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ABSTRACT

Machining has been one of the most widely used manufacturing methods since the
industrial revolution. Although the technological developments enabled machine tools
to be stronger, work faster and produce more precise parts, the process parameters are
still selected based on the experience. Selection of the acceptable or optimum
parameters can only be possible by conducting extensive amount of experiments or by
the help of the process models.

The main aim of this thesis is to develop analytical models in order to represent
the true mechanical and dynamical behavior of metals during cutting operations.
Analytical models for the orthogonal and oblique cutting processes are proposed. These
models are used as a base in order to simulate commonly used industrial operations
such as turning and 5 axis milling. Moreover, an initial approach is proposed in order to
model cutting behavior when the cutting tool has a hone radius. The proposed models
are step ahead from the previous ones as they represent the rake face contact and
friction in a more accurate manner, and have the ability to calibrate the material model
parameters and friction by few tests. The dynamic behavior during cutting is also a very
important aspect. For this, a stability model which includes multi-dimensional nature of
the cutting process is proposed. All the proposed models are verified by experiments
and overall good agreement is observed. These models can be applied to industrial
machining operations yielding shorter machining times, better surface quality, longer

tool life, stable operations and less manufacturing costs.

Keywords: Machining, Cutting Process Modeling, Chatter Stability, Simulation of

Machining Processes
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OZET

Talagli imalat, sanayi devriminden bu yana en c¢ok kullanilan imalat
tekniklerinden biri olmustur. Teknolojik gelismeler, dayanimi daha yiiksek, daha hizli
isleme yetenegine sahip ve daha yiiksek kaliteli parcalar1 imal edebilen takim
tezgahlarimin Uretilmesini olanakli kilarken, siire¢ parametrelerinin se¢imi halen
deneyimlere dayanarak yapilmaktadir. Kabul edilebilir ya da en iyi parametrelerin
secimi yalnizca ¢ok sayida deney yapilarak ya da siire¢ modelleri ile miimkiindiir.

Bu calismanin ana amaci, kesme islemleri sirasinda metallerin gercek mekanik ve
dinamik davramslarini temsil eden analitik siire¢ modellerinin gelistirilmesidir. Dik ve
egik kesme siirecleri i¢in analitik modeller sunulmustur. Bu modeller, endiistride yaygin
sekilde kullanilan tornalama ve 5-eksenli frezeleme operasyonlarimin benzetiminde
kullanilmistir. Bununla birlikte, kesici takim ucu yaricapinin dikkate alindigir durumlar
icin bir ilk yaklasim modeli 6nerilmistir. Onerilen modellerde talas yiizeyi temas1 ve
stirtiinme, literatiirdeki diger calismalardan daha dogru bir sekilde temsil edilmektedir.
Ayrica ¢ok az sayida testle siirtinme ve malzeme modeli katsayilar1 kalibre
edilebilmektedir. Biitiin bu 6zellikler, 6nerilen modelleri 6nceki ¢alismalardan bir adim
oteye tasmmistir. Metal kesme islemlerindeki diger Onemli bir husus da kesme
sirasindaki dinamik davranistir. Bunun i¢in, dinamik kesme siirecini ¢ok boyutlu bir
sekilde ele alan bir kararlilik modeli sunulmustur. Tiim Onerilen modeller deneylerle
dogrulanmis ve karsilastirmalar sonucu hesap edilen degerlerin deney sonuglariyla
oldukca yakin oldugu goriilmiistir. Onerilen modeller, operasyon siirelerinin
kisaltilmasi, parca kalitesinin artmasi, takim Omriiniin uzamasi, kararl islemler ve
boylelikle imalat maliyetinin azaltilmast amaciyla endiistriyel operasyonlarma

uygulanabilir durumdadirlar.

Anahtar Kelimeler: Talash Imalat, Kesme Siireci Modellenmesi, Tirlama, Talash

Imalat Siire¢c Benzetimi
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1. INTRODUCTION

1.1. Introduction and Literature Survey

Shaping raw materials in order to give them functionality, namely manufacturing
has always been in the interest of human beings. Manufacturing comes from the
combination of two Latin words “manus” meaning “hand” and “factus” meaning “to
make”. Although in the very beginning human beings used to manufacture goods by
hand, due to the related technological developments, they began to take their “hands
off” and used tools instead. There are several ways invented in order to manufacture
goods, such as casting, forming, machining, welding etc.

Machining is one of the most important manufacturing techniques. Basically, the
desired geometry is generated by removing the unwanted material by a cutting tool from
the workpiece material which has a lower hardness. Although machining operations can
be used to give the final shape of the product, they can also be used to give the desired
tolerances for the semi-final products that are manufactured by using other methods.
This property of machining makes it more common among other manufacturing
techniques. The machining is commonly used in the industrial areas such as aerospace,
defense, die and mold making, automotive, energy, electronics, medical products, micro
systems etc.

Machining can be used to manufacture several material types including metals,
cast irons, polymers, ceramics, composite materials, woods, rocks etc. Among others,
metal cutting is one of the oldest and most common applications of machining which is
also the focus of this thesis. Moreover, there are several methods of metal cutting such
as turning, milling, broaching, boring, drilling etc. These types of metal cutting
operations usually have their own machining tool types such as lathe, milling machine,
broaching machine, drill etc. In the conventional manner, these machine tools are used

manually and the skills of the technician usually become important in manufacturing



repeatable and high quality products. However, the technological developments in the
field of control enabled the use of Computer Numerically Controlled (CNC) machine
tools which provide shorter cutting times, higher repeatability, high quality products,
and low manufacturing costs. Despite of the technological developments, the
dependency on the “experience” based manufacturing instead of “research” based, has
usually been the choice of the manufacturers. That is, the selection of cutting parameters
usually done by the previous experiences or taken from the tool manufacturer catalogs.
This situation can be related to the lack of commonly accepted developed scientific
methods, as well as the unrealistic assumptions that cause inaccurate and imprecise
predictions from the developed models. Therefore, the true modeling of metal cutting
processes is very important since it enables the prediction of optimum process
parameters as well as the identification of the problem areas before the operation takes
place.

The true representation of the cutting process must involve the modeling of three
deformation zones which are responsible for the cutting, Figure 1.1. The primary shear
zone is the region which is responsible for the chip formation due to the plastic
deformation of the workpiece. The secondary shear zone, known also as the rake
contact, on the other hand, is responsible for the chip-tool contact where the complex
friction conditions exist. The third deformation zone is responsible for the deformation

of the workpiece which doesn’t contribute to the chip formation.

Workpiece Third Deformation Zone

Figure 1.1: The three deformation zones in orthogonal cutting.
The basic aim of this thesis is to develop analytical models that can truly represent
the mechanical and dynamical behavior of the metal cutting processes. The developed
models are applied to the simulation of the commonly used industrial operations such as

turning, boring, and 5 axis milling operations. The developed models are verified by



using experiments on real machine tools. As side observations, by the verified analytical
models, the effect of several important parameters on the cutting behavior is also
investigated. The developed models can be applied to industrial applications and used
for selection of the optimum parameters during manufacturing which brings in shorter
machining times, better surface qualities, longer tool lives, more stable operations and
thus less manufacturing costs.

Being the fundamental model for all cutting processes, modeling of the orthogonal
cutting (see Figure 1.2.a) has been one of the most important problems for machining
researchers for decades. Understanding the true mechanics and dynamics of the
orthogonal cutting process would result in solution of major problems in machining
such as parameter selection, accurate predictions of forces, stresses, and temperature
distributions. One of the first successful mathematical attempts for modeling of the
mechanics of orthogonal cutting was made by Merchant [1]. Merchant [1] studied the
formation of continuous chip by assuming that the chip is formed by shearing along a
shear plane whose inclination was obtained from the minimum energy principle.
Although his model has several important assumptions, it is still widely used to
understand the basics of the cutting process. Later, many models were proposed [2-7]
on the modeling of the orthogonal cutting process. After some deceleration in the
research on cutting process mechanics due to the developments in CNC and CAD/CAM
technologies, the process research regained some momentum in recent years. Many
predictive models have been proposed by means of analytical, semi-analytical or
completely numerical methods up to now. Semi-analytical models, where some of the
parameters are identified from the cutting tests, usually yield high prediction accuracy,
however they may not always provide insight about the process [8-10]. In addition, the
cutting tests can be time consuming depending on the number of variables and their
ranges. Numerical methods such as FEM [11-14] could provide much more detailed
information about the process, such as temperature and pressure distribution, however
they can be very time consuming. On the other hand, some analytical models may
provide sufficient insight about the process. They can be categorized as the slip-line
models [15-19], and thin and thick shear zone models [20-24].

It can be deduced from the previous studies that there are several accurate models
for the primary shear zone. There are also several studies where the friction in

machining is investigated [25-31] which is critical for the secondary shear zone.



However, there are still issues in including a relevant rake contact model in a global

thermomechanical approach of cutting processes.

WORKPIECE

(a) (b)

Figure 1.2: The 3D representation of the (a) orthogonal, and (b) oblique cutting
processes.

Although modeling of the orthogonal cutting serves as the base, oblique cutting
(see Figure 1.2.b) which involves the chip formation in 3D due to the inclination angle
i, serves as a more realistic approach in order to simulate common industrial operations.
Moreover, once the orthogonal cutting model is developed it can then be applied to the
oblique cutting process by several geometrical and kinematical transformations. One of
the accurate ways of modeling oblique cutting process is proposed by applying the
mechanics of cutting using oblique transformations from the orthogonal data [9, 10, 32].
The orthogonal data is obtained by a large number of orthogonal tube cutting tests and
applying the mechanistic model approach. Again, although the predictions of the model
are quite precise, there is a lack of information about the insights of the cutting process.
In one of the later studies in analytical modeling of oblique cutting, Becze et al. [33]
proposed a force prediction model based on the chip morphology of local shearing.
Although the model was analytical and good agreement is observed with the
experimental results, it lacked providing insight about the process and the friction
behavior on the rake face. In a recent study, Moufki et.al [34] proposed an analytical
approach for modeling the oblique cutting process with a thin shear band approach. In
this model, the friction is modeled as a function of the temperature. However, again the

friction behavior on the rake face is assumed to be only sliding which may be a realistic



approach at very high cutting speeds, but an unrealistic assumption even for the
moderate cutting speeds.

The foregoing review considered the models where the tool has a sharp cutting
tip. However, in practical applications the cutting tools have a hone radius which brings
in the third deformation zone. There are several methods proposed in order to model
this region. The mechanistic approach [9] identifies edge cutting forces by conducting
cutting experiments for different feed rates and then extracting the forces responsible
for the chip formation. This approach is a precise one although it helps predicting the
cutting forces only. The numerical methods such as the FEM [35, 36], are also used to
model the third deformation zone. However, the need for the elasto-plastic material
models make the solution times even higher than the cases without considering the hone
radius. The results obtained by this approach usually fail to predict the edge cutting
forces correctly. Several analytical models using slip-line field analysis have also been
proposed [37-41].

The modeling of oblique cutting process enables the simulation of the most
common cutting processes such as turning and milling operations. This is because, in
most of the practical applications, due to the complex geometries of the cutting tools,
the chip formation cannot be represented on a 2D plane but a 3D space.

In turning, the existence of the nose radius makes representation of the cutting
behavior more complicated. The existence of the nose changes the geometry of the
uncut chip thickness, and affects the direction of the forces, chip flow as well as the
local cutting angles. In order to take the effect of the nose radius into account a simple
model is proposed by Colwell [42] in an earlier study. In this study, the cutting edge is
modeled by a simple line which is referred to as the “Colwell line” and the chip flow
angle is assumed to be perpendicular to this line. Later, amore complicated model is
proposed [10] where the nose radius is divided into elements, and the mechanistic
model is applied in order to calculate the cutting forces. In a more recent study Molinari
et al. [43] proposes a novel approach and again used a divided chip thickness. In this
study, the interactions between the elements are taken into account by an analytical
approach and the chip flow angle is calculated accordingly. However the numerical
solution proposed for the model involves several iteration steps and the model is not
using the best representation for calculating the shear angle for each element. The
common problem in modeling the turning operations is to relate the chip flow, shear

flow, and shear angles together with the friction behavior at the rake face.



S-axis milling operations, on the other hand, are used extensively in the
manufacturing of free form surfaces such as turbine engine components, dies and
molds. The complication in 5-axis milling processes is due to the additional two angles,
i.e. lead and tilt angles. Moreover, due to the ball end geometry, the conditions such as
the cutting speed vary continuously along the cutting edge. There have been numerous
efforts for modeling of the ball-end milling processes. These can be grouped into three
categories according to how material data is obtained, varying from completely
analytical [44, 45] to completely experimental [46-48]. Budak et al. [9] presented a
hybrid method named as mechanics of milling for milling force modeling based on the
orthogonal cutting data and the oblique cutting model. The mechanics of milling
approach was employed by several authors in 3-axis ball-end milling [49-54].

There are two important inputs for modeling of the cutting process: the
constitutive relationship and the friction coefficient between the tool and the workpiece
material. These two inputs can be considered to be independent of the cutting
mechanics as they are related to the mechanical and physical properties of the materials.
Identification of both properties is very critical for accurate modeling of the machining
processes.

Being a common topic in mechanics, friction has also been extensively studied in
basic sciences. However, machining researchers have also paid special attention to
friction due to its importance in cutting processes. The early studies on the subject
concluded that there is a direct relationship between the shear angle and the friction.
Using minimum energy principle for the continuous type chips, Merchant [1] concluded
a similar relationship between the shear angle and the rake face friction. In a later study,
Lee and Shaffer [4] obtained a similar relationship by applying slip-line field theory to
the orthogonal cutting. The solutions presented in these studies have assumptions which
do not accurately represent the friction behaviour of the process. Based on the
experimental observations, however, it has been well accepted that the overall friction
coefficient on the rake face decreases with the increasing rake angle. On the other hand,
the effects of other parameters such as cutting speed or feed rate were not known that
well. Eventually, Zorev [3] approached the problem by observing the normal pressure
and shear stress distributions on the rake face, and proposed distribution forms for them.
Basically, Zorev [3] proposed that the material exiting the primary shear zone reaches
the rake face with such a high normal pressure that there is a sticking contact zone close

to the tool tip. Due to the drop in the normal pressure, the contact state changes to the



sliding (Coulomb) friction away from the tool tip on the rake face. This behaviour is
also verified by numerous researches in later studies [29, 55, 56] mostly by split-tool
experiments measuring the normal pressure and shear stress distributions on the rake
face.

Friction between two contacting bodies has several dependencies such as the
material pair, temperature, pressure and speed depending on the application ranges [23,
27]. For instance, in a recent study, Phippon et al. [26] conducted several experiments in
an original test setup in order to investigate the sliding friction behavior at high sliding
velocities, and concluded that the sliding coefficient of friction strongly depends on the
speed and the pressure. In a different study, Moufki et al. [34] proposed an orthogonal
cutting model which relates the sliding friction coefficient to the mean temperature on
the rake face. As another approach, the semi-analytical method known as the mechanics
of cutting [9, 10] relates the apparent friction coefficient to the rake angle, feed rate and
the cutting speed, and uses them in force prediction. However, this approach may take
longer tests times since high number of tests must be carried out depending on the
ranges. Similarly mechanistic models do not provide much insight about the friction
behavior of the workpiece and tool couples.

The material behaviour on the other hand is another important issue during metal
cutting. It is well known that the strain rates can go up to 10° 1/s at high, and 10° 1/s at
moderate cutting speeds. There are several constitutive relationships in order to model
the material behavior under high strain loading conditions. Three most widely used
relations that account for the strain rate effects are the Johnson-Cook, the Zerilli-
Armstrong, and the mechanical threshold stress (MTS) constitutive relations [57-59].
The Johnson-Cook (JC) constitutive relation is relatively simple, one dimensional
model that accounts for the effects of strain, strain rate, and thermal softening on flow
stress and utilize a von Mises yield criterion. It describes the material hardening
behavior based on the well known power-law function. Also it is an empirical relation
that is relatively simple to calibrate for a given material. That is, very few stress-strain
curves covering the loading conditions are required to determine the parameters. It is
relatively easy to implement into computer codes, inexpensive to use and produces
reasonably accurate predictions for a range of materials if loading conditions do not
exceed those used to determine the material parameters. It is presented in the literature
for medium and high strain rates of deformation that Johnson-Cook Model exhibits

good correlation between experimental studies, especially with split Hopkinson



Pressure bar [60-63]. Moreover several materials JC parameters can be found in the
literature relatively more easily.

The foregoing reviewed studies were only considering the mechanics of the
cutting processes. However, the dynamic behavior during cutting is another important
issue. Due to the process dynamics the cutting conditions may become unstable.
Stability in cutting is an important problem due to resulting high cutting forces, poor
surface quality and reduced productivity. Although chatter is a more common problem
in milling, it can be a limiting factor in some turning and boring operations where
slender and flexible tools and parts are involved. The analytical prediction of stability
limits for orthogonal cutting is well established, however only a few attempts have been
made for modeling and analysis of turning stability considering the true geometry of the
process. This study focuses on the analytical treatment of the process dynamics, and
stability predictions in turning operations.

The mechanics of instability in cutting processes was first understood by Tlusty
[64] and Tobias [65]. They observed that the modulated chip thickness due to vibrations
affects cutting forces dynamically, which in return increases vibration amplitudes
yielding a process known as regenerative chatter. They also observed that the depth of
cut was the key process parameter in the cutting process stability. Tlusty [64]
analytically showed that for the depth of cuts higher than the stability limit, the
magnitude of the dynamic forces and oscillations increases yielding instability, thus
chatter vibrations. In his orthogonal stability model, Tlusty [64] used an approximate
solution resolving cutting forces and structural dynamics into one direction, i.e. the chip
thickness direction, reducing the dynamics problem into a 1-dimensional (1D) case.
Although this is a valid model for a truly 1D operation such as plunge turning or
straight turning without inclination angle and nose radius, it is not an accurate model for
many cases where a multi dimensional cutting process and/or dynamics are involved.
This is similar to the case of vibration analysis of 2 degree-of-freedom (DOF) system.
Lumping or resolving the system parameters in one DOF only would result in a 1D
system, and one natural mode which is different from any one of the two actual natural
frequencies. Similarly, in dynamic cutting process analysis reducing a 2D or multi-D
cutting system, which can only be accurately represented as an eigenvalue problem, into
a single algebraic equation would result in inaccurate stability predictions. This has
been demonstrated in the analysis of milling stability by Minis and Yanushevsky [66]
and Budak and Altintas [67]. In an early study, Marui et al. [68, 69] investigate the



chatter stability in turning operations experimentally where limited theoretical treatment
is presented. They concluded that primary chatter vibration is due to the self excited
vibrations, and the energy supplied for the vibrations is due to the frictional force on the
flank contact, but they failed to model the dynamic mechanism analytically. Later,
Kaneko et al. [70] modeled the self excited chatter and chatter marks left on the surface
in turning operations. They used a 2D model for chatter mark predictions and the
solution is done numerically. However, the conclusions are mostly based on
experimental results rather than the modeling. In contrast, Minis et al. [71] used an
oriented approach and failed to integrate the 3D turning geometry into the model. Later,
Rao et al. [72] used the multi directional approach used by Budak and Altintas [73] to
model the stability in turning, and calculated the dynamic chip area with a cross
coupling term including the effect of vibrations in one direction on the chip area in the
other direction. Clancy et al. [74] added wear and process damping to their model.
However, in these studies cross coupling term made the modeling and the solution
complicated. Atabey et al. [75] and Lazoglu et al. [76] proposed an analytical model for
force prediction in boring, and, using time domain solutions, they predicted workpiece
topography as well. Ozdoganlar and Endres [77] presented an analytical chip-area
calculation for inserts having a nose radius, which was also used in the 1D stability
modeling of turning [78]. They [79] also modeled the stability in a multi dimensional
cutting system analytically. Reddy et al. [80] applied the proposed model in [78] to the
turning of a wheel-rim and obtained stability maps. In a recent study Chandiramani et
al. [81] employed a multi-dimensional approach to model the turning dynamic system
the turning geometry was over simplified. The studies summarized above (except [70,

78, 79]) solved the stability equations in the time domain using numerical methods.

1.2. Objective

As discussed earlier, the modeling of cutting operations is needed in the selection
of optimum cutting parameters for the industrial applications, and in the investigation of
the cutting process for the scientists. As reviewed in the previous section, several
process modeling methods are developed. For instance the most widely used one, the
mechanistic model, predicts the cutting forces very precisely but fail to provide insight
about the cutting process e.g. material flow behavior, friction, and the number of tests
needed to obtain the required data can be very high. Numerical methods such as FEM,

on the other hand, gives insight about the process, but the solution times are so long that



it may be a better choice to conduct the experiments in many of the cases. There are still
problems with the prediction accuracy of FEM methods. Finally, the analytical models
such as slip-line field analysis are reasonably flexible in terms of modeling of the
cutting region, and thus there are numerous slip-line field analyses proposed in the
literature. For this reason, there is no well accepted slip-line field method for modeling
the cutting operations. It is obvious that there is a need for process models which are
fast, and accurate, and represents the cutting behavior in a more precise way.
Consequently, our aim is to propose analytical process models which represent the true
material behavior and friction. By the help of these models, we can simulate the
industrial operations and investigate the cutting behavior further. As a base approach we
begin with the modeling of the orthogonal cutting processes.

In modeling of the orthogonal cutting process, we use the two-zone contact model
of Zorev [3] which considers sticking and sliding friction regions on the rake face.
Including this contact model into a thermomechanical modeling of orthogonal cutting is
the scope of the present study. This constitutes an important improvement of previous
approaches which were either assuming complete sticking (Oxley’s model [15]) or only
sliding Molinari and Dudzinski [21]. Sliding may be realized along most of the contact
zone for high cutting speeds. However, for low cutting speeds, sticking cannot be
neglected.

The two-zone contact model is combined with the modeling of the primary shear
zone proposed by Molinari and Dudzinski [21] and Dudzinski and Molinari [22]. Any
thermo-mechanical constitutive relationship for the workpiece material can be used but
in this study the Johnson-Cook law is considered due to the advantages discussed
above. The primary shear zone is taken as a thin layer with constant thickness. In
general, the material exiting from the primary shear zone enters the rake contact with a
high normal pressure that creates sticking, i.e. plastic contact, between the tool and the
material. After some distance, the contact state changes to sliding, i.e. elastic contact,
due to the decreasing normal pressure. The minimum energy approach is used for the
shear angle prediction. The workpiece material parameters and sliding friction
coefficient at the tool rake face are calibrated directly from orthogonal tube cutting
tests. After calibration, the model can be used for different machining operations using
the same tool and workpiece material. The outputs of the proposed model are the shear

angle, shear stress in the shear plane, cutting forces, the stress distributions on the rake
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face, the length of the sticking and sliding zones and the global (or apparent) friction
coefficient. The model predictions are shown to be well correlated to experimental data

Accurate representation of contact behavior on the rake face is critical for the
through understanding and modeling of the metal cutting operations. In this regard,
quantitative analysis of the friction behavior in metal cutting is important for better
understanding of the nature of the process. The identification of the sliding friction
coefficient between the workpiece-tool couple, and the relation of the sliding friction
coefficient to the apparent one are critical for process modeling. The contact lengths
which are basically the physical representation of the friction behavior on the rake face,
must also be modeled and analyzed. Based on these, another objective of this study is to
further investigate the friction behavior in metal cutting operations.

Also an initial approach is proposed for modeling the edge cutting forces in
orthogonal cutting operations. The proposed model involves the true representation of
the hone radius and its effects on both the chip formation and ploughing.

