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Abstract

This study presents a modified version of the repeated discounted pris-

oners’ dilemma with long and short-run players. In our setting a short-run

player does not observe the history that has occurred before he was born,

and survives into next phases of the game with a probability given by the

current action profile in the stage game. Thus, even though it is improb-

able, a short-run player may live and interact with the long-run player for

infinitely long amounts of time. In this model we prove that under a mild

incentive condition on the stage game payoffs, the cooperative outcome path

is not subgame perfect no matter how patient the players are. Moreover with

an additional technical assumption aimed to provide a tractable analysis, we

also show that payoffs arbitrarily close to that of the cooperative outcome

path, cannot be obtained in equilibrium even with patient players.

Keywords: Repeated games, discounting, prisoners’ dilemma, short and

long run players, Folk theorem.
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Özet

Bu çalışma uzun ve kısa dönemli oyuncularla oynanan tekrarlı iskonto

edilmiş tutuklu açmazı oyununun değişiklik yapılmış halidir. Bu çalışmamızda,

kısa dönem oyuncu doğmadan önceki geçmişi gözlemlemiyor ve oyunun bir

sonraki tekrarı için hayatta kalabilme ihtimali o periyottaki aksiyon pro-

fili tarafından belirleniyor. Bu suretle, mümkün görunmesede kısa dönem

oyuncu sonsuz zaman diliminde hayatta kalabilir ve uzun dönem oyuncuyla

oyunu oynayabilir. Bu modelde, periyot getirileri üzerine bir varsayim altında,

oyuncularn sabır seviyelerinden bağımsız olarak işbirlikçi sonuç gidişhatının

alt oyun tam Nash dengesi olmadığını ispatladık. Ayrıca, analizimizi ko-

laylaştırmayı sağlayan teknik bir varsayım ile, sabırlı oyuncularla bile işbirlikçi

sonuç gidişhatının sağladığı getirilere rastgele yakın olan getirileri dengede

elde edemediğimizi gösterdik.

Anahtar Kelimeler: Tekrarlanan oyunlar, iskonto, tutuklu açmazı, kısa

ve uzun dönem oyuncular, Folk teorem.
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Chapter 1

Introduction

Repeated games are the standard models used to analyze situations in which

some number of decision makers are interacting strategically with each other

in a repeated fashion. Thus, these models are essential in the theory of eco-

nomics as they used almost everywhere in the literature.

In fact, repeated games are a certain type of dynamic games in which

players face the same stage game in every period. The stage game can be

infinitely or finitely played. Moreover, results obtained from finitely repeat-

ing stage game are considerably different those of obtained with in infinite

repetitions.

In repeated games literature payoffs obtained at the end of the repeated

game are defined in three ways. Payoffs description by limit of the means

is considered by Aumann and Shapley (1976), overtaking criterion is due to

Rubinstein (1979) and the most common description is the discounting pay-

1



Chapter 1. Introduction 2

off structure in which players’ payoffs at the end of the repeated game is the

summation of discounted stage game payoffs obtained at each stage. It is

worthwhile to note that, similar results have been obtained in repeated game

literature under all three payoff structures.

The important feature of the repeated game structure is the ability of

players to condition their action at each stage on the prior history up to that

stage. This distinctive ability of players allows game theorists to obtain very

attractive and different results that cannot be obtained in standard one shot

games. One of the most important results is the subgame perfect Folk Theo-

rem with discounting, by Fudenberg and Maskin (1986b), which states that

when players can condition their behavior unboundedly on the past and the

full dimensionality assumption holds (the dimension of the set of payoffs in

the stage game equals to the number of players), every individually rational

payoff profile (those that exceed the payoffs from the most serious punish-

ment for every player in the stage game) can be sustained in subgame perfect

equilibrium when players are sufficiently patient. Moreover,Barlo, Carmona,

and Sabourian (forthcoming) shows that the subgame perfect Folk Theorem

with discounting holds with 1 memory strategies (where in each period, play-

ers behavior depends only on the action profile of the last period) provided

that players possess rich action spaces in the stage game (that is, the action

set of each player is given by a non-empty convex and compact set). When

each player has a finite action set, Barlo, Carmona, and Sabourian (2008)

proves a subgame perfect Folk Theorem with discounting and with finite

memory, by showing that every individually rational payoff can be approx-
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imated by a finite memory subgame perfect strategy (where the magnitude

of memory depends on the approximation measure desired). Moreover, with

payoff criteria other than the discounting, subgame perfect Folk Theorems

with both limit of means and overtaking payoff criterion have been obtained

by Aumann and Shapley (1976) and Rubinstein (1979). Moreover, with lim-

its of the means Sabourian (1998) proves the subgame perfect Folk Theorem

with finite memory.

The analysis of the repeated prisoners’ dilemma has always been one of

the cornerstones in the literature. Recall that, standard prisoners’ dilemma

is a one shot game between two players with special structure. In that prison-

ers’ dilemma structure, action spaces of players consist of two actions namely,

defection and cooperation. Defection is the strictly dominant strategy for

each player but when they both choose defection the Pareto inferior outcome

arises. Because defection is the strictly dominant strategy for both players,

the only equilibrium of the one-period prisoners’ dilemma is the action pro-

file in which both players choose defection. On the other hand, the analysis

of the repeated discounted prisoners’ dilemma reveals that cooperation can

be obtained when players are sufficiently patient. Moreover, the perfect Folk

Theorem of Fudenberg and Maskin (1986a) implies that this conclusion holds

for any strictly individual rational payoff. The main reason for this obser-

vation is that a deviating player can be punished effectively in the future

stages of the game when all players are sufficiently patient, and gives birth

to deviations to more beneficial action in the short run not being profitable in

the long run. Consequently, the Folk Theorem reduces the prediction power
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of game theory, which can be best seen in the repeated prisoners’ dilemma.

