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Augmented Neural Networks and Problem-Structure Based 

Heuristics for the Bin-Packing Problem 
 

 

Abstract 

In this paper we report on a research project where we applied Augmented-neural-networks 

(AugNN) approach for solving the classical bin-packing problem (BPP).  AugNN is a 

metaheuristic that combines a priority- rule heuristic with the iterative search approach of neural 

networks to generate good solutions fast. This is the first time this approach has been applied to 

the BPP.  We also propose a decomposition approach for solving harder BPP, in which sub 

problems are solved using a combination of AugNN approach and heuristics that exploit the 

problem structure.  We discuss the characteristics of problems on which such problem-structure 

based heuristics could be applied.  We empirically show the effectiveness of the AugNN and the 

decomposition approach on many benchmark problems in the literature.  For the 1210 

benchmark problems tested, 917 problems were solved to optimality and the average gap 

between the obtained solution and the upper bound for all the problems was reduced to under 

0.66% and computation time averaged below 33 seconds per problem.  We also discuss the 

computational complexity of our approach. 

 

Key Words: Bin Packing, Heuristics, Neural Networks, Optimization 
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1. Introduction 

The one-dimensional bin-packing problem (BPP) involves minimizing the number of fixed- 

capacity bins required to pack n items of various sizes (or weights).  This problem occurs 

frequently in distribution, production and task/resource allocation and cutting stock problems.  

For example, in distribution, packing containers for trucks/trains involves the BPP.  In 

production, scheduling tasks on machines in shifts can be considered a BPP if we treat shifts as 

bins, and tasks as items.  Like most optimization problems, the BPP belongs to the class of NP-

hard problems (Garey and Johnson, 1979, Martello and Toth, 1990).  Many heuristics and meta-

heuristics exist in the literature for generating good approximate solutions fast for the BPP.  

Heuristics are based on some kind of priority or dispatching rule such as ‘first-fit descending’ 

(FFD) or ‘best-fit descending’ (BFD).  These heuristics produce good approximate solutions 

very fast and therefore can be applied to large problems, but they fail to make use of problem-

specific structures and leave significant gaps from the optimal.  Metaheuristics include iterative 

approaches such as tabu search, simulated annealing and genetic algorithms.  These techniques 

find improved solutions, because they search a larger solution space.  Depending on the number 

of iterations required, these metaheuristics may take very long and therefore not be suitable for 

solving very large problems in reasonable time. 

 In this paper we apply a neural-network based approach called Augmented Neural 

Networks (AugNN) for the BPP, and also a decomposition approach involving heuristics that 

exploit the problem structure.  AugNN is a metaheuristic that takes advantage of both the 

heuristic and the iterative search approach.  In this approach, the bin-packing problem is 

formulated as a neural network of input, hidden and output layer of nodes, with weights 

associated with links between nodes, much like in a neural network.  Input, output and 
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activation functions are designed to (i) capture and enforce the constraints of the problem, and 

(ii) apply a particular heuristic, such as FFD or BFD, to assign an item to a bin in each iteration.  

After n iterations, or an epoch, n assignments take place and a feasible solution is generated.  

Weights are modified after each epoch, allowing a neighboring feasible solution to be generated 

in subsequent epochs.  If improvements are found, the weights are reinforced, otherwise not.  

After some epochs, the network learns a good set of weights that generate good solutions.  Thus, 

a non-deterministic local search is performed by perturbing the data using weights.  This 

approach was first introduced by Agarwal et al. (2003) for the task-scheduling problem. 

 We apply the AugNN approach in conjunction with two well-known heuristics, namely 

FFD and BFD, on many benchmark problem sets in the literature.  These problem sets fall under 

three levels of difficulty – easy, medium and hard.  For the easy and medium problems, the 

AugNN approach found the best-known upper-bound solutions in 909 out of 1200 problems and 

improved upon the heuristic solution on the remaining problems and gave an overall gap of 

0.375% from known optimum solutions.  For the hard benchmark problems, the AugNN 

approach failed to provide very good results in reasonable time.  For these hard problems, we 

propose a decomposition approach in which we decompose the problem into sub problems and 

solve the sub problems using heuristics that exploit the structure of the problem.  Using this 

decomposition strategy, upper-bound solutions were found for 8 out of 10 hard problems and 

within 1 bin of the upper bound for the remaining 2 problems. All 10 solutions were found in 

less than 0.25 seconds each. 

 We thus make a two-fold contribution to the bin-packing literature.  First, we propose an 

AugNN formulation for the first time for the BPP and show its effectiveness in terms of 

improving upon a heuristic solution.  Second, we propose new heuristics that exploit the 

problem structure and solve the BPP using a decomposition strategy.  Although the problem-
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structure based heuristic, as the name suggests, may not be generalized, the lessons learnt from 

solving the hard benchmark problems may be applied to other bin-packing problems.  We 

discuss the conditions under which some types of problem-structure based heuristics can be 

applied. 

 The rest of the paper is organized as follows.  In Section 2, we review the relevant bin-

packing literature.  We explore the various heuristics used for this problem.  In the following 

section, we provide the details of the AugNN formulation for the BPP.  We explain the neural-

network architecture for the BPP and present all the functions needed to solve the problem.  

Search strategies are also discussed.  Section 4 describes our decomposition approach, including 

the problem-structure based heuristics for solving the hard benchmark problems.  In Section 5, 

we present our computational results.  Section 6 provides the summary, conclusions and 

suggestions for future research. 

2. Literature Review 

Since the BPP is NP-hard in the strong sense (Garey and Johnson, 1979), a polynomial time 

algorithm to solve it optimally does not exist and is unlikely to be discovered in the future.  

Scholl et al. (1997) provide a good survey of extant solution procedures, and also propose a new 

heuristic that is a combination of tabu search and a branch-and-bound procedure based on 

known and new bound arguments and a new branching scheme. They study the well-known 

heuristics such as FFD, BFD, and worst fit descending (WFD) as well as the B2F heuristic, 

which works like FFD until a bin is filled then tries to exchange the smallest item assigned to 

the bin with two small-sized items not currently assigned such that the residual capacity is 

decreased.  Valerio de Carvalho (1999) gives an exact algorithm based on column generation 

and branch-and-bound.  Gupta and Ho (1999) give a heuristic called ‘minimum bin slack’ to 
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solve the BPP.  This heuristic is bin centric.  At each step, an attempt is made to find a set of 

items (packing) that fits the bin capacity as much as possible.  The worst-case performance of 

heuristics for BPP has been studied in Anily et al. (1984).  

 Many metaheuristics have been proposed in the bin-packing literature, such as, genetic 

algorithms (GAs), tabu search, simulated annealing (SA) and ant colonies (AC).  However, no 

study has focused on a neural-network approach in the bin-packing literature.  In most cases 

GAs were found to be relatively inefficient.  As explained in (Reeves, 1995), the complexity of 

the traditional GAs was high because of the length of the chromosome string required.  Many of 

the solutions generated in each generation were infeasible and checking the feasibility of each 

generated solution was very time consuming.  Reeves (1995) proposed hybrid GAs aimed at 

improving the performance of traditional GAs.  The performance improved for small size 

problems, both in terms of probability of finding the optima and the processing time.  However, 

the solution quality for the larger size problems was not improved.  Another GA approach was 

used in (Corcoran and Wainwright, 1993).  Performance is improved by using two mechanisms 

- sliding window mechanism to identify highly fit sequences and reduction mechanism to 

preserve fit sequences.  Therefore, highly fit members can quickly dominate the population and 

cause the GA to converge more quickly. SA approach has also been used in (Brusco et al, 1997, 

Rao and Iyengar, 1994).  The performance of SA with morphing is sensitive to parameter 

choices.  They have shown that no single version of their heuristic particularly dominates other 

procedures in terms of solution quality.  However, there is a notable difference in performance 

associated with the different cooling factors. 

