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ABSTRACT 
Coarse-grained network models of proteins successfully predict equilibrium properties 

related to collective modes of motion. In this study, the network construction strategies and their 
systematic application to proteins are used to explain the role of network models in defining the 
collective properties of the system. The analysis is based on the radial distribution function, a 
newly defined angular distribution function and the spectral dimensions of a large set of globular 
proteins. Our analysis shows that after reaching a certain threshold for cut-off distance, network 
construction has negligible effect on the collective motions and the fluctuation patterns of the 
residues.  

INTRODUCTION 

   Globular proteins show diversified structures and sizes, yet, it has been claimed that they 
display a nearly random packing of amino acids with strong local symmetry on the one hand [1], 
and that they are regular structures that occupy specific lattice sites, on the other [2]. It was later 
shown that this classification depends on the property one investigates, and that proteins display 
“small-world” properties, where highly ordered structures are altered with few additional links 
[3]. Furthermore, packing density of proteins scales uniformly with their size [4] which causes 
them to show similar vibrational spectral characteristics to those of solids [5,6]. Coarse grained 
protein models have shown a great success in the description of the residue fluctuations and the 
collective behavior of proteins [7]. Using a single parameter harmonic potential [8], the large 
amplitude motions of proteins in the native state have been predicted successfully using normal 
mode analysis [9]. This model, with its simplicity, speed of calculation and relying mostly on 
geometry and mass distribution of the protein, demonstrates that a single-parameter model can 
reproduce complex vibrational properties of macromolecular systems.  

Following the uniform harmonic potential introduced by Tirion [10], residue level 
application of elastic network models paved the way for the Gaussian Network Model, which is 
based on the energy balance of the system at the energy minimum [9,11]. Elastic models based 
on the force balance around each node [12] led to the development of the so called Anisotropic 
Network Model (ANM) [13]. The applications of these models on many proteins show 
successful results in terms of predicting the collective behavior of proteins. Despite numerous 
applications comparing the theoretical and experimental findings on a case-by-case basis [14], 
only a few attempted a statistical assessment of the models. In another study where 170 pairs of 
structures were systematically analyzed, it was shown that the success of coarse-grained elastic 
network models may be improved by recognizing the rigidity of some residue clusters [15]. The 
results have also been shown to be protein dependent [16].  
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To date, the structures that form the basis of the network models have been generated 
from certain rules of thumb. Connectivity is assumed between Cα atom pairs in a range of 8 – 14 
Å in different studies in the literature based on the argument that (i) the eigenvalue distributions 
obtained from the modal decomposition are similar to those obtained from the full-atom NMA 
description of proteins, or (ii) these provide atomic fluctuation profiles that display the largest 
correlation with the experimental B-factors. In this study, we use a systematic approach on a 
large set of globular proteins with varying architectures and sizes to find a basis for why the 
network models work well to define certain properties of the system. We show that the network 
construction is free of the cut-off distance problem once a certain baseline threshold is accessed, 
if one is interested in the collective motions and the fluctuation patterns of the residues.  

COMPUTATIONAL DETAILS  

Network construction. We base our calculations on a set of 595 proteins with sequence 
homology less than 25% and sizes spanning 54–1021 residues [17]. A protein of N residues is 
treated as a residue-based structure, where the Cα  atom of each amino acid is considered as a 
node, and the coordinates of the protein are obtained from the protein data bank (PDB) [18]. The 
network information is contained in the N × N adjacency matrix, A, of inter-residue contacts, 
whose elements Aij are taken to be 1 for contacting pairs of nodes i and j, and zero otherwise. We 
establish a link between two nodes if they are within a cut-off distance rc of each other.  