For the simulation of the two most common processes, 1.e. turning and milling the
proposed oblique cutting model is applied. Since the material flow behavior and the
friction conditions on the rake face are considered realistically, the proposed models are
precise in terms of cutting forces, as well as gives more insight about those processes,
such as the pressure distribution, contact lengths, etc.

In terms of process dynamics, currently, the most common stability analysis in
turning applications is done with an oriented-transfer function stability model which is
based on the analytical model proposed by Tlusty [64]. The oriented transfer function
model cannot include the effect of the multi-dimensional dynamics, the oblique cutting
conditions, and the insert nose radius. The model proposed in this study is an analytical
model for the prediction of stability limit for multi-dimensional dynamic turning
systems. This model is then merged with an insert nose radius model in order to extend
it to the stability limit predictions for turning and boring operations with real cutting
inserts. The stability model includes all important parameters of the process geometry,
1.e. cutting angles and tool nose radius, in addition to the tool and workpiece dynamics.
The model proposed is a step ahead of the previous studies as it includes the dynamics
of cutter and workpiece in a multi directional form (not oriented in one direction), an
accurate but practical modeling of tool nose radius and dynamic chip thickness, and a

stability limit solution in the frequency domain rather than time domain simulations.
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1.3. Layout of the Thesis

The thesis is organized as follows:

In Chapter 2 the proposed models for the simulation of orthogonal and oblique
cutting are presented. The detailed formulation regarding the derivation of the equations
is shown. The solution procedures are also provided.

In Chapter 3, the verifications for the proposed orthogonal and oblique cutting
processes are presented in terms of cutting forces, shear angle, and contact length
predictions with several material-tool couples. Also the friction behavior in metal
cutting is investigated as well as the effect of the material model parameters on the
cutting force predictions.

In Chapter 4, an initial new model for the prediction of the edge forces in
orthogonal cutting operations is presented. The proposed model is compared with the
experimental results.

In Chapter 5, the process simulation models for the most two common industrial
operations are presented, turning and 5 axis milling operations. The proposed model is
verified by the cutting experiments in terms of cutting force predictions.

In Chapter 6, a stability model of the turning and boring processes including the
multi-dimensional effects are proposed. The detailed formulation is also presented along
with some simulation results.

In Chapter 7, the proposed stability model in Chapter 6 is verified by several
chatter tests for turning and boring operations. Also the comparison between the widely
used one dimensional oriented transfer function stability model and proposed multi-
dimensional stability model is presented.

In Chapter 8, the suggestions for the further research are presented.

In Chapter 9, the contributions of the thesis to the literature and discussions are

provided.
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2. MODELING OF CUTTING PROCESS BY A THERMOMECHANICAL
MATERIAL MODEL

The modeling of cutting processes is one of the basic aims of this thesis. The true
representation of the chip formation must involve the true modeling of the material flow
during cutting. Basically, due to the plastic deformation and the contact between the
chip and the tool there exists a rise in the temperature which totally affects the material
behavior. The modeling of this type of deformation behavior can only be done by using
a thermomechanical type of constitutive relationship. Also, due to the initially very high
but decreasing normal pressure distribution on the chip-tool contact, sticking (plastic)
and sliding (elastic) friction regions exist. This behavior is also modeled by using a
dual-zone approach.

In this chapter the mathematical formulation of the proposed model for orthogonal
cutting operations are presented in detail. Then, the application of the proposed model

to the oblique cutting operations is demonstrated.

2.1. Modeling of Orthogonal Cutting

In this chapter, the orthogonal cutting model is presented. Firstly, the basic
formulations regarding the primary shear zone and the two-zone contact model are
given. Then, the working of the model is presented.

In general, the material exiting from the primary shear zone enters the rake
contact with a high normal pressure that creates sticking, i.e. plastic contact, between
the tool and the material. After some distance, the contact state changes to sliding, i.e.
elastic contact, due to the decreasing normal pressure. The minimum energy approach
is used for the shear angle prediction. The workpiece material parameters and sliding
friction coefficient at the tool rake face are calibrated directly from orthogonal tube

cutting tests. After calibration, the model can be used for different machining operations
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using the same tool and workpiece material. The outputs of the proposed model are the
shear angle, shear stress in the shear plane, cutting forces, the stress distributions on the
rake face, the length of the sticking and sliding zones and the global (or apparent)

friction coefficient.

2.1.1.Modeling of the Primary Shear Zone

The primary shear zone model is taken from Molinari and Dudzinski [21] and
Dudzinski and Molinari [22], but additionally the contact at the rake face is modeled by
the two-zone approach of Zorev [3]. As the details of the primary shear zone model can
be found in [21-23], just a brief presentation is given here. The main assumption is that
the primary shear zone has a constant thickness 4, and that no plastic deformation
occurs before and after the primary shear zone up to the sticking region on the rake face.
The material behavior is represented with the Johnson-Cook constitutive model in this

study due to the reasons discussed in Chapter 1, in the form:

T:%{“B(%H{Hmb_ﬂm}b_(f )] @.1) |

CHIP|
w
h, Y
i v,
WORKPII%CE

Figure 2.1: The schematic representation of the orthogonal cutting process.

where y is the shear strain, 7is the shear strain rate, j,is the reference shear strain

rate, A, B, n, m, and v are material constants. The reduced temperature is defined by T=
(T-T)/(T,,-T}), where T is the absolute temperature, 7, is the reference temperature, and
T,, is the melting temperature. The material entering the primary shear zone sustains a

shear stress of 7). The shear stress at the exit of the shear plane, 7;, is different from 7
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when inertia effects are important. Assuming a uniform pressure distribution along the
shear plane (exit of the primary shear zone), 7 can be iteratively calculated as proposed
in [23]. From the conversation of momentum we obtain [23]:
7, = p(Vsing)’ 7, +7, (2.2)
where p is the density of the workpiece material y; is the plastic shear strain at the
exit of the primary shear zone, V is the cutting speed and ¢ is the shear angle (see Figure
2.1Figure 2.1: The schematic representation of the orthogonal cutting process.). Also

from the conservation of energy (assuming adiabatic conditions) we obtain the

following relation [23]:

T:Tw+§(pV2sin2¢7—22+royj (2.3)

where ¢ and S s the heat capacity and the fraction of the work converted into heat,
and 7, is the absolute temperature of the workpiece. For the metals, it is empirically
seen from the previous studies that f can be taken as 0.9. Moreover there is a
compatibility condition [23]:

dy dydt _dyldt 'y

dy dtdy dtldy Vsing @4
The boundary conditions are:

T=T, at y=0 (2.5)

7=0 at y=0 (2.6)

y=y =tan(p— )+ at y=h 2.7

tan @
The shear stress 7 at the entry of the shear band can be calculated iteratively by
solving the differential equation (2.4) with the boundary conditions above. When 7 is
calculated the shear stress 7; at the exit of the shear band can be calculated by the

equation (2.2), which is then used in the rake face contact analysis.

2.1.2. Two-Zone Contact Model and Orthogonal Cutting Approach

In this section, the dual zone contact model of Zorev [3] is formulated and
introduced into the global modeling of orthogonal cutting. In this model the rake face
contact is divided in two regions. In the first region, the contact condition is assumed to
be sticking due to the high normal pressure exerted on the tool, whereas in the second

region the contact is considered to be sliding and is governed by the Coulomb friction
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law. Zorev [3] and some other later studies [82-84] describe the shear stress and the
normal stress distributions on the rake face as shown in Figure 2.2.a However, it is well
known, and also proved by friction tests [85], that the Coulomb friction coefficient
cannot exceed 1.0 between metallic materials unless some kind of oxide formation or
chemical reaction occurs [27, 29, 86]. Therefore, as shown by split tool cutting tests [18,
29, 55, 56, 85, 87] the distribution of the shear and normal stress on the rake face are

obtained as shown in Figure 2.2.

stress distribution
stress distribution

distance from tool tip distance from tool tip
Momal Stress - = -Shear Stress ——Momal Stress - - -Shear Stress

(a) (b)

Figure 2.2: Stress distributions on the rake face according to the Zorev’s [3] model, with

sliding friction coefficient (a) larger than 1, and (b) smaller than 1.

It is assumed that the normal stress P decreases with the distance from the tool tip,
(Figure 2.2Figure 2.2: Stress distributions on the rake face according to the Zorev’s [3]
model, with sliding friction coefficient (a) larger than 1, and (b) smaller than 1.).
According to the Coulomb friction law, the sliding shear stress 7 is proportional to the
normal stress represented by 7 =0, where u is the friction coefficient (dashed line in
Figure 2.2). The shear stress is increases towards the tool tip. However, according to the
plastic flow criterion (assumed here that it is not dependent on the pressure P) the shear
stress cannot exceed the flow stress 7; of the work-material on the rake face. In a first
approximation, 7; will be taken equal to the shear stress at the exit of the primary shear
zone. This stress is calculated with equation (2.2), and finally the shear stress

distribution on the rake face can be defined as follows:

Tle xéfp
T=uP 0 <x</

P c

(2.8)
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where £ is the contact length, and x is the distance on the rake face from the tool
tip. Also, for the normal stress on the rake face the following distribution is selected,

which is validated by various researchers and experiments for the metallic materials [23,
29, 55]:

4
P(x)= P{l—%} (2.9)

c

where Py is the normal stress on the rake face at the tool tip, and { is the
distribution exponent. From the application of the coulomb friction law along the
sliding zone we have:

4
(x)= ,uP{l —%j (2.10)

At the end of the sticking zone (beginning of the sliding zone) the tangential stress

T 1s equal to the shear yield stress 7, :

/ 4
T, =,11P{1—£—”j (2.11)

c

From equation (2.11), the length of the sticking zone can be obtained as follows:

%
0, =1, —( lj +1 (2.12)
Fou

For a given u , there are three unknowns Py, ¢,, and ¢, in equation (2.12). Py can
be related to the normal force acting on the rake face by considering the pressure

distribution along the contact length £, (see Figure 2):

‘. ‘. 4
¢ ¢ x wl,

where w is the width of cut. The normal force N can also be calculated in terms of

the shear force on the shear plane is:

N = FY COs ﬂ«a (2 14)
‘ cos(¢ +A4, - a')

where A, is the friction angle defined by A, =tan™' & . The apparent (global)

friction coefficient , is defined later, see (2.23). Also the shear force F; in equation
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(2.14) is obtained by assuming that the shear stress distribution on the shear plane AB at

the exit of the primary shear zone (Figure 2.3) is uniform:

Fer wh,

2.1
g (2.15)

where h; is the uncut chip thickness. Combining equations (2.13-2.15) Py, can be

calculated as follows [23]:

P = h (¢ +1) cos A,

(2.16)

o {,sin ¢ cos(¢+/1a —a')

N, N,
— S o
2
(a) (b)

Figure 2.3: (a) The Merchant’s Circle and (b) the schematic representation of the forces

acting on the rake face.

The next step is to calculate the contact length £.. Assuming that the normal stress
is distributed uniformly along the shear plane AB, and considering the momentum

equilibrium at the tool tip, we get: M ,, =M

t —_
M, =F AB P, an(¢+‘/1a «) @.17)
‘ 2sin ¢
¢ ¢
¢ X l cosA
M, = xP{l——j wdx = F, —* 2 (2.18)
Be }[ l, +2cos(p+ A, —a)
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From equations (2.17) and (2.18), the contact length £ is obtained as follows [23]:

+2sin(p+ A, - a)
2 singcosA,

0, =h (2.19)

Considering the additional equations (2.16) and (2.19), £, can be calculated by

equation (2.12), for a given value of the shear angle ¢ .

It can be shown that along the sliding zone the equation (2.10) takes the form

x—/ ¢
t(x)=17|1- ; L 0 <x</ (2.20)

e

where £, is the length of the sliding region, Figure 2.3.b.

In some cases, i.e. high cutting speeds, the friction state at the rake contact can
only be sliding. Mathematically this condition occurs when £,=0 or 7;>uPy. Therefore

the condition for having sliding all along the rake face can be written, according to

equations (2.16) and (2.19), as:

A>1 2.21)

where:

__6+2 sin(2(¢p+ 4, — @)
4u(s+1) sin? A,

(2.22)

The only parameter left to be defined is the apparent friction coefficient, i,. The

apparent friction coefficient is defined as follows:

u =FIN (2.23)

The normal force N acting on the rake face can be obtained from equation (2.13)

and the friction force F on the rake face can be calculated as follows:

4 ¢ ¢
P c X — g g
— _ p _ e
F= .([ledx+ ;rl(l D j wdx = le(ﬁp + §+J (2.24)
Substituting equations (2.13) and (2.24) into equation (2.23), i, is obtained as
follows:
l +1)+7¢
n :i,,(g“—)g (2.25)

P, /

c
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It should be noted here that the expression (2.24) is not correct in the case of pure

sliding ( A >1). Then, the distribution of the shear stress along the rake face is given by

(2.10) for 0<x <!, and,

14 14 S
c c x Wl

F=|71 dx = P |1-— dx = UP, ¢ 2.26
!(x)wx ju( gij 4y (2.26)

+1

c

By combining (2.13), (2.23) and (2.26) we have: i, = 1.
When sticking occurs, the relationship (2.25) between the apparent (or global) and
the local friction coefficients, respectively #, and g can be written, by using (2.12),

as:

/¢

T T

i =tan(A)=—1|1+¢ 1—( 1 j (2.27)
F, { Fou

where:

T _ G+2 sin(2(¢+ 4, -@)
P, 4(c+1) (cosd,)’

(2.28)

which is obtained from equations (2.16) and (2.19).

Substitution of (2.28) into (2.27) provides the relationship between the apparent
friction angle A, and the local friction coefficient i, for a given value of ¢. Finally, the
cutting forces Fyand F. in the feed and tangential directions, respectively, are calculated
from the Merchant circle as follows, Figure 2.3.

7 wh, cos(d, —a)
‘ sin ¢ cos(¢+ A, — )

wh, sin(4, - a)
F=0
sin ¢ cos(¢+ A, — )

(2.29)

Note that, £, can be characterized experimentally by " and N and thus z, can be

measured by orthogonal tube cutting tests as discussed in the following section.

2.1.3. Material Parameters and Friction Characteristics

The inputs to the proposed model can be divided into three main groups. The first
one involves the cutting conditions such as the cutting speed, feed rate and cutting

angles used in the process. The second input is the material model coefficients, i.e.
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Johnson-Cook parameters in our case, and the third is the sliding friction coefficient

M between the tool and the workpiece material. It should also be mentioned here that

both sliding and apparent friction coefficients are unknown in the proposed model.
However, one of those can be derived if the other one is given as an input.

In mechanistic approaches, orthogonal tube cutting tests are conducted for
different rake angles, cutting speeds, and feed rates to characterize the cutting
coefficients [9, 10]. The three major outputs of the orthogonal tube cutting tests are the
apparent friction coefficient, the shear stress in the shear plane and the shear angle In
the mechanistic approach a large quantity of tests has to be done (in the order of 50).
One of the objectives of the present model is to provide the possibility of characterizing
the process parameters by doing just a few cutting tests.

For given cutting conditions, the apparent friction coefficient g, is characterized
from cutting force measurements. The dependence of &, upon cutting conditions is
obtained by varying the rake angle, the cutting speed and the feed rate. These results are
used to determine the sliding friction coefficient .

From the measurements of the shear stress on the shear plane, the Johnson-Cook
parameters are calibrated by non-linear regression analysis. Determining these
parameters from non-cutting tests such as Split Hopkinson Pressure Bar Tests (SHPB)
usually provide inaccurate results [88-90]. The strain rates in metal cutting may reach
the order of 10°s™, whereas they are usually restricted to values in the order of 10%™ in
SHPB tests [91], which is the main reason for the erroneous model predictions.

Once the material model parameters and sliding friction coefficient g are
calibrated the model is able to provide predictions for different cutting conditions for
that tool and workpiece couple. Therefore, the proposed model has both calibration and
prediction abilities.

Although the relationship between the apparent and sliding friction coefficient is
given by equations (2.27) and (2.28) analytically, we would like to provide a simple
illustration of this relationship. In Figure 2.4, the stress distributions are shown in order
to compare the sliding and apparent friction coefficients. The solid line represents the
distribution of the normal stress. The decreasing dashed line is the shear stress
distribution, assuming sliding all along the contact zone. In the stick and slip contact

problem the shear stress distribution is shown by the dashed line with a plateau in the
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stick zone and a continuous decrease in the sliding zone. Observing Figure 2.4, the

following characterizations of the friction coefficients can be deduced:
1=(A+B)/(A+B+C) (2.30)
u, =Al(A+B+C) (2.31)

where A, B, and C are the areas indicated in the Figure 2.4. Clearly from (2.30)
and (2.31) the value of 4, must always be smaller than z.

stress distribution

distance from tool tip

Normal Stress
= = =Shear Stress

Figure 2.4: The distribution of the stresses on the rake face.

2.1.4.Solution Procedure
In this section, the working of the model is discussed. It is assumed that the
primary shear zone has a given thickness of h. The average strain rate p, within the

shear zone is defined as the shear strain at the exit of the primary shear zone divided by

the time for a material particle to cross the shear zone:

. Vcosa
Vv

o] (2.32)

The effective response of the primary shear zone is defined as the relationship
providing the shear stress 7; at the exit of the primary shear zone in terms of the shear
strain ¥ and the temperature 7; at the exit of the primary shear zone and the average
strain rate 7, within the shear zone. It is assumed that this relationship can be described
by the Johnson-Cook law, equation (2.1). The coefficients of the material law given in
(2.1) are identified so as to get the best fit with the values of 7, obtained from the

orthogonal tube cutting experiments. Note that the shear force F; along the shear plane
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at the exit of the primary shear zone can be easily obtained by measuring the
components of the cutting forces parallel and normal to the cutting direction and by
measuring the shear angle ¢ .

After calibration of the Johnson-Cook parameters, the friction law has to be
identified. Orthogonal tube cutting tests are used to characterize the local sliding friction
coefficient. For given cutting conditions ¢, h; and V, the apparent (or global) friction
coefficient 1, and the shear angle ¢ are measured. If A > 1, where A is given by (2.22),
no sticking occurs between the chip and the tool. Then the local and global friction
coefficients are equal, u=u,. If A<1, there exist a sticking and a sliding zone. From
equations (2.27) and (2.28), the local friction coefficient tis given in terms of the

global friction coefficient by:

—-<
u=" 1+l(1—,ua P—Oj (2.33)
PO g Tl

where 7,/Py is related to /Ll:tan'l( ) by (2.28). The dependence of the sliding
friction coefficient & upon the sliding velocity (chip velocity, Veip) 1s characterized
experimentally by varying the value of the cutting velocity V. The normal pressure P
may affect the friction coefficient (to a lower extend than the sliding velocity), as
observed for example by Philippon et al. [26]. However, the experimental data
generated in this study show that the friction coefficient can be defined accurately using

a velocity dependent function only. Then, by fitting the experimental data, a function,
ﬂ = ﬂ(vchip) (234)

will be identified in chapter 3 for a given workpiece and a given tool. The chip
velocity along the sliding contact length is assumed to be uniform and is calculated as:
sin ¢

V=V —r .
o =V oslo—a) (2.35)

The second step is the prediction phase. Once the material model parameters and
the sliding friction coefficient are calibrated, the proposed model can be used to predict
the cutting forces, shear angle, shear stress at the shear plane, normal pressure and shear
stress distribution on the rake face, and the length of the sticking and sliding contact

Z0ones.

23



For a given value of the shear angle ¢, the chip velocity is determined and the
value of the local friction coefficient & is obtained from the law (2.34). The apparent
friction coefficient 4, is then uniquely determined in terms # by solving the equations
(2.27) and (2.28). As soon as K, is known, the cutting model provides z;, Py, and £, and
the components of the cutting force. The length £, of the stick zone is determined by
equation (2.12). The pressure distribution along the contact length £, is given by (2.9).
The shear stress distribution is given by (2.10) along the sliding zone and by (2.11)
along the sticking zone. Finally, ¢ can be determined by minimizing the cutting energy
or by using the empirical Zvorykin law, see Moufki et al. [23]. The cutting forces are
given by (2.29).

In this study, ¢ is calculated by minimization of the cutting energy. An example is
presented in Figure 2.5 where the cutting power is shown in terms of the shear angle in
the range 20°-40°. The shear angle that corresponds to the minimum cutting power (26°)
is selected as the predicted value of the shear angle. Note that a coupling does exist

between the primary shear zone and the contact zones though the shear angle.

2600+

250%0 25 30 35 40
shear angle - degrees

Figure 2.5: The cutting power variation with the shear angle.
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2.2. Modeling of Oblique Cutting

The proposed model for oblique cutting involves the primary and the secondary
shear zones. Firstly, the shear stress at the exit of the shear band is calculated, and then
used to determine the stress distributions on the rake face. The calculation of the basic

cutting parameters such as shear angle, chip flow angle etc. is also presented.

2.2.1.Primary Shear Zone Model and JC Parameters

The model for the primary shear zone is adapted from Dudzinski et al. [22].
Similar to the orthogonal cutting model, the material behavior is again represented by a
JC constitutive relationship of the form as given in equation (2.1):

The governing equations of the material behaviour at the primary shear zone are
obtained by the conservation of momentum, and energy, and the constitutive
relationship. 7, being the shear stress at the entry of the shear band is calculated by
applying the boundary conditions on the strain rate and the temperature at the entry and
exit of the shear band. The shear stress at the exit of the shear plane 7; is different from
7p when inertia effects are important. From the equations of motion for a steady state
solution (continuous chip) the shear stress at the exit of the shear zone can be calculated

as follows:
7, = p(Vsing, cosA, )y, +7, (2.36)

where, A is the inclination angle, @, is the shear angle in the normal plane, and ¥
is the shear strain at the exit of the shear band. The JC parameters that are identified
using non-cutting tests such as the Split Hopkinson Bar (SHPB) usually provide
inaccurate results. The strain rates in metal cutting may reach the order of 107,
whereas they are usually restricted to values in the order of 10%s™ in SHPB tests. In the
previous section it is proposed to calibrate the material model coefficients from
orthogonal tube cutting tests. The difference of this approach from the mechanistic
method is that the number of calibration tests is much lower. Since the proposed model
can handle the effects of the rake angle and the feed rate on the cutting process, only a

few cutting tests are needed for calibration.

2.2.2.Dual Zone and Stress Distributions on the Rake

When the material leaves the shear band, it is exerted with a high normal pressure

on the rake contact which yields sticking friction conditions at the regions close to the
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tool tip. With the decreasing normal pressure the contact conditions return to the sliding
(Coulomb) friction. This phenomenon was first proposed by Zorev [3] and was
represented in equation 2.8. However, in oblique cutting geometry the normal plane of
the tool is different than the chip flow direction. In this case the pressure and shear
stress distribution is selected parallel to the chip flow direction (see Figure 2.6). Also

the normal pressure P(x) distribution is modelled, as given in equation 2.8.

Figure 2.6: The oblique cutting process.

Py can be related to the normal force acting on the rake face in the normal

direction by considering the pressure distribution along the contact length £, as follows:

‘, ¢
¢ X w.l wl . cosn
N=|P|l-—— | wdx=P —~—%=P —= < 2.37
-([0( EJ ¢ "C+1 " +1 cosi (237)

c

The normal force is also defined in terms of the shear force on the shear plane as:

- cos 3,
Vo colo, 48, a) 239

where by assuming that the shear force and velocity is in the same direction:

F/=F, cosn. (2.39)

and

F =tA =1,——— wh, _ (2.40)
sin @, cosi

By equating equations (2.37 and (2.38), Py can be obtained as:

P (& +1) cosn, cos B3, (2.41)
° : EC Sin ¢n COS”C COS(¢}1 +ﬁn - a}'l) .
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where 7, 1s the shear flow angle, 7. is the chip flow angle, &, is the normal rake

angle, and g, 1s the normal friction angle which is defined by:
B, =tanA, cosn, (2.42)

where A, is the friction angle which is related to the apparent friction coefficient

Lo by A =tan 4.

2.2.3.Contact Lengths
Once the distributions are obtained, similar to the orthogonal cutting case, the
sticking contact length can be calculated from equations (2.11) as follows:
Y
7 j ¢

(2.43)
Pou

0, =1, —E{

Assuming that the normal stress is distributed uniformly on the shear plane, the
moment due to the normal shear force acting on the shear plane at the tool tip can be

calculated as follows:

wh? cosn/ tan(g, + B, —a,) (2.44)

M, =1

N

.2 .
2 sin~ @, cosi

Also the moment at the tool tip due to the normal pressure on the rake can be
calculated as:

‘. ¢
M, = xPo(l—%j cosn,w,dx (2.45)
0

Using equation (2.41) we get:
0, h cos7y. cos 3, cosn,
(& +2)sing, cos(g, + B, —a, )cosi

Due to the moment equilibrium at the tool tip, by equating equations (2.44) and

M, =1w (2.46)

(2.46) the total contact length is obtained as follows:

2 sing, cos B, cosT,

2.2.4.Shear and Chip Flow Angles

Two characteristic parameters of oblique model are the shear and chip flow
angles. Assuming that the chip velocity and the friction are collinear and the shear
velocity and the shear force are coincident the following relationship can be found as

earlier obtained by [32, 92]:
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tanicos ¢, (2.48)

tan(g, + 5, ) =

tan77, —sin &, tani
Arranging the equation above we get the following parabolic equation for the chip
flow angle #,:

(42 + B2 Jsin*7, — (2A,C)sin’ 7, +2(A,C + CD)sin7,

(2.49)
+(c?- B2 -242-24D)sinn, +(A2 + D? +24D)=0
where,
A, = tani(~tan g, sin @, —cos, ) B, =tang,
D = tanitan B(cosa, tang, —sinar,) C=tanA, (2.50)

The shear flow angle #, can be calculated by the velocity relationships as
proposed earlier by Merchant [1] as follows:

tan7), = (tanicos(@, — @, )— tan n,sin @, )/ cos a, (2.51)

2.2.5.Sliding and Apparent Coefficients of Friction

As discussed in Chapter 2.2.4, the rake contact is represented in terms of two
friction coefficients, apparent and the sliding. These coefficients are related to each
other by the definition of the apparent friction coefficient which is the ratio between the
total friction and normal forces acting on the rake face. The total friction force acting on

the rake face can be calculated as follows:

J+1

The normal force acting on the rake is represented by the equation (2.38). By the

e

£, ‘, x—/ ¢ ;
F:jflwcdx+.[f{l— ; "j wdx:z'lw{ﬁp+ ¢ j (2.52)
0 ‘,

definition of the apparent friction coefficient:

F
- 2.53
Moo= (2.53)
the relationship between the apparent and sliding friction coefficient is obtained as
follows:
o=+ ¢ 1—(LJ/§ (2.54)
© R Bou
where 7;/P, ratio can be calculated from equation (2.41) as follows:
i +p,—«
P, h(&+1) cos7, cos f3,
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Note that if one of the friction coefficients is known the other can be calculated
from equation (2.54). The sliding friction coefficient as a function of chip velocity v, is
obtained from orthogonal tube cutting tests where the apparent friction coefficient can

be measured and used in the prediction of the sliding friction coefficient.

2.2.6.Shear Angle and Cutting Forces

The normal shear angle ¢, is calculated by minimization of the cutting energy. It
is determined by running a simulation program based on the proposed model for a given
range of shear angles, and the one that corresponds to the minimum cutting power is
selected as the shear angle. Although the primary and secondary shear zones are
modeled separately, they are coupled through the shear angle. Finally, the cutting forces
can be calculated by the force equilibrium on the chip as [92]:

F, =1,wh,(cos(B, —a, )+ tan A, tann, sin B,)/C,

F,; =7wh (sin(B, — ,))/(C, cos A,) (2.56)

F, =t,wh,(cos(B, — e, )tan A, —tann, sin B,)/C,

where,

C, =sing, \/cosz(gbn + B, —a,)+tan’ 7, sin* f3, (2.57)

The model has also the capability to provide insight on the cutting process. For
instance, the normal distribution on the rake face can be calculated. In addition, the
proposed model can also predict the temperature distribution along the chip, as shown
in Figure 2.7, which is calculated by numerical solution of the two dimensional heat
conduction equation. Therefore, in addition to the fast and accurate force predictions,
the model may predict the stress and temperature distributions -similar to numerical

solutions - but much faster.
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Figure 2.7: Demonstration of the normal pressure on the rake contact and temperature
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distribution along the chip.
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3. EXPERIMENTAL VERIFICATION OF THE PROPOSED MODELS
AND INVESTIGATION OF THE FRICTION BEHAVIOR

In this chapter the proposed models in Chapter 2 are verified by several cutting
experiments. The comparisons are made in terms of shear angle, friction coefficient,
contact length and cutting force predictions.

In the foregoing analysis in Chapter 2, there are two important inputs for the
model: the material model parameters and the friction coefficient. It was discussed that
the dual zone model can also be used to calibrate the material model coefficients which
will be presented in the following section. As for the friction, it should be noted that two
friction coefficients are defined: the apparent and the sliding. If one of them is known
the other can be calculated by using equation (2.27). The orthogonal tube cutting tests
are used for calibration purposes. In addition, non-cutting friction tests were also
conducted to compare with the sliding friction coefficients identified from the cutting
tests, which are presented and discussed in the next section.

Moreover, the effect of the friction coefficient and contact length on the cutting
mechanics and prediction performance is also discussed. At the end of this chapter the

effect of the JC material model parameters on the cutting force predictions is presented.

It should be noted here that the thickness of the shear plane is not calculated, but it
is a given value. During the analysis, the value of £ is taken as 0.025 mm which is a
typical value for the steels [22]. Also, the stress distribution exponent ( is selected as 3,
based on the analysis of the split-tool test results [55, 56]. This is also verified by the

comparison of the predicted contact lengths with experimental data in Chapter 3.4.
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3.1. Calibration of Material Model Parameters

The orthogonal tube cutting tests for calibration are conducted at the cutting
speeds of 152 m/min, 216 m/min, and 304 m/min, and at feed rates of 0.05 mm/rev, 007
mm/rev, 0.08 mm/rev, 0.12 mm/rev and 0.16 mm/rev. The cutting insert was P20 grade
uncoated carbide tool having 5° rake angle. The Johnson-Cook parameters for AISI
1050 steel are calibrated with the experimental values of the shear stress in the shear
plane obtained from the measurements of the cutting forces and of the shear angle as

given in Chapter 2.1.4. The calibrated material parameters are listed in Table 3.1.
Table 3.1: JC parameters calibrated by the proposed model for AISI 1050 steel.
A(MPa) | B(MPa) n m Y
880 500 0.234 0.0134 1

Similarly orthogonal tube cutting tests with feed rates of 0.05, 0.1, 0.15, 0.2, 0.25
and 0.3 mm/rev and cutting speeds of 80, 150, 225, 300 and 400 m/min are conducted
with AISI 4340 steel and P20 grade uncoated carbide tool having 5° rake angle . The JC
parameters are calibrated by using the results of these tests. The calibrated parameters

can be found in Table 3.2.

Table 3.2: JC parameters calibrated by the proposed model for AISI 4340 steel.

A(MPa)

B(MPa)

n

m

\Y

945

500

0.26

0.015

1

Finally, orthogonal tube cutting tests with feed rates of 0.06, 0.12, and 0.18
mm/rev and cutting speeds of 3, 6, and 10 m/min are conducted with Ti6Al4V alloy and
HSS tools. In this case tools with different rake angles are used for comparison purposes

with mechanistic model: The calibrated JC parameters are listed in Table 3.3.
Table 3.3: JC parameters calibrated by the proposed model for Ti6Al4V alloy.
A(MPa) | B(MPa) n m Y
649 490 0.28 0.028 1

The JC parameters calibration and effects on the prediction of cutting forces are

discussed later in Chapter 3.9 in detail.
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3.2. Friction Coefficient Calibration and Comparison with Non Cutting Friction

Test Results

3.2.1.Non-Cutting Friction Test Setup

Firstly it should be mentioned that the non-cutting friction tests are performed in
order to compare the results with the identified friction coefficients from the cutting
model, and they are not needed in regular identification procedure. In order to obtain the
sliding coefficient of friction between the workpiece and the cutting tool materials a
non-cutting friction test setup is prepared. The setup is built on a manual lathe. As can
be seen in Figure 3.1, the setup involves a dynamometer in order to measure the normal
and the friction forces, a fine slider in order to make the initial contact between tool and
workpiece smoother, and a DAQ setup in order to collect the data. Uncoated and coated
carbide rods are used in the experiments as the tool material. The contact between the
tool and workpiece is realized by moving the tool with a fine slider in order to make the
initial contact smoother. The sliding friction speed is controlled by the rotational speed
of the work material and the radial position of the carbide rod with respect to the center
of rotation. The sliding coefficient of friction is calculated using the mean values as

shown in Figure 3.2 for an example case:

H= Ffriction /Fnormal (31)

Figure 3.1: The non-cutting test setup.
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Figure 3.2: An example case of calculating the mean Coulomb friction coefficient by

measured force data at 420 m/min friction speed.

3.2.2.Friction Test Results

In this section, the sliding friction coefficients that are identified by the proposed
model from the orthogonal tube cutting tests are presented, and discussed for two cases.
In the first case, AISI 1050 steel with different cutting tools is presented where in the
second case AISI 4340 steel and Ti6Al4V alloy are investigated. All the cutting tests are
conducted in orthogonal conditions with TPGN type tools having 5° of rake angle
except HSS cutting tool used in Ti6Al4V tests. Uncoated and coated carbide rods are
used for non-cutting friction tests and the results are compared with the sliding friction
coefficients obtained from the model using cutting tests data. Note that the non-cutting
friction tests are not conducted for all the workpiece-tool couples.

In the first case, the sliding friction coefficients between AISI 1050 steel and four
different cutting tools were identified. The orthogonal cutting test parameters for those
cases are presented in Table 3.4. Using the apparent friction coefficients identified from
the tests, the sliding friction coefficients are determined by the model discussed in

Chapter 2.1. The results can be found in Figure 3.3.

Table 3.4: The materials and cutting parameters used during the orthogonal tests.

Cutting Tool Workpiece Feed Ranges Cutting Speed
Material Material (mm/rev) Ranges (m/min)
Uncoated Carbide (P20) 150-300
Coated Carbide (TT1500) 150-600
Ceramic (AB30) AIST1050 0.05-0.16 215-1225
CBN (TB650) 150-1225
Uncoated Carbide (P20) AISI 4340 0.05-0.3 80-500
HSS (T100) Ti4Al6V 0.06-0.18 3-10
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Figure 3.3: Sliding friction coefficients between AISI 1050 steel and (a) uncoated

carbide, (b) coated carbide, (c) ceramic, and (d) CBN tools with varying friction speeds.

Observing the results given in Figure 3.3, it can be deduced that the friction
characteristics are different for all the cutting tools. As can be seen in Figure 3.3.a, the
sliding friction coefficient between the uncoated carbide tool and AISI 1050 steel does
not depend on the friction speed strongly. But, there is a slight decrease in the sliding
coefficient of friction at moderate speeds. However, for the ceramic (Figure 3.3.c) and
CBN (Figure 3.3.d) tools, the sliding friction coefficient has almost a linear relationship
with the friction speed where its value increases with the speed for the ceramic tool and
decreases for the CBN tool. For the last cutting tool, the coated carbide, the sliding
friction coefficient has a non-linear decreasing relationship with the friction speed. For
this tool, the sliding friction coefficient drastically decreases from 0.7 (at slow cutting
speeds) to 0.3 (at high cutting speeds).

Another interesting conclusion is that the sliding friction coefficients obtained
from non-cutting friction tests have a very close agreement with the ones obtained from

the cutting model and the tests. It should be noted that the average pressure on the rake
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face during cutting (200-600 MPa) is higher than the pressure applied during non-
cutting tests (50-150 MPa). This observation suggests that the pressure may not affect
the sliding friction strongly for these material-tool couples.

A final observation from the data presented in Figure 3.3 is that the sliding
friction decreases with the friction speed for all the tools except the ceramic insert. The
reduction of the sliding friction coefficient with the speed can be attributed to the
increased temperature at the contact. However, there is a need for further investigation

in order to explain the different friction behavior of ceramic tools.
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Figure 3.4: Sliding friction coefficients between (a) AISI 4340 steel and uncoated
carbide tool and (b) Ti6Al4V alloy with HSS cutting tool with varying friction speeds.

In the second case, two different workpiece material types are investigated: AISI
4340 steel with uncoated carbide tool and Ti6Al4V alloy with HSS cutting tool. The
orthogonal cutting conditions can be found in Table 3.4, and the results can be seen in
Figure 3.4. The sliding friction coefficient between AISI 4340 steel and uncoated
carbide tool (Figure 3.4.a) has a decreasing trend with the friction speed from 0.55 to
0.3. However, at higher speeds it takes almost a constant value of 0.35. On the other
hand, the sliding friction coefficient between Ti6Al4V alloy with HSS cutting tool has a
linear relationship with the speed and the average value is 0.35. Comparing the results
of AISI 1050 (Figure 3.3.a) and AISI 4340 steel (Figure 3.4.a) with uncoated carbide
tool, it can be concluded that AISI 4340 steel has a lower sliding friction coefficient.
This can be attributed to the fact that the test materials had different hardness values.
AISI 1050 steel had an average surface hardness of 190 BHN whereas it was 240 BHN
for AISI 4340 steel.
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Finally the calibrated sliding friction coefficients with respect to the friction speed

which corresponds to the chip velocity in cutting can be found in Table 3.5.

Table 3.5: Calibrated sliding coefficients of friction.

Material — Tool s (Vin m/min)

AISI 1050 — Uncoated Carbide 0.398+6.120x107*V

AISI 1050 — Coated Carbide 0.8932+1x107°V2 —=0.0016V
AISI 1050 — CBN 0.431-7x107V
AISI 1050 — Ceramic 0.4311+2x107*V

AISI 4340 — Uncoated Carbide 0.513+4.734x107%v? =1.872x107°V

Ti6Al4V — HSS 0.326+1.1x107°V

3.3. Shear Angle Predictions

As discussed earlier the shear angle is determined based on the minimum cutting
power calculations. The total cutting energy is calculated by the energy spent for the
chip formation and the contact on the rake face. The model is run for a selected range of
shear angles, and the shear angle corresponding to the minimum cutting energy is
selected. The minimum energy method has been commonly used for the analysis of
shear angle in cutting since Merchant [1], and thus it is applied in this study as well. The
shear angle is also experimentally identified from the tube cutting tests through chip
thickness measurements [10]. The prediction results along with the model predictions
can be seen in Figure 3.5.a for the AISI 1050 steel and tool with 5° rake angle, in Figure
3.5.b for the tool with the rake angle of -5°, and in Figure 3.5.c for AISI 4340 steel with
tool having 5° rake angle. The maximum difference between the proposed model
predictions and the experimental results is around 30% for both ranges, whereas the
average error is around 11%. The discrepancy could be attributed to many factors such
as measurement errors. However, recently Molinari and Moufki [93] have shown that
the stability analysis of the chip formation combined with the minimum energy
approach may yield different shear angle values than the ones predicted by the simple
minimum energy approach. This could be another source of the discrepancy in the

predictions.
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Figure 3.5: Shear angle predictions by the model along with the experimental results for
the AISI 1050 steel and the cutting tool having rake angle of (a) 5° and (b) -5° and (c)
for the AISI 4340 steel with the cutting tool having rake angle of 5°.

3.4. Contact Length Predictions

Although the primary output of the proposed model is the cutting forces, the
lengths of the sticking and sliding zones are also predicted. Accurate prediction of the
contact lengths is necessary for force modeling, and is very critical for the calculation of
the temperature distribution which will be studied in a later research. Therefore, in order
to verify the calculated contact lengths, several measurements are done on the rake face
using a microscope. Using optical methods is a simple and efficient way to characterize
the contact length. The orthogonal tube cutting tests were conducted again with the
cutting conditions that are listed in Table 3.6. It should be noted here that although the

experimental results are mainly on the uncoated carbide inserts, coated carbide inserts
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are also used in this section as the contact lengths can be more clearly seen on these

inserts.

Table 3.6: The cutting tests conducted to verify the contact lengths.
Test No 1|12 (34|56 |78 ]9 1011|1213 |14

Rake Angle 5° -5°
Insert type U* C* U*
Cutting Speed
‘ 306|306(217 (217 153|153 613|613 |306|306|153|153 306|217
m/min
Feed Rate
0.0810.24 {0.08 | 0.24 { 0.08 | 0.24 | 0.08 | 0.24 | 0.08 | 0.24 | 0.08 | 0.24 | 0.24 | 0.24
mm/rev

*Uncoated carbide insert (P20 Grade) **Coated carbide insert(TT1500 grade)

The comparisons of the total contact and the sticking zone lengths with the
experimental results can be seen in Figure 3.6.a and Figure 3.6.b, respectively. During
the microscope measurements, the sliding marks can be seen very clearly (see Figure
3.7). The regions close to the tool tip where the sliding marks couldn’t be observed is
defined to be the sticking region, and corresponding length is measured. However, as
can be observed from Figure 3.7.a and Figure 3.7.b we didn’t observe sharp borders for
the total contact and the sticking zone lengths, where mostly a transition range is
observed. The beginning and the final distances of these transition ranges to the cutting
tip are represented by the bold vertical bars in Figure 3.6 which corresponds to the

minimum and maximum length of the related regions, respectively.
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Figure 3.6: (a) Total contact length and (b) Sticking contact length.
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A good agreement is observed for the total contact length predictions. However,
there were some difficulties measuring the sticking contact length especially for
uncoated carbide tools. The sticking contact region was more apparent for the coated
carbide tools due to the clear mark left by the chip on the coating face. Another
important point is that most of the calculated sticking zone lengths are comparable to
the hone radius of the insert which is around 35-45 pm. In those cases we couldn’t
observe a noticeable sticking region during the microscope measurements as one would
expect. However for a successful case, e.g. case 11, the sticking contact region was
observed clearly during the microscope inspections which can be seen in Figure 3.7.b.

The total contact length for this case can be seen in Figure 3.7.a.
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Figure 3.7: The microscope measurements for the test case 11 (a) 50X magnification for

the total contact length and (b) magnified region for the sticking length.
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3.5. Cutting Force Predictions

In this section, the cutting forces that are predicted by the proposed model are
compared with the experimental results for various feed rates and cutting speeds. The
verification experiments for orthogonal cutting model are conducted for AISI 1050 steel
with uncoated carbide tool, AISI 4340 steel with uncoated carbide tool and Ti6Al4V
alloy with HSS cutting tool. Also additional comparison is between the proposed model
and the mechanistic model for Ti6Al4V alloy experiments. Also verification
experiments for the oblique model are conducted with Ti6Al4V alloy and HSS cutting
tools having inclination angles of 7° and 11°. It should be noted here that the edge
cutting forces are not taken into account in the comparisons as the proposed models

cannot predict them.

3.5.1. Cutting Force Predictions for AISI 1050 Steel and Uncoated Carbide Tool

Firstly it should be noted that all the calibrations for AISI 1050 steel are done with

the tool having 5° rake angle. In the comparisons results with the tool having -5° rake
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Figure 3.8: The comparison between the predicted and measured cutting forces for AISI
1050 steel with the tool having 5° rake angle at cutting speeds of (a) 152 m/min, (b) 216
m/min and (c¢) 304 m/min.
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angle is also presented in order to show the predictions which are out of the calibration
range. The results for the cutting tool with rake angle 5° and -5° can be found
respectively in Figure 3.8 and Figure 3.9 for three different cutting speeds. As can be
observed, a very good agreement is found between the model predictions and the

experimental data. The maximum and the average discrepancies are 15% and 3%,

respectively, which is mainly due to the inaccuracy in the material model.
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Figure 3.9: The comparison between the predicted and measured cutting forces for AISI
1050 steel with the tool having -5° rake angle at cutting speeds of (a) 150 m/min, (b)213
m/min, and (c) 300 m/min.

3.5.2. Cutting Force Predictions for AISI 1050 Steel and Coated Carbide Tool

The cutting force predictions of AISI 1050 steel with coated carbide tool with the
proposed model are given in Figure 3.10 for different cutting speeds and varying feed
rates along with the experimental results. As can be observed, a good agreement is
found between the model predictions and the experimental data. The maximum and the
average discrepancies are 27% and 10%, respectively which is mainly due to the

inaccuracy in the material model and from measurement errors.
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Figure 3.10: The comparison between the predicted and measured cutting forces for
AISI 1050 steel with coated carbide tool at cutting speeds of (a) 75 m/min, (b)150
m/min, (¢) 215 m/min, (d) 300 m/min, () 425 m/min, and (f) 600 m/min.

3.5.3. Cutting Force Predictions for AISI 4340 Steel and Uncoated Carbide Tool

The cutting force predictions of AISI 4340 steel with uncoated carbide tool are
given in Figure 3.11 for different cutting speeds and varying feed rates along with the
experimental results. As can be observed, a good agreement is found between the model

predictions and the experimental data. The maximum and the average discrepancies are
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35% and 10%, respectively. The error is higher at cutting speed of 80 m/min due to the

built-up edge conditions at those cutting speeds [10].
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Figure 3.11: The comparison between the predicted and measured cutting forces for
AISI 4340 steel at cutting speeds of (a) 80 m/min, (b)150 m/min, (c) 225 m/min,
(d) 300 m/min, and (e) 400 m/min.
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3.5.4. Cutting Force Predictions for Ti6Al4V Alloy and HSS Tool and Comparison
with Mechanistic Model

The cutting force predictions of Ti6Al4V alloy with HSS cutting tool with the
proposed model in Chapter 2.1 are given below for different cutting speeds and varying
feed rates and rake angles along with the experimental results. Below (Figure 3.12) is
the general error comparison for the total of 36 cutting tests with tool having rake angles
of 0° 3° 6° and 12° and a clearance angle of 3°. The x axis represents the prediction
error by the dual zone and the mechanistic models; y axis on the other hand represents
the percentage of the tests which corresponds to that error range. For example the dual
zone model predictions for the feed forces showed that 40% of the predictions give
lower than 10% error. The agreement between the experiments and proposed model is
found to be good. Also observing Figure 3.12 it can be deduced that mechanistic model
was less successful in terms of modeling the feed force compared with the proposed

model.
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Figure 3.12: Overall comparison of the errors from the experimental cutting forces

between proposed model and the mechanistic model.
The specific comparisons for each test with the tools having rake angles of 0°,

3°,6° and 12° can be seen in Figure 3.13, Figure 3.14, Figure 3.15, and Figure 3.16,

respectively for different cutting speeds and varying feed rates.
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Figure 3.13: The comparison of cutting forces for Ti6Al4V alloy with HSS tool having

0° rake angle at cutting speeds of (a) 3m/min, (b) 6 m/min, and (¢) 10 m/min.
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Figure 3.14: The comparison of cutting forces for Ti6Al4V alloy with HSS tool having

3° rake angle at cutting speeds of (a) 3m/min, (b) 6 m/min, and (c) 10 m/min..
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Figure 3.16: The comparison of cutting forces for Ti6Al4V alloy with HSS tool having
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The calibrations for the material model parameters and friction coefficients for
Ti6Al4V alloy were done by the test results conducted with positive rake angles. In
order to compare the model for the out of calibration range, tests with tools having
negative rake angles of -5° and -10° were conducted. The prediction results along with
the experiments and comparison with the mechanistic model can be found in Figure

3.17, and Figure 3.18.
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Figure 3.17: The comparison of cutting forces for Ti6Al4V alloy with HSS tool having
-5° rake angle at cutting speeds of (a) 3m/min, (b) 6 m/min, and (c) 10 m/min.
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Again, especially in feed force predictions, it can be deduced that proposed

model is superior to the mechanistic model. And overall good agreement is observed

between the proposed model predictions and experimental results.
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Figure 3.18: The comparison of cutting forces for Ti6Al4V alloy with HSS tool having
-10° rake angle at cutting speeds of (a) 3m/min, (b) 6 m/min, and (c¢) 10 m/min.
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3.5.5. Cutting Force Predictions for Oblique Cutting

Oblique cutting tests were conducted in order to verify the proposed cutting model
in Chapter 2.2. The workpiece material was Ti6Al4V alloy, and HSS cutting tools were
ground with inclination angles of 7° and 11° and rake angles of 0°. The cutting tests
were performed at 10 m/min cutting speed and 0.06, 0.12, and 0.18 mm/rev feed rates.
The predictions were done by the calibrated material parameters and friction
coefficients as previously presented in Chapters 3.1 and 3.2. The comparisons with the
experimental values can be found in Figure 3.19. As can be seen from the results
satisfactory agreement is observed. The maximum and average discrepancies are 29%

and 12%.
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Figure 3.19: Comparison of the oblique cutting forces predicted by the model and the
experimental values for Ti6Al4V alloy with HSS cutting tool with inclination angles of

(a) 7°, and (b) 11°.

3.6. Chip Flow Angle Predictions

The tests conducted for oblique cutting model verifications are also used to measure the
chip flow angles. For the measurement video shot is taken during the cutting
experiments with a camera which is placed parallel to the rake face. Then the chip flow
angle is measured from the screenshots captured from the camera. The chip flow angles

are also predicted by the proposed model in Chapter 2.2.4. The results can be seen in
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Figure 3.20. Over all the agreement is found to be satisfactory. The maximum and

average discrepancies are 25% and 9% respectively.
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Figure 3.20: Comparison of chip flow angle by the proposed model and experiments for

Ti6Al4V alloy with HSS cutting tools having inclination angles of (a) 7°, and (b) 11°.

3.7. Further Discussions on the Contact Lengths and Friction Coefficient

The identification of sliding friction provides an important input for the analysis
of the cutting process as discussed in the previous section. However, for the through
analysis of the cutting process, one needs to analyze the apparent friction coefficient as
well. The length of the sticking contact region on the rake face is one of the key
parameters that determine the value of the apparent friction coefficient. Observing
equations (2.12) and (2.19), it can be deduced that the sticking contact length is a
function of the feed rate (uncut chip thickness), shear stress at the exit of the primary
shear band, the pressure distribution on the rake face, the rake and shear angles, and the
apparent and sliding friction coefficients. As the relationship between the sticking
length and the feed rate is linear, the increase in the feed rate directly affects the length
of the contact. This was also verified experimentally in Chapter 3.4. The effect of the
cutting velocity, on the other hand, is indirect, but can be predicted using the process
model, and can also be observed experimentally. Equation (2.12) shows that the sticking
length depends on the sliding friction coefficient and the ratio 7; / Py which are both
affected by the cutting speed. In general, higher cutting speeds result in reduced sliding
friction coefficients, and thus shorter sticking lengths. For instance, the sliding friction
coefficient values of AISI 1050 steel with coated carbide tool (see Figure 3.3.b)
decreases with the increasing friction speeds. Therefore, one should expect shorter

sticking contact lengths at high cutting speeds. .
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Another observation on the friction behavior in metal cutting is the relationship
between the sticking and sliding friction coefficients. As discussed in Chapter 2.1.4 the
apparent friction coefficient is always smaller than the sliding friction coefficient. For
instance for a constant total contact length and sliding friction coefficient (0.4 in this
case), the variation of the ratio of the apparent and the sliding friction coefficient with
the increasing sticking contact length can be obtained by equations (2.27) and (2.28) in
which is also shown in Figure 3.21. As expected, when there is only sliding friction
region present, i.e. at high cutting speeds (£, / £{=0), the value of the sliding and
apparent friction coefficients are equal to each other. On the other hand as the length of
the sticking region increases, it results in lower apparent friction values than the sliding

friction coefficient.
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Figure 3.21: The variation of the apparent friction coefficient with the sticking contact

length for a constant total contact length.

—

lc

I

/

lc

w
I

g

&p op

/

200 400 600 100 400 700 1000 1300
cutting speed (m/min) cutting speed (m/min)

(a) (b)

~

contact length / feed
o N
[=IRE BN I SIS, I A RES, W NS ) |
contact length / feed
o - \b] w
o O = 0N OO w o b

o

Figure 3.22: The predicted variation of the ratio of the contact length and feed for AISI
1050 steel with (a) coated carbide and (b) CBN cutting tools.

For further analysis of contact lengths, cutting experiments and simulations are

conducted on the AISI 1050 steel with coated carbide and CBN cutting tools. The
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simulation results can be seen in Figure 3.22. The length of the sticking region
decreases by increasing cutting speed for each cutting tool as shown in Figure 3.22.
Especially for the coated carbide tool, the sticking zone vanishes, i.e. fully sliding
contact, at the cutting speed of 600 m/min. For the CBN tool on the other hand, fully
sliding conditions are found to be present at cutting speeds higher than 1250 m/min as

shown in Figure 3.22.b. In order to verify this behavior, the contact lengths for coated

Shiding region ticking
region

Hone

Sliding region Sticking Hone Sliding region Hone
region

(© (d)
Figure 3.23: (a) The sliding marks at 500 magnification, and rake face view of the tests

at 200 magnification with feed rate of 0.3 mm/rev and cutting speeds of (b) 100 m/min,
(¢) 300 m/min, and (d) 600 m/min.

carbide tool were measured by using a microscope. Using optical methods is a simple

and efficient way to characterize the contact length. In the microscope measurements,
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the sliding marks can be seen very clearly as shown in Figure 3.23.a. The regions close
to the tool tip where the sliding marks do not exist are the sticking region. The images
taken from the microscope measurements at cutting speeds of 10 m/min, 300 m/min and
600 m/min can be seen in Figure 3.23. As can be observed from the Figure 3.23.b and
Figure 3.23.c, the length of the sticking zone at 100 m/min is longer than the sticking
zone length at cutting speed of 300 m/min. Figure 3.23.d. indicates no evidence of
sticking region at cutting speed of 600 m/min. Therefore, the measurements verify the

contact length predictions of the model.

3.8. The effect of the Friction Model on Cutting Force Predictions

In this section, the effect of the friction modeling on the prediction of the cutting
forces is discussed. Three different friction models, of which two are listed in Table 3.7,
are selected for comparative analysis. The first friction model involves the sticking and
sliding contact regions on the rake face as defined by equation (2.8), which is used in all
of the analysis throughout the study. The second model assumes that the friction on the
rake face only consists of sliding friction. The last model, on the contrary, assumes that

the friction state on the rake face is in sticking conditions.

Table 3.7: The friction models that are used in the comparative analysis for the

prediction of the cutting forces.

Model Shear Stress distribution on the rake face
Only sliding T=uP 0<x</,
Only sticking T=1, 0<x</,

In order to compare the cutting force predictions orthogonal cutting tests are
conducted using AISI 1050 steel and coated carbide cutting tool. The proposed model
which is discussed in Chapter 2.1, is applied. The cutting force predictions are done by
using the three different friction models of which two are listed in Table 3.7, and the
results are given in Figure 3.24 in terms of the error between the model predictions and

the experiment results.
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Figure 3.24: The (a) feed force and (b) cutting force errors between the predictions
using the different friction models and experimental results for AISI 1050 steel and
coated carbide tool.

As can be observed from Figure 3.24.a, the prediction error in complete sliding
friction assumption case, decreases drastically with the increasing cutting speed. As also
discussed in Chapter 3.7, at 600 m/min cutting speed the friction state is found to be
fully sliding considering the length of the sticking region length (see Figure 3.22.a. and
Figure 3.23.d). Supporting this observation, at cutting speed of 606 m/min, the
predictions are very close to the experimental measurements. Therefore, it is an
expected result that the model which assumes only sliding friction on the rake face
yields better predictions at high cutting speeds. On the contrary, when complete sticking
on the rake face is assumed the prediction error becomes higher as the cutting speed
increases. The error at slow cutting speeds is lower (Figure 3.24.a.) indicating longer
sticking zone at those speeds as shown in Figure 3.22 and Figure 3.23 as well. However,
even at slow speeds the prediction error is quite high which suggests that the rake
contact cannot be modeled accurately using sticking only. This can also be seen clearly
in Figure 3.22 that the sliding zone always exists even at slow cutting speeds. On the
other hand, the friction model which considers both sticking and sliding regions
provides very close predictions to the experimental measurements since it represents the
true friction behavior in cutting operations. As can be seen from Figure 3.24, the
prediction error for the cutting (tangential) force is drastically lower than that for the
feed force when fully sliding or fully sticking conditions are assumed in friction
modeling. Similar results are also observed in the FE cutting process simulations [82].
This is due to the fact that the cutting force mainly depends on the material behavior in
the primary shear zone whereas the feed force depends more on the friction behavior on
the rake face. Thus, unrealistic modeling of the friction behavior affects the accuracy of

feed force predictions strongly.
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3.9. Further Discussions on the JC Material Model

As mentioned in Chapter 3.2, the two critical inputs required by the model are the
material parameters and the friction coefficient. An approach to obtain the friction
coefficient is proposed and verified by the experiments in the aforementioned analysis.
The selection of JC parameters is another important issue. Although the calibrated JC
parameters are shown to yield accurate results, we would still like to discuss on the
calibration procedure. The JC parameters to be used in the cutting force modeling are
obtained using a non-linear regression analysis. Due to the high sensitivity of the non-
linear regression analysis to the initial and the tolerance values used in the iterations, the
number of parameters to be determined should be reduced. If all the parameters of the
Johnson Cook model are to be determined, the final values may turn out to be
impractical. For instance, B may become a negative number which is impossible. In
order to solve this problem, we set the parameters B, n, m and v as in Table 3.1, and
solve for the parameter A which minimizes the error between the predicted and
measured shear stresses. These results are called as set 1. On the other hand, widely
used JC parameters for AISI 1045 steel from Jaspers et al. [90] obtained from Split
Hopkinson Bar Tests are used for comparison which is called as set 2. Also, in order to
update the Johnson-Cook parameters that Jaspers et al. [90] obtained, we again conduct
non-linear regression analysis but this time by setting the A, B, n, and v from Jaspers et
al. [90], and solve for the value of m which is called as set 3. The purpose in this update
is to eliminate the error due to the strain rate difference between the non-cutting and
cutting tests, because the maximum strain rate that Jaspers et al. [90] used was 7.5x10°
s These set of parameters can be seen in Table 3.8. The comparison of different
material model parameters is made in terms of the cutting forces. The results can be
found in Figure 3.25 for the tests conducted at 216 m/min cutting speed for different

feed rates and two different rake angles.

Table 3.8: The different Johnson-Cook parameters for AISI 1050 steel used for the

comparison analysis.

Set | A(MPa) | B(MPa) n m \Y
1 880 500 |0.234 | 0.0134
2 553 600 |0.23410.0134| 1
3 553 600 |0.23410.0448 | 1
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As can be observed from the comparisons, the Johnson-Cook parameters that are
obtained from Split Hopkinson Pressure Bar tests (set 2) gives very inaccurate results
compared with the calibrated ones, i.e. set 1 and 3. This is a clear indication of using
preset values of JC model may sometimes yield inaccurate predictions. Thus, it is
important to check the material parameters for different ranges of cutting conditions
than the calibration range. Accurate results can be obtained by calibrating the material
model using the cutting data. On the other hand, comparing the results obtained from set
1 and set 3 which are calibrated by the proposed model, one can deduce that they both
provide good results although set 3 gives worse results for the out of calibration range
test, i.e. for -5° rake angle. This is an important outcome as it shows that different
Johnson Cook parameter values may yield similar results. The results presented in this
section may also be an indication of the fact that the Johnson-Cook constitutive law

may not be the best representation of the material behavior for metal cutting operations.
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Figure 3.25: Comparison of cutting forces with different Johnson-Cook Parameters for
the cutting tests conducted at 216 m/min with the tools having (a) 5° rake angle and (b) -
5° rake angle.
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4. INTRODUCTION OF AN APPROACH FOR THE MODELING OF
THE EDGE FORCES IN ORTHOGONAL CUTTING

The proposed models in Chapter 2 only consider the primary and the secondary
deformation zones which are responsible for the chip formation with the assumption
that the cutting tool has no hone radius. The hone radius (see Figure 4.1) on cutting
tools affects the deformation in two ways. Firstly the contact at the rake face is no
longer a straight path aligned with the rake face, but a curved path. Secondly, it results
in another deformation zone which is due to the ploughing and the clearance contact

due to the clearance angle y, Figure 4.1.

WO rkpiece Third Deformation Zone

Figure 4.1: The hone and the deformation zones in orthogonal cutting.

4.1. The Modeling Approach

In Figure 4.1, the deformation zones in orthogonal cutting are presented. The
primary shear zone (AD), and the secondary shear zone (AB) are responsible for the
chip formation where, hone radius below point A (AC) is responsible for the ploughing
and the clearance contact. In the model it is assumed that point A is a stagnation point
where the material just above it moves upwards contributing to the chip formation. The

material just below point A moves downwards and continues contact with the path AC.
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Although the model proposed here can be used with any primary shear zone
model, again the approach used by Molinari et.al [21] is selected. The contact zones, on
the other hand, are divided into several regions as can be seen in Figure 4.2. The
division is made so that the minimum number of regions is used. This is due to the
simplification in the derivation and faster solution times.

The region (AB) (see Figure 4.1) which is responsible for the contact between the
chip and the tool is divided into three regions, Figure 4.2. It should be noted here that,
due to the hone radius, the rake contact is not a straight line anymore but a straight line
plus a curved path. Because of this, the direction of the normal and friction forces on the
rake contact is varying along each region but not region 1 as it is a straight path. That’s
why, the straight rake contact is defined as region 1. Although region 2 and 3 can be
merged and acted as one region, for the simplification in the mathematical
representation they are taken as two different regions.

The path (AC) (see Figure 4.1), on the other hand, divided into two regions,
Figure 4.2. Region 4 is the region responsible for the material having plastic
deformation before entering the region 5 which is responsible for the flank contact.

The detailed formulations regarding Regions 1, 2, 3, and 4 will be given in the
next sections. Basically, the proposed approach does not model the material
deformation in front of the hone radius directly, but it assumes the pressure and shear
stress distributions at the contact between the tool and the workpiece on path AC. On
the other hand, the true analysis of Region 5 needs the knowledge of deformation zone
in front the hone radius. That’s why, Region 5, which is due to the clearance contact,

will be discussed separately from the others.

Figure 4.2: The divided regions used in edge force modeling.
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4.2. The Stagnation Point, Normal Pressure and Shear Stress Distributions

The stagnation point position is one of the key parameters in defining the
regions. The stagnation is assumed to occur at point A where the line connecting it to
the center of the hone has 6, degrees with the vertical axis (see Figure 4.3). From the
previous studies [40, 41] it is shown that &, for metals is around 25°-30°. However, for
the cases where shear angle is bigger than 6, there is geometrical conflict between the
hone radius and shear band. For instance, observing Figure 4.3, one can see that a line
beginning from point A (the shear band) will always have a conflict with the hone if its
angle with the horizontal axis is greater than ;. In order to avoid the conflict, the
minimum value of the 6 must be equal to the shear angle. For this reason, 6, is assumed
to be equal to the shear angle in this study i.e. ¢=86..

In order to present the normal pressure and shear stress distributions more
clearly the lengths that are defined Figure 4.3 are used. First of all it should be
mentioned that, the real length of the total contact is defined in equation (4.4). However
during microscopic measurements the visible total contact length £ (Figure 4.3) is

different which is defined in equation (4.5).

Figure 4.3: The location of the stagnation point and the contact lengths, on the rake and

hone
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(,=r6, (4.1)
T

(5= r[E - esj (4.2)

ly=ra 4.3)

Co=0 3+ 0,41, (4.4)

V=10, +rcos(8, —) (4.5)

Similar to the model proposed in Chapter 2, the contact at the rake (regions 1,2
and 3) is divided into two zones, namely, sticking and sliding friction regions. Also the
normal pressure distribution on these regions (1, 2, and 3) is selected in the form of a
function as in equation (4.6). As for the 4™ region, since there is no presented study in
the literature, and no known way of measuring it we assumed that due to the normal
high pressure at that region the friction conditions is sticking. Also the normal pressure
selected as a constant value equal to the Py, in order to maintain the continuity of the
distribution. Therefore, normal pressure distribution on the regions are selected as in

Figure 4.4 and defined as follows:
P(x)=F, O<y</,

¢
B P (4.6)
P(’V)‘P{l_zj (,<x<t,

It should be mentioned here that the stress distribution exponent ( is selected as
3 as it is verified by contact length measurements in Chapter 3.4. Due to the

discussions above, the shear stress distribution is defined as follows:

T=1 0<y</
: g (4.7)
T=uP t,sxst,
where, ¢, is the sticking contact length.
N Shear
ormal T
Pressure Stress
{
Po £ le
: T
| |
| l
{4 {34+-42+-L1 x {4 £3+L2+E] X
(a) (b)

Figure 4.4: (a) The normal pressure and (b) the shear stress distributions on the contact

faces.
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4.3. The Forces Acting on the Regions

In this section, the forces acting on each region is derived mathematically in detail.
These forces are needed for the calculation of the normal pressure and the contact length

as is presented in the next section.

4.3.1.Forces Acting on Region 1

The region 1 is the straight path at the rake face and it is responsible for the chip-
tool contact. Since the path in this region is in the form of a line, it is rather simpler, in

terms of mathematics, to calculate the normal and friction forces acting on this region.

Figure 4.5: Normal and friction forces acting on Region 1.

The normal force acting on Region 1 can be defined as follows:

6 2 pwe ()
Fy, = j Pow(l—g—j dy = 2+10 (1— 25 3} (4.8)

where, w is the depth of cut. The components of the normal force on the x and y

c c

(atly

axis can be obtained as follows:

J+1
Byw! Uy + 1,
= “l1- cosa 4.9
Nlx é/+1( gc j ( )
J+1
Fywl, 0, +/0 .
Fy,, = 2+1 (1— 2£ 3} sin & (4.10)
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For the friction force acting on region 1, there may be two different cases. In the
first case the sticking contact length can be calculated to be lower than £>+ {3, and the

friction conditions in this region can only be sliding. Therefore we get,

¢ ¢ ¢+l
¢ )4 UPywl ly+ 1,
Fr = Pow| 1 —2- | dy = 1- 4.11
F1 /'LIUO ( ECJ 74 Z+1 ( 3 (4.11)
273
and the components of the friction force on the x and y axis are:
Pwl, (0 +0,) "
Fp, =0l D2¥0 1 gng (4.12)
¢+1 l,
wPowt (0,0
w
Fp, =—"2—¢1-—221  cosa 4.13
L C+1 ( ‘. j @13

In the second case, i.e. if the calculated sticking contact length is higher than £>+

{3, Region 1 involves a sticking friction region. In this case we get,

‘, ¢ ¢ ¢+l

’ ‘ X pRwe (L

F. = |\twdy+ |uPwl1l—=| dy=cw\l -0, —V,)|+——|1——— 4.14
F1 %.le X pj/‘o ( / j A=T (p 2 3) C+l ( 7 (4.14)

c c

and the components:

IIIPOWKC gl’ o :
Fpo=|lowl(l, =0, —0;)+ il 1—7 sin ¢ (4.15)
J+l
Pyw/! ¢
Fopy = 1l 1, —£3)+%(1—€—”j cosar (4.16)

It should be mentioned here that, the normal force (equations (4.9) and (4.10))
acting on region 1 always contribute to the total forces in the positive direction for the
selected base coordinate system, Figure 4.5. However, the y component of the friction
force (equations (4.13) and (4.16) is always reducing the total forces due to the inverse

movement of the chip flow according to the selected coordinate system.

4.3.2.Forces Acting on Region 2

Region 2 is on the hone radius and responsible for the chip-tool contact such as

region 1. However, the geometric form of this region is in the form of an arc. That is the
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direction of the normal and friction forces changes at each point on this arc, which

results in more complicated integral equations to solve.

Figure 4.6: Normal and friction forces acting on Region 2.

The angle 6> which is varying along the region can be written in terms of y as

follows:

0, =%-90+6, 4.17)

r

Now the component of the normal force acting on Region 2 in the x direction
can be obtained by the following integral:

ly+ls 4
Fye= | Pow(l—%j cos[1—9o+esjd;( (4.18)
f3

r

c

By using integration by parts for (=3, the analytical solution of (4.18) can be

calculated as follows:

¢ : =
A1-Z sin[l—90+0?j——r2 £ cos[1—90+0?j
‘. r )7 0 , |
ly+ly

{2
_5(5_1)’,3(1_%} Sm[l_90+9‘vj+%r4cos[l—90+9‘vﬂ (4.19)

Fy, = Ryw

2
lr r ; r
ﬂ'3
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Similarly, the y component of the normal force is defined as:

0oty ¢
Fyoy = | Pow(l—%j sin[l—90+0xjd)( (4.20)

IR c r

By using integration by parts (for {=3), we obtain:

¢ £
Fupy = Pl =1 1= 2| cof Z-00+0, |- 12(1-Z ] sin[ Z-00+0,
y / /

c r c ﬁc r

ly+ly

(4.21)

" {(¢-1) r{l —ljw cos[l -90+ e‘vj+ 1 sin[l -90+ 9sj

3
r r

For the friction force acting on Region 2, there may be three different cases. In
this first case, the friction condition in Region 2 may only be sliding i.e. £,< ¢3. In this

case we have:

oty e
Fpy, = .[ ﬂpow(l—%j sin[l—90+ 0, jd}( (4.22)
r
‘s ¢
0y+ly e
Fry, =— .[ ﬂpow(l—%j cos[l—90+0xjd}( (4.23)
. r

l3

If the contact condition in Region 2 involves both sliding and sticking friction,

i.e f3<fp< AN
‘, 0o+, ¢
Frp = | lesin[l—90+0sjd1+ | yp{1—€1j sm[1—90+ e‘vjdz (4.24)
r h r

05 » ¢

r c r

‘, 0o+, ¢
FFZy:—jlecos[’%/ 90+9‘de1— [ ,uPO(l—%j cos[1—90+0xjd,( (4.25)
‘5 ‘,

!

If the contact conditions in Region#2 involves only sticking friction, i.e.

fz+f3<fpi

A

Fro= | lesm[%—90+0xjd,(:ler(l—cosa') (4.26)

F2x —
U3
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ly+ly
Fry, =— '[lecos[l -90+ 6, jd}( =—T,wrsin & (4.27)
: r
£3

Similar to the region 1, the normal force (equations (4.19) and (4.21)) acting on
region 2 always contribute to the total forces in the positive direction for the selected
base coordinate system, Figure 4.6. However, the y component of the friction force
(equations (4.23), (4.25) and (4.27)) is always reducing the total forces due to the

inverse movement of the chip flow according to the selected coordinate system.

4.3.3. Forces Acting on Region 3

Region 3 is also responsible for the chip-tool contact like the regions 1 and 2.
Also, similar to the region 2, this region is on the hone and is formed by an arc. The
forces acting on each point on this region has different directions such as in region 2.
Although this region can be merged with region 2, it is behaved separately in order to

represent the model clearly.

Figure 4.7: Normal and friction forces acting on Region 3.
The positioning angle &; which is varying along Region 3 can be defined in
terms of y as follows:

0,=%+0 (4.28)

r

The component of the normal force in the x direction can be calculated as:
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0y ¢
Fys = | Pow(l—%j sin[1+0s jd,( (4.29)
0

r

c
and in the y direction:

0y ¢
Fysy =~ Pow(l —%} cos(l +6, jd,y (4.30)
0

r

c
For the friction force, there may be three cases similar to the region 2. If the

friction condition in region 3 is only sliding i.e. £,=0:

0y ¢
Fry == ,uPow(l - %j cos(l +6, jd,y 4.31)
0 ¢ r
0y e
Fryy =] ,uPow(l —%} sm[l +6, jd,( (4.32)
= C ;

If the contact conditions in region 3 involve both sliding and sticking friction i.e

fp< 532
‘, 0y 4
Frao=—| lecos[% +6, jd,( | yp{l —%} cos[% +6, jd,y (4.33)
0 ‘ c
‘, I 4
Fray=—| lesin[% +6, jd,( | ,UP{I - %j sin[% +6, jd,y (4.34)
0 14 4

If the contact conditions in region 3 involve only sticking friction, i.e. £3<{,:

/3
Fry == rlwcos(l +6, jd,y = —zwr(l—sin 6, ) (4.35)
r
0
/3
| rlwsin(l +6, jd,y = 7, wrcos6, (4.36)
. r

0

As a different behavior than the previous regions, the y component of the normal
force (equation (4.30) acting on region 3 reduces the total force, Figure 4.7. Similarly,
the friction force is always reducing the total forces due to the inverse movement of the

chip flow according to the selected coordinate system.
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4.3.4.Forces Acting on Region 4

Region 4 has a different condition than the previous regions. The material which
doesn’t contribute to the chip formation has the first contact with this region. The region

has a form of an arc, and again the direction of the normal and friction forces acting on

this region is changing along the region.

B

Figure 4.8: Normal and friction forces acting on Region 4
Firstly it should be noted again that region 4 does not contribute to the chip
formation but only to the ploughing. Therefore it doesn’t have a place in the rake

contact analysis. The positioning angle €, can be defined in terms of y as follows:

9, =% 4.37)
r

The component of the normal force in the x direction can be calculated as:

ly
Fy,, = j Powsm[ljd;( = Pywr(1—cosé,) (4.38)
r

0

And in the y direction:

ly
Fray =] Powcos[l jd;{ =P wrsin 6, (4.39)
0

r

The component of the friction force in the x direction can be calculated as:
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X

Uy
Froo=—] lecos[—jd,( = —7,wrsin 6, (4.40)
r

0
And in the y direction:

ly
Fro=-| lesin[’%/ jd,y = —z,wr(1-cos8,) (4.41)

0 r

4.3.5.The Centroid of the Equivalent Normal Force

For the analysis in the next section, the moment acting around point A from the
rake contact will be needed. However, as can be seen from the force analysis, deriving
each section’s moment around Point A will make the formulation more complex.
Therefore, it is proposed here to calculate the centroid of the equivalent normal force,

and then to use it in the moment calculations.

A —
X
>

centroid

I
1
1
1
1
1
I
I
I
1
1
1
ue

V7777

.. X

Figure 4.9: Representative the pressure distribution plot for the centroid calculation.

From Figure 4.9, the y axis component of the centroid can be calculated as

follows
‘. ‘. P ¢ /2
Q,= | udy = /1{1——} dY = 7 (4.42)
= =i o=y

‘. P ¢ /

Area = (1——} dy =—— (4.43)
;[ ‘. ¢+1

Z= e _ L (4.44)

Area {+2
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4.4. The Equivalent Rake Face and the Modified Merchant Circle

When there is no hone radius on the tool, the total normal force acting on the rake
face is normal to the rake, and the angle between the total normal force and the
horizontal axis equals to the rake angle a (see Figure 2.3.a). Although a is physically an
angle on the tool, it also defines the angle between the total normal force N, and the
horizontal axis (see Figure 2.3.a). However, it is clear that when there is a hone radius,
the direction of the normal force is no more normal to the rake face. In this case there is
a need for an equivalent rake face definition.

The component of the total normal force N acting on the face in the x direction N,
can be obtained by equations (4.9), (4.19), and (4.29) as follows:

Nx = Fle + FNx2 + FNx3 (445)
And the component of the total normal force N acting on the face in the y

direction N, can be obtained by equations (4.10), (4.21), and (4.30) as follows:
N, = Fyy + Fyyo + Fyys (4.46)
It is possible to find the angle between the total normal force and the horizontal
axis from equations (4.45) and (4.46):
(N,
c=tan | — (4.47)
N

X

Therefore, it can be stated that the equivalent rake face makes angle with the
vertical axis not with rake angle but with angle ¢ (see Figure 4.10). The modified
Merchant circle is given in Figure 4.10. As can be seen, the equivalent rake face is

represented by the line AB’.

Figure 4.10: The modified Merchant circle and the equivalent rake face AB’.
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4.5. Calculation of Py and Contact Lengths

As discussed earlier, the shear stress at the exit of the shear band 7; is calculated
by the primary shear zone model. Therefore, there are three more unknowns in the
foregoing analysis, which are Py, the contact lengths and the sliding and the apparent
friction coefficients. In this section, the calculation of Py and the contact length is
presented.

In equations (4.45) and (4.46) Py can be taken into common parenthesis as

follows:
N =PN
o0 (4.48)
Ny = PONy

The normal force acting on the equivalent rake face can be calculated from

equation (4.48) as follows:

N =P, N?+N} (4.49)

On the other hand, the normal force acting on the equivalent rake face can also be

written in terms of the shear stress acting on the shear plane as follows (Figure 4.10):

cos A,

N=F, (4.50)
cos‘¢+/1a —cj

where A_ is the friction angle defined by A, =tan™" u_, where y, is the apparent

friction coefficient.

Equating equations (4.49) and (4.50), Py can be calculated as follows:

F, cos A,
F, =

JNZ }N;? coslp+ 4, —c)

The next step is to calculate the contact length €.. Assuming that the normal stress

4.51)

is distributed uniformly along the shear plane AD, and considering the momentum

equilibrium at the tool tip, we get: M ,;, =M 45

M, = szhlw

4.52
"2 * 2sin ¢ (42)
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In order to calculate the moment due to normal force acting on the equivalent rake
face we have the total normal force from equation (4.49) and the location from equation
(4.44), but we need the moment arm M. Depending on the calculated value of ¥ the
location of the total normal force can be on the regions 2 and 3, or on the Region 1. The
representative sketches of these situations can be seen in Figure 4.11.a, and Figure

4.11.b, respectively. The moment arm can be calculated as follows:
M —2rsinZsin 0 +Z— X< i
L= ; c X </l;+/(, (Figure 4.11.a) (4.53)

2r r

M, =M, sm(tan—l(wj+a—cj (,+0, <% (Figure4.11.b)  (4.54)

r

where,
’ - 2 2 — 0, -
M =\/(1—£3 0, + (L) —2L(7 -5 —€4)cos[135+ = J (4.55)
and
L= 2rsin[—90_zs +0’j (4.56)

(a) (b)

Figure 4.11: The moment arm when the location of the total normal force is (a) on the

hone (Region 2 or 3) and (b) on the Region 1.
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Consequently the moment due to the normal force acting on the equivalent rake

face can be calculated from equations (4.49), (4.53), and (4.54) as follows:
M,y =NM, (4.57)

It should be mentioned again that equation (4.57) includes total contact length £..
Therefore equating equations (4.52) and (4.57), an expression for {. can be obtained
implicitly. Also from equations (4.6) and (4.7) the sticking contact length £, can be

calculated as follows:

7
t,=1, —[ lj +1 (4.58)

4.6. Friction Coefficients

As shown in Figure 4.4 the rake contact includes two friction regions, sticking
and sliding. Therefore, two different friction coefficients are defined in order to
represent this behavior as done in Chapter 2. The apparent friction coefficient yu, is the
result of the total normal and friction forces on the rake face where the sliding friction
coefficient ¢ is due to the normal and friction forces acting on the sliding friction
region.

The total friction force on the rake face can be calculated as:

F = \/(FFyl + Fpyy + Frys )2 +(Fryy + Frp + Frys )2 (4.59)

Therefore, the apparent friction coefficient can be calculated from equations

(4.49) and (4.59) as follows:

_F 4.60
Moo= (4.60)

For the sliding friction coefficient, the proposed method in Chapter 2.1.3 is
directly used in this model. The calibrated sliding friction coefficients from orthogonal

tube cutting tests are used.
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4.7. Calculation of Shear Angle and Cutting Forces

Similar to the orthogonal cutting model proposed in Chapter 2. The shear angle
¢ is calculated by minimization of the cutting energy. It is determined by running a
simulation program based on the proposed model for a given range of shear angles, and
the one that corresponds to the minimum cutting power is selected as the shear angle.
Although the primary, secondary and third deformation zones are modeled separately,
they are coupled through the shear angle.

As for the cutting forces, once the orientation of the equivalent rake face is
calculated, see equation (4.47), the cutting forces can be obtained by the force
equilibrium on the chip as follows:

_ 7 v‘vh1 cos(4, —¢)
¢ sin ¢ cos(¢+ A, —c)
wh, sin(4, —c)
r=h sin ¢ cos(¢+ A, —c)

(4.61)

where Fy is the feed and F. is the tangential cutting forces. Note that the cutting
forces in equation (4.61) don’t include the forces acting on region 4 (equations (4.38-
4.41)). Therefore these forces should also be added in order to obtain the total cutting

forces.

4.8. Analysis on Region 5

The region 5 is responsible for the workpiece material which doesn’t contribute to
the chip flow but has a contact with region 4. It is also experimentally observed that the
contact between the workpiece material and region 5 continues along this region, which
creates a new contact region, which is called the flank contact. The flank contact is due
to the elastic recovery of the material which is deformed in front of region 4. As
discussed earlier the proposed model doesn’t take the deformation areas in the material
but assumes the pressure and shear stress distributions at the contact. Therefore, without
any further information, the proposed model cannot predict the contact length at the
clearance face and thus the cutting forces properly. However, the investigation of
adding the effect of this region is still under development. As an initial approach a
modified material model which also includes the elastic deformation history of the
material will be used. Also the effect of this region on the cutting forces will be

evaluated by the help of the experimental results which are discussed in Section 4.10.
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4.9. Solution Procedure

In this section the solution procedure for the proposed model is presented. For a
given value of shear angle ¢, and apparent friction coefficient y, the shear stress at the
exit of the primary shear zone can be calculated by equation (2.2). An iterative
procedure is needed in order to calculate the total contact length £.. As an initial contact
length value calculation equation (2.19) is used. With the selected £, value the location
of the equivalent total normal force on the equivalent rake face } is calculated by the
equation (4.44).

Now the normal forces acting on the regions 1,2, and 3 can be calculated by using
equations (4.9), (4.10), (4.19), (4.21), (4.29), and (4.30). Then, by using equations
(4.45)-(4.47), the orientation of the equivalent rake face c, is calculated. Once c is
obtained Py can be calculated by using equation (4.51). By using equations (4.53) or

(4.54) depending on the y value the moment arms are calculated and the condition

(4.57) is checked. If the difference between the moment values are in the desired
tolerances than the iteration for the total length of cut is stop.

At this point we have the correct ¢ and ¢, for the selected values of ¢, u, at the
beginning. Therefore we can calculate the chip velocity by:

sin

Vchip =V W?C)

where V is the cutting speed. Once the chip velocity is obtained, the sliding
friction coefficient for the workpiece material can be calculated by the calibrated values
in Table 3.5, and the sticking contact length £, is calculated by equation (4.58). With the
calculated value of £, now we have the knowledge of the friction conditions of the
regions 1, 2, and 3. That is, we know which region has sticking or sliding or both
friction conditions. Therefore, we can calculate the friction forces at the regions as
described in sections 4.3.1-4.3.3. Now we have the total normal and friction forces
acting on the rake face (regions 1, 2 and 3). Therefore, the apparent friction coefficient
Uq can be calculated using equation (2.23). If the selected and calculated y, values are
close to each other within the given tolerances the iteration for u, is stopped. This
procedure is run for different values of shear angle and the shear angle corresponding to
the minimum cutting energy is selected. The cutting forces are calculated by the
equation (4.61). Finally, the cutting forces acting on region 4 as described in Chapter

4.3.4 is calculated and added to the total cutting forces.
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4.10. The Experimental Verification

Orthogonal tube cutting tests are conducted in order to verify the proposed model.
The workpiece material is selected as AISI 1050 steel. P20 Grade TPGN type uncoated
carbide tools having 5° rake angle, different hone radii and clearance angle are custom
manufactured by a tool company. The hone radius values are 30, and 60 pm and the
clearance angles were 3°, 7°, and 11°, which makes a total of 6 different tools. As the
process parameters in the cutting experiments constant cutting speed value of 250
m/min is selected, the depth of cut was 2 mm, and the experiments are conducted for
different feed rate values of 0.05, 0.1, 0.15, and 0.2 mm/rev. The total cutting forces in
the tangential and feed directions are measured by a dynamometer during the
experiments.

The simulations are done by the proposed model. The material model parameters
that are calibrated before (see Chapter 3.1) are used for AISI 1050 steel. Similarly, the
sliding friction coefficient that is calibrated before by the orthogonal tube cutting tests is
used (see Chapter 3.1).

The simulation results along with the experimental results can be found in Figures

4.12,4.13, and 4.14.
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Figure 4.12: Comparison of the feed (grey) and tangential (black) cutting forces
obtained by the proposed model (lines) and measured from the experiments (markers)

for insert having 3° clearance angle and hone radii of (a) 30 pm, and (b) 60 pm.
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Figure 4.13: Comparison of the feed (grey) and tangential (black) cutting forces

obtained by the proposed model (lines) and measured from the experiments (markers)

for insert having 7° clearance angle and hone radii of (a) 30 pm, and (b) 60 pm.
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Figure 4.14: Comparison of the feed (grey) and tangential (black) cutting forces

obtained by the proposed model (lines) and measured from the experiments (markers)

for insert having 11° clearance angle and hone radii of (a) 30 um, and (b) 60 um.

Firstly, it should be mentioned here again that region 5, the flank contact, is not

taken into account in the predictions. Thus, some discrepancy between the predicted and

measured values is expected. At the first glance in the results (Figures 4.12-4.14) it can

be noticed that the error between the predicted and measured values of feed force is

higher than the tangential force. This behavior is also experimentally observed in our

previous tests. That is, the feed edge forces are always higher than the tangential edge

forces. This high error for the feed forces also supports this observation.

Another conclusion from the results is on the correlation between the errors and

the clearance angle. As can be observed from (Figures 4.12-4.14), as the clearance angle

increases, the error between the predictions and experimental measurements decreases.

This behavior is also expected; due to the increase in clearance angle the contact length

78



at the flank face (region 5) is expected to decrease yielding also a decrease in the forces
acting on this region.

As can be deduced from the results as another interesting observation, increase in
hone radius doesn’t affect the cutting forces very much. For instance, for the tests
conducted with the tool having 11° clearance angle, although the hone radius is
increased from 30 um to 60 um (%100 increase), the feed force increases from 180 N to
200 N (%11 increase) and tangential force from 275 N to 290 N (% 5 increase). It is a
well known behavior that the increase in hone radius results in higher forces in cutting
due to the higher ploughing. However it is analytically and experimentally shown here
that the fraction of increase in the hone radius doesn’t directly reflect to the increase in

the cutting forces.
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S. APPLICATION OF THE PROPOSED MODELS IN COMMON
MACHINING OPERATIONS

The proposed process model in Chapter 2 is applied for the two common
machining operations: turning and 5 axis milling. The detailed mathematical derivation
for the turning process model is presented in Chapter 5.1. The application of the

proposed model to 5 axis milling operations is presented in Chapter 5.2.

5.1. Turning Operations

Turning is one of the oldest machining operations. The unwanted material is
removed from a rotating workpiece by a cutting tool which is usually called insert. For
each revolution of the workpiece (pass) the tool moves along the axis of the workpiece

by a given feed with a selected depth of cut (Figure 5.1).

- o

Workpiece _’ Z(tangential)

3 T—x(feed)

y(radial)

Figure 5.1: Schematic representation of turning.
Basically, there are three main cutting angles on the insert, Figure 5.2. The rake

angle ¢, side edge cutting or approach angle x; and the inclination angle ¢ which are

both measured on the rake face.
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cutting
edge  x(feed) y(radial)

Figure 5.2: The global cutting angles on the insert.

In turning operations existence of the nose radius makes it harder to model than
the oblique cutting operations. The nose radius brings two complexities. The first one is
that the cutting edge is changing along the nose radius which makes the uncut chip area
more complex. Secondly, there exist local cutting angles which are different than the

global ones on each point on the nose radius which will be discussed in detail.

5.1.1.Modeling of the Chip Thickness

One of the most important parameter that makes modeling of turning operations
harder is the geometry of the uncut chip area. In general, as can be seen in Figure 5.3
the uncut chip area involves two regions where the first region is a parallelogram and
the second one is an area which is enclosed by two arcs and a line. However, if the
depth of cut w, is lower than the height of the nose of the insert w,, then the chip area

would only involve the second region.

WORKPIECE

current previous

n g
pass // pass
1

I

Figure 5.3: The uncut chip area in turning.

we |

81



In this study we propose to divide the 2" Region (Figure 5.3), into many

parallelogram elements and keep 1* Region as one element as can be seen in Figure 5.4.

1 sltHr:“l‘el‘ment

I 0

h

Figure 5.4: The uncut chip area when w.>w;,.

When the depth of cut is higher then the height of the nose radius (Figure 5.4)

following are needed in order to define each element:

w, =r—rsin(K) (5.1)

0=rx—x—cos ' (h/2r) (5.2)

6, =6/(n,—1) (5.3)
K j=1

Kj=Kk,+0,/2 j=2 (5.4)

w (5.5)

J

{(wa —Wn)/COSK' j=1

2rsin(0,72)  j>1

h; = heos(x; ) (5.6)
where, r is the insert nose radius, xand & are the side edge cutting angles for the
insert and the jth element, respectively, & is the jth element’s angle with the origin of the

insert nose, w; is the length of each element, and h and h; are the global and each

element’s uncut chip thickness, respectively.
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[T we
Aty

Figure 5.5: The uncut chip area when w.<w,.
When the depth of cut is smaller than the nose height, i.e. only 2nd Region exists
(Figure 5.5), some of the defined angles should be updated as follows:

0= —cos ' (h/2r)—sin ' (sin(x)+ (w, —w.)/7) (5.7)
6,=01/n, (5.8)
x; =sin"' (sin(x)+ (w, —w,)/7)+(j-0.5)8, (5.9)
w; =2rsin(6;/2) (5.10)

5.1.2.Local Cutting Angles

As briefly discussed above, the existence of the nose radius changes the local
cutting angles along the nose radius. Even there exists no inclination angle on the tool,
if there is a rake angle, it results in local inclination angles on the nose radius, see

Figure 5.6.

Straight
cutting edge

Figure 5.6: 3D representation of the local cutting angles on the insert.

83



The local normal rake and inclination angle relationships can be derived from the

3D geometrical relationships as follows:
a] = 2sin " (cos(x; — x)sin (e, /2))+ 2sin " (sin (i, - &)sin(i/2)) (5.11)
i =2sin " (sin(xc;, - x)sin(a, /2))- 2sin " (cos(x; - x)sin(i/2)) (5.12)
where, @, is the local normal rake and # is the local inclination angle for the j’h
element, x, a,, and i are the global side edge cutting, normal rake and inclination angles,

respectively. It should be noted that for the cases where w.>w,, the first elements i.e. the

straight cutting edge, cutting angles are equal to the global ones:

" for w, >w, (5.13)

5.1.3.Primary and Secondary Deformation Zone Calculations for the Elements

The proposed oblique cutting model in Chapter 2.2 is applied to the modeling of

each element’s primary and secondary shear zones. First of all, it is assumed that all the

element’s shear bands have the same normal shear angle ¢, in order to satisfy the

continuity of the shear plane. Secondly, the shear stress at the exit of the shear band of

each element can be calculated by the modified version of equation (2.36) as follows:
¢/ = plVsing, cosi’ | i +7] (5.14)
Again with the similar approach we assume that the material exiting from the
primary shear zone has a contact with the rake face and a high normal pressure is
exerted on the chip so that the friction conditions closer to the tool tip is in sticking

conditions. Due to the pressure drop, the friction conditions turn to the sliding along the

rake contact. As derived in detail at Chapter 2.2 following can be calculated for each

element:

. Cho($+1 J

P/ =1/ [+ costg, cosfy (5.15)

(1 sing,cosy! coslg, + B - a)

. h A& +2) si i _ gl

0 = ,(5 )sm(¢n+,6n' an)' (5.16)

2 sing, cosB; cosn!

(Ve

0 =0l =0l — (5.17)

Py u

where £/ and fpj are the total and sticking contact lengths of the j™ element,

respectively, 1¢ is the chip flow angle (see the chapter 5.1.4 for detailed information), u
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is the sliding friction coefficient, and S, is the normal friction angle which is defined as

follows:

B! :tan,Bcos(f]Cj) (5.18)

where /3 is the friction angle which is defined by the relation § = ran” u,,

In turning, the relationship between the apparent and the sliding friction coefficient
should be calculated differently from the proposed oblique model. Because at each point
on the nose radius, due to the varying feed rate, the contact lengths differ which yields
to varying normal and friction forces. The apparent friction coefficient is defined as the
ration between the total normal and friction forces on the rake face (see equation
(2.53)). The total normal force can be written in terms of shear stress at the exit of the

shear band for each element, similar to the equation 2.38 as:

h j
_ C J W]h] COs7]; COS :Bn
N=)r1;

. . . (5.19)
o sing, cosi’ cos(gi)n + B - a',{)

Also, the friction total friction force exerted on the rake face can be written

similar to equation (2.52) as:

n J J
F=N7ziw|pi +_¢ "7 5.20
%" { ;+1} o
Therefore, the apparent friction coefficient can be calculated as follows:

N
>0+ Cil

Jj=1

= : : (5.21)
# ifj h; cosn/ cos 3/
1

‘2l sing, cosi; cos(gz)n + B - a,{)

5.1.4. Chip Flow Angle, Shear Flow Angle, and the Chip Velocity

Although the orientation and local cutting angles of each element are different,
experimentally it is observed that the chip flows in one direction globally, see Figure
5.7. However, since each element has its own coordinate systems (x;, y;) defined, there
exists a local chip flow angle direction for each element which can be calculated as
follows:

, e Jj=1

Nl = 7

5+776—1(j—1( j>1

(5.22)

where 7. is the global and #, are the local chip flow angles.
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X —
—
nth element,~

Figure 5.7: Schematic representation of the global and local chip flow angles.

In this study we propose to calculate the global chip flow angle by the energy
equilibrium on the chip. The cutting energy E., exerted on the chip due to the cutting
force can be written as follows:

E . =FV (5.23)

where F; is the tangential cutting force, V is the cutting speed. Also, the energy
spent at the shear plane and at the rake face can be written as:

E =FV +FV, (5.24)

where Fj is the shear force at the shear plane, F' is the total friction force at the
rake face and can be calculated form equation (5.19), V; is the shear velocity and V. is
the chip velocity.

