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Abstract

This paper studies repeated games with pure strategies and stochastic discounting
under perfect information. We consider infinite repetitions of any finite normal form
game possessing at least one pure Nash action profile. The period interaction realizes
a shock in each period, and the cumulative shocks while not affecting period returns,
determine the probability of the continuation of the game. We require cumulative
shocks to satisfy the following: (1) Markov property; (2) to have a non-negative (across
time) covariance matrix; (3) to have bounded increments (across time) and possess a
denumerable state space with a rich ergodic subset; (4) there are states of the stochastic
process with the resulting stochastic discount factor arbitrarily close to 0, and such
states can be reached with positive (yet possibly arbitrarily small) probability in the
long run. In our study, a player’s discount factor is a mapping from the state space to
(0, 1) satisfying the martingale property.

In this setting, we, not only establish the (subgame perfect) folk theorem, but also
prove the main result of this study: In any equilibrium path, the occurrence of any
finite number of consecutive repetitions of the period Nash action profile, must almost
surely happen within a finite time window. That is, any equilibrium strategy almost
surely contains arbitrary long realizations of consecutive period Nash action profiles.
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1 Introduction

The folk theorems of Aumann and Shapley (1994) and Fudenberg and Maskin (1986) estab-

lish that payoffs which can be approximated in equilibrium with patient players are equal

the set of individually rational ones. The main reason for this observation is players’ ability

to coordinate their actions using past behavior. In turn, this vast multiplicity of equilibrium

payoffs, considerably weakens the predictive power of game theoretic analysis. Moreover, the

consideration of limited memory and bounded rationality, lack of perfect observability of the

other players’ behavior and the past, and uncertainty of future payoffs do not change this

conclusion, documented by Kalai and Stanford (1988), Sabourian (1998), Barlo, Carmona,

and Sabourian (2009), Barlo, Carmona, and Sabourian (2007); Fudenberg, Levine, and

Maskin (1994), Hörner and Olszewski (2006), Mailath and Olszewski (2008); Dutta (1995),

Fudenberg and Yamamato (2010), and Hörner, Sugaya, Takahashi, and Vieille (2010). An

important aspect of all these findings is the use of constant discounting. The accepted in-

terpretation of the use of discounting in repeated games, offered by Rubinstein (1982) and

Osborne and Rubinstein (1994), is that the discount factor determines a player’s probability

of surviving into the next period. Thus, constant discounting implies that this probability

is independent of the history of the game, in particular, invariant.

On the other hand, keeping the same interpretation, but allowing for the discount factor

to depend on the history of the game and/or vary across time, is not extensively analyzed

in the literature on repeated games. Indeed, to our knowledge, the only relevant work in the

study of repeated games is Baye and Jansen (1996) which considers stochastic discounting

with period discounting shocks independent from the history of the game. Related work

concerning stochastic interest rates can be found in the theory of finance, see Ross (1976),

Harrison and Kreps (1979), and Hansen and Richard (1987).

This paper studies repeated games with pure strategies and common stochastic discount-
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ing under perfect information. We consider infinite repetitions of any finite normal form game

possessing at least one pure Nash action profile. The period interaction realizes a shock in

each period, and the cumulative shocks while not affecting period returns, determine the

probability of the continuation of the game. We require cumulative shocks to satisfy the

following: (1) Markov property; (2) to have a non-negative (across time) covariance matrix;

(3) to have bounded increments (across time) and possess a denumerable state space with a

rich ergodic subset; (4) there are states of the stochastic process with the resulting stochastic

discount factor arbitrarily close to 0, and such states can be reached with positive (yet pos-

sibly arbitrarily small) probability in the long run. In our study, a player’s discount factor

is a monotone mapping from the state space to (0, 1) satisfying the martingale property.

In this setting, we, not only establish the (subgame perfect) folk theorem, but also prove

the main result of this study: Under any subgame perfect equilibrium strategy, the occurrence

of any finite number of consecutive repetitions of the period Nash action profile, must almost

surely happen within a finite time window. That is, any equilibrium strategy almost surely

contains arbitrary long realizations of consecutive period Nash action profiles. In other

words, every equilibrium outcome path almost surely involves a stage, i.e. the stochastic

process governing the one–shot discount factor possesses a stopping time, after which long

consecutive repetitions of the period Nash action profile must be observed.

Considering the repeated prisoners’ dilemma with pure strategies and stochastic dis-

counting, our results display that: (1) the subgame perfect folk theorem holds; and, (2) in

any subgame perfect equilibrium strategy for any natural number K, the occurrence of K

consecutive defection action profiles must happen almost surely within a finite time period.

An important implication of our main result concerns social contracts and institutions.

It is well known that in the study of repeated games with patient players social contracts and

institutions, in general, do not create additional equilibrium opportunities to players even

under considerations of limited memory and bounded rationality, lack of perfect observability
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of the other players’ behavior and the past, and uncertainty of future payoffs. Our main

result, on the other hand, implies that no matter what the initial equilibrium arrangement

is, almost surely there will be a period after which the contributions of social contracts and

institutions may be positive.

The fundamental reason of our main result is captured by a significant phrase to be found

on page 101 of Willams (1991): “Whatever always stands a reasonable chance of happening,

will almost surely happen – sooner rather than later.” Indeed, due to the restrictions on

the stochastic processes we prove that for any ε > 0, the one–shot discount factor must

almost surely fall below ε in a finite time period. This result still holds even when the

additional requirement of mean-reversion (in the limit) of the one–shot discount rates is

employed. Then, given any natural number K, the restriction of bounded increments enable

us to identify the level of ε (via the use of K) so that: In any equilibrium path, the one–shot

discount factors cannot exceed a certain threshold even when K + 1 consecutive “good”

shocks are realized. Hence, the occurrence of K consecutive repetitions of the period Nash

action profile, must almost surely happen within a finite time window under any subgame

perfect strategy.

