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Abstract. We give a general approach to N -periodic sequences over a
finite field Fq constructed via a subgroup D of the group of invertible
elements modulo N . Well known examples are Legendre sequences or the
two-prime generator. For some generalizations of sequences considered in
the literature and for some new examples of sequence constructions we
determine the linear complexity.

1 Introduction

A sequence S = s0, s1, . . . with terms in a finite field Fd with d elements is said
to be N -periodic if si = si+N for all i ≥ 0. The linear complexity L(S) of an N -
periodic sequence S over Fd is the smallest nonnegative integer L for which there
exist coefficients c1, c2, . . . , cL in Fd such that S satisfies the linear recurrence
relation si + c1si−1 + · · · + cLsi−L = 0 for all i ≥ L. If d and N are relatively
prime and θ is a primitive Nth root of unity in some extension field of Fd, and
S(x) = s0 + s1x + · · ·+ sN−1x

N−1 then

L(S) = N − |{a : S(θa) = 0, 0 ≤ a ≤ N − 1}|. (1)

The linear complexity is considered as a primary quality measure for periodic se-
quences and plays an important role in applications of sequences in cryptography
and communication (see for instance [13] and the references therein).

In this paper we point to a general approach to N -periodic sequences over
a finite field Fd defined via a subgroup D of the group Z∗

N of the invertible
elements modulo N . Well-known basic examples are the Legendre sequences and
its generalizations and the two-prime generator. We describe a uniform approach
to obtain results on the linear complexity for such sequence constructions that
comprise also the known proofs [3–7] for the above mentioned examples. We
apply this approach to some further examples of sequences and determine their
linear complexity. The first example can be seen as a natural generalization of
earlier constructions, the further examples are different, some - otherwise than
the sequences mentioned above - are based on subgroups D of Z∗

N for which the
factor group Z∗

N/D is not cyclic.
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2 A general construction of sequences based on cosets

Let N be an odd integer, ∆ be a divisor of ϕ(N), where ϕ denotes Euler’s totient
function, and let D = D0 be a subgroup of index ∆ of Z∗

N , the group of invertible
elements modulo N . Denote the elements of the factor group G = Z∗

N/D0 by
{D0, D1, . . . , D∆−1}. Naturally this defines a partition of Z∗

N , regarding to which
we will write n ∈ Dj if nD0 = Dj for an integer n ∈ Z∗

N . An N -periodic sequence
S = s0, s1, . . . over a finite field Fd satisfying

sn = ξj whenever n mod N ∈ Dj

is then called a coset sequence. We remark that the sequence terms sn for
gcd(n, N) 6= 1 have to be defined separately.
In order to obtain (almost) balanced sequences over Fd one may prefer to con-
sider subgroups D0 of index d and to assign every field element ξj ∈ Fd to
precisely one coset Dj .

If the period N = p is prime and ∆ is a divisor of p − 1, then the (only)
subgroup D0 of index ∆ of Z∗

N is the set of ∆th powers

D0 = {g∆s : s = 0, 1, . . . , (p− 1)/∆− 1} (2)

for a primitive element g modulo p. The cosets Dj = gjD0, 0 ≤ j ≤ ∆− 1, are
then called the cyclotomic classes of order ∆. Trivially the factor group Z∗

N/D0

is then cyclic.
Some well-known examples of coset sequences are the following:

Legendre sequences and its generalizations: To describe this class of se-
quences in its most general form we have to fix an ordering of the elements of
the finite field Fd, d = rt for a prime r. Given a basis {β0, β1, . . . , βt−1} of Frt

over Fr we fix an ordering of the elements of Frt by

ξj = j0β0 + j1β1 + · · ·+ jt−1βt−1 (3)

if (j0, j1, . . . , jt−1)r is the r-ary representation of the integer j. If t = 1 this
reduces to the conventional ordering 0, 1, . . . , r − 1 of the prime field Fr (with
β0 = 1).

Let N = p be a prime, ∆ = d = rt a prime power divisor of p − 1 and D0

be the group of the dth powers modulo p. The generalized Legendre sequence is
then the N -periodic sequence over Fd defined by

sn = ξj if n mod p ∈ Dj , and sn = 0 if n ≡ 0 mod p. (4)

