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Abstract

Motion estimation and vision based control have been steadily improving

research areas recently. Visual motion estimation is the determination of

underlying motion parameters by using image data. Visual servoing on the

other hand refers to the closed loop control of robotic systems using vision.

Solving these problems with objects that have simple geometric features,

such as points and lines is rather easy. However, these problems may imply

certain challenges when we deal with curved objects that lack such simple

features.

This thesis proposes novel vision based estimation and control techniques

that use object boundary information. Object boundaries are represented by

planar algebraic curves. Decomposition of algebraic curves are used to ex-

tract features for motion estimation and visual servoing. Motion estimation

algorithm uses the parameters of line factors resulting from the decomposi-

tion of the curve whereas visual servoing method employs the intersections

of lines. Motion estimation algorithm is verified with several simulations and
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experiments. Visual servoing algorithm developed for the arbitrary align-

ment of a planar object is tested both with simulations on a 6 DOF Puma

560 robot and experiments on a 2 DOF SCARA robot. Results are quite

promising.
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Özet

Hareket kestirimi ve görme tabanlı kontrol yakın zamanda hızla iler-

leme gösteren araştırma alanlarıdır. Görsel hareket kestirimi hareket pareme-

trelerinin görsel veri kullanılarak belirlenmesidir. Öte yandan, görme tabanlı

kontrol ise görüntünün geri beslemeli robot kontrolünde kullanımını ifade

eder. Noktalar, dog̃rular gibi basit geometrik özniteliklere sahip nesnelerle

bu problemlerin çözümü daha kolaydır. Ancak, bu tür basit özniteliklerden

yoksun eg̃risel nesnelerle ug̃raşırken bu problemler belirli zorluklar ortaya

çıkarmaktadır.

Bu tezde nesne sınır verisini kullanan özgün yöntemler önerilmektedir.

Nesne sınırları düzlemsel cebirsel eg̃rilerle modellenmektedir. Hareket kestir-

imi ve görme tabanlı kontrolde kullanılan öznitelikleri elde etmek için cebirsel

eg̃rilerin ayrıştırılmasından yararlanılmaktadır. Hareket kestirimi algoritması

ayrıştırma sonucunda elde edilen dog̃ru çarpanlarının paramaterelerini kul-

lanırken, görme tabanlı kontrol yöntemi ise dog̃ruların kesişim noktalarından

yararlanmaktadır. Hareket kestirimi algoritması benzetim ve deneylerle destek-

lenmiştir. Düzlemsel nesnelerin hizalanması için geliştirilen görme tabanlı
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kontrol algoritması ise hem 6 serbestlik dereceli Puma 560 robotuyla gerçekleştirilen

benzetimler hem de 2 serbestlik dereceli SCARA robot üzerinde gerçekleştirilen

deneylerle test edilmiştir. Elde edilen sonuçlar oldukça başarılıdır.
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Chapter 1
Introduction

Algebraic curves and surfaces have been used in various branches of en-

gineering for a long time, but in the past two decades, they have proven very

useful in many model-based applications. Various algebraic and geometric

invariants obtained from implicit models of curves and surfaces have been

studied rather extensively in computer vision, especially for single compu-

tation pose estimation, shape tracking, 3D surface estimation from multiple

images and efficient geometric indexing of large pictorial databases [1]- [11].

Algebraic curves/surfaces have great modelling power for complicated

shapes and can represent acquired data very well. One problem about al-

gebraic models is the possible sensitivity of their their coefficients to small

changes in the data. However, stability in fitting algorithms have been stud-

ied a lot and methods with significantly increased stability exist in the liter-

ature [39],[40]. Once the algebraic model for an object boundary is properly

obtained, it provides certain advantages [41]. As algebraic models provide

simple but powerful model with low computational cost it is easier to work
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with them in many applications that require real time performance. Fur-

thermore as being model based, they provide robustness against noise and

partial occlusions. In addition, unlike many deformable model based meth-

ods, algebraic curve/surface fitting algorithms does not have initialization

problems.

Motion estimation is one of the important problems in computer vision.

Basically, it is the process of determining motion vectors that describe the

transformation from one 2D image to another (generally the consecutive

frame). It is used in many visual tracking algorithms such as optical flow [12]

or Kalman filter [13, 14]. Also it plays a key role in video coding as it realizes

high compression rates, achieved through removal of temporal redundancies

between successive images. There are various approaches in this field such as

block matching [15, 16, 17, 18] which are based on the regional matchings or

other methods based on the matching of image features such as lines, points,

etc [19].

In this thesis we are particularly interested in the estimation of motion

parameters of a planar algebraic curve which is obtained from the boundary

data of a target object. In estimating the motion parameters, one is faced

with the problem of modeling planar curves in motion. There has been a

steadily growing literature in robotics on the problem of line correspondence

for line features moving in <3,(see [26]- [30]). For some other older refer-

ences in the literature on the dynamics of curves, see [31]- [33]. In order

to describe dynamics of planar algebraic curves we use a polynomial decom-

position method [4, 6] to express curve models as a unique sum of product

of line factors. It is shown in [24, 25] that a plane polynomial curve under-
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going time invariant Euclidean or affine motion implies Riccati equations in

terms of parameters of these line factors. In this thesis we extend this to the

time varying case and show that same Riccati equations can be obtained.

Using this result, a motion estimation technique which uses line parameters

as measurement signals is proposed.

Vision based control of robotic systems has been a steadily improving

research area recently. Commercially available cameras provide a cheap and

powerful tool for many complex robotic tasks in dynamic environments. Con-

sequently, many researchers from computer vision, robotics and control disci-

plines have been working on different problems of vision based control. One

particular problem in this domain is object alignment. In visual servoing ap-

plications, most of the current alignment systems are based on objects with

known 3D models such as industrial parts or objects which have good fea-

tures due to their geometry or texture. Mostly, features which are feasible to

extract and track in real time [49] are used in these approaches. Many works

are reported in the literature on alignment using points, lines, ellipses, image

moments, etc. [50]-[53]. On the contrary, the alignment of smooth free-form

planar objects presents a challenge in visually guided alignment tasks since

these objects may not provide necessary amount of such features. Instead of

using these features, curves can be fitted to these free-form objects [34], [39].

However obtaining features from these curves for visual servoing algorithms

is not a trivial task.

We propose to use implicit polynomial representation in aligning planar

closed curves by employing calibrated image based visual servoing [50] as a

solution for such cases. With the proposed method [54], an implicit polyno-
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mial representation of target object boundary is obtained by a curve fitting

algorithm. Acquired polynomial is then decomposed as a unique sum of

product of line factors [4], [6]. This decomposition is then used to provide

features for visual servoing.

1.1 Contribution of the Thesis

• It is shown in [24, 25] that a plane polynomial curve undergoing time

invariant Euclidean or affine motion implies Riccati equations in terms

of parameters of these line factors. In this thesis we extend this to

the time varying motion parameters and show that the same Riccati

equations can be obtained.

• A novel motion estimation algorithm for time varying affine motion is

proposed. Motion parameters of a planar implicit curve are identified

through its line decomposition [4, 6].

• Importance of data normalization in estimation algorithms is investi-

gated. It is shown that data normalization increases the stability of

the estimation algorithm.

• A novel visual servoing method [54] is proposed. In this method, real

intersection points of complex conjugate lines obtained from decompo-

sition of planar algebraic curves are utilized as visual features.

Chapter 2 presents some background on computer vision techniques that

are used. Chapter 3 is on motion estimation of free form planar objects.

Visual servoing through the line decomposition of planar algebraic curves is
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explained in chapter 4. Chapter 5 presents the experimental results. Finally

chapter 6 concludes the thesis with some remarks and future directions.
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Chapter 2
Background on Computer

Vision Techniques

2.1 Segmentation

Segmentation is one of the important problems of image processing. Ba-

sic definition of the problem can be given as follows: “Given an image I(x, y),

partition it into meaningful homogeneous regions”. With this definition

boundary extraction is a subtopic of image segmentation. There are var-

ious studies on this field varying from the earlier methods based on gray

level intensity discontinuities [43], [42] or thresholding to more advanced al-

gorithms such as histogram based algorithms, model based [59] algorithms

or active contours [36, 44, 60, 62, 61] which use partial differential equations.

Though the simple gradient based algorithms may result in good results for

certain scenarios, in many cases they may be insufficient by outputting edge

pixels not only on the boundary of an object but also within the object due to
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texture. Thus in the implementation we prefer to use a segmentation which

is sufficient for the particular scenario. A brief review for two particular

algorithms, Canny Edge detection and level sets are given below.