In order to see why the subgame perfect folk theorem holds, first, notice that due to re-

stricting attention to perfect information and stochastic processes with the Markov property,

given any history of shocks, players evaluate future payoffs with their expected discount fac-

tors and the conclusions of Abreu (1988) and Sugaya (2010) apply. 1 Moreover, we show that

the following observation holds regarding players’ expectations for future discount factors:

In any period t with any given history of shocks up to that period, each player evaluates

future returns at least as much as a player using a constant discount factor obtained from

the same shocks. That is, each player’s expectation of the discount factor from period t into

1Given any t and any history of shocks up to period t, the set of subgame perfect continuation payoffs is
compact with players’ expected discount factors obtained from these shocks.
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period τ , τ > t, is not less than the discount factor from t into t + 1 raised to the power

of τ − (t + 1). Hence, one may approximate a given strictly individually rational payoff

vector by constructing a simple strategy profile (supporting that payoff vector via period–0

expectations) involving optimal penal codes to be identified for any given history of shocks.

The literature on stochastic discounting in repeated games is surprisingly not very rich.

A significant contribution in that field is Baye and Jansen (1996). This study considers

a form of stochastic discounting with no stringent restrictions on the values that one–shot

discount factor can take, and, the distribution of one–shot discount factors may depend on

the time index. However, such a distribution in a particular period is independent from

the past distributions. Moreover, they identify two significant cases: The first, when the

one–shot discount factor is realized before the actions in the stage game are undertaken; the

second, when the actions need to be chosen before the one–shot discount factor is realized.

They prove that the folk theorem holds with in the latter case. They also establish that in

the first case, “a full folk theorem is unobtainable... since average payoffs on the efficiency

frontier are unobtainable as Nash equilibrium super–game payoffs”.

Our paper deals with history dependent stochastic discounting, and the situation when

the actions need to be chosen before the one–shot discount factor is realized. That is why, the

results regarding the folk theorem presented in Baye and Jansen (1996), is not in contrast

with ours. It also needs to be emphasized that, while their restrictions on the one–shot

stochastic discount rate are not as strong as ours comparing these distributions across time

periods, ours involve the critical aspect of history dependence. Another important point we

wish to remind the reader of, is that the main message of this study is rather not the folk

theorem.

There is a number of notable contributions in the context of stochastic games. Indeed,

recent studies by Fudenberg and Yamamato (2010) and Hörner, Sugaya, Takahashi, and

Vieille (2010) generalize the folk theorem of Dutta (1995) for irreducible stochastic games
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with the requirement of a finite state space. Our setup can be expressed as an irreducible

stochastic game where the each players’ discounting is constant, yet their payoffs are all

obtained from a (stochastic) scalar, and the actions chosen have no bearing on the future

payoffs. Indeed, ours is a particular irreducible stochastic game with a denumerable state

spaces, hence these folk theorems do not apply.

The organization of the paper is as follows: The next section will present the basic model,

notation and definitions, some preliminary yet important results. In section 3 we present the

main Theorem of this paper, and section 4 contains the folk theorem. Finally, in section 5,

we will present our work solving the repeated prisoners’ dilemma with stochastic discounting.

2 Notations and Definitions

Let G = (N, (Ai, ui)i∈N) be a normal form game with |N |, |Ai| ∈ N for all i ∈ N ; and i’s

payoff function denoted by ui : A → R where A =
∏

i∈N Ai and A−i =
∏

j 6=iAi. We let

Σi = ∆(Ai) where ∆ is the simplex and Σ =
∏

i∈N Σi and Σ−i =
∏

j 6=i Σi. ui : Σ → R

denotes the usual mixed strategy extension of ui. For any i ∈ N denote respectively the

minmax payoff and a minmax profile for player i by vi = minσ−i∈Σ−i
maxσi∈Σi

ui(σi, σ−i) and

mi ∈ arg minσ−i∈Σ−i
maxσi∈Σi

ui(σi, σ−i).

Let U = {u ∈ co (u(A)) : ui ≥ vi for all i ∈ N} denote the set of individually rational

payoffs and U0 = {u ∈ co(u(A) : ui > vi for all i ∈ N} denote the set of strictly individually

rational payoffs. The game G is full-dimensional if the interior of U in Rn is nonempty.

For what follows, we assume that G has a pure strategy Nash equilibrium:

Assumption 1 There exists a∗ ∈ A with ui(a
∗) ≥ ui(ai, a

∗
−i) for all i ∈ N .

The supergame of G consists of an infinite sequence of repetitions of G taking place in

periods t = 0, 1, 2, 3, . . . . Let N0 = N ∪ {0}.
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In every period t ∈ N0, the probability of the game continuing into the next period is

determined by a random variable Xt. The following Assumption needed, allows for a wide

class of random variables:

Assumption 2 For all t ∈ N0 random variable Xt has a countable non-empty and non-

trivial support in R which is bounded from at least one side, and its expectation exists.

Moreover, X0 = d ∈ R, and Xt
d
= Xτ for all t, τ ∈ N.

Let X
d
= Xt for all t ∈ N, and Xt ∈ R denote a particular realization of X at time t. The

aggregation of previous shocks will be done as follows:

Assumption 3 {Yt}t∈N is a stochastic process satisfying the following:

1. the Markov property,

2. its transition is governed monotonically by X in a bounded fashion as follows: This

transition is strictly increasing (strictly decreasing) whenever the support of X is bounded

from below (above); and is either strictly increasing or strictly decreasing if the support

of X is bounded.

3. it has a non-negative covariance matrix across time, whose entries strictly decrease as

the relevant time differences strictly increase.

4. given the state space, S, of {Yt}t∈N, the set of ergodic states, denoted by E, is dense

in S.