For d = 2 the sequence (4) is known as the classical Legendre sequence, its
linear complexity is determined in [5]. In [6] and [4] the linear complexity of (4)
is presented for d prime and for d = rt, r prime and gcd(t, r) = 1.
Hall’s sextic residue sequence: Let N = p be prime congruent 1 modulo 6,
D0, . . . , D5 be the cyclotomic classes of order 6 defined as in (2). The N periodic
binary coset sequence given by

sn =
{

1 : n mod N ∈ D0 ∪D1 ∪D3,
0 : otherwise
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is called Hall’s sextic residue sequence (see [10] for its linear complexity).
Two-prime generator: For two odd primes p and q let D0 be the subgroup of
index 2 of Z∗

pq consisting of the elements which are either squares or nonsquares
modulo both primes p and q. Denoting the two elements of the corresponding
factor group by D0 and D1, the two-prime generator is the binary pq-periodic
sequence given by sn+pq = sn and for 0 ≤ n < pq

sn = j if n ∈ Dj , sn = 0 if n ∈ Q ∪ {0} and sn = 1 if n ∈ P,

where here and in the following P = pZ∗
q = {p, 2p, . . . , (q− 1)p} and Q = qZ∗

p =
{q, 2q, . . . , (p− 1)q}. The linear complexity of the two-prime generator has been
determined in [7] for gcd(p− 1, q − 1) = 2. In [9] the generalization to arbitrary
prime fields has been analysed.

In [1, 15] the subgroup D of Z∗
pq which consists of all elements which are

a square modulo q has been used to define a pq-periodic binary sequence. As
pointed out in [12] where a generalization to arbitrary prime fields was consid-
ered, these sequences essentially are only concatenations of p Legendre sequences
of period q. Similar constructions leading to binary sequences of period qm and
2qm with much similarity to concatenated Legendre sequences of period q have
been considered recently in [14, 16].

3 Basic results

In what follows N will always be an odd integer, d a prime power divisor of
ϕ(N), D0 a subgroup of Z∗

N of index d, and D0, D1, . . . , Dd−1 denote the cosets
of D0. If Z∗

N/D0 is cyclic, which always applies when d is prime, then we can
suppose that DiDj = Di+j mod d.
Let S be a coset sequence of period N over Fd with sn = ξj if n ∈ Dj . (At this
position ξj does not necessarily refer to the ordering in (3).) The polynomial
S(x) corresponding to S can then be written as S(x) = U(x) + T (x) with

U(x) =
∑

n∈ZN\Z∗N

snxn and T (x) =
d−1∑
j=0

ξjfj(x) where fj(x) =
∑
i∈Dj

xi. (5)

We collect some simple basic properties which partly had been shown in the
literature for different concrete examples of coset sequences (see e.g. [4–7]). In
what follows we suppose that d = rt, r prime, gcd(N, r) = 1, and we let θ be a
primitive Nth root of unity over Fd.

Lemma 1. (i) If a, ā ∈ Di for some 0 ≤ i ≤ d− 1 then T (θā) = T (θa).
(ii) For all 0 ≤ a ≤ N − 1 we have fj(θa) ∈ Frd , 0 ≤ j ≤ d− 1. If d ∈ D0 then
fj(θa) ∈ Fd, 0 ≤ j ≤ d−1, and T (θa) ∈ Fd for all 0 ≤ a ≤ N −1. If also r ∈ D0

then fj(θa) ∈ Fr, 0 ≤ j ≤ d− 1, for all 0 ≤ a ≤ N − 1.
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(iii) If a ∈ Dk then T (θa) =
∑d−1

j=0 ξj	kfj(θ) where j 	 k = l if Dj = DkDl in
Z∗

N/D0.

(iv)
∑d−1

j=0 fj(θ) = µ(N), where µ denotes the Möbius function.

Proof. (i),(ii) are straightforward, we also may refer to [4].
(iii) T (θa) =

∑d−1
j=0 ξj

∑
i∈Dj

θai =
∑d−1

j=0 ξj

∑
i∈aDj

θi =
∑d−1

j=0 ξjfj⊕k(θ) =∑d−1
j=0 ξj	kfj(θ).

(iv) Observe that
∑d−1

j=0 fj(θ) =
∑

k∈Z∗N
θk is the negative of the coefficient of

xϕ(N)−1 in the Nth cyclotomic polynomial QN . With QN =
∏

c|N (xN/c− 1)µ(c)

(see [11, Theorem 3.27]) we obtain

QN =
(xa1 − 1) · · · (xa1 − 1)
(xb1 − 1) · · · (xbs − 1)

= (xA−xA−a1 + · · ·± 1) : (xB −xB−b1 + · · ·± 1),

where ai, bj run through the divisors c of N for which N/c is squarefree, we
choose a1 and b1 to be the minimum of the ai and bj , respectively, and put
A = a1 + · · ·+ ar and B = b1 + · · ·+ bs. As obvious, A−B = ϕ(N). Performing
the division we then get

QN = xϕ(N) ± xϕ(N)−min(a1,b1) ± · · ·+ 1,

where the coefficient of xϕ(N)−min(a1,b1) is ”1” if a1 > b1 and ”−1” if a1 < b1. As
µ(N) = 0 implies min(a1, b1) > 1, the coefficient of xϕ(N)−1 in QN is zero in this
case. If µ(N) = 1 then min(a1, b1) = a1 = 1, if µ(N) = −1 then min(a1, b1) =
b1 = 1, which completes the proof. �

