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ABSTRACT

English is a moderately analytic language in which the meaning is conveyed with
function words and the order of constituents. On the other hand, Turkish is an ag-
glutinative language with free constituent order. These differences together with the
lack of large scale English-Turkish parallel corpora turn Statistical Machine Translation
(SMT) between these languages into a challenging problem.

SMT between these two languages, especially from English to Turkish has been
worked on for several years. The initial findings [El-Kahlout and Of lazer, 2006] strongly
support the idea of representing both Turkish and English at the morpheme-level.
Furthermore, several representations and groupings for the morphological structure
have been tried on the Turkish side. In contrast to these, this thesis mostly focuses
on the experiments on the English side rather than Turkish. In this work we firstly
introduce a new way to align the English syntax with the Turkish morphology by
associating function words to their related content words. This transformation solely
depends on the dependency relations between these words. In addition to this improved
alignment, a syntactic reordering is performed to get a more monotonic word alignment.
Here, we again use dependencies to identify the sentence constituents and perform
reordering between them so that the word order of the source side will be close to the
target language.

We report our results with BLEU which is a measure that is widely used by the
MT community to report research results. With improvements in the alignment and
the ordering, we have increased our BLEU score from a baseline score of 17.08 to 23.78,
which is an improvement of 6.7 BLEU points, or about 39% relative.
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İNGİLİZCEDEN TÜRKÇEYE FAKTÖRLÜ SÖZCÜK ÖBEĞİ TABANLI
İSTATİSTİKSEL BİLGİSAYARLI ÇEVİRİDE SENTAKS-MORFOLOJİ

EŞLEŞTİRİLMESİ VE ÖGE YENİDEN SIRALANMASI

Reyyan Yeniterzi

MS Tezi, 2009

Tez Danışmanı: Prof. Dr. Kemal Of lazer

Anahtar Kelimeler: İstatistiksel Bilgisayarlı Çeviri, Faktörlü Çeviri Modeli, Sentaks
ile Eşleştirme ve Yeniden Sıralama

Özet

İngilizce, anlamın işlev sözcükleri ve ögelerin dizilimi ile ifade edildiği bir dildir. Türkçe
ise serbest öge dizilimi olan, sondan eklemeli bir dildir. Bu farklılıklar büyük çapta bir
İngilizce-Türkçe paralel veri eksikliğiyle bir araya gelince, bu diller arasındaki istatis-
tiksel dil çevrisini zorlaştırmaktadır.

Bu iki dil arasında, özellikle İngilizceden Türkçeye, istatistiksel dil çevrimi bir
süredir üzerinde çalışılan bir konudur. Bu konuya ilişkin ilk sonuçlar [El-Kahlout and
Of lazer, 2006] hem Türkçenin hem de İngilizcenin biçimbilimsel analiz yapılarak ek
düzeyinde çalışılmasını destekler tarzdadır. Ayrıca, Türkçe tarafında biçimbilimsel
olarak bir takım farklı gösterimler ve gruplamalar da denenmiştir. Bunlara karşılık
bu tez Türkçeden daha çok İngilizce tarafındaki deneylere yoğunlaşmaktadır. Bu
çalışmada ilk olarak İngilizcedeki işlev sözcükleri, ilgili içerik kelimeleri ile birleştirerek
geliştirdiğimiz İngilizce sentaksıyla Türkçe morfolojisi arasında yeni bir eşleştirme yönte
mini tanıtıyoruz. İngilizcede yaptığımız bu değişim, yalnızca kelimeler arasındaki bağlılık
analizine dayanmaktadır. Bu geliştirilmiş eşleştirmenin yanında, sentaks yönünden
yeniden sıralamalar yaparak daha sıralı kelime eşleştirmeleri oluşturmaya çalıştık. Kay-
nak dilin kelime sırasını hedef dildekine yaklaştırmak için de yine bağlılık analizi kulla-
narak cümlenin öğelerini teşhis ettik ve yeniden sıralamalar gerçekleştirdik.

Sonuçlarımızı dil çevrimi çalısmalarında çok sık kullanılan BLEU değerlendirme
aracı ile elde ettik. Eşleştirme ve sıralamadaki gelişmelerle birlikte BLEU skorumuzu
17.08 den 23.78’e çıkararak 6.7 puanlık bir artış sağladık.
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Chapter 1

INTRODUCTION

1.1 Motivation

Machine Translation (MT) is the application of computers to automatically translate a

text or a speech from one language to another. MT is one of the very first applications

of computers starting in 40’s. Since then, it has been an important topic of research

for social, political, commercial and scientific reasons [Arnold et al., 1993], and now in

the age of Internet and globalization, the need for MT is more than ever.

Nowadays, international organizations like the United Nations (UN) and the Euro-

pean Union (EU), have to translate their documents to a number of languages. Further-

more, international companies such as Microsoft or IBM are producing documentations

and manuals in many languages. Most of these organizations and companies use hu-

man translators to deal with this translation issue; however, since manual translation

is a labor and time intensive task and there are never enough translators, this solution

becomes an expensive one. These reasons motivate researchers to work on efficient MT

systems with good output quality.

Another motivation for the MT research has been the rapid increase in the pop-

ularity of the Internet. Within the last decade, the Internet has become the ultimate

source of information. Everyday, millions of people use search engines to find the desired

information on the web. However, most of the time users cannot exploit the informa-

tion found since it is in a different language. Several search engines such as Google

Translator, Yahoo! Babel Fish, use translation systems to give their users a better
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search experience. These systems help the reader to understand the general content of

the foreign language text, but unfortunately they do not always produce perfect or even

accurate translations. Therefore, there is still a lot of room for improvement and this

motivates the researchers to focus on improving the current methods and developing

new ways to produce high quality MT systems.

Currently, the state-of-the-art approach in MT research is the Statistical Machine

Translation (SMT) method, which was proposed by IBM in 1990s. SMT is a statis-

tical approach for MT which derives its model from the analysis of bilingual parallel

sentences. It is completely an automatic method which does not require any manual

translation rules or specific tailoring for any specific language. Because of these reasons,

it is by far the most widely used machine translation method in MT community.

In this thesis, we use a certain novel SMT approach to translate from English to

Turkish. This approach introduces a new method to align syntax and morphology by

associating function words to their dependent content words. We also experiment with

syntactic reordering between sentence constituents to see if better translation can be

obtained with close word order.

1.2 Outline

The organization of this thesis is as follows: Chapter 2 starts with an introduction

to MT then continues with an overview of SMT and SMT from English to Turkish.

Chapter 3 describes the syntax-to-morphology alignment by explaining transformation

procedures and giving detailed examples. In Chapter 4, we present our experiments

with syntactic reordering. Finally, in Chapter 5 we conclude with a summary of the

thesis.
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Chapter 2

STATISTICAL MACHINE
TRANSLATION

2.1 Introduction to Machine Translation

Machine Translation is the automatic translation of a source text into another lan-

guage, which is referred as the target language, while keeping the meaning same. This

translation process has three main steps which are (1) analysis of the source text into

a certain representation, (2) transforming this representation and (3) generating a text

in the target language from this representation. These three steps require an extensive

knowledge of the vocabulary, syntax and semantics of both languages. Acquiring and

using this knowledge correctly is the main challenge of MT.

2.1.1 Challenges in MT

MT is a challenging problem because of the ambiguity and differences between lan-

guages. In order to develop a high quality MT system, we have to know about these

challenges and act accordingly.

Languages contain ambiguity at all levels, and this is a problem for almost all

natural language processing applications. So, ambiguity also complicates the analysis

step of MT. For instance, a sentence like “I saw a woman with a telescope.” can be

interpreted in two different ways: whether (1) the action of seeing is performed with a

telescope or (2) the woman has a telescope. Furthermore, word sense ambiguity may

also cause different interpretations. The word “tear” in the sentence “There is a tear
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on her shirt.” can mean either (1) a damage or (2) a fluid flowing from the eye as a

result of emotion. In order to get a correct translation, such semantic ambiguities have

to be resolved in the analysis step.

Another challenge in MT is the lexical or syntactic differences between source and

target languages. In terms of lexical differences, an interesting problem is the lexical

gap: no word or phrase in the target language can express the meaning of a word in the

source language. For example in Turkish, the word “bacanak”, the husband of one’s

wife’s sister, does not have any direct translation in English. Furthermore, there is also

the problem of a word having multiple meanings such as our previous example “tear”.

An additional language divergence, which complicates MT, is the syntactic differ-

ences between target and source language. A common example to this is the different

constituent structures of languages. Most of the languages such as English, French and

German have Subject-Verb-Object (SVO) constituent order. On the other hand there

are languages, like Turkish, which have Subject-Object-Verb (SOV) order. In addition

to this top level structural difference between languages, there are some other syntactic

variations, such as verb argument changes or differences in passive constructions [Lavie,

2008] between languages. Currently these differences are the main challenge in MT and

they have to be tackled in order to develop high quality systems.

2.1.2 Approaches to MT

Approaches to MT make use of the three steps that we have mentioned before: Analysis,

Transfer and Generation. These steps and their relations to the source and target texts

are represented in the Vauquois triangle in Figure 2.1. This triangle shows the depths

of the intermediate representation and the most common approaches used in MT.

At the bottom of the triangle we see the simplest approach which is direct transla-

tion. This approach does not produce any intermediate representation, but it relies on

some shallow analyses (e.g., morphological analysis) in the translation. Direct transla-

tion also uses some reordering rules in order to do local word order adjustments. This

approach is usually easy to implement and can produce translations that can give a

rough idea about the source content.