Without loss of generality assume that the support of X is bounded above. Then, As-

sumptions 2 and 3 imply that (1) Y0 is deterministic, and in particular Y0 = ν̄(d), ν̄ : R → R

strictly decreasing; and due to the Markov property (2) Yt+1 = ν (Yt,X) where ν : R2 → R

is strictly decreasing and measurable in the σ-algebra where {Yt}t∈N is defined, and bounded

from above; and (3) covariance of Yt and Yτ , τ > t, is greater or equal to 0, and is strictly
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decreasing as τ − t strictly increases; and (4) the set of aperiodic and non-transient states

of {Yt}t∈N must be dense in the state space. Thus, by restricting attention to stochastic

processes with the Markov property, this assumption rules out some interesting situations

such as the following: Given t, let Yt =
∑t

k=0 α
t−kX, α ∈ (0, 1), a formulation in which the

more recent shocks are more important then those that occurred earlier.

Given a stochastic process {Yt}t∈N, let {Ft}t∈N0
denote its natural filtration (i.e. se-

quence of growing σ-algebras); and for any given t ∈ N0, Ft is commonly interpreted as the

information in period t.

Given t, we let a particular realization of the stochastic process {Yt}t∈N be denoted by

Yt ∈ R.

The supergame is defined for a given X0 = d ∈ R, and is denoted by G(d). 2 For

k ≥ 1, a k−stage history is a k-length sequence hk = ((a0, X1), . . . , (ak−1, Xk)), where, for

all 0 ≤ t ≤ k − 1, at ∈ A; and for all 1 ≤ t ≤ k, Xk is realization of X at time k; the space

of all k-length histories is Hk, i.e., Hk = (A× R)k. We use e for the unique 0–stage history

— it is a 0–length history that represents the beginning of the supergame. The set of all

histories is defined by H =
⋃∞

n=0Hn. For every h ∈ H we let `(h) denote the length of h.

For t ≥ 2, we let X t = (X1, . . . , Xt) denote the history of shocks up to and including period

t.

We assume that players have complete information. That is, in period t > 0, knowing

the history up to period t, given by ht, the players make simultaneous moves denoted by

at,i ∈ Ai. The players’ choices in the unique 0–length history e are in A as well. Notice that

in our setting, given t, a player not only observes all the previous action profiles, but also all

the shocks including the ones realized in period t. In other words, the period–t shocks are

commonly observed before making a choice in period t.

2Notice that our formulation is similar to the convention of defining repeated games for a constant and
common discount factor, often denoted by G(δ), where δ ∈ (0, 1) stands for the discount factor.
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For all i ∈ N , a strategy for player i is a function fi : H → Ai mapping histories into

actions. The set of player i’s strategies is denoted by Fi, and F =
∏

i∈N Fi is the joint

strategy space. Finally, a strategy vector is f = (f1, . . . , fn). Given an individual strategy

fi ∈ Fi and a history h ∈ H we denote the individual strategy induced at h by fi|h. This

strategy is defined point-wise on H: (fi|h)(h̄) = fi(h · h̄), for every h̄ ∈ H. We will use (f |h)

to denote (f1|h, . . . , fn|h) for every f ∈ F and h ∈ H. We let Fi(fi) = {fi|h : h ∈ H} and

F (f) = {f |h : h ∈ H}.

A strategy f ∈ F induces an outcome π(f) as follows: π0(f) = f(e) ∈ A; and for X1 ∈ R

we have π1(f)(X1) = f(f(e), X1) ∈ A; and, π2(f)(X2) = f(f(e), f(f(e), X1), X2) ∈ A,

X1, X2 ∈ R; and continuing in this fashion we obtain

πk(f)(Xk) = f
(
π0(f), π1(f)(X1), . . . , πk−1(f)(Xk−1), Xk

)
∈ A, k > 1 and X1, . . . , Xk ∈ R.

2.1 Players’ Payoffs

In this subsection, we wish to present the construction of expected payoffs. Due to that

regard, first we will present our stochastic discounting construction, and second formulate

the resulting expected utilities.

Player i’s discounting is stochastic: The stochastic discount factor of player i is a random

variable, denoted by
{
dt+1

t

}
t∈N0

, where for any given t ∈ N0, dt+1
t identifies the common

probability of the game continuing from period t to period t+ 1.

The particular fashion in which we relate shocks to stochastic discounting is captured in

the following assumption:

Assumption 4 For any i ∈ N , the stochastic discounting process of player i,
{
dt+1

t

}
t∈N0

,

satisfies the following:

1. Given any t ∈ N0, dt+1
t = ψ ◦Yt where ψ is a strictly increasing (strictly decreasing)

and continuous function with range given by (0, 1) whenever the support of X is bounded
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above (below). ψ is either strictly increasing or strictly decreasing whenever the support

of X is bounded.

2. {Yt}t∈N0
and ψ are such that {ψ ◦Yt}t∈N0

is a martingale.

3. {Yt}t∈N0
and ψ are such that for any t ∈ N0 and for any ε > 0 there exists τ ≥ t with

Pr (ψ ◦Yτ < ε | Ft) > 0.

For what follows assume without loss of generality that the support of X is bounded

above. Indeed, this situation corresponds to higher shocks to be interpreted as “positive”

with respect to the probability of the continuation of the game, because such shocks will

result in an increase in the current discount factor.

Then, the above assumption involves the following: First, the discount rate is obtained

from the underlying stochastic process determining the cumulative shocks, namely {Yt}t∈N0
,

by employing a continuous and strictly increasing transformation ψ with range (0, 1). In

fact, this implies that the stochastic process determining the discount rates is bounded.

Moreover, this part of the Assumption also binds the particular timing and information

setting that we employ: Given X0 = d (implying Y0 = ν̄(d), the stochastic discount factor

determining the probability that the game continues into the next period, d1
0, is pinned down

to a constant ψ(ν̄(d)). In the next period, t = 1, X1 is realized before players decide on

a1 ∈ A. So, Y0 = ν̄(d) and the realization of X1 together determine (via ν̄) a realization of

Y1, hence, δ2
1 = ψ (ν (ν̄(d), X1)). Thus, following an inductive argument in any period t > 1,

the given X t pins down Yt which in turn determines the particular level of δt+1
t , i.e. the

probability that the game continues from period t into period t+ 1.

Therefore, our formulation involves δt+1
t being common knowledge among the players in

period t before at is chosen. Thus, apart from the beginning of the game our formulation

corresponds to the case in Baye and Jansen (1996) where “... players choose actions in each

period after having observed the current discount factor”. They show that then the Folk
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Theorem “...breaks down; payoffs on the boundary of the set of individually rational payoffs

are unobtainable as Nash equilibrium average payoffs to the supergame.” However, it is

important to emphasize the following: (1) Their stochastic discounting formulation involves

a common discount factor determined by a random variable distributed independently from

the history of the game; and (2) While our formulation necessitates (due to the use of

stochastic processes) the period 0 discount factor to be deterministic, the failure of the Folk

Theorem shown in the setting of Baye and Jansen (1996) is primarily due to the action

profile chosen in period 0 being a function of the random period 0 discount factor (drawn

before the period 0 action is chosen).

The second part of Assumption 4 requires the stochastic discounting process to be a mar-

tingale. In fact, due to {Yt} satisfying the Markov property (by condition 1 of Assumption

3), now {dt} is a martingale with the Markov property. Moreover, because the uncondi-

tional expectations of ψ ◦Yt, t ∈ N0, are equal to the conditional expectations with respect

to the trivial σ-algebra, F0, the unconditional expectations do not depend on the time index.

This, in turn, implies that E(ψ ◦Yt) = E(ψ ◦Yτ ) = E (ψ ◦Yt|F0) = E (ψ ◦Yτ |F0) for all

t, τ ∈ N0. Thus, the expected value of the discount factor formed at the beginning of the

game, is required to be constant.

Finally, in the third part of Assumption 4 we require that there are states of the stochastic

process with the resulting stochastic discount factor arbitrarily close to 0, and such states

can be reached with positive (yet possibly arbitrarily small) probability in the long run.

An important implication of this Assumption concerns the situation where the common

stochastic discount factor is determined by a stochastic process with a finite state space in

(0, 1). Then, the third part of Assumption 4 cannot hold. 3 Thus, our analysis excludes

3On the other hand, if given a finite state space S ⊂ [0, 1) with Y (s) = 0 for some s and S = (s1, . . . , sK),
K ∈ N, without loss of generality we may assume that Y (sK) ≥ Y (s) for all s ∈ S; thence, the monotonicity
requirement in the second part of Assumption 3 cannot hold. Because, due to the (strict) monotonicity
requirement, there has to be a s′ ∈ S with Y (s′) > Y (sK). Indeed, this implies that S has to be denumerable.
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stochastic processes with finite state spaces.

The stochastic discount factor from period t to period τ , with τ ≥ t, given Fs, s ≤ t, is

defined by dτ
t =

∏τ−1
s=t ds+1

s , with the convention that dt
t = 1. We denote E(dt+1

t | Fs) for

s ≤ t− 1, by Es

(
dt+1

t

)
, which indeed is the projection of dt+1

t on Fs. For any t ∈ N0, we let

a realization of dt+1
t be denoted by δt+1

t , which stands for the realized probability that the

game continues from period t to period t+ 1.

The following Lemma display that the stochastic discounting process constructed in this

study involves weaker discounting than the one associated with constant discounting:

Lemma 1 Suppose that Assumptions 2, 3, and 4 are satisfied. Then

1. every possible realization of dτ
t is in (0, 1) for every τ, t ∈ N0 with τ > t, and the set

of states of {dt+1
t }t∈N0 is denumerable,

2. E
(
dt+1

t |F0

)
= δ(0) for some δ(0) ∈ (0, 1) and for all t ∈ N0,

3. for every given δ̂ ∈ (0, 1), there exists d ∈ R such that δ(0) = δ̂,

4. for every τ, t, s ∈ N0 with τ > t ≥ s, given dt+1
t = δt+1

t

E
(
dτ+1

τ |Ft

)
= δt+1

t , (1)

and

E
(
dτ

t+1|Fs

)
≥
(
E
(
dt+2

t+1|Fs

))τ−(t+1)
. (2)

The implications of this Lemma are essential for the proof, the interpretation and the

evaluation of our results:

The first one displays that the stochastic process specified has a denumerable (countable

but not finite) state space and results in a well-defined construction for stochastic discounting.

This is because, X has a countable support and for every τ, t ∈ N0 with τ > t, dτ
t =

∏τ−1
s=t ds+1

s

and every possible realization of ds+1
s is in (0, 1) for every s ∈ N0.
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The second shows that date zero expectations of future one–period discount factors are

constant with respect to the time index. And the third, displays that d can be chosen so that

any given constant discount factor can be precisely obtained. The reason is: Both Y0 and X0

are deterministic and recall that X0 = d and Y0 = ν̄(d). So, one may select d appropriately

(which in turn pins down ψ by Assumption 4) such that δ(0) = ψ((ν̄(d)) = δ̂. Therefore, we

conclude with respect to date zero expectations the repeated game at hand can be associated

with one having a constant and common discount factor. Thus, our repeated game with

stochastic discounting can be interpreted as a perturbation of a “standard” repeated game

under perfect information with common and constant discount factor (given by δ̂).

Finally, the fourth implication is twofold: Given any history of shocks up to time period

t, the first is that the expected level of future one–period discount factors are equal to the

current one. The second shows that every player values future returns more than a player

using a constant discount factor obtained from the same shocks. That is, a player discounts

a return in period τ , τ > t, with Et (dτ
t ) which is greater or equal to

(
Et

(
dt+1

t

))τ−t
. (Notice

that given X t, Et (dτ
t ) = δt+1

t Et

(
dτ

t+1

)
, because dt+1

t = δt+1
t is realized.) In particular, this

implies d can be chosen so that

E0 (dτ
t ) ≥

(
E0

(
dt+1

t

))τ−t
=
(
δ(0)

)τ−t
= δ̂τ−t,

and when τ = t + 1 then this inequality holds with an equality. Hence, these properties

establish that with a date 0 point of view our stochastic discounting construction involve

weaker discounting than that associated with a constant and common discount factor δ̂.

The following Remark summarizes these observations:

Remark 1 Suppose that Assumptions 2, 3, and 4 hold. Then, given any repeated game

under perfect information and a common and constant discount factor δ̂ ∈ (0, 1), there exists

a repeated game under perfect information and stochastic discounting specified as above which
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satisfies the following properties: (1) The date zero expectations of the one–shot discount

factors are all equal to δ̂; and (2) in date 0 players employ weaker discounting than that

associated with a constant and common discount factor δ̂; and (3) expected level of future

one–period discount factors are equal to the current one.

Proof of Lemma 1. 1, 2 and 3 of the Lemma are straightforward as discussed above.

The first part of the fourth result is, in fact, the martingale identity. For the second part,

notice that due to part 1 of the the fourth result, we can write the conditional expectation

E
(
dτ

t+1|Ft

)
as

E

(
τ∏

s=t+1

ds+1
s |Ft

)
=

τ∏
s=t+1

E
(
ds+1

s |Ft

)
+ Στ

t =
(
E
(
dt+2

t+1|Ft

))τ−(t+1)
+ Στ

t .

The proof concludes because by Assumptions 3 and 4 Στ
t is non-negative.

The next Assumption is about players’ knowledge of the past when taking expectations:

Assumption 5 In every period t ∈ N0, each player uses the most up to date information,

i.e. Ft.

Given a strategy profile f , because that each period’s supremum return is bounded for

every player, the payoff of player i ∈ N in the supergame G(d) of G is, where ψ(ν̄(d)) = δ̂ ∈

(0, 1):

Ui(f) = (1− δ̂)u1

(
π0(f)

)
+(1− δ̂)E

(
δ1
0u1

(
π1(f)(X1)

)
|F0

)
+(1− δ̂)E

(
E
(
δ2
0u1

(
π2(f)(X2)

)
|F1

)
|F0

)
+(1− δ̂)E

(
E
(
E
(
δ3
0u2

(
π3(f)(X3)

)
|F2

)
|F1

)
|F0

)
+ . . . .
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Because that {Fs}s=0,1,,2,... is the natural filtration, the above term reduces to

Ui(f) = (1− δ̂)u1

(
π0(f)

)
+(1− δ̂)E

(
δ1
0u1

(
π1(f)(X1)

)
|F0

)
+(1− δ̂)E

(
δ2
0u1

(
π2(f)(X2)

)
|F0

)
+(1− δ̂)E

(
δ3
0u1

(
π3(f)(X3)

)
|F0

)
+ . . . ,

i.e.

Ui(f) = (1− δ̂)
∞∑

k=0

E
(
δk
0u1

(
πk(f)(Xk)

)
|F0

)
, (3)

where π0(f)(X0) = π(f(e)), and recall that E (δt
t|Fs) = 1 for all s ≤ t. Following a similar

method, we can also define the continuation utility of player i as follows: Given t ∈ N and

X t ∈ Rt

V t,Xt

i (f) = (1− δ̂)
∞∑

k=t

E
(
δk
t ui

(
πk(f)(Xk)

)
|Ft

)
, (4)

and for τ > t

V τ,Xt

i (f) = (1− δ̂)
∞∑

k=τ

E
(
δk
τui

(
πk(f)(Xk)

)
|Ft

)
. (5)

We use the convention that V 0,X0

i (f) = Ui(f).

2.2 Subgame Perfect Equilibria

A strategy vector f ∈ F is a Nash equilibrium of the supergame of G if for all i ∈ N ,

Ui(f) ≥ Ui(f̂i, f−i) for all f̂i ∈ Fi. A strategy vector f ∈ F is a subgame perfect equilibrium

of the supergame G(d) if every f̄ ∈ F (f) is a Nash equilibrium.

For any δ̂ ∈ (0, 1), let V(δ̂) be the set of subgame perfect equilibrium payoffs. Moreover,

V(X t) are the subgame perfect equilibrium continuation payoffs (in period t terms), when

X t is realized. In fact, abusing notation we let V(X t) = V(δt+1
t ). Below we will show that
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V(δ) ⊆ U is compact for all δ ∈ (0, 1), hence obtain the following characterization analogous

to Abreu (1988): A strategy f is subgame perfect if and only if for all i ∈ N and for all

t ∈ N0 and for all X t ∈ Rt, we have

V t,Xt

i (f) ≥ (1− δ̂) max
ai∈Ai

ui(ai, π
t
−i(f)(X t)) + δt+1

t E
(
vi(X

t+1)|Ft

)
, (6)

where δt+1
t = dt+1

t (i.e. given X t, the realization of dt+1
t is equal to δt+1

t ), and for every i ∈ N

vi(X
t+1) = min

{
ui : ui ∈ V(δt+2

t+1)
}
. (7)

Before the justification of these, we wish to describe the resulting construction briefly.