 Several new heuristics for solving the one-dimensional BPP are presented in (Fleszar 

and Hindi, 2002; Singh and Gupta, 2007; Stawowy, 2008; Tambouratzis, 2001).  Some 

improvements on minimal-bin-slack heuristic have been made.  They show that their heuristics 
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are very efficient even though they have high computational complexity.  Variable 

neighborhood search has also been developed and used in (Fleszar and Hindi, 2002).  Singh and 

Gupta (2007) developed a heuristic based steady-state grouping genetic algorithm (H-SGGA) 

for the one-dimensional bin-packing problem. Stawowy (2008) investigated the use of 

evolutionary based heuristic to the one-dimensional bin packing problem. Unlike other 

evolutionary heuristics used with optimization problems, a non-specialized and non-hybridized 

algorithm is proposed and analyzed for solving BPP. The set of experiments confirmed that the 

proposed approach is comparable to much more complicated algorithms (Stawowy, 2008). An 

incremental approach to bin packing is proposed and a harmony theory artificial neural network 

is employed in Tambouratzis (2001). The proposed solutions suggest the exact placements of 

the objects in the bins. For appropriate parameter values of the harmony theory network, the 

smallest number of bins required for packing all the objects (i.e. an optimal solution) is 

consistently determined, while all optimal solutions are settled upon with asymptotically equal 

probability (Tambouratzis, 2001).   

 Gradisar et al. (1999) proposed a hybrid approach of combining pattern-oriented LP-

based method and the item-oriented sequential heuristic procedure.  Their objective of 

optimization is cutting order lengths into exact required number of pieces and cumulating 

residual lengths into one piece suitable for later use. They mentioned that the method is 

especially useful when average number of pieces cut out of an average stock length is large and 

when the cost of changing the cutting pattern is low.  

Alvim et al. (2004) propose a hybrid improvement procedure for the bin packing 

problem. Their heuristics has several features such as the use of lower bounding strategies, the 

generation of initial solution by reference to the dual min-max problems, the use of load 

redistribution based on dominance and improvement process utilizing tabu search. Their 
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procedure compares favorable with all other heuristics in the literature. Their algorithm is the 

only one that has succeeded in finding the best known results for all instances by using a single 

heuristics. Considering that the best results previously reported in the literature were not all of 

them obtained by a single heuristics our proposed solution method is still encouraging.  

Loh et al. (2008) develop a new procedure that uses the concept of weight annealing to 

solve the one-dimensional bin packing problem. Their procedure is straightforward and easy to 

follow. They find that their procedure produce very high-quality solutions very quickly and 

generates several new optimal solutions. 

Agarwal et al. (2010) proposed NeuroGenetic approach combines AugNN and GA 

search approaches by interleaving the two. They chose these two approaches to hybridize, as 

they offer complementary advantages and disadvantages. GA needs thousands of iteration for 

good solution. However, AugNN needs tens or hundreds of iteration for good solutions. Hence, 

AugNN finds most of the improvement early in the search process. However, there is slow and 

steady improvement in the solution quality in GA. 

Agarwal (2009) develop theoretical justification for the Augmented Neural Network 

approach as a metaheuristic for solving various optimization problems. The key element of 

AugNN approach is the transformation of the search problem from the solution space of the 

given problem to that of a search in the weight space of a temporary weight matrix. Some 

weight adjustment strategies are then used to converge to a good set of weights for a locally 

optimal solution. While empirical results have demonstrated the effectiveness of the AugNN 

approach with regard to few other metaheuristics, little theoretical insights exist which justify 

this approach and explain the effectiveness thereof. Agarwal (2009) develop a theorem which 

establishes the existence of a weight matrix which gives an optimal solution to the given 

problem. The existence of such a weight matrix establishes the justification for the use of the 
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AugNN approach. Agarwal (2009) then discusses various search strategies to bias the search 

towards a good weight vector. 

We thus make a two-fold contribution to the bin-packing literature. This is the first time 

AugNN approach has been applied to the BPP. We show its effectiveness in terms of improving 

upon a heuristic solution. We also propose a decomposition approach for solving harder BPP, in 

which sub problems are solved using a combination of AugNN approach and heuristics that 

exploit the problem structure.  We discuss the characteristics of problems on which such 

problem-structure based heuristics could be applied.  We empirically show the effectiveness of 

the AugNN and the decomposition approach on many benchmark problems in the literature. 

3. The AugNN Framework 

We first describe the problem formally and then present the AugNN framework. 

3.1 Problem Description 

The BPP consists of packing a set of items into minimum number of bins such that the total size 

(or weight) does not exceed a maximum value (bin capacity).  In other words, we define a bin-

packing problem (BPP) as follows: 

• We are given a finite set of n items each having a certain size. 

• We define a group to be a subset of items such that the total size of the group does not 

exceed the bin capacity.  

• The primary goal is to create a feasible solution with the minimum number of groups.  

3.2 Neural Network Architecture 

In the AugNN approach, we formulate the BPP as a neural network.  Figure 1 shows the neural-

network architecture and the correspondence with the BPP graphically.  Each item and each bin 

is represented as a processing element (PE) of a neural network.  The item PE nodes, denoted by 

T1, T2,…,Tn, constitute the item layer, similar to the input layer of a neural network.  Similarly, 

the bin PE nodes, denoted by B1,B2,…,Bm, constitute the bin layer, which corresponds to the 
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hidden layer of a neural network.  There is also an output layer with one node, called the ‘Final 

node’, designed to capture the outputs of the bin and item layers.   For ease of formulation, we 

also add a dummy initial node linked to the item-layer nodes.  It keeps track of the numbers of 

epochs and iterations.  Nodes in the item layer get an input signal from the initial node through 

links.  The item nodes are fully connected to the nodes of the bin layer through links 

characterized by weights, denoted by ω1, ω2,…,ωn.  The item nodes are also connected to the 

final node.  Each bin node, except the rightmost, is connected to the bin node to its right.  Bin 

nodes are also connected to item nodes, to signal assignment. 

 

 

For each set of nodes, including the initial, the item, the bin and the final node, we define 

input, output and activation functions, just like in neural networks.  These functions are 

designed to (i) capture the constraints of the bin-packing problem and (ii) assign an item to a bin 

in one iteration, using a certain priority rule heuristic, such as FFD or BFD.  After n iterations, 

the network produces a solution, i.e., the number of bins used.  We call a set of n iterations an 

epoch, much like in neural-network training.  At the end of an epoch, the weights are modified 

using a search strategy and a new epoch starts.  Learning takes place in each epoch.  The search 

strategy involves reinforcing the weights if an improved solution is found, and backtracking to 

the last best set of weights if no improvement occurs over a pre-specified number of epochs.  On 

an average, in less than 145 epochs, the AugNN approach found very good solutions for the 

1210 test problems. 

The activation functions are used to capture the state of a PE.  For example, for the item 

nodes, the state would indicate whether that item has been assigned or not.  For the bin node, it 

take in Figure 1 
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would indicate whether the bin is open, packed, or not yet opened. We now describe the 

mathematical formulation and algorithmic details of AugNN for the BPP.   

3.3 Notation 

n : Number of items 

m : UB(Number of bins) 

T : Set of items = {1,2,…,n} 

B : Set of bins = {1,2,…m} 

C : Capacity of bins 

k : Epoch number.   

t : Current assignment iteration [0,n] 

I : Initial node 

F : Final node 

Ti : i
th

 item node in the item layer, i ∈ T 

Bj : j
th

 bin node in the bin layer, j ∈ B 

Si : Size of item i, i∈ T 

SUI : Set of unassigned items. 

LB : Lower bound of the number of bins 

UB : Upper bound of the number of bins 

RF : Reinforcement factor 

BF : Backtracking factor 

α : Search coefficient 

 

Following are all functions of assignment iteration t: 

IFI(t) : Input function of the initial node 

IFTi(t) : Input function of item nodes Ti, ,  i ∈  T 

IFBij(t) : Input function of bin nodes Bj from Item nodes Ti,  i ∈ T, j ∈ B 

IFFT(t) : Input function of the final node from the item nodes 

IFFB(t) : Input function of the final node from the bin nodes 

 

OFI(t) : Output function of initial node 

OFTBi(t) : Output function of item nodes Ti to bin nodes, i ∈ T 

OFTFi(t) : Output function of item nodes Ti to final node, i ∈ T 

OFBFj(t) : Output function of bin nodes Bj to final node, j ∈ B 

OFBTji(t) : Output function of bin nodes Bj to item node Ti, i ∈ T, j∈ B 

OFBBj(t) : Output function of bin nodes Bj to Bj+1,  j ∈ B, j ≠  m 

OFFI(t) : Output function of final node 

 

θI(t) : Activation function of the initial node 

θTi(t) : Activation function of item nodes Ti,   i ∈ T 

θBj(t) : Activation function of bin nodes Bj, j ∈ B 

θF(t) : Activation function of the final node 

assignij(t) : Item i assigned to bin j,  i ∈ T,   j ∈ B 

RCj(t) : Residual capacity for j
th

 bin,   j ∈ B 
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Following are functions of k: 

OFF(k) : Output function of final node. 

