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Ismail Fatih YILDIRIM

CS, Master’s Thesis, 2008

Thesis Supervisor: Erkay Savas

Abstract

Secure multiparty computation is basically about techniques that allow

multiple parties to jointly carry out computations that are based on data from

each of the players while the data held by each player remains private to that

player. Since the beginning of the notion of secure multiparty computation,

many algorithms and methods were introduced on how to achieve this goal.

This thesis first introduces different methods to do secure multiparty com-

putation and later focusing on Secret sharing based multiparty computation

it explains how efficient and secure multiparty operations can be done. Also

while introducing secret sharing based secure multiparty computation we in-

troduce a novel technique which allows to do secure multiparty computation

using the Asmuth Bloom secret sharing scheme, which is not possible in the

original scheme. The aim of this thesis is the design and implementation

of a programming language and libraries for secure multiparty computation,

SecurePL. We show that our tool’s ease of use and security allows even a

person who has absolutely no knowledge about security or cryptography to

write applications that can do secure multiparty computation.
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Özet

Güvenli çok partili hesaplama basitçe, birden fazla partinin her partiden

gelen bilgileri kullanarak ortaklaşa hesap yapmasına izin veren metodlar ile

ilgilidir. Öyle ki bu hesaplamalar sonucunda her partinin bilgisi kendisinde

saklı kalmaktadır. Güvenli çok partili hesaplama kavramının ortaya atıldıg̃ı

günden beri, bu amaca ulaşmak için bir çok algoritma ve metod geliştirildi.

Bu tez öncelikle güvenli çok partili hesaplamaya izin veren farklı metodları

tanıtıp, daha sonra sır paylasımı bazlı güvenli çok partili hesaplama yontem-

leri uzerine odaklaşıp, bu hesaplamaların nasıl verimli yapılabileceg̃ini açıkla-

maktadır. Ayrıca sır paylaşımı bazlı güvenli çok partili hesaplama konusu an-

latılırken, Asmuth Bloom sır paylaşım yonteminin orjinal şeklinde mümkün

olmayan guvenli çok partili hesaplama’ya izin veren yeni bir teknik tanı-

tacag̃iz. Bu tezin amacı güvenli cok partili hesaplama yapmak icin kullanıla-

bilecek bir programlama dili ve kütüphane tasarlayıp uygulamaktır. Bizim

aracımızın kullanım kolaylıg̃ı ve güvenlig̃i sayesinde, güvenlik veya kriptoloji

hakkında hiçbir bilgisi olmayan bir insanin bile güvenli çok partili hesaplama

yapabileceg̃ini gostereceg̃iz.
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1 Introduction

In this section we introduce the concept of secure multiparty computation.

After the introduction to secure multiparty computation we will focus on

different methods to do secure multiparty computation. After secure mul-

tiparty computation, the concepts of compiler design will be introduced to

give some insight about the toolbox that will later be introduced in chapter

4

1.1 Secure Multiparty Computation

Let f be a function that takes n input elements and after computation gives

n output elements . Secure multiparty computation is focused on methods

such that, participating parties P1, P2, ..., Pn where each party Pi knows the

input xi can compute the function

f(x1, x2, x3, ..., xn) = (y1, y2, y3, ..., yn)

together such that each party Pi learns only yi of the result and has absolutely

no information regarding the other components of the result. The public

function f can be anything i.e. arithmetic operations, logical operations,

comparison etc. For calculating any arbitrary function there are different

methods that could be used like circuit evaluation or secret sharing protocols.

in this section different approaches to secure multiparty computation will be

introduced.
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1.1.1 Yao’s multiparty Computation Protocol

The protocol explained in this section is based on Lindell and Pinkas’ paper:

A proof of Yao’s protocol for secure two party computation. [10]

Garbled Truth Tables and Garbled Circuits

Let f be a polynomial time function. Then the first step for Yao’s protocol is

to view the function f as a boolean circuit C. For evaluating a boolean circuit

C with inputs x and y from two players a gate by gate evaluation needs to

be done from the input wires to the output wires. Once the incoming wires

to a gate g have obtained the values αβ ∈ {0, 1}, it is possible to give the

outgoing wires of the gate the value g(α, β). finally the output of circuit

would be given based on the outputs on the output wires of the circuit. So

computing in a circuit is allocating the appropriate zero-one values to the

wires of the circuit.

A high level definition of Yao’s protocol is a construction that is actu-

ally a compiler that takes any polynomial time function f , or the circuit C

that is actually calculating the function f , and constructs a protocol that

calculates the function f securely in the presence of semi-honest adversaries.

The basic idea behind Yao’s protocol is to build a circuit that only input and

output wires are visible to the players. To achieve this two random values

are specified to each wire so that one value represents 0 and the other one

represents 1. For instance let ω be the label of a wire and for that wire two

values k1
ω and k0

ω are chosen where the first represents the bit 1 while the

second represents the bit 0. Since the values are random, even if one players

sees the value kρω the player cannot find out if ρ is 0 or 1. But also since the

2



values on a wire are just random values, in a setup where a gate g has two

input wires ω1 and ω2 and one output wire ω3, it is not possible to evaluate

the gate with inputs kρω1
and kσω2

because there is no information in the input

about ρ and σ values. To overcome this problem we need to use “garbled

truth tables” which take random values as inputs and give random values as

output. But while receiving one output on the output wire the player must

have no information about the other output that could have been produced

by the other wire. To do this the four different values that can be an input

for a gate k1
ω1
, k0

ω1
, k1

ω2
, k0

ω2
have to be used as encryption keys. After a chain

of decryptions the player would get either k0
ω3

or k1
ω3
. Based on this setup an

example of a truth table of an OR gate would be like:

Input wire ω1 Input wire ω2 Output wire ω3 Garbled Encryption Table
k0

1 k0
2 k0

3 Ek0
1
(Ek0

2
(k0

3))

k0
2 k1

2 k1
3 Ek0

1
(Ek1

2
(k1

3))

k1
2 k0

2 k1
3 Ek1

1
(Ek0

2
(k1

3))

k1
2 k1

2 k1
3 Ek1

1
(Ek1

2
(k1

3))

Table 1: Garbled OR gate truth table

Since all the outputs are encrypted when evaluating the gate for input

incoming from input wires and getting an output the player would have no

information whatsoever about the other output .

Till now we described only how to create one garbled gate. a garbled

circuit is made up of garbled gates and also has a output decryption table.

the aim of this table is to map the result from the output wires of the circuit

back to real values. So after an evaluation a result of kγr can be converted to

a 0 or 1 values depending on the output table .
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Oblivious Transfer and 1 out-of 2 Oblivious Transfer

In cryptography an oblivious transfer protocol is a protocol by which a sender

sends some information to the receiver, but is oblivious as to which informa-

tion is received by the receiver. In a 1 out of 2 oblivious transfer protocol the

sender has two messages m0 and m1 and the receiver has a bit β. The re-

ceiver then wants to receive the message mβ without getting any information

about m1−β and without the sender learning β.

The protocol for 1 out of 2 oblivious transfer by Even, Goldreich and

Lempel is a generic protocol but can be instantiated using RSA as follows:

1. The sender generates RSA parameters including the modulus N , the

public exponent e, private exponent d and two public messages α0 and

α1 and sends N, e, α0, α1 to the receiver.

