
An Approach to the Morphological Disambiguation

Problem Using Conditional Random Fields

by

Bülent Burak Arslan

Submitted to the Graduate School of Sabancı University

in partial fulfillment of the requirements for the degree of

Master of Science

Sabancı University

August, 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sabanci University Research Database

https://core.ac.uk/display/11742301?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

An Approach to the Morphological Disambiguation Problem using

Conditional Random Fields

APPROVED BY

Prof. Dr. Kemal Oflazer ..
(Thesis Supervisor)

Assoc. Prof. Dr. Berrin Yanıkoǧlu ..

Dr. Dilek Hakkani-Tür ..

Assist. Prof. Dr. Hakan Erdoǧan ..

Assist. Prof. Dr. Murat Saraçlar ..

DATE OF APPROVAL: ..

© 2009, Bülent Burak Arslan

All Rights Reserved

To the perseverant...

An Approach To The Morphological Disambiguation

Prolem Using Conditional Random Fields

B. Burak Arslan

FENS, M.S. Thesis, 2009

Thesis Supervisor: Kemal Oflazer

Abstract

Morphology is the subfield of linguistics that studies the internal struc-

tures of words. Morphological analysis is the first step in revealing this

structure by enumerating possible underlying morphological unit combina-

tions that describe the surface form of a given word. The given surface

form is said to be morphologically ambiguous, when more than one analysis

corresponds to the given surface form.

While words in every natural language may manifest morphological ambi-

guity, solving the problem of morphological disambiguation presents different

challenges for different languages.

In this work, we present an approach to this problem using Conditional

Random Fields, a statistical framework that elegantly avoids data sparseness

problems arising from the large vocabulary and tag set sizes, a characteristic

of Turkish language. CRFs are used to build statistical models that rely on

simple functions of easily testable properties of the training data at hand.

Thanks to higher expressiveness gained by using tests on individual morpho-

logical markers, our results are in line with the state-of-the-art, using only a

simple one-dimensional bigram chain model.

Biçimbirimsel Denkleştirme Sorununa

Koşullu Rassal Alan Algoritması ile

Bir Çözüm Önerisi

B. Burak Arslan

MDBF, Lisansüstü Tezi, 2009

Tez Danışmanı: Kemal Oflazer

Özet

Biçimbilim, dilbilimin kelimelerin dahili yapısıyla ilgilenen alt dalıdır.

Biçimbirimsel denkleştirme işlemi ise, bir kelimenin biçimbirimsel yapısını

belirleme işinin, eldeki kelimeye karşılık gelen biçimbirim kombinasyonlarının

listelenmesi işleminin yapıldığı ilk adımıdır. Eğer eldeki kelimeye karşılık ge-

len böyle birden fazla biçimbirimsel analiz varsa, kelimenin biçimbirimsel

belirsizliğinden söz edebiliriz.

Bütün dillerin kelimelerinde biçimbirimsel belirsizlik gözlemlenebilmesine

rağmen, bu sorun farklı dillerde farklı zorluklar barındırmaktadır.

Bu çalışmada, koşullu rassal alan algoritması ile türkçe kelimelerin biçimbirimsel

belirsizliğinin kaldırılması sorununa bir çözüm önerisi tanıtılmaktadır. Koşullu

rassal alan algoritması, türkçenin kelime ve etiket kümelerinin boyutundan

kaynaklanan veri seyrekliği sorunlarını, yapısal özelliklerinden dolayı geçersiz

kılan bir istatistiksel analiz yöntemidir. Bu yöntem ile, eldeki verinin kolayca

doğrulanabilen özelliklerini kullanan basit fonksiyonlara dayanan istatistik-

sel modeller elde edilmektedir. Biçimbirimlerin tek tek doğrulanabilmesiyle

kazanılan yüksek ifade gücü sayesinde, basit ikili bir model kullanarak aldığımız

sonuçlar en modern çalışmalarla aynı seviyededir.

Acknowledgments

If this work was at all possible, it’s thanks to my family. They believed

in me and put their infinite support behind me.

I would like to express my gratitude to Kemal Oflazer. His tolerance, as

well as his wisdom, knowledge and guidance were invaluable.

I’d like to thank Taku Kudo, who was kind enough to offer key insights

about his work. I’d also like to thank Zoubin Ghahramani, and his students

Iain Murray and Simon Lacoste-Julien who have offered valuable advice.

Lastly, I’d like to express my love to my labmates. Working inside a

considerate and naturally cheerful bunch who’s always willing to endure my

ramblings, that’s what I call good fortune! Thanks guys!

vii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Outline . 3

2 Morphological Disambiguation 5

2.1 Preliminaries . 5

2.2 Previous Work . 8

3 The Conditional Random Field Framework 12

3.1 Inference . 16

3.2 Parameter Estimation . 18

4 Implementation 22

4.1 Representing Input Turkish Words 22

4.1.1 The Inflectional Group 23

4.1.2 The Ambiguity Tree 27

4.2 Morphological Feature Templates 31

4.3 A Sample Run . 35

4.4 Factors that Influence Resource Usage 37

4.4.1 The Training Part . 37

4.4.2 The Testing Part . 38

viii

4.5 Results . 38

4.5.1 Unigram Tests . 39

4.5.2 Bigram Tests . 39

4.5.3 Other Combinations 39

4.5.4 Error Analysis . 41

5 Conclusions and Future Work 43

ix

List of Tables

2.1 List of possible analyses of the words of the sentence 2.2. . . . 8

4.1 Analyses of the word yıllarıydı 24

4.2 Random variables and the markers they may emit. 26

4.3 Tags for the word için. 27

4.4 List of possible analyses of the words of the sentence 4.1. . . . 35

4.5 The generated features for lattice in Figure 4.2 36

4.6 Unigram test summaries on 10 random data sets. 39

4.7 Bigram test summaries on 10 random data sets. 40

4.8 Miscellaneous test summaries on 10 random data sets. 41

x

List of Figures

2.1 The disambiguation lattice for sentence 2.2 7

3.1 The topology of the chain CRF used in this work, very similar

to traditional HMM. 14

4.1 Analysis tree of the word için 29

4.2 The disambiguation lattice for sentence 4.1 35

xi

Chapter 1

Introduction

1.1 Motivation

The discipline of natural language processing gathers under its umbrella com-

putational methods that have their roots in a large spectrum of disciplines in

order to attain one single aim: To make sense of the samples of the human

natural language – the essential tool for any kind of social interaction.

While making sense of natural language is acknowledged as one of the

most difficult problems in computer science, the motivation for building in-

telligent systems that can communicate naturally with humans has only in-

creased. This is in part due to the advent of the Internet that made vast

amounts of digitized text instantly and freely accessible at a very small cost.

Nowadays, an important part of human knowledge, one way or the other, is

stored, edited, managed and published with the help of computers.

Processing natural language is a daunting prospect, mainly because every

natural language utterance has ambiguities that prevent it from being easily

processed.

The aim of this work is to present an attempt at solving a specific problem

1

in natural language processing: Morphological disambiguation. While it is a

common problem to every natural language, solving it for different language

families present different challenges.

While the methods presented here are known to be applied to other natu-

ral languages, the implementation of those methods that was used during the

course of this project are highly Turkish specific, with an integrated pipeline

of three components:

1. The Morphological analyzer, which is an implementation of a finite-

state approach to Turkish morphology using the two level formalism

[Oflazer, 1994, Oflazer et al., 1999]. It parses the word surface and

gives out candidate parses. There may be more than one parse that

describes a given surface form, hence the need for disambiguation.

