage with seeding and constraints.
Information and Software Technology, 48(10):960 — 970,
2006. Advances in Model-based Testing.

[4] R. C. Bryce and C. J. Colbourn. One-test-at-a-time
heuristic search for interaction test suites. In Proceedings of
the 9th annual conference on Genetic and evolutionary
computation, GECCO ’07, pages 1082-1089, New York,
NY, USA, 2007. ACM.

[5] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C.
Patton. The AETG system: an approach to testing based
on combinatorial design. IEEE Transactions on Software
Engineering, 23(7):437-44, 1997.

[6] M. B. Cohen, M. B. Dwyer, and J. Shi. Interaction testing
of highly-configurable systems in the presence of

[7]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

19]

20]

(21]

constraints. In Proceedings of the 2007 international
symposium on Software testing and analysis, ISSTA ’07,
pages 129-139, New York, NY, USA, 2007. ACM.

J. Czerwonka. In Proc. of the 24th Pacific Northwest
Software Quality Conference.

S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M.
Lott, G. C. Patton, and B. M. Horowitz. Model-based
testing in practice. In Proc. of the Int’l Conf. on Software
Engineering, pages 285-294, 1999.

E. Dumlu, C. Yilmaz, M. B. Cohen, and A. Porter.
Feedback driven adaptive combinatorial testing. To appear
in the Proc. of Int’l Syposium on Software Testing and
Analysis (ISSTA), July 2011.

T. Eiter, G. Ianni, and T. Krennwallner. Answer set
programming: A primer. In Reasoning Web. Semantic
Technologies for Information Systems, 5th International
Summer School 2009, Tutorial Lectures, volume 5689 of
LNCS, pages 40-110. Springer, 2009.

S. Fouché, M. B. Cohen, and A. Porter. Towards
incremental adaptive covering arrays. In The 6th Joint
Meeting on European software engineering conference and
the ACM SIGSOFT symposium on the foundations of
software engineering: companion papers, ESEC-FSE
companion '07, pages 557-560, 2007.

S. Ghazi and M. Ahmed. Pair-wise test coverage using
genetic algorithms. In Evolutionary Computation, 2003.
CEC ’03. The 2003 Congress on, volume 2, pages 1420 —
1424 Vol.2, dec. 2003.

A. Hartman. Software and hardware testing using
combinatorial covering suites. In M. C. Golumbic and

I. B.-A. Hartman, editors, Graph Theory, Combinatorics
and Algorithms, volume 34 of Operations
Research/Computer Science Interfaces Series, pages
237-266. Springer US, 2005.

D. Kuhn, D. R. Wallace, and A. M. Gallo. Software fault
interactions and implications for software testing. IEFE
Trans. on Soft. Engeering, 30(6):418-421, 2004.

Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence.
Ipog: A general strategy for t-way software testing. In
Engineering of Computer-Based Systems, 2007. ECBS ’07.
14th Annual IEEE International Conference and
Workshops on the, pages 549 —556, march 2007.

V. Marek and M. Truszczynski. Stable models and an
alternative logic programming paradigm. In The Logic
Programming Paradigm: A 25-Year Perspective, 1999.

G. Mats, O. Jeff, and M. Jonas. Handling constraints in the
input space when using combination strategies for software
testing. Technical Report HS- IKI -TR-06-001, University
of SkAftivde, School of Humanities and Informatics, 2006.
C. Nie and H. Leung. A survey of combinatorial testing.
ACM Comput. Surv., 43:11:1-11:29, February 2011.

I. Niemeld. Logic programs with stable model semantics as
a constraint programming paradigm. Annals of
Mathematics and Artificial Intelligence, 25(3-4):241-273,
1999.

P. J. Schroeder, P. Bolaki, and V. Gopu. Comparing the
fault detection effectiveness of n-way and random test
suites. In Proceedings of the 2004 International Symposium
on Empirical Software Engineering, pages 49-59,
Washington, DC, USA, 2004. IEEE Computer Society.

C. Yilmaz, M. B. Cohen, and A. Porter. Covering arrays for
efficient fault characterization in complex configuration
spaces. IEEE Transactions on Software Engineering,
31(1):20-34, Jan 2006.