2. The receiver picks a random value r, encrypts r, adds αβ, where β is

either 0 or 1 depending on which message the receiver wants to get, to

the encryption of r and sends the result q back to the sender.

3. The sender computes k0 to be the decryption of q − α0 and k1 to be

the decryption of q − α1 and sends m0 + k0 and m1 + k1 back to the

receiver.

4. The receiver knows kβ and subtracts this value from the corresponding

part of the message received to get mβ

4



The Protocol

Based on the protocols on generating a garbled circuit and 1 out of 2 oblivious

transfer we can now make the formal definition of Yao’s protocol. In this

protocol the sender generates a garbled circuit and sends it to the other

party, henceforth the receiver. The sender and receiver then interact so that

the receiver obtains the input wire keys that are associated with the input.

The interaction between the sender and receiver is done by a 1 out of 2

oblivious transfer protocol so that the sender has absolutely no information

about the input that the receiver is using for the circuit. After receiving the

input values the receiver evaluates the circuit while always using 1 out-of

2 oblivious transfer protocol for additional input requested from the player

that constructed the circuit[10, 1, 15].

1.1.2 Secret Sharing Based multiparty Computation Protocol

Secure multiparty computation based on secret sharing is a method which

allows more than two parties to do information theoretically secure computa-

tion. the main difference between secret sharing method and Yao’s method is

that for any polynomial arithmetic function f , in secret sharing based secure

multiparty computation there is no need to do any conversion of the function

f to a circuit C. Secret sharing based secure multiparty computation is based

on the principle of sharing an input secret α among n players and evaluate

the polynomial arithmetic function f based on these secret shares, and when

the secret shares are combined back the player gets f(α) instead of α. Secret

sharing based secure multiparty computation will be explained later in more

detail in section 2 including how to do secure multiparty computation for

5



each secret sharing scheme since the current implemented secure multiparty

computation libraries in SecurePL are all secret sharing based.

1.1.3 Homomorphic Encryption

Homomorphic encryption is a form of encryption where a player can do a form

of algebraic operation on plain text by doing algebraic operations on cipher

text. Homomorphic encryption systems are all malleable by design, which

means it is possible for an adversary to transform a ciphertext into another

ciphertext which decrypts to a related plaintext. So homomorphic encryption

systems might be deemed as not secure for data transfers.Even though this

seems to be an unsuited property for an encryption system, the property of

being malleable allows different players to do algebraic operations on secret

inputs without revealing the data thus doing secure multiparty computation.

Some example encryption systems that allow secure multiparty operations

are

• RSA cryptosystem

• El Gamal Cryptosystem

• Goldwasser Micali Cryptosystem

• Benaloh Cryptosystem

• Paillier Cryptosystem

Examples:

In these examples E(α) denotes the cipher text of the plain text α

6



Unpadded RSA Cryptosystem: For public keys n and e the encryption

of a plain text would be E(α) = αe mod n. And the homomorphic property

would be:

E(α1)× E(α2) = αe1 × αe2 mod n = (α1 × α2)
e mod n = E(α1 × α2 mod n)

Goldwasser Micali Cryptosystem: For public modulus n and quadratic

residue x the encryption of a bit β would be E(β) = r2xβ mod n.And the

homomorphic property would be:

E(β1)×E(β2) = r2
1x

β1× r2
2x

β2 mod n = (r1× r2)2xβ1+β2 mod n = E(β1⊕β2)

Paillier Cryptosystem: For public key modulus n and and base g the

encryption of a message α would be E(α) = gαrn mod n2 . and the homo-

morphic property would be:

E(α1)×E(α2) = gα1rn1×gα2rn2 mod n2 = gα1+α2(r1r2)
n mod n2 = E(α1+α2 mod n)

Even though there are homomorphic cryptosystems to do addition or mul-

tiplication using only encrypted values as inputs, there is still no encryption

system that allows both addition and multiplication using only encrypted

values as input.

1.2 Compiler Design

Simply explained a compiler is a program that reads a program written in

one language called the source language and translates this to an equivalent

7



program in another language called destination language. There are thou-

sands of source languages, ranging from traditional programming languages

such as FORTRAN to specialized languages. Destination languages are also

varied; a target language can be a machine language of any computer be-

tween a microprocessor to a supercomputer or can be something else than

machine code at all. Since machine code is just another programming lan-

guage compilers can be also called translators between the input language

to the destination language. A compiling operation consists of two steps:

the first one is the analysis step where the compiler “understands” the input

language and the second step is the synthesis step where the equivalent of

the program is being produced in the destination language. We will explain

some concepts about compiler design we heavily used for the implementation

of SecurePL.

1.2.1 Lexical Analyzer

The lexical analyzer is the first phase of the compiler. It’s main task is to

read the input of characters from the source program and generate a list of

tokens (sequence of characters that have a collective meaning) as output that

will be used for syntax analysis. The lexical analyzer and parser are in close

interaction with each other. Upon receiving a “get next token” command from

the parser the lexical analyzer starts reading from the input stream until it

can identify the next token. For the lexical analysis part of the project we

used the UNIX tool flex as a scanner generator for lexical analyzing.
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1.2.2 Parser

The parser obtains a list of tokens from the lexical analyzer and verifies that

the string can be generated by the grammar of the source language. Thus a

parser is a component in a compiler that takes the input of list of tokens and

converts it to a data structure that is more suitable for further processing and

checks for syntax error at the same time. The output the parser generates can

be in the form of a parse tree, abstract syntax tree or any other hierarchical

structure that can be traversed and used for further processing of the input

source code.

1.2.3 Parse Tree and Abstract Syntax Tree

A parse tree is an ordered rooted tree that represents the syntactic structure

of a string according to some formal grammar. In a parse tree the interior

nodes are labeled by non-terminals of the grammar while the leaf nodes are

labeled by terminals of the grammar.Even though they are related concepts

the parse trees and abstract syntax trees are different constructs both used

in compilers. Whereas a parse tree is the tree representation of the structure

of the string an abstract syntax tree is the representation of the syntax of

the input code. In an abstract syntax tree each node of the tree represents

a construct occurring in the source code. It is “abstract” in the sense that

there may be some constructs that do are not represented in the tree bur are

present in the original code.

9



1.2.4 Syntax Directed Translation

Syntax-directed translation is a method of translating a string into a sequence

of actions by attaching one such action to each rule of a grammar. Thus,

parsing a string of the grammar produces a sequence of rule applications.

And Syntax-directed translation provides a simple way to attach semantics

to any such syntax. In syntax directed translation grammar symbols are

associated with attributes to associate information with the programming

language constructs that they represent and the values of these attributes are

then calculated by the semantic rules associated with the production rules.

There is no limit as what data an attribute may hold, it can hold any type

on information. By the evaluation of these semantic rules the compiler may

generate intermediate codes. Not only limited to generation of intermediate

code the evaluation process can be used for evaluating anything.

1.3 Previous Secure Multiparty Computation Projects

and Compiler

Besides our implementation of a secure multiparty computation programming

language there are two recent projects that also focus on secure multiparty

computation.