ωi(k)  : Weight on links from item nodes Ti to bin nodes, i ∈ T 

ε(k) : Error or difference between solution and lower bound in epoch k 

 

3.4 Preliminary Steps 

1. Calculate the lower bound i.e. the minimum possible number of bins needed 

  Lower Bound =    ∑
∈Ti

i CS )/)(  

2. Calculate the upper bound i.e. the maximum possible number of bins needed  

  Upper Bound =   ))(//( i
i

SMaxCn  , i ∈ T 

 We want to use this many bins in the hidden layer. m = UB(number of bins). 
 

3. Weights ωi (0) are initialized at 1.00. 

3.5 AugNN Functions 

We present here the input, activation and output functions of each layer of nodes, starting with 

the initial node, followed by item nodes, bin nodes and then the final node. 

3.5.1 Initial Node 
 

 t = 0 to begin with. 
 

 Input function 

  IFI(0) = 1 

  IFI(t) = OFFI(t), for t > 0 

 

The initial node gets an initial signal of 1 at the beginning to set off the first iteration of the 

first epoch.  Thereafter, it receives an input from the final node. 

  

 Activation State 
 

The state of the initial node is defined by t and k, where t is the assignment number and k is 

the epoch number. 

  θI(0):  { t = 1, k = 1 

 

 For t > 0, 

 

1, ( ) 1

( ) 1, 1 ( ) 2

0, 0   ( ) 3

t t k k if IFI t

I t t k k if IFI t

t k if IFI t

θ

= + = =


= = = + =
 = = =
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At the beginning, when t = 0, both t and the k are initialized at 1.  IFI of 1 indicates a new 

assignment iteration for the same epoch.  So, t is incremented by one, while k remains the 

same.  At the end of an epoch, signified by IFI of 2, k is incremented by 1 while t is 

initialized to 1.  At the end of the problem, i.e. when IFI is 3, both t and k are 0. 

 Output function 
 

 
1, 0

( )
0,

if t
OFI t

otherwise

>
= 


 

Whenever t > 0, the problem needs to be solved, so the initial node sends an output signal of 

1 to the item nodes, signaling that if they are not yet assigned, it is time to get assigned. 
 

3.5.2 Item Layer 

 Input function 

  IFTi(t) = OFI(t) , i ∈ T 

 Activation function 

  ∀ i ∈ T,  j ∈ B, 

  

  θTi(0)=1 

 

 
0, ( 1) 0 ( ( 1) 1 ( ) 1), 0

( )
1, ( 1) 1 ( ( 1) 0 ( ) 2)

i i ji

i

i i i

if T t T t OFBT t t
T t

if T t T t IFI t

θ θ
θ

θ θ

− = ∨ − = ∧ = >
= 

− = ∨ − = ∧ =
 

 

State 1 above implies that item node Ti has not been assigned yet.  State 0 implies that it has 

been assigned.  Initially (i.e. at t=0) the state of all item nodes is initialized to 1.  When the 

item is assigned (signified by OFBTji(t) = 1), its state changes to 0 and stays that way for the 

rest of the current epoch.  The state changes back to 1 when a new epoch starts (i.e. when 

IFI is 2). 
 

 Output function 

  ∀ i ∈ T 
     

  OFTBi(t) = θTi(t)* Si * ωi(k) 

 

 
1, ( ) 0

( )
0,

i

i

if T t
OFTF t

otherwise

θ =
= 


 

The OFTB signal sends a weighted size to the bin layer.  OFTB is 0 if the item is already 

assigned (due to θTi(t) = 0), and positive if not yet assigned. 
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OFTF sends a signal to the final node indicating that the item has been assigned (indicated 

by θTi(t)=0).. 

 

3.5.3 Bin layer 
 

For the bin layer, we explain the activation function first, since it is used in the input 

function. 

Activation function 
  RCj(1) = C 

  θB1(1)= 1 state of the first bin for the first assignment iteration is 1 (open). 

 

   j > 1 ∧ j ∈ B 

  θBj(1)= 0  

 

 1

0, ( 1) 0 ( ) 2 : bin not open yet

( ) 1, ( 1) 1 ( ( ) 0 ( ) 1) : bin open

2, ( 1) 1 ( ( ) [ ], : bin packed/closed

j

j j j j

j j l

if B t IFI t

B t if B t B t OFBB t

if B t RC t Min S l SUI

θ

θ θ θ

θ
−

 − = ∨ =


= − = ∨ = ∧ =
 − = ∧ < ∈

 

 

RCj(t) = RCj(t) – Si   where i is the index for Max OFTBi(t) 

 
At the beginning the first bin is open, rest are unopened.  A new bin opens (i.e., assumes 

state 1) when it receives a signal (OFBBj-1(t))from the previous bin. The previous bin sends 

this signal when it cannot fit the item with maximum OFTBi(t).  When an open bin’s 

residual capacity is less than the minimum size unassigned item, then the bin closes (state 2). 

Input function 

 ∀ i ∈ T, j ∈ B 

 

 
( )( ) , ( ) 1

( )
          0                ( ) 0 ( ) 2

j j
i

j

j j

Max OFTB t if B t
IFB t

if B t B t

θ

θ θ

 =
= 

= ∨ =
 

 

If the bin is open (state of 1) then it accepts the maximum output of the item nodes as its 

input.  If the bin is not yet open (state 0) or packed and closed (state 2), it does not accept 

any input. 

Assignment of item to bin 
 

 
0, ( )

( )
1, ( )

i j

ij

i j

if S RC t
assign t

if S RC t

>
= 

≤
 

where i is the index for Max OFTBi(t) 
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Since we are applying FFD and BFD, once an item is assigned to a bin, the rest of the bins 

do not attempt to pack the same item. 

 

Output function 

  ∀ i ∈ T, j ∈ B 

 

1, ( ) 2
( )

0,

j

j

if B t
OFBF t

otherwise

θ =
= 


 

 

When a full bin closes (state 2), it sends a signal to the final node.  The final node keeps a 

counter of the number of bins in state 2. 

 

1, ( 1) 1 ( ) ( ),  is the index for  ( )
( )

0,

j j i i

j

if B t RC t S t i Max OFTB t
OFBB t

otherwise

θ − = ∧ <
= 


 

 

When a bin cannot accept the biggest item due to small residual capacity, it sends a signal to 

the next bin to open. 

 

 
1, ( ) 1

( )
0,

ij

ji

if assign t
OFBT t

otherwise

=
= 


 

 

When a bin accepts an item, it sends a signal of 1 to the item node. 

 

3.5.4 Final Node 
 

Input function 
 

The final node receives two sets of inputs.  One from the bin layer (IFFB) and one directly 

from the item layer (IFFT). 
   

 ∑
=

=
m

j

j tOFBFtIFFB
1

)()(  

 ∑
=

=
n

i

i tOFTFtIFFT
1

)()(  

 

IFFB is essentially the sum of all filled bins. 

IFFT is the sum of all assigned items. 
  

 Activation function 
 

0, ( )

( ) 1, ( )

2, ( ) ( )

if IFFT t n

F t if IFFT t n

if IFFT t n IFFB t LB

θ

<


= =
 = ∧ =
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State of 0 implies that not all n items are assigned. 

State of 1 implies that all items are assigned, which is an indication of the end of the current 

epoch.  State of 2 implies that a lower bound solution has been found and therefore the 

processing can stop. 

 

 Output function 
 

( )
max

max

1, ( ) 0

( ) 2, ( ) 1

3, ( ) 1 ( ) 2

if F t

OFFI t if F t k k

if F t k k F t

θ
θ

θ θ

 =


= = ∧ <
 = ∧ = ∨ =

 

 
 OFF(k) = IFFB(t), if OFFI(t) = 2 or 3. 

 

Output OFFI of 1 implies that not all items have been assigned and the network should run a 

new assignment iteration.  Output OFFI of 2 implies that all items have been assigned but 

the lower-bound solution has not reached and the number of epochs has not reached the 

max, so the network should run another epoch. Output OFFI of 3 acts as a stopping rule.  If 

either a lower-bound solution is found or the number of epochs has reached its preset max 

limit, the network stops.   

The output OFF represents the solution, i.e. the number of bins used to fill all the items.   