While game theoretical tools attempt to predict the equilibrium outcome of

games, the Folk Theorem decreases this power by showing that the set of

equilibrium payoffs converge to that of the individual rational payoffs when

the discount factor tends to 1.

In the repeated discounted prisoners’ dilemma literature, one of the im-

portant modifications consists of the formulation where the repeated games

is played with a long lived (long run) player and countably many short lived

(short run) players (who die at the end of every period) given in the studies

of Fudenberg, Kreps, and Maskin (1990) and Fudenberg and Levine (2006).

In that setting, the long run player plays the stage game in every period

with one of the short run players whereas each short run player plays with

the long run player in only one period. Under this modification, the con-

clusion derived drastically changes in contrast to that of standard repeated

discounted prisoners’ dilemma as is pointed out in Fudenberg, Kreps, and

Maskin (1990). In fact, the set of equilibrium outcomes reduces to the rep-

etition of the non-cooperative (defection) action. This is because the short

run players do not have any incentives to do an action other than the de-

fection, due to not being able to consider returns from the future phases of

the strategic interaction. As a result of this, short run players repeatedly

playing deviation is their only best response, and hence the long run player

plays defection at each period no matter what the history is.

Therefore, we consider a model that is somewhat in between of these
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two extreme models, the standard repeated discounted prisoners’ dilemma

(in which the Folk Theorem holds) and the repeated discounted prisoners’

dilemma with long and short run players (in which the defection is the only

equilibrium outcome and payoff). In such a model to see if cooperation can

be sustained, we think, is an appealing question.

In this study we consider a repeated prisoners’ dilemma with a long-run

player (player 1), and countably many short run players. In order to provide

an easier reading, we describe the model thinking of a soccer club, where

player 1 is the owner of the club and the short run players, the coaches.

Time is discrete, and every period a coach is born and we refer to a coach

born in period t by player (2.t). In the first period, player 1 faces player

(2.1), and they both choose an action in {C,D}. Then, in the same period a

public signal in {0, 1} is realized, where 0 is to be interpreted as failure and

1 to be success. The probability distribution on the set of public signals is

determined by the action profile chosen in that period. In case of failure, they

both receive zero payoffs and coach (2.t) gets fired, and in the next period

player 1 faces coach (2.2). On the other hand, in case of success, they receive

the prisoners’ dilemma payoffs (all strictly positive) and coach (2.1) does not

get fired, and is active also in period 2. Thus, in any period t, player 1 may

face (with some probabilities) any one of players (2.τ), τ ≤ t. We assume

that a coach born in period t dies in that period when he is not employed.

A t length history in this setting is given by t actions and t public signals,

all of which player 1 observes. But player (2.τ), τ ≤ t, does not observe the

history (both public and private) before his birth, but the t − τ tail of a t
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length history (we work with the convention that the 0 tail of any history is

the empty set). All the players discount future payoffs, but not necessarily

with the same discount rate.

We show that when payoffs from short run deviations are sufficiently high,

sustaining cooperation turns out to be impossible even with patient players.

In particular, this study proves that when short run deviation payoffs are

sufficiently high, then the cooperative outcome path (which consists of the

cooperative action regardless of failures and successes) is not subgame perfect

for any discount factor. Moreover, we also show that payoffs arbitrarily close

to that of the cooperative outcome path cannot be obtained in equilibrium

even with patient players.

Hence, our results indicate that the sheer reason for not obtaining co-

operation in prisoners’ dilemma with long and short run players is not only

because short run players die at the end of every period with probability 1.

We identify another important reason: Punishing the long run player might

be difficult, which happens when the long run player’s stage game payoffs

from deviating from the cooperation action is sufficiently high, when the

new born short run players cannot observe the past. The main cause of this

observation is that, when cooperation is considered, a deviation by player 1

is more difficult to be punished because: (1) a coach born in period t must

cooperate on the first day that he is active (note that such players do not

observe that player 1 has deviated in the past), and (2) only coaches who

faced a deviation by player 1 and became successful are able to punish him.
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While our result can be immediately used to provide a simple explanation

for why soccer coaches get fired very frequently1, an important application

includes an infinitely repeated version of Kyle’s market model with a long

run and many short run traders, where all are informed.

Kyle’s Market Model, due to S.Kyle (1989), is a one shot financial eco-

nomics model for asset pricing in which there are four parties involved in

the trade of an asset. The real value of the asset is only known to one of

these traders, the informed trader, while the other uninformed but rational

player is trying guess the value from the total demand for this asset in order

to maximize his returns. The third party involved is the noise trader (also

called hedger) who is not rational, and has to demand some random amount

of this asset, and this provides noise into the model. The final player is the

market maker, who does not observe the real value of the asset (and hence

is uninformed), and tries to get the efficiency of the market by determining

the price based on the total demand he observes. In the equilibrium of this

model, the informed trader achieves a surplus, which can be thought as a

rent for his information.