1.3.1 VIFF, the Virtual Ideal Functionality Framework

VIFF is a framework which allows you to specify secure multi-party compu-

tations in a clean and easy way. VIFF allows you to do secure multi-party

computations, in which a number of parties (three or more at the moment)

10



execute a cryptographic protocol to do some joint computation. Built using

python the VIFF project is mainly a set of python classes that enables a user

to create SMC applications without the need to implement the actual proto-

cols, like secret sharing or encryption, that are used in SMC operations.[11]

1.3.2 Secure Multiparty Computation Language

The Secure Multiparty Computation Language is a domain specific program-

ming language for secure multiparty computation. It is a high-level, domain-

specific language, which allows programmers to express concepts such as

clients, server, and operations on secret values directly using a special syntax

and control structures tailored to the domain of SMC. [12]

11



2 Secret Sharing

In cryptography, secret sharing refers to any method for distributing a secret

among participants each of which get a share of secret. In secret sharing

schemes there is a secret α which is shared among n participants. The

secret can be recovered only if a certain condition is met, so that among

n participants any group of t+1 have to come together to be able to recover

the secret. This method is called t-private secret sharing .

In this chapter we first introduce some additive and polynomial secret

sharing methods. Based on these methods we also show how secure multi-

party computation can be done . After the introduction the basic additive

and polynomial secret sharing method we will introduce a new secret sharing

called Pseudo Random Secret Sharing which will be used later on for the

secure multiparty comparison of secret shared values. After PRSS we will

show a new novel modified secret sharing method which allows us to do se-

cure multiparty computation in Asmuth Bloom Secret Sharing Scheme. And

finally we will talk about bounds on how many multiplication and addition

can be done without and with user interaction in mainly Shamir and Asmuth

Bloom secret sharing scheme.

2.1 Additive Secret Sharing

As will become more clearer later while introducing pseudo random secret

sharing we will also work with additive secret sharing schemes. In additive

secret sharing scheme the sum of the shared values gives the secret. By

definition this secret sharing scheme is a t=n-1 private secret sharing scheme

12



where for less than n players it is impossible to recover any data about the

secret. Additive secret sharing can be over any ring.

Additive secret sharing of a secret α ∈ F simply consists of n random

shares α1, α2, ..., αn such that

α =
n∑
i=1

αi

Here since the secret shares all are random elements chosen uniformly from

the field F there is no way that n-1 players can get any information about

the secret using their shares.

2.2 Shamir Secret Sharing

Polynomial Interpolation

In the mathematical sub field of numerical analysis, polynomial interpolation

is the interpolation of a given data set by a polynomial. In other words,

given some data points (such as obtained by sampling), the aim is to find a

polynomial which goes exactly through these points. Given a set of n+1 data

points (xi, yi) where no two xi are the same, one is looking for a polynomial

p of degree at most n with the property[3]

p(xi) = yi , i = 0, 1, 2, 3, ..., n

Lagrange Interpolation Polynomial

In numerical analysis, a Lagrange polynomial, is the interpolation polynomial

for a given set of data points in the Lagrange form. Given a set of k+1 data

13



points (x0, y0), ..., (xk, yk) where no two xi are the same, the interpolation

polynomial in the Lagrange form is a linear combination

L(x) =
k∑
j=0

yjlj(x)

of Lagrange basis polynomials

lj(x) =
k∏

i=j, i6=j

x− xi
xi − xj

Van der Monde matrix

In linear algebra, a Van der Monde matrix, is a matrix with a geometric

progression in each row, i.e., an m× n matrix:

V =



1 α1 α2
1 · · · αn−1

1

1 α2 α2
2 · · · αn−1

2

1 α3 α2
3 · · · αn−1

3

...
...

... . . . ...

1 αm α2
m · · · αn−1

m



or

Vi,j = αj−1
i

The Van der Monde matrix is used for the dimension reduction and ran-

domization steps of the secure multiplication protocol of Shamir Secret Shar-

ing Scheme.

14



2.2.1 Decomposition and Recovery in Shamir Secret Sharing Scheme

For some given data α the goal is to divide it into n parts α1, ..., αn such

that:

1. knowledge of any t+ 1 or more pieces makes α computable

2. knowledge of any t or fewer αi pieces leaves α completely undetermined

(in the sense that all its possible values are equally likely).

The original shamir secret sharing scheme is based on linear interpolation.

Given t + 1 points in the 2-dimensional plane (x1, y1), ....., (xk, yk) . With

distinct xi ’s , there is one and only one polynomial q(x) of degree t such

that q(x) = yi for all i [13].

Decomposition Process in Shamir Secret Sharing Scheme

To divide a secret α into pieces αi , pick a random t degree polynomial

q(x) = a0 + a1x+ ...atx
t in which a0 = α , and evaluate:

α1 = q(1)

α1 = q(2)

...
...

...

αn = q(n)

Recovery Process in Shamir Secret Sharing Scheme

Given any subset of k of these αi values (together with their identifying

indices), it is possible to find the coefficients of q(x) by interpolation, and
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then evaluate α = q(0) .

2.2.2 Secure Multiparty Computation in Shamir Secret Sharing

Scheme

Given two secrets α and β shared by polynomials fα(x) and fβ(x) respectively

of degree k the it is possible for the players to compute c × α ,where c is a

constant integer, α + β and αβ using their local shares of α and β only.

The two linear operations are simple and for their evaluation we do not

need any communication between the players. This is because if fα(x) and

fβ(x) encode α and β , then the polynomials hγ(x) = c× fα(x) and kγ(x) =

fα(x)+fβ(x) encode c×α , α+β respectively. Thus to compute for example

α+ β each player Pi holding fα(xi) and fβ(xi) can locally compute kγ(xi) =

fα(xi)+fβ(xi) . Likewise since c is a known constant Pi can compute hγ(xi) =

c × fα(xi) . Furthermore hγ(x) is a random polynomial only if fα(x) is

random, and kγ(x) is a random polynomial if only one of fα(x) or fβ(x) was

random. The only constraint for these operations is that t ≤ n− 1 .

The multiplication operation for two secrets is a bit harder. Assuming

that n ≥ 2t+1 the free coefficient of the polynomial hγ(x) = fα(x)×fβ(x) is

αβ but there are mainly two problems with encoding αβ using the polynomial

hγ(x) :

1. The first and the most obvious one is that the degree of hγ(x) is now

2t instead of t . While this poses no immediate problems since n ≥

2t + 1 it would pose a problem for later multiplications since more

multiplications would increase the degree of the multiplication even

further.
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2. The second problem is more subtle. hγ(x) is not a random polynomial

of degree 2t . For example hγ(x) as a product of two polynomials

cannot be irreducible[4].

To overcome these two problems Ben-Or et. al.[4] proposes a method for

randomization of the coefficients and a degree reduction method in their

seminal paper. This method is later improved by Gennaro et. al.[7] Who do

both dimension reduction and randomization in one step. The only drawback

of both methods is that it requires interaction between participants to do

multiplication of two polynomially secret shared data. In this thesis we

used the method proposed by Gennaro et. al. for the multiplication and

re randomization step for secure multiparty multiplication of shamir secret

shared values.

Multiplication with Dimension Reduction

For each player Pi denote fα(i) and fβ(i) the shares that the player holds

for the secret fα(x) and fβ(x) respectively. Then the product of fα(x) and

fβ(x) is:

fα(x)fβ(x) = γ2tx
2t + ...+ γ1x+ αβ = fαβ(x)

For 1 ≤ i ≤ 2t+ 1 , fαβ(i) = fα(i)× fβ(i) so we can write:

A


αβ

γ1

...