2. Ambiguity tree generator, which is an implementation of a novel

algorithm for listing minimally distinguishing markers of each morpho-

logical analysis. This method renders the problem to a one-dimensional

sequential classification problem.

3. Disambiguator, which is an implementation of the conditional ran-

dom field framework – a probabilistic method that unifies best of Marko-

vian and maximum entropy models. It has two distinct components:

(a) The training component, which computes the gradient for

a L2-Regularized conditional random field in a one-dimensional

chain topology, and runs L-BFGS optimization iteratively, until

some termination criteria is satisfied.

(b) The testing component, which computes every probability for

every possible path in the CRF chain, and applies Viterbi algo-

rithm in order to obtain the most probable path.

2

The work presented here can be used as a component in many language

processing tasks such as parsing, machine translation, text-to-speech, docu-

ment classification, etc.

1.2 Outline

The rest of this thesis is organized as follows: In Chapter 2, we present the

morphological disambiguation problem in a more detailed yet intuitive way

along with a review of previous work.

In Chapter 3, we formally define the problem from a mathematical stand-

point, and frame it in the context of the conditional random field framework.

We then explain the conditional random field framework in detail and present

where methods for parameter estimation and inference used in this work.

In Chapter 4, we apply the model to morphological disambiguation of

Turkish and present results from our experiment.

In Chapter 5, we present a summary and conclusions along with a dis-

cussion of future work.

A note about the terminology...

The literature of Turkish morphology and conditional random fields are not

compatible in some cases, so a few small points merit emphasis:

• The term morphological marker is used to refer to the components that

form the output of our morphological analyzer, listed in Table 4.2.

• The term feature is never used to refer to morphological markers. They

are instead used to refer to boolean functions that are the basic com-

ponents of a language model that uses the conditional random field

3

framework.

• Similarly, the term morphological feature is used to refer to boolean

functions that test a specific morphological phenomenon in a given

analysis to a given word.

• The terms state or tag are used to refer to the possible analyses of a

given word, distinguished by a minimal morphological representation.

4

Chapter 2

Morphological Disambiguation

2.1 Preliminaries

Morphological disambiguation is the task of determining the correct mor-

pheme structure of a word, given its context. Candidate morphological struc-

tures of a word are obtained via morphological analysis. It is assumed that, if

there is more than one morpheme structure that describes the given surface

form, the speaker meant to use only one of them.

While morphological ambiguity is a problem common to every natural

language, performing morphological disambiguation presents varying levels

of difficulty for various languages.

Consider the sentence:

He can can the can. (2.1)

In this example, the three occurences of the word “can” has three different

parts-of-speech:

5

He can can the can

Modal Infinitive Noun

It is possible to perform morphological disambiguation on indo-european

languages like English, French etc. by using a small number of predefined

tags (mostly part-of-speech tags).

However, determining just the part-of-speech tags is not enough for lan-

guages like Turkish, that have a complex word structure. Consider the fol-

lowing example that illustrates the morphological disambiguation problem

in Turkish:

Gelemediği için çok üzgündü. (2.2)

As can be seen in Figure 2.1, in this sentence, specifying just the part

of speech of a word does not help us to fully disambiguate it. Words in

this sentence are ambiguous in root, possesive and miscellaneous markers, as

well as part-of-speech markers. The tags that distinguish the morphological

analyses are highly word specific, thus can’t be defined prior to modeling.

This is not the case for English, simply because its simple morphotactics can’t

encode this much information in a single word. So, solving this problem for

Turkish, or Turkic languages in general, present different challenges, when

compared to other language families.

The meanings of the states in the lattice are detailed in Table 2.1

The state markers shown in Figure 2.1 are obtained from the output of

the morphological analyzer. The details of this process are given in section

4.1.2

The correct analysis of a given word can only be determined in its context

– it is not possible to make this decision just by looking at the word itself.

However, there is not much of a consensus among linguists about what con-

6

gelemediği

için

çok
üzgündü

vRoot(çok+Adverb),

vRoot(üzgü+Noun),
vRoot(çok+Postp),

vPos(Adj),
vRoot(için+Postp),vMisc(PCGen), vRoot(çok+Det),

vPos(Noun),
vRoot(iç+Noun),vPoss(P2sg),

vRoot(iç+Verb),

vRoot(için+Postp),vMisc(PCNom),
vRoot(üzgün+Adj),

vRoot(iç+Noun),vPoss(Pnon),

Figure 2.1: The disambiguation lattice for sentence 2.2

stitutes a correct analysis, nor which words can be considered as the context

of a given word.

The simplest possible approximation to the context of a word is limiting

it to the word before the given word, without going beyond the sentence

boundaries. Such a model is called 2-gram (bigram) language model. As

this model is both simple and requires a manageable amount of data to be

trained optimally, it is a very good starting point.

While a simple approximation can yield promising results for the context

determination problem, no simple approximation exists when it comes to

defining what a correct morpheme sequence is, given its context. As humans,

we feel that there just seems to be such a concept of correctness which is

defined intuitively and sometimes subconciously.

Two approaches exist for modeling this black box behaviour:

1. Rule-based morphological disambiguation, which seeks to ap-

proximately define what a correct morpheme structure is via the use of

hand-crafted constraints.

2. Statistical morphological disambiguation, which uses probability

models to select the most likely interpretation of a word in a given

context.

7

Root Inflectional groups Sample Usage

gelemediği
gel +Verb ^DB+Verb+Able+Neg

Gelemediği yer burası.
^DB+Adj+PastPart+P3sg

gel +Verb ^DB+Verb+Able+Neg Gelemediği için çok
^DB+Noun+PastPart+A3sg üzgündü.
+P3sg+Nom

için
iç +Noun+A3sg+P2sg+Nom Senin için kararmış

iç +Noun+A3sg+Pnon+Gen İçin görünümü dıştan iyi.
iç +Verb+Pos+Imp+A2pl Bunu için lütfen.
için +Postp+PCGen Benim için bunu yap.
için +Postp+PCNom Gelemediği için çok

üzgündü
çok

çok +Adverb Gelemediği için çok

üzgündü.
çok +Det Burada çok at var.
çok +Postp+PCAbl Senden daha çok yedim.

üzgündü
üzgü +Noun+A3sg+P2sg+Nom Bu şehir senin üzgündü.

^DB+Verb+Zero+Past+A3sg (– eziyetindi)
üzgün +Adj Gelemediği için çok

^DB+Verb+Zero+Past+A3sg üzgündü.

Table 2.1: List of possible analyses of the words of the sentence 2.2.

2.2 Previous Work

Early work on any sort of disambiguation task on natural languages adopted

the rule-based approach. While initial attempts gave promising results, it

was realized that the effort required to construct hand-crafted rules that

would cover all uses of language was monumental. What’s worse, natural

languages being in constant evolution meant that this goal was a moving

target – impossible to reach.

Especially in the context of Turkish and Turkic languages, performing

8

morphological disambiguation on input text promises to prune a consider-

able number of candidates. Turkish words have been actively studied since

the seminal work from Oflazer [1994] that presented a robust method of rep-

resenting the morphological phenomena observed in the Turkish word, as

well as an efficient algorithm in order to obtain this representation.

One of the earlier works that attacked the morphological disambiguation

problem [Oflazer and Kuruöz, 1994] adopted a rule based approach, reporting

up to 98% accuracy within the (reportedly) rather limited test set. Judging

by the numbers, the initial results seemed certainly promising.

In a successor work by Oflazer and Tur [1996], the authors observed that

manually writing rules was “a serious impediment to the generality and the

improvement of the system”. So they designed and presented a scheme to

extract constraints in an unsupervised way from Turkish corpora.