In a simple repeated version of Kyle’s model with long and short run

players, we imagine that every period there are two informed traders, first

one is the long run informed investor and the second is the short run informed

1It is appropriate to point out that in the first 10 weeks of the 2007-2008 season of the

Turkcell Superlig (the Premiere Turkish Soccer League) 10 coaches have been fired.
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investor. Indeed, while the first player can be thought of as an investor with

high job security, the second players can be viewed as fresh graduates from

good economics/business programs being hired as traders, but their jobs are

not secure and their continued employment critically depends on their per-

formance.

We, then, consider a simplified version of this interaction where the in-

formation rent of these players depend on their actions which only take 2

values, high (defection) or low (cooperation). In particular we do not have

an uninformed but rational player and the noise traders. Instead, we simplify

the model by assuming that the market maker is myopic (discounts future

returns with discount rate of zero) and cannot condition his behavior on the

past. He can identify the real value of the asset with a probability which

depends on the action choices of the two traders. Indeed, when the market

maker identifies the real value of the asset, it can be considered as a failure

for the two traders and in this case they obtain zero excess returns. More-

over in this contingency the short run informed investor loses his job, and is

replaced by another in the next period. On the other hand, if the market

maker cannot identify the real value of the asset, then the excess return that

the informed traders obtain (the information rent) depends again on their

action choices, and is in the form of a standard prisoners’ dilemma. Fur-

thermore, in this state of the world, particular short run informed investor

continues to be employed in the next period.

Our results then imply that even with patient investors, cooperation can
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not be obtained when deviations in the short run are sufficiently beneficial.

Recall that the main reason for this observation is not only because of the

lack of incentives of the short run investors, but also because of the lack of

efficient punishments for the long run investors under the assumption that

short run investors do not observe histories that happened before their birth.

It needs to be emphasized that restricting a player 2 born in period t > 1

not to observe histories (actions and public signals) prior to his birth is an

important one. Indeed, the formulation with player (2.t) being able to ob-

serve the public signals (but not past action profiles) prior to his birth is

more appealing. We need to say that it is not known to us whether or not

some versions of our result can be extended to such situations. On the other

hand, it needs to be emphasized that such endeavors are not trivial. To

see this, consider player (2.t) being able to observe the public signals that

has occurred before his birth, and to see some implications and related com-

plications consider the following strategy: On the first day he is born, he

cooperates if the public signals are all consisting of 1’s (i.e. the past has

been nothing but success); otherwise, he defects. And, in later periods he

cooperates only when player 1 cooperated in the periods that are observable

to player (2.t); otherwise, he defects. With this strategy a deviation of player

1 from the cooperative path can be punished more effectively, because his

deviation would increase the probability of failure, and thus, the probability

of his deviation being punished by a player 2 who was born in a period after

player 1’s deviation. Thus, a general formulation with player (2.t), t > 1

observing public signals in periods τ = 1, . . . , t − 1, would call for checking
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whether or not we can adopt techniques presented in Abreu, Pearce, and

Stachetti (1990), and analyzing equilibrium payoffs. In particular, whether

or not the principle of one–deviation holds in this setting is the main obsta-

cle that one has to deal with, when such generalizations are to be considered.

Our analysis of the repeated prisoners’ dilemma differs from the standard

(complete information) versions in the following ways: As in Fudenberg,

Kreps, and Maskin (1990) and Fudenberg and Levine (2006) our model fea-

tures short and long-run players with the important distinction that short-run

players may survive with some probability into future phases of the game,

whereas in Fudenberg, Kreps, and Maskin (1990) and Fudenberg and Levine

(2006) long run player plays with different short run player in each period,

and this imposes an important constraint by requiring that each equilibrium

outcome must lie in short run players’ best responses. On the other hand,

our study does not involve such a constraint since there is always a positive

probability of survival of short run players in each period.

Moreover, the second important difference is the additional restriction

that short-run players do not observe the history prior to their birth. In

that regard, our setup shares some similarities with the analysis of limited

memory in the context of the repeated prisoners’ dilemma with complete

information and long-run players. We refer the reader to Aumann (1981),

Neyman (1985), Rubinstein (1986), Kalai and Stanford (1988), Sabourian

(1998), Barlo, Carmona, and Sabourian (2008), and Barlo and Carmona

(2007) for more on the subject. On the other hand, Cole and Kocherlakota
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(2005) delivers a similar conclusion to ours in the context of a repeated

prisoners’ dilemma with imperfect monitoring and finite memory: They prove

that for some parameter settings the only strongly symmetric public perfect

equilibrium consists of the repetition of the non-cooperative action profile

regardless of the discount factor. Meanwhile, other studies of the repeated

prisoners’ dilemma with imperfect monitoring include Bashkar and Obara

(2002), Mailath and Morris (2002), Mailath, Obara, and Sekiguchi (2002),

and Piccione (2002).



Chapter 2

The Model

We consider a similar game to the partnership game of Radner, Myerson, and

Maskin (1986). Every period, a long-run (infinitely lived) player, henceforth

to be referred to as the first player, is interacting with one of countably many

short-run players. Every period a short-run player is born, and the one born

in period t will be referred to as player (2.t).