3.5.5 Order of Evaluation of Functions 

It is important to understand the order in which these functions are evaluated. The ordering is as 

shown in Figure 2.  In general, in neural networks, input function is calculated first, followed by 

activation function followed by the output function.  Further, in feed forward neural networks, 

input layer functions are followed by hidden layer functions, followed by output layer functions.  

In AugNN, we deviate slightly because of (i) the assignment function and (ii) need to open new 

bins if existing bins cannot fit an item.  This requires evaluating certain functions within the 

same layer twice. 

One of the advantages of this kind of formulation is that coding becomes easier.  Also, a 

different heuristic, such as ‘worst fit descending’ can be applied by slightly modifying one of 

the functions above.  

 

 

 

take in Figure 2 

 

Page 16 of 41

URL: http://mc.manuscriptcentral.com/tsys E-mail: ijss@sheffield.ac.uk

International Journal of Systems Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 17 

 

3.6 Search Strategy 

A search strategy is required to modify the weights.  Weights are modified once for each epoch.  

They are not modified from one assignment iteration to the next.  The idea behind weight 

modification is that if the error in an epoch is too high, then the order in which items should be 

placed should be changed more than if the error is less.  We employ the following search 

strategy. 

 ωi(k+1)= ωI(k)  +  α * Si * ε(k)   ∀ i ∈ T 

 where ε(k)  = OFF(k) - LB  

In addition, we employ reinforcement and backtracking mechanisms to improve the 

solution quality. 

3.6.1 Reinforcement 

Whenever the solution improves in the current epoch compared to the previous epoch, i.e. 

whenever OFF(k) < OFF(k-1), we reinforce the weights by magnifying the increases made 

during the previous epoch.  We employ a reinforcement factor RF as follows: 

 ωI(k) = ωI(k)  + RF * (ωI(k) - ωI(k-1) ), ∀ i ∈ T 

Such reinforcement acts as a reward for finding a better solution and helps preserve the relative 

weights of the items for a few epochs.  RF can be any real number between 1 and infinity, 

although we found through some experimentation, that RF value of 3 gave good results. 

3.6.2 Backtracking 

If the solution does not improve for a certain number of epochs say 100 or 150, then it is 

advisable to backtrack to the previous best solution and forget the last few epochs and start over.  

This backtracking mechanism prevents the network from following a path of no improvement 

for any longer than necessary.  We use a parameter called backtracking factor (BF) to 

implement such backtracking. 

3.7 End of iteration routines 

1. If OFFI is 1, do not modify the weights and start with the next assignment iteration. 

2. If OFFI is 2, it signifies the end of an epoch.  Do the following steps: 

a. check if the current solution is the best so far.  If so, store it as best solution.  

Also, store the current weights as best weights. 
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b. Calculate the error i.e., the difference between OFF(k) and the lower bound. 

c. Sense if reinforcement needed.  If needed, apply reinforcement using the 

reinforcement strategy. 

d. Sense if backtracking needed.  If needed, apply backtracking. 

e. Modify weights, using the search strategy.  

3. If OFFI is 3, stop the network, and display the best result so far. 

3.8 Computation Complexity 

The computational complexity of the FFD and BFD is O(n log n), primarily because sorting is 

required.  Once the sorted list of unassigned items is available, the assignment is linear in n, or 

O(n).  The complexity of AugNN is the same for each epoch, i.e. O(n log n).  Of course, time 

taken is more because of the number of epochs needed. 

4. Decomposition Strategy and Problem-Structure Based Heuristic 
 

For the set of hard instances, although AugNN improved significantly over the single-pass FFD 

and BFD, thus reducing the gap significantly from the upper bound, the gap was still too high.  

To reduce the gap further, we propose a decomposition strategy - breaking the problem into sub 

problems and solving them using heuristics that exploit the problem structure.  Most heuristics 

are item centric, i.e. you take an item, in a certain order of size, and decide which bin it goes in.  

Our proposed heuristics are bin centric, similar to Gupta and Ho’s (1999) ‘minimum bin slack’ 

heuristic, in which we take a bin and pack it with appropriate items with minimum residual 

capacity in each bin.  Ours is a special case of the ‘minimum bin slack’ heuristic designed for a 

fixed number of items and involves a factor called tolerance for residual capacity. 

 We observed that for each of the ten hard problems, the maximum number of items that 

could fit in a bin was four, because even the five smallest items would exceed the bin capacity.  

So the trick was to first fill as many bins as possible with four items each, with minimum 

residual capacity, within a given tolerance.  This became our first sub problem – i.e., fitting bins 

with four items within a tolerance.  The next sub problem involved fitting as many bins as 
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possible with three items within tolerance.  All remaining items were treated as the third sub 

problem, and solved using AugNN.  In designing our ‘pack-four item bins’ and ‘pack-three item 

bins’ heuristics, we exploited the fact that the item sizes were drawn from a uniform 

distribution.  With the help of Figures 3a and 3b, we will explain how. 

In Figures 3a and 3b, we plot the items on the x-axis in the increasing order by size and 

we plot sizes on the y-axis.  Since the sizes are drawn from a uniform distribution, we get a 

near-straight line plot.  For the case of four-item packing let us look at Figure 3a.  Suppose we 

find four adjacent items ‘c’, ‘d’, ‘e’ and ‘f’, such that the sum of their sizes is closest to but 

within the bin capacity.  This group of four items can be placed in a bin.  Due to the linearity of 

the plot, if we find a pair of adjacent items on either side of and equidistant from items ‘c’, ‘d’, 

‘e’ and ‘f’, then the sum of the sizes of these four items should be close to the bin capacity.  For 

example, items ‘a’ and ‘b’ on the left and items ‘g’ and ‘h’ on the right, equidistant from ‘c’, ‘d’, 

‘e’ and ‘f’, should fit in a bin tightly.  Extending this idea further, the sum of the sizes of items 

‘j’ and ‘k’ and ‘p’ and ‘q’ will also be close to the bin capacity, assuming that ‘j’ and ‘k’ are 

about as far from ‘a’ and ‘b’ as ‘p’ and ‘q’ are from ‘g’ and ‘h’.  Using this idea, we can find 

groups of four items that can be packed in a bin with little residual capacity, within a certain 

tolerance.  Notice that the complexity of this heuristic is linear in n. 

    _________________________ 

              take in Figure 3 

    __________________________ 

 

For the three-item bin packing heuristic, we make a similar observation.  In Figure 3b, 

for example, sum of the sizes of items ‘a’, ‘c’ and ‘d’ will be about the same as that of items ‘b’, 

‘c’ and ‘e’, assuming items ‘a’ and ‘b’ are as far from item ‘c’ as items ‘d’ and ‘e’.  Of course, 
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we are assuming that the size ranges, with respect to bin capacity, are such that three items can 

fit tightly. 

Note that if the sizes of items were drawn from a distribution other than uniform, such 

as, normal or exponential, we would not get a near-straight line plot in Figures 3a and 3b, and 

we couldn’t find groups of four (or three) items to pack in this manner.  For the non-uniform 

distribution case, the proposed heuristics would not work.  Based on the above observations, we 

outline the ‘Pack Four-Item’ heuristic and the ‘Pack Three-Item’ heuristic below, for solving the 

first and the second sub problems. 

Sub Problem 1: Pack Four-Item Bins 

Step 1: Sort the items from smallest to largest. 

Step 2: Open a new bin. 

Step 3: Place the two smallest items in the open bin. 

Step 4: Calculate the residual capacity of this bin and divide by two. 

Step 5: Find the item with size closest to but less than the value obtained in Step 4, within a pre 

specified tolerance (in this case 500, but could be different for a different problem). 

 If item found then place it in the bin and go to Step 6, else go to Step 10. 

Step 6: Find the new residual capacity. 

Step 7: Find the item with size closest to but less than the value obtained in Step 6 within a pre 

specified tolerance (in this case 500, but could be different for a different problem).  

Note that this fourth item should be found either adjacent to or very close to the third 

item. 

 If found then place it in the bin and go to Step 8, else go to Step 10. 

Step 8: Close the bin and count it as a packed bin. 

Step 9: Remove these four items from the list of unassigned items and go to Step 2. 

Step 10: Do not commit any items to this bin, close the bin and do not count it as a packed bin.  

Give the total number of packed bins so far.  Go to Sub Problem 2. 
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Sub Problem 2: Pack Three-item Bins. 

Step 1: Sort the list of unassigned items from largest to smallest. 

Step 2: Open a new bin. 