Notice that, when player i decides whether or not to follow the equilibrium behavior in

period t given the history of shocks X t, it must be that: The player i’s expected continuation

payoff associated with the equilibrium behavior must be as high as player i deviating singly

and optimally today, and being punished tomorrow. An important issue to notice is that,

tomorrow players will know Xt+1 before deciding on their actions. Thus, players will be

punishing player i, the deviator, with the most severe and credible punishment with the

information they have in period t + 1. Thus, the punishment payoff to player i with the

information that players have in period t+ 1, i.e. X t+1, is vi(X
t+1). Player i forecasts these

in period t, and hence, forms an expectation regarding his punishment payoff (starting from

period t+ 1 onwards) with the information that he has in period t, namely X t.

In order to show that for every t and X t V(δt+1
t ) is compact, we will be employing

the construction of Abreu, Pearce, and Stachetti (1990), and it is important to point out

that their assumptions, 1-5 are all satisfied in our framework: A2, A3, and A4 are trivially

satisfied as the period payoffs are deterministic, and we also impose A1 and A5.

Following their construction, given X t for any W ⊂ RN and the resulting level of

δt+1
t ∈ (0, 1), let g(δt+1

t ) be the expected discounted, continuation utility level (not including

16



today’s payoff levels and using the normalization via δ̂ ∈ (0, 1)), for an arbitrary strategy

profile. Furthermore, for that given level of δt+1
t , consider the pair, (g(δt+1

t ), a) and define

E(g(δt+1
t ), a) = δt+1

t

(
(1− δ̂)u(a) + g(δt+2

t+1)
)
. A pair (g(δt+1

t ), a) is called admissible with

respect to W if Ei(g(δ
t+1
t ), a) ≥ Ei

(
g(δt+1

t ), (γi, a−i)
)

for all γi ∈ Ai and for all i ∈ N . More-

over, for each set W , define BXt
(W ) = {E(g(δt+1

t ), a)|(g(δt+1
t ), a) is admissible w.r.t W}.

Any set that satisfies W ⊂ BXt
(W ) is called self-generating at X t. Furthermore recall that

V(δt+1
t ) = {V t,Xt

(f)|f is a subgame perfect equilibrium strategy profile}.

Notice that

g(δt+1
t ) = (1− δ̂)

∞∑
k=t+1

E
(
δk
t u
(
πk(f)(Xk)

)
|Ft

)
,

for some strategy profile f . Furthermore since, δt+1
t is actually realized before the actions

are taken and the multiplicative nature of our discount factor, the above equation becomes

g(δt+1
t ) = (1− δ̂)δt+1

t

[
u
(
πt+1(f)(X t)

)
+

∞∑
k=t+2

E
(
δk
t u
(
πk(f)(Xk)

)
|Ft

)]

which is equal to

g(δt+1
t ) = δt+1

t

[
(1− δ̂)u

(
πt+1(f)(X t)

)
+ g(δt+2

t+1)
]
. (8)

Now, it is easy to see that V(δt+1
t ) is self-generating, as the pair, (g(δt+1

t ), πt+1(f)(X t)) is

admissible with respect to V(δt+1
t ) whenever f is a subgame perfect equilibrium strategy

profile with

V t,Xt

(f) = (1− δ̂)u(at) + g(δt+1
t ), (9)

where at = πt(f)(X t−1). The two further points to notice is that, due to lemma 1 of

Abreu, Pearce, and Stachetti (1990), BXt
(W ) is compact whenever W is compact, and

the operator BXt
is monotone. Furthermore, since V(δt+1

t ) is bounded (by U), closure of

V(δt+1
t ), denoted by cl(V(δt+1

t )) is compact. Hence, BXt
(cl(V(δt+1

t ))) is compact, and due to
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cl(V(δt+1
t )) ⊂ BXt

(cl(V(δt+1
t ))) and self-generation cl(V(δt+1

t )) ⊂ V(δt+1
t ). Thus, by Theorem

2 of Abreu, Pearce, and Stachetti (1990), BXt
(V(δt+1

t )) = V(δt+1
t ), thus V(δt+1

t ) is compact.

Lemma 2 Suppose Assumptions 1, 2, 3, 4, 5 hold. Then, there exists δ ∈ (0, 1) such that

for all δt+1
t ≤ δ every subgame perfect strategy profile f ∈ F is such that f(X t, at) ∈ A is a

Nash equilibrium of G for any t ∈ N0.

Proof. Without loss of generality, assume that the subgame perfect strategy f is such

that
(
maxai∈Ai

ui(ai, π
t
−i(f)(X t))− ui(π

t(f)(X t))
)
> 0 for some t ∈ N0 for some X t and

for some i ∈ N . Because otherwise, the strategy is resulting in a repetition of period Nash

behavior. Then, by equation 6, for any such subgame perfect strategy f and i and t and X t

δt+1
t

(
V t+1,Xt

i − E
(
vi(X

t+1)|Ft

))
≥ (1− δ̂)

(
max
ai∈Ai

ui(ai, π
t
−i(f)(X t))− ui(π

t(f)(X t))

)
.

Both the left and the right hand sides of this inequality are strictly positive. Yet, when the

prescribed action is not a Nash equilibrium of G, then the left hand side converges to 0 when

δt+1
t tends to 0, but the right hand side is constant.

3 Inevitability of Nash behavior

In this section, we wish to present the main result of this study:

Theorem 1 Suppose Assumptions 1, 2, 3, 4, 5 hold. Then for every K ∈ N and for every

δ̂ ∈ (0, 1) with δ̂ = ψ(ν(d)), there exists T which is almost surely in N0 with Pr (dτ+1
τ < δ) = 1

for every τ = T, . . . , T +K.

Using Lemma 2, the above Theorem establishes that in any equilibrium strategy, the

occurrence of any finite number of consecutive repetitions of the period Nash action profile,

must almost surely happen within a finite time window. That is, any equilibrium strategy
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almost surely entails arbitrary long consecutive observations of the period Nash action profile.

In other words, every equilibrium strategy almost surely involves a stage, i.e. the stochastic

process governing the one–shot discount factor possesses a stopping time, after which long

consecutive repetitions of the period Nash action profile must be observed.

Proof of Theorem 1. Let K ∈ N, and δ̂ ∈ (0, 1) where δ̂ = ψ(ν(d)).

Without loss of generality assume that X has a support bounded from above. Recall

that this situation corresponds to higher shocks to be interpreted as “positive” with respect

to the probability of the continuation of the game, because such shocks will result in an

increase in the current discount factor.

Define supω∈ΩX(ω) = X̄ as the highest realization of X with Ω denoting its space of

events.

Similarly, let Ȳ ∈ {Y ∈ S : ψi(Y ) < δ}, where δ is as given in Lemma 2. Such a Ȳ exists

due to the third part of Assumption 4. It is appropriate to remind the reader that higher

values of Y correspond to higher values of the resulting one–period discount factor.

Now, for any K ∈ N consider the state Y ∗ such that

Ȳ = ν
(
ν
(
. . .
(
ν
(
ν
(
Y ∗, X̄

)
, X̄
)
, X̄
)
. . .
)
, X̄
)
,

where the compounding operation is performed K + 1 times. Due to the third part of

Assumption 4, such a Y ∗ exists.

Finally, define the ergodic state Ŷ ∈ E (recall that E ⊂ S denotes the set of ergodic

states of S) such that Ŷ ∈ {Y ∈ E : Y < Y ∗}. This set is non-empty because of the fourth

part of Assumption 3.

Following Karlin and Taylor (1975), we define the Markovian time

ζ ≡ min{τ ∈ N0 : Yτ ≤ Ŷ }.
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Then by construction, for any k ≤ K it must be that Pr(ψi(Yζ+k) ≥ δ) = 0. Finally due to

ergodicity of Ŷt, ζ is a stopping time, it will almost surely happen in a finite time period,

i.e. Pr(ζ < ∞) = 1. Hence, ζ is in N0 almost surely with Pr
(
dζ+k+1

ζ+k < δ
)

= 1 for any

k ≤ K. Indeed, this also implies that ζ is in N0 almost surely with Eτ (δτ+1
τ ) < δ for every

τ = ζ, . . . , ζ +K.

4 The Folk Theorem

In this section, we will present a subgame perfect Folk Theorem:

Theorem 2 Suppose Assumptions 1, 2, 3, 4, 5 hold, and either dim(U) = n or n = 2 and

U0 6= ∅. Then, for all ε > 0, there exists δ̄ ∈ (0, 1) and d ∈ R such that for all u ∈ U0

and δ̂ = ψ(ν̄(d)) with δ̂ ≥ δ̄, there exists a subgame perfect strategy f of G(d) such that

‖U(f, δ̂)− u‖ < ε.

Proof. Under these assumptions and Lemma 1, due to Fudenberg and Maskin (1986)

and Fudenberg and Maskin (1991) we know that for all ε > 0, there exists δ̄ ∈ (0, 1) and

d ∈ R such that for all u ∈ U0 and δ̂ ≥ δ̄ with δ̂ = ψ(ν̄(d)), there exists a strategy f of G(d)

such that:

V t,Xt

i (f) ≥ (1− δ̂) max
ai∈Ai

ui(ai, π−i(f)(X t)) + δt+1
t E

(
vi(X

t+1)|Ft

)
(10)

when δt+1
t that is associated with X t is greater or equal to δ̄ and because of equation 1

δ1
0 = δ̂ = E

(
δt+1
t |F0

)
for all t ∈ N0. Thus, V 0,X0

i (f) = U(f, δ̂), and ‖V 0,X0

i (f)− u‖ < ε.

Hence, the remaining step is to construct the subgame perfect strategy (for states in

which X t have been such that in some period s, s ≤ t, δs+1
s < δ̄).

Having established that the set of subgame perfect equilibrium payoffs is compact for any

given δ ∈ (0, 1), we may employ a modification of simple strategies: Following Abreu (1988),
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f ∈ F is a modified simple strategy profile represented by n+2 paths (π(0), π(1), . . . , π(n), πNEq)

if f specifies: If the shocks have all been such that the resulting one–period discount factors

were greater or equal to δ̄ then: (i) play π(0) until some player deviates singly from π(0); (ii)

for any j ∈ N , play π(j) if the jth player deviates singly from π(i), i = 0, 1, . . . , n, where π(i)

is the ongoing previously specified path; (iii) continue with the ongoing specified path π(i),

i = 0, 1, . . . , n, if no deviations occur or if two or more players deviate simultaneously; If

the shocks have ever been such that in one of the previous periods the resulting one–period

discount factor was strictly less than δ̄, play πNEq consisting of the repetition of a∗, the

Nash equilibrium pure action profile of the stage game. A profile (π(0), π(1), . . . , π(n), πNEq)

of n + 2 outcome paths is subgame perfect if the modified simple strategy represented by it

is a subgame perfect equilibrium.

Because of equations 1 and 2, the modified simple strategy defined above is subgame

perfect: For any history in which the shocks have all been such that the resulting one–period

discount factors were greater or equal to δ̄, the above specified modified simple strategy

is a Nash equilibrium due to condition 6; and, for any other history the strategy specified

requires the play of a Nash equilibrium pure action profile for the rest of the game, hence

trivially is a Nash equilibrium in such subgames.

5 An Example: The Prisoners’ Dilemma

The prisoners’ dilemma is described as a normal form game G with two players (N = {1, 2}),

each of whom have two actions: Ai = {C,D} for i = 1, 2. Players’ payoff functions are

described by the following table:

1\2 C D

C 1, 1 −c, b

D b,−c 0, 0
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where b, c > 0, b > 1, and b < c + 2 making sure that the cooperative payoff (1, 1) is

Pareto optimal and can be obtained only by (C,C). We denote player i’s payoff function

by ui : A → R, for i = 1, 2, and A = A1 × A2. We let U be the set of individually rational

payoffs, i.e. U = {u ∈ con(u(A)) : ui ≥ 0}, and the set of strictly individually rational

payoffs takes the form U0 = {u ∈ con(u(A)) : ui ≥ 0}.

We let X0 = 0, and Xt = X for t > 0 be identically and independently distributed

steps of a standard random walk, i.e. Xt for t > 1 is a random variable that takes values in

{−1, 1} with a probability given by Pr(Xt = −1) = Pr(Xt = 1) = 1
2
. We interpret Xt = 1 as

a positive (similarly Xt = −1 as a negative) shock at time t. Consequently, Yt =
∑t

s=1Xs

identifies the cumulative shocks up to period t.

By the Axiom of Choice, there exists a strictly increasing and with full support ψ : Z →

(0, 1) ∩Q where Q denotes the set of rational numbers, such that {ψ ◦Yt}t, hence {dt+1
t }t,

is a martingale.

Notice that Assumptions 1 and 2 are trivially satisfied. Regarding Assumption 3, the

Markov property clearly holds because the transition of {Yt}t, given by Yt = Yt−1 + Xt,

for t ∈ N. This also shows that its transition is clearly governed by {Xt}t in a monotone

(strictly increasing) fashion. The third part is also satisfied, because the covariance matrix

of {Yt}t is non-negative by Feller (1950), which also shows that the fourth part of this

same Assumption is satisfied since the entire state space of {Yt}t is ergodic. All the parts

of Assumption 4 are satisfied due to the construction described in the previous paragraph.

Finally, we will keep Assumption 5, requiring that every player forms his expectation with

the most up to date σ-algebra.

Because that Assumptions 1 - 5 are satisfied, the characterization of subgame perfection

given in equations 6 and 7 takes the following simple form when attention is restricted to

the prisoners’ dilemma: A strategy f is subgame perfect if and only if for all i = 1, 2 and for
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all t = 0, 1, 2, . . . and for all X t with Xk ∈ {−1, 1} such that 0 ≤ k ≤ t, we have

V t,Xt

i (f) ≥ (1− δ̂) max
ai∈C,D

ui(ai, π
t
−i(f)(X t)). (11)

Notice that by Lemma 2, we know that there exists δ > 0 such that for all X t with the

resulting δt+1
t < δ, any subgame perfect strategy must recommend the play of (D,D) which

results in a payoff of 0 to both of the players.

For what follows, we will concentrate on obtaining the cooperative payoff exactly under

subgame perfection.

First, we wish to identify the critical level of the discount factor that supports the co-

operative payoff in subgame perfection. Notice that, due to condition 1 and 2, this critical

level of discount factor is different from the one in the constant-discounting case, namely,

b−1
b

. Indeed, in this situation, this critical discount factor, that we call δ?, is less than or

equal to b−1
b

.

Now, fix t ∈ N, and X t with a resulting δt+1
t ∈ (0, 1). Then, V t,Xt

i (f) where f is the

simple strategy sustaining the cooperative payoff in subgame perfection and X t is so that

the resulting δt+1
t is high enough

(1− δ̂)
(
1 + Et

(
δt+1
t

)
+ Et

(
δt+1
t δt+2

t+1

)
+ Et

(
δt+1
t δt+2

t+1δ
t+3
t+2

)
+ . . .

)
u1(C,C).

Because that for all τ ≥ t, Et

(∏τ−1
k=t δ

k+1
k

)
is continuous in δt+1

t , there exists δ?(t) ∈ (0, 1)

such that

(1− δ̂)
(
1 + Et

(
δt+1
t

)
+ Et

(
δt+1
t δt+2

t+1

)
+ Et

(
δt+1
t δt+2

t+1δ
t+3
t+2

)
+ . . .

)
u1(C,C)− (1− δ̂)b = 0.

This follows from the following: When δt+1
t is sufficiently close to 1, the left hand side of the

the above equation is strictly positive. Moreover, when δt+1
t is sufficiently close to 0, then the
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left hand side of this equation is strictly negative. Thus, because of the Intermediate Value

Theorem, there exists δ?(t), such that the left hand side is equal to zero. Moreover, because

that {Yt}t has independent and stationary increments we obtain E
(
dτ

t+1|Fs

)
= E

(
dτ+1

t+2 |Fs

)
for all t, τ, s with τ > t ≥ s, which implies δ?(t) = δ?(τ) for all t, τ with t ≤ τ . Hence, we let

δ? = δ?(t) for all t.

Next, we wish to define the simple strategy supporting the cooperative payoff explicitly:

Let π(0) be given by the repetitions of (C,C), π(P ) the repetitions of (D,D), and finally

πNEq be also the repetitions of (D,D). Then the simple strategy is: If the shocks have all

been such that the resulting one–period discount factors were greater or equal to δ?, (i) play

(C,C) until some player deviates singly from π(0) and (ii) play π(P ) if there was a single

player deviation, and (iii) continue playing π(j), j = 0, P if there were either no deviations or

multi-player deviations; and if there is a period in which the resulting one–period discount

factors were strictly less than δ? play πNEq, repetitions of (D,D), for the rest of the game.

Due to equations 1 and 2, the above strategy f is such that V 0,X0

i (f) = 1 for all i

whenever δ1
0 = δ̂ ≥ δ?. Moreover, it easily can be seen that f is subgame perfect.

But, by Lemma 2 and Theorem 1, we know that in any subgame perfect equilibrium

strategy f , for every K ∈ N and for every δ̂ ∈ (0, 1) with δ̂ = δ1
0, there exists T which

is almost surely in N0 and the period behavior prescribed by f must be (D,D) for every

τ = T, . . . , T +K.
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