The period interaction is a modified version of the standard prisoners’

dilemma: each action profile in A ≡ {C,D}× {C,D} is followed by a public

signal θ in {0, 1}, where θ = 1 signals the “success” of the interaction between

player 1 and 2 in period t. When θ = 0, both agents do not obtain any payoffs

from their interaction. Moreover, player (2.t′), t′ ≤ t that player 1 has played

against in period t, is “fired” and player 1 will interact with player (2.(t+1))

in the next period. On the other hand, in case of success the players obtain

12
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the following payoffs:

C D

C (1, 1) (c, b)

D (b, c) (d, d)

(2.1)

where b > 1 > d > c > 0 and b+c
2
< 1. Moreover, then (2.t′), t′ ≤ t, is not

to be fired and will be the player 2 that player 1 will play against in period

t+ 1.

We let Pr(θ = 0|CC) = p1, Pr(θ = 0|CD) = Pr(θ = 0|DC) = p2 and

Pr(θ = 0|DD) = p3, with 0 < p1 < p2 < p3 < 1. It is worthwhile to point

out that the probability of success decreases with defection.

Consequently, in period t players obtain the following (short-run) returns:

Pl1/P l(2.t′) C D

C (1− p1), (1− p1) (1− p2)c, (1− p2)b

D (1− p2)b, (1− p2)c (1− p3)d, (1− p3)d

for t′ ≤ t, where t′ is the period in which the player 2 that player 1 faces was

born. In order to ensure that the short-run payoffs is given by a prisoners’

dilemma, we have the following assumption:

Assumption 1 (1−p2)b > (1−p1), (1−p3)d > (1−p2)c, (1−p1) > (1−p3)d,

b > 1 > d > c > 0 and b+c
2
< 1.

We denote the set of histories by H, any t−1 length history consists of sig-

nals and action played up to t period, ht = ((a1, θ1), (a2, θ2), ...., (at−1, θt−1)).
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Let f1 be the pure strategy of player 1 such that f1(ht) ∈ {C,D} for each

period t. We denote the set of all pure strategies of first player by F1.

The following assumption will play a critical role in our analysis:

Assumption 2 Assume that player (2.t), a second player born in period t,

is restricted to use pure strategies that do not depend on the history (both

public and private) that has happened before he was born.

Consequently, for any t′ ≥ t ≥ 1 and for any t′ − 1 length history h,

let T t
′−t(h) be the t′ − t tail of h. That is, given that h = ((aτ , θτ )

t′−1
τ=1 ),

T t
′−t(h) ≡ ((aτ , θτ )

t′−1
τ=t ). Obviously, if t′ = t, T 0(h) = e for all t′ − 1 length

history h. We let f(2.t) be the pure strategy of player (2.t) so that for any

t′ ≥ t and ht′ any t′ − 1 length history, f(2.t)(ht′) : T t
′−t(ht′)→ {C,D}, thus,

f(2.t) = {f(2.t)(ht′)}t′≥t. Denote the set of all pure strategies for second players

by F2.
1

An outcome path π = {πt}t∈N where for any t, πt = ((a1,t, a2,t), θt). We

denote the set of outcome paths by Π. Moreover, a strategy pair f = (f1, f2)

induces the set of possible outcome paths π(f) ∈ A∞ ≡ A×A×. . . as follows:

1Note that since in period t′ the exact identity of the second player is one of ∪t′τ=1(2.τ)

depending on previous signals that are already included in the t′ − 1 length history ht′ .

Thus, the birth-period of the particular second player that player 1 faces in period t′, is

already given by the history. Hence, the behavior of a second player born in period t, for

a t′ − 1 length history ht′ , with t′ ≥ t, is described by f(2.t)(ht′) : T t
′−t(h)→ {C,D}.
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π1(f) = ((f1(e), f(2.1)(e)), θ1). Note that if θ1 = 1, the player 2 that player 1

faces in period 2 is (2.1). Thus, π2(f) = (f1(a1, θ1), f(2.1)(a1, θ1), θ2). But, if

θ1 = 0, then player 1 faces player (2.2), thus, π2(f) = (f1(a1, θ1), f(2.2)(e), θ2).

An inductive argument can be used to formalize πt(f) as above. To elaborate

on this process formally, we need to define the following function: For any t−1

length history ht, let θt = (θ1, . . . , θt−1), and define ι : {0, 1}t−1 → {1, . . . , t}

by

ι(ht) =


τ if there exists t′ ≤ t− 1 with θt′ = 0,

and τ = arg max{t′′≤t}{t′′ : θt′′−1 = 0}

1 otherwise.

In words, ι(ht) = τ ∈ {2, . . . , t} if θτ−1 is the last 0 entry in θt, and ι(ht) = 1

if θt does not contain any 0 entry. Thus, for any t − 1 length history ht,

(2.ι(ht)) with ι(ht) ≤ t is the player whom player 1 faces in period t. Thus,

for any t ∈ N,

πt(f) =
((
f1({πτ (f)}t−1

τ=1), f(2.ι({πτ (f)}t−1
τ=1))(T

t−ι({πτ (f)}t−1
τ=1))

)
, θt

)
.

Players discount future payoffs with the discount factor δi ∈ [0, 1), i ∈ {1} ∪

{(2.t) : t ∈ N}. In particular, for every given outcome path π the payoffs are

given by:
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U1(π) = (1− δ1)
∞∑
t=1

δt−1
1 u1(πτ ), (2.2)

U(2.t)(π) =



(1− δ(2.1))(u2(π1) if t = 1;

+
∑∞

τ=2 δ
τ−1
(2.1)

∏τ−1
k=1 Pr(θk = 1 | ak)u2(πτ ))

(1− δ(2.t))(u2(πt) if t > 1

+
∑∞

τ=t+1 δ
τ−t
(2.t)

∏τ−1
k=t Pr(θk = 1 | ak)u2(πτ )) and θt−1 = 0;

0 otherwise.

where ui(πτ ) = Pr(θτ = 1 | aτ )ui(aτ ), and ui(aτ ) is as given in the prisoners’

dilemma described by equation 2.1.



Chapter 3

Sustaining Cooperation is

Difficult

Our main observation is that sustaining cooperative behavior in subgame

perfection is impossible under a critical condition which guarantees that de-

viation payoff from cooperation is sufficiently high, condition 3.1 given in the

statement of Proposition 1. Under that condition, deviation return is suf-

ficiently high for the first player, and along with the difficulty at punishing

the deviating first player by second players (due to their inability to see the

past histories and their possible death after each period) makes the coopera-

tive behavior not sustainable in equilibrium. Moreover, the same conclusion

holds for payoffs arbitrarily close to that of the cooperative behavior when

players are sufficiently patient.

Define the cooperative outcome path to be an outcome path π such that

πt = ((C,C), θt) for any θt ∈ {0, 1} and t ∈ N. Notice that the cooperative

17
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outcome path calls for cooperation independently of the signals.

In the following, we show that under Assumptions 1 and 2 and a condition

on stage game payoffs, the cooperative outcome path, cannot be supported

as a Nash equilibrium for all δi ∈ [0, 1), i ∈ {1} ∪ {(2.t) : t ∈ N}.

Proposition 1 Suppose that

(1− p1)(1− p3)d+ p1(1− p2)b > (1− p1). (3.1)

Then the cooperative outcome path π is not Nash Equilibrium path for any

δi ∈ [0, 1), i ∈ {1} ∪ {(2.t) : t ∈ N}.

Proof. Under the cooperative path π, U1(π) equals (1 − p1), because,

U1(π) = (1− δ1)
∑∞

t=1 δ
t−1
1 u1(πt), and u1(πt) = Pr(θt = 1 | at) = (1− p1), for

every t ∈ N.

Next notice that any strategy of player (2, t), t ∈ N, inducing the cooper-

ative outcome path π, must require player (2, t) to choose C if either t = 1,

or t > 1 and θt−1 = 0. Let (f(2,t)t∈N) be such a pure strategy profile. Define

f ′1 be the strategy for the first player such that f ′1(ht) = D for all ht and t.

Then, below we show that

U1(f
′
1, f2) > (1− p1)(1− p3)d+ p1(1− p2)b.

This is because the payoff of player 1 in period t > 1 is greater or equal to

(1−p1)u1(D,D)+p1u1(D,C) = (1−p1)(1−p3)d+p1(1−p2)b. Moreover, this

relation holds with strict inequality when t = 1. This is because, Pr(θt−1 =

0 | at−1) ≥ p1 for all at−1 ∈ A, thus, Pr(θt−1 = 1 | at−1) ≤ (1 − p1) for all
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t > 1; and, in the first period player 2 chooses C while player 1 goes for

D. Hence, U1(f
′
1, f2) > (1− δ1)

∑∞
t=1 δ

t−1
1 (1− p1)u1({D,D}) + p1u1({D,C}),

showing that U1(f
′
1, f2) > (1− p1)(1− p3)d+ p1(1− p2)b.

Because that

U1(f
′
1, f2) > (1− p1)(1− p3)d+ p1(1− p2)b > (1− p1) = U1(f1, f2),

f ′1 defined as above is a profitable deviation for player 1 from the cooperative

outcome path, thus, the result follows.

The intuition behind this result is as follows: Due to Assumption 2, the

strategies of the short run players do not depend on the past histories (both

public and private) before their birth. Therefore, when the long run player,

player 1, deviates from the cooperative outcome path, he can be punished

by only the short run player who experienced that deviation, and not by

short run players whom player 1 may face in the later phases of the game.

Hence, condition 3.1 guarantees that no matter what the value of the dis-

count factors are, player 1 cannot be punished (because of his deviation from

the cooperative path) effectively.

In the rest of this section, we analyze whether or not payoffs arbitrarily

close to that of the cooperative outcome path can be obtained in subgame

perfection.

It is important to point out that for any player (2.t), t ∈ N, the constant

outcome paths π(a), a ∈ {C,D}2, defined by πτ,(a) = (a, θτ ) for all τ ∈ N and
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θτ ∈ {0, 1}, deliver returns given by:

U(2.t)(π(CC)) =

(
1− p1

1− (1− p1)δ(2.t)

)
,

U(2.t)(π(DC)) =

(
1− p2

1− (1− p2)δ(2.t)

)
b,

U(2.t)(π(CD)) =

(
1− p2

1− (1− p2)δ(2.t)

)
c,

U(2.t)(π(DD)) =

(
1− p3

1− (1− p3)δ(2.t)

)
d.

Therefore, even with the normalization by multiplying period returns with

(1− δ(2.t)), the returns of player (2.t) from constant outcome paths depends

on his discount factor δ(2.t). Consequently, the following restriction helps to

obtain a trackable analysis.

Assumption 3 Suppose that p1 = p2 = p3.

When assumption 3 holds, let p = p1 = p2 = p3 and for simplicity, we

consider

Ũ(2.t) =

(
1− δ(2.t) + δ(2.t)p

1− δ(2.t)

)
U(2.t),

and because p ∈ (0, 1), Ũ(2.t) is a linear transformation of U(2.t).