2.1.1 Canny Edge Detection

Canny edge detection algorithm is one of the most widely used edge detec-

tion algorithms based on the gray level intensity discontinuities.It is optimal

in a precise, mathematical sense [63]. Its being easy to implement and having

low computational cost makes it helpful in simple scenarios. It considers and

tries to optimize three criteria : Good detection, good localization and single

response constraint. That is to say, it aims to minimize the probability of

false edges, tries to detect the edges as close as possible to the true edge and

return only one point for each true edge pixel by minimizing the number of

local minima around the true edge which occur due to measurement noise.

Canny edge detection algorithm is composed of 3 main steps: Canny

enhancer, non-max suppression and hysteresis thresholding. Input to the

algorithm is a gray scale image I(x, y). In image enhancement step the input

is first convolved with a Gaussian mask which has 0 mean and standard

deviation of σ to filter noise.

J(x, y) = I(x, y) ∗G(x, y) (2.1)

By computing the image gradients on J(x, y), every pixel is assigned an edge
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strength Es(x, y), and edge normal orientation (Eo(x, y)).

Es(x, y) =
√

J2
x(x, y) + J2

y (x, y)

Eo(x, y) = arctan
Jx(x, y)

Jy(x, y)
(2.2)

In non-max suppression step edge normal orientation is used to obtain thin

edges. For every pixel (x,y) if Es(x, y) is smaller than any of its neighbors

along the direction Eo(x, y), Es(x, y) is set to 0. Finally a hysteresis thresh-

olding step is applied on Es. In general, if a single threshold is used its value

may significantly affect the output. If a low threshold is chosen, many false

edges can be detected due to noise. On the other hand if a high threshold

is picked, many true edges may be undetected. Canny algorithm proposes a

hysteresis thresholding as an efficient solution to this problem. In hystere-

sis thresholding a high threshold τh, and a low threshold τl are used. First

an unvisited edge pixel that satisfy Es(i, j) > τh is detected and starting

from that pixel, moving in both directions perpendicular to the edge normal

direction, every pixel that satisfy Es(p, q) > τl is declared as true edge.

Some edge detection results with Canny edge detection algorithm are

given in Fig. 2.1. As one can see from these results, as long as the contrast

between the background and the object boundary is large compared to the

intensity gradients within the object (as in the case of mouse example) Canny

edge detector can be used to extract the boundary data of target object.

However for more general cases strong intensity changes may be existing

within the object due to texture or illumination effects. In such conditions

Canny detector may not be sufficient.
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Figure 2.1: Input image and output of Canny edge detection for different

objects.

2.1.2 Level Sets

Level sets [36] aim to automatically find the contours of objects by using

partial differential equations (PDE). Level set approach is based on the fol-

lowing observation: “A planar curve can be considered as the zero-level of a

function in 3D”. Main idea is to represent a closed evolving curve C(p, t) as

the zero level set of an implicit function ψ(x, y, t) = z. The level set function

ψ(x, y, t) is considered to attain zero on the curve, negative values inside of

the curve and positive values outside of the curve.

C(p, t) = {(x, y) : ψ(x, y, t) = 0} (2.3)

ψ(C(p, t), t) = 0 (2.4)

Consider that level set function ψ(x, y, t) is initialized by the user and the aim

is to evolve it in a fashion that ψ(x, y, t) = 0 grasps the boundary contours
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of objects. If we take the derivative of (2.4)with respect to time:

d

dt
ψ(C(p, t), t) =

∂ψ(C(p, t), t)

∂C(p, t)︸ ︷︷ ︸
∇ψ.N

∂C(p, t)

∂t︸ ︷︷ ︸
V (x,y)

+
∂ψ

∂t
= V (x, y)(∇ψ.N) + ψt = 0

(2.5)

To do this we need to define a speed function V (x, y) that tells how to move

each point on the curve perpendicular to the tangent (in direction N) at

that point (note that moving along the tangential direction would have no

effect on the evolution of curve). Plugging in the outward normal direction,

N = ∇ψ
||∇ψ|| to (2.5) we get

ψt + V (x, y)(∇ψ.
∇ψ

||∇ψ||) = 0

ψt = −V (x, y)||∇ψ|| (2.6)

Equation above gives the main evolution principle in level set method. All

needed to be defined is the velocity term V (x, y). For this purpose properties

such as the curvature of of the contour and image gradient magnitudes may

be used. For example following equation may be used in the implementation

of level set algorithm.

∂ψ

∂t
= − k(x, y)(βκ + α)︸ ︷︷ ︸

V (x,y)

||∇ψ|| (2.7)

where β, α are weighting parameters, κ is the curvature function and k(x, y)

is the speed term which is taken as:

k(x, y) =
1

1 + ||∇((Gσ ∗ I)(x, y))||n , n ≥ 1 (2.8)

Gσ given in (2.8) is a Gaussian with standard deviation σ and convolution

of image I(x, y) with it provides smoothing and noise filtering. Choice of
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V (x, y) in equation above includes both the curvature and an image gradient

based term. Note that as the image gradient increases or curvature decreases

evolution at that point slows down. Consequently two tasks are achieved

with this speed function, both the smoothness of the curve is achieved and

the evolution of the curve is forced to slow down or stop at points where

magnitude of image gradients are large (such as edges). This algorithm is

implemented in Matlab, and its outputs for different objects are presented

in Fig. 2.2.

Figure 2.2: Active contour algorithm (a-initial contour, b-after 25 iterations

c-after 50 iterations)and extracted boundary data (d) for different objects.
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2.2 Object Modelling by Using Algebraic Curves

Once the object boundary data is obtained via visual segmentation step,

it can be modeled by algebraic curves.This provides the advantages of model

based approaches such as robustness in the presence of noise, clutter, and oc-

clusion. Algebraic curve models are used in various computer vision problems

such as pose estimation [71] and object recognition [8].

2.2.1 Algebraic Curves

Algebraic curves are defined by implicit equations of the form f(x, y) = 0,

where f(x, y) is a polynomial in the variables x, y, i.e. f(x, y) =
∑

ij aijx
iyj

where 0 ≤ i + j ≤ n (n is finite) and the coefficients aij are real numbers.

Alternatively, the intersection of an explicit surface z = f(x, y) with the z = 0

plane yields an algebraic curve if f(x, y) is a polynomial. Since the field of

real numbers is not algebraically closed, it is often useful and illuminating to

extend this definition to the complex field [1].

In general, an algebraic curve of degree n can be defined by the implicit

polynomial (IP) equation:

fn(x, y) = a00︸︷︷︸
h0

+ a10x + a01y︸ ︷︷ ︸
h1(x, y)

+ a20x
2 + a11xy + a02y

2

︸ ︷︷ ︸
h2(x, y)

+ . . .

+ an0x
n + an−1,1x

n−1y + . . . + a0ny
n

︸ ︷︷ ︸
hn(x, y)

=
n∑

r=0

hr(x, y) = 0, (2.9)

where each binary form hr(x, y) is a homogeneous polynomial of degree r in

the variables x and y. hn(x, y) is called the leading form. The number of

terms in each hr(x, y) is r + 1, so that the equation defined by ( 2.9) has one

12



constant term, two terms of the first degree, three terms of the second degree,

etc., up to and including n + 1 terms of the (highest) n-th degree, for a total

of (n+1)(n+2)/2 coefficients. Since the above equation can be multiplied by

a non-zero constant without changing the zero set, an algebraic curve defined

by fn(x, y) = 0 has (n+1)(n+2)/2−1 = n(n+3)/2 independent coefficients

or degrees of freedom (DOF). A monic algebraic curve fn(x, y) = 0 will be

defined by the condition that an0 = 1 in ( 2.9). In the sequel, we will consider

monic curves.

Algebraic curves of degree 1, 2, 3, 4, . . . are called lines, conics, cubics,

quartics, . . . etc. Odd degree (n = 2k + 1) algebraic curves have at least

one real asymptote, and therefore they are inherently open. Even degree

(n = 2k) curves can be either closed-bounded, i.e. no real asymptotes, or

open, i.e. with some real asymptotes. Closed-bounded object contours can

therefore be represented using only even degree algebraic curves.

2.2.2 Fitting Algebraic Curves to Object Boundary

Implicit polynomial (IP) models have proven to be more suitable than

parametric representations for fitting algebraic curves to data with their ad-

vantages like global shape representation, smoothing noisy data and robust-

ness against occlusion [68, 69, 70, 10, 4, 5]. Nonlinear or linear optimization

methods may be used for IP fitting. However as nonlinear models have high

computational costs [69, 70], linear models are preferable for especially real

time applications.