As the number of rules increased both in volume and complexity, orga-

nizing them in order to prevent contradictions and issues arising from ap-

plication order became increasingly more difficult. The successor work from

Oflazer and Tür [1997] sought to fix this problem by delegating the work of

arbitration between constraints to a statistical (voting) algorithm. While this

method seems quite similar to how the modern maximum entropy approach

works, the voting weights of constraints were semi-automatically assigned by

using a separate, much simpler hand-crafted rule set, differing substantially

from the fully automated optimization techniques used by maximum entropy

schemes.

The first work that used mostly statistical methods from Hakkani-Tür

et al. [2000] used n-gram language models for disambiguation. While there

was a preprocessor that eliminated some of the “obviously” wrong parses by

applying constraints from a relatively simple hand-crafted rule set, the major

9

chunk of disambiguation work was done by the stochastic pipeline.

While this work was a huge step forward in terms of the volume of pro-

cessed data, the rich expresiveness of the hand-crafted rule sets was lost,

because the statistical approach employed in this work can only use equality

tests both on the input words and output tags. That’s why the depicted

methods suffered from serious data-sparseness problems, due to the high

number of morphological tags and surface forms, the characteristic challenge

presented by languages like Turkish, which rely on their rich productive mor-

phology mechanisms to sustain expresiveness.

With works from Yuret and Türe [2006] and Sak et al. [2007] the ex-

presiveness gap was overcome. The former work uses the Greedy Prepend

Algoritm to obtain a decision tree for every possible morphological marker,

while the latter uses the averaged perceptron algorithm, very similar to the

conditional random field algorithm in the sense that both seek to model

the data at hand using a weighted combination of simple boolean tests, or

combinations of those tests where the said weights are obtained by optimiza-

tion techniques that approximate the maximum likelihood estimator of the

training data.

Disambiguation tasks for other languages than Turkish solve problems

with very similar settings. Kudo et al. [2004] present a framework that at-

tempts to solve the morphological disambiguation problem for Japanese text

using the conditional random field at its heart. The resulting implementation

was kindly made open-source by the original authors of which the software

written to conduct the work presented in this thesis is a derivative1.

The conditional random field framework has also been reported to give

promising results for similar tasks in to other languages. These include part-

1Accessible at http://crfpp.sf.net

10

http://crfpp.sf.net

of-speech tagging [Lafferty et al., 2001], shallow parsing [Sha and Pereira,

2003] and named entity recognition [Sarawagi and Cohen, 2004].

11

Chapter 3

The Conditional Random Field

Framework

In this Chapter, we present an overview of the conditional random field

framework.1

For the rest of this document, The following conventions will be used

unless otherwise noted.

• Let n(x) be the cardinality function for input set or vector x.

• Let M = {m1, . . . } the set of morphological markers. For Turkish, this

set is assumed to be infinite, in general.

• Let W = {w1, . . .} the set of Turkish words. This set is assumed to be

infinite.

• Let T = {t1, . . . } the set of tags2. T =
⋃

w Tw where Tw is the set

of possible tags for word w. This set is assumed to be infinite. It is

1We assume familiarity with basic concepts of Hidden Markov Models.
2Sequences of morphological markers, reduced by the ambiguity tree algorithm

12

also assumed that tags Tw can be predetermined by the morphological

analyzer for every possible input word.

• Let c be the sentence training corpus which contains sequences of

(w, yw) pairs and sentence delimiters. We assume there are n(c) sen-

tences in c.

• Let X be a discrete random variable that emits a Turkish word, x ∈ W .

Let xk, emitted by random process Xk be a sequence of words, or the

kth sentence of a corpus c.

• Let Yi(xi) be a discrete random variable that emits a tag yi,j ∈ Txi

associated with word xi. yi,j is said to be the jth possible tag for the

ith word in the sentence. yk, emitted by random process Yk(x), is a

tag sequence for the kth sentence in a corpus c. Also, for simplicity of

the notation, we let yx denote one of the tags for word x

The set of morphological markers also include word roots. While both

marker and root groups are pre-defined, the morphological analyzer tries to

analyze words with unknown roots as well, so we can’t conclude that the set

of morphological markers is finite, nor pre-defined.

The set of tags is also infinite only because unknown word roots are

processed. However, none of its elements are enumerated in the scope of this

work. They are instead dynamically obtained from observed words. They

are word-specific and represent a marker sequence for one of the possible

analyses of a given word. If the given word is not ambiguous, it is said to

have the NoAmb tag that stands for no ambiguity.

It is observed that more than 50.000 tags exist, but only a small amount

(rarely above 10) is applicable to a given word, as other possibilities are ruled

out by the morphological analyzer.

13

. . . Yi−1 Yi Yi+1
. . .

X

Figure 3.1: The topology of the chain CRF used in this work, very similar
to traditional HMM.

We seek to compute the probabilities for every possible tag yi,j of obser-

vation xi, given its context and the training data c.

Formally, that is:

P (yi|yj<i,x, c) (3.1)

As ours is a bigram model, this reduces to:

P (yi|yi−1,x, c) (3.2)

where P is a probability distribution function that has its paramaters opti-

mized to maximize the likelihood of the training data c.

When a Markov random field is also globally conditioned on the observed

symbols, it is called a Conditional Random Field [Lafferty et al., 2001, Sutton

and Mccallum, 2006].

The conditional random field framework can model arbitrarily-shaped

graph topologies[Bakir et al., 2007]. As the morphological disambiguation

problem can be defined as a sequential classification problem, the 1-D chain

template that can be seen in Figure 3.1 is judged to be sufficient.

The conditional random field framework aims to make use of a number

14

of simple tests, in order to explain complex phenomena. The said tests are

either used alone or combined with each other, in order to obtain real-valued

functions that somehow convert the observations into numbers. In our case,

we use boolean features that return either true or false, testing whether a

given word, or a given analysis of a given word has a property defined in the

test itself.

The conditional random field framework offers no theoretical guidance on

the method of generating features. This is one of the notable strengths of the

conditional random field framework where the statistical modeler is free to

use any number and types of features the resources at hand allow. However,

we observed that models with relatively less number of features are more

successful on the same task. So, even with very liberal resources, trying to

keep the number of features at a minimum improves model performance.

Let f be a feature, and f be the vector of generated features. Every

feature is assigned a coefficient, denoted λ. The λ coefficients are stored in

a vector denoted Λ.

Features are boolean functions that have the following general signature:

f(yi, yi−1,x, i) (3.3)

The following is the probability distribution function of the conditional

random field:

P (yi|yi−1,x, Λ) =
1

ZΛ(x)
exp

(

∑

a

λafa(yi, yi−1,x, i)

)

(3.4)

15

where a ranges over all distinct feature functions, and ZΛ(x) is a normaliza-

tion constant over all candidate paths:

ZΛ(x) =
∑

y

exp

(

∑

a

λafa(y, y′,x, i)

)

(3.5)

where y ranges over all tag pairs (y, y′). When the likelihood of a label

sequence is considered, we have:

P (y|x, Λ) =

n(x)
∏

i=1

P (yi|yi−1,x, Λ) (3.6)

which is equal to:

P (y|x, Λ) =
1

ZΛ(x)
exp

n(x)
∑

i=1

∑

a

λafa(yi, yi−1,x, i)

 (3.7)

3.1 Inference

Despite subtle differences, the inference process of the conditional random

field is quite similar to the hidden markov model: A lattice is built between

candidate tags with computed transition probabilities, and Viterbi algorithm

(explained in detail in work from Rabiner [1990]) is used to determine the

most probable path.