Radial and angular distribution functions. The radial distribution function (RDF), g(r), is a 
measure of the correlation between the locations of particles within a system, measured as the 
probability of finding another particle at a distance, r, from a chosen particle, normalized by the 
volume element. In the current work, we are not only interested in the number distribution of 
particles around a given node, but also concentrate on the link structure. By treating all neighbors 
of a node equivalently, we find that as rc is increased with the addition of new neighbors to each 
node, the resultant vector, Qi, on node i due to all its neighbors, j, converges to a certain location, 
Q௜ ൌ ∑ ௜௝௝ܣ R௜௝, where Rij is the unit vector connecting residue pairs i and j, and Aij are the 
elements of the adjacency matrix. An example is shown on a 54 residue α-helical protein (PDB 
code: 1enh) in Fig. 1, where the length of a red vector is proportional to rc and demonstrate that 
at small rc, the neighbors of a node are at distinct locations, whereas with increasing rc, the new 
nodes are added in a spherically symmetrical manner so that the resultant vector, Qi, is slightly 
modified. To quantify this behavior, we define the angular distribution function (ADF), which is 
the distribution of angular change, Δϕ, of the resultant vector obtained from the contacting 
residues at a distance r to r+dr to the reference residue, where dr is a perturbation on the 
distance r:  
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Anisotropic network model. In ANM, once the networks are formed, the interactions between 
connected nodes is considered to be harmonic [13], coupled by elastic springs having a uniform 
force constant γ. Thus, the overall potential of the molecule is given by the sum of all harmonic 
potentials among interacting nodes. For a network of N nodes, the Hessian is a 3N x 3N matrix 
whose pseudo-inverse is the covariance matrix C that can be expressed in terms of the 3N – 6 
non-zero eigenvalues ߣ௞ and corresponding eigenvectors uk

 of ۶ as, C = U Λ-1 UT. The residue 
fluctuations are predicted by the ANM for residue i from the trace of ۱௜௜ . Theoretically, they are 
related to the B-factors determined from X-Ray crystallografic data through the relation, ۰௜ ൌ



ሺ8ߨଶ݇஻ܶ/3ߛሻ ݎݐሺ۱௜௜ ሻ, where kB is the Boltzmann constant and T is the absolute temperature. 
The value of γ is determined a posteriori if experimental data are available, and does not affect 
the fluctuation profile of residues. 

 
Figure 1. (a) The negative of the resultant vectors acting on the nodes, െQ࢏, exemplified by a 54 residue protein 
(PDB code: 1enh). The length of each red vector is proportional to rc used, shortest at 7 Å and longest at 15 Å. (b) 
Part of the helix marked by the square in (a) is magnified; “exterior” refers to the solvent contacting part of the 
helix, and “interior” marks the side facing protein core. 

RESULTS AND DISCUSSION  

Structural heterogeneity of amino acid distributions in proteins. The RDF, g(r), of the 
residues is presented in Fig. 2a for distances up 20 Å, recorded at 0.1 Å resolution. We find that 
the first sharp peak in g(r) ends at ca. 6.7 Å corresponding to the first coordination shell, the 
second coordination shell occurs at 8.5 Å. Broader peaks ending at 10.5 and 12 Å are identified 
as the third and fourth shells. At larger distances, g(r) monotonically decreases, indicating that 
the coarse-grained residue beads do not undergo further ordering in the liquid-like environment. 
In Fig. 2a we also display the ADF, g(ϕ), for the same set of proteins in the same distance range. 
We find that the main peaks of ADF and RDF overlap, the only difference in the general 
character of the two distribution functions being in the third and fourth coordination shells. In 
RDF, we find that a similar number of particles per unit volume exist in these two coordination 
shells (same height in the distribution). The ADF provides the additional information that, due to 
the asymmetry in the intensities of the third and fourth coordination shells, these particles are 
clustered in relatively more ordered directions in the third shell, quantified by the increase in 
ADF to ca. 5°. The ADF provides the valuable information that the additional particles are taken 
into account as more concentric spherical shells of 0.1 Å diameter are added (recall Fig. 1), have 
a preferred direction of clustering at the regions of higher number density. Conversely, at larger 
distances, the new neighbors carry directionality that cancel each other out, as would be expected 
from a random packing of spheres, quantified by the monotonical decrease in g(ϕ).  