One problem of the linear fitting methods is providing globally stabilized

fits and being robust versus perturbational effects. Linear methods such as
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3L fitting [34] address such problems. Furthermore it has been shown in [39]

that ridge regression regularization noticeably increases the global stability

of 3L fitting. In our work, we use this regularized 3L method for IP fitting

purposes.

The main objective of all ideal IP curve fitting techniques is to approxi-

mate a given data set with a polynomial as closely as possible. This aim is

achieved through minimization of the algebraic distance between the fitted

curve and the input data. Generally IP’s should have zero values at the

data points (object boundary), negative values for inside points and positive

values for outside points, or vice versa.

In 3L algorithm, data set to be curve fitted is first integrated with two

more data sets with points at a distance, ε, inside and outside the original

data Accordingly the IP function is forced to take +1 value at the outer

layer, −1 at the inner level, and 0 at the intermediate layer. To express this

relation in matrix form one can define a b vector, a coefficient vector a and

the matrix of 3 layers of data, M , such that these matrices and vectors satisfy

Ma = b. M , a and b can be given as follows:

M =




M+ε

M0

M−ε


 =




Y T
1

Y T
2

...

Y T
3N




3N×c

a =
[
an,0 an−1,1 ... a0,n ... a1,0 a0,1 a0,0

]T

c×1

b =
[
+1 ... +1 0 ... 0 −1 .. −1

]T

3N×1
(2.10)

where N is the number of data points, n is the degree of polynomial and
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c = (n + l)(n + 2)/2 is the number of the coefficients of the IP curve and Yi

are the vectors of monomials for the 3 layers of data which can be shown as

below:

Yi =
[
xn

i xn−1
i yi... xiy

n−1
i yn

i ... x2
i xiyi y2

i xi yi 1
]T

(2.11)

In this matrix form, the curve coefficient vector, a, can be obtained from M

and b by:

a = M †b (2.12)

where M † = (MT M)−1MT is the pseudo-inverse matrix for M . This method

is invariant under Euclidean transformations, as the two synthetic layers is

formed by using the distance measure ε.

As generalized inverse solutions are usually sensitive to perturbations and

noise, regularization methods such as Tikhonov regularization or ridge regres-

sion helps in improving their performance and stability. In ridge regression

regularized algorithm, coefficient matrix is obtained as:

a = (MT M + κD)−1MT b (2.13)

where κ is the ridge regression parameter, and D is a diagonal matrix. Some

example objects are presented in Fig. 2.3, which also depict their outline

quartic curves obtained by a fitting technique [39].

2.2.3 Degree of the Implicit Polynomial

Selecting the degree of the implicit polynomial that can represent the

shape of a boundary data is an interesting issue. What is the minimum

degree for a polynomial that can fit the available data and what happens as
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Figure 2.3: Images of various objects and their outline quartic curve models

the degree of the polynomial is increased? By intuition, one may expect that

as the object shape gets more “complex”, its IP representation should be of

higher degree and as the degree of IP is increased it represents the boundary

data better. Though such an interpretation seems reasonable, increasing the

degree of IP in fitting procedures also can worsen the performance.

One of the main reasons is the noise that perturbs the boundary data.

In general polynomials of high degree are more sensitive to such perturba-

tions. Wilkinson [45] has explained this condition and presented interesting

16



examples where he shows that for 1D polynomials, a very tiny change the

coefficient of high order terms can dramatically change the roots. Though his

examples present some high degree polynomials can be quite ill-conditioned

not all are so. Stability of a root is determined by its absolute value and

Euclidean distance between it and other roots. Generally a root is more sta-

ble if its absolute value is small compared to its distance to other roots. It

should be stated that many fitting algorithms are focused on the stability to

avoid unstable polynomials. In this aspect fitting algorithms try to optimize

the tradeoff between capturing the shape and obtaining stable fits. However,

one should keep in mind that increasing the degree may result in unnecessary

or undesired conditions such as fitting the noise or increasing the sensitivity

of the polynomial against data perturbations. Thus, for practical issues, it

is more reasonable to represent the shape of an object with an IP of degree

as minimum as possible. Bezout’s theorem [1] provides an easy and powerful

procedure to achieve this goal.

Theorem 2.2.1. Suppose that f and g are two plane projective curves that

do not have a common component and defined over a field F . Then the total

number of intersection points (counted with their multiplicities) of f and g

with coordinates in an algebraically closed field E which contains F , is equal

to the product of the degrees of f and g.

Corollary 2.2.1.1. Suppose that f(x, y) is an algebraic curve defined over

<2 that represents the boundary data of an object and let l(x, y) be a line

defined over <2 which has maximum n real intersection points with f(x, y).

Then f(x, y) has a degree m, where m = n.

The corollary above is quite helpful in choosing the degree of IP to be
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fitted. The procedure is simple. Boundary data of an object is inspected and

an arbitrary line that intersects the curve at maximum number of points,

n, is found. IP that will capture the shape of the object sufficiently should

have degree m, where m = n. This procedure is tested on different objects

and fitted IPs of different degrees are shown in Fig. 2.4. It is seen that

increase in the degree of IP improves the fit dramatically until the observation

based on Bezout theorem is satisfied. Note that this observation does not

guarantee that an IP with degree m will grasp the object shape as desired

but it guarantees that a polynomial with degree less than m will not achieve

a satisfactory performance. As it is desired to represent the curve with a

minimum degree algebraic curve, Bezout theorem provides a very good start

point in determining the degree of IP to be fitted.

2.2.4 Data Normalization

Data normalization is a crucial step in linear data processing procedures,

especially when numeric inputs have significant scale differences. Under such

conditions it is well known that normalization significantly increase the sta-

bility of algorithms as the condition number of the measurement matrix is

an important factor in the analysis of the stability of linear problems. In his

famous work, Hartley showed that the main reason for the poor condition-

ing of the measurement matrix is lack of comparability in the scales of data

coordinates [38]. By pre-normalizing the data, the condition number of the

measurement matrix can be decreased resulting in more robust estimations.

In our work data normalization is necessary for various reasons. First

of all, it is important for polynomial fitting step to reduce the pathological
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Figure 2.4: Boundary data of objects modeled with IPs of degree 2 (a), 4

(b) and 8 (c) along with the boundary curve intersected by a real line (d) for

Bezout’s theorem.

conditions in the resulting IPs. Such issues occur mostly due to high degree

terms of the implicit polynomial when they are taking large values. It has

been observed that normalization is necessary to obtain better results [39].

Furthermore, when the fitted IP is used to obtain the necessary features

for motion estimation or visual servoing algorithms, the comparability in the

numeric scale of these features dramatically change as the measurement data

get higher values. As these features will be used as measurements, stability
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of the considered algorithms should be increased by using normalized data.

There are different data normalization techniques in the literature. Among

available techniques, we prefer to use a linear scaling technique, namely

whitening [37]. One significant advantage of using this normalization proce-

dure is due to the nature of used polynomial fitting algorithm. In [10] it is

shown that whitening of two affine equivalent curves lead to normalized ro-

tational equivalent curves and this is crucial since the used fitting algorithm

is not affine invariant but Euclidean invariant. Two affine equivalent images

of an object and corresponding rotationally equivalent normalized data are

shown in Fig. 2.5.

Consider a set S of N data points Pi = [xi, yi]
T which outline the bound-

ary of a 2D curve. The center C and the covariance matrix Σ of S are defined

as

C =
1

N

N∑
i=1

Pi

Σ =
1

N − 1

N∑
i=1

(Pi − C)(Pi − C)T (2.14)

Since the covariance matrix Σ is symmetric, it can be diagonalized by an

orthogonal matrix U composed of the eigenvectors of Σ, so that

Λ = UT ΣU

where Λ is a diagonal matrix composed of the eigenvalues of Σ. In whitening

normalization, normalized data set, Ŝ, is obtained by applying the following

transformation to the data points:

P̂i = Λ−1/2UT (Pi − C) (2.15)
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Figure 2.5: Affine equivalent images of an hammer and rotationally equiva-

lent normalized boundary data obtained via whitening.

2.3 Optical Flow

As the visual information will be used for motion estimation and visual

servoing purposes, it is important to know a motion in 3D world corresponds
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to the motion on 2D image plane. This would enable a deeper understanding

of both problems. Also the interaction matrix in visual servoing algorithms,

as being relating the change of visual features with respect to the motion in

3D (Vc) are developed on the basis of this understanding. Developments in

this part will be based on the pinhole camera model [63].