The Viterbi Algorithm

The problem of determination of the most probable state sequence y =

{y1, . . . , ym} may be stated as follows:

16

argmax
y

P (y|x) (3.8)

Because our model is a bigram model, the equation 3.8 becomes:

argmax
y

n(x)
∏

i=1

P (yi|yi−1,x) (3.9)

Let k ≤ n(Txi−1
), j ≤ n(Txi

) be positive integers, for all word pairs. Let

(yi−1,k, yi,j) a candidate path between words xi−1 and xi. Let C(yi−1,k, yi,j)

for each candidate path be defined as follows:

C(yi−1,k, yi,j) =

n(Λ)
∑

a

λafa(yi−1,k, yi,j,x, i) (3.10)

Also let:

B(yi,j) = argmax
k

C(yi−1,k, yi,j) (3.11)

be the best cost for the given tag.

Viterbi algorithm works in the following steps:

1. For all positive integers i < n(x), j < n(Txi
), compute:

γ = B(yi−1,j)C(yi−1,k, yi,j)

for all i, store the j that results in the highest γ as the best previous

tag.

2. Choose the tag of the last word with the highest cost to be the inferred

tag for that word.

3. For every word before the last one, output the best previous tag that

17

was stored in step 1 for every tag is chosen to be the inferred tag for

the previous word.

3.2 Parameter Estimation

Parameter estimation is the process of finding the parameter vector Λ =

{λ1, . . . , λn} that maximizes the likelihood of the training data, given features

to be extracted from the training data.

In the seminal work that presented conditional random fields Lafferty

et al. [2001] present an iterative scaling algorithm. While this algorithm is

quite simple and guaranteed to converge, for rather large feature sets, it turns

out be a suboptimal method. In a successor work, Sha and Pereira [2003]

show that a quasi-newton method, namely the L-BFGS3 algorithm [Liu and

Nocedal, 1989] works faster than the iterative scaling method. L-BFGS is

a widely adopted algorithm for nonlinear optimization tasks with software

libraries available for popular computing platforms.

Training the CRF is to find the set Λ that maximizes the likelihood of

the training data.

Λ̂ = argmax
Λ
LΛ (3.12)

where:

3short for “Limited-memory Broyden-Fletcher-Goldfarb-Shanno”

18

LΛ =

n(c)
∑

k=1

log(PΛ(yk|xk)) (3.13)

=

n(c)
∑

k=1

n(xk)
∑

i=1

∑

a

λafa(yi, yi−1,xk, i) − log(ZΛ(xk))

 (3.14)

where yi is the tag to the ith word of xk. This quantity is maximized, when

its first derivative:

∂LΛ

∂λa

=

n(c)
∑

k=1

n(xk)
∑

i=1

(

fa(yi, yi−1,xk, i) − EPΛ(yk |xk) [fa]
)

(3.15)

is zero, where have:

EPΛ(y|x)[f] =
∑

y,y′

f(y, y′,x, i)PΛ(y, y′|x) (3.16)

=
∑

y,y′

f(y, y′,x, i)
αi−1,y′(x) exp(

∑

a λafa(y, y′,x, i))βi,y(x)

ZΛ(x)

(3.17)

where y, y′ iterates over all bigram combinations.

Let: ∀y ∈ T : α0,y = 1 and βn(x)+1,y = 1. We define:

19

∀i ∈ N,x ∈ c | 1 ≤ i ≤ n(x)

αi,y(x) =

n(Txi−1
)

∑

j=1

(

αi−1 exp(
∑

a

λafa(y, yi−1,j,x, i))

)

(3.18)

βi,y(x) =

n(Txi+1
)

∑

j=1

(

βi+1 exp(
∑

a

λafa(y, yi+1,j,x, i))

)

(3.19)

To avoid overfitting, the likelihood function is penalized with a L2-norm of

the Λ vector, and weighted with a predefined scalar C which makes equation

3.14 as follows:

LΛ =

n(c)
∑

k=1

n(xk)
∑

i=1

∑

a

λafa(yi, yi−1,xk, i) − log(Zxk
)

−
1

2C

∑

a

λ2
a (3.20)

and thus its first derivative:

∂LΛ

∂λa

=

n(c)
∑

k=1

n(xk)
∑

i=1

(

fa(yi, yi−1,xk, i) − EPΛ(yk|xk) [fa]
)

−
1

C
λa

The alpha values are computed during a forward pass, and the beta values

are computed during a backward pass, for each candidate tag of a given word.

Once the expectations for features are also computed using these values, the

feature expectations and current feature coefficients are passed to the L-

BFGS algorithm, along with the penalized derivative.

Once the L-BFGS algorithm has updated the feature coefficients, the

20

derivatives are re-computed. if the change is significant (> 0.01%) compared

to previous derivative values, the values are re-updated with the L-BFGS

algorithm. If this is not the case four times in a row, the training process is

terminated.

21

Chapter 4

Implementation

We will use a one-dimensional conditional random field chain as the proba-

bility distribution that will model the training data. The implementation of

the algorithm has two distinct parts: The training part and the testing part.

They operate on the same data structures, but the operations they perform

on the said data structures are completely different.

4.1 Representing Input Turkish Words

The Turkish word is the common input to both the training and the testing

parts of the algorithm. The raw surface of a Turkish word is processed by

the morphological analyzer[Oflazer, 1994, Oflazer et al., 1999], which results

in the kind of output that can be observed in Table 4.1.

As a data structure, the Turkish word can be said to have one surface

and one or more analyses. Every analysis is made of one word root and one

or more inflectional groups. We start by defining the inflectional group.

22

4.1.1 The Inflectional Group

Work on the morphological analysis of Turkish prior to 1999 was not using

inflectional groups [Oflazer, 1994]. It instead returned a chain of morpholog-

ical markers computed from the input word. During the work of designing a

Turkish treebank Oflazer et al. [1999] decided that grouping morphological

markers under inflectional groups contributed to both the expresiveness and

the tractability of the morphological analyses.

Quoting [Çetinoğlu and Oflazer, 2006]:

Inflectional groups represent the inflectional properties of seg-

ments of a complex word structure separated by derivational

boundaries. An inflectional group is typically larger than a mor-

pheme but smaller than a word (except when the word has no

derivational morphology in which case the inflectional group cor-

responds to the word).

In other words, a new inflectional group is “started” whenever a new

derivation is detected. A “derivation” is not necessarily a suffix that substan-

tially changes the semantics of a word. In fact, in cases of zero-derivations,

there may not even be an explicitly observable morpheme that makes this

derivation. The word yıllarıydı is an example of this phenomenon, whose

analyses can be seen in Table 4.1. As can be seen, the noun root yıl is in-

flected to become yılları, which is then inflected with the tense marker +Past

to become yıllarıydı1 which, by definifiton, can only inflect verbs.

It should be noted that the derivation from the noun yılları to the verb

yıllarıydı happened without any explicit notation.

1whose infinitive form can only be expressed with the help of an auxiliary verb yılları

olmak

23

yıl +Noun+A3pl+P3pl+Nom ^DB +Verb+Zero+Past+A3sg

yıl +Noun+A3pl+P3sg+Nom ^DB +Verb+Zero+Past+A3sg

yıl +Noun+A3sg+P3pl+Nom ^DB +Verb+Zero+Past+A3sg

Table 4.1: Analyses of the word yıllarıydı

Representation

Implementations of the published research on morphological disambiguation

examined so far represent the inflectional group as a regular string of char-

acters. While this approach is quite easy to implement, it is suboptimal to

store the inflectional group data inside a variable-length delimited and un-

ordered data structure. Having a fixed-size data structure that has “slots”

for morphological markers conserves both space and time when storing and

manipulating the data inside an inflectional group.