4



Figure 2.1: Vauquois MT triangle

When we go higher in the triangle, the methods employ deeper analyses such as

syntactic and semantic analyses. In syntactic analysis, the source sentence is parsed

to produce a parse tree. Then, this source language structure is transferred into the

target language structure by applying sets of linguistic rules to transform trees. Finally,

the surface sentence is generated in target language from the transformed tree. This

transfer approach requires parsers and generators for each language pair which require

substantial manual labor.

At the top of the triangle we see the interlingua approach, which relies on a “lan-

guage independent representation”. In this approach, the source text is analyzed into

the symbolic representation of its “meaning”. Then without any transformation, this

representation is used to generate the target text. This approach has both advantages

and disadvantages. In multilingual MT systems, it gives the advantage of not devel-

oping transfer rules for each language pair. On the other hand, developing a language

independent representation for a wide domain is extremely difficult.

Most of these approaches are rule-based methods which rely on building linguis-

tically grounded rules and bilingual dictionaries. Therefore, creating these systems are

both expensive and labor intensive. In 1990’s with the availability of parallel corpora,

researchers started to work on statistical approaches. In the next section, we are going

to describe these statistical MT approaches in detail.

5



2.2 Overview of Statistical Machine Translation

Statistical Machine Translation (SMT) approach uses statistical models to find the most

probable target sentence (t) given the source sentence (s). Mathematically speaking,

we can represent this as follows;

t̂ = arg max
t
P (t | s) (2.1)

where t ranges over all possible target sentences. Applying Bayes’ theorem to Equation

2.1 gives us

t̂ = arg max
t
P (s|t)P (t)/P (s) (2.2)

In this equation, P (s) is constant for every possible t, so we can ignore it and get

t̂ = arg max
t
P (s|t)P (t) (2.3)

Equation 2.3 can be interpreted in the following way: The most probable target sentence

t̂ is that t which maximizes the product of P (s|t) and P (t). Here P (s|t) is called the

translation model which is the probability of s being the translation of t. The other

factor P (t) is called the language model and it is the probability of t being a valid

sentence in the target language.

A typical SMT system uses these two models and a decoder to search and find

the most probable translation. An overview of this SMT process is presented in Figure

2.2. The translation model is generated from the bilingual texts, while the language

model is estimated from the target text only. The decoder uses these two models and

searches through the space of possible translations to identify the most probable one.

We are now going to describe these three components of SMT in detail.

6



Figure 2.2: Overview of SMT

2.2.1 The Components of a SMT System

2.2.1.1 Language Model

The language model (LM), is a statistical model that can assign probabilities to se-

quences of words in a language: more likely or grammatical word sequences get high

probabilities while word salads or ungrammatical sequences get very low probabilities.

This component is used to ensure that words are in right order so that the sentence

is syntactically correct and fluent. In a LM, the probability of seeing a sentence t of

w1...wn is modeled as following:

P (t) = P (w1)P (w2|w1)P (w3|w1 w2)...P (wn|w1 w2 . . . wn−1) (2.4)

In the equation above, P (w1) is the probability of seeing w1 independently, P (w2|w1) is

the probability of seeing w2 after w1, P (w3|w1 w2) is the probability of seeing w3 after

the w1 w2 phrase and P (wn|w1 w2 . . . wn−1) is the probability of seeing the last word

wn after seeing all n − 1 preceding words. The product of all these probabilities gives

us the probability of seeing that sentence, via the chain rule.
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For a given word, looking at all the preceding words in the sentence is not very

realistic due to sparseness issues. A practical approach is to assume a Markov process

so that a word is conditioned by a small number of past neighbors. If all words in a

model depend on the preceding n− 1 words, then that model is called an n-gram word

model [Manning and Schütze, 1999]. Currently, 3-gram (trigram) or 4-gram models are

the mostly used models in SMT. An example probability calculation of a trigram model

of a sentence is given below.1

P (Tourists are very fond of Turkish hospitality) = P (Tourists| < s > < s >) ∗

P (are|Tourists < s >) ∗

P (very|Tourists are) ∗

P (fond|are very) ∗

P (of |very fond) ∗

P (Turkish|fond of) ∗

P (hospitality|of Turkish) ∗

P (< /s > |Turkish hospitality) ∗

P (< /s > |hospitality < /s >)

Trigram probabilities are estimated via counts in the corpus.

e.g.

P (w3|w1 w2) ∼= count(w1 w2 w3)/count(w1 w2) (2.5)

If a model is estimated from a small amount of data, then many n-grams may not exist

in the model and therefore their probability will be equal to zero. Various smoothing

methods exist to alleviate this problem [Manning and Schütze, 1999]

Currently there are several publicly available LM tools. The most popular is the

SRI LM Toolkit [Stolcke, 2002] which has been initially developed for speech recognition.

1< s > indicates the start of a sentence and < /s > represents the end of a sentence
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Other similar tools that are used by MT community are the IRSTLM tool [Federico

et al., 2008] and the CMU/Cambridge LM Toolkit [Clarkson and Rosenfeld, 1997].

2.2.1.2 Translation Model

The translation model P (s|t) captures the probability of sentence s being the translation

of sentence t. It is estimated from a bilingual parallel corpus. Since computing this

probability at the sentence level is almost impossible, words and their alignments are

used instead [Brown et al., 1993]. This model, usually known as IBM Model 3, allows

one-to-many word alignments which is represented with vector a. These alignment

probabilities of words are used to calculate the P (s|t).

P (s|t) =
∑
a

P (a, s|t) (2.6)

Given a sentence t, the probability of producing a particular sentence s and an alignment

a between s and t is the product of several other probabilities. These are

• Translation Probability : t(sj|ti) is the probability of word ti being translated

into word sj.

• Fertility Probability : n(φi|ti) is the probability of translating ti into φi number

of words.

• Distortion Probability : d(j|i, l,m) is the probability of aligning the target word

in position i with the source word in position j given the sentence lenghts l and

m.

where m is the number of words in sentence s, l is the number of words in sentence t,

sj is the source word in position j, ti is the target word in position i, φi is the fertility

of word in position i.

These probabilities are estimated using the Expectation Maximization (EM) algo-

rithm. This algorithm starts with some initial random estimate of the parameters and

uses these parameters to compute the probability of alignments. Then these parameters
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are re-estimated by collecting counts. These steps are repeated until the parameters

converge. [Jurafksy and Martin, 2000]

After training the Language and Translation Models, SMT system is ready to

decode new sentences.

2.2.2 Decoding

The main task of this step is to search and find the most probable target sentence

given the source sentence and the already trained models. Each potential translation

output is called a hypothesis. There are infinitely many potential target sentences and

so decoding is known to be an NP-complete problem [Knight, 1999]. In order to find

the best translation effectively within this large search space, several heuristic search

algorithms have been developed. One efficient commonly used method is the beam

search. The idea behind this approach is to keep hypotheses in stacks based on their

number of translated words. If an hypothesis is extended by translating more words

then it has to be moved to the corresponding stack. Later, if necessary, that stack is

pruned by removing the least probable hypothesis.

2.3 Phrase-Based Statistical Machine Translation

In previous section, we summarized word-based SMT systems, in which the translations

are performed with word-by-word mappings. These models can do one-to-many align-

ments but not many-to-one. To overcome this limitation, phrase-based SMT systems

have been developed, which can handle many-to-many translations. Another advan-

tage of phrase-based systems is that since they use any sequence of words, they can

encapsulate the local context and the local reordering.

Phrase translations can be learned by several ways. One method is to use the

alignment templates [Och et al., 1999]. This method starts with training word alignment

models and then uses both Viterbi paths to extract phrases. An improved method was

suggested by Koehn et all. [Koehn et al., 2003]. In this approach, the parallel corpus

is aligned bidirectionally in order to generate two word alignments. Starting from the
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intersection of these alignments, new alignment points which exist in the union and

connect at least one previously unaligned word are added. The algorithm starts with

the first word and continues adding new alignment points from the rest of the words

in order. With this method all aligned phrase pairs that are consistent with the word

alignment are collected. Finally, the probabilities are assigned to these phrase pairs by

doing relative frequency calculations.

2.3.1 Factored Translation Models

Currently, the phrase-based translation approach is the most promising state-of-the-art

approach in SMT, but still it does not use any linguistic information such as morphology

or syntax. In order to integrate these additional annotations to the word level, an

extension factored translation has been developed [Koehn and Hoang, 2007]. This

model does not just represent the word itself but also contain some other annotations

like lemma, part-of-speech (POS), morphology as shown in Figure 2.3. Each of these

annotations is called a factor.

Figure 2.3: Factored representations of input and output words

Factored translation models are meant to be used for morphologically rich lan-

guages. In morphologically rich languages, different word forms are derived from the

same lemma which results in poor statistics when limited training data is used. In situ-

ations like these, factored translation gives us a more general approach which translates
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lemma, and morphology separately and then generates the target surface form. Such a

model is illustrated in Figure 2.4.

Figure 2.4: An example factored model for morphologically rich languages

In Figure 2.4, the arrows represent the mapping steps. There are two kinds

of mapping steps. The first one is the translation step which maps input factors to

output factors at the phrase level. Translation steps are represented with the horizontal

arrows in Figure 2.4. There are two translation steps in this model; (1) translation of

input lemmas to output lemmas and (2) translation of input part-of-speech (POS) and

morphology to output POS and morphology.

The other mapping step is called the generation step. This step is used to map

output factors into other output factors at the word level. In Figure 2.4, this step is

represented with the curved vertical lines, which describe the generation of surface form

from lemma, POS and morphology.