As generally known the possible values for the linear complexity of an N -periodic
sequence over Fd depend on the degrees of the polynomials in the canonical
factorization of xN − 1 over Fd. The following proposition indicates that for
many classes of coset sequences the order of the coset Dj which contains d in
the factor group Z∗

N/D0 decides on the possible values for the linear complexity

Proposition 1. Let D0 be a subgroup of Z∗
N , G = Z∗

N/D0, d ∈ Dj and let
B = 〈Dj〉 be the subgroup of G generated by Dj. For a corresponding coset
sequence over Fd let T (x) be defined as in (5). If T (θa) = 0 for a ∈ Dk then
T (θb) = 0 for all b ∈ BDk.

Proof. Let s be the order of d modulo N , then the minimal polynomial of θa

over Fd is given by m(x) =
∏s−1

l=0 (x − θadl

). Consequently if T (θa) = 0 then
T (θadl

) = 0 for 0 ≤ l ≤ s − 1. Since B = 〈Dj〉 = {D0, dD0 = Dj , . . . , d
s−1D0}

(depending on the order of Dj in G elements in this set repeat), with Lemma
1(i) we have T (θb) = 0 for all b ∈ BDk. �

Remark 1. If U(θa) = c ∈ Fd is constant for all a ∈ Z∗
N then Lemma 1(i) and

consequently Proposition 1 also holds for S(x).

If Z∗
N/D0 is cyclic (as in the sequence constructions in the literature , see [1,

4–7, 12, 15]) then we can naturally employ the ordering defined as in (3) to define
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a coset sequence. Following the objective of the paper to give a general approach
to N -periodic sequences constructed via subgroups D0 of Z∗

N we consider further
classes of factor groups that are not cyclic. We concentrate hereby on factor
groups whose order is a prime power.
For an odd integer N and a prime r let D0 be a subgroup of Z∗

N such that Z∗
N/D0

is isomorphic to Zrt1 ×Zrt2 × · · · ×Zrtw (with the componentwise addition) for
some positive integers ti, 1 ≤ i ≤ w. The cardinality of Z∗

N/D0 is then d = rt

with t = t1 + t2 + . . .+ tw, and we can easily define an N -periodic coset sequence
over Fd which is close to be balanced.
Example. Let N = pq for two odd primes p and q, let D

(p)
0 and D

(q)
0 denote the

set of squares modulo p and q, and consider

D0 = {j | 1 ≤ j ≤ pq − 1, j mod p ∈ D
(p)
0 , j mod q ∈ D

(q)
0 },

As obvious D0 is a subgroup of Z∗
pq with Z∗

pq/D0 isomorphic to Z2 × Z2.
For the definition of a sequence we again employ the ordering (3) of the elements
of Frt . In order to assign the elements of Frt to the rt cosets of D0 we also need an
ordering of the elements of Z∗

N/D0. We put ρ0 = 0, ρ1 = t1, ρ2 = t1+t2, . . . , ρw =∑w
i=1 ti = t, and let Ψ be the isomorphism from Z∗

N/D0 to Zrt1×Zrt2×· · ·×Zrtw .
For 0 ≤ j ≤ rt − 1 we then denote the coset D of D0 by Dj for which

Ψ(D) = (J1, J2, . . . , Jw) with J1 + J2r
ρ1 + J3r

ρ2 + · · ·+ Jwrρw−1 = j. (6)

Based on the orderings (3), (6), N -periodic coset sequences over Frt with

sn = ξj if n ∈ Dj

can be defined. We remark that DkDl = Dk⊕l when we define

k ⊕ l = h if k =
w∑

i=1

Kir
ρi , l =

w∑
i=1

Lir
ρi and h =

w∑
i=1

(Ki + Li mod rti)rρi , (7)

according to the operation in Zrt1 × Zrt2 × · · · × Zrtw .
The following Lemma generalizes [4, Lemma 10] shown for the generalized

Legendre sequence (4).

Lemma 2. Let N be squarefree, D0 a subgroup of Z∗
N , d = rt a prime power

with gcd(r, t) = 1, and let

1. Z∗
N/D0 be a cyclic group of order d, or

2. Z∗
N/D0 be isomorphic to Zrt1 × Zrt2 × · · · × Zrtw with t1 + · · ·+ tw = t.

Consider a coset sequence over Fd satisfying sn = ξj if n ∈ Dj, where ξj refers
to the ordering (3) of the elements of Fd, the cosets Dj are naturally ordered in
case 1 and ordered as in (6) in case 2. Then T (θa′) 6= T (θa) if a′ 6≡ a mod D0.

Proof. For this proof we denote by k ⊕ l the addition modulo d in case 1 and
the addition (7) in case 2. Let a ∈ Dk and a′ ∈ Dk′ , let k 	 k′ = δ and suppose
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that 0 ≤ v ≤ t−1 is the smallest index in the r-ary representation of the integer
δ =

∑t−1
i=0 δir

i of δ with δv 6= 0. (We remark that in case 2 if k =
∑w

i=1 Kir
ρi ,

k′ =
∑w

i=1 K ′
ir

ρi and ρc−1 ≤ v < ρc, then K ′
i = Ki, 1 ≤ i < c, but K ′

c 6= Kc.)
Let ξl =

∑t−1
i=0 liβi and ξl⊕δ =

∑t−1
i=0 l′iβi. Then using the ordering of the elements

of Frt and the property of v we get l + δ ≡ l ⊕ δ ≡
∑v

i=0 lir
i + δvrv mod rv+1,

thus l′i = li for 0 ≤ i ≤ v − 1 and l′v ≡ lv + δv mod r.
For 0 ≤ j ≤ d− 1 we set ξj	k =

∑t−1
i=0 jiβi and ξj	k′ =

∑t−1
i=0 j′iβi. With Lemma

1(iii) we then obtain

T (θa′)− T (θa) =
d−1∑
j=0

(ξj	k′ − ξj	k)fj(θ) =
d−1∑
j=0

(ξj	k⊕δ) − ξj	k)fj(θ)

=
d−1∑
j=0

(
δvβv +

t−1∑
i=v+1

(j′i − ji)βi

)
fj(θ)

= δvβv

d−1∑
j=0

fj(θ)+
d−1∑
j=0

t−1∑
i=v+1

(j′i−ji)βifj(θ) = µ(N)δvβv+
t−1∑

i=v+1

βi

d−1∑
j=0

(j′i−ji)fj(θ)

= µ(N)δvβv +
t−1∑

i=v+1

Λiβi. (8)

Since N is squarefree, (8) is a nontrivial linear combination of βi, 0 ≤ i ≤
t − 1, and by Lemma 1(ii) its coefficients are in Frd . As gcd(t, r) = 1 the basis
{β0, . . . , βt−1} of Frt over Fr is also a basis of Frtd over Frd , thus (8) is not 0. �

Corollary 1. Let D0 be a subgroup of prime power index d = rt of Z∗
N , let

Z∗
N/D0 be cyclic or isomorphic to Zrt1 × Zrt2 × · · · × Zrtw . Let S be a coset

sequence with sn = ξj if n ∈ Dj for the ordering (3) of the elements in Fd, the
obvious ordering of Z∗

N/D0 in the cyclic case, else for the ordering defined in
(6). If d ∈ D0 then T (θa) = 0 for ϕ(N)/d values of a ∈ Z∗

N . If d 6∈ D0 then
T (θa) 6= 0 for all a ∈ Z∗

N .

Proof. By Lemma 2, T (θa) 6= T (θa′) if a 6≡ a′ mod D0. If d ∈ D0 then by Lemma
1(ii), T (θa) ∈ Fd for all a ∈ Z∗

N , thus for exactly one integer j, 0 ≤ j ≤ d − 1,
we have T (θa) = 0 if a ∈ Dj . If d ∈ Dj 6= D0 then the order of Dj in Z∗

N/D0

is greater than 1, and with Proposition 1, T (θa) = 0 for a ∈ Dk implies that
T (θb) = 0 for all b ∈ 〈Dj〉DK which contradicts Lemma 2. �

We remark that Corollary 1 also holds for S(x) if U(θa) = c ∈ Fd for all a ∈ Z∗
N .

4 Examples of sequence constructions

Let N = pq for two odd primes p and q. As easily seen aP = P if a ∈ Z∗
pq or

a ∈ P (where the calculation is performed modulo N), which will be used several
times in the following.
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On the basis of the previous section we firstly consider two constructions of pq-
periodic sequences over an arbitrary finite field Fd.
Construction 1: Let d = rt be a power of the prime r dividing gcd(p−1, q−1),
then we can consider the cyclotomic classes (2) of order d, D

(p)
j and D

(q)
j , 0 ≤

j ≤ d− 1, for both primes p, q, respectively. We define a subgroup D0 by

D0 = {n : n mod p ∈ D
(p)
k and n mod q ∈ D

(q)
l (9)

for some k, l with k + l ≡ 0 mod d}.

For simplicity we will write n ∈ D
(p)
k u D

(q)
l if n mod p ∈ D

(p)
k and n mod q ∈

D
(q)
l . As obvious, the factor group Z∗

N/D0 is cyclic, its elements Dj , 0 ≤ j ≤ d−1,
are given by

Dj =
⋃

k+l≡j mod d

(D(p)
k uD

(q)
l ). (10)

Note that DiDj = Di+j mod d.
For d = 2, this construction reduces to the classical two-prime generator, thus
we may call this construction the generalized two-prime generator. For d being
an odd prime the generalized two-prime generator was analysed in [9].
Construction 2: Let d = rt be a power of the prime r, let t1, t2 be integers
such that t1 + t2 = t, and let p and q be primes such that d1 = rt1 divides p− 1
and d2 = rt2 divides q−1. (To keep the contribution of p and q to the behaviour
of the sequence equal, one may prefer to choose d1, d2 close to each other, if
possible d1 = rbt/2c, d2 = rdt/2e.) We consider the cyclotomic classes of order d1

modulo p and order d2 modulo q, and choose D0 as

D0 = {n | 1 ≤ n ≤ pq − 1, n ∈ D
(p)
0 uD

(q)
0 }, (11)

which is a subgroup of Z∗
pq. The index of D0 is d = rt and Z∗

pq/D0 is isomorphic
to Zd1 × Zd2 . We then can employ the ordering (6) for the cosets of D0.

For both subgroups, (9) and (11), we can utilize the ordering (3) of the
elements of Fd and define a pq-periodic sequence S = s0, s1, . . . over Fd by

sn =

 ξj : n ∈ Dj ,
0 : n ∈ Q ∪ {0},
1 : n ∈ P.

(12)

4.1 The case gcd(r, t) = 1

In the next theorem we determine the linear complexity of sequences obtained
by both, Construction 1 and Construction 2. In order to be able to apply Lemma
2 and the subsequent Corollary 1 we need the condition gcd(r, t) = 1.

Theorem 1. For two odd primes p and q, and a power d = rt of the prime r
with gcd(r, t) = 1 let
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1. d divide gcd(p − 1, q − 1), suppose d 6= 2 and let D0 be the subgroup (9) of
Z∗

pq, or
2. d1 = rt1 divide p − 1, d2 = rt2 divide q − 1 for two positive integers t1, t2

with t = t1 + t2, suppose that r > 2 or ti ≥ 2, i = 1, 2, and let D0 be the
subgroup (11) of Z∗

pq.

Then the linear complexity L of the sequence (12) is given by

L =
{

pq − p− (p−1)(q−1)
d : d ∈ D0

pq − p : d 6∈ D0.

Proof. Following (1) we have to determine the number of integers a, 0 ≤ a ≤ pq−1
for which S(θa) = U(θa) + T (θa) = 0 where U(x), T (x) are defined as in (5),
and θ is a primitive pqth root of unity in an extension field of Fd.
We first observe that with aP = P if a ∈ Z∗

pq, we obtain U(θa) =
∑

n∈P θan =∑
n∈P θn = U(θ) = −1. As a consequence, by Corollary 1 and the remark

thereafter we have S(θa) 6= 0 for all a ∈ Z∗
pq if d 6∈ D0, and if d ∈ D0 then

S(θa) = 0 for exactly (p − 1)(q − 1)/d values for a ∈ Z∗
pq. Hence it suffices to

evaluate S(θa) for a ∈ Zpq \ Z∗
pq.

First of all we see that

S(1) =
∑
n∈P

1 +
d−1∑
j=0

ξj

∑
i∈Dj

1 = (q − 1) +
(p− 1)(q − 1)

d

d−1∑
j=0

ξj = 0.

We finish the proof showing that S(θa) = −1 if a ∈ P and S(θa) = 0 if a ∈ Q.
With aP = P if a ∈ P we obtain U(θa) = −1 as above, and a ∈ Q implies
U(θa) =

∑
n∈P θan =

∑
n∈P 1 = q−1 = 0. Consequently it remains to be shown

that T (θa) =
∑d−1

j=0 ξjfj(θa) = 0 if a ∈ P ∪ Q, where we have to distinguish
between the two constructions.
Construction 1. Suppose that b ∈ Z∗

q is an element of D
(q)
l and let 0 ≤ k ≤ d− 1

be the unique integer with k + l ≡ j mod d. By the Chinese remainder theorem
for each of the (p − 1)/d elements ci of D

(p)
k there exists a unique integer n,

1 ≤ n ≤ pq − 1, with n ≡ ci mod p, n ≡ b mod q, and by definition n ∈ Dj .
Therefore if a ∈ P , then aDj (modulo pq) runs (p−1)/d times through P = pZ∗

q .
Consequently

fj(θa) =
∑
i∈Dj

θai =
p− 1

d

∑
n∈P

θn = −p− 1
d

,

hence a ∈ P implies

T (θa) =
d−1∑
j=0

ξjfj(θa) = −p− 1
d

d−1∑
j=0

ξj . (13)

For a ∈ Q we similarly obtain T (θa) = − q−1
d

∑d−1
j=0 ξj . With the assumption

d 6= 2, the sum
∑d−1

j=0 ξj of the elements of Fd vanishes, thus T (θa) = 0 for
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a ∈ P ∪Q.
Construction 2. Let j = rt1k+` with k = 0, 1, · · · , rt2−1 and ` = 0, 1, · · · , rt1−1,
then

Dj = {n | 1 ≤ n ≤ pq − 1, n ∈ D
(p)
l uD

(q)
k }

by definition. Consequently if the set Dj is reduced modulo p every element of
D

(p)
l is taken on precisely (q−1)/rt2 times and vice versa in Dj reduced modulo

q every element of D
(q)
k appears (p− 1)/rt1 times. For a ∈ P we therefore get

fj(θa) =
∑
i∈Dj

θai =
p− 1
rt1

∑
i∈pD

(q)
k

θi

and subsequently

T (θa) =
rt2−1∑
k=0

rt1−1∑
`=0

p− 1
rt1

∑
i∈pD

(q)
k

θiξrt1k+` (14)

=
p− 1
rt1

rt2−1∑
k=0

∑
i∈pD

(q)
k

θi
rt1−1∑
`=0

ξrt1k+`.

Since ξrt1k+` = ξrt1k + ξ` for all k ∈ {0, 1, · · · , rt2 − 1}, ` ∈ {0, 1, · · · , rt1 − 1},
we can write

rt1−1∑
`=0

ξrt1k+` =
rt1−1∑
`=0

ξrt1k + ξ` =
rt1−1∑
`=0

ξ` = 0, (15)

where in the last step we used r 6= 2 or r = 2 and t1 > 1. Hence T (θa) = 0 for
all a ∈ P.
For a ∈ Q we obtain T (θa) = 0 similarly if r 6= 2 or r = 2 and t2 > 1. �

Remark 2. For d = 2 equation (13) yields T (θa) = (p − 1)/2 if a ∈ P and
similarly one then gets T (θa) = (q − 1)/2 if a ∈ Q. This leads to the formula
presented in [7] for the linear complexity of the binary two-prime generator.

We observe that for Construction 2, in Theorem 1 we had to suppose that
r > 2 or ti ≥ 2, i = 1, 2, which was used to show equation (15). However, to
obtain a sequence over F8 with Construction 2 we have to choose t1 = 1 (and
t2 = 2). Consequently sequences over F8 for Construction 2 are not covered
by Theorem 1, thus have to be dealt with separately. This is accomplished in
the next theorem. As basis of F8 over F2 we may choose the polynomial basis
{1, β, β2}, where β can be taken as a root of x3 + x + 1.
Theorem 2. The linear complexity of the sequence over F8 obtained by Con-
struction 2 with t1 = 1, t2 = 2 and the polynomial basis {1, β, β2} of F8 over F2

is given by

L(S) =


pq − p− (p−1)(q−1)

8 : p ≡ 1 mod 4, 2 ∈ D0,

pq − p− q + 1− (p−1)(q−1)
8 : p ≡ 3 mod 4, 2 ∈ D0,

pq − p : p ≡ 1 mod 4, 2 /∈ D0,
pq − p− q + 1 : p ≡ 3 mod 4, 2 /∈ D0.
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Proof. Since r = 2 and t1 = 1 equation (15) now attains the value 1. Thus for
equation (14) we obtain

T (θa) =
p− 1

2

2t2−1∑
k=0

∑
i∈pD

(q)
k

θi =
p− 1

2

∑
i∈P

θi =
p− 1

2
.

As we had U(θa) = −1 if a ∈ P we therefore get S(θa) = (p+1)/2 for all a ∈ P .
With the observation that 8 ∈ D0 if and only if 2 ∈ D0, we obtain the assertion
of the theorem. �

Remark 3. By definition of D0 we have 2 ∈ D0 if and only if 2 is a quadratic
residue modulo p and a quartic residue modulo q, or equivalently p ≡ ±1 mod 8
and q ≡ −1 mod 8 or q ≡ 1 mod 8 and q = x2 + 64y2 for some integers x, y.
Thus one may write the statement of Theorem 2 entirely in terms of p and q.

4.2 Quaternary sequences

If gcd(r, t) 6= 1 then Lemma 2 cannot be applied and the values of S(θa) for
a ∈ Z∗

pq have to be determined individually. We present the results for the linear
complexity of sequences defined via the subgroups (9) and (11) for the important
case d = 4. As we will see, for the subgroup (9) the linear complexity does not
rely on a predefined ordering of the elements of F4, whereas for the subgroup
(11) it does.

