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Abstract. We give a general approach to N-periodic sequences over a
finite field F,; constructed via a subgroup D of the group of invertible
elements modulo N. Well known examples are Legendre sequences or the
two-prime generator. For some generalizations of sequences considered in
the literature and for some new examples of sequence constructions we
determine the linear complexity.

1 Introduction

A sequence S = sg, s1,... with terms in a finite field F; with d elements is said
to be N-periodic if s; = s;4 for all i > 0. The linear complexity L(S) of an N-
periodic sequence S over Fy is the smallest nonnegative integer L for which there
exist coefficients c¢1,co,...,cr in Fy such that S satisfies the linear recurrence
relation s; + ¢18;_1 + -+ cps;—p = 0 for all ¢ > L. If d and N are relatively
prime and @ is a primitive Nth root of unity in some extension field of Fy, and
S(z) =sg+s1x+ -+ sy_12V 7! then

L(S)=N—|{a : S(*)=0,0<a<N —1}|. (1)

The linear complexity is considered as a primary quality measure for periodic se-
quences and plays an important role in applications of sequences in cryptography
and communication (see for instance [13] and the references therein).

In this paper we point to a general approach to N-periodic sequences over
a finite field Fy defined via a subgroup D of the group Zj; of the invertible
elements modulo N. Well-known basic examples are the Legendre sequences and
its generalizations and the two-prime generator. We describe a uniform approach
to obtain results on the linear complexity for such sequence constructions that
comprise also the known proofs [3-7] for the above mentioned examples. We
apply this approach to some further examples of sequences and determine their
linear complexity. The first example can be seen as a natural generalization of
earlier constructions, the further examples are different, some - otherwise than
the sequences mentioned above - are based on subgroups D of Z}; for which the
factor group Z%/D is not cyclic.
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2 A general construction of sequences based on cosets

Let N be an odd integer, A be a divisor of ¢(N), where ¢ denotes Euler’s totient
function, and let D = Dy be a subgroup of index A of Z%;, the group of invertible
elements modulo N. Denote the elements of the factor group G = Z%, /Dy by
{Dy, D1, ...,Da_1}. Naturally this defines a partition of Z%, regarding to which
we will write n € D; if nDy = D; for an integer n € Z},. An N-periodic sequence
S = sg, S1,. .- over a finite field Fy satisfying

Sp, = &; whenever n mod N € D;

is then called a coset sequence. We remark that the sequence terms s, for
ged(n, N) # 1 have to be defined separately.
In order to obtain (almost) balanced sequences over F; one may prefer to con-
sider subgroups Dy of index d and to assign every field element & € Fq4 to
precisely one coset D;.

If the period N = p is prime and A is a divisor of p — 1, then the (only)
subgroup Dy of index A of Z}; is the set of Ath powers

Dy ={g? : s=0,1,...,(p—1)/A -1} (2)

for a primitive element g modulo p. The cosets D; = ¢’ Dy, 0 < j < A —1, are
then called the cyclotomic classes of order A. Trivially the factor group Z% /Dy
is then cyclic.
Some well-known examples of coset sequences are the following:

Legendre sequences and its generalizations: To describe this class of se-
quences in its most general form we have to fix an ordering of the elements of
the finite field Fq, d = rt for a prime r. Given a basis {80, 81,...,3t_1} of F.
over F,. we fix an ordering of the elements of F,: by

& =Jobo+jifr+ -+ Ji-1Bt—1 (3)
if (jo,J1,.-.,Jt—1)r is the r-ary representation of the integer j. If ¢ = 1 this
reduces to the conventional ordering 0,1,...,r — 1 of the prime field F, (with

Bo =1).

Let N = p be a prime, A = d = r! a prime power divisor of p — 1 and Dy
be the group of the dth powers modulo p. The generalized Legendre sequence is
then the N-periodic sequence over Fy defined by

sp=¢§ fnmodpe D;, and s, =0ifn=0modp. (4)

For d = 2 the sequence (4) is known as the classical Legendre sequence, its
linear complexity is determined in [5]. In [6] and [4] the linear complexity of (4)
is presented for d prime and for d = r’, r prime and ged(t,7) = 1.

Hall’s sextic residue sequence: Let N = p be prime congruent 1 modulo 6,
Dy, ..., D5 be the cyclotomic classes of order 6 defined as in (2). The N periodic
binary coset sequence given by

1 : nmodN € DyUD; U Ds,
Sp = .
0 : otherwise
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is called Hall’s sextic residue sequence (see [10] for its linear complexity).

Two-prime generator: For two odd primes p and g let Dy be the subgroup of
index 2 of Zy, consisting of the elements which are either squares or nonsquares
modulo both primes p and g. Denoting the two elements of the corresponding
factor group by Dy and Dy, the two-prime generator is the binary pg-periodic
sequence given by s,4pq = sn, and for 0 <n < pg

sp=jifneD;, s, =0ifne QU{0}ands, =1ifn e P,

where here and in the following P = pZ; = {p,2p,..., (¢ — 1)p} and Q = ¢Z; =
{¢,2q,...,(p—1)q}. The linear complexity of the two-prime generator has been
determined in [7] for ged(p — 1, — 1) = 2. In [9] the generalization to arbitrary
prime fields has been analysed.

In [1,15] the subgroup D of Ly, which consists of all elements which are
a square modulo g has been used to define a pg-periodic binary sequence. As
pointed out in [12] where a generalization to arbitrary prime fields was consid-
ered, these sequences essentially are only concatenations of p Legendre sequences
of period ¢. Similar constructions leading to binary sequences of period ¢ and
2¢™ with much similarity to concatenated Legendre sequences of period ¢ have
been considered recently in [14, 16].

3 Basic results

In what follows N will always be an odd integer, d a prime power divisor of
©(N), Dy a subgroup of Z%, of index d, and Dy, D1, ..., Dg_1 denote the cosets
of Dy. If Z% /Dy is cyclic, which always applies when d is prime, then we can
suppose that D;D; = D;j mod d-

Let S be a coset sequence of period N over Fy with s,, = ¢; if n € D,. (At this
position &; does not necessarily refer to the ordering in (3).) The polynomial
S(x) corresponding to S can then be written as S(z) = U(x) + T'(x) with

d—1
U(x) = Z spx”™ and T(z) = ijfj(a:) where f;(z) = Z ' (5)
§=0

n€LN\ZY i€D;

We collect some simple basic properties which partly had been shown in the
literature for different concrete examples of coset sequences (see e.g. [4-7]). In
what follows we suppose that d = rt, r prime, ged(N,r) = 1, and we let 6 be a
primitive Nth root of unity over Fy.

Lemma 1. (i) If a,a € D; for some 0 <i <d—1 then T(6%) =T(6%).
(ii) For all0 < a < N —1 we have f;(0*) € F.a, 0 < j <d—1.Ifd € Dy then

[i(0%) €Fq, 0<j<d—1, and T(0*) € Fq for all0 < a < N—1. If alsor € Dy
then f; (%) €F,, 0<j<d—-1, forall0<a <N —1.
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(iii) If a € Dy then T(0%) = 393 &eonf;(0) where j &k =1 if Dj = DDy in

Z%/Do.

(iv) Z?;S [i(0) = u(N), where p denotes the Mébius function.

Proof. (i),(ii) are straightforward, we also may refer to [4].

o d—1 i d—1 i d-1

(i) 7'(9%) = ijo & ZieDj 0" = ijo & ZieaDj 0" = Zj:O & fior(0) =
d-1

> im0 &ierfi(0)-

(iv) Observe that Z?;é £i(6) = Zkez% 6" is the negative of the coefficient of

2#M)=1 in the N'th cyclotomic polynomial Qy. With Qn = ]_[ClN(:EN/C —1)me)

(see [11, Theorem 3.27]) we obtain

@@ =) 4 aa . (B _ . B=bi ..
QN = (gjbl—l)-”(lﬂbsfl) —(,T T + :|:1) : (aj T + :tl),

where a;,b; run through the divisors ¢ of N for which N/c is squarefree, we
choose a; and b; to be the minimum of the a; and b;, respectively, and put
A=a;+---+a,and B=10b; +---+bs. As obvious, A— B = ¢(N). Performing
the division we then get