Then, Ũ(2.t)(πCC) = (1−p), Ũ(2.t)(πDC) = (1−p)b, Ũ(2.t)(πCD) = (1−p)c,

and Ũ(2.t)(πDD) = (1− p)d.

The following Proposition proves that payoffs sufficiently close to the one

of the cooperative outcome path cannot be obtained in subgame perfection.
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Proposition 2 Suppose that Assumptions 1, 2, 3, and the condition given

in inequality 3.1 hold. Then there exists ε > 0 and δ̄1 < 1, such that for all

ε′ < ε, every payoff u = (u1, (u(2.t))t∈N) with ‖(u1, u(2.1))−((1−p), (1−p))‖ ≤

ε′, and ‖(u1, u(2.t))− ((1−p), p(1−p))‖ ≤ ε′ for all t ∈ N, cannot be obtained

with a Nash equilibrium pure strategy profile for all δ1 ≥ δ̄1.

Proof. Let ε > 0 be sufficiently small so that ε <
(
1− b+c

2

)
, a condition

needed in order to use Assumption 1 in the following analysis. Define rδ

on {0, 1}∞ for δ ∈ [0, 1) by rδ(ζ) = (1 − δ)
∑

t∈N δ
t−1ζt, for ζ ∈ {0, 1}∞.

Note that rδ is continuous on {0, 1}∞, and {0, 1}∞ is compact (due to

Tychonoff’s Theorem) with the product topology. Moreover, it is clear

that r·(ζ) is continuous for every δ ∈ [0, 1). Thus, because that for all

δ ∈ [0, 1), rδ(ζ) ∈ [0, 1], we have: For any δn → δ ∈ [0, 1) and ζn → ζ,

limn→∞ rδn(ζn) = rδ(ζ). Moreover, when δn tends to 1 and ζn → ζ, we

have, limδn→1 rδn(ζn) = lim infT→∞
1
T

∑T
t=1 ζt ≡ r(ζ), that is, the fraction

of 1’s in ζ. This is because, (1) Theorem 7.9 of Rudin (1976) shows that

rδn converges uniformly on r on {0, 1}∞ since limn rδn(ζ) = r(ζ) for every

ζ ∈ {0, 1}∞ and supζ∈{0,1}∞ |rδn(ζ)− r(ζ)| converges 0 as n tends to infinity.

(2) because rδn is a sequence of continuous functions converging uniformly to

r on {0, 1}2, following the same arguments needed to solve exercise 9 from

chapter 7 of Rudin (1976), suffices to establish that for any δn → 1 and

ζn → ζ, limδn→1 rδn(ζn) = r(ζ).

For any given strategy profile f2 = {f(2.t)}t∈N, let ζ(f2) ∈ {0, 1}∞ be
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defined by

ζt(f2) =


1 if t = 1 and f(2.1)(e) = C,

or t > 1 and for any h with length t− 1 and θt−1 = 0, f(2.t)(h) = C,

0 otherwise.

Let ε′ < ε, and consider any payoff u = (u1, (u(2.t))t∈N) as described in

the statement of the Proposition. We restrict attention to strategy profiles

f and δ ∈ [0, 1) with∥∥(U δ
1 (f)− U δ

(2.t)(f)
)
− (u1, u(2.t))

∥∥ < ε′

2
, (3.2)

for all t ∈ N.

Consider a deviation for player 1, f ′1, in which player 1 chooses D inde-

pendent of the past, i.e. f ′1(h) = D for all h. Then,

U δ1 (f ′1, f2) ≥ (1− δ)(1− p)
(
1ζ1(f2)=1u1(D,C) + 1ζ1(f2)=0u1(D,D)

)
(3.3)

+(1− δ)δ(1− p)((1− p)u1(D,D) +

p
(
1ζ2(f2)=1u1(D,C) + 1ζ2(f2)=0u1(D,D)

)
)

+(1− δ)δ2(1− p)(
(
(1− p)2 + p(1− p)

)
u1(D,D) +(

1−
(
(1− p)2 + p(1− p)

))
(
1ζ3(f2)=1u1(D,C) + 1ζ3(f2)=0u1(D,D)

)
)

+ . . .

Note that in 3.3, the player 2 experiencing and surviving after player 1’s

deviation, is choosing D. If this were not the case, player 1’s deviation would

be even more profitable. Moreover, because for all t > 1, the probability of
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the opponent of the first player being born before the time period t is given by

(1−p)t−1+p(1−p)t−2+p(1−p)t−3+. . .+p(1−p)t−(t−2)+p(1−p)t−(t−1) = (1−p),

inequality 3.3 is reduced to

U δ
1 (f ′1, f2) ≥ (1− δ)(1− p)

(
g1 + p

∞∑
t=2

δt−1gt

)
+ δ(1− p)2u1(D,D), (3.4)

where gt ≡ 1ζt(f2)=1u1(D,C) + 1ζt(f2)=0u1(D,D).

Due to Assumptions 1 and 3, rδ(ζ(f2)) increases to 1 in a continuous

manner when ε → 0 and δ → 1 for f such that f satisfies inequality 3.2.

Thus, the right hand side of inequality 3.4 tends to p(1 − p)b + (1 − p)2d

which is strictly greater than (1− p) due to the condition given in inequality

3.1.