Fixing the size of the inflectional group also has a theoretical advantage:

It will be possible to create features that test individual morphological mark-

ers, without testing for impossible morphological marker combinations.

For above reasons, a fixed-size inflectional group is a desirable data struc-

ture.

But as can be seen in e.g. Tables 2.1 and 4.4, the maximum size of the

inflectional group is not obvious. In an effort to explore the possibilty of

a fixed-size data structure that can accomodate every Turkish inflectional

group, a 330-million-word corpus was scanned in order to gather a list of

morphological marker pairs that are observed in the same inflectional group.

This list of pairs can be interpreted as a list of constraints that depict which

morphological markers should be put in separate slots.

When this list of pairs is interpreted as a graph, one can obtain the op-

timal grouping of the morphological markers by choosing one of the graph

partititionings that has the least number of partitions. For the following

24

reasons, this operation was carried out semi-automatically, instead of auto-

matically:

• The graph partitioning problem is NP-complete.

• The number of partitions that fit into this definition is likely to be

greater than one.

• The resulting partitioning should linguistically make sense as well.

The automatic part of the algorithm consisted of an iterative scheme

that created new partitions for morphological markers that appear in the

same inflectional group, as the file was being scanned. The result was then

adjusted manually, heeding linguistic properties of the partitioned morpho-

logical markers. The resulting 9-partition that was deemed more appropriate

from a linguistic perspective can be seen in table 4.2. During the course of

this work, these partitions were given special names and are termed variables.

Among those variables, vTense is special, as it can appear up to three

times in an inflectional group2. Because of this fact, while not shown in

the table 4.2, there are additional variables that are termed vTense2 and

vTense3 in the implementation.

As for the vRoot variable, it is not considered to be part of the inflectional

group, but of the analysis altogether. The word roots are are assigned an

integer identifier on first occurence, contrary to being pre-defined like the

other variables.

2Kemal Oflazer, private communication.

25

Variable Morphological markers

vRoot Every possible word root.

vAgr Agreement markers:

+A1sg, +A2sg, +A3sg, +A1pl, +A2pl, +A3pl, +NullAgr

vMisc Miscellaneous markers:

+Able, +Acquire, +ActOf, +Adamantly, +AfterDoingSo, +Agt,
+Almost, +AsIf, +AsLongAs, +As, +Become, +ByDoingSo, +Card,
+Caus, +Continue, +DemonsP, +Dim, +Distrib, +EverSince,
+FitFor, +FutPart, +HastilyFeelLike, +InBetween, +Inf1,
+Inf2, +Inf3 +Inf, +JustLike, +Ly, +Ness, +NotAbleState,
+NotState, +Ord, +PCAbl, +PCAcc, +PCDat, +PCGen, +PCIns,
+PCNom, +Part, +Pass, +PastPart, +Percent, +PersP,
+QuantP, +QuesP, +Range, +Ratio, +Real, +Recip, +ReflexP,
+Related, +Repeat, +SinceDoingSo, +Since, +Start, +Stay,
+Time, +When, +While, +WithoutBeingAbleToHaveDoneSo,
+WithoutHavingDoneSo, +Without, +With, +NullMisc

vPol Polarization markers:

+Pos, +Neg, +NullPol

vPos Part-of-speech markers:

+Adj, +Adverb, +Verb, +Num, +Punc, +Conj, +Dup, +Det, +Postp,
+Interj, +Pron, +Noun, +NullPos

vPoss Possessive markers:

+P1sg, +P2sg, +P3sg, +P1pl, +P2pl, +P3pl, +Pnon, +NullPoss

vProp The proper noun marker:

+Prop, +NullProp

vTense Tense markers:

+Aor, +Cond, +Desr, +Fut, +Imp, +Narr, +Neces, +Opt,
+Past, +Pres +Prog1, +Prog2, +NullTense1, +NullTense2,
+NullTense3

vZero The Zero derivation marker:

+Zero, +NullZero

Table 4.2: Random variables and the markers they may emit.

26

1 vRoot(iç+Verb),

2 vRoot(iç+Noun),vPoss(P2sg),

3 vRoot(iç+Noun),vPoss(Pnon),

4 vRoot(için+Postp),vMisc(PCGen),

5 vRoot(için+Postp),vMisc(PCNom),

Table 4.3: Tags for the word için.

So, we conclude that the inflectional groups that form Turkish words are

made of at most 11 morphological markers. There are 129 morphological

markers emitted by the current implementation of the morphological ana-

lyzer. Every variable also said to have its own Null* value to be able to

distinguish the case of the non-existance of a marker for the given variable.

4.1.2 The Ambiguity Tree

The ambiguity tree is a way of obtaining distinguishing morphological mark-

ers of a word’s morphological analysis, compared to other analyses of the

same word. It’s a decision tree that is max1≤i≤a(ni×11) levels deep (where a

is the number of analyses for a given word and n is the number of inflectional

groups in the given analysis) which has variables as its nodes and the values

to those variables assigned to the transitions between these nodes.

In order for it to be compatible with other words, an insertion order must

be fixed before running the algorithm. While the choice of the insertion

order is arbitrary, it can be used to discover which morphological markers

have more distinguishing power compared to others.

It is constructed as follows:

1. All morphological analyses of a word are obtained using the morpho-

logical analyzer.

2. For every analysis:

27

(a) Every morphological marker is inserted to the ambiguity tree using

the fixed insertion order.

(b) The resulting tree is searched depth-first for nodes with more than

one children, and these are pushed in a stack.

(c) For every encountered leaf node, the variables in the stack are

printed as the distinguishing morpholgical markers for the given

analysis.

The ambiguity tree for the word için, and the distinguishing morpholog-

ical markers that result from this ambiguity tree can be seen in Figure 4.1

and Table 4.3 respectively.

Applicability

Initially, the ambiguity tree approach was an attempt to fix the number of

possible tags in the morphological disambiguation problem. This had the

potential to express the morphological disambiguation problem as a regular

one dimensional markov chain with known tags. This in turn had the advan-

tage of letting us use one of the existing implementations of the conditional

random field, as no known free implementation supports tagging with incom-

plete information. However, initial tests showed that the information that the

ambiguity tree algorithm was throwing away was crucial, and thus can’t just

be discarded. Also, according to the ambiguity tree algorithm, words with

no ambiguities don’t have any tags, which effectively ignores them during

the training process, another important drawback of the algorithm.

However, as mentioned before, it’s an important tool that shows the in-

fluence of the morphological markers. It was especially useful in a specific

case, where the decision about which null values to include in the model had

to be taken.

28

vRoot

vPos

iç+Noun

vPos

iç+Verb

vPos

iç in+Postp

vPoss

Noun

vPoss

Verb

vPoss

Postp

vAgr

P2sg

vAgr

Pnon

vMisc

A3sg

vMisc

A3sg

vCase

NullMisc

vZero

Nom

vNull

Nul lZero

vCase

NullMisc

vZero

Gen

vNull

Nul lZero

vAgr

NullPoss

vMisc

A2pl

vCase

NullMisc

vZero

Nul lCase

vNull

Nul lZero

vAgr

NullPoss

vMisc

NullAgr

vCase

PCGen

vCase

PCNom

vZero

Nul lCase

vZero

Nul lCase

vNull

Nul lZero

vNull

Nul lZero

Figure 4.1: Analysis tree of the word için

29

Null values are the artifacts of the fixed-size inflectional group paradigm

that had been adopted. Features that test, for example, the vTense slot to be

null don’t contribute to the quality of the model because it’s an ambiguous

information: vTense slots may be null for a number of reasons.