On = z#W) 4 ge(N)—min(arbr) 4 q

where the coefficient of z#(V)—min(a1.01) {5717 if g, > by and ”"—17 if a; < by. As
p(N) = 0 implies min(ay,by) > 1, the coefficient of z#V)~1 in Qy is zero in this
case. If u(N) = 1 then min(ay,by) = a3 = 1, if u(N) = —1 then min(a1,b;) =
by = 1, which completes the proof. O

As generally known the possible values for the linear complexity of an N-periodic
sequence over F; depend on the degrees of the polynomials in the canonical
factorization of &V — 1 over Fy. The following proposition indicates that for
many classes of coset sequences the order of the coset D; which contains d in
the factor group Z% /Dy decides on the possible values for the linear complexity

Proposition 1. Let Dy be a subgroup of Zy,, G = Z} /Do, d € D; and let
B = (Dj) be the subgroup of G generated by D;. For a corresponding coset
sequence over By let T(x) be defined as in (5). If T(0*) = 0 for a € Dy then
T(6°) =0 for all b € BDj,.

Proof. Let s be the order of d modulo N, then the minimal polynomial of ¢
over Fy is given by m(z) = ?:—01 (x — Oadl). Consequently if T(8*) = 0 then
T(0%) =0 for 0 <1< s—1. Since B = (D;) = {Dy,dDy = D;,...,d* Dy}

(depending on the order of D; in G elements in this set repeat), with Lemma
1(i) we have T(6%) = 0 for all b € BDj,. O

Remark 1. If U(0%) = ¢ € Fy is constant for all a € Z} then Lemma 1(i) and
consequently Proposition 1 also holds for S(z).

If Z%,/ Dy is cyclic (as in the sequence constructions in the literature , see [1,
4-7,12,15]) then we can naturally employ the ordering defined as in (3) to define
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a coset sequence. Following the objective of the paper to give a general approach
to N-periodic sequences constructed via subgroups Dy of Z}; we consider further
classes of factor groups that are not cyclic. We concentrate hereby on factor
groups whose order is a prime power.

For an odd integer N and a prime r let D¢ be a subgroup of Z%; such that Z%; /Dy
is isomorphic to Z,t; X Zyty X - -+ X Zytw (with the componentwise addition) for
some positive integers ¢;, 1 < ¢ < w. The cardinality of Z} /Dy is then d = rt
with ¢t =t1 +t2+...+t,, and we can easily define an N-periodic coset sequence
over [F; which is close to be balanced.

Ezample. Let N = pq for two odd primes p and g, let D(()p ) and D((JQ) denote the
set of squares modulo p and ¢, and consider

Do={j|1<j<pg—1,jmodpe DP, jmodge D},

As obvious Dy is a subgroup of Z;, with Z;q/Do isomorphic to Zs X Zs.

For the definition of a sequence we again employ the ordering (3) of the elements
of F,+. In order to assign the elements of F,.: to the r cosets of Dy we also need an
ordering of the elements of Z} /Dy. We put pg = 0, p1 = t1,p2 = t1+t2,..., pw =
il ti = t, and let ¥ be the isomorphism from Z%; /Dg t0 Zyty X Zytz X+ + - X Lty .
For 0 < j < 7' — 1 we then denote the coset D of Dy by D; for which

U(D) = (J1,Jo,...,Jy) with Jy + JorP* + Jgrf? 4+ - + JyrPe-t =45 (6)
Based on the orderings (3), (6), N-periodic coset sequences over F,.: with
Sp = fj ifn e Dj
can be defined. We remark that Dy D; = Dy when we define
kol=hifk=> Kgr l=> Li* andh=> (K;+ L; mod r')rf*, (7)
i=1 i=1 i=1

according to the operation in Z,t; X Zts X+ X Zytw .
The following Lemma generalizes [4, Lemma 10] shown for the generalized
Legendre sequence (4).