Thus, when ε → 0 and δ → 1, for any strategy profile f satisfying 3.2,

U δ
1 (f ′1, f2) > U δ

1 (f1, f2). Hence, there exists ε > 0 and δ̄1 < 1 such that the

conclusion of the Proposition holds, an observation finishing the proof.



Chapter 4

An Application to Financial

Markets

As an important application of our repeated prisoners’ dilemma model, we

can consider the simplified version of the repeated Kyle’s market model where

there is one informed long run (infinitely lived), to be referred as the first

player, and informed short run traders, to be referred as second players. Ev-

ery period a short run informed trader is born, and the short run player born

in period t will be referred to as player (2.t).

Action spaces for stage games consists of two actions, high demand (de-

fection) and low demand (cooperation). That is, let A, denoting the action

space for each player in each period, be given by {C,D}. Apart from those

first and second players, there is a market maker who tries to identify the

real price of the asset with a probability depending on the action choices of

the players at that stage. Assume that there are two state of the world, the

24
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first state is realized when the market maker determines the real value of the

traded asset and players obtain zero excess profits, whereas the other state

corresponds the situation in which market maker cannot identify this real

value and players get excess returns (for their information rent) depending

their action choices. So let us denote the state space by Θ and θ ∈ Θ ≡ {0, 1}.

Suppose that the state θ = 0 refers to state in which the market maker iden-

tifies real value of the asset, to which we refer to as failure since players

get zero profits at that state, and furthermore, failure makes the previously

active short run player be fired, and in the next period the first player faces

the new born second player. On the other hand, the state θ = 1 refers to

other state, and call for this state of the world as success due to strictly

positive returns. Furthermore, the success state makes the short run player

keep his job in the next period as well. In case of success the players obtain

the following payoffs:

C D

C (1, 1) (c, b)

D (b, c) (d, d)

(4.1)

where b > 1 > d > c > 0 and b+c
2
< 1.

The First player plays repeatedly this stage game with one of the second

player who is determined accordingly the set of rules that we describe above.

Repeated game payoffs of the players discounted with the discount factor

which may not be same for any player.
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We assume that Pr(θ = |CC) = p1,Pr(θ = 0|CD) = Pr(θ = 0|DC) = p2

and Pr(θ = 0|DD) = p3, with 0 < p1 < p2 < p3 < 1. These probabilities re-

veal that with the cooperative behavior taken by the players, the probability

of realizing failure state decreases, whereas as the players choose defection

the probability of realizing failure state increases.

Hence, stage game payoff structure at any period t becomes as follows;

Pl1/P l(2.t′) C D

C (1− p1), (1− p1) (1− p2)c, (1− p2)b

D (1− p2)b, (1− p2)c (1− p3)d, (1− p3)d

where t′ ≤ t, and the (2.t′) is the short run player borned at period t′ and

plays the stage game at period t against first player.

Under the Assumption 1, making sure that the stage game is a standard

prisoners’ dilemma, and Assumption 2, making sure that every second player

is not able to see past histories prior to his birth, and the condition given by

inequality 3.1, we can say that in this financial market cooperative outcome

path can not be sustainable in equilibrium no matter how patients players

are.

It needs to be mentioned that the critical assumption for this result is the

inability of second players to observe past histories. This, in turn, makes it

more difficult to punish the first player after his deviation, which is unlike in

the standard repeated prisoners’ dilemma. In addition, condition3.1 makes
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payoff that he obtains by deviating, is sufficiently high.

Considering arbitrarily close payoffs to that of cooperative outcome path,

under the additional Assumption 3(in addition to Assumptions1,2 and condi-

tion given in inequality 3.1), we can conclude that in financial markets with

sufficiently patient players, any payoff which is arbitrarily close to that of

cooperative outcome path cannot be obtained as in equilibrium. Note that

in this setting, the probability of success/failure (the probability with which

the market maker can find out the real value of the asset) does not depend

on players’ action choices, but is constant.



Chapter 5

Concluding Remarks

In this thesis, we consider a simple repeated prisoners’ dilemma with long

and short run players with the additional feature that the short run players

do not necessarily die at the end of every period. Indeed, a short run player

may survive with a positive probability which depends on the action choices

of the agents. In this model, an important restriction that we have imposed,

is not to allow short run players to observe histories (both public and pri-

vate) that happened before their birth. In this setting, we investigate the

cooperative behavior between the long run player and the short run players,

and prove that cooperative outcome path is not an equilibrium no matter

how patient players are. Furthermore, with the additional assumption that

makes the probability of success be independent of the action choices (which

is made to simplify the analysis), we also show that with sufficiently patient

players payoffs arbitrarily close to that of cooperative outcome path can not

be obtained in equilibrium.

28
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The main reasons behind these results are that it is getting more difficult

to punish the deviation by the first player due to the possible death of second

player after each stage, and their inability of observing past histories, and

sufficiently high one shot deviation payoff.

It is well worth to investigate this model with short run players who are

able to observe only the public histories that happened prior to their birth.

Note that, a t length public history consists of the record of the public

signals up to that point in time, reflecting the state of the world in each

stage. With this modification, we find a condition under which, cooperative

behavior can be obtained in equilibrium between the (sufficiently patient)

first player and (sufficiently patient) second player born in the first period.

Moreover, we also observe that, the parameter space which satisfies both

that condition and the critical condition3.1 is non-empty. This shows the

importance of our Assumption 2.

Our model remains the same apart from the modification that for each

second player (2.t) is able to condition his action on the past realized t − 1

length public history of the game.