The distinguishing null variables are caused by the difference in the num-

ber of inflectional groups between the analyses of a word. That in turn is

caused by three factors:

1. +Zero derivations

2. Different word roots

3. Different parts-of-speech of the word root.

The minimal branching scheme that avoids null branches was found to

be the following:

vRoot+vPos3, vPos, vPoss, vAgr, vMisc, vCase, vZero

The morphological markers are inserted starting from the last inflectional

group, and going left.

The variables that are left out, namely vTense{1,2,3}, vProp and vPol

are seen to have no distinctive power for morphological disambiguation, and

vCase has distinctive power in rare cases; e.g. only for words like öte, yukarı

etc. which can be used as a noun in both nominative or dative case in their

given forms. Additionally, the only the null marker to have distinctive power

was found to be +NullZero.

Using this scheme, we discovered that, in our training data, which is a

837,293-word corpus, where 410,124 (approx. 49%) tokens are ambiguous,

there are 53,332 distinct word classes, of which 17,785 (approx. 33%) distinct

cases are seen as correct answers.
3Part-of-speech of the first inflectional group

30

4.2 Morphological Feature Templates

As the usage of the distinguishing morphological markers as tags had catas-

trophic results, a more fine-grained approach to testing was adopted. That’s

why functions that can test individual morphological markers (and combina-

tions of those morphological markers) are implemented. They work on the

analysis represented by the tag produced by the ambiguity tree algorithm,

not the tag itself.

Two main types of feature templates exist: Simple and complex. Simple

features are individual tests on the training data, whereas complex features

are combinations of those tests.

The following are simple test templates:

S: Surface test

The surface test returns 1 when the given surface in the feature is equal to

the surface of the given word. It has no distinctive power by itself, as it’s

true for every possible tag of a given word – It’s just a way of specializing

produced features to n-grams, which gives way to modeling the behaviour of

n-grams separately, in hopes of obtaining more specific but successful models.

It should be noted that, as this feature template is independent of the

tags, it can be used to incorporate information from any part of the sentence.

SC: Case test

The case test returns 1 when the given surface’s given initial number of

letters is uppercase or lowercase, depending on the given value of the feature.

Same comments about the distinction power of the Surface feature template

(above) apply to this feature as well.

31

It should be noted that, similarly to the surface test, this feature template

can be used to incorporate information from any part of the sentence.

This test can have a custom uppercase/lowercase parameter and initial

number of letters.

XU: eXtended Unigram test

The extended unigram test returns 1 when the given variable in a given

inflectional group has a given morphological feature as value when tested

against a given analysis of a given word.

This test can be customized to include a certain range of inflectional

groups, and / or to include or exclude certain list of variables.

FreqU: Unigram Frequency test

The extended bigram test returns 1 when the given variable in a given in-

flectional group has the given morphological feature as value more frequently

than another given morphological feature as value in the training data, when

tested against a given analysis of the current word, and 0 otherwise or there’s

no such inflectional group. It’s a slower test because it has to look up fre-

quency ranks for all other values in all other analyses of a given word.

This test can be customized to include a certain range of inflectional

groups, and / or to include or exclude certain list of variables.

XB: eXtended Bigram test

The extended bigram test returns 1 when the given variable in a given inflec-

tional group has a given morphological feature as value when tested against

a given analysis of the current word and when the given variable in a given

32

3 has a given morphological feature as value when tested against a given

analysis of the previous word, and 0 otherwise.

This test can be customized to include a certain range of inflectional

groups, and / or to include or exclude certain list of variables for both sides

of the edge.

FreqB: Bigram Frequency test

The extended bigram test returns 1 when: the given variable in a given

inflectional group has a given morphological feature as value when tested

against a given analysis of the current word and when the given variable in

a given inflectional group has a given morphological feature as value when

tested against a given analysis of the previous word, more frequently than

the given morphological markers for the same variable pair, when tested

against the current analysis of the current word, the current analysis of the

previous word, and other every other analysis combination of the current and

the previous word.

Obviously, this is the slowest test, as it makes a test against every possible

analysis pair. It is not feasible to use this feature without implementing

some caching mechanism, which in turn is observed to have a huge penalty in

memory usage. So, unless a more elaborate caching mechanism that properly

balances space and time costs is implemented, this template should not be

used in the conducted tests.

This test can be customized to include a certain range of inflectional

groups, and / or to include or exclude certain list of variables for both sides

of the edge.

33

AndB: Bigram And Operator

The bigram and operator is a tool for combining feature templates. It com-

bines one feature group per template, according to the combination mode

given in definition-time. Three such grouping modes exist:

Per Analysis: It combines features for every analysis pair. This mode gen-

erates the least number of AndB features, which are in turn more com-

plex and specific.

Per IG: It combines features for inflectional group pairs in every analysis.

Per Variable: It combines features for variable pairs in inflectional groups

in every analysis. In this mode, exactly one feature is combined for

every feature template, but the number of individual AndB: features is

highest.

This test is formed of other tests, which are combined using three different

slots:

1. Left slot operates on the previous word and accepts only unigram

tests.

2. Right slot operates on the current word and accepts only unigram

tests.

3. Middle slot operates on both the current word and the previous word,

and accepts only bigram tests.

The unigram and bigram tests are separated for performance reasons.

34

4.3 A Sample Run

Consider the following sentence:

Bence geldiğini duymasınlar. (4.1)

The inference lattice can be seen in Figure 4.2.

bence
geldiğini

duymasınlar

4

3
5

6

2

1

vRoot(NoAmb),

vPoss(P2sg),
vRoot(ben+Noun),

vRoot(ben+Pron),
vPoss(P3sg),

Figure 4.2: The disambiguation lattice for sentence 4.1

We use feature template from Test 9 as an example, where we generate

bigram tests including every variable, and later grouping them as separate

features by inflectional group pair.

Root Inflectional groups

bence

ben +Noun+A3sg+Pnon+Equ

ben +Pron+Pers+A1sg+Pnon+Equ

geldiğini

gel +Verb+Pos^DB+Noun+PastPart+A3sg+P2sg+Acc

gel +Verb+Pos^DB+Noun+PastPart+A3sg+P3sg+Acc

duymasınlar

duy +Verb+Neg+Imp+A3pl

Table 4.4: List of possible analyses of the words of the sentence 4.1.

Once generated, the features are looked up in the database, in order to

retrieve their λ coefficients. Unseen features are ignored, as their coefficients

are assumed to be 0. These coefficients are later summed to obtain the weight

for each path. From now on, the process is the same as any other statistical

model that does inference on a one dimensional lattice: The Viterbi algorithm

35

Features that return true for the given path

Path Left word Right word
No IG Vars IG Vars

1 -1 ben+Noun+Pnon+A3sg+Equ 0 +Verb

-1 ben+Noun+Pnon+A3sg+Equ 1 gel+Noun+A3sg+Acc+P2sg

+PastPart

2 -1 ben+Noun+Pnon+A3sg+Equ 0 +Verb

-1 ben+Noun+Pnon+A3sg+Equ 1 gel+Noun+A3sg+Acc+P3sg

+PastPart

3 -1 ben+Pnon+A1sg+Pron+Equ

+Pers

0 +Verb

-1 ben+Pnon+A1sg+Pron+Equ

+Pers

1 gel+Noun+A3sg+Acc+P2sg

+PastPart

4 -1 ben+Pnon+A1sg+Pron+Equ

+Pers

0 +Verb

-1 ben+Pnon+A1sg+Pron+Equ

+Pers

1 gel+Noun+A3sg+Acc+P3sg

+PastPart

5 -2 +Verb 0 duy+Verb+Neg+Imp+A3pl

-1 gel+Noun+A3sg+Acc+P3sg

+PastPart

0 duy+Verb+Neg+Imp+A3pl

6 -2 +Verb 0 duy+Verb+Neg+Imp+A3pl

-1 gel+Noun+A3sg+Acc+P3sg

+PastPart

0 duy+Verb+Neg+Imp+A3pl

Table 4.5: The generated features for lattice in Figure 4.2

36

is used to combine these weights with their neighbors, and the most likely

path is printed to the output stream.