Step 3: If there are at least three items in the set of unassigned items then, place the largest and 

the smallest items in this bin. 

Step 4: Find the residual capacity of this bin. 

Step 5: Find the item closest to but less than the value obtained in Step 4, within a pre specified 

tolerance (in this case 1000, but could differ). 

 If such an item found then place it in the bin and go to Step 6.  If not, go to Step 8. 

Step 6: Close this bin and count it as a packed bin. 

Step 7: Remove these three items from the list of unassigned items and go to Step 2. 

Step 8: Do not commit any items to this bin, close the bin and do not count it as a packed bin.  

Give the total number of packed bins so far.  Go to Sub Problem 3. 

 

Sub Problem 3: AugNN 

Step 1: Enlist all the remaining unassigned items. 

Step 2: Apply AugNN for this set of items. 

Finally, aggregate the solutions for the three sub problems. 

 

 Note that the above mentioned decomposition strategy worked well on all the ten hard 

problems. For 8 out of 10 problems, the upper bound solution was found in less than 0.5 

seconds.  For the remaining two problems, a solution was found within 1 bin of the upper 

bound.  Decomposition Strategy and Problem-Structure Based Heuristic worked well compared 

to some heuristics available at the literature. In Fleszar and Hindi (2002), their heuristic found 2 

out of 10 optimal solutions for the hard problem set. Note that if more than four items can fit in 

a bin, then we shouldn’t apply our ‘pack four-item bin’ heuristics.  We found that for such 

problems, AugNN worked well without the help of problem structure based heuristics. 
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5. Computational Experiments  

5.1 Data Sets 

For our empirical work, we used three sets of benchmark problems available at the OR-Library 

at the Technische Universitat Darmstadt
1
. The three sets correspond to problems of three levels 

of difficulty - easy, medium and hard.  Upper bounds for these problems using tabu search and 

branch-and-bound algorithms are also known.  

There are other data sets available in the literature
2
. We did not use them since the data 

set used in (Falkenauer, 1996) is very similar to data set we are using in our empirical work and 

the data set used in (Waescher and Gau, 1996) is very easy to solve since optimum solution can 

be found in the first iteration and a simple heuristic such as FFD.    

 The 720 instances of the easy dataset are divided into 36 subsets of 20 problems each 

with some common characteristics.  The subsets of 20 problems are labeled “NxCyWz_v” 

where 

x = 1 (for n = 50), x = 2 (n = 100)  

y = 1 (for C = 100), y = 2  (C = 120), y = 3 (C = 150)  

z = 1 (for Si from [1,100]), z = 2 ([20,100]), z = 4 ([30,100])  

v = A through T for the 20 instances of each class  

The item sizes are chosen as integer values from the given intervals using uniformly distributed 

random numbers. 

 The instances in the medium difficulty set are divided into 48 subsets of 10 instances 

each with common characteristics.  These subsets of 10 problems are labeled as “NxWyBzRv” 

where 

                                                 
1
 http://www.wiwi.uni-jena.de/Entscheidung/binpp/index.htm last visited on May 1,2004 

2
 http://www.apdio.pt/sicup/Sicuphomepage/research.htm last visited on May 1,2004 
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x = 1 (for n = 50), 

y = 1 (for avgSize = C/3), y = 2 (C/5), y = 3 (C/7), y = 4 (C/9) where C = 1000 for this set 

z = 1 (for delta = 20%), z = 2 (50%), z = 3 (90%)  

v = 0 through 9 for the 10 instances of each class  

The parameter avgSize represents the desired average size of the items, while delta specifies the 

maximal deviation of the single value from avgSize.  For example, the sizes are randomly 

chosen from the interval [160,240] in case of avgSize = C/5 and delta = 20%. 

 The third data set contains 10 instances. The number of items and bin capacity for each 

instance is 200 and 100,000 respectively.  The item sizes are varying between 20,000 and 

35,000.  Therefore, the number of items for each bin is between 3 and 5.  

5.2 Platform and Parameters  

We coded our heuristics in Visual Basic ® 6.0, running on a Pentium-III PC with 512 MB 

RAM.  A user interface was created that allowed selection of data files, specification of 

parameters such as maximum number of epochs, search rate, reinforcement factor etc.  The 

output files included details such as number of bins used, CPU time, and number of epochs 

needed to find the best solution etc.  We ran AugNN for a maximum of 2500 epochs to keep the 

CPU time within reasonable limit.  Higher number of epochs could give improved results.  We 

set our search coefficient at 0.0005 and the reinforcement factor at 3.  We backtracked if the 

solution did not improve in 500 epochs.  These search parameter values were obtained after 

considerable experimental effort. 

5.3 Results 

Tables I-a and I-b summarize the results of AugNN in conjunction with FFD and BFD 

respectively for dataset 1 (easy instances).  Tables II-a and II-b do the same for dataset 2 
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(medium instances).  These tables report the minimum, maximum and mean number of 

iterations to solve the problem, run time (in seconds), solution to upper-bound ratio (Z/UB 

ratio), and the number of problems solved to optimality for each instance group.  Each row in 

these tables represents average values for all instances in a subset of problems with similar 

characteristics.  There are 20 and 10 problems per subset in datasets 1 and 2 respectively.  Since 

there are only 10 instances in dataset 3, we have reported their results individually in Table V.  

    ________________________________ 

take in Table I-a & Table I-b 

    _________________________________ 

 Tables I-c and I-d summarize the improvement by AugNN over single-pass solutions 

using FFD and BFD respectively, for dataset 1.  Tables II-c and II-d do the same for dataset 2. 

As given in Tables I-c and I-d, AugNN reduces the number of bins value by one in all improved 

solutions. In other words, AugNN either got the same solution with single-pass heuristic or 

improve the solution by reducing number of bins by one. Similarly you can see the number of 

bins reduced (solution improved) in each problem subsets in Tables II-c and II-d for dataset 2. 

For example, for problem subset N4W1B1 AugNN improve solution over single-pass solutions 

using FFD  by reducing number of bins value by at least 10 at most 12, using BFD  by reducing 

number of bins value by at least 9 at most 12, for problem subset N3W1B1 AugNN improve 

solution over single-pass solutions using FFD  by reducing number of bins value by at least 5 at 

most 6   

    ________________________________ 

take in Table I-c & Table I-d 

    _________________________________ 
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 For dataset 1, AugNN found the optimal solution for 597 of the 720 problems using 

FFD, and for 587 problems using BFD (Tables I-a and I-b).  The average Z/UB ratio for all 

problems was 0.2595% for FFD and 0.33159% for BFD.   As given in Tables III and IV, the 

single-pass FFD and BFD heuristics found the optimal solution for 547 out of 720 problems 

respectively.  For the remaining problems, AugNN improved the solution for 78 problems with 

FFD, 50 of which were solved to optimality and for 66 problems with BFD, of which 40 were 

solved to optimality.  The average time taken per problem was 38.8 seconds and 43.9 seconds 

for FFD and BFD respectively. 

    ________________________________ 

take in Table II-a & Table II-b 

    _________________________________ 

 

 For dataset 2, AugNN found the optimal solution for 312 out of 480 problems using 

FFD, and for 297 problems using BFD  (Tables II-a and II-b).  The average Z/UB ratio for all 

problems was 1.2576% for FFD and 1.5566% for BFD.   As given in Tables III and IV, the 

single-pass FFD and BFD heuristics found the optimal solution for 236 of the 480 problems.  

For the remaining 244 problems, AugNN improved the solution for 175 problems with FFD, 76 

of which were solved to optimality and for 158 problems with BFD, of which 61 were solved to 

optimality.  The average time taken per problem was 25.3 seconds and 23.6 seconds for FFD 

and BFD respectively. 

    ________________________________ 

take in Table II-c & Table II-d 

    _________________________________ 
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The average number of epochs needed to find the best solution for dataset 1 was 58 with 

FFD and 65 for BFD.  For dataset 2, the average number of epochs was 273 for FFD and 179 

for BFD. 

    ________________________________ 

take in Table III & Table IV 

    _________________________________ 

 For the set of hard instances, although AugNN improved significantly over FFD 

heuristic, reducing the gap from about 10% to 4% from the upper bound, the gap, at 4%, was 

still too high. We applied the decomposition strategy and heuristics discussed in Section 4.  The 

results are summarized in Table V.  8 out of 10 problems were solved to optimality while the 

other 2 were within 1 bin of the upper bound.  The average gap for all ten problems was less 

than 0.4 % and the run time to find the solution averaged 0.25 seconds. 

