
Heuristics for Unique Input Output Sequence

Computation

by Hakan Kaynar

Submitted to the Graduate School of Sabancı University

in partial fulfillment of the requirements for the degree of

Master of Science

Sabanci University

June, 2008

c© Hakan Kaynar 2008

All Rights Reserved

Heuristics for Unique Input Output Sequence Computation

Hakan Kaynar

EECS, Master’s Thesis, 2008

Thesis Supervisor: Hüsnü Yenigün

Keywords: Formal Testing Methods, Checking Sequences, UIO Sequences

Abstract

In this thesis, several heuristic methods are proposed for the com-

putation of Unique Input Output (UIO) Sequences for the states of

a given finite state machine. UIO computation problem is known to

be a hard problem. The methods suggested in this work are based

on unfolding an exponential tree as the other methods existing in the

literature. However, our methods perform a search guided by some

heuristic information. We also introduce a parameter for inference

based UIO sequence computation for a trade off between the mem-

ory used for the computation and the UIO sequence length. Based

on a randomly generated set of finite state machines, an extensive

experimental study is also provided to compare the performance of

our methods between each other and to those already exist in the

literature.

4

Benzersiz Girdi Çıktı Dizilerinin Bulunması için Bazı Sezgisel

Yöntemler

Hakan Kaynar

EECS, Yüksek Lisans Tezi, 2008

Tez Danışmanı: Hüsnü Yenigün

Anahtar Kelimeler: Biçimsel Sınama Yöntemleri, Kontrol Dizisi, Benzersiz

Girdi Çıktı Dizileri

Özet

Bu tez çalışmasında, sonlu durum makinalarında Benzersiz Girdi

Çıktı (BGÇ) Dizilerinin bulunması için bazı sezgisel yöntemler

önerilmektedir. BGÇ dizilerinin hesaplanmasının zor bir problem

olduğu bilinmektedir. Bu çalışmada önerilen yöntemler de, lit-

eratürde bulunan diğer yöntemler gibi üstel büyüklükte bir ağaç

yapısına dayanmaktadır. Fakat, bu çalışmada önerilen yöntemler

bu ağacı oluşturulması sırasında yapılan aramayı bazı sezgisel

yöntemlerle yönlendirilmektedir. Bu yönlendirilmiş aramanın dı-

şında, çıkarım kullanarak BGÇ dizisi bulan yöntemlere de değinil-

miş ve bu yöntemlerin bir dezavantajı olan uzun diziler çıkarma

sorununa bir çare olarak, sınırlı çıkarım yapma önerilmiştir. Ras-

gele üretilen sonlu durum makinaları kullanılarak, bu çalışmada

önerilen yöntemlerin birbirleri ve literatürde bulunan diğer yön-

temler ile karşılaştırması yapılmıştır.

5

Acknowledgments

I would like to express my gratitude to my supervisor, Hüsnü Yenigün.

His quality of perspective, brilliant problem solving approaches and construc-

tive comments have provided an important support throughout in this work.

Only with his guidance, constructing a satisfactory thesis is possible for me.

I would like to give my deep thanks to him for giving me the opportunity to

work with him.

I would like to thank to Ersoy Bayramog̃lu for giving brilliant ideas in

the first year of my thesis study.

I would like to thank my friends Berk Çallı and Adil Küsen for feedbacking

and providing a considerable perspective throughout my thesis, even though

our area of interests are different.

I owe my loving thanks to my friend Başak Sönmez, my sister Zeynep

Kaynar and my parents Kamuran Kaynar and Sema Kaynar. Without their

support and encouragement, I may not find the strength to finish this thesis.

I dedicate this thesis to them.

The financial support of Sabanci University is gratefully acknowledged.

6

Contents

1 Introduction 13

2 Preliminaries 20

2.1 UIO Computation . 23

2.2 Exhaustive UIO Computation 29

3 Literature Review 31

4 UIO Computation Methods 39

4.1 Exhaustive UIO Computation 39

4.2 Random UIO Computation 44

4.3 Heuristic Method . 48

4.4 Heuristic Method with Global I/O Ranking 55

4.5 State–Based Heuristic Method 61

4.6 State–Based Heuristic Method with Global I/O Ranking . . . 68

4.7 Depth–First Heuristic Method with Global I/O Ranking . . . 72

4.8 Depth–First Heuristic Method with State Based I/O Ranking 77

4.9 Splitting Point . 82

5 Inference Handling 85

5.1 Integration of the Inference Information 87

5.2 Limited Inference . 91

6 Experimental Results 94

6.1 Experimental Results for Benchmark FSMs 94

6.2 Experimental Results for FSMs 95

7

6.3 Experimental Results for Big FSMs 100

7 Conclusion 106

A Appendix 113

8

List of Figures

1 The FSM M0 . 20

2 A Small Fragment of a UIO tree 27

3 A More Complete UIO Tree for M0 of Figure 1 29

4 The Unique Transitions of M0 31

5 The a/1 Projection of FSM M0 33

6 A Chain Node Example . 37

7 Memory Performances of the Exhaustive and the Random

Methods . 43

8 An Example UIO Tree as Generated by the Random Method . 45

9 Tree Size Performances of the Exhaustive and the Random

Methods . 47

10 UIO Sequence Length Performances of the Exhaustive and the

Random Methods . 47

11 Time Performances of the Exhaustive and the Random Methods 48

12 Tree Node Examples for Heuristic Method 50

13 Tree Size Comparison for the Heuristic Method 53

14 Time Comparison for the Heuristic Method 53

15 Heuristic Method in Comparison with Random and Exhaus-

tive Method UIO Sequence Lengths. 54

16 Heuristic Method with Global I/O Pairs in Comparison with

Random and Exhaustive Method Results. 59

17 The Execution Time Comparison of Heuristic Method with

Global I/O Pairs and Heuristic Method. 59

9

18 Heuristic Method with Global I/O Pairs in Comparison with

Random and Exhaustive Method UIO Sequence Lengths. . . . 60

19 Example for State Based Heuristic Method: Iteration 1 63

20 Example for State Based Heuristic Method: Iteration 2 64

21 Tree Size Comparison for the State Based Heuristic Method . 66

22 UIO Sequence Length Comparison for the State Based Heuris-

tic Method . 66

23 Time Comparison for the State Based Heuristic Method . . . 67

24 Tree Size Comparison for State Based Heuristic Method with

Global I/O Ranking . 71

25 UIO Sequence Length Comparison for State Based Heuristic

Method with Global I/O Ranking 71

26 Time Comparison for State Based Heuristic Method with Global

I/O Ranking . 72

27 Tree Size Comparison for Depth First Heuristic Method with

Global I/O Ranking . 77

28 UIO Sequence Length Comparison for Depth First Heuristic

Method with Global I/O Ranking 78

29 Time Comparison for Depth First Heuristic Method with Global

I/O Ranking . 78

30 Tree Size Comparison for Depth First Heuristic Method with

State Based I/O Ranking . 81

31 Time Comparison for Depth First Heuristic Method with State

Based I/O Ranking . 81

32 The Inference Graph of M0 . 86

10

33 An Example Inference Graph 88

34 Another Example Inference Graph 89

35 The Tree Size Values of Heuristic Method, Heuristic Method

with Inference and Naik’s Method. 90

36 The Tree Size Values of Heuristic Method with Inference and

Naik’s Method. 91

37 The UIO Sequence Lengths of Heuristic Method, Heuristic

Method with Inference and Naik’s Method. 92

38 Different Inference Lengths in Comparison. 93

39 Linear Distribution in Comparison. 97

40 Linear Distribution in Comparison in terms of UIO Sequence

Lengths. 98

41 Normal Distribution in Comparison. 98

42 Normal Distribution in Comparison in terms of UIO Sequence

Lengths. 99

43 Step Distribution in Comparison. 99

44 Step Distribution in Comparison in terms of UIO Sequence

Lengths. 100

45 Distributions in Comparison with stdev ∼= 3. 101

46 Distributions in Comparison with stdev ∼= 7. 101

47 Distributions in Comparison with stdev ∼= 11. 102

48 Distributions in Comparison with stdev ∼= 15. 102

49 Tree Size Values for Big FSMs 103

50 Average UIO Length Values for Big FSMs 104

51 Average Timing Values for Big FSMs 105

11

52 Depth–First Heuristic Method with State–Based I/O Ranking

in Comparison. 114

53 Depth–First Heuristic Method with Global I/O Ranking in

Comparison in terms of UIO Sequence Lengths. 115

54 Time Performances of the Exhaustive and the Random Methods116

55 Heuristic Method Time Requirements in Comparison with Ex-

haustive Method. 117

56 Time Comparison of Depth First Heuristic Method with Global

I/O Ranking. 118

57 The Tree Size Values of Heuristic Method, Heuristic Method

with Inference and Naik’s Method. 119

58 The Tree Size Values of Heuristic Method with Inference and

Naik’s Method. 120

59 The UIO Sequence Lengths of Heuristic Method, Heuristic

Method with Inference and Naik’s Method. 121

60 Different Inference Lengths in Comparison. 122

61 Tree Size Values for Big FSMs 123

62 Average UIO Length Values for Big FSMs 124

63 Average Timing Values for Big FSMs 125

12

List of Tables

1 The responses of the states of M0 to the input sequence “aa” 22

2 Frequencies and ranks of I/O pairs in M0 34

3 The comparison of the exhaustive method with and without

repetitive check . 42

4 Frequencies and ranks of I/O pairs in M0 56

5 Es node sets for states . 62

6 The Comparison of Depth First Heuristic Approach with State

Based IO Ranking and LANG 95

7 FSM transition distributions and corresponding standard de-

viation values. 96

13

1 Introduction

Nowadays, the computer systems are relatively large and complex, hence

they are more error–prone than ever. Their reliability is very important

due to their ubiquitous usage in everyday life. When their applications in

safety critical domains are considered, the importance of their reliability is

appreciated even more. Ensuring the reliability, or at least establishing a

certain level of reliability of such systems is not easy. Several approaches

have been proposed for increasing the reliability of these systems addressing

the entire spectrum of their development cycle, starting from the checking

of the consistency of the requirements, to the testing of the actual product.

These methods can be classified as formal or informal. Formal methods use

a mathematically supported framework to analyze the systems (for example

model checking, automated theorem proving, etc.) whereas informal methods

would lack such a mathematical infrastructure but would rather be practice

oriented techniques such as software development process models or some

good programming techniques.

Among these methods, testing is the only one that is related to the actual

product. The other methods are all related to and operates on a model of the

actual product. Although these methods are quite valuable and can increase

the reliability considerably, by eliminating the errors introduced at the early

stages of the development cycle, testing is unavoidable. It is unavoidable at

least to catch those errors that can be introduced during the transformation

of the model into the actual product. Even when this transformation is not

performed by a human (which is the main source errors in these systems) but

it is an automated process and testing might still be necessary. For example,

14

one would probably want to test every single chip produced considering the

possible production errors introduced during the manufacturing process.

In this work, we consider the testing of reactive systems. Unlike computa-

tional systems which accept an input, carry out a computation and present

the result at the end of their execution, reactive systems consist of com-

ponents that interact with each other and with their environment by some

form of communication, and that will probably run forever. For example, a

program taking the factorial of a number or solving a linear programming

problem is a computational system. However, a program controlling the

process at a nuclear reactor or controlling an airplane in auto–pilot mode

is a reactive system. From now on we will refer to the reactive systems as

systems.

Testing of a system is performed by an external tester which applies a

sequence of inputs and verifies corresponding outputs. The input sequence

applied and the expected out sequence is called a test case. Exhaustive

testing, that is testing every possible behavior of the system, will require huge

(if not infinite) amount of time and space since even simple systems will have

quite a large number of different possible test cases. This makes exhaustive

testing practically infeasible. In addition, the limited controllability and

observability of the implementation under test (IUT) complicates the testing.

There are several approaches other than exhaustive testing. These meth-

ods aim to find test cases that will increase the reliability of the IUT without

testing every possible behavior. Every test case successfully passing through

the IUT would obviously increase the reliability of the IUT; however, the ba-

sic idea is to select a minimal set of test cases while maximizing the reliability

15

they provide.

The testing methods are classified into different groups based on several

factors. However, a general top–level classification is white–box testing and

black–box testing. The methods that are classified as white–box testing are

based on deriving the test cases by using the implementation details, such

as the source code of a program. On the other hand, black–box testing

methods do not assume any knowledge about the actual internals of the IUT.

They instead use a model or a specification which describes the intended

behavior of the IUT. The test cases are derived from such a specification.

Therefore, black–box testing methods are also called as model based testing

or specification based testing.

Finite State Machines (FSM) are widely used as the specification formal-

ism in various areas including sequential circuits, software and communica-

tion protocols [1, 9, 3, 16, 22, 29, 40, 38, 19]. A state of the system is a

representation of a stable condition at which the system is, until an action

(e.g. an application of an input by the environment) occurs. This action

causes the system to produce a response (e.g. an output signal sent to the

environment) that can be observed. It also causes the system to move from

current state to a new state, which is called transition.

The formal methods for generating test cases for checking the confor-

mance of the IUTs to their FSM based specifications have been an interesting

and active research area [34, 25, 27, 28, 33, 36, 17]. Lee and Yannakakis pro-

vide an excellent survey of the techniques in [17]. Some of these formal meth-

ods are based on transition testing only. These techniques embody the test

sequences by considering the transitions in the specification [36, 14, 15, 21].

16

The application of these test cases to the IUT would just take the tester on a

tour along the transitions of the IUT representing the transitions of its FSM

specification. It is known that an IUT successfully passing such a test is not

necessarily error free. There are more powerful techniques for test case gen-

eration from an FSM specification. A checking experiment [14, 15, 8, 4, 11]

(where the test case is called a checking sequence) is one such approach. In a

checking sequence, not only the transitions are traversed, but also the states

of the FSM specification are tested one by one. Although a checking sequence

is more powerful than a sequence testing only the transitions, it is also known

that an IUT passing a checking experiment successfully is not necessarily a

correct implementation. However, there are incorrect implementations that

would be caught by checking experiments but not by the techniques testing

the transitions only.

Whether a checking experiment or just a transition testing approach,

both techniques rely on the notion of state verification. In other words,

the test cases produced by these techniques would have parts in them to

verify that the IUT is at particular states at particular steps during the

application of the test case. Briefly explained, in order to understand the

correct implementation of a transition in the IUT, the test case forces the

IUT to execute the transition (to check if it will respond as expected) and

then also the state that is reached after the execution of the transition is

verified (to check if the transition leads to the expected state).

Three main techniques are proposed for state verification: distinguish-

ing sequence(DS) [5, 6, 14], characterizing set (CS) [8, 14] and unique in-

put/output (UIO) sequence [7, 11, 26]. The test sequence generation ap-

17

proaches which use the above mentioned techniques are D-method [8, 32, 10,

8, 14], W-method [2, 8, 14] and U-method [26, 1, 35, 40, 38], respectively.

Even though these tree techniques do not show any significant difference

that concerns fault coverage [29], the usage of UIO sequences has several

advantages.

• For an FSM that has no distinguishing sequence, there may exist a

UIO sequence for each state [1].

• A UIO sequence length is shorter than distinguishing sequence length.

• In practice, the test sequences that are generated using UIO sequences

are shorter than those produced with characterizing set.

[1], [37] are two methods that use UIO sequences for state verification on the

basis of transition testing and checking experiment problem respectively.

Since UIO sequences will be used inside the test cases many times (ev-

erytime a state needs to be verified), using short UIO sequences is desirable.

Sabnani and Dahbura [26] proposed an algorithm to compute UIO sequences,

which is based on the breadth–first expansion of a tree. Since the apporach

is an exhaustive search of the tree in a breadth first manner, it finds the

shortest possible UIO sequences. However, it takes exponential time since

the tree explored grows exponentially. The bad news is that UIO sequences

may not exist for an FSM (or for some states of the FSM) and even checking

the existence of UIO sequences is known to be PSPACE–complete [16].

Naik [20] proposed a method that uses inference rules. That is, some

UIO sequences are found using the approach given in [26] and some UIO

sequences can be inferred from already known UIO sequences by using a set

18

of rules. This decreases the execution time in practice; on the other hand,

the length of the UIO sequences found increases considerably. In [24], UIO

sequences are constructed using meta–heuristic optimization techniques such

as simulated annealing and genetic algorithms. Due to the formulation of the

search in this work, some UIO sequences may not be found even if they exist.

Also, Ahmad et al. proposed a method based on a heuristic breadth–first

search of the tree [12]. Their formulation is based on the binary encoding

of the states, the inputs and the outputs of the FSM. It also proposes an

inferencing approach which increases the length of the UIO sequences found.

The contributions of this work can be listed as follows:

• Several heuristic methods for the UIO sequence search problem are

proposed. These methods are based on the exploration of the search

tree like the previous methods. However, some heuristics are used to

guide the search during the tree expansion.

• These heuristics are also combined with some of the techniques already

suggested in the literature, especially the techniques given in [20] and

[12], to improve those techniques further.

• A relatively extensive experimental study is provided based on ran-

domly generated instances of FSMs.

The remainder of the thesis is structured as follows. In Chapter 2, an

introductory background on FSMs is provided. The notation and the for-

malism that will be used in this thesis are introduced. A very simple but

expensive way of finding UIO sequence concludes the chapter. Chapter 4

19

firstly introduces two techniques for UIO search to form a basis of compar-

ison. It then explains the methods that are proposed by this work. For

each method, some small scale experimental results are provided in order to

materialize the performance. We explain how one of the disadvantages of

the inferencing methods can be controlled in Chapter 5. We combine our

heuristic search methods with that of [20] and also suggest a control mecha-

nism to avoid finding long UIO sequences. Finally, in Chapter 6, we provide

the results of our experimental study in detail. The concluding remarks are

provided in Chapter 7.

20

2 Preliminaries

A finite state machine M is defined by M = (S, I, O, δ, λ), where S refers to

the set of states S = {s1, ..., sn}, I denotes the finite set of input symbols

I = {i1, ..., ip}, O denotes the finite set of output symbols O = {o1, ..., oq}. δ :

S×I → S is the transition function and λ : S×I → O is the output function.

For simplicity, a finite state machine can be represented as a directed and

labeled graph G = (V,E). Each state s ∈ S of FSM M is represented by

a unique vertex v ∈ V in G. Similarly, an edge (v, i/o, v′) ∈ E represents a

transition of FSM M where s, s′ ∈ S and δ(s, i) = s′ and λ(s, i) = o. The

source and destination vertices v and v′ of the edges are the source and the

destination states s and s′ of the corresponding transition, respectively. The

label of the edge, i/o, represents the input and the output of the transition.

For an edge e = (v, i/o, v′), we will use head(e) = v, tail(e) = v′, and

lbl(e) = i/o to denote the source vertex, the destination vertex and the label

of the transition, respectively. In Figure 1, an example FSM can be observed.

s1

s4 s5

s2 s3
a/1

b/2

b/2
a/1

b/1

b/1a/1

b/2 a/2

a/2

Figure 1: The FSM M0

21

Since δ and λ are functions (rather than a relation), this definition of

an FSM necessarily describes a deterministic machine. In other words, from

a state s there is at most one transition with at most one output symbol

defined. In this work, we only consider such deterministic machines.

Let |.| denote both the length of the sequences and size of the sets. Then,

|S|,|I| and |O| denote the number of states, the number of input symbols

and the number of output symbols, respectively, whereas for a sequence of

input symbols X ∈ X?, |X| denotes the length of the sequence.

An I/O sequence is a pair of sequences X/Y such that X ∈ I∗, Y ∈

O∗ and |X| = |Y |. We extend the transition and output functions from

a single input symbol to an I/O sequence as follows. δ(s, x1x2...xk) =

δ(δ(s, x1), x2...xk) and λ(s, x1x2...xk) = λ(s, x1)λ(δ(s, x1), x2...xk).

For a state s ∈ S, a unique input output (UIO) sequence is an I/O se-

quence X/Y such that ∀s′ ∈ S, s′ 6= s implies λ(s,X) 6= λ(s′, X). In other

words, there is no other state in FSM M which gives the output sequence Y

to the input sequence X, except s. For instance, aa/11 is a UIO sequence

for s1 of the machine M0 given in Figure 1. The response of all the states to

the input sequence aa are given in Table 1. As can be seen from this table,

the response of the state s1 is unique among the responses of all the states.

A state may have more than one UIO sequence. It is easy to see that

aab/111 and aaa/112 are also UIO sequences for the state s1 of M0 based on

the fact that, for an I/O sequence X/Y , if a prefix of X/Y is a UIO sequence

for a state s, then X/Y must be a UIO sequence for the state s as well. Let

us define the length of a I/O sequence X/Y as |X/Y | = |X| = |Y |. The

UIO sequences of a state might have different lengths. aa/11 and aab/111

22

Table 1: The responses of the states of M0 to the input sequence “aa”

State Input Output

s1 aa 11

s2 aa 12

s3 aa 21

s4 aa 21

s5 aa 12

are UIO sequences for the state s1 of length 2 and 3. A UIO sequence with

minimum length is called a shortest UIO sequence for a state s. A closer look

to Figure 1 will reveal that aa/11 is a shortest UIO sequence for the state s1

since no I/O sequence of length 1 can be a UIO sequence for s1. There are

only two possible I/O sequences of length 1 from the state s1, namely the

sequence a/1 and the sequence b/1, and both of these sequences are also I/O

sequences for some other states. Hence, they are not UIO sequences.

A state can have more than one shortest UIO sequence. For example,

ba/11 is also a UIO sequence for the state s1 of M0.

It is also possible for a state not to have a UIO sequence at all, although

there is no such state in M0 in Figure 1 (ab/11, ba/12, bab/211 and baa/211

are UIO sequences for the states s2, s3, s4 and s5 respectively). In general,

finding a shortest UIO sequence for a state would be desirable for those states

with a UIO sequence, but unfortunately even checking the existence of a UIO

sequence for a given state is PSPACE–complete[16].

23

2.1 UIO Computation

The discovery of UIO sequences for the states of a finite state machine M is

performed by generating what we call the UIO tree of M . A UIO tree node

is labeled by a set of initial state–current state pairs called ICS pairs. We

will denote an ICS pair as [s, s′], where s and s′ are states in the FSM M .

For an ICS pair [s, s′], s is said to be the initial state and s′ is said to be the

current state.

An ICS pair [s, s′] is said to be valid for an I/O sequence X/Y iff δ(s,X) =

s′ and λ(s,X) = Y . Informally, if the FSM M starts from the initial state

s and the input sequence X is applied, M will produce the output sequence

Y , and the current state at the end will be s′.

For an ICS pair [s, s′], we use s = init([s, s′]) and s′ = curr([s, s′]) to

access the initial and the current states in the ICS pair. We extend these

notations to the set of ICS pairs as follows: For a set of ICS pairs L, init(L) =

{init(ρ) | ∀ρ ∈ L} and curr(L) = {curr(ρ) | ∀ρ ∈ L}.

After these definitions, we are now ready to define the UIO tree.

Definition 1 A UIO tree is a rooted tree and characterized by the following

rules:

1. Each node is labeled by a set of ICS pairs. For a node TN , we will use

lbl(TN) to denote this label of the tree node.

2. Each edge is labeled by an I/O pair x/y where x ∈ I and y ∈ O.

3. For each non–leaf node TN , for all x ∈ I and y ∈ O, there is an

outgoing edge from TN with the label x/y. Therefore a non–leaf node

will have exactly |I| × |O| children.

24

4. A node TN is a leaf when lbl(TN) = ∅.

5. The root node has the label {[s, s]|∀s ∈ S}.

6. For a node TN let us define X/Y = path(TN) as the I/O sequence

obtained by concatenating the I/O symbol pairs on the edges of the path

from the root to TN . For all ICS pairs [s, s′], [s, s′] ∈ lbl(TN) iff [s, s′]

is valid for X/Y .

We now explain several properties of UIO trees.

Remark 2

A node TN in the UIO tree such that |lbl(TN)| = 1 is an indication of a

UIO sequence. Let [s, s′] be the only ICS pair at this node, and let X/Y =

path(TN). Due to (6) in Definition 1, any ICS pair for which X/Y is valid

should be in lbl(TN). Since there is only one such ICS pair, this means that

among all the states only s can produce the output sequence Y to the input

sequence X, and hence X/Y is a UIO sequence for the state s.

Remark 3

Let TN be a node in a UIO tree and x/y be an I/O pair (where x ∈ I and

y ∈ O). We denote the child of TN for the I/O pair x/y as TNx/y. The

label of TNx/y can be computed from the label of the TN as follows:

lbl(TNx/y) = {[s, δ(s′, x)] | ∀[s, s′] ∈ lbl(TN), λ(s′, x) = y}

25

For example (by using M0 from Figure 1) if lbl(TN) = {[s2, s4], [s4, s2], [s5, s1]}

is the label of a node, then the label of the node TNa/1 will be lbl(TNa/1) =

{[s4, s3], [s5, s2]}.

Based on (5) of Definition 1 and Remark 3, it is possible to develop an

algorithm to generate the UIO tree of an FSM in a breadth–first manner.

The algorithm will start from a tree with a single node, which is the root,

and will generate all the children of all the nodes by visiting the generated

nodes in a breadth first manner.

Remark 4

Let TN and TN ′ be UIO tree nodes such that TN ′ is a descendant of TN .

We have init(lbl(TN ′)) ⊆ init(lbl(TN)).

This is easy to see based on Remark 3. The initial states do not change

from a parent to a child. They can only disappear in the child.

Remark 5

For a tree node TN , all of the initial states are unique. That is |lbl(TN)| =

|init(lbl(TN))|. However, the current states may not be unique. In other

words, |lbl(TN)| ≥ |curr(lbl(TN))|.

Note that by Remark 3, an initial state in an ICS pair in the label of a node

is transferred into the label of a child node as is. Therefore, it is not possible

for two labels in the child node to have the same initial state. However, this

is not true for the current states. The current states change from a parent

node to a child node, and it is possible for two different current states in the

26

parent to be mapped on the same state in the child node. For example, (by

using M0 from Figure 1) if lbl(TN) = {[s1, s2], [s2, s3], [s5, s4]} is the label of a

node, then the label of the node TNa/2 will be lbl(TNa/2) = {[s2, s5], [s5, s5]}.

Definition 6 Let TN be a node and [s, s′] ∈ lbl(TN) be an ICS pair at

TN . TN is said to be homogeneous over the state s iff there exists an ICS

pair [s′′, s′] ∈ lbl(TN) such that s 6= s′′. We will use h(lbl(TN)) to denote

the set of initial states over which TN is homogeneous. TN is said to be

homogeneous iff h(lbl(TN)) = init(lbl(TN)).

To introduce the notation that will be used to depict UIO trees, a very

small fragment of the UIO tree for the FSM M0 of Figure 1 is given in

Figure 2. Here, we have only the root of the UIT tree and two children of

this root node, one for the I/O pair a/1 and one for the I/O pair a/2. We

directly use the indices of the states to refer to the states (i.e. 1,2,3,4,5 are

used rather than the names of the states s1, s2, s3, s4, s5). The ICS pairs

in the labels of the nodes are given vertically. That is, the ICS pairs of

the node TN1 are {[1, 2], [2, 3], [5, 4]}. One can see that the node TN2 is a

homogeneous node. A UIO tree node TN with lbl(TN) = ∅ will never be

shown (actually such a node will never be generated).

As stated before, a very simple breadth–first generation of the UIO tree

is possible. As the nodes are generated, it is possible to detect the UIO

sequences found according to Remark 2. However, such an approach would

generate an infinite tree since we did not specify any pruning conditions that

can be used during the generation of the UIO tree. For pruning a UIO tree,

27

TN0: 1 2 3 4 5

1 2 3 4 5

TN1: 1 2 5

2 3 4

TN2: 3 4

5 5

a/1 a/2

Figure 2: A Small Fragment of a UIO tree

there are some termination conditions common to all the methods that will

be explained. These common conditions are given below. Method specific

termination conditions will be introduced later within the sections of the

corresponding methods.

• Singleton Nodes: Let TN be a node such that |lbl(TN)| = 1. According

to Remark 2, TN will tell us a UIO. In fact if lbl(TN) = {[s, s′]}, it

will tell us a UIO of the state s. Consider any descendant TN ′ of TN .

It is easy to see that either lbl(TN ′) = ∅ or |lbl(TN)| = 1 again. In

the former case, it is already a leaf node as given in (4) of Definition 1.

In the latter case, it is easy to show that lbl(TN ′) = {[s, s′′]} for some

state s′′. TN ′ will also tell us a UIO sequence but it will again be a

UIO sequence for the same state s. The UIO sequence found by TN

will be a prefix of the UIO sequence found by TN ′. Therefore it is not

necessary to continue the generation of the nodes from TN .

• Homogeneous Nodes: Let TN be a homogeneous node. In this case, for

any ICS pair [s, s′] ∈ lbl(TN), there will be another ICS pair [s′′, s′] ∈

lbl(TN) such that s 6= s′′. Let TN ′ be a descendant of TN and let X/Y

28

be the I/O sequence labeling the path from TN to TN ′ and assume

that λ(s′, X) = Y . This means the ICS pair [s, δ(s′, X)] will be a label

of TN ′. It also means that the ICS pair [s′′, δ(s′, X)] will be a label

of TN ′. This is based on the fact that whatever the current state of

the ICS pair [s, s′] can do, the current state of the ICS pair [s′′, s′]

can also do, since they are the same state. Therefore, it will not be

possible to separate these ICS pairs. So, a descendant TN ′ of TN with

lbl(TN ′) = 1 will never exist. This means that it is not possible to find

a UIO sequence by generating the descendants of TN , for this reason,

the tree generation can be pruned at such a node.

• Repetitive Nodes: Let TN and TN ′ be two nodes such that lbl(TN) =

lbl(TN ′). The subtree rooted at TN will then be exactly the same as

the subtree rooted at TN ′. Therefore, it is sufficient to expand the

UIO tree at one of these nodes only, and prune the generation at the

other one.

Figure 3 displays a more complete form of the UIO tree for the FSM

M0 of Figure 1. It is still not complete, however, there are examples for

the termination conditions explained above. The generation of the tree is

pruned at a/2 successor of the root and aa/12 successor of the root because

these nodes are homogeneous nodes. The tree is also pruned at the bb/11

successor of the node because this is a repetitive node, it is the same as the

b/1 successor of the root. