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ABSTRACT 

Proteins exhibit an infinite variety of structures. Around 50K 3D structures of proteins exist 

in PDB database among unlimited possibilities.  The three dimensional structure of a protein is 

crucial to its function. Even within a common structure family, proteins vary in length, size, and 

sequence. This variation is the reflection of evolution on protein sequences. The intrinsic 

information in protein structures can be captured by their graph representations. The structural 

similarities between protein families can be deduced using their structural features such as 

connectivity, betweenness, and cliquishness. 

Most of the structure comparison and alignment methods use all atom coordinates that’s 

why they need reliable full atom representation of proteins which is difficult to obtain using 
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experimental methods. These methods can be used for variety of problems in bioinformatics such 

as protein fold prediction, function annotation, domain prediction, and fold classification. Our 

approach can capture the same knowledge by using much less information from the actual 

structure.  

In this thesis, we used graph representations of proteins and graph theoretical properties to 

discriminate native and non-native proteins. Then we used these methods to find out overall and 

local similarity of protein structures by using dynamic programming. Afterward, local alignment 

using dynamic programming is used to determine the function of a protein. Moreover, sub graph 

matching algorithms was employed for domain prediction. In order to find the correct fold we 

also developed a genetic algorithm based threading approach. All these applications gave better 

or comparable results to state of the art.  
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Özet 

Proteinler sonsuz sayıda farklı yapıda bulunabilirler. PDB veribanında, bu sonsuz 

olasılıklardan, 3 boyutlu yapısı belirlenmiş, elli binin üzerinde protein vardır. Proteinin 3 boyutlu 

yapısı onun fonksiyonu için önemlidir. Yapısı aynı olan protein ailelerinde bile protein 

uzunlukları ve aminoacid dizilişleri değişkenlik gösterir. Bu değişkenlik evrimin aminoacid 

dizilişlerine bir yansımasıdır. Protein yapılarının bilgileri graf temsili ile elde edilebilir. Protein 

ailelerinin yapı benzerlikleri graflar üzerinde hesaplanan yapı özellikleri yardımıyla bulunabilir. 

Bu yapı özelliklerinin bazıları, bir düğümün, komşu sayısı, ne kadar merkezi bir rol aldığı ve 

komşularının birbirlerini ne kadar tanıdığının ölçüsüdür.   

Bir çok protein karşılaştırma ve hizzalama metodları her bir atomun koordinatlarını kullanır 

ve bu koordinatların doğru olarak elde edilmiş olması önem taşır ve deneysel metodlarla bu 
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verilere ulaşmak zahmetlidir. Bu metodlar bioinformatiğin bir çok alanında kullanılır. Bunların 

başlıcaları protein katlanma tayini, fonksiyon belirleme, işlevsel yapı ünitesi tayini, ve katlanma 

sınıflamasıdır. Önerdiğimiz algoritmalar ile aynı sonuçlar daha az bilgi kullanılarak üretilebilir. 

Bu tez çalışmasında, proteinler graflar olarak temsil edilmiş ve graf özellikleri kullanılarak 

gerçek ve gerçek olmayan proteinlerin ayırt edilebilmesi için bir algoritma  geliştirilmiştir. Bu 

algoritma neticesinde proteinlerin tümünün ve bölgesel hizzalama metodlari ile protein 

yapılarının karşılaştırılması sağlanmıştır. Bununla birlikte, bölgesel hizzalama algoritması ile 

protein fonksiyon tayini yapılmıştır ve alt graf eşleştirme metodu ile işlevsel yapı ünitesi tayini 

yapılmıştır. Doğru katlanmayı bulabilmek için bir de genetik algoritma tabanlı bir uygulama 

geliştirilmiştir. Tüm metodlar ile doğruluk değerleri yüksek sonuçlar elde edilmiştir. 
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Chapter 1 

1 INTRODUCTION 

Proteins are the major players responsible for almost all the functions within the 

cell. Protein function, moreover, is mainly determined by its structure. Several 

experimental methods already exist to obtain the protein structure, such as x-ray 

crystallography and NMR. Protein Databank (PDB) has over 50000 protein structures 

stored obtained from these techniques, moreover, this number grows at a rate more than 

500 PDB entries per month (Zemla 2003). All of these methods, however, have their 

limitations: they are neither cost nor labor effective. Therefore, an imminent need arises 

for computational methods that determine protein structure which will reveal clues 

about the mechanism of its function. Determining the rules governing protein function 

will enable us to design proteins for specific function and types of interactions (Baker 

2006). This course of action has vast application areas ranging from the environmental 

to the pharmaceutical industries. Additionally, these designed proteins should have 

native like protein properties to perform their function without destabilizing under 

physiological conditions. Therefore, computationally designed proteins also have to 

show similar properties like native proteins. 

For this purpose a function was defined that can distinguish the native protein 

structures from artificially generated non native like protein structures. The proposed 

function is also used in the structural alignment of proteins and domain prediction using 

graph theory. 

Protein structures can be represented as graphs. The graph theoretical properties 

of protein structures are then computed using different representations of graphs such as 

Delaunay tessellated graphs and contact maps. The applicability of proposed method 

was shown using different datasets with different methods. The graph theoretical 

properties of proteins used to perceive the differences between correctly folded proteins 

and decoy sets. Graph theoretic properties showed high classification accuracy for 

protein discrimination. Fisher, linear, quadratic, neural network, and support vector 
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classifiers were used for the classification of the protein structures. The best classifier 

accuracy was over 95%.  Results showed that characteristic features of graph theoretic 

properties can be used in the detection of native folds.  

After the detection of native folds with high accuracy, the results encouraged to 

use these properties in structural alignment purpose. A global alignment method with 

dynamic programming with affined gap penalty was then developed. Although, the 

results were comparable to other well known structural alignment methods. When the 

length differences of the protein pairs are too much, our global alignment method failed.  

Therefore, a local alignment method was employed with dynamic programming to find 

out local similarities. All the locally aligned regions are combined using dynamic 

programming method. The local alignment scores that use network properties are also 

used to determine the function of the proteins. 

Graph matching algorithms is another method to check the similar part of the 

proteins. In this work, claimed method employs a sub graph matching algorithm to find 

out similar regions. The nature of our algorithm tends to match corresponding residues 

by using neighborhood information; therefore, this can lead big jumps in the sequence 

order, because, the algorithm starts its matching operation with a highly connected 

residue, and continue to its highly connected neighbors. So the most significant part of 

the structure is attained to determine. Sub-graph isomorphism is a computationally 

expensive algorithm. Therefore, parallel computing can reduce the running time. 

Parallel programming was utilized and each node starts with different residue and the 

results of each processor are then combined to give overall aligned parts.  
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Chapter 2 

2 BACKGROUND AND REALTED WORKS 

2.1 Biological Background 

Proteins are polypeptide chains which are generated by amino acids. There are 20 

different amino acids given in Table 2.1 and this differentiation is the outcome of 20 

different side chains (R) which are the varied parts of amino acids.  

Table  2-1 Aminoacid Table 

Abbreviation Name Hydrophilic index 
Arg R Arginine 15.86
Asp D Aspartic Acid 9.66
Glu E Glutamic Acid 7.75
Asn N Asparagine 7.58
Lys K Lysine 6.49
Gln Q Glutamine 6.48
His H Histidine 5.6
Ser S Serine 4.34
Thr T Threonine 3.51
Tyr Y Tyrosine 1.08
Gly G Glycine 0
Pro P Proline -0.01
Cys C Cystine -0.34
Ala A Alanine -0.87
 Trp W Tryptophan -1.39
Met M Methionine -1.41
Phe F Phenylalanine -2.04
Val V Valine -3.1
Ile I Isoleucine -3.98
Leu L Leucine -3.98

 

The side chains are coded by genetic codes and they form the fundamental 

differences in the sequence of the chain and eventually in the structure of protein. 

Besides the side chains, the other elements of amino acids are Carbon in the central, an 

amino group (NH2) and a carboxyl group (COOH). Generally the form of a main chain 

shape is given in the following formula; (NH-CH-C'=O). Amino acids connected to 

each other end to end during protein synthesis with peptide bonds. The peptide bonds 
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are not organized randomly, actually they have very rigid and obvious angles which are 

those; psi (showed as Ψ) is between (C-C') and phi (showed as Φ) is between (C-N). 

These bonds and angles have a significant role of the conformation of polypeptide. 

Amino acids are divided into three forms according to their side chains. These 

three forms are hydrophobic, charged and polar side chains (charged and polar ones are 

hydrophilic). This classification is vital because the main chain folds according to water 

resistivity of amino acids; this determines the three-dimensional structure and as a result 

protein's main function. In a chain, the hydrophobic amino acids attain to get a position 

inside to protect themselves from water. Therefore the polar and charged amino acids 

(which are hydrophilic) tend to be outside. During the folding, two types of structures 

arise that are alpha (α) helix and beta (β) sheets.  

The α-helix has 3.6 elements per turn and hydrogen bonds are seen between C'=O 

and NH. The ends of α-helix are generated by polar ones and mostly they can be seen 

on the surface of protein molecules. Since the alpha helix is one continuous sequence, 

β-sheets are approximately 5 to 10 residues long and occupied at least two continuous 

sequences. They join the C'=O group with the adjacent NH group. The β-sheets can be 

parallel and also anti-parallel but they are formed approximately on the same plane with 

the central C atoms.  

2.2 Protein Structure Determination 

2.2.1 Structural Alignment Methods 

Computational methods can be employed to discover similarities between 

proteins. Having information about a protein relies profoundly on comparison methods. 

Similarities between proteins are discovered with alignment methods. As protein 

structure is more conserved than the sequence in evolution, therefore, structural 

alignment methods are more consistent than sequence alignment methods especially for 

remote homolog proteins (Yakunin et al. 2004). 

Most of the structural alignment methods aim to find the best superposition of 

residues in a protein pair using their three dimensional coordinates. Three main tasks 

exist in the structural alignment of proteins: identification of residue-residue 
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correspondence, defining a function to measure the structural similarity and calculation 

of the best superimposition.  

Many structural alignment methods can be found in the literature. CE 

(Combinatorial Extension) is a widely used structure alignment method based on 

clusters of amino acids that uses inter residue distances (Shindyalov and Bourne 1998). 

Protein sequences are broken into compartments that are 8 residue long segments. These 

segments are then aligned. In this way, they are represented by a set of aligned fragment 

pairs (AFP). The alignment of a protein pair is defined as a path of AFPs in a similarity 

matrix, the combinatorial method uses this similarity matrix for the best alignment. An 

alignment may start from any AFP; however consecutive AFPs can not contain any 

residues included in the previous AFP. All AFPs are chosen according to this constraint. 

In addition to this, gaps are allowed but there is an upper limit to reduce the running 

time. Three distance measures and different AFP path extension methods were 

employed to evaluate similarities between compared proteins. The average total 

distance between residues of two different AFPs is the first measure that is used to 

decide how well two AFPs combine; it is the path extension heuristic. The second 

measure evaluates the goodness of a single AFP, i.e., whether two protein fragments 

match well by having average of all possible distances between non-neighbors residues 

for two different AFPs. The third measure, the RMSD calculated from superimposed 

structures, is used in the final step to select the best alignments (Shindyalov and Bourne 

1998).  

Distance alignment matrix method (DALI), another common and popular 

structural alignment method, uses distance matrix between all the hexapeptide 

fragments formed by breaking structures into fragments of 6 residues long. The distance 

matrices are generated as in CE; however, they use different methods to combine the 

fragments.  DALI uses Monte Carlo simulation to maximize structural similarity score 

of corresponding residues.  

As a structural alignment method, SSAP (Sequential Structural Alignment) uses 

Cβ atoms instead of using Cα atoms. SSAP first builds an inter-structural residue-residue 

distance vectors between each residue and closest neighboring residues. After a 

dynamic programming finds local alignments for each resulting matrix, then another 

dynamic programming is applied again to combine all possible local alignments 

(Orengo and Taylor 1996). As in SSAP, TM-Align uses inter structural residue distance 

vectors and an extended version of LG-scoring matrix called TM-scoring. The values in 



 23

the TM-scoring matrix are normalized to overcome the length difference problem of 

protein pairs. TM-scoring matrix with dynamic programming was employed in TM-

Align, which is 4 times faster than CE and 20 times faster than DALI (Zhang and 

Skolnick 2005). 

Some of the approaches are using the local geometric positions of backbone atoms 

to find out residue pairs such as FAST. FAST uses  the distance between backbone 

atoms and relative angles to build graphs and prune them in favor of consecutive and 

high-scoring regions (Zhu and Weng 2005). 

Although, many different algorithms can be employed for structural alignment of 

proteins, dynamic programming is the most preferred (Shih and Hwang 2003). To 

increase the quality of alignment in dynamic programming affined gap penalty approach 

introduced (Stephen 1998; Zachariah et al. 2005). In this work, dynamic programming 

was used with affine gap penalty to find out the all possible alignments.  Information 

obtained from neither secondary structure nor sequence similarities have been used.  

Structure determination of proteins may provide information about structural 

similarity of functional units (domains) and overall similarity of two known structures 

for classification and annotation purposes. Representing the protein structure as a graph 

and the network properties of the graphs are also shown to represent similar regions 

between two distinct protein structure, moreover, network properties have recent been 

used to differentiate native and non native proteins with 99% accuracy (Küçükural et al. 

2008). 

2.2.2 Measuring Techniques of Similarities between Protein Pairs 

The quality of the alignment is measured with different methods. One of the most 

commonly used methods is root mean square deviation (RMSD) that measures the 

similarity between proteins by calculating the mean distance between Cα atoms of 

corresponding amino acids. RMSD finds overall distance between two proteins and 

yields better results, if corresponding residues in all parts of the proteins slightly differ, 

therefore, RMSD uses global structure superimpositions and highly sensitive to large 

differences in small portions of the protein. Even though the rest of the structure is 

highly similar such deviations can drastically increase the RMSD value (Zemla 2003; 

Zhang and Skolnick 2005). To overcome this problem, the Levitt-Gerstein score (LG 
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score) was formulated to determine enhanced superimpositions. The LG scoring 

approach uses LG weight factor by giving larger weights to the residue pairs that have 

smaller distances than those that have larger distances (Levitt and Gerstein 1998). 

Besides, the best global superimposition is not feasible to discover in many cases since 

it is an optimization problem and search space is too large. 

CASP experiment is one of the world-wide experiments in this area since 1994. 

CASP, which stands for Critical Assessment of Techniques for Protein Structure 

Prediction, assesses the quality of the methods and results of researches around the 

world in this area. (Zemla 2003; Moult et al. 2005). 

Currently CASP uses Local-global alignment (LGA) measure, to find out the 

similarity of two proteins by favoring the most similar parts more than the other parts 

according to rmsd distance using all possible super-positions. (Zemla 2003; Moult et al. 

2005). The combination of local and global superimpositions would yield better 

similarity measures. Local-global alignment (LGA) measure is employed for this 

purpose. LGA has two components; one is longest continues segment (LCS) and global 

distance test (GDT) to detect local and global similarities simultaneously. The focus of 

GDT is the distance rather than RMSD and GDT detects global similarity. LCS detects 

local similarities by minimizing the RMSD between residues chosen by GDT. The 

global score is given by global distance test total score (GDT_TS) (Zemla 2003).  

GDT_TS uses several cutoff distances to find the best matching global structure 

and it is calculated as in (1) 

 

GDT_TS = (GDT_P1 + GDT_P2 + GDT_P4 + GDT_P8)/4                  (1) 

 

where GDT_Pn denotes percent of residues under distance cutoff <= nÅ .  

Another comparison method is calculating a score called maxsub by finding the 

largest subset of the corresponding residues that have the best superimposition (Siew et 

al. 2000). Maxsub was also employed to measure the similarity of protein pairs in a 

Shannon entropy based profile-profile alignment approach (Capriotti et al. 2004). 
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2.3 Graph Representation 

Graphs are employed to solve many problems in protein structure analysis as a 

representation method (Strogatz 2001; Albert and Barabási 2002). Protein structure can 

be converted into a graph where the nodes represent the Cα atoms of the residues and 

the links between them represent interactions (or contacts) between these residues.  

 The two most commonly used representations of 3D structures of proteins in 

graph theory are contact maps and Delaunay tessellated graphs (Atilgan et al. 2004; 

Taylor and Vaisman 2006). Both graphs can be represented as an N×N matrix S for a 

protein which has N residues. Contact definition differs for both graphs. In contact map, 

if the distance between Cα  atoms of residues i and j is smaller than a cut-off value then 

they are considered to be in contact (Atilgan et al. 2004). 

Delaunay tessellated graphs consist of partitions produced between a set of points. 

A point is represented by an atom position in the protein for each residue.  This atom 

position can be chosen as α carbon, β carbon or the center of mass of the side chain. 

There is a certain way to connect these points by edges so as to have Delaunay 

simplices which form non-overlapping tetrahedrals (Taylor and Vaisman 2006). A 

Delaunay tessellated graph includes the neighborhood (contact) information of these 

Delaunay simplices. In this work, tessellated graphs of the proteins were employed 

using the alpha carbon atoms as simplices (Barber et al. 1996). 

Contact maps are widely used as a representation method of protein structures in 

the literature (Fariselli and Casadio 1999; Vendruscolo et al. 2002; Huan et al. 2004; 

Gupta et al. 2005; Vassura et al. 2008). This is the most convenient way to represent 

neighboring information of each residue in a protein structure when it is folded and 

functional, because, there is no possibility to select a residue which is greater then a 

certain cut off value. In Delaunay tessellation two closest points are selected to 

construct a graph. However, closest points may not be in a certain cut off distance. 

Using Delaunay tessellated graphs as a structure representation method of proteins does 

not yield better results than contact maps (Huan et al. 2004; Küçükural et al. 2008). 
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2.4 Background on Developed Applications 

2.4.1 Discrimination of Native Folds from Incorrectly Folded Proteins 

There are several methods developed to discover the three dimensional structure 

of proteins. Since these models are created by computer programs their overall 

structural properties may differ from those of native proteins. There is a need for 

distinguishing near native like structures (accurate models) from those that do not show 

native like structural properties.   

Several attempts have been made to define a function to distinguish native folds 

from incorrectly folded proteins. In early studies, Novotny et. al. looked at various 

concepts such as solvent-exposed side-chain non-polar surface, number of buried 

ionizable groups, and empirical free energy functions that incorporate solvent effects for 

ability to discriminate between native folds and those misfolded ones in 1988 (Novotný 

et al. 1988). Vajda et. al. used combination of hydrophobic folding energy and the 

internal energy of proteins which showed importance of relaxation of bond lengths and 

angles contributing to the internal energy terms in detection of native folds (Vajda et al. 