Lemma 2. Let N be squarefree, Dy a subgroup of Z%, d = r' a prime power
with ged(r,t) = 1, and let

1. Z3 /Do be a cyclic group of order d, or
2. 7%/ Do be isomorphic t0 Zyey X Ltz X+ X Lptw with t1 + -+ 4ty =t.

Consider a coset sequence over Fq satisfying s, = & if n € D;, where & refers
to the ordering (3) of the elements of Fq, the cosets D; are naturally ordered in
case 1 and ordered as in (6) in case 2. Then T(0*) # T(0) if a’ # a mod Dy.

Proof. For this proof we denote by k @ [ the addition modulo d in case 1 and
the addition (7) in case 2. Let a € Dy, and @’ € Dy, let k © k' = 6 and suppose
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that 0 < v <t —1 is the smallest index in the r-ary representation of the integer
§ =S5 &irt of § with 8, # 0. (We remark that in case 2 if k = S | K;r#',
=3 Klrfi and p.—1 <v < p., then K] = K;, 1 <i <c¢, but K # K..)

Let & = Zf é 1;8; and {5 = Zf é I;3;. Then using the ordering of the elements
of F,+ and the property of v we get [+ =1® 5=, Lir* 4 67" mod V!,
thus Il =1, for 0<i<wv—1landl, =1, +J, modr.

For 0 <j<d—1wesetcr = Ef;é Jifi and o = Ez Oj/ﬂl With Lemma
1(iii) we then obtain

d—1 d—1
T(0°) - T(0°) = Z(ﬁjek/ —&en)fi(0) = Z(gj@k@é) —&jor) fi(0)
§=0 §=0
d—1 t—1
= (6 BUJ'_ Z _jz 1) fj(e)
=0 1=v+1
d—1 d—1 t—1 t—1 d—1
=608 Y [(O)+D D (Gi=3i)Bif5(0) = p(N)&Bu+ D Bi Y (ji—ii) 1;(6)
7=0 7j=01i=v+1 i=v+1 7=0

N)3, By + Z Aif3i. (8)

1=v+1

Since N is squarefree, (8) is a nontrivial linear combination of §;, 0 < i <
t — 1, and by Lemma 1(ii) its coefficients are in F,.a. As ged(¢,r) = 1 the basis
{Bo, ..., Pt—1} of F.e over F, is also a basis of F,..a over F,, thus (8) is not 0. OJ

Corollary 1. Let Do be a subgroup of prime power index d = r* of Z%, let
Zy /Do be cyclic or isomorphic to Lty X Lty X -+ X Lyt . Let S be a coset
sequence with s, = &; if n € D; for the ordering (3) of the elements in Fy, the
obvious ordering of Zy /Dy in the cyclic case, else for the ordering defined in
(6). If d € Dg then T(0%) = 0 for ¢(N)/d values of a € Z}. If d ¢ Dy then
T(0%) #0 for all a € ZY.

Proof. By Lemma 2, T(6%) # T(6%) if a # o’ mod Dy. If d € Dy then by Lemma
1(i1), T(0*) € Fy for all a € Z},, thus for exactly one integer j, 0 < j < d—1,
we have T'(8*) = 0if a € D;. If d € D; # Dg then the order of D; in Z}; /Dy
is greater than 1, and with Proposition 1, T(6*) = 0 for a € Dy, implies that
T(6°) =0 for all b € (D;) Dy which contradicts Lemma 2. O

We remark that Corollary 1 also holds for S(z) if U(0%) = ¢ € Fq for all a € Z%.
4 Examples of sequence constructions
Let N = pq for two odd primes p and ¢. As easily seen aP = P if a € Zj, or

a € P (where the calculation is performed modulo N), which will be used several
times in the following.
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On the basis of the previous section we firstly consider two constructions of pg-
periodic sequences over an arbitrary finite field Fy.

Construction 1: Let d = r! be a power of the prime r dividing ged(p—1,¢—1),

then we can consider the cyclotomic classes (2) of order d, D;p ) and DEQ), 0<
J < d—1, for both primes p, g, respectively. We define a subgroup Dy by
Dy ={n : nmodpED,(cp) andnmoquDl(q) (9)

for some k, ! with k 4+ 1 = 0 mod d}.

