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Abstract:  

Parallel turning operations are advantageous in terms of productivity since there are more than one cutting 

tools in operation. However, the dynamic interaction between these parallel tools may create additional 

stability problems and the advantage of parallel turning may not be utilized to full extent. For that reason, 

dynamics and stability of parallel turning processes need to be modeled. In this paper, dynamics of two 

different parallel turning operations where two turning tools cut a common workpiece are modeled. In the 

first case, the tools are directly coupled to each other whereas in the other case the coupling occurs through 

the vibration waves left on the workpiece. For these two cases, stability models in frequency and time 

domain have been developed. The frequency and time-domain solution results are compared and a 

reasonable agreement is observed. The predicted stability limits are also compared with experimental results 

where good agreement is demonstrated.  
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1. Introduction 

 

In parallel turning operations more than one turning 

tool cut a common workpiece simultaneously. Due to the 

parallel working tools, these processes have potential for 

increased productivity. However, dynamic interactions 

among the tools may result in additional stability 

problems and the advantage of using parallel processes 

may be compromised. 

The stability of single tool turning processes has been 

studied in detail by many researchers. The initial works 

about orthogonal turning stability belong to Tobias and 

Fishwick [1], and Tlusty and Polacek [2]. They 

demonstrated regenerative effect between dynamic cutting 

forces and dynamic displacements which results in chatter 

vibrations. Moreover, they predicted the stability limits in 

order to eliminate these vibrations.  Later, Tlusty and 

Ismail [3] performed time domain simulations and 

acquired more accurate results for stability limits. Moufki 

et. al [4] applied thermo-mechanical model of cutting to 

the one dimensional stability formulation. Chen et al. [5] 

and Vela-Martinez, et al. [6] added the workpiece 

dynamics in the stability formulations. Rao et al. [7] 

extended the stability formulation to 3D for 

three-dimensional oblique turning operations. They 

included the cross-coupling between radial and axial 

vibrations in the force model. Similarly, Ozlu and Budak 

[8] formulated the stability considering the displacements 

of tool and workpiece in radial and axial directions. 

Moreover, they showed the effect of nose radius on the 

stability limits. In another study, Ozlu and Budak [9] 

showed that when inclination angle or nose radius exists 

on the tool, multi-dimensional solution is needed since the 

one dimensional stability formulation [2] fails to represent 

the dynamics of the process accurately.    

  

 

 

Although there are substantial amount of work done on 

chatter stability for standard turning operations, there are 

only a few studies on parallel turning process stability. 

Lazoglu et al. [10] formulated a parallel turning process in 

time domain where each tool cuts a different surface. 

There is no direct interaction between the tools in the 

presented case; the dynamic coupling between the tools 

occurs through the flexible workpiece. By simulations, 

they showed that parallel working tools decrease the 

stability limits of each other. Later, Ozdoganlar and 

Endres [11] developed a parallel turning process on a 

modified vertical milling machine where they cut different 

surfaces. Dynamic interaction between the tools is 

achieved using an angle plate and the workpiece is rigid. 

The analytical solution provided is valid for symmetric 

systems. They validated the developed formulation 

through experimental results. 

In this paper, dynamics of two different parallel turning 

operations are modeled. In the first case, a specially 

designed tool holder which can hold two cutting tools is 

used on a standard turning center. There is direct dynamic 

coupling between the tools since they are on the same 

turret location. In the second case, the turning tools are 

clamped on independent turrets on a parallel turning 

center. In this case, there is no direct dynamic coupling 

between the tools, but they dynamically interact through 

the workpiece. The formulations for both cases are 

presented in the next section. In section 3, the procedure 

developed for generation of stability diagrams is 

explained.  The stability limit predictions of the 

presented model are demonstrated for different cases and 

the simulation results are compared by experimental data 

in section 4.  
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2. Formulating Dynamics of Parallel Turning  

Dynamics of two different parallel turning operations 

are modeled in this section. In the first case, two turning 

tools are clamped on a specially designed tool holder on a 

standard turning centre as shown in Figure 1(a). The 

movements of the tools are dependent on each other since 

they are on the same turret; but they cut different surfaces 

on the workpiece. In the second case, two turning tools are 

clamped on different tool holders on different turrets on a 

parallel machining centre as presented in Figure 1(b). 

Although the turrets can move independently, they cut the 

same surface on the workpiece. The dynamics of each 

case is analyzed in the following subsections. 