In pinhole camera model a point p with 3D coordinates [X, Y, Z]T in

camera frame are projected onto the 2D metric normalized image plane co-

ordinates [x, y]T with the following equations:

x =
X

Z

y =
Y

Z
(2.16)

Taking the derivative of above equations with respect to time we get:

ẋ =
ẊZ −XŻ

Z2
=

Ẋ

Z
− Żx

Z

ẏ =
Ẏ Z − Y Ż

Z2
=

Ẏ

Z
− Ży

Z
(2.17)

Now suppose that the point p is going through a rigid body motion in space

with the translational (Vx, Vy, Vz) and rotational velocities (wx, wy, wz)

defined in the camera frame. Its instantaneous velocity satisfies the following

equation:

d

dt




X

Y

Z


 =




0 −wz wy

wz 0 −wx

−wy wx 0







X

Y

Z


 +




Vx

Vy

Vz


 (2.18)
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Plugging (2.18) into (2.17)

ẋ =
−wzY + wyZ + Vx

Z
− (−wyX + wxY + Vz)x

Z

ẏ =
wzX − wxZ + Vy

Z
− (−wyX + wxY + Vz)y

Z
(2.19)

Rearranging (2.19) in matrix form we get,

d

dt


x

y


 =




Vx

Z
+ wy

Vy

Z
− wx


 +


−

Vz

Z
−wz

wz −Vz

Z





x

y


 +


 wyx

2 − wxxy

−wxy
2 + wyxy


 (2.20)

Equation given above is quite helpful in studying the motion estimation

and visual servoing problems. For motion estimation analysis, when certain

motion models (such as rigid body or affine) are assumed for the data in

image plane this equation will point the underlying motion assumption in

3D. For the visual servoing applications, this derivation provides an example

for the analytical derivation of interaction matrix. Actually when the image

features used in a visual servoing task are point coordinates in image plane,

one can easily see that interaction matrix can be directly obtained from this

equation.
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Chapter 3
Motion Estimation of Freeform

Planar Objects

Motion estimation is the process of determining the parameters that de-

scribe the transformation from one 2D image to another. Usually two con-

secutive frames in a video are considered for this task. It is an ill-posed

problem due to the loss of dimension in image acquisition (from 3D scene

onto 2D image plane). Generally a motion model is assumed for the data and

parameters of that model are estimated. The motion model may be simple

translational model, affine model or other models that leads to a successful

approximation. Usually simple translational model leads to accumulation of

errors and give sufficient results only for a small period of time. The affine

motion model on the other hand provides good approximation for the in-

duced image motion as long as the distance of the scene to the camera is

large. In general image motion of an arbitrary planar surface between two

frames is described by a projective transformation (homography).
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Depending on the purpose of motion estimation algorithm motion vectors

may be estimated for the whole image, which may be helpful for tasks such

as video compression, or may be focused on a certain image region or object,

which is preferred for tasks such as visual tracking. It is possible to classify

motion estimation algorithms in two groups, namely direct methods [20] and

feature based methods [19]. Direct methods claim image intensity is invariant

to motion (i.e. it is constant throughout the motion) and they make use of

regional intensity matching to estimate motion parameters. Block matching

methods [15, 16], phase correlation methods [21], optical flow methods [12]

are some examples of direct methods. Feature based methods on the other

hand rely on the correspondence of a set of highly reliable image features.

Lines [26, 27, 28, 29], Harris corners, color moments [22] or SIFT [23] are

some of the features which can be used for motion estimation. Motion es-

timation method discussed in this work is also a feature based method as

an IP representation of an object boundary will be used to obtain certain

features that can be used to estimate the motion parameters of the curve.

3.1 Motion Estimation Using IP representa-

tion of A Planar Curve

In this section we are interested in exploring the dynamics of a planar

algebraic curve and estimating its motion parameters. As an application to

computer vision let us define the problem as follows.

Assume that you are given the boundary data of a freeform planar ob-

ject through a sequence of images (possibly provided by a visual tracking al-
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gorithm) and this boundary data satisfies an affine motion as provided in

equation below. Estimate the motion parameters by using the IP model of

available boundary data.

d

dt




x

y

1


 =




a1 a2 b1

a3 a4 b2

0 0 0




︸ ︷︷ ︸
A




x

y

1


 (3.1)

As stated above we will be focusing on an affine motion model. In gen-

eral, given two views of a scene, there is a linear projective transformation

(homography) H, relating the projection of a point of a plane in the first view

to its projection in the second view. This H is a three by three invertible

matrix and need not be an affine matrix. However our affine motion model is

quite sufficient for certain scenarios. This can be observed in (2.20). As long

as the target planar curve has very small (ideally zero) rotational velocities

around the axes perpendicular to the optical axis (wx and wy) motion of

that planar curve in 3D space induces an affine motion on image plane. Fur-

thermore, if its translational velocity is very small compared to the average

depth from the camera (Vz ¿ Z) then this motion corresponds to a rigid

body transformation in image plane.

As we have seen in previous sections an IP model of this boundary data

can be obtained through fitting algorithms. The problem will then be esti-

mating the motion parameters of this curve from the fitted IP model. For

this purpose first the dynamics of an algebraic curve should be represented.

In order to describe dynamics of planar algebraic curves we use a polyno-

mial decomposition method [6] to express curve models as a unique sum of
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product of line factors.

Theorem 3.1.1. Any non-degenerate monic polynomial, fn(x, y), can be

uniquely decomposed as sum of product of line factors [4, 6] as shown in

(3.2).

fn(x, y) = Πn(x, y) + αn−2[Πn−2(x, y) + αn−4[Πn−4(x, y) + ...]] (3.2)

where αj’s are scalar and Πj(x, y)’s are the product of j line factors as given

below.

Πj(x, y) =

j∏
i=1

[x + lj,iy + kj,i] (3.3)

For example, (monic) conic, cubic and quartic curves can be (line) decom-

posed as

f2(x, y) = L1(x, y)L2(x, y) + α0 = 0,

f3(x, y) = L1(x, y)L2(x, y)L3(x, y) + α1L4(x, y) = 0,

and

f4(x, y) = L1(x, y)L2(x, y)L3(x, y)L4(x, y) + α2L5(x, y)L6(x, y) + α0 = 0,

(3.4)

respectively, where α2, α1 and α0 are real scalars. Example of a quartic

decomposition in terms of 6 complex lines is geometrically shown in Fig. 3.1.

For non-degenerate implicit polynomials this decomposition is unique.

Dynamics of the parameters of line factors can be used to identify the dy-

namics of the curve. For example, f4(x, y) is completely described by the
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Figure 3.1: Head of humanoid robot Asimo by Honda along with fitted quar-

tic polynomial and its complex line factors (dashed).

dynamics of the six line factors Li(x, y), i = 1, 2, ..., 6 and two scalar param-

eters α2 and α0.

3.2 Homogeneous Representations for Even

Degree Curves

It is shown in [24] that time invariant affine motion of a quartic curve

induces Riccati equations in terms of parameters of these line factors. Further

in [25] an adaptive identification is used to estimate time invariant parameters

of a rigid body motion through line decomposition of planar algebraic curves.

Here we will consider a more general case. First we will show that same

Riccati equations hold for time varying affine motion of an even degree alge-

braic curve. To this end we will use a homogeneous representation of even
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degree curves similar to the development in [24].

Consider a line decomposed planar curve of degree n where n = 2r is an

even number.

fn(x, y) =
n∏

i=1

(
1 ln,i kn,i

)



x

y

1


 + αn−2

n−2∏
i=1

(
1 ln−2,i kn−2,i

)



x

y

1


 + ...

+α2

2∏
i=1

(
1 l2,i k2,i

)



x

y

1


 + α0 = 0 (3.5)

Following substitutions are used to homogenize lines in the decomposition

x =
x̄

w̄
, y =

ȳ

w̄
, lm,i =

l̄m,i

p̄m,i

, km,i =
k̄m,i

p̄m,i

, m = 2, 4, ..., n (3.6)

and obtain a homogeneous representation for the original curve as

fn(x̄, ȳ, w̄) =
∏n

i=1

(
p̄n,i l̄n,i k̄n,i

)



x̄

ȳ

w̄


 +

αn−2(
∏n

i=1 p̄n,i∏n−2
i=1 p̄n−2,i

)w̄2
∏n−2

i=1

(
p̄n−2,i l̄n−2,i k̄n−2,i

)



x̄

ȳ

w̄


 + ... +

α2(
∏n

i=1 p̄n,i∏2
i=1 p̄2,i

)w̄n−2
∏2

i=1

(
p̄2,i l̄2,i k̄2,i

)



x̄

ȳ

w̄


 + α0(

∏n
i=1 p̄n,i)w̄

n = 0

(3.7)
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3.3 Line Dynamics

For the affine motion of data coordinates, (3.1) represents the dynamics.