Let f1 be the strategy of the first player such that:
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f1(ht) =

 C if πt′ = ((C,C), θt′ = 1) for all t′ ≤ t− 1,

D otherwise.

Let f2.t′ be the strategy of short run player born in period t′ of the game

which is given by for any t length history h:

f2.t′(h) =


C if θτ = 1 for all τ = 1, . . . , t− 1,

and πτ = ((C,C), θτ = 1) for all τ with t′ ≤ τ ≤ t− 1,

D otherwise.

Note that t = 1 denotes the strategy of (2.1), in which this player will

choose C in every period that he is active provided that player 1 has also

chosen C.

The payoff of the long run player under the above strategy profile:

U1(f1, f2) = (1− δ1)(1− p1)

+(1− δ1)δ1
(
p1(1− p3)d

1− δ1
+ (1− p1)

2

)
+(1− δ1)δ2

1

(
p1(1− p1)(1− p3)d

1− δ1
+ (1− p1)

3

)
+(1− δ1)δ3

1

(
p1(1− p1)

2(1− p3)d

1− δ1
+ (1− p1)

4

)
+ . . .

=
(1− δ1)(1− p1)

1− δ1(1− p1)
+
p1(1− p3)dδ1
1− δ1(1− p1)

.
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Clearly the long run player does not deviate from the f1 if the game is in

defection phase. If the long run player deviates from f1 in the cooperation

phase in period t, the past must be such that in every previous periods the

public signal is 1 and the action profile is (C,C)) then his continuation payoff

starting period t is

(1− δ1)(1− p2)b+ δ1(1− p3)d.

Short run players born after the first period have no incentive to deviate

from the strategy f2 given the strategy of the long run player f1, because

the short run players’ action is clearly given by D in such situations. So it is

enough to look at incentives of the short run player born in the first period.

If he conforms the strategy f2.1 his payoff is

U2.1(f1, f2.1) =
(1− δ2.1)(1− p1)

1− δ2.1(1− p1)
.

On the other hand, his continuation payoff starting from period t, if he

were to deviate from f2 in period t is:

(1− δ(2.1))(1− p2)b+ (1− δ(2.1))(1− p2)δ(2.1)(1− p3)d
∞∑
τ=0

((1− p3)δ(2.1))
τ

= (1− δ(2.1))(1− p2)b+
(1− δ(2.1))(1− p2)(1− p3)δ(2.1)d

1− δ(2.1)(1− p3)

Therefore we observe that if the following condition holds, then the above

given strategy profile (f1, (f2.t)t∈N) is subgame perfect:
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(1− δ1)(1− p1)

1− δ1(1− p1)
+
p1(1− p3)dδ1
1− δ1(1− p1)

≥ (1− δ1)(1− p2)b+ δ1(1− p3)d,(5.1)

(1− δ(2.1))(1− p1)

1− δ(2.1)(1− p1)
≥ (1− δ(2.1))(1− p2)b

+
(1− δ(2.1))(1− p2)(1− p3)δ(2.1)d

1− δ(2.1)(1− p3)
.

Note that when condition 5.1 holds, then the strategy profile (f1, (f2.t)t∈N)

being subgame perfect implies that cooperative behavior can be sustained be-

tween the first and the second player who is born in the beginning of the game

as long as the public outcomes turn out to be successes.

The reason behind this result is that with the public monitoring ability of

the second players, they can punish the deviating first player more effectively

than it was the case in our original model.

Whether or not conditions 3.1 and 5.1 are compatible with each other is

a question that we have to address. Indeed, they are. And that is why this

exercise reveals the importance of the ability of second players to observe the

public history. To see that these two conditions are compatible, the following

specific values for our parameters can be considered: δ1 = δ(2.t) = 9
10

for all

t ∈ N, p1 = 3
5
, p2 = 7

10
, p3 = 4

5
, b = 9

5
, d = 3

5
, c = 1

10
. Then under these values,

conditions in Assumptions 1, 3.1 and 5.1 all hold.

Hence, the above reveals the importance of Assumption 2 to some extent.

When the short run players are given abilities to punish player 1 more ef-

fectively, even though short run deviations are still providing high levels of
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excess returns, player 1 would not deviate from the cooperative behavior as

long as he faces the short run player born in the first period.

However, this does not provide a counter example for our results, because

in this example, the payoff that player 1 obtains is not in the vicinity of the

cooperative return given by (1− p1).

As we have remarked in the introduction, whether or not cooperative be-

havior (and its payoff) can be (approximately) obtained in equilibrium when

short run players observe only the public histories before their birth (note

that when they can also observe the private ones, cooperation can be ob-

tained when all parties are sufficiently patient), is a very interesting question

that was not answered in this thesis. Such an attempt, though, would require

us to consider whether or not techniques developed by Abreu, Pearce, and

Stachetti (1990) can be used, and if so, whether or not cooperative behavior

can be(approximately) obtained in public perfect equilibrium. In particular,

one has to check if some version of the principle of one–deviation holds in

this setting.

Our final remark related tothese issues is that our results are similar to

those of Cole and Kocherlakota (2005): Under a certain set of restrictions of

the parameters of the stage game payoffs and probabilities, the cooperative

outcome path is not an equilibrium. Although, results are so similar we do

not know the relationship of this thesis with their study. Moreover, in that

setting exploring the whole equilibrium payoffs with and without the key

condition 3.1 constitutes a future avenue for research.
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