For simplicity we will write n € D,(f) n Dl(q) if nmodp € D,(Cp) and n mod q €
Dl(q). As obvious, the factor group Z} /Dy is cyclic, its elements D;, 0 < j < d—1,
are given by
D= U ofnp®). (10)
k+1=j mod d

Note that DiDj = Di+j mod d-

For d = 2, this construction reduces to the classical two-prime generator, thus
we may call this construction the generalized two-prime generator. For d being
an odd prime the generalized two-prime generator was analysed in [9].

Construction 2: Let d = 7' be a power of the prime r, let t;,t, be integers
such that ¢, +t2 = ¢, and let p and ¢ be primes such that d; = r* divides p — 1
and dy = r*? divides ¢ — 1. (To keep the contribution of p and ¢ to the behaviour
of the sequence equal, one may prefer to choose di,ds close to each other, if
possible dy = rlt/2 dy = rlt/21.) We consider the cyclotomic classes of order d;
modulo p and order ds modulo g, and choose Dy as

Do={n|1<n<pg—1,neDP nD?}, (11)
which is a subgroup of Zy . The index of Dy is d = rt and Lnpg /Dy is isomorphic

to Zq, X Zg,. We then can employ the ordering (6) for the cosets of Dy.
For both subgroups, (9) and (11), we can utilize the ordering (3) of the

elements of F; and define a pg-periodic sequence S = sg, s1, ... over Fy by
fj one Dj,
sn=14 0 : neQu{o}, (12)
1 : neP.

4.1 The case ged(r,t) =1

In the next theorem we determine the linear complexity of sequences obtained
by both, Construction 1 and Construction 2. In order to be able to apply Lemma
2 and the subsequent Corollary 1 we need the condition ged(r,t) = 1.

Theorem 1. For two odd primes p and q, and a power d = 1 of the prime r
with ged(r, t) = 1 let
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1. d divide ged(p — 1,q — 1), suppose d # 2 and let Dy be the subgroup (9) of
Lnpgs OT

2. di = 't divide p — 1, do = 12 divide ¢ — 1 for two positive integers ti,ts
with t = t1 + ta, suppose that r > 2 ort; > 2,1 = 1,2, and let Dy be the
subgroup (11) of Zy,

Then the linear complexity L of the sequence (12) is given by

L:{pq—p—(plﬂ(q” i deDy
pg—p : d¢Do.

Proof. Following (1) we have to determine the number of integers a, 0 < a < pg—1
for which S(6*) = U(6*) + T'(6*) = 0 where U(x),T(x) are defined as in (5),
and @ is a primitive pgth root of unity in an extension field of F.

We first observe that with aP = P if a € Z;,,, we obtain U(0%) = }_ _p 0" =
Yonep " = U(#) = —1. As a consequence, by Corollary 1 and the remark
thereafter we have S(6¢) # 0 for all a € Zy, if d ¢ Dy, and if d € Dy then
S(0*) = 0 for exactly (p —1)(¢ — 1)/d values for a € Zy,. Hence it suffices to
evaluate S(09) for a € Zy, \ Zy,

First of all we see that

ZHZ@Zqu L p=Dla-1) q_l

neP 7=0 i€D; 7=0

M“‘

We finish the proof showing that S(6*) = —1if a € P and S(6*) =0if a € Q.
With aP = P if a € P we obtain U(#*) = —1 as above, and a € @ implies
U0*) =>,ep 0™ =>,cp 1 =q—1=0. Consequently it remains to be shown
that T(6%) = Z?;é £ f;(04) = 0if a € PUQ, where we have to distinguish
between the two constructions.

Construction 1. Suppose that b € Z;‘ is an element of Dl(q) andlet 0 < k<d-—-1
be the unique integer with k& + [ = j mod d. By the Chinese remainder theorem
for each of the (p — 1)/d elements ¢; of D](Cp ) there exists a unique integer n,
1 <n < pg—1, with n = ¢; mod p, n = bmod ¢, and by definition n € D;.
Therefore if a € P, then aD; (modulo pq) runs (p—1)/d times through P = pZ;.

Consequently
a ai p—- 1 n
)= Y=Lty 2]
ieD;, nep
hence a € P implies
d—1 p—1 d—1
(0°) = _&f000) =—"—=> ¢ (13)
§=0 §=0
For a € Q we Similarly obtain T(0%) = qu;l Z;l*é &;. With the assumption

d # 2, the sum Zj o ' ¢&; of the elements of Fy vanishes, thus T'(6%) = 0 for
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a€ PUQ.
Construction 2. Let j = r'k4+4 withk =0,1,--- ,r2—1land ¢ =0,1,--- ,ri1 -1,
then

Dj={n|1 Sngpq—l,neDl(p)l_lD,(cq)}
by definition. Consequently if the set D; is reduced modulo p every element of
Dl(p ) is taken on precisely (¢—1)/r'> times and vice versa in D; reduced modulo

) appears (p — 1)/r'* times. For a € P we therefore get

ey =Y =T8S

i€D; iepr;”

q every element of D,(Cq

and subsequently

rt2—1pf -1

ey =3 Y Y b (14

k=0 £=0 iepD(®

rf2 -1 rf1—1

=D DD DI SR

k=0 jepp(® (=0

Since &ptr e = Erag + & for all k € {0,1,--- ,r'2 —1},0 € {0,1,--- ,rft — 1},

we can write
ril—1 ril— ril—1

1
Y Grnre= Y Gurté= > &=0, (15)
=0 £=0 £=0

where in the last step we used r # 2 or r = 2 and ¢; > 1. Hence T(6*) = 0 for
alla € P.
For a € Q we obtain T'(0%) = 0 similarly if r # 2 or r = 2 and t3 > 1. O

Remark 2. For d = 2 equation (13) yields T(6*) = (p — 1)/2 if a € P and
similarly one then gets T'(60%) = (¢ — 1)/2 if a € Q. This leads to the formula
presented in [7] for the linear complexity of the binary two-prime generator.

We observe that for Construction 2, in Theorem 1 we had to suppose that
r>2ort; > 2, ¢= 1,2, which was used to show equation (15). However, to
obtain a sequence over Fg with Construction 2 we have to choose t; = 1 (and
to = 2). Consequently sequences over Fg for Construction 2 are not covered
by Theorem 1, thus have to be dealt with separately. This is accomplished in
the next theorem. As basis of Fg over Fo we may choose the polynomial basis
{1, 8, 3%}, where 3 can be taken as a root of 2% + z + 1.

Theorem 2. The linear complezity of the sequence over Fg obtained by Con-
struction 2 with t; = 1,ty = 2 and the polynomial basis {1, 3, 3?} of Fg over Fo
s given by

_ (=1(g-1)

pq— D 5 p=1 mod4, 2€ Dy,

—p—g+1— =l =3 mod4. 2€D
L(s)=dPa—r—a : p= od 4, 05
pqg—p p=1 mod4, 2¢ Dy,

pg—p—q+1 p=3 mod4, 2¢ Dy.
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Proof. Since r = 2 and t; = 1 equation (15) now attains the value 1. Thus for
equation (14) we obtain

2t2 1

k=0 jcpp(@ i€P

As we had U(6*) = —1 if a € P we therefore get S(6%) = (p+1)/2 for all a € P.
With the observation that 8 € Dy if and only if 2 € Dy, we obtain the assertion
of the theorem. O

Remark 3. By definition of Dy we have 2 € Dy if and only if 2 is a quadratic
residue modulo p and a quartic residue modulo g, or equivalently p = +1 mod 8
and ¢ = —1mod 8 or ¢ = 1 mod 8 and ¢ = 22 + 64y? for some integers z,y.
Thus one may write the statement of Theorem 2 entirely in terms of p and gq.

4.2 Quaternary sequences

If ged(r,t) # 1 then Lemma 2 cannot be applied and the values of S(6%) for
a € Zj, have to be determined individually. We present the results for the linear
complexity of sequences defined via the subgroups (9) and (11) for the important
case d = 4. As we will see, for the subgroup (9) the linear complexity does not
rely on a predefined ordering of the elements of F4, whereas for the subgroup
(11) it does.