Dynamics in (3.1) and homogezitation of data coordinates presented in (3.6)

together imply,

d

dt




x

y

1


 =




a1 a2 b1

a3 a4 b2

0 0 0




︸ ︷︷ ︸
A




x

y

1




x = x̄
w̄
, y = ȳ

w̄

−−−−−−−−→ d

dt




x̄

ȳ

w̄


 =




a1 a2 b1

a3 a4 b2

0 0 0




︸ ︷︷ ︸
A




x̄

ȳ

w̄




(3.8)

Let us consider any line,
[
p̄m,i(t) l̄m,i(t) k̄m,i(t)

]T

, that is obtained through

the decomposition. For each point,
[
x̄l(t) ȳl(t) w̄l(t)

]T

, on that line, fol-

lowing equation is satisfied.

[
p̄m,i(t) l̄m,i(t) k̄m,i(t)

]



x̄l(t)

ȳl(t)

w̄l(t)


 = 0 (3.9)

Taking derivative of (3.9) with respect to time we get,




˙̄pm,i(t)

˙̄lm,i(t)

˙̄km,i(t)




T 


x̄l(t)

ȳl(t)

w̄l(t)


 +




p̄m,i(t)

l̄m,i(t)

k̄m,i(t)




T 


˙̄xl(t)

˙̄yl(t)

˙̄wl(t)


 = 0 (3.10)
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If we plug the dynamics in (3.8) into (3.10) we obtain,




˙̄pm,i(t)

˙̄lm,i(t)

˙̄km,i(t)




T 


x̄l(t)

ȳl(t)

w̄l(t)


 +




p̄m,i(t)

l̄m,i(t)

k̄m,i(t)




T

A




x̄l(t)

ȳl(t)

w̄l(t)


 = 0







˙̄pm,i(t)

˙̄lm,i(t)

˙̄km,i(t)




T

+




p̄m,i(t)

l̄m,i(t)

k̄m,i(t)




T

A







x̄l(t)

ȳl(t)

w̄l(t)


 = 0 (3.11)

In light of (3.9) it follows that

d

dt




p̄m,i(t)

l̄m,i(t)

k̄m,i(t)


 + AT




p̄m,i(t)

l̄m,i(t)

k̄m,i(t)


 = λ




p̄m,i(t)

l̄m,i(t)

k̄m,i(t)


 (3.12)

where λ is an unknown scalar. Note that this equality implies the following

dynamics for the homogenized line parameters:

d

dt




p̄m,i(t)

l̄m,i(t)

k̄m,i(t)


 =




λ− a1 −a3 0

−a2 λ− a4 0

−b1 −b2 λ







p̄m,i(t)

l̄m,i(t)

k̄m,i(t)


 i = 1, 2, ..., m (3.13)

Notice that A can be any affine matrix with possibly time varying entries.

3.4 Riccati Equations

Following the development in [24] we show that line parameters lm,i, km,i

in the decomposition of the original curve satisfy coupled Riccati equations.

Also we will see in the derivations that uncertainty in (3.13) due to unknown
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scalar λ disappears in these Ricatti equations. To this end, first we differen-

tiate ( 3.6) with respect to time

lm,i =
l̄m,i

p̄m,i

l̇m,i =
˙̄lm,ip̄m,i − l̄m,i ˙̄pm,i

p̄2
m,i

(3.14)

Using ( 3.13) we can get

l̇m,i =
(−a2p̄m,i + (λ− a4)l̄m,i)p̄m,i − l̄m,i((λ− a1)p̄m,i − a3l̄m,i)

p̄2
m,i

l̇m,i = −a2 + (λ− a4)
l̄m,i

p̄m,i︸︷︷︸
lm,i

+(a1 − λ)
l̄m,i

p̄m,i︸︷︷︸
lm,i

+a3

l̄2m,i

p̄2
m,i︸︷︷︸

l2m,i

l̇m,i = −a2 + (a1 − a4)lm,i + a3l
2
m,i, i = 1, . . . , m, m = 2, 4, . . . , n (3.15)

With a similar development, equation for km,i is obtained as:

k̇m,i = −b1 − b2lm,i + a1km,i + a3lm,ikm,i, i = 1, . . . , m, m = 2, 4, . . . , n

(3.16)

Note that the line parameters, i.e. slope and intercept, satisfy coupled

Riccati equations where the uncertainty due to unknown scalar λ disappears

and parameters in the equation depend on the motion of the curve. Note

also that each of the lines satisfies the same Riccati equation initialized at

different points on the state space.

As remarked earlier, closed-bounded curves have no real asymptotes and

therefore the first n lines in the decomposition of such curves are all complex.

In light of this observation, ln,i and kn,i are complex numbers. However, lm,i
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and km,i where m 6= n, may or may not be complex. Since the coefficients of

a curve are real, if there exists a complex parameter its conjugate must also

exist.

3.4.1 Riccati Equations in Real Variables

In [25], Riccati equations in real variables were derived with constant

motion parameters. We extend that work to time varying parameters. Since

the first n lines in the decomposition of a curve of degree n are complex,

their parameters can be written as:

ln,i = η1i + jη2i, kn,i = η3i + jη4i, i = 1, 3, . . . , n− 1 (3.17)

where η1i = Re(ln,i), η2i = Im(ln,i), η3i = Re(kn,i), ηn,i = Im(kn,i), and

ln,i = η′1i + jη′2i, kn,i = η′3i + jη′4i, i = 2, 4, . . . , n (3.18)

where η′1i = η1i, η′2i = −η2i, η′3i = η3i, η′4i = −η4i.

Substituting these into ( 3.15) and ( 3.16), and equating real and imagi-

nary parts, we get the following Riccati equations in real variables:

η̇1i = −a2 + (a1 − a4)η1i + a3(η1i
2 − η2i

2) (3.19)

η̇2i = (a1 − a4)η2i + 2a3η1iη2i (3.20)

η̇3i = −b1 − b2η1i + a1η3i + a3(η1iη3i − η2iη4i) (3.21)

η̇4i = −b2η2i + a1η4i + a3(η1iη4i + η2iη3i) (3.22)

and similarly for the conjugate variables η′1i to η′4i as:

η̇′1i = −a2 + (a1 − a4)η
′
1i + a3(η

′
1i

2 − η′2i
2
) (3.23)
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η̇′2i = (a1 − a4)η
′
2i + 2a3η

′
1iη

′
2i (3.24)

η̇′3i = −b1 − b2η
′
1i + a1η

′
3i + a3(η

′
1iη

′
3i − η′2iη

′
4i) (3.25)

η̇′4i = −b2η
′
2i + a1η

′
4i + a3(η

′
1iη

′
4i + η′2iη

′
3i) (3.26)

3.5 Identification of Motion Parameters

Using vector-matrix notation and dropping the subscript i, equations

( 3.19) to ( 3.22), or alternatively ( 3.23) to ( 3.26), for a specific complex

conjugate line pair can be recast as




η̇1

η̇2

η̇3

η̇4




=




0 0 −η1 −1 η2
1 − η2

2 −η1

0 0 η2 0 2η1η2 −η2

−1 −η1 η3 0 η1η3 − η2η4 0

0 −η2 η4 0 η1η4 + η2η3 0







b1

b2

a1

a2

a3

a4




(3.27)

Note that in this form all the unknown motion parameters are stacked in

a vector
[
b1 b2 a1 a2 a3 aT

4

]T

and we want to estimate them through

our measurements
[
η1 η2 η3 η4

]T

. From (3.27) it is clear that with 6

unknowns and 4 equations we do not have a unique solution. Consequently

we need to consider parameters for at least 2 lines. For the additional line it

is better to choose not the complex conjugate of the first line but one from

another pair as parameters of complex conjugate lines do not provide fully

independent information. By using the parameters for two complex lines we
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obtain the following equation.



η̇1

η̇2

η̇3

η̇4

η̇5

η̇6

η̇7

η̇8




︸ ︷︷ ︸
Ẋp

=




0 0 −η1 −1 η2
1 − η2

2 −η1

0 0 η2 0 2η1η2 −η2

−1 −η1 η3 0 η1η3 − η2η4 0

0 −η2 η4 0 η1η4 + η2η3 0

0 0 −η5 −1 η2
5 − η2

6 −η5

0 0 η6 0 2η5η6 −η6

−1 −η5 η7 0 η5η7 − η6η7 0

0 −η6 η8 0 η5η8 + η6η7 0




︸ ︷︷ ︸
z




b1

b2

a1

a2

a3

a4




︸ ︷︷ ︸
ϕ

(3.28)

This system can be constructed with more lines, however in simulations and

experiments it is observed that with two independent lines matrix z attains

rank of 6 which is enough for solving the system. Adding more lines may

help in increasing robustness but not necessary. As the line parameters are

measurable from acquired images we can obtain the estimates for motion

parameters as.