While training the factored translation models, the same methods are used to

learn the phrase tables from word-aligned parallel corpora. On the other hand the

generation tables are learned from just the target side of the parallel corpus by using

word level frequencies. Similarly, in factored model decoding instead of just using one

phrase table, we use multiple phrase tables and generation tables.
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2.4 Evaluation of SMT Outputs

Last but not least, there is the task of evaluating the translation quality. There are

some manual approaches for this task which are performed by human experts. One

of them is the SSER (Subjective Sentence Error Rate), in which the translations are

classified according to their quality ranging from 0 to 10 [Niessen et al., 2000]. In

order to deal with the subjective nature of this approach, these evaluations have to

be performed by several people. Therefore this approach is expensive, labour intensive

and time consuming.

Since MT researchers need instant feedback about their work and improvements,

several automatic approaches to MT evaluation have been proposed. These score met-

rics and tools are developed with the aim of returning a score which is in strong corre-

lation with the human evaluator.

Among those tools, BLEU (Bilingual Evaluation Understudy) [Papineni et al.,

2001] is the most widely used one. BLEU is a n-gram-based evaluation metric which

makes sure that a good candidate has similar word choice and order with the reference

sentence. Moreover, BLEU uses a modified version of n-gram precision to penalize

repetitions in a sentence and the authors introduced a brevity penalty for candidate

sentences that are shorter than the reference.

BLEU is a language independent tool and it is used widely by the MT community

to report performance results. BLEU returns a score between 0 to 1. A score close to

1 indicates that the candidate is really similar to the reference, therefore it is a good

translation.

2.5 SMT from English to Turkish

SMT from English to Turkish is a challenging problem due to the morphological and

grammatical distance between these languages. While English has a limited morphol-

ogy, Turkish is an agglutinative language with a very rich morphological structure. In

terms of the constituent order, English is rather strict on using Subject-Verb-Object
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order, while Turkish uses a more flexible order which is mostly Subject-Object-Verb.

These differences together with some other practical problems make SMT from English

to Turkish a difficult problem.

2.5.1 Challenges

Like most other statistical applications, SMT is a data driven approach. Its success

mostly depends on the amount and the quality of the bilingual parallel texts. Currently,

this seems to be a significant problem for the English-Turkish pair. In this thesis we

work with approximately 50K sentences, while a good SMT system requires at least

a few million parallel sentences. Although the number of sentences in this parallel

corpus can be increased by using web and some other resources, it requires a significant

collection and cleanup process. Therefore, we don’t think this problem will be resolved

in the near future, for the Turkish-English language pair.

Another challenge of SMT from English to Turkish arises from the rich inflectional

and derivational morphology of Turkish. In Turkish a single word may contain many

morphemes and each of these represents a different grammatical meaning. In word

level alignment, this results in the alignment of one Turkish word with a phrase of

words on the English side. For instance, the Turkish word ‘tatlandırabileceksek’ is

translated into a phrase like ‘if we are going to be able to make [something] acquire

flavor’ [Of lazer, 2008]. Another issue that is caused by the rich morphology of Turkish

is the translation of very frequent English words into words with very low frequency in

Turkish side. An example to this is given by El-Kahlout and Oflazer over the root word

faaliyet ‘activity’ [El-Kahlout and Of lazer, 2006]. They showed that for 41 occurrences

of the word ‘activity’ (singular and plural), there are only 14 different forms of faaliyet,

such as faaliyetlerinde (in their activities), faaliyetlerin (of the activities), etc., to which

it is aligned. To overcome these alignment and sparseness problems, a morphological

analysis is performed on both Turkish and English texts.

The word order variations between English and Turkish may also be a problematic

issue. In addition to the top level word order difference, there are also ordering differ-

ences in subordinate clauses, passive voices and phrases. These word order differences
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result in a larger search space in decoding step, which will increase the translation time.

In order to deal with this problem, some reordering techniques can be tried which will

produce more monotonic alignments.

2.5.2 Previous Work

First research on MT from English to Turkish has started in early 1980s as a mas-

ter’s thesis [Sagay, 1981], which much later was developed into an interactive machine

translation environment called Çevirmen. After this first system, two other approaches

have been tried in late 1990s. One of them used structural mapping in a transfer-

based approach [Turhan, 1997] and other one developed a prototype English-to-Turkish

interlingua-based machine translation system by using KANT knowledge-based MT

system [Hakkani-Tür et al., 1998].

Recently, several statistical approaches have been tried with English-Turkish pair.

Türe proposed a Hybrid Machine Translation System from Turkish to English [Türe,

2008]. Moreover, Of lazer and El-Kahlout developed a prototype English-Turkish SMT

system by exploring different representational units of Turkish morphology [Of lazer

and El-Kahlout, 2007, El-Kahlout, 2009].
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Chapter 3

SYNTAX TO MORPHOLOGY
ALIGNMENT

3.1 Motivation

English is a moderately analytic language [Barber, 1999] in which grammatical rela-

tions are expressed by words instead of morphemes. These words such as prepositions,

pronouns, auxiliary words, articles, which have very little lexical meaning are called

function words. There are also content words which represent the lexical items. These

words include nouns, verbs, adjectives and adverbs. English grammar mostly describes

the syntactic relationship between these two groups of words rather than their mor-

phology. This however doesn’t hold for the Turkish grammar. As we mentioned in

Section 2.5, Turkish is an agglutinative language in which words are made up of joining

morphemes together. Each of these morphemes represents one grammatical meaning.

Furthermore agglutinative languages tend to have high number of morphemes per word.

Thus, in Turkish, most of the grammatical relations are determined by morphological

features.

These differences between English and Turkish complicate the word alignment

and result in the alignment of one Turkish word with a bunch of English words as in

the example given in Section 2.5.1. In this thesis, we propose a method to align English

syntax with Turkish morphology via a preprocessing step on the English side so that

the English sentences look more like Turkish.
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3.1.1 Overview of the Approach

Machine translation between syntactically similar languages is usually of better quality

than between languages that are not so close [Hajič et al., 2000]. With this observation

in mind, our approach focuses on decreasing the structural gap between English and

Turkish sentences. This can be done by performing syntactic transformations and word

reorderings. Our overall approach covers both of these, but we will talk more about

the transformations in this chapter and leave the discussion on reordering to the next

chapter.

Since we are translating from English to Turkish, we also develop transformation

methods from English to Turkish so that the structure of English sentences will become

similar to the Turkish sentences. As we have shown before, function words of English

sentence usually become morphemes when they are translated into Turkish. We perform

this change as a preprocessing step and append these function words to their related

content words before giving them to the SMT system. The relationships between these

words are found by using syntactic analysis.

Our approach starts with some analysis on both Turkish and English sentences.

We perform a morphological analysis on Turkish sentences [Of lazer, 1993] and a part-

of-speech tagging on English corpus [Toutanova et al., 2003]. Then we give our tagged

English corpus to a dependency parser [Nivre et al., 2007] to find the dependency

relations. After all these analyses, we apply the transformation rules depending on the

relations and finally give our parallel corpus to training.

3.1.2 Examples

Before going into the implementation details, we summarize our approach over some

examples. For instance let’s assume we are given the below aligned pair.

As it is seen above, the function words on and their are not aligned with any of the

Turkish words, but the content words are aligned with their Turkish translations. If we
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tag and parse the English sentence and give the Turkish sentence to a morphological

analyzer, we will get the following representations.1

Here one can see the POS tags and morphemes of the words, and the dependencies

between words. From the labels on the dependency arrows, it is understood that on is

the preposition modifier and their is the possessive of the word relations. If we align

all these lemmas, tags and morphemes with each other by using coindexation, we will

get something like

Here we see that English lemmas are aligned with Turkish lemmas (3, 5), English POS

tags are aligned with Turkish POS tags (4, 6) and an English morpheme is aligned with

a Turkish morpheme (7). Furthermore English function words should be aligned with

the rest of the Turkish morphemes (1, 2); because on+IN becomes the +Loc morpheme

and their+PRP$ becomes the +P3sg morpheme on the Turkish side. When we perform

1The meanings of the tags are as follows:
Dependency Labels

PMOD Preposition Modifier
POS Possessive

Tags in English Sentence
+IN Preposition
+PRP$ Possessive Pronoun
+JJ Adjective
+NN Noun
+NNS Plural Noun

Tags in Turkish Sentence
+A3pl 3rd person plural possessive
+P3sg 3rd person singular possessive
+Loc Locative case
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our transformations and append those function words to the related content word, our

sentences will become

As it is seen from the example, these transformations are performing syntax to mor-

phology alignments and capturing English syntax as complex tags on appropriate head

words. Since we perform these transformations in a specific order, a unique word is

produced at the end of transformations. For the same combination of transformations,

same order is applied to all words.

In the rest of this thesis, we will represent these transformations in three steps,

as shown in Figure 3.1. Here the first step shows the word level alignments of the

original sentences in their surface forms. The second step presents the sentences af-

ter the analyses are performed. This representation also includes the alignments of

smaller components. The last step is the output sentence after the transformations are

completed.

Figure 3.1: An example for transformation step
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3.2 Implementation

3.2.1 Data Preparation

We worked on an English-Turkish parallel corpus which is a collection of European

Union documents, decisions of the European Court of Human Rights and several treaty

texts. This data consists of approximately 50K sentences with an average of 23 words

in English sentences and 18 words in Turkish sentences.

With the aim of understanding these texts better both syntactically and seman-

tically, we perform several analyses. For the English side, we start with part-of-speech

tagging and then continue with parsing. On the Turkish side, we perform a morpho-

logical analysis and morphological disambiguation. In this section we will give more

details about each of these steps.