γ2t

 =


fαβ(1)

fαβ(2)
...

fαβ(2t+ 1)


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Where the matrix denoted by A = (aij) is the (2t + 1) by (2t + 1) Van

der Monde matrix defined as aij = ij−1 . Since A is non-singular and has an

inverse. the first row of A−1 , donated by (λ1, ..., λ2t+1) , are known constants.

Then the previous equation implies that

αβ = λ1fαβ(1) + ...+ λ2t+1fαβ(2t+1)

Given polynomials h1(x), ..., h2t+1(x) all of degree t which would satisfy

hi(0) = fαβ(i) for 1 ≤ i ≤ 2t + 1 define H(x) =
∑2t+1

i=1 λihi(x). Note that

H(0) is exactly λ1fαβ(1) + ...+ λ2t+1fαβ(2t+ 1) and hence αβ. Furthermore

also notice that

H(j) =
2t+1∑
i=1

λihi(j)

So based on these preliminaries, after multiplying their shares, each player

Pi secret shares the multiplication of their shares with a polynomial h(x) with

the properties above then the polynomial H(x) , used for the sharing of αβ

, is exactly of degree t It also is a random polynomial because the values

λ1, ..., λ2t+1 are all non-zero values.
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Input for player Pi: The secret shared values for α and β , fα(i) and fβ(i)

1. Player Pi shares the multiplication fα(i)fβ(i) by choosing a random
polynomial hi(x) of degree t such that h(0) = fα(i)fβ(i) .

2. Player Pi gives each player Pj the secret shared value hi(j) for 1 ≤ j ≤
2t+ 1

3. Each player Pj computes his share of αβ via a random polynomial
H, i.e. the value H(j) , by locally computing the linear combination
H(j) =

∑2t+1
i=1 λihi(j)

Figure 1: Multiplication of Secret Shared Values Using Shamir Secret Sharing
Scheme

2.3 Asmuth Bloom Secret Sharing

The Chinese Remainder Theorem

The Asmuth Bloom secret sharing scheme is based on the Chinese remain-

der theorem, which states that, given n congruences x ≡ x1 mod m1 , x ≡

x2 mod m2 , ... , x ≡ xn mod mn , where m1, ...,mn are co-prime there exist

exactly one solution in [0,M − 1] where M = m1 ×m2 × ...×mn .[2, 9]

2.3.1 Decomposition and Recovery in Asmuth Bloom Secret Shar-

ing Scheme

In the Asmuth Bloom secret sharing scheme, the secrest are integers in the

interval [0, p− 1] where p is a prime number. Secrets are shared among n

players. the secret sharing scheme has n public moduli: p < m1 < m2 <

... < mn which are chosen subject to the following:

1. gcd(mi, mj) = 1 for i 6= j
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2. gcd(p, mj) = 1 for all i

3.
∏t+1

i=1 mi > p
∏t

i=1 mn−i+1

Here, as before n denotes the number of participants, and t+1 is the number

of different participant shares required to reconstruct the secret. Finally let

Mr =
∏t+1

i=1 mi.

Decomposition Process in Asmuth-Bloom Secret Sharing Scheme

The decomposition process begins with a secret α . Assuming that 0 ≤ α <

p , y = α + Ap where A is a blinding factor chosen subject to he condition:

0 ≤ y < Mr

For i = 1, ... , n the secret shares for each participant are then computed as

yi = y mod mi

Recovery Process in Asmuth-Bloom Secret Sharing Scheme

To recover x , it suffices to to find y . If yi1 , yi2 , ..., yir are known then

by, Chinese remainder theorem y is known modulo N =
∏t+1

j=1 mij . Since

N ≥ Mr this uniquely determines y thus α [2].

The Asmuth-Bloom secret sharing scheme is a perfect secret sharing

scheme. Assuming a coalition with t − 1 members, no information about

the secret can be obtained by this coalition[2]. Using the perfect secret shar-

ing scheme of Asmuth Bloom, to be able to do secure multiparty computation
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some distance has to be created between the secure zone, which is the se-

curity zone where no information is revealed, and recoverable zone, which is

the zone where the players can recover the secret. To create the necessary

distance for secure multiparty computation, we made some modifications on

the original Asmuth Bloom secret sharing scheme.

2.3.2 Secure Multiparty Computation in Asmuth Bloom Secret

Sharing Scheme

The original asmuth bloom Secret sharing scheme does not allow neither

additive nor multiplicative secure multiparty operations without losing the

ability to recover the secret. But in this thesis we introduce a new modified

Asmuth bloom Secret Sharing scheme which allows us to do addition and

multiplication without losing the ability to recover the secret. The limits on

how much addition and multiplication can be done based on secret sharing

parameters will be discussed later in this chapter.

Modified Asmuth Bloom Secret Sharing Scheme

The parameters p < m1 < m2 < ... < mn are chosen according to the

same conditions with the original Asmuth-Bloom secret sharing scheme. Fi-

nally let
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Mr =
t+1∏
i=1

mi

Ms =
s−1∏
i=1

mn−i+1

Mn =
n∏
i=1

mi

Here, as before n is the number of participants, t + 1 the number of shares

required for reconstruction of the secret and s the maximum number of par-

ticipants who can gain absolutely no information (the minimum security

parameter) about the secret when they combine their shares.

Decomposition Process in Modified Asmuth Bloom Secret Sharing

Scheme

The decomposition process begins with a secret α . Assuming that 0 ≤ α <

p , y = α + Ap where A is a blinding factor chosen subject to the conditions:

1. 0 ≤ y ≤ M

2. pMs ≤ M ≤ Mr ≤ Mn

Here M is the security parameter which defines the secure zone.For i =

1, ... , n the secret share for each participant Pi is then computed as

yi = y mod mi
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Recovery Process in Modified Asmuth Bloom Secret Sharing Scheme

This is the same as the original Asmuth Bloom secret sharing scheme.

Addition and Multiplication with Modified Asmuth Bloom Secret

Sharing Scheme

With the modification we made to the construction phase of the Asmuth

Bloom secret sharing scheme, we created a semi safe zone between pMs and

Mr which allows us to do multiplication and addition until we reach the

barrier of Mr . When two secrets are shared among n players with Asmuth

Bloom secret sharing scheme, it is possible to do computation without re-

vealing the secrets. Suppose that α and β have been shared as

αi = α + Ap mod mi

βi = β + Bp mod mi,

for i = 1, ..., n a possible secret share of α + β is

(α + β) + (A+B) p = (α + Ap) + (β +Bp) ≡ αi + βi mod mi,

which can be computed locally by each player. Likewise a secret share of αβ is

(αβ) + (AB + αB + βA) p = (α + Ap) (β +Bp) ≡ αiβi mod mi.

23



The problem is that (α + β) + (A+B) p is potentially as large as 2M , and

(αβ) + (AB + αB + βA) q is potentially as large as M2, when α + Ap and

β + Bp can be as large as M . If the result, γ + Cp is larger than Mr e can

no longer guarantee the unique recovery of the secret ( In this case the sum

or addition of two secrets ).