  

   (a)      (b) 

Figure 1: Parallel turning cases (a) two turning tools on 

the same turret (b) two turning tools on different turrets  

2.1 Two turning tools on the same turret  

A parallel turning process with two turning tools on the 

same turret machining different surfaces is illustrated as 

shown in Figure 2. The tools move together in the feed 

direction. The tool that cuts the workpiece first is 

numbered as tool 1. Cutting depths of each tool can be 

different; the cutting depth of tool 1 and tool 2 are 

represented by a1 and a2, respectively. In order to keep the 

stability formulation in one dimension [9] and focus more 

on the effects of parallel machining, the tools are 

considered to have no side cutting edge and oblique 

angles. In this case, only the displacements of the tools in 

the feed direction affect the regeneration mechanism. 

Each tool can be modeled as being attached to a rigid 

surface of the machine with springs (k1,k2) and damping 

elements (b1,b2) as shown in Figure 2. Moreover, there is 

dynamic interaction between the cutting tools which is 

represented by spring and damping elements (k12 and b12) . 

Due to this interaction, the process is dynamically parallel, 

i.e., the dynamic cutting force on each tool affects the 

dynamic displacement of the other. The dynamics of the 

workpiece can easily be included in the formulation. 

However, it is neglected here since the workpiece is 

considerably rigid with respect to the cutting tools along 

its longitudinal axis, i.e., the Z–axis.  

For the stability analysis, the dynamic chip thickness of 

each cutting tool is formulated first. The feed per 

revolution values (ho) of both tools are the same since they 

move together on the same turret. As shown in Figure 2, 

dynamic displacements on the tools occur due to forces 

(F1, F2) in the feed direction. The displacements of tool 1 

and tool 2 are represented by z1 and z2, respectively. 

Dynamic chip thicknesses (h1, h2) of each tool resulting 

from the dynamic displacements are expressed as: 
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Figure 2: Parallel turning on different surfaces 

where τ is rotation period of the workpiece in seconds, and 

t represents the present time. The dynamic chip 

thicknesses are affected by the dynamic displacements 

between two sequential rotation periods. Since the static 

chip thickness, ho, does not affect the regeneration 

mechanism [12], it can be excluded from the stability 

formulation. The dynamic displacements can be expressed 

by transfer functions of the system and dynamic cutting 

forces as shown below: 
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where Gij is the transfer function that represents the 

dynamics of the i
th
 tool in response to a force generated by 

the j
th

 tool. These transfer functions can be measured by 

tap-testing and modal analysis [12]. Dynamic forces in the 

feed direction are expressed in terms of the feed cutting 

force coefficient, Kf, cutting depths and the dynamic chip 

thicknesses as follow: 
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As can be seen from the above relation, edge forces are 

neglected in the stability analysis since they do not 

contribute to the regenerative process. By substituting the 

equations for dynamic chip thickness into Eq. (3), the 

following equation is obtained:    
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The dynamic displacements and cutting forces when 

the system is marginally stable can be expressed as, 
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Marginal stability refers to the transition phase between 

the stable region and unstable region. Since the two tools 

are interacting with each other dynamically, they vibrate 

with the same chatter frequency c. Additionally, the 

dynamic displacement values in the previous rotation at 

the limit of stability can be written as follows [12]: 
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By substituting equations (2), (5) and (6), into Eq. (4), 

the cutting forces at the stability limit become: 
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In order to simplify the equation above, a new matrix B 

is defined below: 
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2.2 Two turning tools on different turrets 

A parallel turning process with two turning tools on 

different turrets is demonstrated in Figure 3. They cut the 

same surface but the cutting depths of the tools can be 

different. According to the notation used in the model, the 

tool with a higher cutting depth is named as the second 

tool (Figure 3). The flexibilities of the tools in Z direction 

are considered only in this case. Since the workpiece is 

relatively rigid with respect to the cutting tools, the 

workpiece flexibility is neglected. Although there is no 

dynamical coupling between the tools, they are 

dynamically dependent since vibration waves left by each 

tooth on the workpiece surface affect the other tooth’s 

dynamic chip thickness.   