3.2.1.1 Tagging

Part-of-speech (POS) tagging is the process of assigning part-of-speech tags, such as

noun, verb, adjective and adverb, to words depending on the word itself and the con-

text. We apply Stanford Log-Linear Part-of-Speech Tagger [Toutanova et al., 2003]

which outperforms most of the other taggers by making use of bidirectional inference

and the broad use of lexicalization with suitable regularization. We use the already

trained model for English that comes with the tagger. In addition to this we also use

TreeTagger in order to find the lemmas of words [Schmid, 1994]. Both of these tools

use the Penn Treebank English POS tag set [Marcus et al., 1994]. An example output

after tagging is given below.

The+DT initiation+NN of+IN negotiation+NN NNS will+MD

represent+VB the+DT beginning+NN of+IN a+DT next+JJ

phase+NN in+IN the+DT process+NN of+IN accession+NN.
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3.2.1.2 Parsing

After tagging the English data, we continue with parsing the tagged sentence to extract

its grammatical structure. For parsing the English data set, we use the MaltParser

[Nivre et al., 2007] with the pretrained model on English [Hall et al., 2008].

An example output of the MaltParser is shown in Figure A.2. As it is seen, there

are several fields in the output. These are in order from left to right: token id, word

form, lemma, coarse-grained part-of-speech tag, fine-grained part-of-speech tag, head of

the current token and the dependency relation of current token with its head [Buchholz

and Marsi, 2006].

1 the the DT DT 2 NMOD
2 initiation initiation NN NN 5 SBJ
3 of of IN IN 2 NMOD
4 negotiations negotiation NNS NNS 3 PMOD
5 will will MD MD 0 ROOT
6 represent represent VB VB 5 VC
7 the the DT DT 8 NMOD
8 beginning beginning NN NN 6 OBJ
9 of of IN IN 8 NMOD
10 a a DT DT 12 NMOD
11 next next JJ JJ 12 NMOD
12 phase phase NN NN 9 PMOD
13 in in IN IN 12 ADV
14 the the DT DT 15 NMOD
15 process process NN NN 13 PMOD
16 of of IN IN 15 NMOD
17 accession accession NN NN 16 PMOD

Figure 3.2: An example output of MaltParser

In Figure A.2, initiation is the subject of the modal will which is the root

or the head of the sentence. beginning is the object of the sentence while the phrase

starting with in is the adverb. Furthermore, there are several noun modifiers (NMOD)

and preposition modifiers (PMOD) which are used to link these words with each other.

3.2.1.3 Morphological Analysis

On the Turkish side, to get more insight on the internal structure of sentence and words,

we have to look at the morphemes. Since morphemes contain most of the necessary
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grammatical information, we perform a morphological analysis and extract the mor-

phological features of each word. We use a Turkish morphological analyzer [Of lazer,

1993], which basically segments the morphemes and then normalizes the lemma if it

has been modified because of the morphemes and maps morphemes to features. An

example input and output sentence can be

Müzakerelerin başlaması , katılım sürecinin bir sonraki

aşamasının başlangıcını temsil edecektir

⇓

müzakere+Noun+A3pl+Gen

başla+Verb+Inf2+P3sg

,+Punc

katılım+Noun

süreç+Noun+P3sg+Gen

bir+Num sonra+Noun+Rel

aşama+Noun+P3sg+Gen

başlangıç+Noun+P3sg+Acc

temsil+Noun

et+Verb+Fut+Cop

In the output, each marker with a preceding + is a morphological feature. The first

marker is the part-of-speech tag of the lemma and the remainder are the inflectional

and derivation markers of the word. For example, the word müzakere+Noun+A3pl+Gen

represents the lemma müzakere, which is a Noun, with third person plural agreement

A3pl and genitive case Gen.

3.3 Transformations

In this section we describe the transformations that are performed on the English and

Turkish sentences in order to close the structural gap between these sentences.
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3.3.1 English

On the English side, we use the dependencies between words while doing the transfor-

mations. The dependent function words of a content word in English are very much

similar to the morphemes of the corresponding Turkish word. In Turkish all the mor-

phemes are suffixes, which means that they are concatenated to the word from the end.

To have a similar representation, we also perform the transformations in that way. We

place the function word after the content word with an underscore between them. An

example sentence before and after the transformation is given below.

The+DT initiation+NN of+IN negotiation+NN NNS will+MD

represent+VB the+DT beginning+NN of+IN a+DT next+JJ

phase+NN in+IN the+DT process+NN of+IN accession+NN

⇓

initiation+NN the+DT negotiation+NN NNS of+IN

represent+VB will+MD beginning+NN the+DT next+JJ

phase+NN of+IN a+DT process+NN in+IN the+DT

accession+NN of+IN

The following are the detailed descriptions of each of these transformations with exam-

ples.

3.3.1.1 Prepositions

A preposition is a function word which puts object noun phrase in a certain relationship

with another word: for example in “on my table”, “on” is the preposition and “my ta-

ble” is the object of the preposition. In English, a preposition precedes the noun phrase.

On Turkish side, these prepositions are mostly represented with case morphemes that

are bound to the related content word. Some of the most commonly used prepositions

and corresponding case morphemes are given in Table 3.1.

In the dependency parser output, these prepositions are linked to their object heads with

the Preposition Modifier (PMOD) tag. We use these tags to find the prepositions and

their related content words and then perform the transformations. Example preposition

transformations are given in Figures 3.3 and 3.4.
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Turkish English
+Dat (Dative) to
+Abl (Ablative) from
+Loc (Locative) on, in, at
+Gen (Genitive) of
+Ins (Instrumental) with

Table 3.1: Example case morphemes and prepositions

Figure 3.3: An example for preposition transformation

3.3.1.2 Possessives

Possessive Pronouns

Possessive pronouns in English are function words which denote the “possession” of

nouns. In English, they precede the word they are specifying, but in Turkish, they are

attached to the end of the word as so called possessive suffixes, in addition to being

explicitly present as in English. Possessive pronouns of English and Turkish are given

in Table 3.2.

Possessor Turkish English
1. singular benim my
2. singular senin your
3. singular onun his, her, its
1. plural bizim our
2. plural sizin your
3. plural onların their

Table 3.2: Possessive pronouns in Turkish and English
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Figure 3.4: An example for preposition transformation

In English, the dependency between a possessive pronoun and a noun is repre-

sented with a Noun Modifier (NMOD) label. An example of the possessive pronoun

and the related transformation is given in Figure 3.5.

Figure 3.5: An example for possessive pronoun transformation

Possessive Marker

The possessive marker is used to indicate a possession relationship. In Turkish +Gen

case marking is used to represent this relation. Similarly English uses a morpheme

for this grammatical relation instead of a function word. In English, to indicate a

possession, ’s morpheme is suffixed to the noun that is the “possessor”. Before the

tagging step we separate this suffix and treat it as an individual token. During the

parsing step this token becomes a Noun Modifier and in the transformation step it is
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again connected to its head noun which is the owner. An example transformation is

given in Figure 3.6.

Figure 3.6: An example for possessive marker transformation

3.3.1.3 The Copula “be”

A copula is a verb which links a subject to a predicate which is either a noun phrase

or an adjective. In English, the main copular verb is be, however some other verbs like

get, seem and feel can also be used as copula verbs. Among those verbs, we only focus

on be.

The copula be is used with a predicate noun to describe the subject, or it can be

used with a predicate adjective to give an attribute of the subject. In Turkish, both

nouns and adjectives can get the +Cop morpheme, to become the predicate of the

sentence. We apply transformation to both of these part-of-speech when they are used

together with the copula be. An example for each of them is given in Figures 3.7 and

3.8.

3.3.1.4 Articles

English has three articles. These are the, which is the only definite article, and the

indefinite articles a and an. These articles are used together with nouns to indicate

whether a reference is specific or general. In Turkish there is no morpheme that is

a counterpart to “the”, but since they are function words which modifies the content

word we also append these articles to the head word.

26



Figure 3.7: An example for copula transformation with predicate noun

Figure 3.8: An example for copula transformation with predicate adjective

3.3.1.5 Auxiliary Verbs

An auxiliary verb is a function word which accompanies a verb. A lexical verb can

take several auxiliary verbs which add different grammatical functions. In terms of

dependency representation, each of these auxiliary verbs connects to the content verb

with a VC (Verbal Chunk) label. In this section, we talk about each of these functions

and related transformations.

Passive Voice

Passive voice is a syntactic transformation in which the subject is the target of the

action that is denoted by the verb. In English, passive voice consists of an auxiliary

verb (most of the time be) and the past participle form of the lexical verb. In Turkish

the passive voice is represented with a +Pass morpheme in the verb. An example
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transformation is given in Figure 3.9.

Figure 3.9: An example for passive voice transformation

Continuous Aspect

The continuous aspect is a grammatical aspect that expresses an ongoing occurrence of

a state or event [Loos et al., 2003]. In English this is expressed with any conjugation of

be together with the present participle form (ending with -ing) of the verb. In Turkish,

this is mostly known as present continuous tense and mostly expressed with a suffix

(-(i)yor) or any other +Prog morpheme (e.g.,makta). An example can be seen in Figure

3.10.

Figure 3.10: An example for continuous aspect transformation

Perfect Aspect

In perfect aspect, the focus is not just on the action of the verb, but also on the present
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state arising from that action. In English, perfect aspect is formed by conjugating have

and using it together with the past participle form of the verb. Similarly in Turkish,

perfect aspect is usually formed by adding any +Narr morpheme to the verb. In our

transformation we append have to the verb. Figure 3.11 gives an example to this

transformation.

Figure 3.11: An example for perfect aspect transformation

Modals

A modal verb is a type of auxiliary verb which is used to indicate the modality of the

verb. In English modals come before all the other auxiliary verbs and in Turkish they

are represented with several morphemes. For instance, will, which is a commonly used

modal, is used to indicate a future event and in Turkish +Fut morpheme is used to

represent this. In the transformation step we append this modal to the main verb as

seen in Figure 3.12.

Another widely used modal is the can. This is mostly used to express ability

and in Turkish +Able morpheme is used for this purpose. Furthermore we use must

to express an obligation or a necessity. In Turkish this same meaning is represented

with +Neces morpheme. There are many other examples of such modals [Kerslake and

Göksel, 2005].
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Figure 3.12: An example for modal transformation

Figure 3.13: An example for negation transformation

3.3.1.6 Negations

Negation is a morphosyntactic operation which is used to invert the meaning of a lexical

item [Loos et al., 2003]. In English, negation is performed with the negative particle

not or its contracted form n’t. In Turkish, a negative suffix is appended to a verb. An

example transformation for negations is given in Figure 3.13.

3.3.1.7 Adverbial Clauses

An adverbial clause is a subordinate clause which functions as an adverb. It is a

dependent clause so it cannot stand alone but is used together with another clause. It

contains a subject and a predicate.
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Figure 3.14: An example for adverbial clause transformation

In English, these clauses contain a subordinate conjunction which modifies the

verbs. In Turkish, adverbial clauses take widely differing forms [Kerslake and Göksel,

2005]:

• Some clauses may be represented with a separate token without any morpholog-

ical change such as

[ As there were going to be a lot of us, ] I had bought another loaf.
[ Kalabalık olacağız diye ] bir ekmek daha almıştım.

• Some clauses are translated into Turkish with a token and a morpheme appended

to a verb:

[ After being repaired, ] the machine broke down again.
Makine [ tamir edil-dikten sonra ] yeniden bozuldu.

• Or some clauses are represented without any token but just morphologically

Ahmet read that book [ when he was a student ].
Ahmet o kitabı [ öğrenci-yken ] okudu.

We perform transformations on many of these cases. An example can be seen in

Figure 3.14.
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Figure 3.15: An example for postpositional phrase transformation

3.3.2 Turkish

3.3.2.1 Postpositional Phrases

In Turkish, although most of the grammatical relations are represented with mor-

phemes, there are also a set of postpositions such as ile (with), için (for). Most of

these postpositions correspond to the prepositions or subordinate conjunctions on the

English side. Since we perform these preposition and subordinate transformations, we

should make sure that the Turkish translations of these are in the same structure. In

order to do this, we select the postpositions according to their frequency of usage of

their English translations and append them to the related verb or noun like we did

with English ones. Example transformations of postposition with a noun and a verb

are given in Figures 3.15 and 3.16.

3.4 Experiments

We evaluated the effects of the transformations in factored phrase-based SMT with an

English-Turkish data set which consists of 52712 parallel sentences. We partitioned this

data into 3 sets; training set to generate the phrase-translation tables and generation

tables, tuning set to optimize translation parameters and test set to evaluate the ex-

periment. The tuning and test sets consist of randomly selected 1000 sentences. The
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Figure 3.16: An example for postpositional phrase transformation

remaining of the sentences were used in the training.

To generalize the effects of the transformations we performed 10 trials for each

experiment. We randomly generated these trial sets and used same sets in all of the

following experiments.

We performed our experiments with the Moses toolkit [Koehn et al., 2007] which is

a factored phrase-based beam-search decoder for machine translation. Moses is actually

a complete SMT system which consists of all the necessary tools for training, decoding

and evaluation. It uses the GIZA++ [Och and Ney, 2003], which is an implementation

of the IBM Models, to establish the word alignments. From these word alignments

Moses extracts the phrases. For our experiments, we limited the maximum phrase

length to 7 which is the default value for Moses.

Furthermore, Moses works with any one of the three freely available language

modeling toolkits which are SRILM [Stolcke, 2002], IRSTLM [Federico et al., 2008]

and RandLM [Talbot and Osborne, 2007]. In this thesis we generated our language

models with the SRILM toolkit. We produced 3-gram language models with Chen and

Goodman’s modified Kneser-Ney discounting (-kndiscount in SRILM) together with

interpolation (-interpolate in SRILM).

In the decoding step, in order to allow for long distance reorderings we used a

distortion limit2 (-dl in Moses) of 40 and a distortion weight (-weight-d in Moses) of

0.1.

2Maximum number of words to skip in reordering
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Finally for the evaluation of the results, we used the BLEU [Papineni et al., 2001]

metric. For each experiment we gave statistics of BLEU scores such as maximum and

minimum values, average and standard deviation.

3.4.1 The Baseline System

As a baseline system, we performed an experiment using the surface forms of the words

without any transformation. In this experiment we used phrase-based approach with

the 3-gram language model of surface forms. Table 3.3 shows the average, standard

deviation, maximum and minimum BLEU scores for the 10 trials.

Experiment Ave. STD Max. Min.
Baseline 17.08 0.60 17.99 15.97

Table 3.3: BLEU scores for the Baseline System for 10 different train/test set

3.4.2 The Baseline-Factored System

We also tried our baseline system with a factored model. Therefore, instead of us-

ing just the surface form of the word, we put lemma, POS tag and morpheme in-

formation into the corpus. In factored translation, the factors are separated by a ‘|’

symbol. Thus in this experiment we represented a token consisting of 3 factors as

‘Surface|Lemma|POS Morphemes’. An example to this representation is given in Table

3.4. In the baseline system, we used the first representation in Table 3.4 and in the

baseline-factored system we used the last representation.

After preparing the data in above format, we aligned this parallel corpus based

on the lemma factor because it is more general than the surface form. The rest of the

factors were aligned accordingly. Furthermore, in factored models, user can generate

different language models for different factors. We made use of this property and

generated 3-gram LMs for each of the factors.

As Turkish is a morphologically rich language, we used a model that is similar

to the one mentioned in Section 2.3.1. Instead of translating the surface forms, we
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Representation English/Turkish
Surface relation+NN NNS

ilişki+Noun+A3pl
Lemma relation

ilişki
POS Morphemes NN NNS

Noun+A3pl
Surface|Lemma|POS Morphemes relation+NN NNS|relation|NN NNS

ilişki+Noun+A3pl|ilişki|Noun+A3pl

Table 3.4: Several representations

translated lemma and POS Morphemes separately and then generated the surface form.

This approach is summarized in Figure 3.17.

Figure 3.17: Translation by just using lemma and POS morphemes

When we tried the model that is represented in the Figure 3.17, we got a score

which is a little improvement to the baseline system as shown in Table 3.5. This is due

to not using the already available information which is the translations of the surface

form.

In order to prevent this information loss, we introduced an alternative path model

which is illustrated in Figure 3.18. In this model, we first tried to translate the surface

form. If we had a high probability surface form translation, we used it, otherwise we

backed-off to lemma and POS Morphemes information and generated surface form from

the translations of those.

The results of this approach are given in Table 3.5. As you see, using lemma and

POS Morphemes information as a backup increases the results drastically. We contin-

ued using this alternative path model in the rest of the experiments.
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Figure 3.18: Alternative path model

Experiment Ave. STD Max. Min.
Baseline Model 17.08 0.60 17.99 15.97
Lemma and POS Morphemes Model 17.55 0.65 18.46 16.26
Baseline Factored Model 18.61 0.76 19.41 16.80
(alternative path model)

Table 3.5: BLEU scores of experiments with factored translation model

3.4.3 Noun-Adj

In order to see the effects of transformations separately, we performed them in several

steps. In this first experiment, we only focused on the transformations that are per-

formed on nouns and adjectives. When we performed these tranformations, our average

BLEU score increased about 14% as seen in Table 3.6.

Experiment Ave. STD Max. Min.
Baseline-Factored 18.61 0.76 19.41 16.80
Noun-Adj 21.33 0.62 22.27 20.05

Table 3.6: BLEU scores for the baseline-factored and the noun-adj system

3.4.4 Verb-Adv

In next set of experiments, we focused on transformations that are performed on verbs

and adverbs. Auxiliary verb and negation transformations are all performed on verbs

and furthermore adverbial clause transformations are performed on adverbs. Table 3.7

contains the results of these experiments.
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Experiment Ave. STD Max. Min.
Baseline-Factored 18.61 0.76 19.41 16.80
Verb 19.41 0.62 20.19 17.99
Adv 18.62 0.58 19.24 17.30
Verb+Adv 19.42 0.59 20.17 18.13
Noun+Adj+Verb+Adv 21.67 0.72 22.66 20.38

Table 3.7: BLEU scores for the verb-adv system with several combinations

From the above results, we can conclude that adverbial clause transformations (third

row) are effective but not very consistent. Although change in the average score is very

little, there may be some cases where the increase can be much larger, such as the 0.5

points improvement in the experiment with the minimum score.

The auxiliary verb and negation transformations improved the scores consistently

which was expected due to the common and regular usage of auxiliary verbs. When

we combined all these transformations (last row), we got the highest scores on average

which is a 3.06 point improvement over the baseline-factored model.

3.4.5 Postposition (PostP)

Furthermore we also experimented with the postposition (PostP) transformations on

the Turkish side. In Turkish, postpositions are mostly in adverbial clauses, therefore

to see the relationship between postposition transformations in Turkish and adverbial

clause transformations in English, we performed several experiments which include and

exclude these transformations. Table 3.8 summarizes the results of these experiments.

Experiment Ave. STD Max. Min.
Noun+Adj+Verb 21.75 0.71 23.07 20.70
Noun+Adj+Verb+PostP 21.89 0.66 22.88 20.66
Noun+Adj+Verb+Adv 21.67 0.72 22.66 20.38
Noun+Adj+Verb+Adv+PostP 21.96 0.72 22.91 20.67

Table 3.8: BLEU scores of postposition experiments

In Table 3.8, the first two rows are the cases in which the adverbial (Adv) transfor-

mations were excluded. In this case we saw that postposition transformations improve

the score 0.14 points from 21.75 to 21.89. On the other hand, the last two rows show
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the experiments when the Adv transformations were included. According to these two

experiments using postposition transformations made an increase of 0.29 on average,

which is more than twice the increase we got before. Therefore we can conclude that the

adverbial clause transformations and the postposition transformations have a positive

effect on each other.

3.5 Discussion

In order to see the relative improvement of each experiment, we drew the graph in

Figure 3.19. In this graph the experiments are ordered according to their average

scores. For each experiment the average, maximum and minimum BLEU scores over

10 experiment are represented in the graph.

Figure 3.19: BLEU scores of each experiment
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Moreover, Figure 3.20 represents the change in BLEU scores of all 10 experiments

for each case. In this graph, we see that the change in BLEU scores is mostly consistent

for different train/test set partitioning. Therefore, we can continue our discussion

according to Figure 3.19.

Figure 3.20: BLEU scores of 10 experiments for each case

We started our experiments with a baseline of 17.08 BLEU points. We got an

improvement of 1.53 points when we started using the factored model with alternative

paths. This improvement is most likely due to the two important advantages of factored

translation model: The first one is the back-off mechanism of translating lemmas in

case a good surface translation is not available. In addition to this generalization

gain, factored models also help in reordering. By using different language models with

lemma and especially with POS Morpheme factor, we are able to include more syntactic

features in our reordering. This is another benefit of factored translation models.
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The rest of the experiments in Figure 3.19 are all about the transformations. We

see that every transformation improves the existing system and the highest performance

is reached when all transformations are performed. However when we take a closer look

at the individual transformations performed on English side, we observe that not all

of them have the same effect. While Noun+Adj transformations give us an increase of

2.73 BLEU points, transformations of Verbs improve the result by only 0.8 points and

improvement with adverbs is even lower. In order to understand why we get such a

difference, we looked at the number of tokens.

Table 3.9 contains some word statistics of our data before any transformation is

performed. We can note that Turkish has twice the number of distinct words than

English, but Turkish has smaller number of distinct lemmas. This difference is due to

the rich morphological structure of Turkish.

Sentences Words Unique Words Unique Lemmas
English 52,712 1,205,347 29,232 18,282
Turkish 52,712 942,420 60,452 16,771

Table 3.9: Statistics on English and Turkish data

Similarly the use of function words in English causes a big difference in the number

of words between Turkish and English, as shown in Table 3.9. During the transforma-

tions, we appended these function words to the related content words, so the number

of tokens decreased as we perform these transformations. The graph in Figure 3.21

illustrates the BLEU scores and the remaining number of tokens as we performed our

transformations. From the graph we can see that as the number of tokens in English

decrease, the BLEU score increases. In order to measure the relationship between these

two variables statistically, we perform a correlation analysis and find that there is a

strong negative correlation of -0.99 between the BLEU score and the number of tokens.

This means that, as we append the function words to the related content words and

hence reduce number of words in English, the languages are structurally getting closer

and as a result, we get better translations. Therefore syntax to morphology alignment

works as intended.
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Figure 3.21: Relation of BLEU scores with number of tokens

3.6 Related Work

Statistical Machine Translation into a morphologically rich language is a challenging

problem because current SMT systems cannot perfectly deal with the complex morphol-

ogy of these languages. A good example for this is given by Koehn for Finnish which

is also a morphologically complex language [Koehn, 2005]. In this paper, the author

collected parallel texts in 11 languages from the proceedings of the European Parlia-

ment. Phrase-based SMT systems were developed between these pairs and among the

10 SMT systems which uses English as a source language, Finnish returns the worst

BLEU score, which was 13.00 while the average score was 23.84. This proves that

standard methods are not enough while working with morphologically rich languages.

In order to improve the translation quality of these systems, several approaches

have been tried. One significant work in this area was performed by Oflazer and El-

Kahlout [Of lazer and El-Kahlout, 2007]. In this work, the authors explored different
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representational units of the lexical morphemes. They showed that the segmented Turk-

ish morphemes are aligned with the function words of English despite the limited data

they have. With some additional improvements, the authors were able to improve their

system from 20.22 BLEU points to 25.08 BLEU points. Our approach is different from

their work. They mostly work on the Turkish side; however, we approach the problem

from reverse direction and perform most of our transformations on the English side.

They experimented with different segmentations of Turkish morphology, alternatively

we work on appending function words to their related content words in English.

Factored translation models have been used in several SMT systems. One early

work was published by Koehn and Hoang [Koehn and Hoang, 2007]. In this paper, the

authors used the alternative path approach we used, on their German-English data.

When they used the lemma/morphology model to generate surface forms as a backoff

to the surface translation model, they improved their score from 18.19 BLEU points to

19.47 BLEU points.

Moreover, similar to us, Birch et al. integrated more syntax into the factored

translation model by using Combinatorial Categorial Grammar (CCG) supertags as

a separate factor [Birch et al., 2007]. These tags provide a rich source of syntactic

information by containing the syntactic context of words. Using this factor together

with the POS and word factors resulted in an increase of 0.46 BLEU points from 23.97

to 24.43. Our approach is different from these models in terms of our third factor.

As one can remember we use actual dependency relations in order to produce our

POS Morphemes factor of the source side. The idea of using dependency in syntax to

morphology alignment has been first applied in this thesis.
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Chapter 4

SYNTACTIC REORDERING

4.1 Motivation

Handling word order differences between languages is still one of the remaining chal-

lenges in MT. Even the state-of-the-art MT systems cannot completely solve this prob-

lem. Phrase-based translation models can only capture some common local reorderings

within phrase pairs, but for long-range reorderings, these systems cannot do much. The

reason for this is that phrase-based systems cannot use syntactic information, which

seems to be very crucial while dealing with reordering. In recent years, many MT re-

searchers have worked on methods to incorporate this syntactic information into MT

systems [Collins et al., 2005, Xu et al., 2009].

Reordering problem is important because many language pairs, even the close

ones, have word order differences. Distant languages such as English and Turkish have

different word order patterns. While Turkish has a flexible SOV constituent order,

English is rather fixed on using SVO. Additionally, Turkish adverbs mostly precede the

verb, but in English they come after the verb and most of the time even after the object.

Moreover, some other ordering differences occur while using the subordinate clauses and

passive voices. In order to deal with these differences, we propose an approach which

incorporates syntactic information into a phrase-based SMT system.
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4.1.1 Overview of the Approach

Our syntactic reordering approach is similar to our syntactic transformations. We

perform our reorderings in the source side so that the word order becomes similar to its

target sentence in the corpus. After performing the syntactic transformations that we

mention in Chapter 3, we execute our reordering methods on English sentences then

give them to the SMT system.

Our approach starts with grouping the consecutive words according to their de-

pendencies. By using the deprel tag of the dependency parser output, we label these

groups whether they are subject, object, verb, adverb or subordinate clause. Finally we

use some rules to relocate these groups. An example reordering is given in next section.

4.1.2 An Example

Let’s assume we are given the below sentence pair.

Before starting our syntactic reordering, we will perform the necessary analysis and

syntactic transformations on these sentences. In order to give the reader a simple and

clear representation, we will continue our example over this untouched surface form as

opposed to the morphemic representation used earlier.

Our first step is to group the words in English side. At the end of this step we

will get the three groups below.

In the sentence above, the first group of words form the subject and the second group

forms the verb complex. As you see there is the subordinate clause “that justify such

optimism” which is attached to the main clause. The determiner that stands for the

subject of our sentence, so this clause modifies the subject. If we align these groups

with their Turkish correspondences, we will get something like
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In the above alignment, the link between the aligned subordinate clauses cause a cross-

ing with the other links. We know that in Turkish, a noun modifier comes just before

the noun phrase. Therefore, if we put the subordinate clause just before the subject, we

will get the same order with the Turkish translation. With this movement, we perform

the necessary top level reordering. However, there is still some work that needs to be

done in the subordinate clause. If we group the words in the subordinate clause, our

alignment will become

Here “such optimism” is the object of this clause. If we move this object before the

verb, we will again get a monotonic alignment with the Turkish sentence.

As a result, we perform two reorderings in this sentence to make it structurally similar

to its Turkish translation. Since our algorithm works recursively, there may be more

than one reordering in a sentence.
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4.2 Reordering Constituents

In Turkish, variations in word order together with the position of the stress affect the

meaning of the sentence [Kerslake and Göksel, 2005]. Although there are many word

order variations, in this thesis we develop our rules based on the most common patterns.

In this section, we describe these reorderings that we perform on English sentences in

detail.

4.2.1 Object Reordering

The most commonly used difference between English and Turkish sentences is the or-

dering of the object. In English, the object comes after the verb (SVO) but in Turkish

most of the time the object is placed between the subject and the verb (SOV). In order

to have a similar word ordering, we move the whole phrase of the object to the place just

before the verb. This reordering is performed in main clause and subordinate clauses.

An example is given in Figure 4.1.

Figure 4.1: An example for object reordering

In Figure 4.1, the first line is the original English sentence without any reordering. Here

the labels of the groups are in order from left to right: subject, verb and object. The

second line is the Turkish translation of the first line. As it can be observed from the

alignments, the order is in SOV form. Because of this ordering difference we observe

crossing alignments. If we reorder the object in the English sentence, we will get the last

line. Since the alignments are monotonic, there are no crossing lines in the alignment.
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4.2.2 Adverb Reordering

There are several adverb types such as adverbs of manner, adverbs of place, adverbs of

time, etc. In a language, the locations of adverbs may vary according to these types.

Furthermore, the locations of these adverbs change from language to language. In

English, most of these adverbs are placed after the object or after the verb if there is

no object. In Turkish, the locations of adverbs vary a lot around the subject therefore

we move English objects to right behind the subject. An example adverbial reordering

is given in Figure 4.2.

Figure 4.2: An example for adverb reordering

4.2.3 Passive Voice Reordering

Passive voice is used in order to emphasize the receiver and suppress the agent of the

action. However, the agent can still be expressed in the sentence. In English, this agent

is expressed after the verb, but in Turkish, it comes immediately before the verb. In

order to have a similar word order, we also put these agents just before the verb in

English sentences. An example to this reordering can be seen in Figure 4.3.

4.2.4 Subordinate Clause Reordering

In English, subordinate clauses that have the conjunctions that or which are used in

order to modify the noun they are referring. In Turkish, a noun modifier comes before

the noun. Therefore, we first find the noun phrase that is modified and then put the
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Figure 4.3: An example for passive reordering

Figure 4.4: An example for subordinate reordering

whole subordinate clause before this noun. An example to this reordering is given in

Figure 4.4.

4.3 Experiments

We performed reorderings with the same 10 sets we used in the transformation experi-

ments. Furthermore, we continued using the same tools with the same parameters.

As our baseline system we used the best transformation output we got from the

previous chapter, which is the Noun+Adj+Verb+Adv+PostPC output. We started

with the top level object reordering. Results of this experiment are summarized in

Table 4.1.

As one can see from the table, the scores are really close. Five times out of the

ten trials, the object reordering got higher scores than the system with no reordering.

Since the scores are very close, we continued using object reordering in the remaining
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Experiment Ave. STD Max. Min.
No Reordering 21.96 0.72 22.91 20.67
(Noun+Adj+Verb+Adv+PostPC)
Obj 21.94 0.71 23.12 20.56

Table 4.1: BLEU score of the object reordering experiment

of the experiments to see if object reordering will become more effective with the other

reorderings. Table 4.2 shows combinations of object reordering with the rest of the

reorderings.

Experiment Ave. STD Max. Min.
Obj 21.94 0.71 23.12 20.56
Obj+Adv 21.73 0.50 22.44 20.69
Obj+Passive 21.88 0.73 23.03 20.51
Obj+Subord 21.88 0.61 22.77 20.92

Table 4.2: BLEU scores of all experiments

As represented in Table 4.2 we see no improvements with the other reorderings. There

may be a couple of reason for this. We discuss these possible reasons in detail in the

next section.

4.4 Discussion

There may be possible explanations for the results in Table 4.2. One explanation for

the adverbs can be the variations on the Turkish side. In Turkish, adverbs may be used

in different places according to the emphasis of the sentence. Our adverb reordering

may not be covering all these variations.

Another reason why the reorderings are not statistically significant, can be the

frequency of their usage. Table 4.3 summarizes the frequencies of these reorderings

and unfortunately, according to this table, there seems to be no relation between these

frequencies and the BLEU scores.

Reorderings do not seem to improve our test scores but we wonder if they improve

the alignment quality by producing more monotonic alignments. Therefore, we looked
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Frequency
Obj 15,804
Adv 5,078
Passive 2,778
Subord 3,481

Table 4.3: Numbers of time different reorderings are applied

at the alignment files that were created by GIZA during the training. We used two

metrics on these alignments. Our first metric was the absolute distance metric which

finds the absolute distance between the positions of two tokens of an alignment. Our

other metric was the crossing alignments metric. In this metric, we counted the number

of times the links of alignments cross with each other. In case of a monotonic alignment

both of these metrics will return a number close to zero since the positions of aligned

words in sentences will be close to each other with no other alignment link crossing the

other alignment’s link.

We used these two metrics on our experiment files and got the results shown in

Table 4.4. This table tells us that on the average an alignment link can be crossed with

3 or 4 other alignment links. Furthermore, distance information indicates that on the

average the alignment of the ith word is most probably somewhere close to (i+6)th or

(i-6)th position of the translated sentence.

Experiment Crossings Distance
No Reordering 3.45 5.56
Obj 3.40 5.54
Obj+Adv 3.40 5.54
Obj+Passive 3.39 5.54
Obj+Subord 3.37 5.50

Table 4.4: Average number of crossings and average absolute distance

As shown in Table 4.4, all reorderings are slightly reducing both metrics. Due

to the high frequency of objects, the reduction for object reordering is more than the

others. Similarly the change with subordinate clause reordering is more than the change

with adverb or passive reordering. The reason for this may be the length differences

of these phrases. In subordinate clause, we move a whole clause while in adverb or
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passive, reordering is just limited with a couple of words.

As you can remember, we have performed all of our reordering experiments on the

Noun+Adj+Verb+Adv+PostP model. The reason why we did not get much improve-

ment with reordering may be because we may have already performed the necessary

improvements with transformations. Therefore, in order to see whether transformations

have any effect on reordering, we also performed reorderings on the first 2 sets of the

baseline-factored model. The results of these experiments are summarized in Table 4.5.

No Reord. Object Reord. Passive Reord. Subordinate Reord.
Set 1 19.32 19.63 18.98 19.32
Set 2 19.20 18.93 18.97 18.62

Table 4.5: Average BLEU scores for reorderings on baseline model

According to the table, reorderings do not produce a consistent change in the

results therefore we can conclude that transformations do not have any effects on re-

orderings.

As a result, we observe that the syntactic reordering did not make a statistically

significant improvement with our limited training data. These reorderings may become

more dominant in phrase tables when more training data is available. Unfortunately,

there is not much prior result for reordering on English-Turkish pair. One recent work

[Xu et al., 2009], was able to get an improvement of 0.6 BLEU points by using pre-

processing reordering as we did. However we should note that, in that experiment the

authors work with a parallel data that consists of 76M words while our corpus have

just 1,205,347 words in English.

4.5 The Contribution of LM to Reordering

Lastly, we investigated the contribution of using a higher order n-gram LM. As one can

remember, we can specify different LMs for different factors. Similarly we used a 3-

gram LM for the POS Morphemes factor. In this experiment, we investigated whether

using a high order LM with this factor will improve the reordering by including longer

51



syntactic features to the system.

In this experiment, we continued using Noun+Adj+Verb+Adv+PostP model

which is our current best model. Moreover, training set and same parameters were

continued to be used to train the LMs. We searched for the optimum n-gram order

over 2 sets instead of 10. Figure 4.5 represents the BLEU scores of these experiments

with different n-gram orders.

Figure 4.5: BLEU Scores with different n-gram orders

In Figure 4.5, as we increase the order of the LM, we also observe an improvement

in the BLEU score. Of course this increase cannot continue forever. We saw our first de-

crease in BLEU at order 9 therefore we stop there and decided to use 8-gram LMs. When

we applied 8-gram LM for POS Morphemes factor with Noun+Adj+Verb+Adv+PostPC

model, the average BLEU score increased 0.65 points and became 22.61 as seen in Table

4.6.
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Experiment Ave. STD Max. Min.
3-gram 21.96 0.72 22.91 20.67
8-gram 22.61 0.77 23.66 21.37

Table 4.6: BLEU score for different order LMs

4.6 Augmenting the Training Data

In order to alleviate the lack of parallel corpora, we performed some augmentations on

training data. First of all, we added some commonly used phrases and words, such

as day and month names or numbers, to the training corpus. These additions did not

produce a significant improvement. Therefore we augmented the training data with

reliable phrase-pairs that are obtained from the earlier phrase table. We chose these

phrase-pairs according to their phrase translation probabilities. We assume that a

phrase-pair is reliable if the ratio of the probabilities is larger than 0.9 and smaller than

1.1, and the sum of these probabilities is larger than 1.5. Phrase-pairs which satisfy

these conditions are added to the training corpus. The effects of these augmentations

are summarized in Table 4.7.

Experiment Ave. STD Max. Min.
without any augmentation 22.61 0.77 23.66 21.37
with some common phrase-pairs 22.60 0.76 23.89 21.00
with reliable phrase-pairs 23.78 0.71 24.52 22.25

Table 4.7: BLEU score of the experiments with the augmented training data

As it is observed from the table, addition of the reliable phrases to the training

corpus improves the performance significantly. Adding these phrase-pairs will improve

the probability of them and hence result in the selection of these phrases more.

4.7 Some Sample Translations

Until now we have reported the effects of our methods in terms of BLEU score. In

order to see the improvements in translation quality, we also looked at the produced

translations. In this section we are going to give two sample translations.
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Input: The relevant conventions of the Council of Europe have not yet been

ratified.

Reference: Avrupa konseyinin ilgili sözleşmesi henüz onaylatılmamıştır.

Translation of baseline system: Avrupa konseyi sözleşmesinin ilgili henüz

onaylatılmamıştır.

Translation of our best system: Avrupa konseyinin ilgili sözleşmesi henüz

onaylatılmamıştır.

Input: Administrative capacity in different areas need to be strengthened

to ensure that the acquis is implemented and enforced effectively.

Reference: Müktesebatın etkili biçimde uygulanmasını temin etmek üzere,

değişik alanlardaki idari kapasitenin güçlendirilmesi gerekmektedir.

Translation of baseline system: Idari kapasite değişik alanlarda, müktesebatın

yürütülmesi ve etkili bir biçimde uygulanması temin güçlendirilmesi

gerekmektedir.

Translation of our best system: Müktesebatın etkili biçimde uygulanmasını

temin etmek üzere, değişik alanlardaki idari kapasitenin güçlendirilmesi

gerekmektedir.

In above examples we can see the input English sentence, its reference Turkish

translation which was produced by a human translator, a Turkish translation of the

baseline system and another Turkish translation produced by the improved system.

In both of these examples our improved system was able to produce the same exact

translation that is given by the human translator while the baseline system cannot.

In the first example, the words in the sentence that is produced by the baseline

system are correct but the morphology and the word ordering is wrong. In this example,

we see that our transformation approach work as intended and produce the right surface

form for the words konseyinin and sözleşmesi. Furthermore using a higher order

LM may be the reason why we get the correct word ordering. The second example

has also the similar problems which were corrected with our methods. More detailed

representations of these sentences are given in Appendix A.
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4.8 Related Work

Several approaches have been tried to integrate syntactic information into SMT systems

in order to improve reordering. One method which is similar to our approach was the

work of Collins et al. [Collins et al., 2005]. In this paper, the authors attempted to

reorder the constituents of source language in such a way that the word order is very

similar to the corresponding sentence in target language. They performed reordering by

applying a series of manually crafted rules to the syntactic parse tree of source sentence.

They tried their approach on translation from German to English over 750K sentence

pairs and increased their BLEU score from 25.2 to 26.8. Although, this paper is similar

to our work in terms of applying source sentence reordering using syntax. They used

syntactic parse tree rather than dependency parser.

Another work which applied a preprocessing reordering is the work of Xu et al.

[Xu et al., 2009]. In this recent paper, the authors presented a precedence reordering

approach based on a dependency parser. Manually extracted precedence rules were

used during the reordering. They applied their approach in translation from English,

which is a SVO language, to five SOV languages which include Turkish. In English to

Turkish experiment, their reordering approach improved their baseline from 9.8 BLEU

point to 10.4 with a 76M words of parallel data. This work is superficially similar to

ours in terms of using a dependency parser. The authors performed similar top level

reordering as we did.

Moreover, there are some reordering approaches which integrate syntactic infor-

mation into SMT system through factored translation models. For instance, Hoang and

Koehn used POS tag translations in factored translation models to improve mid-range

reorderings [Hoang and Koehn, 2009]. During the decoding step, they used the extra

POS tag translation model to create templates for surface word translations. With this

approach the authors obtained a 1.0% BLEU increase. This method is different than

ours in terms of using POS-based reordering instead of dependency-based reordering.

Furthermore, this statistical approach does not require any reordering rules like ours.

On the other hand using this approach for Turkish is a bit challenging due to the com-

plex morphological structure. In Turkish a word can be a noun or an adjective at the
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same time depending on the surrounding words.
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Chapter 5

SUMMARY AND CONCLUSIONS

In this thesis, we have introduced a novel approach to align English syntax with Turkish

morphology via using dependency relations on the English side so that the structure of

English sentences become more close to Turkish structure. We have applied transforma-

tion rules in order to associate function words to their related content words. With these

transformations we were able to capture the relationship between English syntax and

complex morphological tags of Turkish words and improved the translation quality by

3.35 BLEU points. Furthermore, we showed that as we performed the transformations

and reduced the number of tokens in English, the BLEU score increased equally. As

a result, these findings strongly support this new alignment approach between syntax

and morphology.

Moreover, we have performed syntactic reorderings in source side in order to make

its word order closer to the word order of the target language. We have identified and

reordered the constituents of the source sentence by using the dependency relations.

Although we have seen some improvements in terms of alignments, the reorderings did

not produce a statistically significant improvement in translation quality. In order to

see the effects of reordering more clearly, we need to apply these to a significantly larger

corpus.

Since we do not expect that kind of large parallel corpus in near future, we tried

to improve ordering with another approach. We made use of one of the advantages

of factored translation models which is specifying different LMs for different factors.

We used larger n-gram LMs with POS Morphemes factor in order to incorporate the
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available syntactic information in this factor more into the translation system. This

approach produced some significant improvements in our translations and resulted in

an increase of 0.65 BLEU points.

Another advantage of factored translation models was the generalized back-off

model which is translating lemma and POS Morphemes separately and then generating

the surface form. With this approach, we were able to translate most of the words

that are not seen in training but exist among the test sentences and increased our

performance 1.06 BLEU points.

The proposed approaches in this thesis were tried on SMT from English to Turkish

and improved the translation quality by overall 6.7 BLEU points. As the future work

we are going to apply these methods to Finnish which is another language with complex

morphological features and to Arabic.
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Chapter A

APPENDIX A

A.1 Example 1

English sentence in its surface form:

The relevant conventions of the Council of Europe have not yet been ratified.

English sentence after the POS tagging:

the+DT relevant+JJ convention+NN NNS of+IN the+DT Council+NNP of+IN Europe+NNP

have+VB VBP not+RB yet+RB be+VB VBN ratify+VB VBN .+.

English sentence after the dependency parsing:

1 the the DT DT 3 NMOD
2 relevant relevant JJ JJ 3 NMOD
3 conventions convention NNS NNS 9 SBJ
4 of of IN IN 3 NMOD
5 the the DT DT 6 NMOD
6 Council council NNP NNP 4 PMOD
7 of of IN IN 6 NMOD
8 Europe europe NNP NNP 7 PMOD
9 have have VBP VBP 0 ROOT
10 not not RB RB 9 VMOD
11 yet yet RB RB 9 ADV
12 been be VBN VBN 9 VC
13 ratified ratify VBN VBN 12 VC
14 . . . . 9 P

English sentence after transformations:

relevant+JJ convention+NN NNS the+DT council+NNP of+IN the+DT europe+NNP of+IN

yet+RB ratify+VB VBN have+VB VBP not+RB be+VB VBN .+.
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Translated Turkish sentence in its morphological form:

Avrupa+Noun konsey+Noun+P3sg+Gen ilgili+Noun sözleşme+Noun+P3sg henüz+Adverb

onayla+Verb+Pass+Neg+Narr+Cop .+Punc

Translated Turkish sentence in its surface form:

Avrupa konseyinin ilgili sözleşmesi henüz onaylatılmamıştır.

A.2 Example 2

English sentence in its surface form:

Administrative capacity in different areas need to be strengthened to ensure

that the acquis is implemented and enforced effectively.

English sentence after the POS tagging:

administrative+JJ capacity+NN in+IN different+JJ area+NN NNS need+VB VBZ to+TO

be+VB strengthen+VB VBN to+TO ensure+VB that+IN the+DT acquis+NN be+VB VBZ

implement+VB VBN and+CC enforce+VB VBN effectively+RB .+.

English sentence after the dependency parsing:

1 administrative administrative JJ JJ 2 NMOD
2 capacity capacity NN NN 6 SBJ
3 in in IN IN 2 ADV
4 different different JJ JJ 5 NMOD
5 areas area NNS NNS 3 PMOD
6 needs need VBZ VBZ 0 ROOT
7 to to TO TO 8 VMOD
8 be be VB VB 6 OBJ
9 strengthened strengthen VBN VBN 8 VC
10 to to TO TO 11 VMOD
11 ensure ensure VB VB 9 OBJ
12 that that IN IN 15 VMOD
13 the the DT DT 14 NMOD
14 acquis acquis NN NN 15 SBJ
15 is be VBZ VBZ 11 OBJ
16 implemented implement VBN VBN 15 VC
17 and and CC CC 16 CC
18 enforced enforce VBN VBN 16 COORD
19 effectively effectively RB RB 18 ADV
20 . . . . 6 P

English sentence after transformations:
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administrative+JJ capacity+NN different+JJ area+NN NNS in+IN need+VB VBZ

strengthen+VB VBN to+TO be+VB ensure+VB to+TO that+IN acquis+NN the+DT

implement+VB VBN be+VB VBZ and+CC enforce+VB VBN effectively+RB .+.

Translated Turkish sentence in its morphological form:

Müktesebat+Noun+Gen etki+Noun+With biçim+Noun+Loc

uygula+Verb+Pass+Inf2+P3sg+Acc temin+Noun et+Verb+Inf1+üzere+PostpPCNom

,+Punc değişik+Adj alan+Noun+A3pl+Loc+Rel idari+Adj kapasite+Noun+Gen

güç+Noun+Acquire+Caus+Pass+Inf2+P3sg gerek+Verb+Prog2+Cop .+Punc

Translated Turkish sentence in its surface form:

Müktesebatın etkili biçimde uygulanmasını temin etmek üzere, değişik

alanlardaki idari kapasitenin güçlendirilmesi gerekmektedir.
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Marinov Stetoslav, and Erwin Marsi. Maltparser: A language-independent system
for data-driven dependency parsing. Natural Language Engineering Journal, 13(2):
99–135, 2007.

Franz Josef Och and Hermann Ney. A systematic comparison of various statistical
alignment models. Computational Linguistics, 29(1):19–51, 2003.

Franz Josef Och, Christoph Tillmann, and Hermann Ney. Improved alignment models
for statistical machine translation. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing and Very Large Corpora, pages 20–28, 1999.

Kemal Of lazer. Two-level description of Turkish morphology. In Proceedings of the 6th
conference on European chapter of the Association for Computational Linguistics,
pages 472–472, Morristown, NJ, USA, 1993. Association for Computational Linguis-
tics. ISBN 90-5434-014-2.

Kemal Of lazer. Statistical machine translation into a morphologically complex lan-
guage. In Proceedings of the Conference on Intelligent Text Processing and Compu-
tational Linguistics (CICLing), pages 376–387, 2008.
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