ϕ = z†Ẋp (3.29)

where z† = (zTz)−1zT is the pseudo-inverse of z. Equation (3.29) provides

the solution for a continuous system. On the contrary when using this method

for computer vision applications discrete measurements are provided. In

estimating the motion parameters for a boundary data, line parameters are

extracted from each acquired image and the motion estimation problem is

formulated in a discrete fashion. In this discrete form, we can obtain Ẋp with

a backward Euler approximation, namely

Ẋp[k] ∼= Xp[k]−Xp[k − 1]

T
(3.30)
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where T is the time interval between two acquired images. T can be assumed

to be unity in applications and in that case estimated motion parameters will

just be normalized by T . Using the backward Euler approximation for Ẋp[k]

and forming z[k] from the measured line parameters Xp[k] we can obtain

the motion estimation at instant k as:

ϕ[k] = z†[k]Ẋp[k] (3.31)

3.5.1 Data Normalization in Motion Estimation Algo-

rithm

z[k] in 3.31 is computed in each iteration and entries of this matrix

involves the terms η1,...,η8 which are real and complex terms of slope (l) and

intercept (k) of two decomposed lines in the form of x + ly + k = 0. In

the decomposed lines l terms are independent of the translations of data,

whereas k terms can be greatly affected as the set of data points get farther

from the origin and get larger values. Note that the leading form of an

implicit polynomial is invariant of translation and l term is obtained from the

decomposition of leading form whereas k terms comes from the lower degree

coefficients. To illustrate this condition let us consider a simple scenario

where the data of an object boundary satisfies x2 + y2 − 1 = 0, which is a

unit circle at the origin. Decomposition of this polynomial would result in

x2 + y2 − 1 = (x + jy)(x− jy)− 1 = 0

Now let us consider that the represented data is taken translated with an

amount of [20, 20]T , which results in a new polynomial

(x− 20)2 + (y − 20)2 − 1 = x2 + y2 − 40x− 40y + 799 = 0
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Decomposing this polynomial we get

x2 + y2 − 40x− 40y + 799 = (x + jy + 20− 20j)(x− jy + 20 + 20j)− 1

Note that with that amount of translation of the data points l terms re-

main constant as j and −j whereas k terms change from 0 to 20 − 20j and

20 + 20j. As it can be seen, although the data coordinates coming from a

unit circle remain comparable as data is translated, k terms of decomposed

lines can increase or decrease significantly. Consequently as the data gets

farther from the origin, k terms increase significantly in magnitude lead-

ing to very large η3, η4, η7 and η8 which dramatically affect the condition

number of matrix z[k] in 3.31 and stability of motion estimation algorithm.

Thus, data normalization is necessary in this algorithm. First the motion

parameters for the normalized data can be robustly estimated with this al-

gorithm and the motion parameters for original data can be extracted from

this estimation. There are different data normalization techniques in the

literature. Among available techniques, we prefer to use a linear scaling

technique, namely whitening [37]. One significant advantage of using this

normalization procedure is due to the nature of used polynomial fitting al-

gorithm. As shown in [10], whitening of two affine equivalent curves lead

to normalized rotational equivalent curves and this is crucial since the used

fitting algorithm is not affine invariant but Euclidean invariant.
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3.5.2 Extraction of Motion Parameters from the Nor-

malized Data

Let Sh represent the homogeneous coordinates of the original boundary

data and Ŝh be the normalized data.

Sh =




x1 x2 ... xN

y1 y2 ... yN

1 1 1 1




Since the whitening normalization is a linear process there exists a matrix B

such that,

Ŝh = BSh (3.32)

In light of (2.15) B is defined as

B =


Λ−1/2UT −Λ−1/2UT C

01×2 1


 (3.33)

Once the normalized data is obtained, its motion parameters can be esti-

mated by using (3.31). As the whitening of two affine equivalent curves give

rotationally equivalent curves, the estimated parameters will correspond to a

pure rotation. In general dynamics of the normalized data and original data

can be represented in matrix form as:

˙̂
Sh = ÂŜh (3.34)

Ṡh = ASh (3.35)

Note that Â is obtained in motion estimation algorithm and if one can relate

A and Â properly, motion estimation task can be completed. To achieve this

38



goal, let us consider the time derivative of (3.32)

˙̂
Sh = ḂSh + BṠh (3.36)

Using the relations in (3.32) and (3.34) one can obtain

˙̂
Sh = ÂŜh = ÂBSh (3.37)

From the equality of (3.36) and (3.37) one can obtain

ḂSh + BṠh = ÂBSh

BṠh = (ÂB − Ḃ)Sh

since B is always invertible,

Ṡh = B−1(ÂB − Ḃ)Sh (3.38)

Using the equality of (3.35) and (3.38) one can obtain the matrix A as

A = B−1(ÂB − Ḃ) (3.39)

By using (3.39) motion estimation for the target object is recovered from the

motion estimation of normalized data.

3.6 Simulation Results

Simulations are performed in the Matlab and Simulink environment.

Boundary data of different objects are extracted via level set method. Dif-

ferent affine motions are applied to these data. Sample affine motion for the

screwdriver data is shown in Fig. 3.2 whereas Fig. 3.3 shows a sample rigid

body motion for a machine part data.
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Figure 3.2: Affine motion of a screwdriver with superimposed quartic curves

To simulate the behavior of the camera, we constructed motion dynamics

subsystem in Simulink, which generates state values, i.e. image coordinates of

the object boundary, at prescribed frame rates. Boundary data is normalized

by means of whitening in the curve fitting step. Closed-bounded quartic

curves are fitted to the object boundaries each sampling instant using the IP

fitting procedure. Fitted polynomials are decomposed into line factors and 1

line from each of the first 2 complex conjugate couples are picked for motion

estimation. Motion parameters of the normalized data is estimated and

motion parameters for the original data is extracted from that estimation. In

simulations we considered a low frame rate (30 fps) camera. This is achieved

using zero-order hold at the output port of the motion dynamics subsystem

with a sample time equal to 1/30. Sample time of the simulations is 0.0001

s. Run time is 3 s.

In the first simulation a time varying rigid body motion is applied to the
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Figure 3.3: Rigid motion of a machine part with superimposed quartic curves

boundary of a machine part data. Actual and estimated parameters for this

simulation are given in Fig. 3.4. It is seen that the estimated parameters

track the actual parameters very closely. In the second simulation a time

varying affine motion is applied to the boundary data of a screwdriver. Actual

and estimated parameters for this simulation are given in Fig. 3.5. In both

simulations rigid and affine motions with arbitrary time varying parameters

are applied to the data and it is seen that proposed estimation method works

quite well.
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Figure 3.4: Actual (solid) and estimated (dashed) motion parameters for

rigid body motion.
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Figure 3.5: Actual (solid) and estimated (dashed) motion parameters for

affine motion.
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Chapter 4
Visual Servoing Using Planar

Algebraic Curve Features

4.1 Visual Servoing

Visual servo control refers to the use of computer vision data to control

the motion of a robot [51]. Visual data is gathered through a camera and

computer vision algorithms are used to obtain certain features that will be

used to control the position of the robot. Various camera configurations can

be used for such approaches. For instance, a single camera can be mounted on

the robot (eye-in-hand) where it moves with the robot, or the camera can be

fixed in the workspace and observe the robot motion from a stationary pose

(eye-to-hand). Different configurations can also be obtained by using multiple

cameras which can provide the advantages of stereo vision. Though certain

changes occur in the mathematical derivations, similar principles apply in all

cases.
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Just in any control task, the aim of visual servoing is to minimize a de-

fined error vector, e(t) = s(p(t), a) − s∗, where s∗ defines the value of the

feature vector at the desired pose and s(p(t), a) is the current feature vec-

tor which depends on relative pose of the target object with respect to the

camera, p(t), and a, a set of parameters that represent potential additional

knowledge about the system such as camera intrinsic parameters or 3D mod-

els of objects. In many applications s∗ is constant, meaning that we have

a constant reference pose of the camera with respect to the target object.

This assumption is acceptable for many applications such as pick and place

or robot navigation task where the robot is desired to keep or achieve a

particular pose with respect to an other robot or object.

Depending on the choice of feature vector, s(p(t), a), different approaches

exist. In image based visual servoing [46, 51], visual measurements are di-

rectly used for the control purpose. These measurements can be point coor-

dinates, lines, ellipses, visual moments [50, 51, 52, 53] or other visual features

which can be gathered and tracked in real time [49]. On the other hand in

position based visual servoing approaches [47], the visual measurements are

not directly used in the control loop, but they are used to recover the relative

pose of the camera between the reference and current poses and this relative

pose is used as the error vector. Both approaches has certain advantages and

disadvantages. To make use of advantages of both algorithms, an alternative

approach, named as “21
2
D Visual Servoing” [48], was proposed. In this thesis

we will focus on image based visual servoing.

For an image based visual servoing task, the problem is designing a control

signal (Vc - velocity screw for the target object in camera frame) that will min-
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imize the error, e(t). In a classical image based visual servoing the additional

parameters, a, in s(p(t), a) are the camera intrinsic parameters (coordinates

of the principal point and effective focal lengths in x and y directions) which

can be assumed to be constant throughout the control action. To obtain a

relation for Vc, let us first take the derivative of e(t) = s(p(t), a) − s∗ with

respect to time:
de(t)

dt
=

ds(p(t), a)

dt
− ds∗

dt
(4.1)

Considering s∗ and camera intrinsic parameters to be constant we get:

de(t)

dt
=

∂s(p(t), a)

∂p(t)︸ ︷︷ ︸
Le

∂p(t)

∂t︸ ︷︷ ︸
Vc

(4.2)

where Le is named as interaction matrix (or image Jacobian). For a control

task, a simple approach may be trying to enforce a decoupled exponential

decrease in error. That can be achieved by following equation:

de(t)

dt
= −λe(t) (4.3)

where λ is a diagonal positive definite gain matrix. Setting (4.2) and (4.3)

to be equal we get the following relation .

LeVc = −λe(t) (4.4)

From (4.4) one can obtain the relation for the control signal as

Vc = −λL†ee(t) (4.5)

where L†e = (LT
e Le)

−1LT
e is the pseudo-inverse of image Jacobian, Le. Usu-

ally Le contains terms such as depth, intrinsic parameters, etc. which are

unknown but can be estimated. Hence this is more properly shown as:

Vc = −λL̂†ee(t) (4.6)
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where L̂†e is an estimate for the pseudo-inverse of interaction matrix.

This basic mathematical development is used in many visual servoing

applications. Remaining issues for any visual servoing algorithm is choos-

ing visual features to be used, obtaining an analytical interaction matrix

corresponding to the chosen feature vector, propose how certain unknowns

in interaction matrix can be estimated and analyzing its performance in a

closed loop system. By considering such issues many different methods can

be proposed and used for visual servoing tasks.

In this section we consider the use of features extracted from the IP rep-

resentation of planar algebraic curves in aligning planar closed curves by em-

ploying calibrated image based visual servoing [51]. An implicit polynomial

representation of target object boundary is obtained by a curve fitting algo-

rithm. Acquired polynomial is then decomposed as a unique sum of product

of line factors. As the line decomposition is unique for a non-degenerate im-

plicit polynomial in variables x and y, it can be used to extract certain robust

features that represent the curve and we propose that such features can be

used for visual servoing purposes. In this work we propose to use intersection

of complex conjugate line pairs. Since the first n lines in the decomposition

of an IP with degree n are complex conjugate pairs, their intersections are

real points on the image plane and can be used as point features.

It should be stated that under 6 DOF motion, reference and current

boundary data are related by a projective transformation. Since we treat

the extracted points as visual features, they should correspond to the same

points with respect to the curve under projective transformations. Such a

correspondence depends on the invariance of curve fitting. IP fitting method
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used in this work is Euclidean invariant and we achieve affine invariance

through the whitening normalization of boundary data. If two boundary

curves are affine equivalent, their whitening normalization provide rotation-

ally equivalent curves. Consequently with our method correspondence of

extracted features under affine transformations is achieved. As long as the

average depth of the object from the camera is large, or rotations about the

X and Y axis of the camera are small object boundary in two different im-

ages will be related by an affine transformation and our method would work

properly. However, even in the deviations from affine relation the closed loop

control helps in handling this problem. As the closed loop control forces the

end effector to the reference pose it also forces the relation between the cur-

rent and reference boundary data to be affine. In the 6 DOF simulations

our results support this claim, however in very large deviations from the

affine model this method may not be applicable due the lack of perspective

invariance in fitting method.

4.2 Visual Servoing by Using the Intersection

of Complex Line Pairs

In this section we treat the real intersection of complex lines as real point

features. Let s ∈ <k and r ∈ <6, denote the vectors of image features obtained

from visual system and the pose of the end effector of the robot, respectively.

The vector s is a function of r, and their time derivatives are related with

the image Jacobian JI(r) = ∂s/∂r ∈ <kx6 as,

ṡ = JI(r)ṙ (4.7)
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For a fixed camera system the image Jacobian of a single point feature vector

s = [x, y]T is given as [51]:

[
ẋ

ẏ

]
=


 1/Z 0 −x/Z −xy (1 + x2) −y

0 1/Z −y/Z −(1 + y2) xy x




︸ ︷︷ ︸
Jxy

Vc (4.8)

where

x =
xp − xc

fx

, y =
yp − yc

fy

(4.9)

and (xp, yp) are pixel coordinates of the image point, (xc, yc) are the coor-

dinates of the principle point, and (fx, fy) are effective focal lengths of the

camera, respectively. By rearranging and differentiating (4.9), and writing

in matrix form, the following expression can be obtained.


 ẋp

ẏp


 =


 fx 0

0 fy





 ẋ

ẏ


 =


 fx 0

0 fy


 Jxy

︸ ︷︷ ︸
JI

Vc (4.10)

where JI is the pixel-image Jacobian. In (4.7), ṙ = Vc is also called the end

effector velocity screw in camera frame. This velocity screw is defined in the

camera frame, and should be mapped onto the robot control frame. Denoting

VR as the end effector velocity screw in robot base frame, the mapping can

be written as

Vc = TVR (4.11)

The robot-to-camera velocity transformation matrix T ∈ <6x6 is defined as

below

T =


 R 03

03 R


 (4.12)
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where R is the rotation matrix that map camera frame onto robot base frame.

In light of equation (4.12), (4.7) can be rewritten as,

ṡ = JIT︸︷︷︸
,J̄I

VR = J̄IVR (4.13)

The new image Jacobian matrix J̄I defines the relation between the changes

of image features and end effector velocity in robot control frame. Consid-

ering p point features e.g. s =
[
x1 y1 ... xp yp

]T

, the Jacobian matrices

corresponding to each point should be stacked as below.

J̄I =




J̄1
I

.

.

.

J̄p
I




(4.14)

Let s∗ be the constant reference feature vector and e = s−s∗ define the error.

The visual servoing problem is designing an end-effector velocity screw VR in

such a way that the error decays to zero, i.e. e −→ 0. By imposing ė = −Λe,

where Λ is a positive definite gain matrix, an exponential decrease of the

error function is realized. Consequently, if a diagonal gain matrix is used,

the velocity screw is derived as:

VR = −ΛJ̄I
†
(s− s∗) (4.15)

where J̄I
†

is the pseudo-inverse of the image Jacobian and VR is given as:

VR =
[
Vx Vy Vz ωx ωy ωz

]T

.
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4.3 Simulation Results

Proposed method is simulated on a six DOF Puma 560 robot in eye-in-

hand configuration as shown in Fig. 4.1.

Figure 4.1: Puma 560 robot in Matlab Robotic Toolbox.

In simulations, Matlab Robotics Toolbox [72] is used. A planar object is

initialized in the field of view of the camera. To evaluate the performance

of the method in applications that require six DOF motion, a combination

of translations and rotations in x, y and z directions are introduced between

reference and initial positions. Homogeneous transformation between the
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reference and initial poses are given in the world coordinate frame as

H =




0.975 −0.037 0.218 0.1

0.097 0.956 −0.275 0.05

−0.198 0.289 0.936 −0.1

0 0 0 1




(4.16)

Camera is placed at the end effector of the robot and it is assumed that

origin and axis of the camera frame coincide with the end effector frame.

Pinhole camera model is used to model the camera with the following intrinsic

parameters matrix K,

K =




8000 0 320

0 8000 240

0 0 1


 (4.17)

Reference and initial position of the object boundary in image and the

trajectories of the points which are extracted from the decomposition are

given in Fig. 4.2. A diagonal gain matrix as given in (4.18) is used in the

simulation.