4.4 Factors that Influence Resource Usage

The two distinct parts of the conditional random field implementation have

different resource requirement characteristics.

4.4.1 The Training Part

The memory usage of the training algorithm depends in large part on the

number of features that are generated during the preprocessing stage of the

algorithm, where the training data is loaded into memory. The training data

and the features themselves are stored in a key/value store, which may or

may not store the bulk of the training data in non-volatile memory4.

The speed of the training process does not depend on the number of

features in total, but on the number of features per lattice path. It is observed

that, as the number of features per path increase, both time spent per path

and the number of iterations required to optimize a model increase. So,

templates that group less number of tests per feature are observed to be

more costly to train.

As computing the gradient is about computing a vector of sums, this

computation can be effectively divided to multiple threads. However, once

the gradient is computed, the L-BFGS optimization runs in a single thread,

as the one dimensional chain implementation used in this project is inherently

atomic. For this reason, increasing the number of threads won’t result in the

4Current state of our implementation stores everthing in volatile memory, as the speed
of execution was of paramount importance when doing numerous training sessions in order
to evaluate various feature template schemes.

37

desired reduction in the execution time, unless the model is big enough to

be divided to multiple threads.

4.4.2 The Testing Part

The memory usage and the speed of the testing process depend on the number

of paths in the testing process, as well as the number of features per path.

It should be noted that a scheme that uses one thread per sentence would

extract most out of today’s popular multi-core architectures.

4.5 Results

The flexibility of the conditional random field framework is also one of the

challenges of working with it. As one can’t use every possible test on training

data, some sort of feature selection method prior to training must be adopted.

The reported results are summaries of 10 tests that are random excerpts

of the training data, shuffled in the sentence level. In each set, the training

data contains approximately 800.000 words and the testing data contains

approximately 35.000 words.

No Tests

As a comparison basis, a tagger that emits random tags (among the possible

ones) is implemented and run 10 times. It averages on approximately 70%

accuracy.

38

No Template Average Min Max

1 All IGs, all variables, grouped by Analysis. 93.21% 93.03% 93.59%
2 All IGs, all variables except vProp,vPol

and vTense{1, 2, 3} grouped by analysis.
93.34% 93.17% 93.7%

3 All IGs, all variables, grouped by IG. 93.58% 93.36% 94.01%
4 All IGs, all variables except vProp,vPol

and vTense{1, 2, 3} grouped by IG.
93.55% 93.26% 93.96%

5 All IGs, all variables, non-grouped. 92.63% 92.39% 93.01%
6 All IGs, all variables except vProp,vPol

and vTense{1, 2, 3} non-grouped.
92.31% 91.88% 92.62%

Table 4.6: Unigram test summaries on 10 random data sets.

4.5.1 Unigram Tests

It is very easy to obtain above-90% scores using only unigram tests. See the

results in Table 4.6.

Judging by the numbers, we can conclude that the variables omitted

by the ambiguity tree algorithm don’t have significant influence on model

performance. Small deviations we observe in the accuracy scores are due to

the randomness of training and test data sets5.

4.5.2 Bigram Tests

We observed that bigram tests tend to be more sensitive to overfitting.

Grouping tests in smaller groups is observed to increase accuracy, as can

be seen from the increasing trend in Tests 8, 9 and 12, in Table 4.7.

4.5.3 Other Combinations

Combining various high-scoring tests increases the overall accuracy of the

model. Apparently, the limitations of the bigram model does not allow us

5Using other sets of training/testing data pairs, we’ve observed as small deviations,
sometimes in other directions.

39

No Template Average Min Max

7 Only vRoot and vPos pairs from the first
IG, from both sides, grouped by analysis
pair.

82.05% 77.85% 87.21%

8 All variables from all IGs from both sides,
grouped by analysis pair.

85.83% 84.39% 86.44%

9 All variables from all IGs from both sides,
grouped by IG pair.

89.09% 88.36% 89.43%

10 All variables from last IG from left and all
IGs from right side grouped by IG pair.

87.79% 86.72% 88.39%

11 All variables except vRoot from all IGs
from both sides, grouped by IG pair.

92.93% 92.63% 93.6%

12 All variables from all IGs from both sides,
not grouped.

94.83% 94.67% 94.98%

13 All variables from all IGs from right side
and last ig from left side, not grouped.

94.78% 94.61% 94.93%

14 All variables except vRoot from all IGs
from both sides, not grouped.

92.41% 92.11% 93.28%

15 All variables except vRoot from all igs
from the right side and last ig from left
side, not grouped.

92.24% 91.95% 93.17%

Table 4.7: Bigram test summaries on 10 random data sets.

40

No Template Average Min Max

16 Combination of templates from Tests 2, 8
and 11.

96.03% 95.74% 96.43%

17 Combination of templates from Tests 4, 7
and 14.

95.78% 95.62% 96.14%

Table 4.8: Miscellaneous test summaries on 10 random data sets.

to go above 96% scores. Two highest scores from numerous tests we did can

be found in Table 4.8. As can be seen, the scores from Tests 166 and 17 are

very close.

4.5.4 Error Analysis

An analysis of the errorneous parses from the highest scoring Test 16 is

presented in this section.

We observe that:

• 46.84% of errors are due to the vRoot variable being incorrectly tagged.

• 29.32% of errors are due to the vPos variable being incorrectly tagged.

• 20.78% of errors are due to the vPoss variable being incorrectly tagged.

• Remaining 3.06% of errors are due to vAgr, vMisc, vZero and vCase

being incorrectly tagged.

We see that it is much harder to disambiguate the vRoot variable. The

ideal method to attack this problem is to perform deeper semantic analysis

within a wider window of context. In cases where this is not an option, two

approaches may be adopted:

1. Using a separate language model to disambiguate just the vRoot vari-

able,

6Test 16 combines the test numbers 4,17 and 3 from Sak et al. [2007].

41

2. Putting the vRoot variable in a lower rank in the ambiguity tree hier-

archy, re-generate distinguishing morphemes, and design feature tem-

plates that try to be more independent of the root morpheme.

Remaining most significant confusions are between adjectives and nouns,

where vPos variable was tagged +Adj instead of +Noun accounted for 8.46%

of errors and the reverse case accounted for 6.77% of errors, 15.23% in total.

Most of the following ranks are for vPoss mistaggings, that account for

18.18% of the errors in total.

Both the +Adj vs. +Noun and the vPoss mistagging cases are due to the

weaknesses of the bigram model: Adjectives may naturally be farther than

one word to the word they modify. However, this is a more serious problem

for possessive markers, which are typically more distant to the words they

are in relation with, especially as the sentence gets longer.

42

Chapter 5

Conclusions and Future Work

In this thesis, we have suggested a slot-based representation of the inflectional

group. Basing on this representation, we’ve suggested a scheme for building

feature-based language models using morphological information from candi-

date analyses of a given surface form in a fine-grained manner. We later used

Conditional Random Fields as a demonstration framework for this scheme,

where we observed accuracy scores to be in line with the state of the art.