In general after a additions and b multiplications the result γ + Cp can

be as large as (a + 1)M (b+1) . To compute such an expression and be able

to recover the result we need:

(a + 1)M (b+1) ≤ Mr ≤ Mn

Notice that the secrecy threshold is not reduced since qMs ≤ M ≤ (a +

1)M (b+1). For the calculation we use M = pMs because it is the smallest

possible value, and it gives the largest number of possible additions and

multiplications before an overflow occurs.

2.4 Replicated Secret Sharing Scheme

The replicated secret sharing scheme is a bit different in term of setup from

the previous secret sharing schemes introduced in this chapter. In this secret

sharing scheme instead of building the secret sharing based on how many

players out of n can reconstruct the secret, the main focus is on which players

can reconstruct the secret by combining their secret shares. This secret

sharing scheme was first introduced by Ito, Saito and Nishizeki in 1987[8]

and further developed by Benaloh and Leichter in 1988[5].
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In replicated secret sharing scheme the secret can be divided among a set

of P trustees such that any “qualified subset” of P can reconstruct the secret

and any unqualified subset cannot. The qualified subsets in this secret shar-

ing scheme are called access structures. For any arbitrary access structure A

a subset S of players is called a qualified set if S ∈ A and an unqualified set

if S /∈ A . In this setup a maximal unqualified set means a set S of unqual-

ified players where any unqualified set of T would hold |T | ≤ |S| . So for a

threshold structure t the number of elements in the maximal unqualified set

would be |S| = t .

Decomposition in Replicated Secret Sharing Scheme

In this secret sharing method a secret is shared among all the sets (up to 2|P |

) of the access structure A , divide the secret among each member of the set.

So in the worst case, each of the n trustees have to hold on the order of 2n

shares.

Let A be all subsets of trustees and T be the set containing all maximal

unqualified subsets so we can assume T ∈ A. In a replicated secret sharing

scheme a player secret shares a secret α by first creating additive secret shares

over the number of elements in T . I.e. by choosing random numbers αT

such that

α =
∑
T∈T

αT

A secret share αT is then distributed to all players Pi where i /∈ T . Thus a

replicated secret share of any player Pi will consist of shares αT where i /∈ T

.
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As an example consider the set of players P = {1, 2, 3, 4, 5} for five players

where each element is the unique id of each player. For a secret sharing with

a threshold t = 2 where there is need for more than 2 players to recover the

secret. the Set containing all maximal unqualified subsets would be

T = {{1, 2} {1, 3} {1, 4} {1, 5} {2, 3} {2, 4} {2, 5} {3, 4} {3, 5} {4, 5}}

Since the number of elements in T is 10 we secret share α into 10 additive

secret shares α{1,2}, α{1,3}, α{1.4}, ..., α{4,5}. Finally each player Pi get a secret

share of α such that T ∈ T and i /∈ T , thus the final distribution of secret

shares would be:

Player ID Secret shares In Possession

1 α{2,3}α{2,4}α{2,5}α{3,4}α{3,5}α{4,5}

2 α{1,3}α{1,4}α{1,5}α{3,4}α{3,5}α{4,5}

3 α{1,2}α{1,4}α{1,5}α{2,4}α{2,5}α{4,5}

4 α{1,2}α{1,3}α{1,5}α{2,3}α{2,5}α{3,5}

5 α{1,2}α{1,3}α{1,4}α{2,3}α{2,4}α{3,4}

In this secret sharing scheme a secret α is divided into
(
n
t

)
secret shares

and each player gets
(
n−1
t

)
secret shares. So we see that replicated secret

sharing scheme is a very inefficient secret sharing scheme.

Reconstruction in Replicated Secret Sharing Scheme

Since the secret is divided additively among the share holders, just as in an

additive secret sharing schemes when more than t+1 players join their shares

they will have all the shares required to additively reconstruct the secret α
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2.5 Pseudo Random Secret Sharing

The last secret sharing method which will be used in secure multiparty com-

parison is pseudo random secret sharing. The method of pseudo random

secret sharing is used to convert secret shares of a random number which is

shared using a replicated secret sharing into a shamir secret shared random

number. Thus it enables the users to create secret shared random numbers.

This method is introduced by Cramer, Damgaard and Ishai, thus this section

will be based on their paper: Share conversion, pseudo random secret sharing

and its applications to secure comparison[6].

Even though in terms of reconstruction complexity, replicated secret shar-

ing scheme is easier to compute (modular addition instead of Lagrange in-

terpolation) its nature that the number of shares is
(
n
t

)
, and the amount of

data each player has to hold as a share is
(
n−1
t

)
, makes the secret sharing

scheme inefficient for larger numbers of players. Even though there is such

a drawback to this secret sharing scheme it has a key property: the secret

shares αT created from a secret are totally independent from each other. So

shares of a random secret s ∈ K consists of replicated instances of random

and independent values from K. This is not the case for any other secret

sharing scheme like shamir secret sharing scheme because there the secret

schares αi are different point of a single random polynomial, thus all related

to each other.Using this property of replicated secret scharing scheme it is

possible to create shamir secret shared pseudo random values without any in-

teraction among the players if the players have access to a previously shared

randomness.
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2.5.1 Conversion from Replicated Shares to Shamir Shares

Suppose that a secret α has been shared according to the t-private replicated

scheme where A is an access structure and n the number of total players,

thus

α =
∑

A⊆[n]:|A|=n−t

αA (2.1)

where αa has been given to all players in set A .

To convert these replicated secret shares to shares of α according to the t-

private shamir secret sharing scheme, each player Pi is assigned the the point

i on the shamir sharing polynomial. Now, for each set A ⊆ [n] of cardinality

n− t , let fA be the unique t - degree polynomial such that:

1. fA(0) = 1, and

2. fA(i) = 0, for all i ∈ [n] \A.

Each player Pj can then compute their share βj of the shamir secret sharing

by

βj =
∑

A⊆[n]:|A|=n−t,j∈A

αAfA(j) (2.2)

2.5.2 Pseudo Random Secret Sharing

In 2.5.1 we explained the conversion of a replicated secret share to shamir

secret share. Based on this method the main observation would be if the

secret α is some random value, all replicated shares αA would be independent

and and random. Hence the initially distributed αA can be used as keys to a

pseudo-random function PRFψ.(.), and as long as the participating players
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agree on a common input a to the function, they can compute ψαA
(a) and

replace this value with αA in the formula (2.2) in 2.5.1. Thus each player Pj

would compute its share βj of the random secret α as:

βj =
∑

A⊆[n]:|A|=n−t,j∈A

ψαA
(a)fA(j)

In this method note that, if the field F, where the elements are chosen,

is of characteristic 2 this protocol can be modified so that the shared values

are guaranteed to be 0 or 1 by choosing a pseudo random function (PRF)

that outputs 0 or 1.

2.6 Bounds on non-interactive multiplication

2.6.1 Shamir Secret Sharing Scheme

Given two secrets α and β shared by polynomials fα(i) and fβ(i), respectively

of degree t the aim is to calculate αβ. Recall that, when each participant

multiplies their shares they get the multiplication of the secret in the constant

term, we discussed earlier that this is not enough to do secure multiplication.