    ________________________________ 

take in Table V 

    _________________________________ 

 Previous researchers have found better results for datasets 1 and 2 but not for dataset 3.  

For example, for dataset 1, DualTabu (Scholl et al. 1997) found the optimal for 666 of 720 

problems, B2F for 545 problems, FFD-B2F for 617 problems and BISON (Scholl et al. 1997) 

heuristic for 697 problems.  For dataset 2, DualTabu found the optimal for 466 problems, B2F 

for 292 problems, FFD-B2F for 319 problems and BISON for 473 problems.  For dataset 3, 

DualTabu found the optimal for 3 out of 10 problems, B2F for 0 problems, FFD-B2F for 0 

problems and BISON for 3 problems.  AugNN being a new approach, needs more research in 

search rules to improve the solution.  The initial results are encouraging because working with 

very simple heuristics, AugNN was able to find good improvements.  If more complex 

heuristics are used in conjunction with AugNN, the results could be improved further. 
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6. Summary and Conclusions 
 

In this paper, we proposed two broad approaches for solving the classical BPP, in which n items 

are to be packed in minimum number of fixed-capacity bins.  The first is a meta-heuristic 

approach based on neural-networks principles.  The second is a decomposition approach, using 

heuristics that exploit the problem structure.  Using these approaches, a large percentage of 

benchmark problems were solved to optimality and the rest to near optimality.  The AugNN 

approach, first proposed by Agarwal et. al. (2003) for the task-scheduling problem, is applied to 

the BPP for the first time.  The approach involves representing the problem as a neural network, 

with items forming the input layer and bins the hidden layer.  Input, output and activation 

functions are defined in such a way that in one epoch of n assignment iterations, a feasible 

solution is obtained, without increasing the computational complexity of a simple heuristic, such 

as FFD. 

 The AugNN approach worked very well on two of the three benchmark datasets that we 

used - the easy and medium difficulty datasets.  For the hard problem datasets, we propose a 

decomposition approach, in which a sub problem is solved using a ‘pack-four-item bin’ 

heuristic and another sub problem by a ‘pack-three-item bin’ and the rest by AugNN.  These 

heuristics exploited certain problem specific characteristics, such as the fact that the sizes of the 

items were drawn from a uniform distribution and the range of the sizes was such that no more 

than four items could fit in a bin and there were enough items such that three items would fit in 

a bin tightly.  Similar strategies can be employed on other BPP. 

 Of the 1210 problems tested, optimal solutions were found for 917 problems.  The 

average gap between the obtained and the optimal solution was under 0.66%.  Successful 

application of this new type of meta-heuristic opens up many opportunities for further research.  
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For example, the approach could be used for more complex BPP, involving more constraints, 

such as conflicts.  The approach can be tested in conjunction with other heuristics, other than 

FFD and BFD used in this paper.  Also, alternative search strategies can be developed which 

might find improved solutions.  Sensitivity analysis of the various search parameters would also 

be a useful exercise. 
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Table I-a: Results of AugNN with FFD for dataset 1 

Problem 

Subsets 

Iteration Number 

[min,max],mean 

Run Time 

(Sec) 

Z/UB ratio 

 

Problems Solved to 

Optimality
1
 (out of 20) 

N1C1W1 [1, 1746], 88.25 1.7117 1.002 19 

N1C1W2 [1, 1], 1 2.1188 1 20 

N1C1W4 [1, 72], 4.55 2.3590 1 20 

N1C2W1 [1, 1], 1 1.7742 1 20 

N1C2W2 [1, 2436], 122.75 1.8574 1 20 

N1C2W4 [1, 1], 1 2.2648 1 20 

N1C3W1 [1, 546], 39.55 1.5727 1.002941 19 

N1C3W2 [1, 2290], 332.85 1.7363 1.002778 19 

N1C3W4 [1, 1946], 350.25 1.7260 1.007262 17 

N2C1W1 [1, 1], 1 5.2445 1 20 

N2C1W2 [1, 1], 1 7.5484 1 20 

N2C1W4 [1, 1], 1 8.0813 1 20 

N2C2W1 [1, 1], 1 5.2773 1.001163 19 

N2C2W2 [1, 437], 22.8 6.1191 1 20 

N2C2W4 [1, 77], 4.8 7.5590 1 20 

N2C3W1 [1, 1], 1 4.8363 1 20 

N2C3W2 [1, 1322], 205 5.3854 1.008429 13 

N2C3W4 [1, 2386], 386.7 5.2472 1.008016 13 

N3C1W1 [1, 215], 11.7 20.4676 1.00051 19 

N3C1W2 [1, 1], 1 26.3797 1.001211 17 

N3C1W4 [1, 4], 1.15 27.7234 1 20 

N3C2W1 [1, 279], 22 17.7504 1.001869 17 

N3C2W2 [1, 489], 25.4 24.4938 1.000476 19 

N3C2W4 [1, 146], 8.25 26.4816 1.000442 19 

N3C3W1 [1, 1], 1 17.3965 1.001471 18 

N3C3W2 [1, 1197], 175.25 18.6780 1.01054 3 

N3C3W4 [1, 752], 175.4 23.3908 1.014399 2 

N4C1W1 [1, 158], 8.85 123.3547 1.000619 17 

N4C1W2 [1, 18], 1.85 145.2357 1.000486 17 

N4C1W4 [1, 1], 1 146.8391 1 20 

N4C2W1 [1, 474], 44.75 84.9664 1.001671 13 

N4C2W2 [1, 44], 3.15 136.0320 1.000189 19 

N4C2W4 [1, 1], 1 136.1516 1 20 

N4C3W1 [1, 1], 1 82.5371 1.000599 18 

N4C3W2 [1, 80], 11.3 132.3674 1.011473 0 

N4C3W4 [1, 60], 17.65 133.5311 1.014886 0 

Average    38.78323 1.002595 16.58 
1
597 out of 720 individual instances were solved to optimality. 
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Table I-b: Results of AugNN with BFD for dataset 1 

Problem 

Subsets 

Iteration Number 

[min,max],mean 

Run Time 

(Sec) 

Z/UB ratio 

 

Problems Solved to 

Optimality
1
 (out of 20) 

N1C1W1 [1, 1], 1 0.8461 1.0045 18 

N1C1W2 [1, 1], 1 1.3645 1 20 

N1C1W4 [1, 239], 12.9 3.0969 1 20 

N1C2W1 [1, 1], 1 0.8426 1 20 

N1C2W2 [1, 1], 1 1.6508 1.002174 19 

N1C2W4 [1, 1], 1 3.3336 1 20 

N1C3W1 [1, 1882], 170.4 0.1883 1.002941 19 

N1C3W2 [1, 2458], 224.7 0.5016 1.00779 17 

N1C3W4 [1, 2350], 279.15 1.1512 1.011916 15 

N2C1W1 [1, 1], 1 6.6035 1 20 

N2C1W2 [1, 1], 1 9.3605 1 20 

N2C1W4 [1, 1], 1 12.1773 1 20 

N2C2W1 [1, 1], 1 3.8352 1.001163 19 

N2C2W2 [1, 1928], 97.35 7.8691 1 20 

N2C2W4 [1, 218], 11.85 9.4766 1 20 

N2C3W1 [1, 1], 1 0.1621 1 20 

N2C3W2 [1, 2424], 446.15 3.7227 1.009648 12 

N2C3W4 [1, 2202], 474.5 5.957422 1.011374 10 

N3C1W1 [1, 170], 9.45 23.9207 1.00051 19 

N3C1W2 [1, 1], 1 35.7215 1.001211 17 

N3C1W4 [1, 9], 1.4 37.5270 1 20 

N3C2W1 [1, 721], 45.9 13.1901 1.001869 17 

N3C2W2 [1, 317], 16.8 33.5038 1.000476 19 

N3C2W4 [1, 148], 8.35 38.6088 1.000442 19 

N3C3W1 [1, 1], 1 1.3190 1.001471 18 

N3C3W2 [1, 1775], 302.4 20.9008 1.010524 4 

N3C3W4 [1, 605], 127.65 29.7615 1.016118 2 

N4C1W1 [1, 135], 7.7 157.1093 1.000619 17 

N4C1W2 [1, 1], 1 188.0017 1.000648 16 

N4C1W4 [1, 1], 1 196.9160 1 20 

N4C2W1 [1, 433], 48.95 49.7987 1.001671 13 

N4C2W2 [1, 41], 3 169.7114 1.000189 19 

N4C2W4 [1, 1], 1 184.1120 1 20 

N4C3W1 [1, 1], 1 9.1160 1.000599 18 

N4C3W2 [1, 140], 27.75 151.4313 1.010967 0 

N4C3W4 [1, 124], 22.25 166.4911 1.014888 0 

Average  43.8689 1.003159 16.31 
1
587 out of 720 individual instances were solved to optimality. 
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Table I-c: Improvement by AugNN over single-pass FFD for dataset 1 