Λ =




0.3 0 0 0 0 0

0 0.3 0 0 0 0

0 0 0.3 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2




(4.18)

Control signals (VR) and feature errors are presented in Figures 4.3 and 4.4

respectively. An exponential decrease in errors on x coordinates is achieved

in these simulations but error on y coordinates do not converge exponentially
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Figure 4.2: Induced trajectories of feature points from the initial to the

reference view of object in image space

to zero but makes a zero crossing and then decays. This behavior is expected

for image based visual servoing when points are used as features. Reason is

the couplings that can be seen in the interaction matrix given in (4.8). As

it can be seen in the results of the simulation, proposed method successfully

position the end effector and errors on pixel coordinates of intersection points

converges to zero in a short period of time.
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Figure 4.3: Control signals.

Figure 4.4: Errors on x and y coordinates of points.
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Chapter 5
Experimental Results

5.1 Motion Estimation Experiments

Motion estimation experiments are conducted by using a Fire-i400 digital

camera and an arbitrary shape which is printed on a planar board. The curve

is moved randomly and object is tracked via ESM [73] algorithm. From the

tracked boundary data motion of the curve is estimated with the proposed

algorithm. Visual algorithms are implemented in Visual C++. To evaluate

the performance of the algorithm by comparing with a ground truth, at each

iteration extracted motion parameters are applied to the boundary data and

resulting coordinates are marked with blue.

Algorithm starts with a user input where user sets the upper left and

lower right corner for a window around target object. This window is used for

ESM tracking algorithm. At each iteration motion parameters are estimated

using the method presented in motion estimation section. At each iteration
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starting from the initial image, edge data is stored and updated as




x[k]

y[k]

1


 =




â11[k] â12[k] b̂1[k]

â21[k] â22[k] b̂2[k]

0 0 0




︸ ︷︷ ︸
Â




x[k − 1]

y[k − 1]

1


 +




x[k − 1]

y[k − 1]

1


 (5.1)

At each frame updated edge data is marked on the acquired image in blue.

Match of this data with the boundary of the curve displays the performance

of the algorithm. We present 2 experiments in this section. In these ex-

periments we want to present the performance of the algorithm and exper-

Figure 5.1: Estimated motion parameters for the first experiment.
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imentally support the importance of data normalization in the algorithm.

Camera is fixed above and planar object is moved in its field of view. In

the first experiment motion parameters are estimated through normalized

data. Video recorded for the first experiment has 165 frames taken at 25 fps.

Estimated parameters for the first experiment are shown in Fig. 5.1 whereas

some frames from the recorded video are shown in Fig. 5.2. In the second

Figure 5.2: Performance of motion estimation algorithm by using normaliza-

tion. Frames 1, 30, 60, 90, 120, 150 are presented.
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experiment same configuration is used. Object is randomly moved in the

field of view of the camera. Normalization is only used for IP fitting but it

is not used in the motion estimation. Video recorded for the second experi-

ment has 128 frames taken at 25 fps. Estimated parameters for the second

experiment are shown in Fig. 5.3 whereas some frames from the recorded

video are shown in Fig.5.4.

Figure 5.3: Estimated motion parameters for the second experiment.
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Figure 5.4: Performance of motion estimation algorithm without using nor-

malization. Frames 1, 25, 50, 75, 100, 125 are presented.

5.2 Visual Servoing Experiments

The experimental verification of the proposed visual servoing methods

are presented in this section. The experiments are conducted with a 2 DOF

direct drive SCARA robot and a Fire-i400 digital camera in an eye to hand

configuration. A planar free-form object is placed on the tool tip of the

robot and camera is placed and fixed above the robot as it can be seen in
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Figure 5.5. The robot is controlled with a dSPACE 1102 controller card. The

programming language of the card is Visual C.

Figure 5.5: Experimental Setup

The control loop is made up of one inner and one outer loops. The outer

loop is run via vision system. It uses the extracted features to generate

velocity references to the inner loop. These references are used by the inner

loop to position the robot. Sampling time of the inner control loop is 1 ms.

The frame rate of the camera is 30 fps.

In the experiments, object boundary is extracted by using Canny edge
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detection algorithm. From these edges, we obtain a fourth degree implicit

polynomial by using the regularized 3L fitting algorithm. The implicit curve

is then decomposed into line factors.

For point feature method, two point features are obtained from the inter-

section of the first 4 complex-conjugate lines. These points are then used as

point features in visual servoing. A diagonal gain matrix of

Λ =


 0.5 0

0 0.5


 (5.2)

is used in computing the velocity screw of the end effector. According to

calibration results, effective focal lengths of the camera in x and y directions

are measured as fx = fy = 970, and image center coordinates (xc, yc) =

(160, 120).

Two experiments are presented for point based approach. In the first

experiment object plane is parallel to the image plane and motion of the

end effector results in Euclidean transformation for the object boundary.

Significant rotation and translation exist between the reference and initial

poses. The reference and initial positions are as in Figure 5.6. Trajectories

of the point features can be seen in Figure 5.7. The error plots are given in

Figures 5.8 and 5.9. Control signals are presented in Figure 5.15.

In the second experiment, the case when the image plane is not parallel

to the object plane is examined. In this case motion of the end effector

induce affine motion on the object boundary data. Significant translation

and rotation are introduced between reference and initial pose. Reference

and initial poses can be seen in Figures 5.11 and 5.12 respectively. Pixel

errors in x direction, pixel errors in y direction and control efforts can be
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Figure 5.6: Reference and initial positions

Figure 5.7: Trajectory of point features
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Figure 5.8: Pixel errors in x direction of the image plane
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Figure 5.9: Pixel errors in y direction of the image plane
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Figure 5.10: Control efforts

seen in Figures 5.13, 5.14 and 5.15.

Figure 5.11: Reference and initial positions

With the proposed control method errors decrease exponentially and a

proper position of the robot is achieved in both experiments. Note that

in these experiments we have only 2 DOF and resulting part of the image

Jacobian is decoupled. Dues to this fact, we observe a decoupled exponential
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Figure 5.12: Trajectories of point features
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Figure 5.13: Pixel errors in x direction of the image plane
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Figure 5.14: Pixel errors in y direction of the image plane

0 5 10 15 20
−100

−50

0

Time [s]

V
x [m

m
/s

ec
s]

0 5 10 15 20
−100

−50

0

Time [s]

V
y [m

m
/s

ec
s]

Figure 5.15: Control efforts
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decrease in the errors. For a general 6 DOF application such a decoupled

decrease may not be obtained but the convergence to a very small (possibly

zero) steady state error will be observed. In the experiments less than 2 pixel

steady state error on x and y coordinates of extracted points exist in the final

pose. These results display the success of the algorithm. It is experimentally

verified that as long as the IP fitting invariance is not disturbed, intersection

of complex conjugate line pairs can be treated as point features that are

rigidly attached to target object and can be used in visual servoing.
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Chapter 6
Conclusion and Future Works

6.1 Conclusion

Two novel methods that use implicit representation of planar algebraic

curves in motion estimation and visual servoing were proposed in this thesis.

These methods are based on the line decomposition of implicit polynomials

[4, 6]. For the motion estimation algorithm, parameters of the complex line

factors are used as features. It is shown that in the case of time varying

affine motion these lines satisfy the Riccati equations that were previously

obtained for time invariant motion parameters in [24, 25]. An estimation

algorithm is proposed and verified by simulations and experiments. It is

shown that normalization is important in the stability of this algorithm and

extraction of motion parameters from the motion parameters of normalized

data is proposed for this purpose. Experimental results support that this

approach increases the performance of the algorithm significantly.

Same decomposition is used to extract features for visual servoing. Object
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boundaries are modeled with implicit polynomials of even degree, n = 2r.

As the first n lines in this decomposition are complex conjugate pairs their

pairwise intersections give rise to n/2 real points on image plane. We propose

that these intersections can be used as point features that are extracted from

the implicit representation of the planar algebraic curve. Simulations with a

6 DOF Puma 560 and experimental results conducted on a 2 DOF SCARA

robot are presented for the verification of this method.

6.2 Future Works

In this work we were interested in the motion estimation through the implicit

representation of planar algebraic curves. Our simulations and experiments

are quite promising. However, in this work we were tracking target ob-

ject with ESM algorithm. As we have shown the promising performance of

the motion estimation algorithm, slight improvements may provide a visual

tracking method that uses the implicit model of target object boundary.

Visual servoing method presented in this paper is one option for using

implicit form of closed curves in these applications. Other than using the

intersection of complex conjugate line factors, we believe that the parameters

of those lines can also be used in visual servoing. This can be achieved by

deriving the analytical image Jacobian corresponding to the parameters of

extracted line factors. In our future research we are planing to expand our

work in that way.
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