Even under the assumption n ≥ 2t + 1 which enables us to do at least one

multiplication before the degree of the polynomial exceeds the number of

participants and resulting an overflow we still have to do at least randomiza-

tion of the coefficients of the resulting polynomial. To overcome this problem

Gennaro et-al[7] introduced a one step degree reduction and randomization

method. The drawback of this method is that it requires interaction be-

tween participants. So even under the assumption of n ≥ 2t + 1 even after

one multiplication, coefficient randomization and degree reduction has to be
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applied to the secret shares so that even after multiplication the secret can

be recovered using at most n participants. The method described in [7] is

basically to randomize the coefficients of the new polynomial and re share

the secret among n participants.

As a result we conclude that based on t and n where t is the degree of

the polynomial of the secret, and n is the number of total participants it is

not possible to do non-interactive multiplication. Even if n ≥ 2t+ 1 because

after each participant multiplies their share of secret the new polynomial is

no more a random polynomial and re-randomization has to be done among

participants to protect the security of the scheme.

2.6.2 Asmuth Bloom Secret Sharing Scheme

Here we will analyze the modified Asmuth-Bloom secret sharing scheme to

see how many multiplications can be done before an overflow occurs and the

secret turns out to be unrecoverable. Earlier in section 2.3 we mentioned that

based on the chosen moduli for the Asmuth-Bloom secret sharing scheme we

can define three values as:

Mr =
t+1∏
i=1

mi

Ms =
s−1∏
i=1

mn−i+1

Mn =
n∏
i=1

mi

Later on, while explaining the decomposition protocol of the modified
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Asmuth-Bloom secret sharing scheme, it is mentioned that to decompose a

secret α among n participants, assuming that 0 ≤ α < p , y = α + Ap

where A is a blinding factor chosen subject to the conditions:

1. 0 ≤ y ≤ M

2. pMs ≤ M ≤ Mr ≤ Mn

Theorem 1 The number of non-interactive multiplications is related to the

security parameters n and s

To create the largest semi-safe zone between M and Mr we assume that

M is the smallest possible value thus;M = pMs andMr is the largest possible

value thus Mn. Since we are using close relative prime moduli m1,m2, ...,mn

and prime p we can assume that all of them are in the form of 2b + x. Here

x is a variable different for each moduli/prime and b the base bit length of

these number. Since all of the moduli are close integers after discarding the

differences x. Then the values Ms and Mn can be rewritten as:

Ms =
s−1∏
i=1

2b,

Mn =
n∏
i=1

2b.

and the M value would be

M = 2b ×Ms.

After evaluating the multiplications we get

31



Ms = 2(s−1)b,

Mn = 2nb,

therefore

M = 2sb.

Based on these calculations after a− 1 multiplications for the secret still

to be recoverable Ma ≤Mn inequality has to hold.

Ma ≤ Mn

2(sb)×a ≤ 2nb

log2(2
(sb)×a) ≤ log2(2

nb)

sba ≤ nb

a ≤ n

s

So based on n and our security parameter s, which is the number of

participants which cannot gain absolutely no information about the secret,

the number of multiplications that can be done can be written in terms of

the ratio of the number of participants to the security parameter. So finally

we can say that as long as the upper bound in the number of multiplications

holds, the participants can do non-interactive multiplications using only local

shares.
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3 Comparison

In chapter 2 we introduced different secret sharing methods and how to do

secure multiparty computation with them. In this chapter we will explain a

method to do secure multiparty comparison.

In cryptography secure multiparty computation was first suggested as a

problem in a paper by Andrew C. Yao[1]. The problem was later known

as the millionaire’s problem. The problem introduced by Yao was that two

millionaires wanted to compare their wealth but neither of them wanted the

other party to know his/her wealth. Yao presented a solution to this prob-

lem which we explained in section 1.1.1. But the solution to do comparison

was not practical and was too computationally heavy to be used in real life

applications. With the introduction of secret sharing based secure multi-

party computation methods, algebraic operations could be done without any

problem in terms of computational power. Even though algebraic secure

multiparty computation was practically possible there still was no efficient

or practical comparison protocol. The comparison protocol we implemented

in SecurePL to do comparison of secret shared values is based on the protocol

that was presented by Tomas Toft in Workshop on “Practical Applications

of New Research in Cryptography”1 and implemented for the VIFF project

[14].
1http://people.sabanciuniv.edu/pedersen/panrc08/

33



3.1 Toft Comparison

3.1.1 Comparison

Let [α] and [α′] be two secret shared values; the aim of the comparison

protocol is to compute a secret sharing of which one of these two values is

greater than the other one. Thus trying to calculate

[β] = [α]
?

≤ [α′] ∈ {0, 1}

To do this comparison we assume that both α and α′ are of bounded size (l

bits) and that α 6= α′. Also all computations have to be modulo p > 2l+k+2k

where l is the number of bits the inputs are and k is the security parameter.

And finally to be able to do comparison the last assumption is that there

is a source of secret randomness. For real life implementation the first two

assumptions can be achieved without any problem. To get a shared source of

randomness the pseudo random secret sharing method which was explained

in section 2.5.2 will be used.

Since there is no algebraic method to do comparison the best method to

do efficient multiplication without being unable to use algebraic methods is

to convert the problem to another problem that can be solved efficiently.

3.1.2 Initial Problem Transformation

The problem of comparing two secret shared values is converted to a simpler

problem which can be solved using algebraic methods. First the value α′ is
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subtracted from α in two’s complement

[γ] = 2l + [α]− [α′] .

From this equation we just have to extract the l + 1th bit of γ to get which

one of these two secret shares is greater. If the values of l + 1th bit is 1 then

α is greater than α′ and if it is 0 then α′ is greater than α. So basically

[γ]−
[
γ mod 2l

]
is almost the result. Since it is impossible to open the secret [γ] without

revealing the difference between the secret values thus revealing information

that can make one player learn the secret of another player we add a l+k bit

random integer which is shared as bits before reconstructing . For random

bit values [r1] , [r2] , ..., [rl+k] generated using pseudo random secret sharing

we first calculate

[r] =
l+k∑
i=1

2i−1 [ri]

to get a random number that is secret shared among all players. Then we

add this random l + k bit values to [γ] and open the value

δ = [γ] + [r]

thus we get

[
γ mod 2l

]
=
(
δ mod 2l −

[
r mod 2l

])
mod 2l
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the final mod 2l in this equation can be achieved by comparing
[
r mod 2l

]
and δ mod 2l

3.1.3 Comparing [r] and δ

To do the comparison between
[
r mod 2l

]
and δ mod 2l each party has to

calculate:

[ηi] = [σ] + δi − [ri] + 3
∑
j>i

δj ⊕ [rj] ,

where the product of [ηi] ’s will be 0 if [r] > δ . After revealing λ = [v]
∏

[ηi]

the result would be (λ == 0) ⊕ (σ == −1) where σ ∈ {1,−1}is generated

randomly before calculation by each player. So finally the comparison boils

down to l + 1 multiplications of the [ηi] values.
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4 SecurePL

4.1 Introduction

The main design goal for this thesis is to create a toolbox so that people with

no knowledge about cryptography can create applications that use secure

multiparty computation. To achieve this goal a two layered architecture is

being used.

The first layer of SecurePL, which is also the layer interacting with the

user, is the SecurePL programming language and compiler. In this layer the

compiler takes the user created program and converts this SecurePL code to

C++ code which is later fed into a C++ compiler to generate the final code.