Since globular proteins may be considered to be made up of a core region surrounded by 
a molten layer of surface residues [19], it is of interest to distinguish the topological differences 
between the core and the surface (Fig. 2b). We observe that core residues have larger angular 
changes in the resultant vector, Q௜ (Eq. 2) compared to the surface residues. Thus, the resultant 
vector on the surface residues rapidly converges to a given directionality specific to each residue 
at short distances, the additional links at higher distances arriving in directions that cancel out. 
The overall structural heterogeneity is detected much clearly in the g(ϕ) of the core residues. 
However, the heterogeneity in the first coordination shell is more pronounced over that of the 
second for the surface residues, possibly due to the loose packing in this region.  

Density of vibrational normal modes. The vibrational normal mode spectra, g(ω), of proteins 
was originally studied by ben-Avraham for five proteins with sizes in the range of 39 – 375 
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residues, the data collapsing on a single curve, especially in the slow mode region [5]. The 
density of states was found to increase linearly with the frequency in this region, implying a 
spectral dimension of ds = 2 and deviating from the Debye model of elastic solids where the 
expected value is 3 [20]. The anomalous spectral dimensions of proteins was also confirmed by 
inelastic neutron scattering experimental measurements, which  yielded ds ≈ 1.4 for HEWL [21]. 
More recently, an equation of state relating the spectral dimension, fractal dimension and the size 
of a protein was developed based on the coexistence of stability and flexibility in proteins [22].  

 
Figure 2. (a) Radial and angular distribution functions obtained by averaging over 595 proteins. (b) ADFs computed 
separately for the core and surface residues for a subset of 60 proteins. 

In Fig. 3a, we display the rc dependence of normal mode spectra averaged over 26 
proteins of size 150 ± 10 residues, enabling us to disregard the size effect in the calculations. The 
low-frequency band of the graph is responsible for large amplitude collective motions related to 
function, whereas the high-frequency band refers to small amplitude motions of individual 
residues. We find that at rc = 7 Å (where neighbors are from the first coordination shell), the 
distribution is characterized by a direct drop in density with increasing frequency. The universal 
behavior of the slow vibrational modes of proteins is recovered at higher rc values. Above the 
cut-off distances that include the fourth coordination shell (rc > 12 Å), a shoulder in the higher 
frequency region first appears, then broadens as rc is increased. At rc > 16 Å, a two-peaked 
density profile that is uncharacteristic of proteins sets in (inset to Fig 3a).  

Thus, an rc value in the range of 8 – 16 Å captures the general shape of protein 
vibrational spectra. Yet, inasmuch as one utilizes network models to study collective motions of 
proteins as a superposition of several low frequency modes, it is important to capture the 
distribution in the slow mode region of the protein in more detail. This region is intimately 
related to material properties, characterized by the spectral dimension, ds. In Fig. 3b, we plot the 
spectral dimensions of these systems, obtained from power law best-fits to the cumulative 
density of modes, ܩሺ߱ሻ ן ߱ௗೞ  for the first 70 modes in each set of data [with dG(ω)/dω = g(ω)]. 
The dimensions approach the Debye model value of 3 as rc is increased (dotted line in the 
figure). The spectral dimensions in the rc range from the second to the fourth coordination shell, 
(8 – 12 Å increase from below ds = 1 to ca. ds = 1.5. Furthermore, a crossover in the rate of 
change of the spectral dimension with the cut-off distance occurs at rc = 16 Å, the slope reducing 
from ca. 0.13 to half this value; the crossover is accompanied by the shift to ds > 2. Thus, it is 
plausible to use the cut-off value up to 16 Å so as to capture both the general shape of the 
vibrational spectra of proteins, as well as the spectral dimension that describes the density of 
slow modes.  