Problem 

Subsets Min Max Avg 

 Problem 

Subsets Min Max Avg 

N1C1W1 0 1 0.05  N3C1W1 0 1 0.05 

N1C1W2 0 0 0  N3C1W2 0 0 0 

N1C1W4 0 1 0.05  N3C1W4 0 1 0.05 

N1C2W1 0 0 0  N3C2W1 0 1 0.1 

N1C2W2 0 1 0.05  N3C2W2 0 1 0.05 

N1C2W4 0 0 0  N3C2W4 0 1 0.05 

N1C3W1 0 1 0.1  N3C3W1 0 0 0 

N1C3W2 0 1 0.25  N3C3W2 0 1 0.35 

N1C3W4 0 1 0.25  N3C3W4 0 1 0.5 

N2C1W1 0 0 0  N4C1W1 0 1 0.05 

N2C1W2 0 0 0  N4C1W2 0 1 0.05 

N2C1W4 0 0 0  N4C1W4 0 0 0 

N2C2W1 0 0 0  N4C2W1 0 1 0.15 

N2C2W2 0 1 0.05  N4C2W2 0 1 0.05 

N2C2W4 0 1 0.05  N4C2W4 0 0 0 

N2C3W1 0 0 0  N4C3W1 0 0 0 

N2C3W2 0 1 0.3  N4C3W2 0 1 0.25 

N2C3W4 0 1 0.55  N4C3W4 0 1 0.5 

 

Table I-d: Improvement by AugNN over single-pass BFD for dataset 1 

Problem 

Subsets Min Max Avg 

 Problem 

Subsets Min Max Avg 

N1C1W1 0 0 0  N3C1W1 0 1 0.05 

N1C1W2 0 0 0  N3C1W2 0 0 0 

N1C1W4 0 1 0.05  N3C1W4 0 1 0.05 

N1C2W1 0 0 0  N3C2W1 0 1 0.1 

N1C2W2 0 0 0  N3C2W2 0 1 0.05 

N1C2W4 0 0 0  N3C2W4 0 1 0.05 

N1C3W1 0 1 0.1  N3C3W1 0 0 0 

N1C3W2 0 1 0.15  N3C3W2 0 1 0.35 

N1C3W4 0 1 0.15  N3C3W4 0 1 0.35 

N2C1W1 0 0 0  N4C1W1 0 1 0.05 

N2C1W2 0 0 0  N4C1W2 0 0 0 

N2C1W4 0 0 0  N4C1W4 0 0 0 

N2C2W1 0 0 0  N4C2W1 0 1 0.15 

N2C2W2 0 1 0.05  N4C2W2 0 1 0.05 

N2C2W4 0 1 0.05  N4C2W4 0 0 0 

N2C3W1 0 0 0  N4C3W1 0 0 0 

N2C3W2 0 1 0.25  N4C3W2 0 1 0.35 

N2C3W4 0 1 0.4  N4C3W4 0 1 0.5 
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Table II-a: Results of AugNN with FFD for dataset 2 

Problem Subsets 

Iteration Number 

[min,max],mean 

Run Time 

(Sec) 

Z/UB ratio 

 

Problems Solved to 

Optimality
1
 (out of 10) 

N1W1B1 [73, 1909], 465.3 1.0016 1.01732 7 

N1W1B2 [1, 2285], 610.6 1.0654 1.024265 6 

N1W1B3 [1, 1], 1 0.6695 1.017688 7 

N1W2B1 [1, 270], 72.2 0.9852 1.02 8 

N1W2B2 [1, 955], 152.2 0.7195 1 10 

N1W2B3 [1, 1], 1 0.7336 1 10 

N1W3B1 [1, 5254], 526.3 1.2375 1.028571 8 

N1W3B2 [1, 721], 72.1 0.7898 1 10 

N1W3B3 [1, 1], 1 0.8336 1 10 

N1W4B1 [1, 1], 1 0.8961 1 10 

N1W4B2 [1, 1412], 241.4 0.8172 1 10 

N1W4B3 [1, 1], 1 0.9375 1 10 

N2W1B1 [87, 1858], 1086.9 5.2414 1.017647 4 

N2W1B2 [1, 460], 118.8 3.8977 1.032205 1 

N2W1B3 [1, 124], 13.3 3.7299 1.009315 7 

N2W2B1 [1, 1192], 497.1 4.7645 1.024524 5 

N2W2B2 [1, 85], 11.5 3.7016 1.01 8 

N2W2B3 [1, 1], 1 3.1898 1.004762 9 

N2W3B1 [1, 144], 15.3 3.8938 1.014286 8 

N2W3B2 [1, 2027], 203.6 3.2281 1 10 

N2W3B3 [1, 1], 1 3.2844 1 10 

N2W4B1 [1, 1], 1 3.3609 1.027273 7 

N2W4B2 [1, 140], 26.5 3.6828 1 10 

N2W4B3 [1, 212], 22.1 2.4813 1 10 

N3W1B1 [79, 1923], 1063 18.9223 1.032792 0 

N3W1B2 [1, 2222], 420.7 19.0676 1.037774 0 

N3W1B3 [1, 5] 1.4 12.3445 1.006039 6 

N3W2B1 [329, 2370], 836.6 18.3568 1.027012 0 

N3W2B2 [1, 476], 125.9 13.2742 1.012564 5 

N3W2B3 [1, 9] 1.8 10.5547 1.005 8 

N3W3B1 [1, 1178] 327.2 16.6313 1.020936 4 

N3W3B2 [1, 114] 25.4 11.8172 1.003571 9 

N3W3B3 [1, 1], 1 11.5531 1.003571 9 

N3W4B1 [1, 215] 85.8 15.4055 1 10 

N3W4B2 [1, 798] 180.5 13.8186 1 10 

N3W4B3 [1, 1], 1 9.2484 1 10 

N4W1B1 [52, 2490], 2126.1 88.6285 1.041289 0 

N4W1B2 [1, 1953], 704.8 110.2297 1.041544 0 

N4W1B3 [1, 33], 4.2 67.2305 1.001761 7 

N4W2B1 [154, 2495], 769.4 112.8489 1.044469 0 

N4W2B2 [1, 1881], 446.9 97.5063 1.011833 0 

N4W2B3 [1, 32], 4.1 53.7844 1.001 9 

N4W3B1 [28, 953], 442.8 110.4699 1.029577 0 

N4W3B2 [1, 189], 41.4 84.5820 1.00988 3 

N4W3B3 [1, 10], 1.9 58.4973 1 10 

N4W4B1 [1, 2290], 352.7 88.0484 1.019708 0 

N4W4B2 [1, 49], 5.8 67.7868 1.005455 7 

N4W4B3 [1, 1], 1 48.6267 1 10 

 Average   25.2995 1.012576 6.5 
1
312 out of 480 individual instances were solved to optimality. 
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Table II-b: Results of AugNN with BFD for dataset 2 

Problem Subsets 

Iteration Number 

[min,max],mean 

Run Time 

(Sec) 

Z/UB ratio 

 

Problems Solved to 

Optimality
1
 (out of 10) 