Theorem 3. Let η0, η1, η2, η3 be the elements of F4, let Dj be defined as in (10)
for two primes p ≡ q ≡ 1 mod 4 and d = 4, and let S be the pq-periodic sequence
over F4 defined by

sn =

ηj : n ∈ Dj ,
0 : n ∈ Q ∪ {0},
1 : n ∈ P.

The linear complexity L(S) of S is then

L(S) =


pq − p− (p−1)(q−1)

4 : p ≡ q ≡ 1 mod 8 or p ≡ q ≡ 5 mod 8,

pq − p : p ≡ 1 mod 8, q ≡ 5 mod 8 or
p ≡ 5 mod 8, q ≡ 1 mod 8.

Proof. With Lemma 1(i) and aP = P for a ∈ Z∗
pq we have S(θa) = S(θ) for all

a ∈ D0. Defining U(x), T (x) as in equation (5) we observe that again U(θa) =
U(θ) = 1 if a ∈ Z∗

pq ∪ P and U(θa) = 0 if a ∈ Q. We hence restrict ourselves to
the determination of T (θa). From Z∗

pq/D0 being cyclic we get for a ∈ D1

T (θa) =
3∑

j=0

ηjfj(θa) = η3f0(θ) + η0f1(θ) + η1f2(θ) + η2f3(θ)

= T (θ) + (η0 + η3)f0(θ) + (η0 + η1)f1(θ) + (η1 + η2)f2(θ) + (η2 + η3)f3(θ)
= T (θ) + (η0 + η3)(f0(θ) + f2(θ)) + (η0 + η1)(f1(θ) + f3(θ)),
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since
∑3

j=0 ηj = 0. With Lemma 1(iv) we then obtain

T (θa) = T (θ) + η0 + η1 + (η1 + η3)(f0(θ) + f2(θ)).

With similar arguments one gets T (θa) = T (θ) + η0 + η2 if a ∈ D2, and T (θa) =
T (θ) + η0 + η3 + (η1 + η3)(f0(θ) + f2(θ)) if a ∈ D3.
T (θa) = 0 if a ∈ P ∪Q, thus S(θa) = 1 if a ∈ P and S(θa) = 0 if a ∈ Q, follows
with the proof of Theorem 1 for the general case. We distinguish two cases.
First suppose that 2 ∈ D0 ∪D2, or equivalently p ≡ q mod 8, then 4 ∈ D0 and
thus S(θ) ∈ F4. Furthermore observe that 2 ∈ D0∪D2 also implies f0(θ)+f2(θ) ∈
F2. As easily seen we then have S(θa) 6= S(θa′) if a 6≡ a′ mod D0 and we obtain
the proclaimed value for the linear complexity with the usual conclusion.
Secondly suppose that 2 ∈ D1 ∪ D3, hence 4 ∈ D2. Then S(θ)4 = S(θ4) =
S(θ) + η0 + η2 6= S(θ), and consequently S(θ) 6∈ F4. On the other hand again
4 ∈ D2 implies f0(θ) + f2(θ) ∈ F4 and thus S(θa) 6∈ F4 for all a ∈ Z∗

pq, which
yields the proclaimed linear complexity. �

Theorem 4. Let η0, η1, η2, η3 be the elements of F4 and for two odd primes p, q

let D
(p)
0 and D

(p)
1 (D(q)

0 , D
(q)
1 ) be the set of squares and nonsquares modulo p

(modulo q), respectively. Let S be the pq-periodic sequence over F4 defined by

sn =

ηl+2k : n ∈ D
(p)
l uD

(q)
k ,

0 : n ∈ Q ∪ {0},
1 : n ∈ P.

The linear complexity of S is then

L(S) =



pq − 1− (p−1)(q−1)
4 : q ≡ 3 mod 4 and p ≡ 1 mod 4 or

p ≡ 3 mod 4, η2 6= η0 + 1,

pq − p− (p−1)(q−1)
4 : q ≡ 1 mod 4 and p ≡ 1 mod 4 or

p ≡ 3 mod 4, η2 6= η0 + 1,

pq − q − (p−1)(q−1)
4 : q ≡ 3 mod 4, p ≡ 3 mod 4, η2 = η0 + 1,

pq − p− q + 1− (p−1)(q−1)
4 : q ≡ 1 mod 4, p ≡ 3 mod 4, η2 = η0 + 1.