The second layer acting transparently to the user, consists of arithmetic

libraries which are used to do secure multiparty computation. These libraries

handle all the operations needed to do secure multiparty computation from

secret sharing to network communication. Even though this layer is trans-

parent to the user, the modular architacture of SecurePL allows the end user

to develop his/her own libraries to do secure multiparty computation.

In this section we will first introduce the tools used in the implementation

of SecurePL and later on go into the implementation details of SecurePL by

introducing the arithmetic libraries and programming language.
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Figure 2: SecurePL Architecture
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4.2 Base Protocols, Libraries and Tool kits

4.2.1 Flex

Flex is a program generator designed for lexical processing of character input

streams. It accepts a high-level, problem oriented specification for character

string matching, and produces a program in a general purpose language which

recognizes regular expressions. The regular expressions are specified by the

user in the source specifications given to flex. The flex written code recognizes

these expressions in an input stream and partitions the input stream into

strings matching the expressions. At the boundaries between strings program

sections provided by the user are executed. The flex source file associates the

regular expressions and the program fragments. As each expression appears

in the input to the program written by flex, the corresponding fragment is

executed.

Flex is a free software alternative to Lex the lexical analyzer. Flex is

mostly used together with the parser generator Bison. The original flex was

written by Vern Paxson around 1987. According to the GNU manual the

description of flex is:

“flex is a tool for generating scanners: programs which rec-

ognize lexical patterns in text. flex reads the given input files,

or its standard input if no file names are given, for a description

of a scanner to generate. The description is in the form of pairs

of regular expressions and C code, called rules. flex generates as

output a C source file, ’lex.yy.c’, which defines a routine ’yylex()’.

This file is compiled and linked with the ’-lfl’ library to produce
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an executable. When the executable is run, it analyzes its input

for occurrences of the regular expressions. Whenever it finds one,

it executes the corresponding C code..”

4.2.2 Bison

Bison is a general-purpose parser generator that converts an annotated context-

free grammar description into a "Look Ahead Left-to-right Rightmost" (LALR)

C or C++ parser which can parse a sequence of tokens that conforms to that

grammar.In SecurePL Bison and flex are used in conjunction to generate

a compiler that takes a simplified C-like language as input and produces a

C++ code that works in parallel when run across different computers.

4.2.3 Message Passing Interface (MPI)

Message Passing Interface (MPI) is a specification for an API that allows

many computers to communicate with one another. It is used in computer

clusters and supercomputers. It is basically a language independent protocol

used to create parallel programs to run on different machines but in parallel.

Both point to point and group communication is supported in MPI.

Its language independent structure and scalability and ease of use is the

reason that MPI handles the communication operations in SecurePL. Also

the player IDs used for the shamir secret sharing and other Id required algo-

rithms are the rank values taken directly from MPI.
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4.2.4 NTL

NTL is a high-performance, portable C++ library providing data structures

and algorithms for manipulating signed, arbitrary length integers, and for

vectors, matrices, and polynomials over the integers and over finite fields.

Since the standard 32 bit integer type of C++ is not enough to handle the

operations especially for comparison and secure multiplication which requires

up to 67 bit numbers even while working in a 32 bit field made it necessary to

use a high precision big number library. Also the supplied number theoretical

functions and algorithms makes the operations in fields much easier.

4.3 SecurePL Compiler

The SecurePL compiler is the first and only component that the end user

will interact with. The aim of this compiler is to convert the input program

to a C++ compatible secure multiparty computation based parallel applica-

tion. The input language for the compiler is a simplified version of ANSI-C

programming language. Since all the operations for multiparty computation

and paralleling are handled by the underlying libraries which are the second

component of the toolbox the end user does not have to have prior knowledge

about secure multiparty computation or parallel programming.

While developing an application to do secure multiparty computation

across different users the developer only has to have knowledge about which

input is coming from which user in the computation group. By getting input

from specific users any application which can be generated by the input

language grammar can be created so that all the data is secret shared and
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all computations are secure.

4.3.1 Input Language

The current version of SecurePL supports two variable types, constraint

blocks and loops.

Supported Variable Types and Data types. The current supported

variable types in SecurePL are int and bool. The integer type implemented

in the current secure multiparty computation library is of unbounded size.

Thus values greater than default C++ 32 bit integers can be used without

any overflow or precision loss. The boolean type is the same as C++ bool

and can have two values true or false. Even though ANSI-C or C++ supports

array types the current version of SecurePL does neither allow nor support

arrays or pointers. Also even though the converted code is converted to

C++ code user defined types like classess or structs are not supported in the

current version.

Supported loops and constraints. Among the different loop types sup-

ported by C/C++ the only supported loop type is the While loop. Since

the other looping types like “for” or “do/while” are syntactic variations of

the same operation we chose to implement only one type of loop to keep

the input language simple. As for constraint blocks both IF and IF/ELSE

blocks are supported by SecurePL. The usage of both these block types is

implemented the same as C/C++ programming language.
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4.4 Implemented SecurePL Libraries and Functions

4.4.1 Configuration

The Configuration class is basically the storage class of SecurePL. This class

is transparent to the user. By providing a config.xml file containing the

necessary configuration values:

• Prime modulo p.

• PRSS required replicated secret shares.

• The max number of bits k which is basically a predetermined value set

by players.

• The security parameter k which is mostly 30.

The values in the configuration class are auto-loaded during program start.

Thus the user has no access to the class values.

The Configuration Class Definition with comments describing each mem-

ber:

43



class Conf igurat ion
{
public :

Con f igurat ion ( ) ; //The d e f a u l t c on s t ruc t o r o f the c l a s s
stat ic ZZ n ; //The number o f p l a y e r s in the network
stat ic ZZ t ; //The t h r e s h o l d
stat ic ZZ p ; //The prime modulo
stat ic ZZ l ; //The t h e o r e t i c max number o f b i t s
stat ic ZZ k ; //The s e c u r i t y parameter f o r
stat ic ZZ ID ; //The ID of the curren t p l aye r g i ven by

MPI
stat ic std : : map<st r i ng , unsigned char∗> rT ; //The

r e p l i c a t e d s e c r e t shares o f a random s e c r e t
} ;

Figure 3: Configuration Class

4.4.2 sint

The sint class is also another user transparent class implemented. This class

handles the secret shares of the data in the program. The main purpose

of this class is to be an int class placeholder. For the current version of

SecurePL when a player initializes an int type variable in the input program

this variable’s type is converted to sint while converting to C++ code. the

constructor of sint is responsible for secret sharing and distributing actual

values to secret shared values. When a sint variable is constructed using

a constant in-code value the player with the lowest ID first secret shares

the open data and then distributes the secret shares to other players as

appropriate. Player specific construction of sint variables are handled by the

read functions which will be explained later.