Biological relevance. In recent years, network models of proteins, RNA and their complexes 
have opened up previously unprecedented areas of study, since the level of coarse graining 
adopted has been shown to describe several important phenomena unique to these self-assembled 
systems. The findings are mainly based on the observation that a simplified harmonic potential is 



capable of describing the collective modes of motion [6], which also are associated with the 
basic functioning of these molecular machines [11]. The level of success of these studies in 
relation to the method of network construction has not been addressed systematically. We find 
for a number of proteins that the correlation between the mean-square fluctuations of Cα atoms 
and the theoretical predictions improve as the cut-off distance is increased. This curious 
observation is valid up to very large rc values; i.e. for some proteins, even when all residues are 
interconnected, the fluctuations of individual residues are faithfully predicted. One example is 
displayed in Fig. 4 for a 263 residue β-class protein (PDB code: 1arb), where the residue-by-
residue experimental B-factors (middle curve in gray in Fig. 4a) are compared with several 
selected theoretical models: A relatively low correlation is obtained at rc = 8 Å; in particular, the 
fluctuations of surface loop residues 15 – 20 and 135 – 145 are overestimated due to the absence 
of important core-region contacts that are not taken into account at this rc. The rc = 15 Å model 
captures the experimentally determined fluctuation patterns, which remains unaltered at higher 
rc. The Pearson correlation coefficients at a wide range of cut-off distances are plotted in Fig. 4b. 
We emphasize that the behavior exemplified by Fig. 4 is not unique to this protein, but is rather a 
common property of all proteins. 
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Figure 3. (a) Change of the density of vibrational modes, g(࣓), with rc. Inset displays the results for rc values up to 
30 Å. (b) Spectral dimension, ds, of the networks, obtained from power law best-fits to cumulative density of modes. 
Goodness of fit is 0.98 or better in all cases. Thin dashed lines are included to guide the eye for the cross-over in the 
rate of change of ds with rc. Theoretical limit at ds = 3 when all nodes are interconnected (rc → ∞) is also marked. 
 

The increase in the correlation coefficient with rc as well as its persistence to very high rc 
values implies that the main ingredients that contribute to the fluctuation predictions are present 
in the Hessian obtained at a relatively low rc, and the additional contacts act as a perturbation to 
this “essential” part of the matrix. We may thus partition the Hessian into two, where Hכ contains 
information due to the essential contacts of the matrix whereas H௥ is the residual part where the 
interactions are added in a spherically symmetrical manner around the nodes beyond a certain rc 
value (Fig. 2). The inverse of the Hessian will be nominally modified, so that the predicted Cα 
fluctuations will change only slightly. A proof of this effect on the slow modes and the 
corresponding eigenvectors of the Hessian as well as the fits to detailed molecular dynamics 
simulations will be separately reported in a forthcoming manuscript. 

Due to the invariance of the eigenvectors under a perturbation H௥ to Hכ, the mode based 
predictions on the direction of motion between the unbound and bound conformations of the 
protein will also converge. An example is shown in Fig. 4c for the protein adenylate kinase, for 
which the eigenvector belonging to the slowest eigenvalue is known to describe the 
conformational change with high accuracy due to the highly collective behavior of the hinge 
motion between the two domains [23]. The Pearson correlation between the experimental and 
theoretical curves is 0.9 at rc > 8 Å. The largest discrepancy between theory and experiment is 



observed in residues 30 – 67 which belongs to the NMP binding domain closing over the ATP 
binding domain (called the LID) on the opposite side, the latter spanning residues 118 – 167. The 
prediction does not change with rc.  
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Figure 4. (a) Comparison of X-ray B-factors with predicted fluctuation profiles (PDB code: 1arb). (b) Pearson 
correlation coefficients at a wide range of cut-off distances for the protein in (a). (c) The displacement profiles of 
adenylate kinase in unbound and bound forms (PDB codes: 4ake and 1ake). 
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