1993). 

McConkey et. al. have used contact potentials as well to distinguish native 

proteins. They calculated the contacts from Voronoi tessellated graphs of the native 

proteins and the decoy sets. They assumed a normal distribution of contact energy 

values and calculated the z scores to show if the native protein has a very high z-score 

compared to z-score of the decoy structures (or the contact energy of the native 

structure ranks high compared to decoy structures created for that structure). The 

scoring function can effectively distinguish 90% of the native structures on several 

decoy sets created from native protein structures (McConkey et al. 2003). 

Another scoring function derived by Wang et. al. is based on calculating 

distances (RMSD) between all the Cα atoms in native proteins and other conformations 

in given decoy sets. They show their function distinguish better than other functions 

depending on the quality of the decoy sets (Wang et al. 2004). 

Beside the knowledge based potentials, approximate free energy potentials are 

also used to discriminate native proteins by Gatchel et. al. (Gatchell et al. 2000). In their 
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approach they defined a free energy potential that combines molecular mechanics 

potentials with empirical solvation and entropic terms. Their free energy potential’s 

discrimination power improved when the internal energy of the structure was added to 

the solvation energy (Gatchell et al. 2000).  

The hydrophobic effect on protein folding and its importance to discrimination 

of proteins is also stated by Fain et. al. Their approach is based on discovering optimal 

hydrophobic potentials for this specific problem, by using different optimization 

methods (Fain et al. 2002).  

Using graph properties to distinguish native folds was first done by Taylor et. al. 

They state that using degree, clustering coefficient, and the average path length 

information can help distinguish native proteins. They determine a short list based on 

these properties. The natives’ appearance in the short list indicates that these properties 

can distinguish the native like structures. Of 43 structures set in which they worked, the 

native was placed in the short list in 27 of them (Taylor and Vaisman 2006).  

All of the previous works do not treat the problem as a classification problem; 

they only check whether the native structure ranks high according to their scoring 

scheme. Several classification and clustering methods such as neural network based 

approaches and support vector machines have been widely used in other successful 

applications related to protein structure. The success of the classification depends on the 

features that are used to discriminate the classes (Fariselli and Casadio 1999; Ying and 

George 2003). 

2.4.2 Attributed Relational Graphs (ARG) 

Proteins can be represented with ARGs that contain information regarding both the 

syntactic and semantic of the structures (Cordella et al. 1998). Syntactic information 

includes the topological properties with edges between nodes. Semantic information 

indicates the attributes that calculate for each node in the graph. A relational graph is 

represented by G = {V, E, A}. Set of vertices (nodes) in the graph is denoted by V = 

{v1, v2, …, vn} and the set of edges in the graph is denoted by E = {e1, e2, …, em}. For 

protein contact maps, the nodes represent residues and edges represent the 

neighborhood information of the residues. If two residues in the graph are in contact 
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according to defined contact definition, then there is an edge between corresponding 

nodes. 

A indicates the semantic information of the nodes. A = {a1, a2,…,an} is the set of 

measurements calculated for each node.  

Two types of graph matching definitions exist in terms of allowing errors; exact 

and inexact matching.  

Exact matching is also called graph isomorphism. The exact matching of the two 

graphs G1 = {V1, E1, A1} and G2 = {V2, E2, A2} is determining a mapping between the 

nodes from the first graph and the nodes from the second graph such as: 

f : V1 → V2 : ∀ (vi, vj) ∈ E1 ∃ ( f (vi), f (vj)) ∈ E2                           (2) 

The mapping M involves a set of matched pairs (vi, vj) where vi from G1 and vj 

from G2 (Cordella et al. 1998). While (vi, vj) and (vi+1, vj+1) pairs are matched, vi+1 with 

vi  and  vj+1 with vj are considered to be connected by edges.  

Solving real world problems with graph isomorphism applications is very rare. 

Thus, the sizes are varied for both graphs in most cases, subgraph isomorphism 

algorithms are employed. Subgraph isomorphism searches exact matches between a 

subgraph from first graph and a subgraph from second graph. However, another issue 

has to be considered in real world applications; allowing errors in the mapping function. 

Two graphs may not be exactly the same. For instance, two homologues proteins 

can have the same structure; however, possible deletions and mutations in the evolution 

change exact similarity. Therefore, the algorithm has to be sensitive to errors. This error 

allowance is introduced by inexact subgraph matching algorithms. 

2.4.3 Graph Matching Algorithms 

A graph is a useful representation method for real world situations if the objects of 

the structure interconnect (Marek and Wojciech 1998). Since the graph matching 

algorithms are computationally expensive, developing the best graph matching 

algorithm is an open and challenging area. The aim is to reduce memory consumption 

and processing time, which are the most important constraints in the algorithms as in 

graph matching theory. Obviously brute force solutions for graph matching would be 

very slow and inefficient. In 1974, Ullmann proposed his algorithm, based on 

elimination of successor nodes in tree search (Ullmann 1976). Today, the most useful 
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and effective algorithms are VF algorithms as far as time and memory consumptions are 

concerned. There are various types of exact matching algorithms such as 

monomorphism, isomorphism and graph-subgraph isomorphism (Cordella et al. 1999; 

Cordella et al. 2001). VF algorithm was compared with Ullmann’s algorithm in another 

research by Cordella et al. The computational complexity of Ullmann’s algorithm is 

)( 3NΘ  in the best case, if considering the exploring states is N. However the 

complexity of VF algorithm is )( 2NΘ . In the worst case, Ullmann’s Algorithm will 

give )!( 3NNΘ ; and VF algorithm )!( NNΘ . The memory consumption of each method 

is differing, the VF algorithm is )( 2NΘ in both cases, which are the best and the worst 

cases. On the other hand the memory consumption of Ullmann’s algorithm is )( 3NΘ in 

both cases (Cordella et al. 1999). Scientists prefer to use Ullmann’s algorithm in solving 

exact matching problems, due to its generality and effectiveness (Messmer 1996).  On 

the other hand VF algorithm is improved by Cordella et al. This new version of the 

algorithm is VF2. The search space and data structure are modeled differently. The 

memory usage is reduced in this new structure. In addition, this new algorithm can 

handle large graphs more efficiently (Cordella et al. 2001).  

 

Figure  2-1 Pseudo code of core beam search algorithm   

    Select the most heavily connected node to start with 
    while there are more heavily connected nodes in G1 

           if it is a new inital  node 
              for all the comparable nodes 

       find a matching pair 
                  for each match in the parentList 
                        if the matching pair is not already included 
                            newSolutionSet = new matching pair 
                            insertChildList(newSolutionSet) 
            else  

 for all the solutionSets in the parentList 
                   if the solutionSet contains any neighbors of currentNode 

         Locate the neighbor and its match pair 
                        for all the neighbors of the match pair in G2 

              compare neighbor with currentNode 
                            if matches 
                                solutionSet = solutionSet + new pair 
                                insertChildList(solutionSet) 
           for all solutionSets in childList 
 rank solutionSets 
              prune according to scoring function and check constraints 
              add the solutions in the childList to parentList  
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The most commonly used graph search algorithm is “beam search” for large 

systems to reduce memory consumption. Beam search is a heuristic search algorithm 

that keeps N-best solution for each step and prunes the rest in the matches lists ranked 

by defined scoring function (Yuehua and Alan 2007). Algorithm uses two lists; 

parentLists and childLists. The solution sets obtained in the previous iteration is kept in 

the parentLists and the possible matches at the current iteration are held by the 

childLists. After pruning and constraint checks specific to the matching operation, 

approved matches in the childLists are transferred into parentLists. Matching operation 

starts with a node that is chosen from heavily connected nodes and walks on 

neighboring nodes that are ranked by their connectivity values. Pseude-code of beam 

search algorithm is illustrated in Figure 2. 

There are numerous graph matching algorithms produced in the last three decades. 

Some of these algorithms are capable of reducing computational complexity by using 

constraints and restrictions. Others are capable of reducing memory consumption using 

streaming technology. Some methods have extremely large memory consumption. 

When attempts to reduce overall computational cost for matching are made for a sample 

graph against a large set of prototypes, memory consumption is exponentially 

increasing (Cordella et al. 2001). For that reason, scientists have attempted to solve this 

problem by using parallel algorithms such as divide and conquer (Marek and Wojciech 

1998). 

2.4.4 Parallel Graph Matching Algorithms 

A significant number of graph isomorphism and parallel processing algorithms can 

be found in the literature. The real problems of biology consist of having extremely 

large graphs. Parallel algorithms reduce the processing time by parallel search on the 

graph trees. Data streaming technologies are also used for the reduction of memory 

consumption (Robert et al. 1997). Yu Sheng et al. claim that their algorithm is suitable 

for the parallel computer system, especially for the one who works with distributed 

memory because the time is growing in the polynomial shape in graph isomorphism. In 

their implementation, asynchronous parallel algorithms are used. Their result show that 

as the processor amount increases the necessary time decreases; in addition, algorithm 

efficiency increases for higher numbers of nodes. The basic idea of this parallel 
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algorithm is based on the communication of each process when one of them succeeds. 

The main algorithm has three steps. The first step is that the master processor broadcasts 

the two graphs to all processors such as A an B. In the second step, each processor starts 

searching with its own processor number. For example, while the processor number is i. 

sub-graph is defined as
iAC ←  and

iBD ← . If the amount of processor is P, every loop 

in the search operation increased by P. This means that the search operation time is 

divided by P. If any of the processors finds that C and D are isomorphic, it informs the 

other processors. In the third step, all the processors finish their work properly. The 

search operation can be completed for these two graphs (Sheng et al. 2003). 

2.4.5 Function Prediction 

Protein functions can be determined by their structures. Proteins consist of 

domains that are structural, functional and evolutionary conserved units. Annotating a 

function to a protein is often best attained at the domain level. The most successful 

approaches in function annotation are inferring the function of a new protein from its 

homologues domains. 3d conformation of the protein structures can be represented by 

graphs known as Contact Maps (CM). If the contacts between residues are assumed to 

be preserved for the certain domains, graph matching algorithms (GMA) can be 

employed to discover conserved regions of the remote homolog proteins. Since GMAs 

are computationally expensive, parallel graph matching algorithms (PGMA) can be 

used to reduce computation time. 

Computational assignment of protein function from its 3D structure is one of the 

most challenging open problems in structural proteomics. Besides, determining the 3D 

structure of a protein and predicting the biological role of a protein is arduous. Currently 

many proteins, deposited to the Protein Databank, have no functional information yet.   

Although many different techniques can be formed for function prediction 

evaluation, three main categories are widely used for measuring the accuracy of the 

prediction; prediction of Enzyme Commission (EC) numbers, Gene Ontology (GO) 

terms (Ashburner et al. 2000), and ligand binding site residues, all of which can be 

inferred by determining a close homologues template of a target protein. However, 

while global search methods fail, the function of a protein can be predicted by searching 
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local structural regions.  These structurally conserved, compact, and semi-independent 

units are an alphabet of functional modules called domains. 

Detection of functional domains has major three components in terms of using local 

structural similarities; representation, search, and scoring. Each of those components 

can be addressed with different approaches. This chapter mentions a review on the 

current state of the art in function prediction based on detection of local structural 

regions. The major components of local structural similarities are discussed around 

contact maps for protein structure representation, parallel graph matching algorithms for 

local structural similarity search, and distance functions with graph theoretical 

properties for scoring. 

Various methods exist in the literature about function prediction of proteins. 

Function can be determined by using sequence based methods such as detection of 

functional motifs and inferring function from sequence similarity. PFP (Hawkins et al. 

2006), Gotcha (Martin et al. 2004), and Blast2GO (Conesa et al. 2005) use sequence 

information to reach GO terms. PFP Protein function can also be detected by locus 

comparison with other organisms. Moreover, phylogeny based methods are also 

employed in some of the applications such as SIFTER (Engelhardt et al. 2005) and 

Orthostrapper (Storm and Sonnhammer 2002). Function annotation can also be assessed 

by searching conserved patterns and motifs. Some of the motif databases include 

functionally important motifs such as EMOTIF (Huang and Brutlag 2001), PROSITE 

(Hulo et al. 2006), and PINTS (Stark and Russell 2003). In addition to these, molecular 

interactions such as bound ligand (Schmitt et al. 2002; Brylinski and Skolnick 2008), 

protein-protein interactions or detecting binding pocket(Schmitt et al. 2002) are widely 

used methods for function prediction. Another aspect of protein function prediction 

includes enzymatic function classification. However, several studies indicate structural 

information usage increases the success rates to asses correct function of a protein 

(Devos and Valencia 2000; Thornton et al. 2000; Wilson et al. 2000). 

The similarities between overall protein structures are found by structural 

alignment methods such as TM-align (Zhang and Skolnick 2005), CE (Shindyalov and 

Bourne 1998), and DALI (Holm et al. 2008). However, determination of local similar 

patterns requires other methods.  

Recurring side chain patterns in protein pairs can be detected by the help of graph 

theoretic representation. These recurring patterns are then used to annotate a function 

(Wangikar et al. 2003). Common binding pockets can be determined by using clique 
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detection algorithms. The proteins that have similar binding pockets are in similar 

function idea can be introduced to annotate a function (Schmitt et al. 2002).  

Less than 30% of the protein pairs below 50% sequence similarity show the same 

function. Therefore, sequence information is not sufficient to develop a successful 

method (Rost 2002). The combinations of the mentioned methods aim to increase the 

success rates in case of the failure in prediction of some methods (Pal and Eisenberg 

2005). There is a small correlation between specific enzyme function and overall 

protein fold (Martin et al. 1998). Therefore, local structural information gains more 

importance in the prediction of correct function (Laskowski et al. 2005; Weinhold et al. 

2008).   

Proteins structures are represented with many different schemes. The 

representation method can simplify the problem or more information can be added. 

Different representation methods can address different properties of the structure. They 

can add more information about amino acid types on to structure, a measure to be on the 

surface of a protein, a measure about side chain flexibility, or having a central role in 

the network of a protein structure. For instance amino acid type or side chain flexibility 

can be significant to predict enzymatic activity (Pearl 1993; Todd et al. 2002).  

Structure representation methods use 3D coordinates of the atoms obtained from 

PDB. The basic method employs only Cα atoms to simplify the problem.  However, 

some features explained by side chains can not be included with this approach. Protein 

structure can also be deduced to a linear string as another simplification. Pattern search 

and motif discovery algorithms that use sequential information can be utilized with this 

representation scheme (Matsuda et al. 1997; Barker and Thornton 2003; Lo et al. 2007)  

Graph theory is another approach which is based on residue connectivity to 

represent the protein structures (Strogatz 2001; Albert and Barabási 2002). 

2.4.6 Local Structural Similarity Search 

Several methods can be designed for local structural similarity search by adapting 

computational search algorithms. When a protein structure is represented by the linear 

strings, classical sequence similarity search algorithms can be applied (Lo et al. 2007). 

Graph matching (Kreher and Stinson 1998) and their parallel algorithms (Marek and 
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Wojciech 1998) are also commonly preferred as searched methods when the structures 

are represented by graphs. 

The idea of assessing a correct function by approaching a problem in domain level 

and using local sequence or structural information increase the success rates rather than 

employing overall similarities (Laskowski et al. 2005; Weinhold et al. 2008).   

Obviously, the structures and sequences of many remote homolog proteins are 

diverged in the evolution, however functionally active regions have been preserved. The 

aim of searching local structural similarities is to detect these preserved, functionally 

important, structural patterns.  

To discover local structural patterns, the following methods are introduced in the 

literature. A 3D template search based method claimed by Laskowski et al. 2-5 residues 

long 3D template structures are established from functionally significant units. These 

sets are manually complied by covering four different types of interactions; the enzyme 

active site, ligand-binding residues, DNA-binding residues and the reverse templates. 

An all template search method performs on a target protein to produce best matching 

similar structural units. These matches rank according to SiteSeer scoring function 

based on finding correct superposition in a sphere of radius 10A° for the target and 

template structures. Then the degree of overlapping residues is calculated to obtain the 

overlap score. The algorithm maximizes the sum of the overlap scores of the paired 

residues in all the possible overlaps. Using this method, distantly related paralogues 

proteins, the same protein from distantly related organism, and proteins in the same 

families with widely divergent sequences are explored. They showed significant results 

for function prediction. For instance, they captured two TIM-barrel proteins with very 

low sequence identity. Their SiteSeer score for this pair was very high and their 

functional match assignment was correct. Moreover, some of their analyses of newly 

released structures of unknown function were also experimentally verified (Laskowski 

et al. 2005).  

The combination of sequence and structural features are employed to capture local 

similarities with the assumption of similar sequences and structures are likely to present 

same function (Friedberg 2006). Conserved local regions of all proteins are grouped 

according to the same functionality. The frequencies of these local regions to have the 

same functionality are defined as degrees of local function conservation. High degrees 

of conservation yields high confidence in function prediction (Weinhold et al. 2008).   
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Conserved local regions may not contain adjacent residues. Structural 

neighbouring information is preserved in most of the cases. Structurally conserved 

patterns are obtained from some databases and tools such as JESS (Barker and Thornton 

2003), PINTS (Stark and Russell 2003), PDBSiteScan (Ivanisenko et al. 2004), and 

PAR-3D (Goyal et al. 2007).  

Graph theoretical representation and inexact subgraph matching approaches are 

also another method in the determination of structurally conserved regions, thus, they 

have intrinsic information to capture similar and conserved regions using network 

properties (Küçükural et al. 2008). 

2.4.7 Fold Classification 

Present approaches on protein fold classification can be basically divided into two 

approaches such as geometrical and topological approaches (Tsatsaias et al. 2007). In 

the case of geometrical approach, a predefined or varying type of distance between 

different proteins is used. Contacts and distances of atoms in the protein are used to 

classify proteins. If two different proteins tend to have similar distances between its 

atoms, they will have similar fold. 

In topological approaches, similarities of secondary structures (e.g., beta sheets, 

alpha helixes) play the main role on classification of proteins. Basically secondary 

structures are descriptive instead of atom positions and distances. A hybrid approach by 

combining topological and geometrical approaches, currently gives the best results on 

protein folding classification problem. 

A number of implementations of approaches stated above have been proposed in 

the literature for the fold classification problem. In this thesis, heuristic search and 

randomized population based search techniques were employed such as genetic 

algorithms (Ferri et al. 1993; Richeldi and Lanzi 1996; Raymer et al. 2000). 

There are manual methods known to classify proteins such as CATH and SCOP, 

which differ from each other not on main approaches but on small details, and some 

non-manual methods using support vector machine based (Shamim et al. 2007) or 

evolutionary information and predicted secondary structure (Chen and Kurgan 2007) or 

ensemble machine learning approach (Tan et al. 2003). 
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CATH is a semi-automatic, hierarchical classification of protein domains 

published in 1997. Name “CATH” comes from the first letters of Class (overall 

secondary structure content), Architecture (Large scale grouping of topologies that 

share particular structural features), Topology (structural similarity, equivalent to fold in 

SCOP), and Homologous Super family (indicative of demonstrable evolutionary 

relationship, equivalent to super family level of SCOP).  

The class is determined according to the secondary structure composition and 

packing within the structure. There are three major classes which are: mainly-alpha, 

mainly-beta and alpha-beta. A fourth class is also identified that contains protein 

domains which have low secondary structure content. 

Architecture describes the overall shape of the domain structure which is 

determined by the orientations of the secondary structures but by ignoring the 

connectivity between them. 

Topology describes structures that are grouped into folds, depending on both the 

overall shape and connectivity of the secondary structures.  

Homologous super family groups together protein domains which are thought to 

share a common ancestor and can therefore be described as homologous. Structures are 

clustered into the same homologous super family if they satisfy pre-defined criteria (Lo 

Conte et al. 2002). 

SCOP (Structural Classification of Proteins) database is a largely manual 

classification of protein structural domains based on similarities of their amino acid 

sequences and three-dimensional structures. It is a manually derived comprehensive 

hierarchical classification of known protein structures, organized according to their 

evolutionary and structural relationships (Lo Conte et al. 2002).  

SCOP utilizes four levels of hierarchic structural classification that are class, fold, 

superfamily and family. Class is general architecture of the domains. Fold which is 

equivalent to topology in CATH is similar arrangement of regular structures by ignoring 

the evidence of evolutionary relatedness. Superfamily is equivalent to Homologous 

superfamily in CATH. On the family level, some sequence similarities can be detected. 

On one of the support vector machine based classification of protein folds method 

(Shamim et al. 2007), a Support Vector Machine based classifier approach that uses 

secondary structural state and solvent accessibility state frequencies of amino acids and 

amino acid pairs as feature vectors is developed. With this method an overall accuracy 

of 65.2% for fold discrimination have been achieved. A fold discrimination accuracy of 
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70% is achieved by combination of secondary structural state frequencies with solvent 

accessibility state frequencies of amino acids and amino acid pairs. The performance of 

the SVM depends on the size of the dataset used for training because it learns from the 

examples. SVM has been designed primarily for binary classification. Many methods 

have been developed to extend SVM to a multi-class classification such as binary 

classification based method or the All-together method which directly considers all data 

in one big optimization formulation. 

PFRES, one of the fold classification methods has around 67% accuracy achieved 

on protein fold classification of the low identity (<35%) sequences (Chen and Kurgan 

2007). The method adopts a carefully designed, ensemble-based classifier, and a novel, 

compact and custom-designed feature representation which is a combination of 

evolutionary information by using the PSI-BLAST profile based composition vector 

and information extracted from the secondary structures predicted with PSI-PRED. 

In one of the ensemble machine learning approach (Tan et al. 2003) motivated by 

Ding and Dubchak's (Ding and Dubchak 2001) analysis was applied support vector 

machines and neural networks to construct one-versus-others and all-versus-all methods 

for classifying multi-class SCOP fold from sequence data. 
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Chapter 3 

3 MATERIALS AND METHODS 

3.1 Graph Representations and Graph Theoretical Properties  

3.1.1 Graph Representations of Protein Structures  

The definition of graph representation techniques for protein structures are varies. 

In this thesis, two major graph representation methods such as Delaunay Tesellation and 

Contact Maps were compared and contact maps method was chosen where the residues 

correspond to the nodes and the contacts correspond to the links. If the distances 

between Cα or Cβ atoms of two residues are within a cut-off distance than they are 

consider to be in contact. Several contact distances are used in the literature. It is used 

5.8 Aº (Vendruscolo et al. 1997), 6.8 Aº (Bahar et al. 1997; Gupta et al. 2005; Shental-

Bechor et al. 2005), 8.6 Aº (Ying and George 2003; Atilgan et al. 2004; Taylor and 

Vaisman 2006), and 10 Aº (Vendruscolo et al. 1997; Taylor and Vaisman 2006) as 

distances and decided on an optimum distance on a training set. Graph theoretical 

properties were constructed, after 3D structures of proteins were represented as contact 

maps. While the construction of the contact maps, four mentioned distances and two 

atom types Cα and Cβ were attained to discover a better representation of a protein 

structure. 

3.1.2 Graph Theoretical Properties 

Different graph theoretical properties are defined in the literature. In this work 

nine graph theoretical properties were used. The first network property is the 

connectivity k which measures the number of neighbors of each residue in the protein 

(Taylor and Vaisman 2006).  
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A new property was defined called second connectivity S(k) to measure the 

compactness of the graph. S(k) is defined as the sum of the contacts of all the neighbors 

of a node has the similar information that the connectivity has; therefore, their 

correlations are over 96%.  If the structure is made up of one globular structure rather 

than small compact domains, it would have high second connectivity numbers. This 

value can be used to determine the similar parts of the proteins that have different 

structural features. The third network property is the clustering coefficient so-called 

cliquishness which measures how well the neighbors of a node are connected to each 

other. The clustering coefficient for each node is calculated as in (2); 
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where En is the actual edges of the residue n and k is the degree (Vendruscolo et al. 

2002; Taylor and Vaisman 2006).  

In addition to these properties characteristic path length (L) was also used as a 

network property (Bagler and Sinha 2005; Taylor and Vaisman 2006). Globular 

proteins yield smaller L values, whereas fibrous proteins yield larger, because of the 

variations in the shortest paths in the protein structures. Characteristic path length Ln 

for each residue is calculated by the average of the shortest paths from the residue n to 

all the other residues given as in (3); 

∑
=−

=
N

j
njn N

L
1)1(

1 σ         (3) 

where ijσ is the shortest path length between nodes i and j and N is the number of 

residues of a protein (Taylor and Vaisman 2006). 

Several other measures can be calculated as graph theoretical properties. 

Centrality of a node is another measure that is calculated for each node in a graph. 

Although many different centrality measures exist in the literature four of centrality 

measures were employed. The first centrality measure is betweenness. The betweenness 

is the quantitative measure of a node or an edge that describes the degree of to be in 

between other nodes (Freeman 1977) and it is calculated as given in equation (4),  
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where stσ is the shortest path matrix and )(istσ  is the matrix for the number of the paths 

between the nodes s and t pass through the node i. 

The closeness centrality is defined as a measure that how long does the 

information take to spread from a given node to another reachable nodes given in 

equation (5) (Sabidussi 1966). 
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where ),( tiσ  is the shortest paths from node i to all possible nodes t in the network V. 

The graph centrality measures the differences between the centrality of the most 

central node with the other nodes given in equation (6) (Hage and Harary 1995).   
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and the stress centrality measures the total number of shortest paths that passes over a 

node i given in  the equations  (7) (Shimbel 1953). 
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Centrality measures demonstrate the importance of the nodes in the network 

(Brandes 2001; Newman 2003). If a node has a central role in the network of a protein 

structure, this node can perform an important role on its stability. 

After, all the graph theoretical properties were calculated; the similar parts of the 

proteins are determined by the dynamic programming algorithm. The attributes of the 

nodes were represented in Figure 3-1 by showing sample sub-graphs of two proteins. 

The nodes n1 and n2 are very similar to each other if their network properties are 

considered. First, graph theoretical properties have to be verified whether the similar 

structures have the similar values or not. 
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Figure  3-1 Contact maps of two proteins and network property vectors (n1, n2) that are similar to each 

other, if their connectivity and clustering coefficient values are considered.   

3.1.3 Statistical Analysis and Moments of the Distributions 

To show similar parts of the proteins have similar network properties, the 

distributions of the network properties were analyzed. The distributions for proteins 

were constructed using average distance of protein pairs and average moment values 

were calculated. The average distance calculation is given equation 8 for a pair of 

structure. 
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where n1 and n2 denotes the aligned residues from proteins respectively whereas N 

is the length of the alignment and Aj is the distance between each graph property. 

In order to include more information about the distribution of network properties, 

moments such as standard deviation, skewness and kurtosis values were calculated in 

the experiments. The formulas for them were given in equation 9, 10, and 11 

respectively. 
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For each of these above graph properties, mean, standard deviation, skewness and 

kurtosis were calculated. Since our aim is to calculate the GDT_TS using these 36 

values, multiple linear regression analysis which is a statistical technique that attempts 

to find a relation between a dependent variable (Y) and several independent predictor 

variables (X) was performed, so that predictor variables can be used to predict the single 

dependent variable (Neter et al. 1996), in our case it is GDT_TS.  

A linear regression model may have an undesirable characteristic, such as non-

constancy of error variance or nonlinearity of regression function. A transformation on 

dependent or independent variables, like taking the logarithm or square root of the 

variable, creates a new variable and eliminates the undesirable characteristic (Hair et al. 

1998). In this work, when a predictor variable needed a transformation, scatter plots and 

residual plots were analyzed to decide which transformation is most effective. For 

transformation on dependent variable, Box-Cox procedure, an automated way of 

choosing a transformation from the family of power transformations on dependent 

variable (Neter et al. 1996), was used.  

Transformations of dependent variable are generally aim to fix the nonconstancy 

of error variance which is known as heteroscedasticity. The formal test for 

heteroscedasticity is the Modified Levene Test. In modified levene, data set is divided 

into two groups according to the level of predictor that shows nonconstant error 

variance. Then, two-sample t test is performed to determine whether the mean of the 

absolute deviations of these two groups differ significantly (Neter et al. 1996). If that is 

the case, then there is non-constant variance of the error terms, and a more appropriate 

model needs to be employed such as linear regression with weighted least square.    

Weighted least square is a method of multiple regression and its’ only difference 

from ordinary least square is the use of weights for each observation rather than equal 
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weights of 1.  Generally, these weights are calculated as the inverse of the variance of 

an observation. Therefore, observation with lower variance receives a greater weight 

which is logical since a more precise observation will provide more information about 

the dependent variable (Neter et al. 1996; Hair et al. 1998). 

Once the regression model is decided, next step is to identify a good subset of 

predictor variables. There are many different ways to choose this subset. In this work, 

stepwise estimation, forward selection and backward elimination methods were used. 

Forward selection starts with no predictor variables in the model and then adds variables 

according to their contribution to the prediction. On the other hand, backward 

elimination method starts with a model that includes all predictor variables and at each 

step; it deletes a variable if it does not contribute to the model significantly. These two 

methods are combined in stepwise estimation which either adds or deletes a variable at 

each step according to its’ predictive power in the model (Hair et al. 1998). 

One of the common problems of multivariate data analysis is the outliers that exist 

in the data set. Identifying these outliers is especially important in regression analysis 

since they can affect the least square regression function dramatically. In this work, 

studentized deleted residuals were used for identifying cases with outlying Y 

observations. The procedure is to delete an observation and refit the model using the 

remaining observations. Then using this model, the predicted value and residual for the 

deleted observation are computed. Studentized deleted residual is equal to this residual 

divided by its standard error. If the absolute value of this value is large, then that 

observation is identified as an outlier. For outlying X observations, hat matrix leverage 

values were used. Hat matrix leverage value is a measure of distance between X values 

for an observation and the means of the X values for all observations. Thus, a large 

value suggests that the observation is distant from the center of all X’s, therefore, 

identified as an outlier (Neter et al. 1996). 

Identifying the outlying cases does not mean that these observations must be 

removed from the data set. Further analysis has to be done in order to decide whether an 

observation is influential and needs to be discarded. In this work, three measures of 

influence were used which are DFFITS, Cook’s Distance and DFBETAS. DFFITS is 

the amount of influence that an observation has on its’ own predicted value, and an 

observation is identified as an influential case if the absolute value of this value is large 

enough. On the other hand, cook’s distance measures the effect of an observation on all 

the predicted values. Cook’s distance measure is interpreted by relating it to an F 
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distribution and an observation is identified as an influential case if its’ percentile value 

corresponding to the F distribution is large enough. Lastly, DFBETAS is the amount of 

effect that an observation has on the regression coefficients. Again, large absolute value 

of DFBETAS indicates that the observation is influential (Neter et al. 1996). 

Using these above methods, multidimensional linear regression analysis was done 

in order to predict GDT_TS using the graph properties. 

3.1.4 Discrimination Power of Graph Theoretical Properties and Contact 

Potentials 

The evaluation function consists of two parts: the network properties of the graphs 

obtained from the proteins and the contact potentials.  

Several network properties of the graphs are employed to distinguish the graphs of 

native proteins from those obtained from artificially created near native conformations, 

called decoy sets. The first network property is the degree or connectivity k which is the 

number of edges incident of a vertex i (Taylor and Vaisman 2006). The average degree 

of a protein structure is calculated by the mean of the degree distribution of the graph. If 

the average degree is high, this points out to a globular structure where many residues 

establish many contacts with each other. Unfolded proteins would have very low 

average degree value. Natural proteins folds are compact, and measures using the 

compactness of the proteins can distinguish the native folds from those of artificially 

generated decoy set. The second graph property is the second connectivity which is 

calculated by the sum of the contacts of each neighbor of a node.  The second 

connectivity is a measure we defined that also shows the compactness of the graph. If 

the structure is composed of small compact domains rather than one globular structure, 

the structure would have high average degree but low second connectivity numbers. The 

attractiveness of this value is its ability to distinguish such structures.  

The third graph property is the clustering coefficient which measures how well the 

neighbors are connected to each other, thus forming a network of contacts (clique). If all 

the neighbors of a node i are connected to each other, then they form a tight clique and 

the Ci value becomes 1. The clustering coefficient of the graph C is the average of all 

the Cn values (Vendruscolo et al. 1997; Taylor and Vaisman 2006). 
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Graph properties can only capture overall structural properties of the proteins but 

do not measure physiochemical interactions between the atoms that are in contact in the 

folded form. The second part of the evaluation function uses contact potentials to 

capture the favorability of physicochemical interactions between the contacting residues 

of the folded protein. Contact potentials are statistical potentials that are calculated from 

experimentally known 3D structures of proteins which calculate the frequencies of 

occurrences of all possible contacts and convert them into energy values so that 

frequently occurring contacts have favorable contact scores. This method is an 

approximation to actual physico-chemical potentials but they have been shown to work 

as target energy functions on the protein folding problem (Soyer et al. 2000; Bonneau 

and Baker 2001; Vendruscolo et al. 2002; McConkey et al. 2003). 

In this study, the average contact potential scores were calculated using contact 

potential matrix by Jernigan et al.(Miyazawa and Jernigan 1996). There are other 

contact potential matrices that are widely used as well (Liang and Dill 2001), since they 

are highly correlated with each other, we found it sufficient to use Jernigan matrix to 

see the discriminative power of contact potentials in our problem. The degree, 

clustering coefficient, second connectivity and their moments along with Jernigan 

potential scores are employed as dimensions of the classification methods. Using the 

average values causes loss of information on the distribution of each variable; therefore 

we used moments to better capture the distributions of all the features.  

Several classification methods are used to find out whether the graph theoretic 

properties can discriminate the native proteins while determining which graph 

representation and data classification method yields the best results.  

3.1.5 Dynamic Programming with Affine Gap Penalty  

A function is defined to address match and mismatch scores to find the similarity 

between two nodes. Before using this function, the data were normalized, because, the 

size of the proteins are not similar and some of the graph properties are proportional to 

the number of the nodes in the network such as connectivity, thus, the values are 

normalized using equation 12. 
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where v(i) and n(i) denote the values of a selected features and normalized values 

of it respectively. Then the average distance of two nodes e is calculated using equation 

13. 
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where N is the number of selected features in alignment and f is the feature 

numbers in n1f, n2f that are normalized values of matching nodes. Then we calculated the 

similarity m(i,j) between two nodes i nd j by using the equation 14 and defined function 

scales the values to [-k, H2-k]. 

keHjim −−= 2))1((),(                                                        (14) 

where e is the average distance of two nodes and H is the scale factor while k is 

the offset value. 

In this approach, exact matches are H2-k while the similarity decreases, the match 

score tend to decrease to -k.  

After the matrices are filled in dynamic programming, recursive trace back 

algorithm constructs all the possible alignments. Trace back algorithm can start with the 

bottom corner from m and n indexes or the maximum score in the matrices can be 

chosen as a starting point. The protein sizes are different in many cases and obtained 

RMSD results started from bottom corner were quite low; therefore the end of the 

alignment was pruned by choosing the maximum score in the matrices as a starting 

point in the trace back algorithm. Moreover, trace back algorithm can produce multiple 

solutions, if the matrices have multiple paths that have same score.  

3.1.6 Function Prediction Using Local Alignment Approach 

Remote homologues proteins were selected which have varied sizes to show the 

significance of local alignment approach. Therefore, the local alignment algorithm 

detects the similar function where the global alignment algorithm does not.  

The local alignment approach is very similar to global alignment algorithm but in 

this study, affine gap penalty does not included. The locally aligned regions have not 

got any gap. The main parameters of local alignment basically set as fallowing. When 

the matrix for dynamic programming is filled up, the gap penalty scores are set to 
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infinite value and while a maximum value for a cell is calculated a negative value, this 

value set to zero. The same functions in global alignment approach were used for 

matching residues. All possible local alignments are then generated using back 

propagation method. Then all the local alignments are sorted according to sum of all the 

matches calculated by scoring function given in (14). Then first ten heavily similar parts 

were considered to reduce the computation time. Here, another dynamic programming 

approach was used to merge alignments or create all possible combinations of the 

locally aligned regions. After merging operation, the alignment that has the top score 

and which is the longest were used to represent as a hit score.  

To search a function, “all to all” search was done on the dataset and the alignment 

that has the best score count as a hit. The function of a protein was determined using the 

function of the hit protein. The evaluation has been done by counting common EC 

numbers. If the hit protein has the same EC number of the searched protein, a correct 

prediction has been done otherwise the ancestors of the function take into account. The 

EC numbers has four digits (eg. EC.X.X.X.X). Each part of the EC numbers shows 

different levels of the function similarity. If the digits are common till to the 3rd digit, 

they are still in the same function; however, the acceptor can be differing. In this case it 

can be counted as a correct prediction too. In CASP the evaluation has been done on 

this assumption. Therefore, we calculated our accuracy to sum up all the values that are 

common for both and divided to 4. If all four digits are common for the pairs, then this 

means exact prediction.  

3.2 Parallel Programming and an Implementation of a Parallel Algorithm 

3.2.1 General View of Parallel Algorithm  

Beam search algorithm (Yuehua and Alan 2007) can be adapted to parallel 

environment. Starting nodes or initiation nodes for each process is chosen from the most 

heavily connected nodes by ranking the connectivity values of the first protein.  

The network can be deduced to binding residue matrices (BRM) that are 

constructed using neighboring information and network properties such as cliquishness, 
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connectivity, sequence similarity, secondary structure information and centrality values 

for both proteins.  

Master and child processes are designed with different responsibilities. The master 

process manages the child processes and holds their states in each level and sends them 

necessary information that they need when the algorithm runs in asynchronous nature 

(Sheng et al. 2003). The master process is not responsible for any matching operation. 

Child processes are addressed for matching operations and they inform the master in 

each state. The master process can send two different signals to inform child processes 

about their states which are new starting node and stop signals. When the master sends 

BRM to each child process, they are ready to begin the matching operation. In this state, 

all child processes are waiting for an initiation node to begin graph matching. 

Once the initiation node distribution is made between child processes, it starts the 

graph matching operation until all the heavily connected nodes are searched. When the 

matching operation for an initial node is finished, the child process sends a signal to the 

master process to inform its state. As a result, this process is free to accept new initial 

nodes to start a new matching operation. When all the heavily connected nodes are 

finished, the master sends a stop signal to the child processes to close their connections. 

Each child process employs beam search algorithm for matching operation given in 

Figure 2-1. Scoring function, constraints, and how child processes are using them in 

their matching operations are covered in the following sections. 

3.2.2 Scoring Function 

Scoring function is used to determine whether a match is valid in relation to 

predefined threshold values. If the cliquishness and connectivity values are close 

according to specified intervals, the match is awarded else, the match is penalized. All 

of the graph theoretical properties mentioned before and potential scores are used in our 

scoring function as a nine dimensional vector for each node in the graphs. The scoring 

function TS is defined in the equation 15. 
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where the V1 and V2 are the vectors consist of the nine different graph theoretical 

property from potentially matched nodes and wi is weight for the corresponding 

property to include its contribution to similarity.  

If match scores are higher than the predefined threshold values, then this is 

counted as a valid match. The algorithm has three parts and three separate threshold 

values depending on the desired stringency of the match. For first n iteration we got the 

threshold value higher to find the exact starting nodes which would give higher TS. In 

order to accept some errors and spread out easier in the graph the threshold values were 

gradually decreased in the second and the third n iterations. 
 

3.2.3 Constraints 

Graph matching operations are generally very complex and their complexity is at 

least )( 2NΘ  (Cordella et al. 1999).  Therefore some constraints are used to reduce 

computational complexity. All constraints are defined parametrically to discover the 

better constraints for each situation.  

One of the most important constraints prunes the childList. For instance, a child list 

is not allowed to grow over ten matches. Each residue has at most 15 neighbors for an 

average protein. For that reason, the matches that have low scores are eliminated 

(Yuehua and Alan 2007).  

When a match is found, new lists are generated between their neighbors to 

determine new matches. However the parent matches that are previously obtained are 

important. While checking previously obtained matches, following constraints are 

employed.  

Let iX  is a residue number from first protein and jY  is a residue number from 

second protein and suppose that iX  and jY  found as a match then new match such as 

1+iX  and 1+jY  which will have the first match as parent. The constraint is given in 16 

below. 

 

11 ++ ≥⇒≥ jiji YXYX                                        (16) 
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This constraint has to be checked for each parent which is previously obtained to 

prevent cross matches. 

Another restraint of the algorithm is defined as following; if a match is instituted 

previously, the same match is not allowed because the algorithm goes based on 

neighboring information and it can attain to match the same residues again. 

3.2.4 Child Processes 

The architecture of the parallel communication is based on asynchronous 

communication. If a child process runs faster, this process can finish its job earlier and a 

new job with a new initiation node is then assigned. Child processes wait for a signal 

from the master process to start. Once a child process received a BRM and an initial 

node, it is time to create a first solution list. The first solution list includes matches 

between an initial node and matched nodes coming from the second protein. Possible 

matches in the solution list are ranked with their matching scores.   

To continue the algorithm, the first solution in the solution list is taken and all the 

neighbors of those nodes are found in order to create new possible matches between 

neighbor lists of the corresponding nodes. Before any matches are transferred into the 

parent solution list, they are put into the child list in order to check constraint and rank 

according to the scoring function. Possible matches held by the child list are sent to 

master process to check whether this matching operation has been made with another 

process or not. If this node has been matched with the same node by another process, 

the master process removes it from the child list and sends back the updated child list 

with this information to the child process. Remaining matches in the child list directly 

insert into the same solution list with parent id to indicate its parent solution in child 

process. This solution list structure collects all the solutions in the same list. The similar 

structure of the solution lists are held in the master process. In addition, the master 

process collects all the solutions from all of the processes. When the algorithm ends, the 

solutions in the master process get separated from each other with the back propagation 

method. The solutions have one of the best scores obtain from only limited number of 

initial nodes. These initial nodes are named as “winner nodes”. When some correct 

matches are obtained in a process, the others also tend to match correctly too; therefore, 
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the solution scores that are produced by winner nodes are higher. The example flow 

diagram of the parallel graph matching algorithm is given in Figure 3-2.  

 

Figure  3-2 Flow diagram of the parallel graph matching algorithm 

3.2.5 Solution Separation and Back Propagation  

All the solutions collected by master process are produced with child processes. 

They are held in the same three dimensional vector spaces. Because the amount of the 

solutions is unknown at the beginning of the program, the first solution list consists of 

only matches between initial nodes and matched residues coming from second protein. 

Every solution will produce more matches after second iteration and the size of the list 
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will multiply more on the third iteration. The list is growing like a tree shape but every 

solution has its parent id to find the individual solution lists with back propagation. 

Table 3-1 represents a sample data structure list before the separation. All the solutions 

are in an array to reduce memory and time consumption because parents are checking in 

every match whether the match is occupied before or not. If parentID is -1, this solution 

begins with a new initiation node. For example; 65, 100, 176 residues are matched with 

40, 140, 196, respectively and they have no parents. After back propagation, three 

solutions can be extracted in this list. First solution indexes will be 0-3-5-6 and second 

will be 1-4 and third will be only 2.  

Table  3-1 Sample data structure list 

Index parentID 1st 
Parent 

1st 
Residue 
Number 

2nd 
Parent

2nd 
Residue 
Number

Score 

0 -1 0 65 0 40 83.5 
1 -1 0 100 0 140 74 
2 -1 0 176 0 196 89.5 
3 0 65 69 0 44 82.5 
4 1 100 85 140 125 84.5 
5 3 69 66 44 41 71.5 
6 5 66 68 41 43 79.5 

 

Table 3-2 represents a sample solution list after separation. Separated solutions are 

ranked according to their scores to select the best solutions that are obtained from each 

process. Scores are calculated with the sum of the scores divided by the match count. 

Sometimes the solutions have gaps and these gaps are filled from possible matches that 

are obtained from other solutions which are described in detailed in following section.  

Table  3-2 Sample solution list 

ID 1st Res 
Pos 

1st Residue SS 2nd Res 
Pos 

2nd Res SS Score 

6 65 Y H 40 C H 73.5 
7 69 S H 44 G H 75.5 
4 86 T H 61 T H 79.5 
5 87 R H 62 R H 85.5 
3 102 R H 77 R H 85.5 
2 118 D H 93 D H 81.5 
1 119 Y H 94 L H 71.5 



 53

3.2.6 Filling between Intervals 

Obtained matches can not be sequential; matches leap forward and backward as it is 

in Table 3-2. Matching order is shown in ID column. The best matches are used as a 

skeleton of the solution. These leaps are filling with the values in possible other matches 

obtained from other solutions. These values are also found by algorithm but when they 

are in a solution the solution total score may not be high enough to pass on the pruning 

threshold. If they fit into the skeleton, these matches are added. Therefore the best 

solutions are extended more to generate new possible solutions which are longer. Some 

constraints such as gap penalty and gap extension penalty can be used to fill these 

intervals. Repeated matches are rewarded and gaps penalized.  If the gap is in helix or 

sheet, it is penalized more than as in the loop structures. The relative position of a match 

is rewarded in α-helix and β-sheet structures.  

 
 

Figure  3-3 Solution preparation workflow 
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If matching residues are in similar position of an α-helix, or a β-sheet, these 

matches are rewarded relatively to be in similar position. These constraints reduce the 

solution amount to handle them with in shorter time and lesser use of memory. Figure 

3-3 shows the workflow of the solution preparation. 

3.2.7 Domain Prediction with Graph Matching Algorithms    

Graph matching algorithms are utilized to discover domains using the notion of 

similar structures have same domains. Domains of the proteins can be predicted by 

searching pdb libraries. In this way, some of the unknown domains or the domains of 

predicted models can be determined. Obtained matches from protein pairs are 

structurally the most conserved parts. With this assumption, obtained matches have 

been checked whether these parts show significant domain property or not.  

3.3 Fold Classification 

For fold classification, a population based Genetic algorithm was designed.. 

Various parameters are present in the algorithm and optimal parameters were deduced 

by testing with different parameters in our datasets. Selected parameters are given in 

Figure 3-4. 

 

Figure  3-4 General parameters used in genetic algorithm  

Population Size: 20 
Crossover Probability Rate (CPR): 0.95 
Mutation Probability Rate (MPR): variable 
Profile Score Multiplier (PSM): 1 
Contact Score Multiplier (CSM): 30 
Convergence Look-Back Buffer: 20 generations 
Pooling Period: 10 generations 
Pool Proteins: 4 proteins 
Length Offset: 2 
Termination Condition: Convergence is met 
Minimum residue length between secondary structures: 1 



 55

3.3.1 Encoding 

The population consists of individuals which represent candidates for the 

secondary structure prediction problem. The individuals are represented by combination 

of indexed secondary structures. (Sn,0 ,…, Sn,m) where n is the protein index and m is the 

index of the last secondary structure. Each secondary structure consists of two values: 

start position and end position of the corresponding structure. Therefore we used 

numerical encoding for the genetic algorithm. Abstraction is used for optimization and 

representation of the algorithmic data which is basically a protein container. 

3.3.2 Training 

A suitable training set was defined to work with. First of all, the proteins selected 

from the same sub-families. At least 5 proteins were chosen under this constraint and 4 

of them defined as a training set, and one as test unit.  

The system was trained with selected training proteins in the following manner: 

First the training proteins were multiply aligned to define consensus secondary 

structures.  

Second, found consensus secondary structures were used to extract the profile 

matrices for calculation of the profile scores of each individual secondary structure. For 

this, we used a multiple alignment tool named ClustalW (Thompson et al. 1994) to align 

each same-indexed secondary structure in training set. After the alignment, we used 

pfmake (Bucher et al. 1996) to generate the profile matrices. 

Third, to include structure information contact map matrices were used to 

calculate contact scores. For contact map matrix generation, an iterative process was 

employed. The Euclidean distance between all atoms in all secondary structures are 

calculated using the coordinate information in PDB files. If the distance is less than 

6.8Å then the atoms are in contact. An important note about atom contact is that, 

relative contact map matrix is generated. For example, if 3rd atom in (n-2)nd secondary 

structure An-2,3 is contacting with 6th atom in nth secondary structure An,6 then 

calculation of contact score for individuals is done using this mapping (An-2,3 – An,6). 

Only the contact map matrix of the first training protein is used for the calculation 

purpose.  
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3.3.3 Parent Generation 

The constraints on the generation of the secondary structures in each individual 

are determined by the training proteins’ secondary structures. The maximum and 

minimum length of each of the secondary structure is retrieved from training proteins. 

Length offset is added to the maximum length. Those constraints are put into vectors 

Lmax and Lmin.. The secondary structures for each protein in each generation are 

generated randomly using the length vectors. Another constraint taken into account is 

the minimum residue length between each secondary structure which is set to 1.  

After training process, parents (P1,…,.Pn ) are generated using the length 

constraint as the randomization parameter. Resulting structures are then mapped with 

their atoms and amino acids using the information present in the test protein. Generic 

overview of algorithm is presented in Figure 3-5. 

 

Figure  3-5 Genetic Algorithm 

3.3.4 Scoring 

Two different scoring schemes were employed to calculate the scores of 

individuals of a generation.  

1. First generation G1 of n parents (P1…..Pn) is created using real value encoding. Each 
parent Pi is randomly generated and represents a protein with semi-randomly generated 
secondary structures. 

2. Fitness function of each Pi, F(Pi) is calculated using 
a. Profile matrix 
b. Contact map 

3. Until the termination condition is met 
a. Crossover and mutation operators are applied to generate a new generation 

G(i+1) of n offspring (P’1…. P’n) 
b. Pooling 

i. 4 proteins (P’n+1….P’’n+4) from the secondary structure pool are 
generated if the pooling period is met. 

c. Fitness score of each P’i, F(P’i) is calculated using 
i. Profile matrix 

ii. Contact map 
d. Selection 

i. 3 highest score proteins 
ii. 2 lowest score proteins 

iii. Remaining proteins are selected randomly. 
e. Mutation probability rate is updated depending on convergence count. (Figure 

2) 
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First, profile matrices obtained from training phase were used to calculate the 

profile score. Score of each amino acid in a generated secondary structure is retrieved 

and added together. Upon completion of summing the amino acid scores, it is divided 

by the number of amino acids in the secondary structure. Same process is made for all 

the secondary structures and the resulting scores are added together, then it is divided by 

the number of secondary structures. The resulting number (SCp) is the core profile score 

of the protein Pi. 

Second, contact matrix obtained from training phase was used and Dill contact 

potential matrix (Thomas and Dill 1996) is used to calculate the contact scores of an 

individual protein. Each entry in the contact matrix maps an atom in one secondary 

structure to another atom in the same or another secondary structure, meaning instead 

the absolute position of a contact in the sequence, we use the index of a contact in 

another secondary structure. Atoms in each secondary structure of the generated protein 

are checked in accordance with the entries in the contact matrix and if the contact is 

found, score for this contact is calculated using the Dill (Thomas and Dill 1996)] 

contact potential matrix. The resulting values are added together and it gives the contact 

score of a secondary structure. This calculation process is made for all the secondary 

structures and their contact score sum is divided by the number of secondary structures. 

The resulting number (SCc) is the core contact score for the protein Pi. 

The resulting fitness score of the protein Pi is calculated using the formula 17: 

F(Pi) = PSM * SCp + CSM * SCc.                                          (17) 

where PSM is the profile score multiplier, SCp is the profile score of the protein, 

CSM is the contact score multiplier and SCc is the contact score of the protein. 

3.3.5 Parameters 

The parameters of our genetic algorithm are very important in determining the 

outcome of the prediction. 

Population size parameter defines the count of proteins in the initial parent 

generation G1 and also the count of proteins in the next generations. The algorithm was 

tested by keeping the other parameters constant and changing this value. After 40 runs, 

we deduced that both the convergence count and the result accuracy were better when 

this parameter was between 17 and 22. So we decided to use 20 as this parameter.  
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Crossover Probability Rate (CPR) parameter defines the limiting number which 

has to be greater than the generated random number to decide if crossover will be tried. 

It is defined as 95 since increased crossover chance enables us to span a greater number 

of proteins where crossover is possible. 

Mutation Probability Rate (MPR) defines the limiting number which has to be 

greater than the generated random number to decide if mutation will be tried. 

Profile Score Multiplier (PSM) is the multiplier for profile score of an individual 

which is used for the calculation of the fitness score. The tests showed that if we set this 

parameter to a value greater than 1 while keeping the contact score multiplier 1, the 

contact score has no visible effect on the fitness score. So we decided to use 1 as the 

PSM parameter. 

Contact Score Multiplier (CSM) is the multiplier for the contact score of an 

individual which is used for the calculation of the fitness score. The tests show that if 

we keep the PSM constant and increase this value to a number greater than 30, the result 

accuracy decreases. Also we saw that if we keep this number less than 30, the 

domination of the profile score is evident therefore contact score does not have 

significant effect on the fitness score. So we decided to use 30 as the CSM parameter as 

our tests showed that this is the optimal value. 

Pooling Period is the period in generations on which proteins from the common 

secondary structure pool are generated and added to the current generation. After testing 

the algorithm with our datasets while keeping the other parameters constant, we found 

that optimal value is between 6 and 13 in terms of accuracy and effect on the outcome. 

Setting this value to a number less than 6 did not have any new high score prediction 

generated and setting this value to a number greater than 13 was diminishing the effect 

of pooling, decreasing the convergence time. 

Pool Proteins is the number of parents that is generated in the pooling operation. 

Optimal value of this parameter is between 2 and 4. Taking more than 4 parents from 

the pool increases the convergence rate without improving the result. 

Length Offset is the correction value for the maximum length of each secondary 

structure in parent generation. It is set to 2 in order to increase the chance of generating 

a longer secondary structure in parents since test protein might have longer secondary 

structures than the training proteins’.  
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Termination Condition is the condition on which the genetic algorithm stops. It is 

set to ‘until convergence’ instead of a certain number of generations because in our 

algorithm we achieve convergence in a reasonable time. 

Minimum Residue Length is used in parent generation, pool generation and 

crossover and mutation operator. It is the minimum number of amino acids between 

each secondary structure. It is set to 1 since it is the natural condition for proteins and 

also it gives the optimum results in our dataset.  

3.3.6 Operators 

Genetic algorithm was developed to preserve the best individual according to the 

rule of survival of the fittest. This is accomplished by crossover and mutation operator. 

Crossover Operator is defined as one or two cut point secondary structure swap 

procedure. Individuals from the current generation are selected pair wise for crossover 

randomly. Crossover possibility is checked for each pair by generating a random 

number. If the random generated number is less than the crossover probability rate, then 

the crossover process begins. Another random number between 1 and 3 is generated to 

see if crossover operation will progress towards one cut-point or two cut-points. (Figure 

3-6).  

 

Figure  3-6 Crossover operation 

1. Choose and remove two proteins, Pn,1 and Pn,2 randomly from the current generation set 
Gn if there are proteins left in the set. 

2. Generate a random number, R1 between 0 and 100. 
2.1. If the generated number R1 is less than the crossover probability rate, CPR; go to 

step 3.  
2.2. If the generated number R1 is greater than or equal to the crossover probability rate, 

CPR; go to step 1. 
3. Generate a random number, R2 between 1 and 3. 
4. Try crossover operation on Pn,1 and Pn,2 

4.1. If crossover is successful, two new proteins P’1 and P’2 is generated.  
4.1.1. If R2 = 1, go to step 6 
4.1.2. If R2 = 2, go to step 5 

4.2. If crossover is failed, go to step 1. 
5. Try crossover on P’1 and P’2 

5.1. If crossover is successful, two new proteins P’’1 and P’’2 is generated. Add P’’1 and 
P’’2 to the next generation set. Go to step 1 

5.2. If crossover is failed, go to step 6 
6. Add P’1 and P’2 to the next generation set, go to step 1. 
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For one cut point, s random number is generated between 0 and n-1 where n is the 

number of secondary structures. The generated number is the cut point (CP0,…,CPn-1). 

This cut point is actually the secondary structure index after which the replacement 

procedure will be performed. 

 Collision check should be made in order to prevent the replaced secondary 

structures to overlap with each other. First, the end position of the secondary structure 

in the first protein EP1,CP is checked against the start position of the next secondary 

structure in the second protein SP2,(CP+1) if present. 

Then, the start position of the first protein SP1,CP is checked against the end 

position of the previous secondary structure in the second protein EP2,(CP-1) if present. 

The conditions for the crossover are defined 18 and 19 as: 

EP1,CP  < SP2,(CP+1) – min residue length – 1                         (18) 

SP1,CP > EP2,(CP-1)  + min residue length + 1                         (19) 

where EP1,cp and SP1,CP are end position and start position of the secondary 

structure in the index CP of the first protein respectively, SP2,(CP+1) is the start point of 

the secondary structure in the index of (CP+1) of the second protein and EP2,(CP-1) is the 

end structure of the secondary structure in the index (CP-1) of the second protein. If 

these conditions are met, the secondary structures to the right of cut-point in each 

protein are switched with each other, creating two new proteins. 

For two cut-points, crossover proceeds as 1 cut-point crossover but if it succeeds, 

another 1 cut-point crossover is made with the newly generated proteins. If the second 

crossover succeeds, generated proteins from this process are taken into account; if not, 

the proteins from the first 1 cut-point crossover operation are taken into account for next 

generation. 

 At the end, if the crossover operation is successful, the generated proteins are 

added to the next generation set. 

Two general types of mutation operations are defined for our genetic algorithm. 

After the crossover operation, secondary structures in each of the proteins in the 

resulting next generation set are taken one by one, Sm,n where m is between 0 and the 

number of proteins in the next generation and n is between 0 and the number of 

secondary structures in the protein m. A random number is generated between 0 and 

100. If the generated number is less than the mutation probability rate then the mutation 

operation for that secondary structure can proceed. If the generated random number is 
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dividable by 2, shifting mutation will be tried and if the generated random number is not 

dividable by 2, resizing mutation will be tried.  

At the end of the mutation operations, fitness scores for each of the generations 

are calculated. 

3.3.7 Pooling 

In our algorithm, we improved the genetic algorithm by implementing an 

additional source for protein generation. For every generation, secondary structures of 

every protein are added to a pool. With this process, we are conserving the best 

secondary structures even if their container proteins are lost or their actual locations are 

in a lower score protein. When the pooling period is reached, a certain number of 

proteins are generated using the secondary structures in the pool.  

Generation is based on keeping one secondary structure from one location 

constant at a time and trying to fit the others with this secondary structure. After each 

generated protein, indexes of the other locations are incremented until a certain number 

of secondary structures from this constant location are generated. 

This process is repeated for all other locations. The number of proteins to generate 

from each best location is defined as pooling proteins parameter. From total of n 

secondary structures in the protein, we generate total of (n * pooling proteins) proteins. 

Therefore, we maximize the scanning area of the best secondary structure combinations. 

Generation process ends with the calculation of each pool protein’s fitness score. 

The constraint on this process is that, the overlapping should be prevented. This is 

done by checking the end and start positions of the secondary structures just like in the 

crossover operation. The formula (18) and (19) is used for these conditions.  

If an overlap is detected, pool index of the overlapping secondary structure is 

incremented and algorithm tries to fit the next secondary structure in this index. 

A certain number of proteins, which is defined in pooling protein parameter, are 

selected in a sorted order from the generated proteins. These selected proteins are added 

to the pool protein set which will be used in selection of new generation. 
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3.3.8 Selection 

Elitist rank selection was used. In each iteration, our algorithm performs crossover 

and mutation operations. The resulting proteins from these operations are preserved in 

next generation set. The proteins that are parents for the next generation are also 

preserved for selection. If pooling period is reached, the pool protein generation starts 

and resulting proteins from this operation are added to the pool protein set. These three 

set are joined into a selection set and sorted by their profile scores.  

The selection set consists of 40 proteins: 20 from the previous generation and 20 

from the next generation.  

The algorithm selects 3 best scored proteins from the selection set. In order to 

improvise the selection result and increase the diversity of the population, 2 proteins 

with worst scores are selected.  

The remaining proteins are selected randomly from the selection pool. Number of 

remaining proteins, CR is calculated using the following formula (28): 

CR = CTOTAL – (CBEST + CWORST)                                             (28) 

where CTOTAL is the population size, CBEST is the number of best and CWORST is the 

number of worst score proteins that is selected from the set. 

The new generation set, Gnew can be defined in (29): 

                                    Gnew = SBEST,0 U SBEST,1 U SBEST,2 U SWORST,0  

 U SWORST,1 U SRANDOM,(Number of Parents – 5)                         (29) 

where SBEST,0, SBEST,1, SBEST,2 are the best three proteins from the selection set; SBEST,2 , 

SWORST,0 are the worst two proteins from the selection set and SRANDOM,Cr is the 

remaining proteins selected randomly from the selection set. 

This selection method enables us to preserve and propagate the best proteins in all 

generations. 

3.3.9 Convergence 

The algorithm keeps track of the first 5 scores after each generation. If all the 

scores are the same, then the algorithm is terminated. 
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Chapter 4 

4 RESULTS  

4.1 Discrimination of Native Folds from Incorrectly Folded Proteins 

In this thesis, to show the applicability of network properties (which shows 

compactness of the structure) with combination of contact potentials (to capture the 

physicochemical interactions between the contacting residues that are formed upon 

folding), three dataset were employed. Using these datasets, mentioned graph 

theoretical properties and contact potential values were calculated. Using these values 

as the feature vectors, several classification methods were attained to distinguish native 

and decoy protein classes.  

The first data set employed in the experiments, which is from PISCES database 

(Wang and Dunbrack 2003), has 1364 non-homologous proteins, and their resolution < 

2.2Å, crystallographic R factor < 0.23, and maximum pair wise sequence identity < 

30%. The second data set consists of 1364 artificially generated and well designed 

decoy set; the third one is 101 artificially generated straight helices. Decoy sets are 

generated by randomly locating Cα atoms at about 3.83A° distance while avoiding the 

self-intersection of Cα atoms and keeping the globular structure approximately at the 

same size and shape of an average protein (Taylor and Vaisman 2006). Further details 

of decoy set generation stage can be found in the article of Wang et. al. (Wang et al. 

2004). 

The feature values in the data set possessed large variations in some cases. Therefore, 

to see the impact of outliers in classification accuracy, we performed a simple outlier 

analysis technique based on the elimination of all the values that are three standard 

deviations away from the mean for the given data set. Approximately 9% of the data 

was eliminated for each dataset.  
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Average degree, clustering coefficient, second connectivity are used as structural 

features. Besides the averages for the properties, moments of the probability 

distributions were calculated for each property such as standard deviation, skewness and 

kurtosis of the distributions whereas skewness measures the asymmetry of the 

distribution and kurtosis measures the "peakedness" of the distribution. Average 

Jernigan potential scores are given as sequence dependent energy features. These 

features are supplied as input vector to several classification methods in Pattern 

Recognition Tools (PRTools) (Heijden et al. 2004). First, graph representation method 

was tested. The results from Delaunay tessellated graphs and contact map results are 

given in Table 4-1. The contact map had much better prediction accuracy since it 

captures actual compactness information of the protein structure. In some cases, 

tessellated graphs may represent the distant residues as if they are in close contact; this 

representation may be the reason for the difference in classification accuracy.  

Half of the data was randomly selected five times and performed a five fold cross 

validation on each data set to reduce to run time for the classifiers especially for the 

support vector classifier. The classification accuracy and two standard deviation 

neighborhood of these values are shown in the tables. 

Table  4-1 Classification accuracy table using all the features including the moment values. 

 Contact Maps Delaunay Tes. 

Classifier After OA Before OA After OA Before OA 

Support vector class. 98.02%± 0.44 96.47%± 0.93 94.78%± 1.62 93.56%± 1.12 

Norm. dens. based lin. 98.72%± 0.53  97.12%± 1.02 94.85%± 1.67 93.41%± 0.94 

Norm. dens. based  qua. 98.87%± 0.49 98.08%± 1.32 94.81%± 1.20 92.91%± 0.52 

Binary decision tree 95.61%± 1.97 94.04%± 1.88 85.77%± 2.01 82.23%± 4.17 

Quadratic classifier 98.54%± 0.71 98.11%± 0.88 94.97%± 1.13 93.51%± 0.74 

Linear perceptron 95.28%± 1.56 93.98%± 1.13 50.46%±10.81 54.46%± 8.53 

Random neural network 96.76%± 0.76 95.40%± 1.72 88.81%± 2.27 86.10%± 2.13 

k-nearest neighbor k=3 97.67%± 1.26 95.93%± 0.98 85.06%± 0.82 83.95%± 2.32 

Parzen classifier 97.04%± 0.86 95.25%± 1.12 85.89%± 2.43 84.51%± 2.94 

Parzen density based 98.59%± 0.56 97.12%± 1.77 88.62%± 3.08 86.66%± 2.71 

Naive Bayes classifier 96.24%± 1.77 95.17%± 1.11 87.70%± 2.14 82.99%± 1.92 

Normal densities based 96.86%± 1.67 96.35%± 1.56 89.88%± 1.37 86.04%± 2.39 

Subspace classifier 93.85%± 2.96 93.93%± 1.56 85.52%± 2.82 82.18%± 1.24 

Scaled nearest mean 96.26%± 1.22 96.41%± 1.36 89.20%± 1.23 86.35%± 1.37 

Nearest mean 83.84%± 2.35 84.23%± 3.02 74.78%±10.72 69.39%±17.02 
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Table 4-1 indicates that the best classification accuracy was obtained from normal 

density based quadratic classifier (qdc) (Heijden et al. 2004)..  

Even though some of the other classifiers performed very close to the qdc, we 

proceeded to focus on qdc for the rest of the paper.  Table 4-1 also shows that outlier 

analysis improved the results by a minimum of 1 % independent of the classification 

method used. We optimized the SVM results using kernel parameters (σ) and 

regularization parameters (C) for each of the kernel function separately. Changing the 

regularization parameter (C) did not affect classification error rates. After parameter 

optimization the best results from SVM were obtained when the polynomial kernel was 

used with while σ was 2. 

Different combinations of features are used in normal density based quadratic 

classifier to discover the effect of these features on classification accuracy and some of 

the results are summarized in Table 4-2. When we use degree, clustering coefficient, 

second connectivity, and contact potential score together, classification accuracy is 

close to 99%. Even without contact potential score, the method had 98.13% (kCS) 

prediction accuracy using only the graph properties after outlier analysis. Use of 

Jernigan contact potentials only decreased the classification accuracy drastically to 

51.77%. 

Table  4-2 Classification accuracy rates for different combination of properties with moments. (k: Degree. 

C: Clustering coefficient. S: Second Connectivity. . J: Profile Score from Jernigan et. al.. OA: Outlier 

Analysis) 

 Contact Maps Delaunay Tes. 

 After OA Before OA After OA Before OA 

kCSJ  98.87%± 0.25 98.08%± 0.66 94.81%± 0.60 92.91%± 0.26 

CSJ  98.95%± 0.28 97.82%± 0.41 94.60%± 1.18 91.13%± 1.06 

SJ  98.15%± 0.25 98.22%± 0.16 89.53%± 0.93 88.36%± 0.48 

kC  98.72%± 0.17 97.26%± 0.34 94.72%± 0.32 92.01%± 0.86 

k  96.74%± 0.41 96.27%± 0.74 88.68%± 1.21 87.23%± 0.90 

kCS  98.13%± 0.60 97.60%± 0.10 94.19%± 1.26 92.12%± 1.17 

kS  96.93%± 0.81 95.73%± 0.86 90.43%± 0.74 87.80%± 1.08 

J  51.77%± 0.23 48.53%± 0.62 47.71%± 0.84 44.45%± 1.12 

 

Structural properties have more discriminating power, using the degree (k) 

distribution only we could accurately classify the native and non native structures with 

96.74% accuracy. Addition of second connectivity information did not improve the 
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accuracy much. Cliquishness (C) along with degree (k) distribution improved the 

classification accuracy to 98.72%. Using only the degree and the second connectivity 

resulted in 96.93% classification accuracy.  

4.2 Measuring Similarities between Proteins 

The model and native proteins were selected from CASP7. Average GDT_TS scores 

were calculated for all natives and ranked. Top 10 natives for were chosen. The LGA 

alignment results were employed to calculate the distance according to the network 

properties of corresponding aligned regions. To find out similarities of model and a 

native proteins Average distance, average standard deviations, average skewness and 

average kurtosis distributions were generated as predictors for each graph theoretical 

properties. 

A first order Multiple Linear Regression was performed using these 36 predictors 

and Adjusted R Square of 0,615 was found. In order to test whether the regression 

model was worth using, a test of significance was applied to the model and the results 

showed that the model is really significant. Therefore we concluded that there is a 

regression relation between GDT_TS and graph theoretical properties.  

The test result was really encouraging; however, the existence of a regression 

relation by itself does not ensure that useful predictions can be made by using it. 

Therefore, there was a need to check if there were any departures from linearity, 

constant variance or normality. It is known that formal statistical tests are very 

dependent on the sample size and with large sample size like in our case; they tend to 

reject most of the null hypotheses. For this reason, graphical analyses of residuals for 

diagnostic and remedial measures were mostly used. Scatter plots (Y vs. X), plot of 

residuals against predictor variable, plot of residuals against the fitted values and partial 

residual plots were analyzed.  

Analyzing these plots revealed that the residuals are badly-behaved; therefore a 

transformation on the dependent variable was necessary to simultaneously fix the 

problems with residuals and linearity. Box-Cox Power Transformation was performed 

on the model and λ = 2 resulted as the best transformation for Y. 

After the transformation on the dependent variable, some transformations on the 

predictor variables were also done to linearize the model. Four predictor variables were 
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eliminated since they did not show any improvements when different transformations 

were applied and their residual plots and partial residual plots did not indicate any 

relation with the dependent variable. Regression analysis following these changes 

resulted with an increase in the adjusted R square from 0,615 to 0,653.   

Further analysis on the updated plots revealed heteroscedasticity in some predictor 

variables. To be sure about this non-constant variance problem Modified Levene Test 

was applied. The result of the Modified Levene Test proved that transforming the 

dependent variable GDT_TS, did not fix the nonconstant error variance for some 

predictor variables, therefore the weighted least squares approach were employed rather 

than the ordinary least square.  

A new regression analysis using the weighted least square increased our Adjusted 

R Square to 0,758. Thus the Adjusted R Square increased by 0,1, which was a huge 

improvement and an indicator of the significance of the appropriate model for the 

regression. 

The next step in our regression analysis is the selection of the predictor variables. 

Stepwise Regression, backward elimination and forward selection methods were 

applied. Both the stepwise regression method and forward selection method reached to 

the same Adjusted R Square value 0,756 with the same 22 predictor variables; however, 

backward elimination method reached to 0,758 with 26 predictor variables. Therefore, 

the analysis was continued with using the model with 22 selected variables chosen by 

the stepwise regression and the forward selection method. 

As a further analysis for the model with selected predictor variable, outlier 

observations were attained to identify since they may have dramatic effects on our 

regression model. Studentized deleted residuals were used for identifying cases with 

outlying Y observations and one observation is identified as an outlier. For the outlying 

X observations, hat matrix leverage values were used and according to this measure, 

274 cases were identified as outlying observations.  

After finding the outliers, additional analysis needs to be done to determine how 

influential these cases are in fitting of the regression function. According to the results 

of this analysis, a decision will be made whether an observation should be retained or 

eliminated. Three measures of influence, DFFITS, Cook’s Distance and DFBETAS, 

were used and all the outlier observations were identified as influential cases. Thus, we 

decided to eliminate these influential cases and try to fit the model for the remaining 

cases. 
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4.3 Structural Alignment of Proteins Using Network Properties  

4.3.1 Verification Results of Network Properties 

Three different dataset were used which have very low sequence similarities. 

Fisher dataset is one of the most challenging dataset that has 10 difficult protein pairs 

(Fischer et al. 1996). The structural similarities of these proteins are low but it is stated 

to be detectable. This dataset is also used in verification of many structural alignment 

tools in the literature (Shih and Hwang 2003; Zemla 2003; Kandiraju et al. 2005). 

Because of its hardness, Fisher set was used for training purposes in our approach. The 

parameters in the target function and gap penalties were discovered using this set. The 

second dataset used for test purposes has 119 protein pairs called Capriotti Dataset 

(Capriotti et al. 2004). Their sequence identities are less then 50% and the average 

sequence similarity is about 16%. Therefore, this dataset is being considered as a 

difficult set to find alignments between pairs using common alignment techniques. The 

last dataset is chosen from ASTRAL 40 database (Chandonia et al. 2004). In this data 

set, the sequence identities of each pair are less then 40% and their average is 17.8%. 

Moreover, the creation of this dataset was based on SCOP classification (Lo Conte et al. 

2002). Therefore, the protein pairs are remote homologous and built within the same 

sub-family in the dataset and consists of 3064 pairs. Randomly chosen 14 pairs are also 

used as a test set in global alignment. For verification of network properties we used 

whole the pairs in the all three sets. 

This work is established on the assumption that the similar proteins yield similar 

graphs and network properties for corresponding nodes in a pair of proteins. Alignments 

obtained by our method are compared to the CE alignment to verify the applicability of 

the network properties in structural alignment problem. The difference between the 

network property values of the residues aligned by CE of two protein structures were 

calculated and then checked in order to test whether these values could be achieved 

randomly to show the statistical significance of the difference values obtained. If the 

difference of network values for corresponding residues is close to zero, it means that 

the network values of the aligned regions are highly similar. This proves our claim that 

these properties can be used as a target function in structure alignment problem. 
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Two methods are used to check whether such a difference between network 

properties could be obtained randomly. In the first method that is called as “shuffled 

method”; the order of the network values of the first protein remained the same and the 

network values in the second protein was randomly shuffled. This way we make sure 

distribution of network values is kept the same but these values are assigned to different 

residues. Then we calculated the distance between aligned residues arising from random 

assignment of network attributes. This procedure is repeated 1000 times. In the second 

method that is called “shifted method”, the network values were basically shifted in the 

second protein randomly while keeping the order of values in the first protein the same 

then the distances of CE aligned residues were calculated. This procedure is also 

repeated 1000 times. The reason for the second method lies in the fact that the network 

values may not be independent of each other and these values may be correlated for the 

neighboring residues. Random shuffling method would not capture the effect of such 

correlations. That is why we shifted the values randomly, thus keeping the local 

ordering of the values the same but these values would be assigned to different 

neighboring amino acids. Mean and standard deviations of the distances of CE aligned 

residues of each network value are calculated for 1000 random runs and these values are 

compared to actual distance values calculated based on CE alignments via their Z scores 

as in (30). 

σ
μ−= x

z                                                                         (30) 

where x, is the “real distance” from the values in the order of CE alignment, μ is the 

averages and σ is the standard deviations.  

 

Figure  4-1 - A part of an example of the CE Alignment result between the chain A of 12AS and the chain 

A of 1PYS. Calculated values for some of the graph theoretical properties for the bold parts are given in 

Table 1 as an example.   

Structure Alignment Calculator, version 1.02, last modified: Jun 15, 2001. 
 

CE Algorithm, version 1.00, 1998. 
 

Chain 1: pdbdir/12AS.pdb:A (Size=330)  
Chain 2: pdbdir/1PYS.pdb:A (Size=350) 
Alignment length = 211 Rmsd = 3.45A Z-Score = 5.3 Gaps = 125(59.2%) CPU = 15s 
Sequence identities = 14.2% 

 
Chain 1:  9 QRQISFVKSHFSRQLEERLGLIEVQAPILSR 
Chain 2:100 LHPITLMERELVEIFRAL-GYQAVEGPEVES 



 70

The CE alignment of two sample proteins is given in Figure 4-1. The network 

values for both proteins corresponding to part of the aligned regions are summarized in 

Table 4-3. These calculations are done for each pair in both data sets.  

The significance of network properties that can be used in alignment is shown in the 

results part of this work. To accomplish the alignment, we employed dynamic 

programming with affine gap penalty in O(n2) time. 

Table  4-3 Calculated network values for both proteins. While the first row shows the residue numbers of 

aligned residues and the other rows indicates some of the calculated network properties as an example.  

 21 / 112 
R / E 

22 / 113 
Q / I 

23 / 114 
L / F 

24 / 115 
E / R 

25 / 116 
E / A 

26 / 117 
R / L 

k 8 / 8 9 / 10 12 / 9 10 /  9 7 / 7 8 / 6 
C 0,64 / 0,64 0,58 / 0,42 0,44 / 0,61 0,53 / 0,58 0,76 / 0,76 0,61 / 0,87

S(k) 74 / 68 85 / 81 108 / 74 86 / 74 63 / 59 76 / 52 
L 5,67 / 5,41 5,48 / 5,16 5,04 / 5,17 5,36 / 5,21 5,75 / 5,31 5,37 / 5,32

wL 6,57 / 6,80 6,63 / 5,73 5,15 / 5,82 6,50 / 6,73 6,85 / 6,33 6,69 / 6,04
 

Contact maps are constructed with four different contact definitions to detect the 

best representation method of protein structures. While Figure 4-2 shows the average Z 

scores of shuffled method, Figure 4-3 shows the average Z scores of shifted method. 

 

Figure  4-2 Different colors indicate the different contact maps to obtain Z scores with shuffled method.  

For example, red colors indicate the definition of the contact map that the distance between CA atoms is 

below 10 Aº.   
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Figure  4-3 Z scores of the differences of network properties using different contact threshold values 

obtained with shifted method. 

The rows in the tables 4-4, 4-5, and 4-6 show the network properties for different 

datasets. k, C, and S(k) are degree, clustering coefficient and second connectivity 

respectively. L and wL are characteristic path length and its weighted form. Cb, Cc, Cg 

and Cs are the centrality measures which are betweenness, closeness, graph, and stress 

centrality.  

Table  4-4 The Results from Randomly Shuffled / Shifted Method for Fischer dataset with CA 6.8 cut of 

distance (Fischer et al. 1996). 

 X 
μ shuffled /  
μ shifted 

Zshuffled / 
Zshifted 

#shuffled / 
#shifted 

%shuffled / 
%shifted 

K 51,31 72,88 / 72,12 6,53 / 3,26 9 / 9 90 / 90 
C 1,047 1,52 / 1,51 6,72 / 3,63 10 / 10 100 / 100 

S(k) 1316,53 1944,7 / 1929,7 7,39 / 3,25 9 / 9 90 / 90 
L 4,55 6,26 / 6,21 8,38 / 3,14 9 / 9 90 / 90 

wL 7,33 9,09 / 9,04 4,84 / 3,00 10 / 8 100 / 80 
Cb 7829,02 9794,3 / 9760,9 5,91 / 2,93 10 / 8 100 / 80 
Cc 0,01 0,01 / 0,01 7,68 / 2,90 9 / 9 90 / 90 
Cg 0,46 0,54 / 0,54 4,63 / 2,04 7 / 6 70 / 60 
Cs 72551,1 78222 / 78153 4,06 / 2,62 9 / 9 90 / 90 

 

Table  4-5 The Results From Randomly Shuffled/Shifted Method fro Capriotti Dataset with CA 6.8 cut of 

distance (Capriotti et al. 2004). 
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 X 
μ shuffled /  
μ shifted 

Zshuffled / 
Zshifted 

#shuffled / 
#shifted 

%shuffled / 
%shifted 

K 22,91 34,90 / 34,60 7,85 / 4,20 142 / 131 89,87 / 82,9 
C 1,39 1,89 / 1,88 5,85 / 4,13 129 / 124 81,65 / 78,5 

S(k) 271,8 439,56 / 435,11 9,17 / 3,88 142 / 129 89,87 / 81,6 
L 13338,58 17855,2 / 17798,1 6,24 / 4,67 132 / 121 83,54 / 76,6 

wL 8,08 12,46 / 12,31 12,24 / 3,53 138 / 122 87,34 / 77,2 
Cb 12,75 17,97 / 17,81 9,46 / 3,62 137 / 125 86,71 / 79,1 
Cc 0,0082 0,0091 / 0,0090 8,69 / 3,05 137 / 115 86,71 / 72,8 
Cg 0,3234 0,3849 / 0,3826 6,87 / 2,33 117 / 84 74,05 / 53,2 
Cs 296164,26 334466,2/333401,5 5,34 / 2,54 109 / 92 68,99 / 58,2 

 

Table  4-6 The Results from Randomly Shuffled / Shifted Method for Astral40 dataset with CA 6.8 cut of 

distance (Chandonia et al. 2004). 

 X 
μ shuffled /  
μ shifted 

Zshuffled / 
Zshifted 

#shuffled / 
#shifted 

%shuffled / 
%shifted 

K 19,55 29,50 / 29,22 6,75 / 3,64 2708 / 2478 88,38 / 80,87 
C 1,22 1,67 / 1,66 5,29 / 3,58 2479 / 2331 80,91 / 76,08 

S(k) 223,35 349,74 / 345,71 7,36 / 3,22 2759 / 2379 90,05 / 77,64 
L 25477,08 30430,7/30362,2 4,76 / 2,71 2083 / 1813 67,98 / 59,17 

wL 11,30 15,05 / 14,90 8,07 / 2,33 2498 / 1859 81,53 / 60,67 
Cb 15,72 19,89 / 19,74 6,80 / 2,60 2600 / 2117 84,86 / 69,09 
Cc 0,0077 0,0082 / 0,0082 7,43 / 2,14 2398 / 1741 78,26 / 56,82 
Cg 0,2877 0,3401 / 0,3378 5,76 / 1,57 2103 / 1346 68,64 / 43,93 
Cs 2949407 3035718/3035201 3,13 / 1,96 1796 / 1486 58,62 / 48,50 

 

The total value of the z-scores was much higher for 6.8 Ao cut-off for CA atoms 

were chosen that is why we decided to use this cut-off value and atom in this work. 

X is the actual euclidean distances between the values of corresponding residues in 

CE alignment and μ denotes  the average distances of the randomly generated pairings 

and Z scores are calculated by the equation 30 to show the difference between the real 

distance and randomly generated ones.  # shows how many pairs have higher z scores 

than 1.96 (the Z value used for to 95% significance testing). % shows percentage of the 

pairs in the data set that has significantly lower distances in the CE alignment than the 

randomly generated networks values. 
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4.3.2 Structural Alignment Results 

Several gap opening and extension penalties and target functions were attained. The 

set of parameters that yielded the smallest total RMSD on the training dataset is chosen 

to be used for the rest of this work. 10 different target function were tried and after the 

optimization of the parameters on training set, scale factor is chosen as 10 and offset 

value is 50 in the function which was obtained the best results given in equation 10. The 

matches are scaled between -50 and 50 in this case. These values directly affect to gap 

penalty selection employed in dynamic programming. Many different gap opening and 

extension parameters were tried for different offset values. The best alignments 

achieved when gap opening penalty was 25 and gap extension penalty was 15. Better 

alignments for low structural similarity pairs were obtained when offset value is higher 

then 50. The results were compared with CE given in Table 4-7, 4-8 and 4-9 for 

different datasets. Fisher dataset has 10 protein pairs; therefore all the pairs were shown 

in Table 4-7. For Astral 40 and Capriotti datasets only 14 pairs are shown as examples 

Table 4-8 and 4-9.  

Table  4-7 Alignment results and comparison with CE alignment for the Fisher Dataset with CA 6.8 cut of 

distance. 

# Pro1(size) Pro2(size) Rmsd/Length Longest Seg.
Rmsd/Length

CE  
Rmsd/Length 

% 

1 1bge:B(159) 2gmf:A(121) 7.76 / 120 3.06/60 5.16/78 12.0
2 1cew:I(108) 1mol:A(94) 3.42 / 84 2.91/79 2.34/81 17.3
3 1cid: (177) 2rhe: (114) 15.49 / 109 3.15/33 2.97/98 12.2
4 1crl: (534) 1ede: (310) 17.85 / 310 3.37/97 3.90/220 5.9
5 1fxi:A(96) 1ubq: (76) 6.56 / 71 2.74/47 2.78/64 6.2
6 1tie: (166) 4fgf: (124) 4.53 / 114 3.09/88 2.49/55 10.3
7 2sim: (381) 1nsb:A(390) 8.37 / 324 3.5/174 2.98/276 10.1
8 2aza:A(129) 1paz: (120) 9.36 / 117 3.63/43 2.89/85 11.8
9 1ten: (89) 3hhr:B(195) 3.77 / 89 2.43/72 1.90/87 18.4
10 3hla:B(99) 2rhe: (114) 7.2 / 90 3.6/55 3.46/85 2.4

 

Even though, we have not used any information from sequence or secondary structure, 

we could obtain comparable results simply using network properties of protein 

structures. Although, the sequence similarity of the proteins very low, we could obtain 
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comparable results with CE. However, if the lengths of the proteins are not similar, the 

results were not contented in Fisher Dataset.  

Table  4-8 Alignment results and comparison with CE alignment for the Capriotti Dataset with CA 6.8 cut 

of distance. 

# Pro1(size) Pro2(size) Rmsd/Length Longest Seg.
Rmsd/Length

CE  
Rmsd/Length 

  % 

1 1akh:A(61) 1akh:B(83) 2.28/45 2.28/45 0.97/49 22.4 

2 1b3a:A(67) 1dok:A(77) 1.58/67 1.28/66 1.11/65 24.6 

3 1bbh:A(131) 1cpq:A(129) 3.09/124 2.57/115 1.53/124 24.2 

4 1bh9:A(45) 1bh9:B(89) 1.30/40 1.30/40 1.12/43   9.3 

5 1bef:A(181) 1jxp:A(186) 3.58/166 1.55/150 1.39/164 14.0 

6 1aw0:A(72) 1cc8:A(73) 2.38/68 2.19/67 1.90/64 20.3 

7 1e70:M(501) 1qox:N(449) 2.90/439 1.64/408 1.54/424 37.7 

8 1b9l:A(120) 1dhn:A(121) 2.20/117 2.14/116 1.96/115 20.0 

9 1ako:A(268) 1bix:A(287) 2.22/251 1.91/243 1.81/249 26.1 

10 1bcf:A(158) 1dps:A(167) 3.64/137 2.93/127 1.70/131 17.6 

11 1a6m:_(151) 1ash:_(147) 2.74/138 2.22/130 1.98/139 15.1 
12 1bo9:A(73) 1dk5:A(122) 2.23/71 1.75/69 1.98/71 32.4 
13 1dun:A(134) 1dup:A(152) 4.45/118 2.33/108 1.83/112 20.5 
14 1a3k:A(137) 1c1l:A(136) 3.03/128 2.37/116 1.73/122 23.8 
Table  4-9 Alignment results and comparison with CE alignment for the ASTRAL40 Dataset with CA 6.8 

cut of distance. 

# Pro1(size) Pro2(size) Rmsd/Length Longest Seg.
Rmsd/Length

CE  
Rmsd/Length 

  % 

1 1ebd:C(41) 1bbl:_(51) 2.68 / 34 2.14 / 32 1.76 / 33 35.3 

2 1fch:A(368) 1hxi:A(121) 4.78 / 101 2.22 / 82 0.87 / 94 48.9 

3 1iqr:A(420) 1np7:A(489) 3.24 / 412 1.77 / 370 1.96 / 410 32.4 

4 1iqr:A(420) 1owl:A(484) 2.44 / 413 1.9 / 397 1.83 / 414 37.6 

5 1ivh:A(394) 1rx0:A(393) 1.46 / 381 1.33 / 378 1.22 / 375 32.3 

6 1ji2:A(585) 1j0h:A(588) 1.70 / 580 1.41 / 568 1.52 / 578 47.4 

7 1kf6:A(602) 1qla:A(656) 1.98 / 559 1.56 / 544 1.53 / 557 37.8 

8 1nek:A(588) 1kf6:A(602) 2.24 / 560 1.72 / 545 1.65 / 559 42.5 

9 1nek:A(588) 1qla:A(656) 2.65 / 575 2.13 / 546 2.18 / 565 35.8 

10 1nkl:_(78) 1m12:A(84) 2.55 / 77 2.47 / 76 2.40 / 76 19.7 

11 1oe8:A(211) 1e6b:A(221) 3.62 / 179 2.41 / 155 2.17 / 98 20.0 
12 1oxj:A(173) 1ow5:A(85) 8.53 / 59 3.51 / 23 2.45 / 55 23.6 
13 1pam:A(686) 1qho:A(686) 1.93 / 666 1.59 / 648 1.54 / 662 45.0 
14 1utg:_(70) 1puo:A(170) 1.44 / 68 1.44 / 68 1.20 / 67 19.1 
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For comparison, RMSD, maxsub(Siew et al. 2000), GDT_TS, and LGA scores 

(Zemla 2003) were calculated on three dataset. For Fisher dataset, the average RMSD 

results were quite high but some of the cases the results are comparable. The average 

RMSD is 8.43 in our results and 3.09 in CE results. Maxsub, GDT_TS, and LGA scores 

are 3.82, 41.75 and 36.03 in our results and they are 5.74, 67.06 and 63.51 in CE results 

respectively. 

For Capriotti dataset, average RMSD results of our alignments and CE alignments 

were 5.07 and 2.68 respectively, the average maxsub, GDT_TS and LGA scores were 

5.59, 62.08, and 57.59 in our approach. These scores were 7.05, 71.65 and 71.23 in CE 

alignment. The average maxsub score which is 5.59 are better than SWA-PP result 

which was 4.59 for the same dataset (Capriotti et al. 2004). Obtained results have higher 

number of corresponding residues in the alignments then Capriotti’s results. 

For Astral 40 dataset, RMSD, maxsub, GDT_TS, and LGA scores were 2.95, 6.97, 

75.47, and 76.78 in our method and 1.71, 8.12, 81.91, and 87.23 in CE alignment. 

Our structural alignment method is faster then CE alignment. On average, our 

method takes ~1.1 seconds of CPU time per structure pair on a single core of a 1.7 GHz 

Intel Pentium processor. Our algorithm speed is ~3 times slower than TM-align 

however CE aligns the same alignment in ~1.6 seconds of CPU time. On the other hand 

DALI is ~7 times slower than our method. 

4.4 Structural Alignment Using Graph Matching Algorithms Results 

Table  4-10 Sturctural Alignment Using Sub Graph Matching Algorithms Results 

Pdb 1 Pdb 2   Score    Gap 
  

RMSD    length 
1NEK 1KFG 0.19 0 1.9 95 
1NEK 1QLA 0.3 0 1.14 105 
1PAM 1QHO 0.29 2 1.5 228 
1RWH 1N7O 0.22 2 1.6 290 
1IQR 1NP7 0.29 4 1.99 120 
1IQR 1OWL 0.45 0 0.71 42 
1UTG 1PUO 0.23 0 1.14 43 
1FCH 1HXI 0.69 0 2.62 7 
2PGD 1PGJ 0.35 0 1.6 199 
1IVH 1RX0 0.27 0 2.07 101 
1JI2 1J0H 0.31 6 1.91 315 
1KF6 1QLA 0.29 22 2.66 151 
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Results are given in the Table 4-10. Score is the total score per residue of the 

match. Gap is amount of the gap in the alignment. Length is total length of the 

alignment which is discovered.  The results are quite promising, our approach can 

discover to most similar parts of the proteins. The RMSD of these parts are also too 

low.  

Table  4-11 Comparison of Global Alignment and RMSD between aligned residues of GM (Graph 

Matching) results on Capriotti dataset. 

# Pro1(size) Pro2(size) Global Al. 
Rmsd/Length 

GM Alignment
Rmsd/Length

  % 

1 1b3a:A(67) 1dok:A(77) 1.58/67 1.13/26 24.6 
2 1bbh:A(131) 1cpq:A(129) 3.09/124 0.23/13 24.2 
3 1bh9:A(45) 1bh9:B(89) 1.30/40 1.12/38 9.3 
4 1bef:A(181) 1jxp:A(186) 3.58/166 1.58/14 14.0 
5 1aw0:A(72) 1cc8:A(73) 2.38/68 1.23/26 20.3 
6 1ako:A(268) 1bix:A(287) 2.22/251 2.05/61 26.1 
7 1bcf:A(158) 1dps:A(167) 3.64/137 2.77/40 17.6 
8 1a6m:_(151) 1ash:_(147) 2.74/138 0.89/20 15.1 
9 1arv:A(137) 1bgp:A(136) 2.53/128 0.86/28 23.8 

Table  4-12 Comparison of Global Alignment and RMSD between aligned residues of GM (Graph 

Matching) results on Astral 40 Dataset. 

# Pro1(size) Pro2(size) Global Al. 
Rmsd/Length 

GM Alignment
Rmsd/Length

  % 

1 1fch:A(368) 1hxi:A(121) 4.78 / 101 2.62 / 72 48.9 
2 1iqr:A(420) 1np7:A(489) 3.24 / 412 1.99 / 120 32.4 
3 1iqr:A(420) 1owl:A(484) 2.44 / 413 0.71 / 42 37.6 
4 1ivh:A(394) 1rx0:A(393) 1.46 / 381 1.02 / 101 32.3 
5 1ji2:A(585) 1j0h:A(588) 1.70 / 580 1.91 / 315 47.4 
6 1kf6:A(602) 1qla:A(656) 1.98 / 559 2.66 / 151 37.8 
7 1nek:A(588) 1kf6:A(602) 2.24 / 560 1.90 / 95 42.5 
8 1nek:A(588) 1qla:A(656) 2.65 / 575 1.14/105 35.8 
9 1oe8:A(211) 1e6b:A(221) 3.62 / 179 1.91 / 30 20.0 
10 1oxj:A(173) 1ow5:A(85) 8.53 / 59 0.82 / 11 23.6 
11 1pam:A(686) 1qho:A(686) 1.93 / 666 1.50 / 228 45.0 
12 1utg:_(70) 1puo:A(170) 1.44 / 68 1.14 / 43 19.1 

 

The comparison between global alignment method which was previously described and 

matched residues resulted of GM on Capriotti dataset is given in Table 4-11. These are 

all hard targets and their sequence similarities are below 30%.  Core regions which have 

low RMSD could be determined. These results encouraged to check if the domain 

prediction can be done using these matches. More results can be found in the Apendix 
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A. On average, our method takes ~5.280 seconds of CPU time per structure pair on a 

two core of a 2 GHz Intel Pentium processor. One core is just employed for 

management purpose called master process and when CPU amount increased to 4 CPU 

the graph matching time reduces to ~2.468 seconds of CPU time per pair and when 16 

CPU used the time is 1.920 seconds of CPU time.   

4.5 Function Prediction Using Local Structural Alignment Approach 

To show the applicability of the local alignment method that uses network 

properties  44 protein pairs were selected that are remote homologues and the lengths of 

the protein sequences is at least 3 times longer than its corresponding pair. Therefore, 

the local alignment algorithm detects the similar function where the global alignment 

algorithm does not. The accuracy is calculated using the common EC number 

assumption as mentioned before. When a protein is searched in all proteins obtained 

lists for each protein are ranked according to their scores.  For top hits are considered, 

the accuracy rates are 55.66% correct function prediction. While the best in top 5 hit 

considered, the accuracy is 77.94%, the best in top 10 is up to 88.24%.  

Our local alignment method that uses double dynamic programming takes ~45 

seconds of CPU time per structure pair on a single core of a 2.6 GHz AMD processor 

operated in Linux System. Here significant amount of the time spends on merging 

locally aligned regions in all possible combinations.  

4.6 Domain Prediction with Graph Matching Algorithms    

The results in table 4-13 and 4-14 showed that the domains can be determined 

with very high accuracy. Even some of the hard cases the coverage can be too low but 

the domain can be predicted with high accuracy. The results from different nodes 

assessed different domains.  

The advantage of the graph matching algorithm here is that each domain or a part of a 

domain was found by different node. However, most of the cases there is no any result 

produced for prediction of more than one domain in a solution. It shows when a node 

starts matching correctly; the resulting match set gives overall domain structure itself 

for that reason the accuracy rates are 100% in the most of the cases.  
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Table  4-13 Domain Prediction Results on Capriotti dataset.  

# Pro(size) Domain Accuracy (%) Coverage(%)
1 1b3a:A(67) IL8 100 38.8 
2 1bbh:A(131) Cytochrome C' 100 10.36 

3 1bh9:A(45) 
Transcription initiation factor IID, 
18kD subunit 100 90.47 

4 1bef:A(181) Peptidase_S7 100 18.18 
5 1aw0:A(72) Heavy-metal-associated domain 84 36.06 
6 1ako:A(268) Exo_endo_phos 100 24.2 
7 1bcf:A(158) Ferritin 100 14.28 
8 1a6m:_(151) Globin 80 17.68 
9 1arv:A(137) peroxidase 100 11.4 
10 1dok:A(77) IL8 100 33.76 
11 1cpq:A(129) Cytochrome C' 100 10.2 
12 1jxp:A(186) Peptidase_S29 92 17.69 
13 1cc8:A(73) Heavy-metal-associated domain 83 35.5 
14 1bix:A(287) Exo_endo_phos 100 22.59 
15 1dps:A(167) Ferritin 100 13.51 
16 1ash:_(147) Globin 80 18.16 
17 1bgp:A(136) Peroxidase 100 11.48 

Table  4-14 Domain Prediction Results on Astral40 dataset.  

# Pro(size) Domain Accuracy (%) Coverage(%)
1 1fch:A(368) Tetratricopeptide repeat 78.46 92.3 
2 1iqr:A(420) DNA_photolyase 100 77.41 

3 1iqr:A(420) DNA_photolyase 100 27.09 

Acyl-CoA_dh_N 100 45.45 
4 1ivh:A(394) Acyl-CoA_dh_1 99.01 67.11 
5 1ji2:A(585) DNA_photolyase 100 64.06 

100 23 
6 1kf6:A(602) FAD_binding_2 

Succ_DH_flav_C 98.12 90.34 
FAD_binding_2 100 36.92 

7 1nek:A(588) Succ_DH_flav_C 100 78.23 
8 1nek:A(588) FAD_binding_2 100 42.63 
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  Succ_DH_flav_C 91.2 83.33 
9 1oe8:A(211) GST_N 100 40.54 
10 1oxj:A(173) SAM_1 60 16.66 

Alpha-amylase 95.45 83.11 
Alpha-amylase_C 98.76 100 11 1pam:A(686) 

CBM_20 100 43.75 
12 1utg:_(70) Uteroglobin 100 55.84 
13 1hxi:A(121) Tetratricopeptide repeat 80.12 95.2 
14 1np7:A(489) DNA_photolyase 100 78.12 
15 1owl:A(484) DNA_photolyase 100 30.92 

Acyl-CoA_dh_N 100 50.63 
16 1rx0:A(393) Acyl-CoA_dh_1 100 62.11 
17 1j0h:A(588) Alpha-amylase_N 100 66.16 

100 28.12 
18 1qla:A(656) FAD_binding_2 

Succ_DH_flav_C 98.12 90.34 
100 36.92 

19 1kf6:A(602) FAD_binding_2 
Succ_DH_flav_C 100 78.23 
FAD_binding_2 100 42.63 

20 1qla:A(656) Succ_DH_flav_C 91.2 83.33 
21 1e6b:A(221) GST_N 100 38.62 
22 1ow5:A(85) SAM_2 60 20.86 

Alpha-amylase 99 86.11 
Alpha-amylase_C 100 100 23 1qho:A(686) 

CBM_20 100 43.75 
24 1puo:A(170) Uteroglobin 100 58.12 

4.7 Fold Classification Results 

Two data sets to validate our algorithm were used. Every set has 5 proteins.  

Table  4-15 Similarity results for monodomain cytochrome c. 

 Run 1 Run 2 Run 3 Run 4 Run 5 Overall

SS 1 100% 100% 100% 100% 100% 100% 

SS 2 100% 100% 83,3% 83,3% 83,3% 89,98%

SS 3 50% 83,3% 50% 66,6% 66,6% 63,3%

SS 4 91,6% 100% 91,6% 83,3% 83,3% 89,96%

SS 5 93,3% 93,3% 85,7% 83,3% 92,8% 89,68%

All 86,9% 95,6% 84,4% 86,9% 86,6% 88,08%

The first set is chosen in all-alpha protein class from the protein family 

monodomain cytochrome c.and the PDB’s are: 1B7V, 1K3H, 1N9C, 1C75 and 1K3G. 
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The second set is from the protein family death domain which is also in all-alpha 

protein class. The PDB’s are: 1D2Z, 1DDF, 1ICH, 1NGR and 1E3Y. 

Randomly chosen protein in each set is defined as a test protein and the others are 

the training proteins. For the genetic algorithm tests, The first protein set is from the 

family monodomain cytochrome. Each protein in this set has 5 secondary structures.  he 

results of the 5-run test of the first set are given in the Table 4-15 and Table 4-16. 

The test protein sequence is threaded to a given fold using the profile and the 

contact matrix obtained from training protein structures from the same family. The 

accuracy of the threading is measured by the amount of overlapping regions between 

the predicted secondary structure positions and the actual secondary structure positions 

of the tested protein. The number is given as percent overlap in the tables. The results 

vary between 50-100% correct prediction of the secondary structure positions and an 

average of 88.08%. Secondary structure 3 in this family has a large variation in length 

and sequence; therefore profile scores do not help finding the exact location of this 

helix. 

Table  4-16 Profile, contact and fitness scores for data set 1 

 Run 1 Run 2 Run 3 Run 4 Run 5 Actual Value

Profile 62,05 62,17 62,73 62,14 62,28 50,11

Contact 1,05 0,99 1,07 1,07 1,07 1,01 

Fitness 93,62 92,16 95,04 94,49 94,63 80,50

 

The results for the second set death domain are given in the Table 4-17 and Table 

4-18 below. 

Table  4-17 Similarity results for death domain 

 Run 1 Run 2 Run 3 Run 4 Run 5 Overall

SS 1 92,3% 75% 92,3% 91,6% 91,6% 88,5% 

SS 2 45,4% 54,5% 54,5% 90,9% 76,9% 64,4% 

SS 3 66,6% 66,6% 66,6% 66,6% 66,6% 66,6% 

SS 4 72,2% 77,7% 94,4% 83,3% 83,3% 82,1% 

SS 5 83,3% 83,3% 84,6% 84,6% 84,6% 84,0% 

SS 6 42,1% 26,3% 42,1% 68,4% 31,5% 42,0% 

All 65,8% 61,9% 72% 80% 71,2% 70,8% 
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Similarly, the scores in Table 4-17 indicate the overlapping percents of converged 

regions and the secondary structures of the test protein. The results are between 60-80% 

and the average is 70.8%. Secondary structures of 2 and 6 have low similarity because 

the actual sequence similarity is also low due to these two secondary structures. The 

algorithm can not generate a high percent similarity with these two proteins according 

to profile score. Therefore the contribution of the contact score was more than to be in 

the first dataset.  

Table  4-18 Profile, contact and fitness scores for data set 1 

 Run 1 Run 2 Run 3 Run 4 Run 5 Actual Value

Profile 12,11 11,07 10,61 10,65 8,72 -4,91 

Contact 1,09 1,05 1,11 1,18 1,15 1 

Fitness 44,92 42,6 44,1 46,2 43,4 25,2 

 

Table 4-16 and Table 4-18, for both datasets, all calculated fitness scores are 

greater than the actual fitness value of the protein. Formula (1) is used for fitness 

calculation and for our algorithm PSM is set to 1 and CSM is set to 30.  Core contact 

score of each resulting protein is close to the actual value but the profile score is always 

greater. This is caused by the selection of the proteins because optimal protein can not 

be chosen for testing with the highest score due to natural limitations of absence of ideal 

proteins. The algorithm tries to maximize the profile score therefore exceeding the 

actual profile score is unavoidable. In order to prevent the domination of profile score 

over the fitness score, a contact multiplier of 30 is used. 

In order to get validate fold classification method proteins were selected from 

ASTRAL SCOP ASTEROIDS 1.73 database (Chandonia et al. 2004). All alignment 

files (3463) were downloaded and distributed according to their subfamily information. 

Subfamilies that have less than 4 samples were eliminated from our database, and pdb 

files of remaining part were downloaded. Then subfamilies that have more than 8 pdb’s 

were determined which are used in datasets; and for a, b, c, d, e, f, g, h classes; 20, 20, 

20, 20, 4, 3, 2 subfamilies were randomly chosen. For every chosen subfamily, 9 pdb’s 

were selected with their alignment sequences. After that subfamilies divided into 3 

parts, and by taking each part as a test set and the rest two as a train set, a triplet dataset 

is created.  

Pdb files are corrected, if there are more than one CA atom for each residue or 

some missing atoms and jumps of the residue numbering. For each train set, subfamilies 
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are created by detecting consensus secondary structures (alpha helix, beta sheet) with 

the knowledge of alignment and pdb information. The final three datasets contain 72 

subfamilies each and detailed information is shown in Table 4-19.  

Table  4-19 The number of the subfamilies according to their classes in the datasets 

Group Class # 
a All alpha proteins 18 
b All beta proteins 11 
c Alpha and beta proteins (a/b) 17 
d Alpha and beta proteins (a+b)  17 
e Multi-domain proteins (alpha and beta) 4 
f Membrane and cell surface proteins and peptides 3 
g Small proteins  2 

Total   72 
 

Fold classification algorithm is run for each pdb’s in the test sets in all to all 

manner and the subfamily that has highest algorithm score for each pdb is accepted as 

predicted subfamily. These results are compared with real subfamilies and accuracies 

are calculated for each classification level (class, fold, superfamily, family, and 

subfamily).  

Table  4-20 First set 

class count class acc% fold acc% supfam acc% family acc% subfam acc% 
a 61 88.52 86.88 86.88 86.88 86.88 
b 40 75 65 62.5 62.5 62.5 
c 57 75.43 68.42 68.42 66.66 66.66 
d 65 80 67.69 67.69 67.69 67.69 
e 14 85.71 85.71 85.71 85.71 85.71 
f 9 77.77 77.77 77.77 77.77 77.77 
g 9 88.88 88.88 88.88 88.88 88.88 
all 255 80.78 74.11 73.72 73.33 73.33 

Table  4-21 Second Set 

class count class acc% fold acc% supfam acc% family acc% subfam acc% 
a 67 86.56 85.07 85.07 83.58 83.58 
b 36 72.22 58.33 58.33 58.33 58.33 
c 56 91.07 80.35 80.35 78.57 78.57 
d 64 76.56 71.87 71.87 71.87 71.87 
e 13 76.92 76.92 76.92 76.92 76.92 
f 9 100 100 100 100 100 
g 6 100 100 100 100 100 
all 251 83.26 77.29 77.29 76.49 76.49 
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Table  4-22 Third set 

class count class acc% fold acc% supfam acc% family acc% subfam acc% 
a 69 84.05 84.05 84.05 84.05 84.05 
b 37 67.56 62.16 59.45 59.45 59.45 
c 58 96.55 77.58 77.58 77.58 77.58 
d 61 83.6 73.77 73.77 73.77 73.77 
e 16 75 75 75 75 75 
f 11 72.72 72.72 72.72 72.72 72.72 
g 7 85.71 85.71 85.71 85.71 85.71 
all 259 83.39 76.06 75.67 75.67 75.67 

 

The results for three parts of the sets are given in Table 4-16, Table 4-17, and 

Table 4-18. The accuracies to find the correct subfamily for different sets are 75%. 

Identifying correct class is over 80%. Our threading algorithm takes ~1.4 seconds of 

CPU time for a sequence comparison with a family on a single core of a 2.6 GHz AMD 

processor operated in Linux System.  
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Chapter 5 

5 CONCLUSION 

Using graph theoretical properties in protein structure characterization can be new 

approach to create new features. The difference of this study from previous studies can 

be summarized in four points for discrimination of proteins: 

• Using contact maps to derive the structural properties of the proteins yielded 
much better results than tessellated graphs. 

• Combining structural and physicochemical features distinguished the native 
folds.  

• Graph properties have much more discriminative power than the contact 
potentials. 

• Representing the problem as a classification problem, testing the success rate of 
several classification methods, and building an optimized predictor that can 
predict native folds about 99 % accuracy. 

 

Classification using the contact potentials only resulted in 51% five fold cross 

validation accuracy using the quadratic classifier. Thus it is apparent that the structural 

features are necessary for accurate prediction. As can be seen from the results additional 

contribution to the prediction accuracy from contact potentials was assumed at less than 

1%. Even the non native structures can create favorable interactions between contacting 

residues so the contact potentials alone are not sufficient to distinguish native structures. 

Important structural features were the degree and the clustering coefficient. The 

second connectivity did not contribute much to the classification accuracy since it is 

highly correlated to the degree. Previous works focused on the eligibility of different 

kinds of potentials in discrimination of native folds; this work indicates that structural 

properties are more important features and, furthermore, these properties can be 

employed for other problems related to protein structure. This work also shows that 

contact map provides a better representation of protein structure. 

Another application of our function is to distinguish bad models from good ones 

(computer generated structures) for protein structure prediction competitions (CASP) 

(Bourne 2003). As a preliminary study, the method was tested on CASP VI data set of 
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59 proteins and 28956 model predictions. This method was assigned 58 proteins as 

native and 6118 model structures as non native correctly. The predicted non native 

structures had more than 12 Aº root mean square deviation (rmsd) from the crystal 

structure. The non native structures assigned as native had much smaller rmsd to the 

corresponding crystal structures. This shows that the graph properties can easily filter 

out the bad models.  

On the other hand, network property values rather than actual distances as used in 

existing methods can be used for structural alignment which shows than similar protein 

structures have similar network of contacts captured by graph theoretical properties. CE 

aligned pairs had very similar network attributes and this similarity was significant at 95 

% significance level. A function was defined that could represent the similarity of 

network values and used this function to get the global alignment between two protein 

structures.  

This work is a first attempt to use a graph based function rather than actual atomic 

distances in structural alignment problem. Other methods are highly dependent on 

actual coordinates of the proteins accuracy of which may change with the experimental 

procedure that is used to obtain the structure. This function is less dependent on actual 

coordinates and therefore more robust than existing methods.  

Protein structure converted into graphs using contact maps then these network 

properties were employed to discover the similar parts of the proteins using dynamic 

programming with affine gap penalty. Using network properties is a new method to 

discover the similar parts of the proteins. Even the structure similarity of the proteins is 

very low. Claimed algorithm in this thesis could detect the similar parts.  

This method gives a global alignment showing overall similarity of the protein 

structures. Fine tuning will be done using with other types of information in the local 

environment. 

Domain prediction by capturing information on non-sequential space can be 

assessed using graph matching methods. Most of the graph matching algorithms are NP-

hard problems and solving these types of problems can be possible with parallel 

processing techniques. For that reason, parallel processing algorithm used for sub graph 

matching purposes. Graph theoretical attribute sets have been used to find matches 

between two graphs. The results showed that they have contributions to find similar 

parts of the protein. The novelty of this approach is using parallel algorithms on graph 

matching with new attributes. And this approach is exactly fit into nature of the protein. 
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Because the proteins also fold parallel and heavily connected residues are in the proteins 

are playing important role in protein folding. This approach gives us how to walk over 

residue neighbors to find structurally similar parts of the proteins and define winner 

node which is the best initial node to give the best answer. Here the most jumps are 

more diverse than to be in local alignment. The most similar regions and scaffold of the 

protein can be extracted using this approach. A domain of the protein can be determined 

using this scaffold. The results show that hit proteins have high accuracy to possess 

same domains.  

The function of a protein is most conserved for structure space. Local alignment 

approach using network properties can be employed very effectively to find a function 

of a protein. Because, global alignment approaches attain to align all the sequences, 

however, the most similar regions especially remote homologues proteins can not be 

sequential. Local alignment approaches yielded to capture such kind of jumps in the 

alignment, therefore, the function of a protein could be determined. 

In the last part of the thesis, protein fold classification was attained to address. 

Protein folds can be determined by detecting secondary structures using sequence 

information. A genetic algorithm was implemented with a common secondary structure 

pool. The accuracy rates to find out correct family for a protein are over 76% which is 

better than previously published results. Our dataset was well designed and the most 

comprehensive dataset for the fold classification in the literature in terms of its size and 

diversity. 
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Chapter 6 

6 DISCUSSION 

6.1 Discrimination of Native Folds from their Decoy Sets 

One drawback of our method is all the features that are used in a way capture 

different aspects of compactness of the protein structure. Scoring function might fail 

when trying to identify natively unfolded proteins from random generated counterparts. 

Since an important feature in the discrimination process is compactness of structure, the 

method would rule out disordered regions as decoy sets, even though this disorder is a 

characteristic feature of native states and is functional as well (eg: calcineurin) Such 

proteins constitute a small subset of all the known protein structures and out of the 

scope of the proposed work. In addition to this, if decoy sets are generated from 

naturally unfolded proteins, the native proteins would have more contacts than the 

artificially generated structures of these native proteins (Uversky et al. 2000)  and 

therefore these naturally unfolded proteins could be captured by our function. This 

needs to be explored further in a future study. 

6.2 Structural Alignment 

Using network properties by itself can not solve all the problems in protein 

structure characterization but can produce very important features especially on 

structure space. Structural alignment method is just using contacts established in the 

structures rather than the detailed structure information and assumes the contacts are 

preserved in similar structures as well. Using only the contact information yields worse 

alignment than CE but comparable. Inclusion of other types of information such as 

secondary structure, sequence similarity in the target energy function may improve the 

results of the alignments.  
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Our structural alignment speed and accuracy is highly dependant on parameter 

selection. When the structures are very similar, offset parameter can select a higher 

value to speed up the algorithm.  

The sequence similarities of the pairs were quite low and the sizes of the proteins 

are different in Fisher dataset and obtained alignments were not contented because the 

global alignment method was not capture local similarities; thus the lengths are different 

in most of the cases, the problem can be solved by a local alignment approach for this 

dataset.  

6.3 Function Prediction Using Local Structural Alignment Approach 

We used double dynamic programming in local alignment. A dynamic 

programming works for finding locally aligned regions and another one is used for 

combining found regions. We used some constraints here to reduce computational time 

in the second dynamic programming. If the protein sizes are getting too much, the 

possibilities are growing exponentially. The constraints have to be defined carefully to 

prune non necessary searches in the matrices. 

Any gaps in the locally aligned regions are not allowed and the minimum size of a 

local alignment set to be 10, therefore, some small alignments below it have been 

missed in our alignment results. There is a trade-off between minimum length of local 

alignment and computational time.  

In the function prediction part we hit better results in the top ten hit rather than the 

first hit; therefore, ranking score can be fine tuned to obtain better results from the first 

hit.  

6.4 Domain Prediction Using Graph Matching Approach 

Our graph matching algorithm runs in parallel environment. However, a drastic 

increase in the amount of CPU does effect the matching time but does not any effect of 

the solution separation back propagation and filling the intervals parts, thus all of these 

operations are handled by master process serially. There is no any sequential search in 

our graph matching approach. The algorithms run over neighboring information and 

there may be big leaps in the alignments. This can result missing some parts of proteins 
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in the alignment. Even our accuracies are too high some cases our coverage can be low. 

The result accuracy, the number of matched residues and algorithm speed are highly 

dependant on offset value and gap penalties. If the offset value is very high, only very 

similar parts can be obtained in a very short time. According to the purpose, this value 

can be tuned. In domain prediction part we selected this value very high. In most of the 

cases, we could not hit any results if they do not have similar domains, however, we 

could obtain some crucial parts of the domains if the protein pairs both have the same 

domain. 

6.5 Fold Classification 

There were many inconsistencies in the PDB files such as missing atoms, 

overlapping secondary structures, incorrect sequence data. Because of these 

inconsistencies, many constraints were included in order to use this algorithm for all the 

families and PDB files had to be standardized. 

Taking structure information into account would yield better results for remote 

homologues proteins. Contact scores were calculated using 3d conformation of the 

protein by the help of contact map matrices. Contacted residues were favored according 

to their contact potentials. However, there are some difficulties in calculations of 

contact scores because there is no any consensus contact map for all the proteins that we 

used in training phase and the residue indexes can be shifted by insertions and deletions 

in the proteins, therefore, we will improve our contact calculation function to find out 

the best matching structure in the test protein using contact potential matrix. 

Another constraint in terms of dataset preparation in our algorithm is given in 

following; in each training set must have at least 3 representative of the sub-family to 

capture sub-family diversity. Otherwise, the sub-family may not be well presented. 
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APPENDIX A  

Table A-1 Globin Family Self Matches, Pdb Pairs are in the Same Sub-Family 

 PDB Score gap RMSD length ce_RMSD ce_length  identity 
1 1CQX:1GVH 45.55 0 2.62 61 3.59 323 44.3 
2 1HBR:1A4F 35.56 0 0.68 70 0.83 140 56.4 
3 1HBR:1CG5 47.92 0 0.46 18 1.24 139 42.4 
4 1HBR:1FAW 54.43 0 0.47 14 0.97 140 57.1 
5 1HBR:1FHJ 51.18 0 0.37 11 0.95 140 57.9 
6 1HBR:1G08 39.49 0 0.62 74 0.82 141 59.6 
7 1HBR:1GCV 52.88 0 0.24 8 1.2 136 39 
8 1HBR:1JEB 49.73 0 0.39 42 0.83 138 55.8 
9 1HBR:1OUT 43.61 0 0.85 74 1.14 140 57.9 

10 1HBR:1S5X 34.85 4 4.71 24 1.12 140 48.6 
11 1HBR:1SPG 34.38 0 0.61 71 1 140 47.1 
12 1HBR:1V4X 33.34 0 0.9 71 1.14 140 49.3 
13 1HBR:1WMU 25.57 0 0.35 62 0.82 140 72.1 
14 1HBR:2PGH 40.52 1 1.29 28 0.9 140 57.1 
15 1IRD:1A4F 46.14 0 0.8 80 0.97 141 68.8 
16 1IRD:1CG5 32.45 0 0.75 32 1.28 140 43.6 
17 1IRD:1FAW 44.46 0 0.66 101 0.96 141 70.9 
18 1IRD:1FHJ 33.68 3 2.37 90 0.86 141 83 
19 1IRD:1G08 52.02 7 1.89 52 0.55 141 87.9 
20 1IRD:1GCV 33.07 1 0.49 28 1.45 140 39.3 
21 1IRD:1HBR 45.75 2 1.64 55 0.87 140 60 
22 1IRD:1IWH 52.18 0 0.44 22 0.54 140 87.9 
23 1IRD:1JEB 42.96 11 2.34 48 0.96 141 59.6 
24 1IRD:1OUT 36.88 0 0.88 51 1.06 141 57.4 
25 1IRD:1S5X 23.24 0 2.88 71 1.06 141 49.6 
26 1IRD:1SPG 26.03 1 2.31 66 0.97 141 47.5 
27 1IRD:1V4X 43.33 1 0.96 75 1.03 141 55.3 
28 1IRD:1WMU 32.85 0 0.93 79 1.1 141 58.9 
29 1IRD:2PGH 32.51 1 1.69 52 0.6 141 84.4 
30 1IWH:1A4F 26.39 5 6.16 32 0.9 140 71.4 

Table A-2 Globin Family Non-homologues Matches, Pdb Pairs are in the Same Sub-Family 

 PDB Score gap RMSD length ce_RMSD ce_length  identity 
1 1CH4:1IT2 34.62 0 2.46 13 1.76 132 24.2 
2 1CH4:2LHB 32.9 8 2.52 62 1.53 133 27.1 
3 1CQX:1OR4 21.42 0 5.37 37 2.85 128 14.8 
4 1HLB:1OJ6 34.33 0 1.03 39 2.01 139 25.2 
5 1IT2:1ITH 36.46 1 1.2 12 1.86 130 19.2 
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6 1IT2:2LHB 44.73 0 0.7 30 1.22 146 39.7 
7 1ITH:1HLB 37.75 2 2.03 28 2.58 138 20.3 
8 1OJ6:1CQX 49.41 0 0.66 11 2.87 130 23.7 
9 1OJ6:1UT0 51.68 0 0.76 14 1.85 142 21.1 

10 1OR4:1TU9 49.11 1 2.36 14 2.71 121 11.6 
11 1OR4:1UT0 43.08 0 0.26 13 2.17 129 10.9 
12 1TU9:1OJ6 28.09 1 3.18 29 2.14 126 13.4 
13 1UT0:1TU9 48.88 0 0.35 12 2.12 129 17.8 
14 2LHB:1ITH 31.11 0 0.82 32 1.96 132 17.4 

Table A-3 Globin Family Cross Matches. The pdb pairs are not in the same sub-family. 

 PDB Score gap RMSD length ce_RMSD ce_length  identity 
1 1ABS:1A6K 45.87 0 0.34 55 0.47 151 99.3
2 1ABS:1A6K* 54.1 0 0.34 56 0.47 151 99.3
3 1ASH:1QPW 41.48 7 2.62 30 2.57 134 13.3
4 1ASH:1QPW* 43.65 0 1.01 13 2.57 134 13.3
5 1C40:1ITH 48.32 4 2.34 36 2.21 134 16.4
6 1C40:1ITH* 43.33 1 1.54 18 2.21 134 16.4
7 1CPW:108M 62.7 0 0.31 23 0.28 154 98.7
8 1CPW:108M* 55.74 0 0.18 29 0.28 154 98.7
9 1D8U:1MBS 52.89 0 0.21 9 2.94 143 13.3

10 1JL7:1HBG 55.89 0 0.33 31 0.51 147 93.2
11 1JL7:1HBG* 58.5 0 0.77 40 0.51 147 93.2
12 1MLK:2MGB 48.86 0 0.2 46 0.23 154 98.7
13 1MOC:4MBN 38.15 0 0.4 65 0.5 153 98.7
14 1OR4:2DHB 39.02 7 3.69 49 2.79 127 7.9
15 1OR4:2DHB 39.02 7 3.69 49 2.79 127 7.9
16 1OR4:2DHB* 46.62 0 0.6 17 2.79 127 7.9
17 1OUT:1HDA 41.46 5 2.77 57 0.89 141 61.7
18 1OUT:1HDA* 44.46 4 1.93 56 0.89 141 61.7
19 1UC3:1UMO 45.06 0 0.74 43 1.47 140 36.4
20 1UC3:1UMO* 46.32 0 0.75 36 1.47 140 36.4
21 2FAM:4MBA 50.12 0 0.43 68 0.36 146 90.2
22 2FAM:4MBA* 68.35 0 0.54 43 0.36 146 90.2
23 2LH5:1GDL 41.04 1 0.85 53 1.08 153 92.8
24 2LH5:1GDL* 38.08 3 3.22 126 1.08 153 92.8
25 3SDH:5HBI 27.91 0 0.1 52 0.11 145 98.6
26 3SDH:5HBI* 54.25 2 1.87 99 0.11 145 98.6
27 5HBI:1EMY 53.73 1 1.97 22 2.01 135 21.5
28 5HBI:1EMY* 50.29 3 0.66 21 2.01 135 21.5
29 6HBI:1JWN 48.77 0 0.24 40 0.35 145 97.9

Table  0-4 Capriotti et. al. Remote Homologues Pdb Pairs 

 PDB Score Gap RMSD length ce_RMSD ce_length  identity 
1 12AS:1PYS 42.47 0 0.95 18 3.45 211 14.2
2 1A0A:1AM9 46.68 0 0.69 14 3.21 51 7.8
3 1A0C:4XIS 29.7 1 4.15 83 2.41 371 24.7
4 1A17:1E96 49.9 0 0.68 10 2 123 17.9
5 1A1Z:1NTC 31.5 0 2.11 14 3.78 42 7.1
6 1A28:1LBD 42.82 0 1.08 19 2.89 194 18.6
7 1A3A:1A6J 53.57 1 0.54 14 2.26 133 23.3
8 1A3K:1C1L 39.77 0 4.05 15 1.73 122 23.8
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9 1A53:1NSJ 68.25 0 2.11 10 2.67 188 15.4
10 1A5R:1UBI 26.49 2 2.65 41 2.54 71 15.5
11 1A6M:1ASH 36.33 0 0.89 20 1.99 139 15
12 1A7T:1SML 54.15 0 0.3 10 2.18 194 14.4
13 1A9V:1EHX 37.23 4 3.84 13 3.95 83 6
14 1AAC:1BQK 59.92 15 5.11 19 2.32 84 31
15 1AC5:1IVY 40.97 3 3.71 66 2.31 379 28
16 1ACP:2AF8 28.18 0 4.25 42 4.74 58 13.8
17 1AD3:1BPW 32.04 2 3.61 101 2.31 417 27.1
18 1ADE:1BYI 41.94 0 1.73 16 5.38 79 8.9
19 1AFR:1MHY 32.16 0 4.15 25 4.4 283 10.2
20 1AGJ:2PRD 20.78 1 8.1 36 7 70 7.1
21 1AH1:1CD8 35.2 0 3.18 10 2.64 107 9.3
22 1AIR:1EE6 40.96 1 1.51 14 3.57 179 5
23 1AJ8:1CSH 44.68 0 0.96 17 2.09 352 27
24 1AJQ:1AJQ 35.12 0 0 17 6.84 88 3.4
25 1AKO:1BIX 30.42 5 2.05 61 1.82 249 26.1
26 1AL3:1ATG 29.94 0 2.9 24 3.27 194 8.8
27 1ALY:1D4V 45.2 0 2.36 10 2.19 139 24.5
28 1AOE:1D1G 42.25 3 1.6 12 2.5 155 22.6
29 1AOH:1NBC 38.09 2 2.33 11 3.92 107 5.6
30 1AOI:1YTW 34.32 0 2.15 11 7.42 59 5.1
31 1AOX:1ATZ 48.05 0 2.28 11 1.85 173 22
32 1AP0:1DZ1 37.67 0 1.04 15 2.54 57 21.1
33 1APY:1APY 33.92 2 0 12 4.04 69 7.2
34 1AQB:1BBP 54.09 1 3.25 11 2.84 155 13.5
35 1ARV:1BGP 40.5 2 0.86 28 2.47 229 19.2
36 1AUI:1CLL 34.8 0 0.81 23 1.61 69 38.6
37 1AUW:1FUR 40.55 1 2.37 33 2.77 381 19.4
38 1AVA:1HXN 50 1 3.62 10 4.96 69 5.8
39 1AVO:1AVO 34.29 0 0 19 4.11 54 13
40 1AVP:1EUV 31.21 0 2.99 12 3.35 146 9.6
41 1AW0:1CC8 32.27 4 1.23 26 1.91 64 20.3
42 1AWE:1BAK 41.91 4 4.04 17 2.94 94 13.8
43 1AXJ:1CI0 44.45 0 4.71 11 2.86 112 6.2
44 1AZS:1FX2 54.12 1 0.76 12 3.02 172 16.8
45 1B0U:1F2T 39.75 0 1.05 10 3.1 113 22.1
46 1B16:1BSV 40.97 0 2.61 15 2.76 186 13.4
47 1B20:1RGE 27.76 2 2.49 29 2.57 79 25.3
48 1B35:1B35 49.34 0 0 16 3.56 219 9.1
49 1B3A:1DOK 33.04 1 1.13 26 1.11 65 24.6
50 1B3T:2BOP 42.7 0 0.26 10 2.43 77 3.9
51 1B4C:1PSR 40.5 0 0.93 11 3.33 86 20.9
52 1B5E:1BKP 28.74 0 3.76 54 3.19 216 22.2
53 1B64:1GH8 28.83 4 3.02 15 3.03 85 18.8
54 1B6E:1AYF 40.08 0 4.52 13 6.01 74 5.4
55 1B6T:1F9A 39.09 0 1.04 29 2.29 140 14.3
56 1B8O:1ECP 28.36 0 3.23 42 2.95 217 11.5
57 1B9H:1BJ4 51.29 0 0.46 14 3.29 324 11.1
58 1B9L:1DHN 38.18 0 3.4 19 1.96 115 20
59 1BBH:1CPQ 43 0 0.23 13 1.51 124 24.2
60 1BCF:1DPS 30.45 0 2.77 40 1.7 131 17.6
61 1BCP:1PRT 47.75 13 4.45 12 2.92 90 13.3
62 1BD3:1DQN 47.2 0 0.17 10 3.59 149 8.1
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63 1BD8:2MYO 50.36 1 1.02 14 2.61 112 23.2
64 1BDO:1FYC 31.62 5 4.05 21 2.69 69 31.9
65 1BDY:1RLW 37.04 0 4.36 14 2.88 106 14.2
66 1BE3:1BE3 16.37 0 0 47 2.07 406 22.7
67 1BEF:1JXP 41.07 2 1.58 14 1.4 164 13.9
68 1BG2:3KIN 42 1 1.18 19 1.58 69 89.9
69 1BH9:1BH9 28.29 0 0 38 1.12 43 9.3
70 1BHE:1CZF 35.37 1 6.09 15 2.38 291 22.7

 