Proof. With Lemma 1(i) and aP = P for a ∈ Z∗
pq we have S(θa) = S(θ) for all

a ∈ D0. From Z∗
pq/D0 ' Z2 × Z2, for a ∈ D1 we obtain

S(θa) =
∑
n∈P

θn + η0f1(θ) + η1f0(θ) + η2f3(θ) + η3f2(θ) = S(θ) + η0(f0(θ) + f1(θ))

+η1(f0(θ) + f1(θ)) + η2(f2(θ) + f3(θ)) + η3(f2(θ) + f3(θ))
= S(θ) + (η0 + η1)(f0(θ) + f1(θ)) + (η2 + η3)(f2(θ) + f3(θ))

= S(θ) + (η0 + η1)
3∑

j=0

fj(θ) = S(θ) + η0 + η1.

Similarly we get S(θa) = S(θ) + η0 + η2 for a ∈ D2 and S(θa) = S(θ) + η0 + η3

for a ∈ D3. Hence S(θa) 6= S(θa′) if a 6≡ a′ mod D0. Since 4 ∈ D0 and U(x)
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is as in the proof of Theorem 3, with Lemma 1(ii) we have S(θa) ∈ F4 when
a ∈ Dj , j = 0, 1, 2, 3.
Employing that the sets D0 and D2 (D1 and D3) reduced modulo q are equal
for a ∈ P we get

S(θa) =
∑
n∈P

θn + (η0 + η2)
∑

n∈D0

θan + (η1 + η3)
∑

n∈D1

θan

= 1 + (η0 + η2)
∑

n∈D0∪D1

θan = 1 + (η0 + η2)
p− 1

2

∑
n∈P

θn

= 1 + (η0 + η2)
p− 1

2
.

In the penultimate step we used that the set D0∪D1 reduced modulo q contains
all elements of Z∗

q and each element is taken on (p− 1)/2 times.
In an analog way we obtain S(θa) = (η0 + η1) q−1

2 if a ∈ Q. The simple observa-
tion that S(1) = 0 completes the proof. �

We complete this section pointing out that the generalized two-prime gener-
ator (Construction 1) has favourable autocorrelation properties when d is prime
(or likewise if one defines the sequence as a d-ary sequence for an arbitrary
module d in an analog way, as autocorrelation is then also defined). For d = 2
this was shown in [8], an alternative proof using characters was presented in [2].
The methods of [2] can be applied to the case of arbitrary modules d. As far
as we are aware, autocorrelation results for arbitrary modules d have not been
presented, thus we give the result but omit the proof. In the following we put
εd = e2π

√
−1/d, and χ(p) (χ(q)) shall denote the multiplicative character of order

d of Fp (Fq) given by χ(p)(gk) = εk
d if g is a primitive element of Fp (Fq).

Theorem 5. The autocorrelation of the generalized two-prime generator S with
prime d is given by

A(S, t) =


p− q + 1 : t ∈ qZ∗

p,

εd + εd + q − p− 1 : t ∈ pZ∗
q ,

1 + (1− εχ(p)(−t)χ(q)(−t)) : t ∈ Z∗
pq.

+(1− εχ(p)(t)χ(q)(t))

5 Final Remarks

We consider N -periodic sequences over finite fields that are constant on the
cosets of a subgroup of Z∗

N , which can be seen as a general approach to classes
of N -periodic sequences that contain well known constructions as the Legendre
sequences and the two-prime generator. With this general approach one may con-
struct and analyse various classes of sequences. We give examples of pq-periodic
sequences over arbitrary finite fields and determine their linear complexity. Sim-
ilar constructions can be considered and analysed (using tools from Section 2)
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for other (squarefree) periods. One may use subgroups D of Z∗
N with index not

a prime power as in the following example: For an odd prime p and a prime
q ≡ 1 mod 3 we consider the cyclotomic classes of order 2 and 3, respectively,
and the subgroup D0 = D

(q)
0 uD

(p)
0 of index 6. We define a corresponding ternary

sequence S by sn = l + 2k mod 3 if n ∈ D
(p)
l uD

(q)
k , sn = 0 if n ∈ Q ∪ {0} and

sn = 1 if n ∈ P . With the above used techniques and using Proposition 1 one
obtains that L(S) = pq− p− (p− 1)(q− 1)/3 if p ≡ ±1 mod 12 and q = 3a2 + b2

with 9|a or 9|(a± b), if q = 3a2 + b2 with 9 6 |a and 9 6 |(a± b) then L(S) = pq−p.
This pq-periodic ternary sequence is certainly different from the ternary version
of the two-prime generator and the ternary sequence constructed as in [12]. An
analysis of the autocorrelation of such coset sequences, which differently to the
sequences in [1, 12, 14–16] are not similar to a concatenation of Legendre se-
quences, may be worthwhile. There, an adaptation of the method in [8] with an
adequate generalization of cyclotomic numbers seems promising. In this connec-
tion it may also be of interest to use the above considered factor group of Z∗

pq

isomorphic to Z2 × Z2 to define quaternary sequences.
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