 

Figure 3: Parallel turning on the same surface 

Due to the dynamic cutting forces on each tool (F1 and 

F2), the dynamic displacements (z1 and z2) develop on the 

tools. These displacements affect the dynamic chip 

thickness values, and the dynamic cutting forces on each 

tool can be written as follows: 
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Unless the cutting depths on each tool are equal, there 

are two different regions with different mechanical and 

dynamic characteristics in the process. The region with 

depth of a1 is removed by both of the tools. In this region, 

dynamic chip thickness on a tool is affected by the 

displacement of the tool at present time and the 

displacement of the other tool at a half rotation period 

(/2) before. The feed per revolution ho is shared between 

the tools in this region as the static chip thickness. On the 

other hand, the region with a depth of a2-a1 is only 

removed by the second tool. Hence, the dynamic chip 

thickness depends on the dynamic displacement of the 

second tool at present time and at one rotational period () 

before. The static chip thickness on the second tool is 

equal to the feed per revolution in this region.    

Since the static chip thicknesses on the tools do not 

affect the regeneration mechanism, they can be removed 

from the formulation presented in Eq. (9) for stability 

analysis. Dynamic displacements (z1 and z2) can be 

calculated in terms of cutting forces and transfer functions 

as follows: 
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Dynamic displacements and dynamic cutting forces on 

the tools at the limit of the stability can be written using 

Eq.(5). Dynamic displacement of the second tool one 

rotational period before can be determined using Eq. (6). 

Moreover, the displacements one half of the rotation 

period before can be calculated using the following 

formulation: 
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After the presented formulations are substituted into Eq. 

(9) and re-arranged, the cutting forces at the limit of 

stability can be written as follows: 
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where B matrix for this case is presented below: 
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3. Calculation of stability diagrams 

The procedure for generation of stability diagrams for 

the two cases considered is presented in this section. After 

some arrangements, the relations developed for dynamic 

cutting forces in Eq. (7) and Eq. (12) take the following 

form:   
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where I is the 2*2 identity matrix. In order to have 

non-trivial solutions at the stability limit, the determinant 

of [I-B] matrix should be equal to zero. The determinant 

results in a complex equation with variables a1, a2, c and 

τ. When the real and imaginary parts of the equation are 

grouped and equated to zero, two independent equations 

are obtained (Eq. (15)) [12]. Since the resulting equations 

are lengthy, they are presented symbolically as follows: 
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In the first parallel turning case presented in section 2.1, 

the cutting depth a2 is the height difference between tip 

positions of tool 1 and tool 2. It is set after the tools are 

fixed on the tool holder. For that reason, a2 is a known 

parameter for a given configuration. Thus, the stability 

diagram for a1 can be determined for a given a2. 

For the second parallel turning case explained in the 

section 2.2, the cutting depth on the second tool, a2, 

should be selected before the stability analysis. Similar to 

the first case, the stability diagram for a1 can be obtained 

for a given a2. But it should be remembered that that a2 is 

selected as higher than a1 in the related formulation. 

Hence, only the stability limit values for a1 which are less 

than a2 should be considered as solution    

After these explanations, there are three unknowns, 

namely a1, c and τ, in the formulation for both parallel 

turning cases whereas there are only two independent 

equations at hand. Cutting depth a1 is solved in terms of 

c and τ using the real part of the complex equation in Eq. 

(15) and this relation is substituted into the imaginary part 

of the complex equation in Eq. (15). Hence, a1 term is 

eliminated, and the imaginary part of the complex 

equation is obtained with 2 parameters, c and τ, only. 

The resulting equation includes many trigonometric 

functions, and thus a closed form analytical solution for 

c or τ is not possible to obtain. Hence, a search algorithm, 

named as golden section search [13], is used to solve τ for 

a given c.  

In the solution procedure, firstly a chatter frequency 

range is selected where c,minc,max and  represent 

lower limit, upper limit and increment of the frequency 

range, respectively. Since chatter frequencies (c) are 

expected to be close to the natural frequency of the tools, 

the selected range should contain all the natural 

frequencies of the system. Then, the spindle speeds are 

swept with n increments for a given chatter frequency 

(c). Each spindle speed n corresponds to a rotational 

period τ by n=60/.  For each c and τ pair, the 

imaginary part of the complex equation in Eq. (15) is 

calculated. If there is a sign change between consecutive τ 

values, a root of the equation is bracketed in an interval 

with a width of n. Then, using the golden section search 

[13], spindle speed value that satisfies the equation is 

identified with a preset tolerance. For each chatter 

frequency, more than one spindle speed is determined 

corresponding to different lobe numbers in the stability 

diagram. Using calculated rotational periods and given 

chatter frequencies, a1 values are calculated by the real 

part of the Eq. (15). c and τ pairs resulting in negative a1 

values are eliminated from the solutions. Finally, the 

stability diagram can be obtained by plotting a1 with 

respect to the spindle speed. Since a search algorithm is 

employed to obtain the stability diagrams, increments in 

the frequency and spindle speed ranges, which are 

represented by and n, have considerable effects on 

the stability diagrams. Hence, they should be selected 

small enough until a convergence in the solution is 

obtained. 