Theorem 3. Let 19,11,72,1n3 be the elements of Fy, let D; be defined as in (10)
for two primes p = q=1mod 4 and d = 4, and let S be the pg-periodic sequence
over Fy defined by

n; : ne& Dy,
sn=¢ 0 : ne@uU{0},
1 : neP.

The linear complexity L(S) of S is then

pq—p—i(pfll(qfl) : p=g=1mod8orp=q¢g=5modS8,
L(S) = pg—p : p=1mod8 ¢g=>5mod8or
p=5mod 8,¢g =1 mod 8.

Proof. With Lemma 1(i) and aP = P for a € Z;,, we have S(0*) = S(0) for all
a € Dy. Defining U(z),T(z) as in equation (5) we observe that again U(6%) =
U)=1ifa e Z,,UP and U(0?) = 0 if a € Q. We hence restrict ourselves to
the determination of 7'(6). From Zj_ /Dy being cyclic we get for a € Dy

(") 03 f;(0%) = n3fo(0) 4+ 10.f1(0) + 01 f2(0) + n2£3(0)

[
NE

(
(

<
(=)

NS

) + (no +n3) fo(0) + (no +n1) f1(0) + (n1 + 12) f2(0) + (n2 + n3) f3(0)
0) + (no +n3)(fo(0) + f2(0)) + (no + m)(f1(0) + f3(9)),
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since Z?:o n; = 0. With Lemma 1(iv) we then obtain

T0%) =T(0)+mno+m + (m +n3)(fo(0) + f2(0)).

With similar arguments one gets T'(60%) = T(0) +no + 12 if a € Do, and T(60%) =
T(0) +no + ns + (m 4 n3)(fo(0) + f2(0)) if a € Ds.

T*)=0if a € PUQ, thus S(0*) =1if a € P and S(6*) =0 if a € @, follows
with the proof of Theorem 1 for the general case. We distinguish two cases.
First suppose that 2 € Dy U Ds, or equivalently p = ¢ mod 8, then 4 € Dy and
thus S(6) € Fy. Furthermore observe that 2 € DyUDs also implies fo(0)+ f2(6) €
Fy. As easily seen we then have S(0%) # S(0%) if a # a/ mod Dy and we obtain
the proclaimed value for the linear complexity with the usual conclusion.
Secondly suppose that 2 € D; U D3, hence 4 € Dy. Then S(0)* = S(6%) =
S(0) + no + 12 # S(6), and consequently S(0) € Fy. On the other hand again
4 € Dy implies fo(0) + f2(¢) € Fy and thus S(6¢) ¢ Fy for all @ € Zj,, which
yields the proclaimed linear complexity. O

Theorem 4. Let ng,n1,12,n3 be the elements of Fy and for two odd primes p, q
let D((Jp) and D;p) (Déq), D%q)) be the set of squares and nonsquares modulo p
(modulo q), respectively. Let S be the pq-periodic sequence over Fy defined by

M2k @ NE Dl(p) M D,(Cq),
Sp = 0 : neuU {O},
1 : neP.

The linear complexity of S is then

pq—l—%“(q*l):qE3m0d4cmdpElmod40r
P53m0d4,7727é770+1a
L(S) = pq—p—%“(q_l):qzlmod4andpzlmod4or
p=3mod4,ns #ny+ 1,
pq—q—%‘f‘kl) : g=3mod4,p=3mod4,ny =mn+1,
qup—qulf% : ¢g=1mod4,p=3mod4,n =mny + 1.

Proof. With Lemma 1(i) and aP = P for a € Z;,, we have S(0*) = S(0) for all
a € Dgy. From Z;q/Do ~ 7o X Zs, for a € Dy we obtain

S0%) =D 0" +m0f1(0) + m fo(0) + 2 f3(0) + ms f2(0) = S(O) +m0(fo(6) + f1(0))

nepP
+m1(fo(0) + f1(0)) + n2(f2(0) + f3(0)) +n3(f2(0) + f3(0))
= S(0) + (no +m)(fo(0) + f1(0)) + (n2 + 13)(f2(0) + f3(0))

= 5(6) + (no +771)ij(9) = 5(0) + 0 + 1.