From the force equilibrium on the chip, the total shear force can be calculated as:

n I h.
T{w;h;

F = (5.25)

N . .7
71 sin @, cosi’

Also from the velocity equilibrium we get the shear and chip velocities as follows
[32]:

Vsin @, cosi’

V.= 5.26
© coslg, —a;)cosn, e
V= Vcosi cosa, (5.27)

7 cos(g, —a )cosn,
One should notice the terms i"and ¢, in equations (5.25) and (5.26). Mentioning

once again, each element has its own local rake and inclination angles. However, we
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need an equivalent rake ¢, , and equivalent inclination i” angles in order to calculate

the shear and chip velocities properly. For a given global chip flow angle we can
calculate the equivalent angles similar to the equations (5.11) and (5.12) as follows:

a,, = 2sin ' (cos(, — x)sin(a, /2))+ 2sin ' (sin (17, — x)sin(i/2)) (5.28)

i’ =2sin "' (sin(;7, — x)sin (e, /2))—2sin "' (cos(n, — x)sin(i/2)) (5.29)

Turning back to chip flow angle calculation, it is proposed that there exists one
chip flow angle that satisfies E.=E;. The chip flow angle that satisfies this equilibrium is
selected to be the global chip flow angle.

As for the shear flow angle, since all the material on the shear plane should flow
in one direction, we take the same shear flow angle value for each element which can be
calculated from equation (2.51) using the equivalent rake and inclination angles as
follows:

tan7, = (tani’cos(g, — ) tan7, sin @, )/ cosa, (5.30)

5.1.5.Normal Shear Angle and Cutting Forces

As discussed earlier the normal shear angle is assumed to be the same for all the
elements. It is again proposed here to calculate the shear angle from the minimum
energy principle. The solution is run for different values of normal shear angles and the
one which corresponds to the minimum cutting energy is selected.

The total cutting forces, on the other hand, can be calculated by the force
equilibrium on the chip very similar to the equation (2.56) as follows:

n lewjhj (cos(ﬂ,{ —a',{)+ tani’ tanz; sin ,B,{)

j=lsin @, \/cos2 ((i)n + B/ —al )+ tan” 75/ sin” 3/

P - Zn: | i w;h; sm(ﬂ,{ —'0(,{) | | .
j=1 cosi’ sin @, \/cos2 (gi)n +B8) o) )+ tan® 7/ sin* g/

n lewjhj (cos(ﬂ,{ —a'nj)tanij —tan7 sin ,B,{)

1 sin g, cos? (@, + B/ — ] )+ tan 1/ sin” B}

where, F; is the tangential, Fyis the feed and F, is the radial cutting forces. As the

;=

r =

directions of the total forces, F; is parallel to the cutting velocity direction, Fy is
perpendicular to the plane formed by the cutting velocity or F; and the cutting edge, and

F; is perpendicular to the other two forces.
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5.1.6.Proposed Solution Method

In this section the solution method for the simulation of the turning processes with
the proposed model is presented. The solution begins with creating the elements by
using equations (5.1)-(5.10). For an initially given value of ¢, and 7. the equivalent rake
and inclination angles can be calculated by equations (5.28) and (5.29). Then the chip
velocity, shear velocity, and the shear flow angle can be calculated by the equations
(5.26), (5.27), and (5.30), respectively, also the sliding friction coefficient can be
calculated by the calibrated values listed in Table 3.5. An iterative procedure is
proposed for the apparent friction coefficient calculation. For an initial value of u,, f
can be calculated. Now the calculations on each element begin. For each element 5./ S,
.. €, and 7/ is calculated by the equations (5.22), (5.18), (5.16), (5.17), and (5.14)
respectively, and the total cutting forces can be calculated by the equation (5.31). The
apparent friction coefficient can be calculated by the equation (5.21). If the selected and
the calculated g, is close to each other within the desired tolerance value the iteration
stops. Now the energy equilibrium is checked by using equations (5.23) and (5.24). If
equation (5.23) is close enough to equation (5.24) the estimated chip flow angle is
selected, else the chip flow angle value is changed to run the analysis once again. This
whole procedure is run for different values of normal shear angles. The shear angle

corresponding to the minimum cutting energy is selected.

5.1.7. Turning Model Verification Experiments

As an initial verification, turning experiments are conducted by using AISI 4340
steel and uncoated carbide tool. The P20 grade TPGN type inserts having 5° rake angle
with 0.4 mm nose radius were used. There was no side edge cutting on the insert holder.
The tests were conducted at 150 m/min cutting speed, 0.1, 0.15, and 0.2 mm/rev feed
rates and 0.2, 0.4, 0.8, and 1.2 mm depth of cuts. The forces in three directions are
measured by a dynamometer.

In the simulation the edge forces are also taken into account. The edge force
cutting force coefficients for AISI 4340 steel and TPGN type P20 Grade uncoated

carbide tool which were obtained from previous tests were used:

K, =80MPa
K, =118MPa (5.32)
K, =22MPa
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where K., Kf., and K,. are the edge cutting force coefficients in the tangential,

feed and radial directions, respectively. The aim of these simulations is to verify the

proposed nose radius model. In this respect, the cutting force coefficients are used
which are obtained from the proposed model in Chapter 2.

The model predictions along with the experimental results are shown in Figure

5.3, for different verification tests. The depth of cuts in the verification tests are selected

so that in one case (see Figure 5.3.a) the depth is smaller than the height of the nose

radius. In the second case (see Figure 5.3.b), the depth of cut is equal to the nose radius

height. And for the last two cases (see Figure 5.3.c and Figure 5.3.d) the depths of cut

were higher than the insert nose radius height. As can be observed from the results, the

predicted and measured values are in good agreement.

150 240
ZI 120 Fr ZI 200 1 Ff
(2] 1] 1 i
8 o0 F 8 60
g — — £ 120 |
2 60 - 2 e F.
5 = l/'/.
© 301 Fr © 401 Fr
0 T T T O T T T
0.05 0.1 0.15 0.2 0.25 0.05 0.1 0.15 0.2 0.25
Feed - mm/rev Feed - mm/rev
(a) (b)
420 640
_ 360 - Fy 560 1 Fi
: 480 -
» 300 1 @
) 400 -
2 240 | o
i ] © 320 -
R Fr 2240 - F
£ 120 = |
160
(@] . un ——= O
60 1 F, 80 - a—1uf
0 T T T 0 T T .
0.05 0.1 0.15 0.2 0.25 0.05 0.1 0.15 0.2 0.25
Feed - mm/rev Feed - mm/rev
(©) (d

Figure 5.8: The predictions (markers) along with the experimental results (lines) for the

depth of cuts of (a) 0.2 mm, (b)0.4 mm, (c) 0.8 mm, and (d) 1.2 mm.
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5.2. 5 Axis Milling Operations

In this section the application of the proposed model for the simulation of the
cutting forces in 5 axis ball end milling operations is presented. The geometry and
kinematics of the 5 axis milling processes are studied before by Ozturk et al. [94]. The
model proposed in that study is used here in order to simulate the cutting forces in 5
axis milling. The proposed orthogonal cutting model in Chapter 2, on the other hand, is
used to determine cutting force coefficients for the selected tool workpiece couples. The
5 axis milling geometry and force modeling will also be reviewed in the next sections

very briefly.

5.2.1.5 Axis Ball End Milling Geometry

There are two complexities in the modeling of 5 axis ball end milling: the
geometry of the ball end mill and the additional two degrees of freedom in 5 axis

milling.

Figure 5.9: 3D representation of a ball end mill.
The 3D geometry of a ball end mill can be seen in Figure 5.9. As can be seen from
the geometry the local radius R(z) is changing along the ball part of the tool. Due to this
situation, the uncut chip thickness and the cutting speed on the ball end region is

changing along the z axis, which brings the complexity in the modeling.
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(a) (b) (c)

Figure 5.10: Geometry of 5 axis milling; (a) the tool (F:feed, N:normal, C:cross-feed)

and machine (X, y, and z) coordinate systems, and (b) lead, and (c) tilt angles.

The additional angles in 5 axis milling processes, i.e. lead and tilt, can be seen in
Figure 5.10. The existence of these angles both makes the uncut chip thickness more

complex and changes the engagement of the tool with the workpiece.

5.2.2. Engagement and Force Modeling in 5 Axis Milling

Due to the complexities discussed in the previous section Ozturk et al. [94]
proposed to divide the ball-end mill is into differential disc elements having height of dz
along tool axis starting from the tool tip. Then, they check the conditions for a disc
element geometrically while rotating the tool to see whether it is in cut at that radial and
axial position. Once the engagement is found, the uncut chip area dA, and edge length
dS corresponding to that element are calculated for the force simulations.

The differential cutting forces for the tooth j in the local cutting coordinates i.e.
axial, radial and, tangential, can be written in terms of cutting force coefficients ad

follows [94]:

dF,; =K, dS+ K, .dA
dF,; = K ,dS+ K, dA (5.33)

dF,; = K ,,dS+ K ,.dA

where dF,;, dFy;, and dF,; are the differential forces for tooth j in the radial,
tangential, and axial directions, respectively, K,., K., and K, are the cutting force
coefficients and K,., K., and K, are the edge cutting force coefficients in the radial,

tangential, and axial directions, respectively.
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The total cutting forces on the tool at the machine coordinates are calculated by
integrating the differential forces acting on the oblique elements engaged with the
workpiece for each immersion angle, and summing up the contribution of each cutting

flute as follows:
F =Y [dF,
j=l

F, = Zl [aF, (5.34)
<

inﬁ%
=

where n is the total number of tooth on the tool.

It should be noted here that, the proposed model above by Ozturk et al. [94] is
verified by several cutting experiments. The cutting force coefficients in equation (5.33)
were determined form orthogonal cutting tests. In this study we propose to use the

model derived in Chapter 2 in order to calculate those cutting force coefficients.

5.2.3. Verification Experiments

In order to verify the proposed approach above we compare three cases from
Ozturk et al.’s [94] study. The material used during the 5 axis milling tests was
Ti6Al4V alloy. A 12 mm diameter ball-end mill clamped by a shrink fit tool holder was
used in the tests. A dynamometer was used to measure the cutting forces. The process

parameters used during verification cases are listed in Table 5.1.

Table 5.1: Cutting parameters for the verification experiments for 5 axis milling.

Case N Lead | Tilt Feed Step over | Cutting Depth Spindle
ase No
®) (°) | (mm/tooth) (mm) type (mm) | speed (rpm)
1 10 -15 - Slot 1.5 3000
Following
2 15 15 0.1 7 3 1000
cut
3 0 0 - Slot 3 500
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Figure 5.11: Comparison between the model and the experimental results for the cases

listed in Table 5.1, (a) case 1, (b) case 2, and (c) case 3.
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For the simulations by using the proposed model in Chapter 2, the orthogonal
database used in order to calculate the cutting force coefficients in equation (5.33) are
identified as follows:

£ =18.13+0.0212a +0.0354V
¢ =36.97+0.541a—0.06532V (5.35)

7=534.05-0.0171V> +1.3821V
where @, o and £ is are the shear, rake and friction angles, respectively, in degrees, 7 is
the shear stress in MPa, and V is the cutting speed in m/min. It should be mentioned
here that the edge cutting forces are taken from the previously made orthogonal cutting
tests.
The simulated and experimental total cutting forces in the machine coordinate
system for the cases listed in Table 5.1 can be seen in Figure 5.11. As can be seen there

is a good agreement with the predicted and measured results.
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6. ANALYTICAL MODELING OF CHATTER STABILITY IN TURNING
AND BORING OPERATIONS

The models proposed in the foregoing sections were only considering the
mechanics of the cutting processes. Although these models provide much insight about
the cutting process, they do not have the ability to predict the dynamic behavior during
the cutting process. However, as will be discussed in detail, in the modeling of stability
of cutting operations the cutting force coefficients must be known. That is the
relationship between the forces and the uncut chip thickness (feed). Therefore, the
proposed models in the previous sections can be used to determine the cutting force
coefficients as an important input for the stability model.

The stability model presented in this section serves as a base for turning and
boring operations. In order to study the stability of these processes, first the dynamic
chip thickness and cutting forces are modeled. Then, the multi-dimensional dynamic
equations are solved as an eigenvalue problem to obtain the stability limits. This
procedure is applied to the turning process with an insert without nose radius in this
section. Also, it is used for the boring process in a very similar way in Section 6.5 with
the nose radius model proposed in Section 6.3. The basic parameters that identify the
turning process are the chip thickness, A, the depth of cut b, and cutting angles which
are shown in Figure 6.1, where « is the normal rake angle, and i and x are the

inclination and side edge cutting angles respectively, both measured on the rake face.

6.1. Dynamic Chip Thickness and Forces

In order to formulate a relationship between the dynamic turning forces and the
dynamic chip thickness, all components of the dynamic problem are transformed into
the global coordinate system (lathe axes; x, y, and z) which can be seen in Figure 6.1.b.

From Figure 6.1.a and Figure 6.1.b one can deduce that the dynamic displacements at
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the cutting direction (z) do not affect the dynamic chip thickness. By this observation,
the dynamic problem is reduced to a 2D model. Therefore, the modulated chip thickness

resulting from vibrations of the tool and the workpiece can be expressed as follows:

h, ()= feosk+(x, (6)=x, ()= x (= 7)+ x, (r - 7))cos &+

v @)+ 3,0+ v, =7)=y, (= 2))sin & 6.1)

where f represents the feed per revolution, x.(z) ,x,(t) and y.(t), yu(t) are the cutter
and workpiece dynamic displacements for the current pass respectively, and x.(7-7)
,Xw(1-7) and y.(1-7), yu(t-7) are the cutter and workpiece dynamic displacements for the
previous pass in x and y directions respectively, and 7is the delay term which is equal to
the one spindle revolution period in seconds. The feed term in equation (6.1) represents
the static part of the chip thickness. Since the static chip thickness does not contribute to
regeneration mechanism, it can be ignored for the purpose of stability analysis.
Therefore, the dynamic chip thickness in turning can be defined as follows:

h(t) = Axcos k — Aysin & (6.2)

where:

Ax=x()-x,(t)-x.(t—7)+x, (t-7)

c w

Ay =y, (0)=y,(0)-y (t-7)+y,(-7) 6.3)

e
( ) Workplccc\)/ x(feed)
7\ ’ z(cutting
\ [ % \ ( g
/ [ 1 ‘ y(radial)
\ 7\
\ /
\\ culting »
\ edge  x(feed) N y(radial)
)
(a) (b)

Figure 6.1: (a) Chip thickness in turning, b) 3D view of the three cutting angles on the
insert

Although the dynamic problem can be considered as 2D, the cutting process is 3D
in nature, due to the existence of the inclination angle. Then, the forces at the cutting
edge need to be modeled by an oblique cutting model [10].The total cutting force acting
on the cutting edge is divided into three components: one parallel to the cutting velocity
direction F;, one perpendicular to the plane formed by the cutting velocity or F; and the
cutting edge Fy, and the last one perpendicular to the other two F, (Figure 6.2).The

dynamic cutting forces on the tool can be expressed using equation (6.2) as follows:
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{Ff}:—b {Kf}[cow( —sinl(]{Ax} (6.4)
F. cosk| K, Ay

where, Ky, and K, are the corresponding cutting force coefficients. Note that F; is
not included in the formulation as it does not take part in the regeneration mechanism.
However, it is affected by the regeneration, and if needed it can be determined using the
value of the dynamic chip thickness and the force coefficient in the cutting speed
direction K, These coefficients can be directly obtained from calibration tests, or by
using the method proposed by Armarego et al. [32] and Budak et al. [9]. In the latter
approach, the cutting data obtained in orthogonal tests are used to determine the force
coefficients using an oblique transformation, and thus include the effects of inclination

and rake angles.

E
Rake Face

X(feed) e o V(radial)

Figure 6.2: Three components of the total cutting force acting on the insert.
By coordinate transformation the cutting forces can be written in the lathe

coordinates as follows:

Fo| | cosk sink|[-F, 65)
F,| |=sink cosx|| F, '

where F, and F, are the cutting force components in x and y directions,
respectively. Substituting equation (6.5) into equation (6.4), the following relationship

is obtained:
{F}=b[A}{Ad} (6.6)
where {F}is the dynamic force vector and {Aad} is the dynamic displacement

vector both defined in the lathe coordinates. The directional coefficients matrix [A], can

be expressed as:

[A]{‘COS" Sm"}{’{f}h —an] 6.7)

sink cosk | K,

The relationship between the dynamic cutting forces and dynamic chip thickness

are now defined by equation (6.6).
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6.2. Chatter Stability Limit

For the stability analysis of the dynamic turning process, a procedure is followed
that is similar to the one used by Budak and Altintas [67, 73, 97] for the milling
stability. The response of the cutter and the workpiece at the chatter frequency, @. can

be expressed as follows:
. (i0)}=[c, (i, )fFle j=c,w d=xy (6.8)
where the transfer function matrix is given as:
o ]=| S O = cow (6.9)
j ijx ij .] ) .

where Gj and Gj,, are the transfer functions in x and y directions respectively,
and Gj,, and Gy, are the cross transfer functions. The dynamic displacements in the

previous pass at the same location, at time (#-7), can be defined as follows:
@)= {d(im, )} j=cw d=xy (6.10)
By substituting equation (6.8) into equation (6.6), we obtain:
{Fle® = b(1- e JAlG (i, ){F e 6.11)

The geometry of tool and workpiece in most of the turning operations are
symmetrical and beam-like structures, thus for many cases the cross transfer functions

are negligible. Then, the transfer matrix can be further simplified as follows:

0 G

yy

Gliw,)=G (iw, )+ Gw(iwc):r” 0 } (6.12)

where G, and G,, are the systems total transfer functions in x and y directions.

Equation (6.11) has a non-trivial solution if and only if its determinant is zero, yielding:
det[[1]+ A[G,(iw,)]] =0 (6.13)

where [G0 (i o, )] = [A][G(i o, )], and the eigenvalue A is given as:
A =ble —1) (6.14)

Now the stability model is reduced to an eigenvalue problem. The solution of

equation (6.13) results in the following:
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A= l/ley (Kf sin® xcos K+ K, sin k'cos’ K‘)+ G, (Kf cos’ k- K, cos’ K‘)J (6.15)

From equation (6.14), on the other hand, the stability limit, by, at a certain

chatter frequency can be obtained as follows:

by = Apxih (6.16)
cos@,.T—isinw,7—1

Since b is a real number, the imaginary part of equation (6.16) has to vanish

yielding:
by, = _%AR (1"‘/12) (6.17)
where:
p=tio SOT (6.18)

A l-cosw,.T

Equation (6.18) can be used to obtain a relation between the chatter frequency and

the spindle speed [10, 67, 73]:
e=m-2y,y=tan"' 1 (6.19)
wT=+2kr,n=60/7 (6.20)

where € is the phase difference between the inner and outer modulations, & is an
integer corresponding to the number of waves in a period, and n is the spindle speed in
rpm.

The stable depth of cut of the system can be obtained from by equation (6.17) for
different chatter frequencies. These frequencies can be searched around the natural
frequency of the most flexible structural mode of the system. Then, the corresponding
spindle speeds can be determined from equation (6.20) for different lobes, i.e. for
k=1,2,3...etc. Thus, the stability diagram of the dynamic system can be obtained by
plotting the stable depth of cut vs. the corresponding spindle speeds for different lobes
[67].

If the cross-transfer functions are significant and must be included in the analysis,
the original transfer function matrix given in equation (6.9) can be used in the stability
formulation. In such a case, the eigenvalue would include the cross transfer function

terms in addition to ones given in equation (6.15).

99



6.3. Insert Nose Radius Model

In the foregoing analysis, the chip thickness and the forces on the straight cutting
edge are considered only. In practice, however, most turning processes are conducted
using cutting inserts with nose radii varying from 0.1 mm to as large as 7-8 mm for
better finished surface and cutting performance. For stability analysis, when the (stable
depth of cut /nose radius) ratio increases, the importance of including nose radius in the
model increases as well.

In this study, the chip area at the nose of the tool is divided into many elements
in modeling of the dynamic chip thickness. The chip area in the nose region is divided
into n trapezoids as shown in Figure 6.3.a and Figure 6.3.b. The parameters below are

used to describe the chip thickness for each element up to element n.

b,=b,,/n, b,, =r—rsink i=1,..,n (6.21)

b,=b,6/cosb, i=1,..,n (6.22)

9 =2 tan_l(LSanj i=1,..n (6.23)
2 ns;

. 2 i—
si:\/rz—[r—i(r—rsinl()j —Zsj (6.24)

n

J=1

where b, 1s the element height or elemental depth of cut, bg 1s the edge length of
the trapezoid, r is the nose radius and &, is the angle that defines the orientation of an

element edge.

In modeling the chip thickness at the straight cutting edge, two approaches are
proposed. In the first approach, the straight edge is also meshed by the trapezoidal
elements as can be seen in Figure 6.3.a. This approach is used in the modeling of the
turning stability as equal element height makes the mathematical coupling of element
dynamics possible. It should be noted that the second approach couldn’t be used in
modeling the general stability case where all the cutting angles and dynamics are
present since the dynamic forces acting on each element couldn’t be merged into a
single matrix (see equation 6.30). In this model, (n+1)" element and the following
elements up to element m are located at the straight cutting edge of the insert; therefore
equation (6.21) and (6.22) is also valid for these elements. But, as it can be seen from

Figure 6.3.a, their angular orientations are equal to the side edge cutting angle:
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6. =xk i=n+1,n+2,...m (6.25)
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Figure 6.3: Division of chip thickness by trapezoidal elements (a) straight edge is also
meshed, (b) straight edge is only defined by one element, and (c) the cutting forces
acting on an element.

In the second approach, on the other hand, the straight edge is presented by only
one element whose height is an unknown. Although the first approach could also be
used in the boring stability model, this second approach is implemented as it reduces the
stability solution into a 1D equation, and the eigenvalue of the system can be calculated
easily even when the straight edge is taken as one element. In this model, (n+1)"
element represents the straight cutting edge of the insert. As it can be seen from Figure
6.3.b, its angular orientation is equal to the side edge cutting angle, i.e. 0,.;=x. As a
conclusion, by using angular orientation angle €, the dynamic chip thickness for the jth
element can be defined as follows:

h;(t)=Axcos6, — Aysin 6, (6.26)

6.4. Stability of Turning Processes Including Insert Nose Radius Effects

In this section the stability model for turning operations that includes the nose
radius model is presented. This model is called the “matrix solution” throughout the

study. The nose radius alters the dynamic effects of tool and workpiece on the stability

101



limit by changing the contributions of the tool and workpiece transfer functions on the
process dynamics, similar to the effect of side cutting edge angle. Therefore, the
dynamic displacements and dynamic forces acting on all elements must be considered
in the solution. Assuming m number of elements is in the cut, elemental dynamic forces

acting on each element that is in cut can be written from equation (6.6) as follows:

Bl Ly [ I i=1,2 (6.27)
= . =1,4,....m .
F. et Ay J

Jy

where [A;]’s are the directional coefficients that are defined by equation (6.7) and
(6.23). Note that in equation (6.27) the dynamic displacements Ax and Ay represent the
total dynamic displacement of the insert in cut, and can be defined as follows:

{i;‘} =(1-e")Glia, )]Z{i”} (6.28)

p=l Py

Thus, the dynamic elemental forces can be written by substituting equation (6.28)
into (6.27) as follows:
{? }e“"f' b, (1-e" ) ] [Glw)]> {i””‘}e“”(’ j=12,..m  (6.29)
Wy p=l " py

Finally, the total depth of cut of the insert can be calculated as b=mb,. Since the
dynamic system has now m number of degrees of freedom, it can only be solved
accurately by a simultaneous solution. Therefore, as Budak et al. [67] applied it for

milling stability, it is proposed to merge the dynamic equations into a matrix form

which will then be reduced to an eigenvalue problem:

Fy ] , o
: eta)(.t — be (1 _ e_lwff IGO] elwft (630)

|:F;.11x ] |:E11x :|
F‘my i F‘my

[Go] in equation (6.30) can be considered as the elemental oriented transfer

function and defined as follows:

[A] [a] ... [A]lc] o o
G,]=] : o .0
[A,] [f?g,]z.).. [4,1]] O . 0 )[G]
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and the solution is possible if and only if the determinant of equation (6.30) is

equal to zero. The eigenvalue A is defined in equation (6.30) as follows.
A=b (1-e77) (6.31)

As a result of equations (6.31) and (6.30), the dynamic problem is reduced to the
same eigenvalue problem discussed in Chapter 6.2. Thus, the eigenvalue can be
calculated from equation (6.13), and in order to solve the chatter stability limit the same

procedure can be followed.

One can notice from equation (6.30) that this solution provides the elemental
stability limit, beim, Which is the stability limit for only one element. Therefore the
stability of the system byin, 1s calculated by multiplying beim With the elements that are in
cut, that is bym=mbeim. However, the number of elements that are in cut is another
unknown. Hence, a search-based solution procedure is proposed as follows. The first
step of the procedure is to guess the number of elements that meshes the nose radius n
in the beginning which is then used to calculate b,, 1.€. be= bposo/n. Also the total number
of meshing elements m, has to be selected in the beginning. It should be noted here that
10 elements are found to be enough for precise predictions. Then, the stability solution
is followed step by step for each element. At each step it should be checked whether by
is smaller than b. If by is found to be greater than b, then the iteration continues by
adding the next element into solution. It should be noted here that, selecting bigger m
values or smaller b, values increases the precision of the solution.

The main difference of this procedure from the method given in Chapter 6.2 is the
way the eigenvalue problem is solved. In a one element solution the eigenvalue can be
calculated analytically. However, for the multi-element model when the dynamics of
both tool and workpiece is included, as the number of elements increases, so does the
dimension of the directional coefficient matrix. Therefore, a numerical solution is

needed for the eigenvalue of the dynamic system.

6.5. Stability of Boring Processes

The stability model for boring operations is similar to the turning operations except in a
few points. Firstly, since the stable depth of cuts in boring are comparable to the insert
nose radius, the effect of insert nose radius becomes critical. Secondly, the boring

process coordinates are different which results in a modification of the dynamic chip
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thickness relationship (Figure 6.4). Thus, in order to formulate the stability in boring
operations, an insert nose model is proposed. Then, a similar procedure is followed in
order to obtain the dynamic system equations. It is also shown that the stability model in

boring operations reduces to a 1D equation even including the insert nose radius effect.

C\

X(feed)

y(radial)

Inselt

/77//@*

WOll p1eu:

Figure 6.4: Schematic description of chip thickness and lathe coordinates in boring.

It should be noted here that the stability problem in boring can still be solved using
the matrix solution model presented in Chapter 6.4. However, a 1D model is proposed
for boring operations which provides the same prediction accuracy with a faster solution

time. This model is called “1D solution” throughout the study.

6.5.1.Stability Limit Solution for Stable Depth of Cuts Higher Than the Nose
Radius

In order to model the dynamic system’s stability, the relationship between the
dynamic boring forces and the dynamic chip thickness is defined. Then, the problem is
reduced to a 1D eigenvalue problem by the help of a reduced transfer function matrix,
and solved analytically.

Similar to the turning stability model, the relationship between the dynamic forces

and the chip thickness in lathe coordinates can be written as follows:

{2} =b (4, }{i;} =12, n+1 (6.32)
where,

b=b, j=12,...n

bj=by, j=n+1

and [A;]’s are the directional coefficient matrices which are defined for each

element as follows:
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[Aj]:{Ajn Aj12}:{_CO'S(9j Sint9j }{if}[l tanej] (6.33)

Ay Ay sin@;, cos6,

Note that in equation (6.32) the dynamic displacements Ax and Ay are the total

dynamic displacements of the insert in cut, and can be defined as follows:

{i;} =(1-e" JGlim, )]H§}+ {§}+{§ H (6.34)

where the transfer function matrix [G(i@.)] is assumed to include only the transfer
function in y-direction, because in almost all of the boring operations the tool and the
workpiece are much more rigid in the x-direction and can be neglected. Therefore, the

transfer function matrix is given as:

[Gliw,)]= B ﬂ (6.35)

Substituting equation (6.34) into equation (6.32) the dynamic elemental force for
the /™ element can be obtained as follows:
n+l

7,k =b,(1-e7 )4, [Glim,) ]Z[F]e (6.36)

As it can be seen from the above equation, there are now (n+1/) equations to solve.
The first (n) equations that model the nose radius have the same depth of cut b., which
is known. However, the last equation that models the straight edge, has the depth of cut
b, which is to be solved for stability. Adding up all the equations the following is

obtained:

n+l

Sle b -t odaten Sl oo S 17 b 637
Define [C] as follows:

[c]= { Clz}(e“’“’f’—l)[B] (6.38)

C22

where:

[B]= { . } b [A ]+b, Z[A] (6.39)
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The solution of equation (6.37) is possible if and only if its determinant is equal to
0, which yields:

det[l]+[clGli@, =0

(6.40)
The solution of equation (6.40) results in the following:
C,=-1/9, (6.41)
Letting C2; be A and rewriting equation (6.37) the below is obtained:
n+l ) n+l )
D F, e =Ap, D F, e (6.42)
p=1 p=1

Now the problem reduces to a 1D eigenvalue problem, and equation (6.38)
reduces to the following:

A= -1, (6.43)

Aj can also be calculated from equation (6.33) as follows:

A, =(-sin 6, +cosé K, Jtand, (6.44)

Further, By, is equal to the stability limit Bjim at a chatter frequency. Since B2ojim

should be a real number, the imaginary part has to vanish, yielding:

1
By == Ay (1+2) (6.45)
where 4 is defined in equation (6.18) which then results in equations (6.19) and
(6.20) in order to obtain a relationship between the chatter frequency and the spindle
speed. Substituting equation (6.45) into equation (6.39), the following is obtained:

bm,lim = _%AR (1+ﬂ’2 )_beiApZZ /Am22 (646)

p=l1

Note that by, 1im is the limiting stable depth of cut for only the straight edge. Thus,

the stable depth of cut of the dynamic system bji,, can be obtained by adding up the rest
of the insert in cut as follows:

blim

= by, +1b, (6.47)

Once the stability limit is obtained, the stability lobes can be derived using the
method described in Chapter 6.2.
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It should be noted here that the stability model derived for turning operations can
be reduced to a 1D expression as derived for boring stability, in some cases. Theses
cases should satisfy the condition that only one components’ dynamics contributes to
the dynamic system i.e. when one of the tool or workpiece dynamics can be neglected

due its rigidity.

6.5.2. Stability Limit Solution for Stable Depth of Cuts Smaller Than the Nose
Radius

The solution method presented in Chapter 6.5.1 is also applicable for the case
where the stable depth of cut of the dynamic system is inside the nose section of the
insert. However, a step by step search is needed, i.e. the method presented above should
be applied for each element incrementally until instability is obtained. For instance, for
the /™ element equation (6.46) takes the following form:

j-1

(1+1() b,y A (6.48)

e p22
p=l1

jlim = |~

If the elemental stable depth of cut b; i is smaller than b, the solution is obtained,
otherwise the solution is continued with the (i+1)" element. Again, once the stability
limit is obtained, the stability diagram can be generated using the method presented in

Chapter 6.2.

6.6. Simulation Results

The stability models presented in the previous sections have been programmed in
order to perform simulations, and to illustrate the effects of different parameters on the
stability limits. It should be noted here that the stability lobes of turning and boring
processes are relatively narrow compared to milling lobes due to the spindle speed
limitations and the single cutting tooth. Thus, the main objective of the stability analysis

and the simulations is to determine and discuss on the absolute stability limit.

6.6.1. Selection of Number of Meshing Elements

The number of elements that meshes the chip thickness is another parameter in the
model. It affects the accuracy of the solution as well as the solution time, which is
demonstrated in this and the next section with simulations. The number of elements vs.
stability limit comparison is given for two different cases in turning operations. In the

first case the workpiece is more flexible whereas in the second case the tool has a higher
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flexibility compared to the workpiece. It should be noted here that the number of

elements that meshes only the nose radius is considered here. The parameters used are

listed in Table 6.1.

Table 6.1: Parameters used in the number of meshing elements simulations.

Side edge cutting angle 30°

Rake angle 5°
Inclination angle 5°
Structural damping coefficients of cutter and workpiece %0.6
Natural frequencies of cutter and workpiece 1200 Hz
Stiffness of the tool (flexible tool, flexible workpiece) 4)(104,40)(104 N/mm

Stiffness of the workpiece (flexible tool, flexible workpiece) 40x10%, 4x10* N/mm

Shear Stress in the shear plane 600 MPa
Friction angle 28°
Shear angle 30°

The results can be seen in Figure 6.5.a for the flexible workpiece case and Figure

6.5.b for the flexible tool case. Observing the figures, it can be concluded that, a very

low number of elements, i.e. fewer than five, may result in inaccurate results. However,

the stability limit converges to a value, after 20 elements for both cases. But it should

also be noted here that the variation of stability limit after 10 elements is negligible.

Therefore, it can be concluded that reasonable results may be attained with around 10

elements.
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Figure 6.5: Number of elements vs absolute stability limit for (a) flexible workpiece,

and (b) flexible tool cases.
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6.6.2. Comparison of Models for Boring Stability

As presented in Chapter 6.5, the stability in boring can be modeled by both matrix
and 1D solution methods. In this section, these methods are compared. The values used

in the comparison analysis are listed in Table 6.2.

Table 6.2: Parameters used in comparison of models for boring process stability.

Side edge cutting angle 10°
Rake angle 0°
Inclination angle 0°
Structural damping coefficients of the tool %1
Natural frequency of the tool 1000 Hz
Stiffness of the tool 3x10" N/mm
Cutting force coefficient, K; 1000 MPa
Nose radius 0.8 mm
Number of elements 30

The results of the comparison can be found in Figure 6.6. As expected, the results

of both solutions are very close.
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Figure 6.6: Comparison of matrix and 1D solution method for absolute stability limit in
boring operations.

Another simulation is carried out to compare the solution time between matrix and
1D solution methods where the nose radius of the tool is 0.7 mm and other parameters
used are listed in Table 6.2. The solution times are compared for calculation of one
stability lobe and the results can be found in Figure 6.7. Two cases are considered to

give a better idea about the simulation times. In, Figure 6.7.a, the first case where the
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stability limit is relatively very high is shown. In this case, solution time drastically
increases with the matrix solution method where bigger matrices are constructed for
eigenvalue solution. However the computational time for 1D solution is very low, since
only a 1D equation is solved. In the second case shown in Figure 6.7.b where the
stability limit is smaller, although the solution times still differ as much as 80%, the

solution times are very small for both methods.
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Figure 6.7: Comparison of matrix and 1D solution method for the solution time for

(a)higher, and (b) smaller absolute stable depths of cut.

6.6.3.Effect of the Nose Radius and Flexibility of the Components on the Stability
Limit
In order to analyze the effect of insert nose radius on the absolute stable depth of
cut, simulations are carried out with three different nose radii, r=0.4, 0.8 and 1.2 mm
and without nose radius for different tool and workpiece stiffness values, which are
listed in Table 6.3. The side edge cutting angle used in these simulations is 0° and other

parameters used are listed in Table 6.1.

Table 6.3: The stiffness value trend used in simulations.

k_ratio | ky (N/mm) | k, (N/mm)
0.1 5x10° 50x10"
1 5x10° 5x10°
10 50x10" 5x10°
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Increase in insert nose radius increases the effects of the dynamics in the y
direction on the system (see Figure 6.1.a). Noting also that the simulations are
conducted with 0° side edge cutting angle, the stability without insert nose radius is only
affected by the dynamics of the tool. Therefore, as it can be observed from the left hand
side of Figure 6.8, simulation without the insert nose radius has the highest stability
limit since it is only affected by the tool’s dynamics which is more rigid. However, as
the insert nose radius increases, the effect of workpiece dynamics contributes to the
system dynamics more making it more flexible reducing the stability limit. Similarly, on
the right hand side of Figure 6.8, where the tool is more flexible, increase in insert nose
radius reduces the contribution of the tool dynamics increasing the stability limit.

It should also be observed from Figure 6.8 that the effect of the insert nose
radius on the stability limit is more when the workpiece is more flexible. This is
because of the fact that the dynamics of the system is mainly controlled by the tool, and
when the contribution of the workpiece dynamics is added, it adds flexibility to the
system which drastically reduces the stability limit. However, when the tool is more
flexible, the added rigidity of the workpiece does not affect the stability of the system as

much.

Absolute stable depth of
cut (mm)
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|——r=04 —r=08 r=1.2 r=0 k_ratio

Figure 6.8: Variation of absolute stability limit with tool and workpiece stiffness for

different r values.
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7. VERIFICATION OF THE PROPOSED STABILITY MODEL AND
COMPARISON WITH THE ONE DIMENSIONAL ORIENTED
TRANSFER FUNCTION STABILITY MODEL

In this section, chatter experiments conducted for the verification of the stability
models proposed in Chapter 6 are presented. Also, the comparison between the widely
used one dimensional oriented transfer function stability model and the proposed multi-

dimensional stability model is presented and discussed in detail.

7.1. Experimental Setup and Procedure

Chatter tests were conducted in order to obtain the absolute stability limit of the
dynamic system experimentally in both turning and boring operations. The stability
lobes in turning and boring operations are very narrow compared to milling stability
lobes due to the lower spindle speeds and the single cutting tooth. Thus, the experiments
aim to verify the predicted absolute stability limits. In the chatter tests, the depths of cut
were selected to verify the stable and unstable cutting zones, thus the absolute stability
limit. In order to confirm the absolute stability limit prediction, a fine variation of the
depths is used. Also, the effect of the nose radius on the absolute stability limit is
considered in the experiments by using inserts with different radii.

A conventional manual lathe is used during the experiments, which allows for
specific spindle speeds, i.e. 700, 1000, 1400, 2000 rpm. A modal test setup is used to
measure the transfer functions of the workpiece and the tool (Figure 7.1.a and Figure
7.1.b). The modal test setup consists of an impact hammer, an accelerometer and a data
acquisition system. The data is collected and analyzed by CutPro® [97]. In addition, a
sound frequency measurement setup was prepared in order to measure and verify the
chatter frequency (Figure 7.1.c and Figure 7.1.d). The setup consists of a microphone

and a data acquisition setup. The data is collected and analyzed by LabView® [98]. As
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a second check the finished surface is observed by the naked eye for chatter marks in

\ Laptop / PC

order to verify the unstable cutting operation.

accelerometer,

workpiece

1/0 box

(a) (b)

DAQ Card

BNC board

) amplifier
microphone

(©) (d)

Figure 7.1: (a), (b) Modal test setup, (c), (d) Frequency measurement setup.

In experiments, coated carbide triangular inserts with 0° rake angle are used.
There are three inserts having different nose radii, i.e. 0.4, 0.8, and 1.2 mm as can be
seen in Figure 7.2.a, Figure 7.2.b, and Figure 7.2.c, respectively. A round insert (Figure
7.2.d) is also used in order to verify the nose radius model. Also A feed rate of 0.08

mm/rev was used for all tests.

AAAOD

(a) (b) (c) (d) (e) ®

Figure 7.2: Triangular inserts used during tests with radii (a)0.4 mm, (b)0.8 mm, (c)1.2
mm, and (d) the round insert with a 12.6 mm diameter. (¢) Regular insert seat, and, (f)

Ground insert seat for desired rake and inclination.
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In order to avoid eccentricity and to cover a wider range of angles in a practical
manner, insert seats with different angles were ground and used under the inserts during
the cutting tests (Figure 7.2.e and Figure 7.2.f). The side edge cutting angle in the
turning experiments is set by rotating the tool holder from its clamped end. The
workpiece material used during the tests is a medium carbon steel (AISI 1040), and an
existing orthogonal database was used for the cutting force coefficients. The orthogonal
database was generated by using orthogonal tube cutting tests. The cutting forces and
the cut chip thickness were measured during the tests which were conducted at different
cutting speeds and feed rates in order to identify the shear angle, the shear stress and the

friction angle [74-76] using the orthogonal cutting model.

7.2. Chatter Verification Experiments Case 1: Flexible Turning Tool and Rigid
Workpiece

In the first experiment case, the turning chatter experiments are conducted in
which the tool is more flexible than the workpiece. Inserts with different nose radii and
round insert tests are used in order to compare the predicted results. In the verification
of the nose radius model in the second set, the aim is to verify the effect of the nose
radius on the stability limit. In the final set the round nose inserts are used in chatter

experiments, in order to verify the model for the inserts without straight edges.

7.2.1. Turning with Flexible Tool: Verification of Stability Limit

The first set of experiments is carried out in order to verify the proposed stability
model given in Chapter 6. The parameters that are used in the experiments and stability
analysis are listed in Table 7.1. The other parameters can be found in Chapter 7.1. The
comparison of the workpiece and tool transfer functions is shown in Figure 7.3.a.

The analytically calculated stability lobes along with the experimental results and
an example of a surface finish after a stable and unstable operation for 2000 rpm can be
seen in Figure 7.3.c. Also, the chatter frequency measurements at 2000 rpm tests are
shown in Figure 7.3.b. The experimental and the analytical results are in close

agreement.
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Table 7.1: Parameters used in the verification of flexible tool turning chatter

experiments.
Side edge cutting angle 10°
Rake angle 5°
Inclination angle 5°
Insert nose radius 0.4mm
Cutting force coefficients, K¢ 800 MPa
Cutting force coefficients, K, 128 MPa
Natural frequency of the tool 1100Hz
Stiffness of the tool 1.2x10'N/m
Damping ratio 0.015
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Figure 7.3: (a)Transfer functions of the tool and the workpiece (b) Chatter frequency
measurement result at 2000 rpm experiments, and (c) chatter test results for model

verification and the surface finish of a stable vs. unstable cut.
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7.2.2. Turning with Flexible Tool: Demonstration and Verification of Nose Radius

Effects

In the second set of experiments of this case, the effect of the insert nose radius on
the stability limit is demonstrated and verified for a case where the tool is more flexible
than the workpiece. The cutting conditions and angles that are used during chatter tests
and stability analysis are listed in Table 7.2. The other parameters can be found in

Chapter 7.1.

Table 7.2: Parameters used in the verification tests with inserts having nose radius.

Side edge cutting angle 10°
Rake angle 5°
Inclination angle 5°
Spindle Speed 1000 rpm
Cutting force coefficients, K¢ 800 MPa
Cutting force coefficients, K, 128 MPa
Natural frequency of the tool 1100Hz
Stiffness of the tool 1.2x10'N/m
Damping ratio 0.015

The predictions along with the experimental results can be seen in Figure 7.4. The
insert nose radius contributes to the dynamic system similar to the effect of the side
edge cutting angle. Therefore, as the insert nose radius increases the effect of the
dynamics in the depth of cut direction increases as well. So, the increase in the insert
nose radius increases the effect of the workpiece dynamics on the cutting system. Since
the tool is more flexible than the workpiece, this makes the system more rigid
increasing the stability limit. This behavior is also observed in the experimental results,

and a high level of agreement with the analytical predictions is obtained.
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Figure 7.4: Chatter test results for nose radius effect demonstration and verification.

7.2.3. Turning with Flexible Tool: Round Insert Experiments

In this first case of the last set of experiments, the insert nose radius model is
verified by a round insert where the tool is more flexible than the workpiece. The
cutting conditions and angles that are used during chatter tests and stability predictions

are listed in Table 7.3. The other parameters can be found in Chapter 7.1.

Table 7.3: Parameters used in the verification of round insert for flexible tool turning

experiments.
Rake angle 5°
Inclination angle -5°
Cutting force coefficients, K¢ 800 MPa
Cutting force coefficients, K, 128 MPa
Natural frequency of the tool 1162 Hz
Stiffness of the tool 9x10°N/m
Damping ratio 0.011

The comparison of experimental and analytical results can be seen in Figure 7.5.

Reasonable agreement is found between the analytical and experimental results.
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Figure 7.5: Chatter test results for round nose insert.

7.3. Chatter Verification Experiments Case 2: Flexible Workpiece and Rigid

Turning Tool

In the second case, the turning chatter experiments are conducted where the
workpiece is clamped in such a way that it is more flexible than the tool. The nose

radius is varied in the tests in order to compare with the predicted results.

7.3.1. Turning of a Flexible Workpiece: Verification of Stability Limit

This first set of experiments is conducted in order to verify the proposed stability
model for the case where the workpiece is more flexible than the tool. The parameters
that are used specifically for the verification of flexible workpiece turning chatter
experiments and stability predictions are listed in Table 7.4. The other parameters can
be found in Chapter 7.1. The workpiece diameter and the length were 39 mm and 75
mm, respectively. Moreover, the comparison between the tool and workpiece transfer
functions is shown in Figure 7.6.a.

The predicted stability lobes and experimental results are given in Figure 7.6.c
where a sample finished surface after a stable and unstable operation can be seen. Also,
the measured chatter sound for 1400 rpm is given in Figure 7.6.b. The difference in 700
and 1000 rpm tests are caused by the process damping due to the low cutting speed used
[99, 100]. Reasonable agreement is observed between the experimental and analytical

results.
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Table 7.4: Parameters used in flexible workpiece turning chatter experiments.

Side edge cutting angle 30°
Rake angle 5°
Inclination angle 5°
Insert nose radius 0.4mm
Cutting force coefficients, K¢ 632 MPa
Cutting force coefficients, K, 44 MPa
Natural frequency of the workpiece 770 Hz
Stiffness of the workpiece 6.6x10°N/m
Damping ratio 0.025
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Figure 7.6:(a) Transfer functions of the tool and the workpiece, (b) chatter sound

measurement results for 1400 rpm tests, and (c)chatter test results for model

verification and the surface finish of a stable vs. unstable cut.
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7.3.2. Turning of a Flexible Workpiece: Demonstration and Verification of Nose
Radius Effects

In the second set of experiments of this case, the effect of the insert nose radius on
the stability limit is demonstrated, and verified with an experiment where the workpiece
is more flexible than the tool. The cutting conditions and angles used during the chatter
tests and the stability predictions are listed in Table 7.5. The spindle speed used during
experiments is 1400 rpm. The other parameters can be found in Chapter 7.1. As in the

previous tests, the workpiece diameter was 39 mm and the length was 75 mm.

Table 7.5: Parameters used in the verification of chatter tests with inserts having nose

radius.
Side edge cutting angle 25°
Rake angle 5°
Inclination angle 5°
Spindle Speed 1400 rpm
Cutting force coefficients, K¢ 632 MPa
Cutting force coefficients, K, 44 MPa
Natural frequency of the workpiece 707 Hz
Stiffness of the workpiece 6.5x10°N/m
Damping ratio 0.023

The analytically predicted stability diagram along with the experimental results
is given in Figure 7.7. As the insert nose radius increases, the effect of workpiece
dynamics (which is more flexible) on the chip thickness also increases. Therefore, the
dynamic system becomes more flexible resulting in a decrease in the absolute stability
limit. Another conclusion, which was also shown in Chapter 6 by the simulations, is
that the effect of the insert nose radius on the stability is more pronounced in flexible
workpiece case than in flexible tool case (see Figure 7.4 and Figure 7.7). In order to
explain this situation, firstly it should be noted that when the side edge cutting angle and
insert nose radius are zero, the system dynamics are only controlled by the transfer
function of the tool in the feed direction. The workpiece dynamics can only affect the
dynamics of the cutting system if there is a side edge cutting angle, or the insert has a
nose radius. In that case, if the workpiece is more flexible than the tool, the flexibility

introduced to the dynamic system reduces the stability limit drastically. On the other

120



hand, if the workpiece is more rigid than the tool, the dynamic rigidity of the system
may increase, and the level of increase depends on the relative rigidities of the tool and
the workpiece as well as values of the side cutting edge angle or nose radius.
Comparing the experimental results and the analytical predictions presented in this

section, a close agreement can be concluded.
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Figure 7.7: Chatter test results for the flexible workpiece case with inserts having

different nose radii.

7.4. Chatter Verification Experiment Case 3: Boring Experiments

In this last case, boring chatter experiments were conducted where the tool was
clamped in such a way that it was much more flexible than the workpiece representing
the common problem in practical boring applications. The nose radius is varied in order
to verify the predicted results. The cutting conditions and angles used in the chatter tests
and stability analysis are listed in Table 7.6. The other parameters can be found in
section 7.1.

The analytically predicted absolute stability limits and the experimental results
for inserts with 0.4, 0.8 and 1.2 mm nose radius are shown in Figure 7.8. The analytical
stability limit for the insert with 0.4 mm nose radius is around 8 mm. However, during
the tests a maximum depth of cut of 1 mm was imposed in order to avoid high cutting
forces, and consequently high deformation that the slender boring bar will encounter.

The results are also shown for the other two inserts with 0.8 and 1.2 mm nose radii. It
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should also be noted here that the observed trend of the absolute stability limit with the
varying insert nose radius is expected. In case of boring, an increase in the nose radius
increases the effect of the tool’s flexibility on the dynamic cutting system which reduces
the absolute stability limit. The drastic change in the absolute stability limit is due to the
sudden increase of the flexible tool’s effect on the rigid dynamic system, which was

also observed in Chapter 7.3.2 for the flexible workpiece tests.

Table 7.6: Parameters used in the verification of boring chatter experiments.

Side edge cutting angle 0°
Rake angle 0°
Inclination angle 0°
Spindle speed 1400 rpm
Cutting force coefficients, K¢ 700 MPa
Natural frequency of the tool 3690 Hz
Stiffness of the tool 2.3x10'N/m
Damping ratio 0.012
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Figure 7.8: Chatter test results for boring model verification and the surface finish of a

stable vs. unstable cut.
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7.5. Comparison of Conventional One Dimensional Oriented Transfer Function

and Proposed Stability Model

The main objective of this section is to compare the stability predictions of this
multi dimensional model with the commonly used one dimensional oriented transfer
function model in order to demonstrate the effects of multi dimensional dynamics and to
show cases where one dimensional approach results in large errors. The results
presented in the study can provide a better understanding on the multi dimensional
turning dynamics, and can be used to identify cases where the multi dimensional
approach must be used for accurate predictions.

Several simulations are conducted in order to compare the stability models for
different cases. Since the stability lobes in turning operations are very narrow due to
smaller cutting speeds and only one cutting tooth, only the absolute stability limit is
considered for comparisons. In the first case, the models are compared for different
inclination angles, where in the second case the nose radius effect is taken into account.
For the last case a round insert is simulated as it presents different stability behavior
then regular straight edge inserts. It should be noted here that, since multi dimensional
stability model is verified using several chatter experiments with different cutting angles

and nose radii, it is selected as the base for the comparisons.

7.5.1. One Dimensional Oriented Transfer Function Stability Model

In this section, stability limit predictions with one dimensional oriented transfer
function (1DOTF) stability model will be considered briefly and the limitations of the
model will be discussed. The base approach of the 1DOTF stability model is to orient
the transfer functions of the dynamic system to the resultant force direction [64]. Since
the oriented transfer function approach is applied to the dynamic components on the
same plane, out of plane (third dimension) components are not considered. Therefore
the effect of the inclination angle in a turning operation is not taken into account in the
formulation. Because of this, only the effect of the side edge cutting angle and rake
angle could be considered. The resultant force, F(t) , in a 2D turning operation , 1.e.
with side edge cutting angle and without inclination angle, can be written in terms of

oriented transfer function as follows (see Figure 7.9):
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F(t)szbLt)z L bF(t)G, (im,) (7.1)
COSK COSK

where the oriented transfer function G,(imc) is defined as follows [64]:

G, (iw,) = cos* ()G, (iw, )+ cos* (157 + ¥)G, (i, ) (7.2)

where G{(iw.) represents the transfer function of the tool and G, (iw.) represents

the transfer function of the workpiece.

4—x(fee_cm

y(radial)

Figure 7.9: The transfer functions of the dynamic system and the resultant force.

Substituting equation (7.2) into equation (7.1) and considering the delay term T,

following is obtained, for the chatter limit and at the chatter frequency w,:

Fe)e o = coijb“m (- )G, (i@, )F(t)e (73)

The stability problem reduces to an eigenvalue problem, where the eigenvalue A

is defined as follows:
A=K by, [1-e7) (7.4)
And the stability limit can be obtained analytically as follows [64]:

—COSK

b, =— "7 7.5
72K, RelG, ] (7:2)

Equation (7.5) can be used to find the stability limit of the dynamic system. The
absolute stability limit of the system can also be obtained by replacing Re[Go] with the
minimum magnitude of the real part of the oriented transfer function Re[Gglmin in

equation (7.5).

7.5.2. Effects of the Inclination and Side Edge Cutting Angles

IDOTF model does not consider the effect of the inclination angle on the stability

limit whereas the effect of side edge cutting angle can be modeled with 1DOTTF stability
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model. Therefore, it is important to represent the effect of both the inclination and the
side edge cutting angles on the stability limit, and to compare with the multi

dimensional stability model.

Table 7.7: Parameters used in the comparison simulations for the effect of inclination

and side edge cutting angle.

Rake angle 0°
Insert nose radius 0 mm
Shear Stress 350 MPa
Shear Angle 32°
Friction Angle 29°
Natural frequency of the workpiece and tool 1000 Hz
Stiffness of the workpiece and tool — flexible 3x10'N/m
Stiffness of the workpiece and tool — rigid 30x10'N/m
Damping ratio 0.01

The parameters used in the comparison simulations are listed in Table 7.7. The
cutting force coefficients Kr and K; are calculated from the orthogonal data i.e. the shear
angle, the friction angle and the shear stress by oblique transformation for each
inclination angle [10]. The work material has been selected as AISI 1040 steel, and the
corresponding database for the coefficients has been used. The transfer functions of the
components are calculated from the modal parameters, i.e. natural frequency, damping
coefficient, and the stiffness of the component, where representative values have been
used in the simulations based on the measurements on these systems. Two different
cases are considered in the following. In the first case the workpiece is more flexible
than the tool whereas in the second case the tool is more flexible. The insert has straight
edge, i.e. there is no insert nose radius in order to observe the effect of the cutting
angles only. The absolute stability limit error defined in equation (7.6) is used to

quantify the difference between the models:

b -b
Doerror = L asDOTE abs-MULTL| 1 0 (7.6)
babS—MULTI
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The results for different inclination and side edge cutting angles can be seen in

Figure 7.10.a and Figure 7.10.b.
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Figure 7.10: Variation of absolute stability limit error between 1DOTF and MD stability

models for (a) flexible workpiece and (b) flexible tool cases.

As can be seen from Figure 7.10.a and Figure 7.10.b, 1DOTF and Multi
Dimensional stability models predict the same absolute stability values for different side
edge cutting angles when there is no inclination angle. This is an interesting result since
the 1DOTF stability model orients the total frequency response function into a one
direction reducing the multi dimensional dynamics to one. This can be verified
mathematically as follows:

For the 1IDOTF model, the real part of the oriented transfer function can be

written from Equation (7.2) as follows:

Re[G, (im,)]=Re[G, (iw, )]cos® (k) + Re[G, (im, )]cos* (1.57 + «) (7.7)
Since:
cos®(1.57 + k) = sin* (k) (7.8)

Substituting Equations (7.7) and (7.8) into Equation (7.5) following is obtained
for the stable depth of cut:

B 2K, (Re[Gt (ia)c )]cos2 (x)+ Re[Gw (ia)c )]cos2 (1.57 + K‘))

(7.9)

lim

For the Multi Dimensional stability model, at orthogonal cutting conditions K,

becomes 0. Therefore equation (6.11) reduces to the following:
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Fx it A —COSK sinK Kf [1 t ] G' 0 FX i (7 10)
¥ = —tan k' e :
F [ sink  cosk | O 0 G,||F,

The eigenvalue /4 can be calculated as follows (since the determinant of equation

(7.10) must vanish in order to have a solution):

A=1/|G, (K, sin® kcos )+ G, (K, cos’ x| (7.11)
Also, the real and imaginary parts of the eigenvalue can be expressed as follows;
Re[A] = COSK Re[G, Jsin? x + Re[G, |cos® &
Kf (Re[G, Jsin® k+ Re[G, ]cos® &) + (Im[G,, ]sin® x+ Im[G, ]cos® &)’ .12)
.2 2 )
Im[A]: _cosk Im[GW]sm K+ Im[G,]cos K

Kf (Re[G, Jsin® k+ Re[G, ]Jcos® &) + (Im[G. ]sin® x+ Im[G, ]cos” &)’
The ratio of the imaginary and the real parts, A, can be obtained as follows:

B Im[A] _ Irn[Gw]sin2 K+ Im[Gt Jcos? x

A= =
Re[/l] Re[Gw]sin 2K+ Re[Gt ]cos2 K

(7.13)

Substituting equations (7.12) and (7.13) into equation (6.17), the stable depth of
cut is obtained as follows:
COSK 1

=— (7.14)
2Kf Re|G, |sin? k+ Re[G, |cos® k

lim

Comparing equations (7.9) and (7.14) it can be deduced that both of the stability
models give the same result under the orthogonal cutting conditions with a side edge
cutting angle, but without a nose radius.

This situation can also be explained by considering the physics of the process.
Since the process is an orthogonal one due to the absence of inclination angle, the
cutting force normal to the cutting edge is the only force that will affect the process
dynamics. Therefore, the total force in the x-y plane (see Figure 7.9) is composed of the
force in the chip direction, Fy, only. The multi-dimensional stability model handles this
force by resolving it into x and y components, and obtains the dynamic displacement by
multiplying with the FRF’s in those directions. The 1DOTTF stability model, on the other
hand, orients the transfer functions in the uncut chip thickness direction, and obtains the
dynamic displacements by multiplying with F}. In orthogonal cases they both yield the
same results. On the other hand, as the inclination angle increases, the difference
between two models increases up to almost 25%. This is due to an additional force

component; radial force F; resulting from the inclination angle. Thus, 1DOTF stability
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model cannot include the effect of the inclination angle yielding inaccurate stability

predictions.

7.5.3. Effect of the Nose Radius

In this section, the effect of the insert nose radius on the stability limit predictions
is presented. The comparison is done again using the absolute stability limit percentage
error as described in equation 7.6, and the parameters that are used in the simulations
are listed in Table 7.8. Two cases are considered where in the first case the workpiece is
the most flexible component. 1DOTF stability model calculations for the nose radius
can be done by using two possible approaches. First, the insert nose radius is completely
neglected in order to see its overall effect on the stability in this section. Second, an
approximation for the nose radius which is suitable for IDOTF stability model is used

for the round inserts and presented in the next section.

Table 7.8: Parameters used in the comparison simulations for the effect of the nose

radius.
Rake angle 5°
Side edge cutting angle 30°
Shear Stress 350 MPa
Shear Angle 32°
Friction Angle 29°
Natural frequency of the workpiece and tool 1000 Hz
Stiffness of the workpiece and tool — flexible 3x10'N/m
Stiffness of the workpiece and tool — rigid 30x10'N/m
Damping ratio 0.01

The results of the simulations can be seen in Figure 7.11.a. and Figure 7.11.b. The
error in the flexible workpiece case goes up to 95% for 1.8 mm insert nose radius
whereas in the flexible tool case it becomes close to 40 %. This error is expected since
the 1DOTF stability model does not include the insert nose radius effect in the
formulation. In fact, the effect of the insert nose radius on the process dynamics is same

as the side edge angle. In a dynamic turning process without an insert nose radius, or
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side edge cutting angle, the dynamics of the system are only controlled by the dynamics
in the uncut chip thickness direction which is x axis (see Figure 7.9). The effect of the
dynamics in the y direction contributes to the dynamic system if there is a side edge
cutting angle or an insert nose radius. An increase in insert nose radius or side edge
cutting angle increases the effect of the dynamics in the y direction on the system
stability. Since the 1DOTF stability model cannot handle this effect, unlike the multi
dimensional stability model, as the insert nose radius increases the error between two
methods increases, as well. It can also be deduced from Figure 7.11.a. that the effect of

inclination angle on the error is very low compared to the effect of the insert nose

radius.
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Figure 7.11: Variation of absolute stability limit error between 1DOTF and MD stability

models for (a) flexible workpiece and (b) flexible tool cases.

7.5.4. Round Insert Case

Although round inserts, especially made of ceramics, are commonly used in
turning operations, they have not been considered in the chatter stability analyses up to
now. Actually, a round insert is an extreme case of an insert with a nose radius which
was discussed in the previous section. The IDOTF stability model, which cannot model
the stability of an insert nose radius accurately as it was shown in the previous section,
cannot be used for round inserts, either. In this section, in order to demonstrate this with
an extreme example, a round nose insert with 12 mm radius is used. However, a
modification is done on the IDOTF stability model in order to handle the nose radius

and the round insert geometry in a more accurate manner. The curved edge is

129



represented by a line in the cutting zone which can also be used for the inserts with nose
radius discussed in the previous section. This requires and iterative solution procedure
as the stable depth, thus the in-cut part of the insert is not known in the beginning. The
solution is initialized by dividing the nose region into equally heights and for each

height a corresponding side edge cutting angle is determined (see Figure 7.12).

~—first iteration
\-ﬁsecond iteration

‘Fthird iteration

—

Figure 7.12: Schematic description of iteration based solution method for IDOTF

stability model.

It should be noted here that for each segment the stability limit is calculated by the
method described in Chapter 7.5.1. The iteration starts with the first segment. If the
calculated stability limit is found to be greater than the height of this segment, the
iteration is continued with the next element. The final result is obtained when the
calculated stability limit is smaller than the instantaneous segment’s height. The
simulation parameters used in the example case are listed in Table 7.9, and different

stiffness values used for the tool and the workpiece are given in

Table 7.10. The comparisons are again done with respect to the absolute stability
limit.

Table 7.9: Parameters used in the comparison simulations for the round insert case.

Rake angle 0°
Inclination angle 0°
Insert nose radius 12 mm
Shear Stress 350 MPa
Shear Angle 32°
Friction Angle 29°
Natural frequency of the workpiece and tool 1000 Hz
Damping ratio 0.01
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Table 7.10: The stiffness value trend used in simulations.

Kiool/Kworkpiece | K¢ (N/mm) | Ky, (N/mm)
20 60x10" 3x10°
10 30x10" 3x10°
0.3 10x10° 30x10"
0.16 10x10° 60x10"

The simulation results can be seen in Figure 7.13. On the left hand side of Figure
7.13, the workpiece is more flexible and on the right hand side the tool is more flexible.
As it can be seen from the figure, the error between two models may be as large as
200% on the left hand side and 600% at the right hand side. Therefore, the improved
version of the 1DOTF model which represents the insert nose radius by a line cannot

predict these effects accurately, either.
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Figure 7.13: Comparison of absolute stable depth of cut predicted by the two analytical

models for round nose inserts.
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8. SUGGESTIONS FOR FURTHER RESEARCH

Following are the recommended studies for extending the capabilities of the

models proposed in this study.

* In modeling of the edge forces in orthogonal cutting operations, the effect of the
elastic behavior of the workpiece material is needed in modeling the flank contact
length. The initial approach could be to modify the constitutive relationship in order to

add the elastic deformation history to the equation.

* The proposed edge force model could be applied to the oblique cutting and turning

operations.

* The proposed oblique cutting model could be applied to the milling operations for

analytical simulations.

* A previously developed or newly proposed temperature model can be applied to all the
proposed models in this thesis since all the necessary inputs for temperature distribution

is already available.

* The proposed multi-dimensional stability model can be improved in order to simulate
the dynamical behavior of the cutting process over the stability limit which can be

useful for some milling application where there is no way of avoiding chatter vibrations.
* The friction behavior in oblique cutting can be investigated further.

* The effects of the process parameters on chatter stability limit can be investigated by

using the proposed models.
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9. DISCUSSIONS AND CONCLUSIONS

In this thesis, analytical models that truly represent the mechanical and
dynamical behavior of cutting processes are proposed. The proposed models are
original, and experimentally verified. Also fast and accurate way of identification of
constitutive relationship parameters and sliding friction between the tool and the
workpiece material is proposed. In addition, by the proposed analytical models, the
material flow and friction behaviors during cutting is quantified and further
investigated. Moreover, it is demonstrated that the analytical models can be used to
simulate the industrial machining operations with fast solution times, and accurate

predictions. Following is a list of the specific contributions:

* In this study a thermomechanical model of orthogonal cutting has been developed
which accounts for the process of chip formation in the primary shear zone and includes
the two-zone model of Zorev [3] to describe the contact at the tool-chip interface. This
contact model comprises of a sticking zone near the tool tip. In this region the shear
stress is identical to the shear flow stress of the work material. Further away of the tool
tip, the chip is sliding along the rake face and the contact is governed by a Coulomb

friction law.

* The thermo-viscoplastic response of the work material has been described by using a
Johnson-Cook law whose parameters are directly identified from orthogonal tube
cutting data. The parameters of the cutting model being identified and the predictive
capabilities of the proposed approach have been tested by comparing the theoretical
predictions of the cutting forces and of the shear angle with experimental data. Overall

good agreement is observed
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* The cutting model provides a theoretical relationship between the local friction
coefficient ¢ of the Coulomb law and the global (or apparent) friction coefficient. This
relationship depends on the thermomechanical characteristics of the work-material and
on the cutting conditions. It is used to determine & in terms of the apparent friction
coefficient, which can be obtained from orthogonal cutting force measurements. By
varying the cutting velocity, the dependence of ¢ with respect to the chip velocity was

obtained.

* The total contact length and the sticking length predicted from the model were also
compared with direct measurements using a microscope. All the predictions were found

to be in good agreement with experiments for various cutting conditions.

* The proposed cutting model is believed to provide a significant improvement with
respect to previous cutting models which neglected either the sliding contact (e.g. the
Oxley [15] model) or the sticking contact (e.g. Molinari and Dudzinski [21]). It should
be noted that the analytical nature of the model makes the computation very fast. In
addition, the model calibration needs very limited number of tests compared to the

mechanistic models commonly used in machining process modeling.

* The calibration ability of the model with a few tests makes it very practical and fast.
Therefore, this approach is believed to provide a fast and accurate method of process

simulation not only for research, but also for industrial applications.

* In this study, an investigation of the friction behavior in metal cutting operations is
performed. It is demonstrated that the accurate cutting force predictions can only be
obtained by considering the true nature of the contact on the rake face, i.e. by including
both sticking and sliding zones in the analysis. It is shown analytically an
experimentally that the total contact length increases by the feed rate and decreases by
the cutting speed. The apparent friction coefficient strongly depends on the relative
lengths of the sticking and sliding zones, and the sliding friction coefficient. It is shown
that the apparent friction coefficient is always smaller than the sliding friction
coefficient. The sticking contact length is strongly affected by the cutting speed. For

some material-tool couples, it is observed that the contact is almost completely sliding
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at high cutting speeds. For slow and moderate cutting speeds the contact involves both
sticking and sliding zones. For most practical cutting conditions the sticking contact
length is less than 15% of the total contact. Although the observations presented here
were known, by the proposed models, these behaviors can now be quantified which
enables further investigations. For instance, based on the cases considered in this study,
it can be concluded that the total and sticking contact lengths are approximately 3-5 and

0-1.5 times the feed rate, respectively, both decreasing with the cutting speed.

* The sliding friction coefficients for various material-tool couples are identified which
can be used for further studies. The main parameter that affects the sliding friction
coefficient is observed to be the friction speed. However, in some cases the sliding
friction coefficient is observed to have a slight dependency on the feed rate which

affects the average pressure on the rake face.

* It is analytically and experimentally shown that the true representation of the friction
behavior on the rake face should include the sliding and sticking friction regions. In
addition, it is demonstrated that the friction model affects the accuracy of the feed force

predictions more than the cutting force predictions.

* An analytical “initial approach” is proposed for modeling the third deformation zone.
The hone radius effect on the primary and secondary shear zones is also taken into
account in the proposed model. Comparing the model predictions with the experimental

measurements, it can be stated that promising results are obtained.

* A process simulation model for turning processes is proposed. The proposed model
handles the uncut chip thickness by diving it into many elements. However, the global
behaviors such as global chip flow angle, chip velocity etc. are satisfied by energy
equilibrium equations. The predictions and the verification experiments are found to be

in good agreement.
* The proposed model is also applied to the 5 axis milling operations. The 5 axis milling

tests are also conducted for the verification purposes, and over all good agreement is

observed.
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*A multi-dimensional analytical stability model for turning operations considering tool
and workpiece dynamics is formulated. The proposed analytical model includes the
important parameters in the turning geometry, i.e. the practical tool angles and nose
radius. A matrix solution procedure is developed for stability limit with the proposed

elemental model for the insert nose.

* The basic stability model is applied to the boring operations in order to model its
stability. Another solution method is proposed for the boring operations which results in
a 1D formulation with the same accuracy of predictions, but with a reduction of the

computational time and the complexity of the solution procedure.

» Three cases of chatter experiments are conducted in order to verify the proposed
analytical stability models. In general, the agreement between the analytical predictions

and the experimental results are found to be satisfactory.

* It is demonstrated that the effect of insert nose radius on the stability limit is critical
when the absolute stability limit of the system is comparable with the nose radius and
this should be taken into account during predictions. Moreover, the effect of the insert
nose radius on the stability limit for turning with a flexible tool, turning of a flexible
workpiece and boring operations are different which is verified, and the observed
behavior is as expected from the analytical predictions. It is found that using inserts
with a bigger insert nose radius drastically reduces the stability limit in the turning of
flexible workpiece and in boring operations whereas the opposite is true for the turning

applications with a flexible tool.

* The 1DOTF and multi dimensional stability models are compared by several
simulations. Since the turning process is 3D in nature, a true stability model should
include the effect of the three cutting angles, i.e. rake, inclination and side edge cutting
angles, the insert nose radius and the dynamics of the components in the cutting system
in all directions. First of all, as it can be clearly seen from the analytical formulations,
the rake angle only affects the cutting force coefficients, and does not have any other
effect on the dynamic cutting system. It is also shown that both of the models can
accurately predict the effect of the side edge cutting angle on the dynamic forces and the

stability. Therefore, the stability limit of the orthogonal turning processes can be
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predicted by 1DOTF stability model accurately. It is demonstrated that, one of the
problems in the 1IDOTTF stability model is the absence of inclination angle effect. This is
shown to yield up to 20% error in the stability limit prediction. This is mainly due to the
radial force, Fr, arising as a result of the inclination angle. IDOTF function model
cannot include its effects on the stability accurately, as the radial force changes the
resultant force direction. However, it can also be concluded that for small inclination
angles, i.e. around 5°, 1DOTF stability model may predict the stability limit with a

reasonable accuracy.

* Another important parameter in turning is the insert nose radius, which affects the
stability limit drastically. Since the nose radius is not included in the 1DOTF model, the
error between the two methods may go up to 95% as the insert nose radius increases. In
the case of the round insert, a modified version of the 1DOTTF stability model is used in
order to represent the curved cutting edges more accurately. Even then the error
between two methods is shown to be as high as 600% for round inserts. The inaccurate
predictions of 1DOTTF stability model are also demonstrated by the chatter experiments
with different insert nose radii whereas reasonably accurate predictions are obtained
with the multi-dimensional stability model. Thus, for turning processes with higher
inclination angle and insert nose radius, 1DOTTF stability model r<<esults are unreliable.
In these cases, the multi-dimensional stability model should be used for accurate

predictions.
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