The class definition with comment for explaining each member is as fol-
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lows:

class s i n t
{
public :

s i n t ( ) ; // d e f a u l t c on s t ruc t o r which s e t s va lue to 0
s i n t (ZZ va l ) ; // consruc tor t ha t s e c r e t shares v a l

and a s s i gn s the s e c r e t shared va lue to won
s i n t ( s i n t& rhs ) ; // copy cons t ruc t o r
~ s i n t ( ) ;
ZZ value ; // va lue o f the s e c r e t share o f input

i n t e g e r
void Hide (ZZ va l ) ; // h ide s an i n t e g e r input and

re tu rns the corresponding s e c r e t share [ ID ]
public :

s i n t operator+( s i n t& b) ; //mathematical
opera to r s to do a l g e b r a i c opera t i ons

s i n t operator−( s i n t& b) ;
s i n t operator ∗( s i n t& b) ;
s i n t operator /( s i n t& b) ;
s i n t operator ∗(unsigned int& b) ;
s i n t operator=(unsigned int& b) ;

} ;

Figure 4: sint Class

4.4.3 ShamirSharer

The shamirsharer class is the class that handles creation of secret shares.

When constructing the class the shamir secret sharing parameters have to

be specifically defined for each instance of the class and there is no method

for setting some static parameter. This implementation choice was on pur-

pose because especially for comparison both secret sharing over GF (p) and

GF (256) are needed to accommodate this need each instance has to be re-

initialized with new parameters. And also just like the previous classes this
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class is also user transparent which means the user does not have to know

anything with regards to shamirsharer to write its SecurePL code.

The class definition with explanatory comments:

class ShamirSharer
{
public :

ShamirSharer (void ) ; // De fau l t c ons t ruc t o r
~ShamirSharer (void ) ;
ShamirSharer (ZZ num, ZZ t , ZZ prime ) ; //Constructor

private :
ZZ n ; // number o f p a r t i c i p a n t s
ZZ r ; // number o f p a r t i c i p a n t s needed f o r recovery
ZZ p ; // prime p f o r the f i e l d to work in

public :
SharedData∗ ShareData (ZZ data ) ; // s e c r e t shares an input

based on n , r parameters
ZZ ReconstructData ( SharedData∗ sha re s ) ; // r e c on s t r u c t s

the sharer by lagrange i n t e r p o l a t i n g them
ZZ ReconstructData ( SharedData∗ shares , ZZ recombPoint ) ;

// r e con s t r u c t by lagrange i n t e r p o l a t i o n over an
a r b i t a r y po in t

} ;

Figure 5: ShamirSharer Class

4.4.4 ShamirLib

This header file contains all the secure multiparty computation operations

that are currently implemented. The previous classes are used by this class

to do any algebraic operation securely. Addition, subtraction, multiplication

and comparison of sint values are implemented in this library. also initial-

ization of common parameters and communication through MPI with other

players is also an integral part of this library. Configuration settings are also
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handled by this library. There are some routines implemented in SecurePL

for interaction with the player or mathematical operations.

Getting Input From User. The implemented input output operations

to get data from sure are also integral parts of the Shamble library. The

currently supported read operations which has to be known by the end user

to get some information from the user while writing SecurePL code are:

• fRead(File source file, int &destination, unsigned int userId): Here the

source file is a File object which contains the data that has to be read

by the user, destination is the variable that will be loaded, and lastly

the last parameter userId is the user that has the data for that specific

variable.

• sRead(int &destination,int userId): this function is the same as the

above function but the only difference is that instead of using a file to

read the data this function gets the input from the standard input.

Revealing secret variables Besides reading and getting information re-

vealing secret shared variables is also implemented in this class. Two modes

of revealing are implemented in the current version. when the user wants to

reveal some variable in SecurePL the user can choose either to reveal it to

only one player with specific Id or to the whole network. The functions that

implement this operation are

• RevealVariable(int variable,int userId): This function reveals the vari-

able to a specific user ith userId
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• RevealAll(int variable): This functions reveals the secret variable to all

users in the network.

Comparison The current version of SecurePl allows only comparing of two

secret shared values and no comparison against a constant values is allowed.

Algebraic Operations. The implemented and currently available alge-

braic operations in SecurePL are addition, multiplication, subtraction and

division. Other algebraic operations are planned to be added in future ver-

sions of SecurePl.

4.5 User Implemented Libraries

As of now there is only ShamirLib implemented that can be used to do

secure multiparty computation, but there is no restriction on that and the

end user can implement its own secure multiparty computation library. In

the case where the user wants to use his/her own library and not the built-

in library while compiling the SecurePL code the user has to supply the

compiler with the classes to replace int and bool also has to supply with

the library header file name that will replace the built-in library. Also

another requirement is that all library implementations for SecurePL have to

have a Initialization() function to initialize library parameters. If there no

such need for a function like this it can be implemented as an empty function.

The compilation options for SecurePl are:

• SecurePL source_file destination_file : To use SecurePl compiler

with built in libraries
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• SecurePL source_file destination_file int_replacement_class

bool_replacement_class main_library_header : To use with cus-

tom libraries.
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5 Conclusion

Since the concept of secure multiparty computation was introduced lots of

different secure computation methods were proposed. But despite the fact

that there exist many different algorithms and methods to do secure multi-

party computation none of them had any practical usage. The reason was

either because there was no practical method to do secure multiparty com-

putation or because the methods and algorithms were too complicated and

no framework existed to ease the burden on developers trying to develop

secure multiparty enabled applications. The aim of this thesis was to make

a programming interace and toolbox so that even people with no knowl-

edge about security or cryptography could develop secure multiparty

applications.

We achieved this goal with the current version of SecurePL compiler and

implemented ShamirLib. Thanks to the compiler and accompanying library

it is possible for a person to write an application without being concerned

about security or cryptography. A simple example would be a solution to the

problem introduced by Yao in 1982[15], the very same problem that started

the concept of secure multiparty computation: The millionaire’s Problem.

There is a sample solution offered by Yao which we destribed in 1.1.1 but to

use this solution one has to have knowledge of encryption, oblivious transfer

and circuit evaluation besides knowing how to write code. To contrast this

we offer a solution where a person who knows how to code can write a

solution to Yao’s millionaire problem without getting hindered by lack of

knowledge about security or cryptography. An example source code to solve

Yao’s Millionaire problem would be
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void main ( )
{

int a ;
int b ;

sRead (a , 1 ) ;
sRead (b , 2 ) ;

i f ( a<b)
{

cout << "B i s r i c h e r " ;
}
else
{

cout << "A i s r i c h e r " ;
}
return ;

}

Figure 6: Sample SecurePL Code

In this example the program asks Alice and Bob to input their wealth

using standard input and then reveals which one of these two players is

richer. Since all data handled by the implemented library is secret shared

no one gains information about the other player’s wealth. Also since the

implementation of the library stores all data as secret shared values even the

player cannot extract the his/her original data once the data has been secret

shared and distributed to all players, because after distribution the original

data is not kept in memory whatsoever.

Further development of SecurePL might allow users to differentiate be-

tween secret and non secret integers. At the moment there is no difference

between a regular and a secret integer. By this non discriminating structure
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we can be sure that everything is secure but the main drawback resulting

from this operation is that even for simple loop operations or iterations more

than necessary processing power is needed. So giving the ability to a user to

choose which variables have to be secret and which ones not will increase the

performance drastically.

Input output operations in SecurePL also have some room for improve-

ment. Especially the data read function has no iterative read property and

data is read from a source file always starting from the beginning. This

operation can limit the use of read from file operations.

Finally we can say that the current version of SecurePL is ready to be used

for daily operations so that these operations can be done in parallel and se-

curely. But just as mentioned above there is still some room for improvement

so that the practical secure multiparty computation toolbox becomes more

powerfull and fast and will be capable of handling more complex operations.
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