Similarly we get S(60%) = S(6) + no + 12 for a € Dy and S(6*) = S(6) +no + 13
for a € D3. Hence S(0%) # S(6*) if a # o’ mod Dy. Since 4 € Dy and U(x)
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is as in the proof of Theorem 3, with Lemma 1(ii) we have S(0*) € F; when
a€D;,j=0,1,2,3.

Employing that the sets Dy and Dy (D; and Ds3) reduced modulo ¢ are equal
for a € P we get

SO =Y 0"+ (mo+m) D 0"+ (m+ms) Y 0™

nepP neDg neD;y
_ an __ p—1 n
=1+ (o +m2) Z 0" =1+ (1o + 12) 5 29
neDoUD nepP
p—1

=1+ (o +12) 5
In the penultimate step we used that the set Dy U D; reduced modulo g contains
all elements of Z; and each element is taken on (p —1)/2 times.

q—1

In an analog way we obtain S(6%) = (1o +n1) %5~ if a € Q. The simple observa-

tion that S(1) = 0 completes the proof. O

We complete this section pointing out that the generalized two-prime gener-
ator (Construction 1) has favourable autocorrelation properties when d is prime
(or likewise if one defines the sequence as a d-ary sequence for an arbitrary
module d in an analog way, as autocorrelation is then also defined). For d = 2
this was shown in [8], an alternative proof using characters was presented in [2].
The methods of [2] can be applied to the case of arbitrary modules d. As far
as we are aware, autocorrelation results for arbitrary modules d have not been
presented, thus we give the result but omit the proof. In the following we put
gq = e2™V=1/d and y® (x(9)) shall denote the multiplicative character of order
d of F,, (F,) given by x(P)(g¥) = ¥ if g is a primitive element of F,, (F,).

Theorem 5. The autocorrelation of the generalized two-prime generator S with
prime d is given by

p—q+1l : t€qZy,
A(S,1) = eateat+q—p—1 : teply,
’ 1+ (1 —exP (=)D (-t)) : teZi,.

+(1 = ex® ()X D (1)

5 Final Remarks

We consider N-periodic sequences over finite fields that are constant on the
cosets of a subgroup of Z3;, which can be seen as a general approach to classes
of N-periodic sequences that contain well known constructions as the Legendre
sequences and the two-prime generator. With this general approach one may con-
struct and analyse various classes of sequences. We give examples of pg-periodic
sequences over arbitrary finite fields and determine their linear complexity. Sim-
ilar constructions can be considered and analysed (using tools from Section 2)
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for other (squarefree) periods. One may use subgroups D of Z}, with index not
a prime power as in the following example: For an odd prime p and a prime

q = 1 mod 3 we consider the cyclotomic classes of order 2 and 3, respectively,

and the subgroup Dy = Déq) ITD(()p ) of index 6. We define a corresponding ternary

sequence S by s, =+ 2k mod 3 if n € Dl(p) I_ID,(Cq), sp =0if n € QU {0} and
s, = 1 if n € P. With the above used techniques and using Proposition 1 one
obtains that L(S) =pg—p— (p—1)(¢—1)/3 if p= £1 mod 12 and q = 3a® + b>
with 9]a or 9|(a=+b), if ¢ = 3a®+ b with 9 Ja and 9 J(a+b) then L(S) = pq—p.
This pg-periodic ternary sequence is certainly different from the ternary version
of the two-prime generator and the ternary sequence constructed as in [12]. An
analysis of the autocorrelation of such coset sequences, which differently to the
sequences in [1,12,14-16] are not similar to a concatenation of Legendre se-
quences, may be worthwhile. There, an adaptation of the method in [8] with an
adequate generalization of cyclotomic numbers seems promising. In this connec-
tion it may also be of interest to use the above considered factor group of Zj,
isomorphic to Zy X Zso to define quaternary sequences.
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