Feature research may try to address the following weak points of the

disambiguator presented in this thesis:

• The template generation framework has room for improvement. In an

effort to further simplify the language model, adopting more sophisti-

cated feature selection methods that have either linguistic or mathe-

matical foundations is a promising prospect. A decrease in the number

of features of a model is desirable because it is observed to increase the

accuracy and the robustness of the language model, while decreasing

its resource requirements.

• The bigram model is unable to express higher order relations between

43

words. Adopting a model that can process information from a wider

window of words, like a Semi-Markov Conditional Random Field [Sarawagi

and Cohen, 2004] would certainly contribute to the overall performance

of the disambiguation task.

• Relaxing the assumption of sentences being independent of each other

is also a desirable property – sometimes the information in the sentence

alone is not enough. For example, it is not possible to disambiguate

the possessive marker in the word geldiğini in Sentence 4.1 without

taking inter-sentential relations into account. For this reason, exploring

possible uses of inter-sentential relations is also a promising prospect.

• The L2-Regularizer is too fair. Exploring ways to boost the weights to

some features is a promising prospect.

When adopting a framework that can tractably express higher order re-

lations between words, the problem of feature explosion will become more

serious. Projects that will adopt higher order models will better make use of

aggressive feature reduction techniques, compared to bigram models.

44

Bibliography

Gükhan H. Bakir, Thomas Hofmann, Bernhard Schölkopf, Alexander J.

Smola, Ben Taskar, and S. V. N. Vishwanathan. Predicting Structured Data

(Neural Information Processing). The MIT Press, 2007. ISBN 0262026171.

Özlem Çetinoğlu and Kemal Oflazer. Morphology-syntax interface for turk-

ish lfg. In Proceedings of the 21st International Conference on Computa-

tional Linguistics and 44th Annual Meeting of the Association for Compu-

tational Linguistics, pages 153–160, Sydney, Australia, July 2006. Associ-

ation for Computational Linguistics. doi: 10.3115/1220175.1220195. URL

http://www.aclweb.org/anthology/P06-1020.

Dilek Z. Hakkani-Tür, Kemal Oflazer, and Gökhan Tür. Statistical mor-

phological disambiguation for agglutinative languages. In Proceedings of

the 18th conference on Computational linguistics, pages 285–291, Morris-

town, NJ, USA, 2000. Association for Computational Linguistics. ISBN

1-55860-717-X. doi: http://dx.doi.org/10.3115/990820.990862.

Taku Kudo, Kaoru Yamamoto, and Yuji Matsumoto. Applying conditional

random fields to japanese morphological analysis. In Dekang Lin and

Dekai Wu, editors, Proceedings of EMNLP 2004, pages 230–237, Barcelona,

Spain, July 2004. Association for Computational Linguistics.

45

http://www.aclweb.org/anthology/P06-1020

John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Con-

ditional random fields: Probabilistic models for segmenting and labeling

sequence data. In Carla E. Brodley and Andrea Pohoreckyj Danyluk, edi-

tors, ICML, pages 282–289. Morgan Kaufmann, 2001. ISBN 1-55860-778-1.

D. C. Liu and J. Nocedal. On the limited memory bfgs method for large scale

optimization. Math. Program., 45(3):503–528, 1989. ISSN 0025-5610. doi:

http://dx.doi.org/10.1007/BF01589116.

K. Oflazer. Two-level description of turkish morphology, 1994. URL

citeseer.ist.psu.edu/oflazer93twolevel.html.

Kemal Oflazer and Ilker Kuruöz. Tagging and morphological disambiguation

of turkish text. In Proceedings of the Fourth ACL Conference on Applied

Natural Language Processing (13–15 October 1994, Stuttgart), 1994. URL

citeseer.ist.psu.edu/oflazer94tagging.html.

Kemal Oflazer and Gökhan Tür. Morphological disambiguation by voting

constraints. In Proceedings of the eighth conference on European chapter of

the Association for Computational Linguistics, pages 222–229, Morristown,

NJ, USA, 1997. Association for Computational Linguistics. doi: http:

//dx.doi.org/10.3115/979617.979646.

Kemal Oflazer and Gokhan Tur. Combining hand-crafted rules and unsu-

pervised learning in constraint-based morphological disambiguation. In

Eric Brill and Kenneth Church, editors, Proceedings of the Conference on

Empirical Methods in Natural Language Processing, pages 69–81. Associ-

ation for Computational Linguistics, Somerset, New Jersey, 1996. URL

citeseer.ist.psu.edu/article/oflazer96combining.html.

46

citeseer.ist.psu.edu/oflazer93twolevel.html
citeseer.ist.psu.edu/oflazer94tagging.html
citeseer.ist.psu.edu/article/oflazer96combining.html

Kemal Oflazer, Dilek Z. Hakkani-Tür, and Gökhan Tür. Design for

a turkish treebank. In Proceedings of the Workshop on Linguisti-

cally Interpreted Corpora, EACL 99, Bergen, Norway, 1999. URL

/ref/oflazer/ttbank.pdf.

Lawrence R. Rabiner. A tutorial on hidden markov models and selected

applications in speech recognition. Readings in speech recognition, pages

267–296, 1990.

Haşim Sak, Tunga Güngör, and Murat Saraçlar. Morphological dis-

ambiguation of Turkish text with perceptron algorithm. In CI-

CLing 2007, volume LNCS 4394, pages 107–118, 2007. URL

http://www.cmpe.boun.edu.tr/~hasim/papers/CICLing07.pdf.

Sunita Sarawagi and William W. Cohen. Semi-markov conditional random

fields for information extraction. In In Advances in Neural Information

Processing Systems 17, pages 1185–1192, 2004.

Fei Sha and Fernando Pereira. Shallow parsing with conditional random

fields. In Proceedings of HLT-NAACL 2003, pages 213–220. Association

for Computational Linguistics, 2003. URL PDF/shallow.pdf.

Charles Sutton and Andrew Mccallum. An introduction to conditional

random fields for relational learning. In Lise Getoor and Ben Taskar, edi-

tors, Introduction to Statistical Relational Learning. MIT Press, 2006. URL

http://www.cs.umass.edu/~casutton/publications/crf-tutorial.pdf.

Douglas L. Vail, John D. Lafferty, and Manuela M. Veloso. Fea-

ture selection in conditional random fields for activity recogni-

tion. In IROS Vail et al. [2007], pages 3379–3384. URL

http://dblp.uni-trier.de/db/conf/iros/iros2007.html#VailLV07.

47

/ref/oflazer/ttbank.pdf
http://www.cmpe.boun.edu.tr/~hasim/papers/CICLing07.pdf
PDF/shallow.pdf
http://www.cs.umass.edu/~casutton/publications/crf-tutorial.pdf
http://dblp.uni-trier.de/db/conf/iros/iros2007.html#VailLV07

Deniz Yuret and Ferhan Türe. Learning morphological disambiguation rules

for turkish. In Proceedings of the main conference on Human Language

Technology Conference of the North American Chapter of the Associa-

tion of Computational Linguistics, pages 328–334, Morristown, NJ, USA,

2006. Association for Computational Linguistics. doi: http://dx.doi.org/

10.3115/1220835.1220877.

48

	Introduction
	Motivation
	Outline

	Morphological Disambiguation
	Preliminaries
	Previous Work

	The Conditional Random Field Framework
	Inference
	Parameter Estimation

	Implementation
	Representing Input Turkish Words
	The Inflectional Group
	The Ambiguity Tree

	Morphological Feature Templates
	A Sample Run
	Factors that Influence Resource Usage
	The Training Part
	The Testing Part

	Results
	Unigram Tests
	Bigram Tests
	Other Combinations
	Error Analysis

	Conclusions and Future Work