N1W1B1 [66, 2454], 570.8 1.2605 1.023529 6 

N1W1B2 [1, 1667], 343.7 0.7525 1.041585 3 

N1W1B3 [1, 1], 1 0.3393 1.017688 7 

N1W2B1 [1, 1076], 245.6 0.5135 1.02 8 

N1W2B2 [1, 1511], 298.2 0.3008 1 10 

N1W2B3 [1, 1], 1 0.1350 1 10 

N1W3B1 [1, 1], 1 0.5287 1.042857 7 

N1W3B2 [1, 1], 1 0.1135 1.014286 9 

N1W3B3 [1, 1], 1 0.1756 1 10 

N1W4B1 [1, 1], 1 0.4408 1 10 

N1W4B2 [1, 1], 1 0.1117 1.033333 8 

N1W4B3 [1, 1], 1 0.2949 1 10 

N2W1B1 [101, 1071], 582.3 9.3422 1.023529 2 

N2W1B2 [1, 934], 198.7 5.2975 1.032205 1 

N2W1B3 [1, 475], 48.4 2.0344 1.009315 7 

N2W2B1 [1, 2403], 357.9 7.2531 1.043571 1 

N2W2B2 [1, 104], 15.4 0.6615 1.01 8 

N2W2B3 [1, 1], 1 0.5602 1.004762 9 

N2W3B1 [1, 976], 98.5 1.2215 1.014286 8 

N2W3B2 [1, 1], 1 0.1033 1.007143 9 

N2W3B3 [1, 1], 1 0.3707 1 10 

N2W4B1 [1, 1], 1 2.0504 1.027273 7 

N2W4B2 [1, 616], 158.6 0.2764 1 10 

N2W4B3 [1, 755], 76.4 0.1967 1 10 

N3W1B1 [136, 1307], 407.8 34.8127 1.040233 0 

N3W1B2 [1, 421], 99 29.7865 1.039289 0 

N3W1B3 [1, 5], 1.4 7.7762 1.006039 6 

N3W2B1 [327, 2160], 1183.7 27.1352 1.029451 0 

N3W2B2 [1, 1483], 292.3 10.3301 1.012564 5 

N3W2B3 [1, 51], 9.6 0.4990 1.0025 9 

N3W3B1 [1, 2056], 725.2 15.8553 1.020936 4 

N3W3B2 [1, 349], 60.8 2.2695 1.003571 9 

N3W3B3 [1, 1], 1 1.0689 1.003571 9 

N3W4B1 [1, 793], 285.9 0.9541 1 10 

N3W4B2 [1, 1079], 275.1 1.9922 1.004545 9 

N3W4B3 [1, 1], 1 0.0719 1 10 

N4W1B1 [65, 1809], 545.2 161.8008 1.047869 0 

N4W1B2 [1, 101], 28 182.8211 1.044549 0 

N4W1B3 [1, 32], 4.1 30.3496 1.001761 7 

N4W2B1 [144, 1480], 513.7 144.7898 1.044488 0 

N4W2B2 [1, 186], 22.1 112.6480 1.014804 0 

N4W2B3 [1, 32], 4.1 7.6566 1.001 9 

N4W3B1 [89, 2346], 762.1 131.3199 1.029577 0 

N4W3B2 [1, 716], 132.2 61.9070 1.00988 3 

N4W3B3 [1, 39], 4.8 0.0828 1 10 

N4W4B1 [1, 757], 235.7 112.6926 1.019708 0 

N4W4B2 [1, 91], 10 21.3766 1.005455 7 

N4W4B3 [1, 1], 1 0.0066 1 10 

 Average   23.63204  1.015566 6.19 
1
297 out of 480 individual instances were solved to optimality. 
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Table II-c: Improvement by AugNN over single-pass FFD for dataset 2 

Problem 

Subsets Min Max Avg 

 Problem 

Subsets Min Max Avg 
N1W1B1 1 2 1.5  N3W1B1 5 6 5.4 

N1W1B2 0 1 0.6  N3W1B2 0 1 0.8 

N1W1B3 0 0 0  N3W1B3 0 1 0.1 

N1W2B1 0 1 0.4  N3W2B1 0 1 1.9 

N1W2B2 0 1 0.4  N3W2B2 0 1 0.4 

N1W2B3 0 0 0  N3W2B3 0 1 0.1 

N1W3B1 0 1 0.1  N3W3B1 0 1 0.6 

N1W3B2 0 1 0.1  N3W3B2 0 1 0.3 

N1W3B3 0 0 0  N3W3B3 0 0 0 

N1W4B1 0 0 0  N3W4B1 0 1 0.8 

N1W4B2 0 1 0.2  N3W4B2 0 1 0.5 

N1W4B3 0 0 0  N3W4B3 0 0 0 

N2W1B1 2 3 2.8  N4W1B1 10 12 11.3 

N2W1B2 0 1 0.4  N4W1B2 1 2 1.2 

N2W1B3 0 1 0.1  N4W1B3 0 1 0.1 

N2W2B1 0 1 0.8  N4W2B1 3 4 3.3 

N2W2B2 0 1 0.2  N4W2B2 0 1 0.6 

N2W2B3 0 0 0  N4W2B3 0 1 0.1 

N2W3B1 0 1 0.1  N4W3B1 1 2 1.2 

N2W3B2 0 1 0.1  N4W3B2 0 1 0.4 

N2W3B3 0 0 0  N4W3B3 0 1 0.1 

N2W4B1 0 0 0  N4W4B1 0 1 0.9 

N2W4B2 0 1 0.3  N4W4B2 0 1 0.1 

N2W4B3 0 1 0.1  N4W4B3 0 0 0 
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Table II-d: Improvement by AugNN over single-pass BFD for dataset 2 

Problem 

Subsets Min Max Avg 

 Problem 

Subsets Min Max Avg 
N1W1B1 1 2 1.4  N3W1B1 4 5 4.9 

N1W1B2 0 1 0.3  N3W1B2 0 1 0.7 

N1W1B3 0 0 0  N3W1B3 0 1 0.1 

N1W2B1 0 1 0.4  N3W2B1 1 2 1.8 

N1W2B2 0 1 0.3  N3W2B2 0 1 0.4 

N1W2B3 0 0 0  N3W2B3 0 1 0.2 

N1W3B1 0 0 0  N3W3B1 0 1 0.6 

N1W3B2 0 0 0  N3W3B2 0 1 0.3 

N1W3B3 0 0 0  N3W3B3 0 0 0 

N1W4B1 0 0 0  N3W4B1 0 1 0.8 

N1W4B2 0 0 0  N3W4B2 0 1 0.4 

N1W4B3 0 0 0  N3W4B3 0 0 0 

N2W1B1 2 3 2.6  N4W1B1 9 12 10.2 

N2W1B2 0 1 0.4  N4W1B2 0 1 0.7 

N2W1B3 0 1 0.1  N4W1B3 0 1 0.1 

N2W2B1 0 1 0.4  N4W2B1 3 4 3.3 

N2W2B2 0 1 0.2  N4W2B2 0 1 0.3 

N2W2B3 0 0 0  N4W2B3 0 1 0.1 

N2W3B1 0 1 0.1  N4W3B1 1 2 1.2 

N2W3B2 0 0 0  N4W3B2 0 1 0.4 

N2W3B3 0 0 0  N4W3B3 0 1 0.1 

N2W4B1 0 0 0  N4W4B1 0 1 0.9 

N2W4B2 0 1 0.3  N4W4B2 0 1 0.1 

N2W4B3 0 1 0.1  N4W4B3 0 0 0 

 

 

 

Table III: Improvement by AugNN over single-pass FFD 

Dataset 

Single Pass 

FFD 

AugNN (optimal)  AugNN (improvement) 

Problems Solved 

to Optimality 

Dataset 1 547 50 28 597 

Dataset 2 236 76 99 312 
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Table IV: Improvement by AugNN over single-pass BFD 

Dataset 

Single Pass 

BFD 

AugNN (optimal)  AugNN (improvement) 

Problems Solved 

to Optimality 

Dataset 1 547 40 26 587 

Dataset 2 236 61 97 297 

 

  

 

Table V: Results for dataset 3 

Number of Bins filled 

After 
Problem 

Name 4-Pack  3-Pack  AugNN 

Run Time 

(Sec) 

Z/UB
1
 

 

Hard0 32 43 56 0.2560 1 

Hard1 31 44 57 0.2656 1 

Hard2 31 45 57 0.1406 1.0178571 

Hard3 35 45 55 0.2265 1 

Hard4 29 39 57 0.1758 1 

Hard5 32 43 56 0.2773 1 

Hard6 29 42 57 0.3945 1 

Hard7 26 38 55 0.1893 1 

Hard8 31 44 57 0.2657 1 

Hard9 23 37 57 0.3867 1.0178571 

     0.2580  1.0035714 
1
8 out of 10 individual instances were solved to optimality. 
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Figure 1: Neural Network representation of the Bin Packing Problem 
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Figure 2: Order of evaluation of AugNN functions 
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Figure 3a: Plot of items and their sizes (for four-item bin packing) 

 

 

 

 

 

 

 

 

 

Figure 3b: Plot of items and their sizes (for three-item bin packing) 
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