4. Experimental Results and Simulations 

In the tests, 1050 steel work material and TPGN 

160304 TT1500 cutting inserts are used. For feed values 

between 0.005mm and 0.13mm and cutting speed of 200 

m/min, the edge and cutting force coefficients in the feed 

direction are calibrated as 116N/mm and 872 MPa, 

respectively, using the linear-edge force model[14].  

The FRFs of the flexible structures are measured using 

tap testing as shown in Figure 4. The modal data is 

determined using Cutpro software [15] and the transfer 

functions are calculated using the following equation:  
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where q is the number of modes used to represent the 

transfer function. The stability results for two different 

examples that represent the two processes explained in 

section 2 are presented here. In the first example, a 

standard turning machine tool (Mori Seiki NL 1500) is 

used with a special tool holder, and in the second example 

a parallel machine tool (Index ABC) is employed.  

   

(a)  (b) 

Figure 4: Measurement of FRFs for different processes 

4.1 The first example 

In this example, the cutting tools are clamped on the 

same turret with a special tool holder in order to achieve 

parallel turning process on a standard turning machine 

(Figure 4(a)). Due to the design of the tool holder, cutting 

depth of the second tool a2 is fixed after the tools are 

clamped to the holder. Second tool is clamped in such a 

way that a2 becomes 4.7mm in the parallel turning 

operation. The modal data determined for the tools are 

tabulated in Table 1. The workpiece is an 85 mm diameter 

cylinder (Figure 1(a)) and it’s relatively rigid with respect 

to the tools in the feed direction.  

First of all, using the orthogonal stability model [12], 

the stability diagram for each tool is calculated for 

independent operation. The absolute stability limits of the 

first and second tools are around 4.45 mm 5.45mm, 

respectively. The chatter frequencies that result in the 

minimum stability are quite different on each tool. The 

chatter frequency at the absolute stability for the first tool 

is 2325Hz whereas for the second tool it is 3680 Hz.  

The stability diagram for a1 when two tools work in 

parallel is presented in Figure 5. The first tool’s absolute 

stability limit decreases slightly due to the second tool. 

But comparing this decrease with the additional depth of 

cut of 4.7 mm removed by the second tool, it can be 

claimed that parallel turning is very advantageous as the 

total stable material removal rate nearly doubles compared 

to the case with only one tool is in cut.  
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 Mode fn(Hz)  k(N/m) 

G11 1 2086.1 5.71 4.875*10
7
 

 2 2290.7 1.61 2.272*10
8
 

 3 3899.9 1.22 3.591*10
8
 

G12 =G21 1 2067.1 5.55 1.635*10
8
 

 2 3572.7 5.35 -2.189*10
8
 

G22 1 2050.7 4.78 6.753*10
8
 

 2 2553.9 2.87 8.602*10
8
 

 3 3036.1 6.09 5.903*10
7
 

 4 3443.5 1.29 3.141*10
8
 

 5 3629.6 1.61 3.069*10
8
 

Table 1: Modal data of the first example 

 

Figure 5: Stability diagram for the parallel operation, 

a2=4.7mm    

 

Figure 6: Variation of sound amplitude with a1.  

In order to verify the predictions, several cutting tests 

have been performed for single and parallel processes at 

750 rpm. In both processes, the first tool’s cutting depth a1 

was changed at 6 levels between 0.1 mm and 5.9 mm. 

During the tests, the sound amplitude was measured using 

a microphone that is fixed to the turret. Maximum sound 

amplitude is plotted with respect to cutting depth a1 for 

both single and parallel processes in Figure 6. It can be 

seen that there is a sharp increase in sound amplitudes 

between a1=3.9 mm and a1=5.9 mm for both single and 

parallel processes which means that the stability limit for 

both cases is between 3.9 and 5.9 mm. Moreover, two 

photos of the surfaces created by the first tool in parallel 

operation are presented in Figure 6. The one on the right 

(a1=5.9 mm) has chatter marks while they are not seen on 

the left one (a1=3.9 mm). For the single tool process, 

similar result is also observed. As a result, it can be 

concluded that the model’s predictions agree with the 

experimental results. 

4.2 The second example 

In this example case, the cutting tools are clamped on 

independent turrets on a parallel machine tool as shown in 

Figure 1(b). Although they are independent, they are 

programmed such that there is no relative motion between 

the cutting tools, and their Z coordinates are the same 

during the parallel turning process. Hence, they cut the 

same surface. The modal data measured for the first and 

second tool in the feed direction are tabulated in Table 2. 

Note that in this case the modal frequencies of the tools 

are quite close to each other which has significant 

consequences on the parallel cutting stability as it will be 

shown below. The workpiece is a 35mm diameter cylinder 

and its flexibility in the feed direction can be neglected 

compared to the flexibility of the cutting tools. For that 

reason, dynamic interaction between the tools occurs only 

through the effect of vibration waves left by each tool on 

the other tool. 

Mode fn(Hz)  k(N/m) 

G11 2238.9 3.23 4.769*10
7
 

G22 2372.3 4.51 1.166*10
8
 

Table 2: Modal data of the second example 

For independent operation of the cutting tools, the 

stability limits for the first and the second tools are 

calculated using the orthogonal stability model [12]. The 

first tool’s absolute stability limit is determined as 3.4 mm 

at 2310Hz whereas the absolute stability limit of the 

second tool is calculated as 12.6 mm at 2480Hz. 

 

Figure 7: Effect of a2 on absolute stability limits 

When two tools work in parallel, the effect of the 

cutting depth a2 on the absolute stability of the first tool is 

presented in Figure 7. In this case there can be two 

stability limits defining the boundaries of minimum and 

maximum stable cutting depths for the first tool. This 

means that the process is stable if the cutting depth is 

between these boundaries. This is believed to be due to 

very close modal frequencies of the tools which increases 

the dynamic interaction effects.  As it was demonstrated 

in the previous example, parallel cutting may increase the 

total stability of the system due to this interaction which in 

this case is enhanced due to close modal frequencies. One 

may see this as an “absorber effect” similar to tuned 

vibration absorbers. The curve with legend “Limit1” in 

Figure 7 represents the higher absolute stability of the first 

tool. Note that increasing a2 value has stabilizing effect on 

the system. This effect is seen for the a2 values between 8 

and 25 mm. For higher values of a2, the process becomes 

unstable independent of a1. For a2 values higher than 12.6 

mm the lower stable cutting depth, “Limit2”, is also seen 

on the stability diagram. It also increases with a2 and 

becomes closer to Limit1. For a2 values higher than 25mm, 

Limit1 and Limit2 coincide and the system becomes 

totally unstable. In order to demonstrate the “two-limit” 

case, stability diagram calculated when a2 is 25 mm is 

presented in Figure 8.          

A time domain model is also developed for dynamics 

of parallel turning processes. Although its details are not 
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in the scope of this paper, the time domain model is used 

to verify the observations made in Figure 7. With that 

purpose, 3 points (d, e and f) are selected on Figure 7, and 

the variations of the displacements of first tool in time are 

presented in Figure 9 for spindle speed of 1825 rpm. 

Analyzing the trends of z1 variations, points d and f are 

identified as unstable while point e is clearly a stable point. 

These results verify the frequency model’s predictions. 

 

Figure 8: Stability diagram of tool 1 when a2 is 25mm 

a1=9mm

a1=5mm

a1=1mm

 

Figure 9: Variation of z1 at points f, e, d on Figure 7.  

5. Conclusion 

Stability models for different parallel turning processes 

are presented in this paper. These models are useful for 

understanding the dynamic interaction of parallel working 

tools and predicting the effect of this interaction on 

stability limits. The models’ results are demonstrated on 

several examples and advantage of parallel turning with 

respect to single tool turning is demonstrated. Moreover, 

experimental and time domain verifications of the 

presented models are presented. It is demonstrated that the 

total cutting stability in a parallel turning process can be 

increased compared to single tool turning due to dynamics 

interactions between the tools. This effect is enhanced if 

the modal frequencies of the tools are close to each other 

similar to the situation in tuned vibration absorbers.   
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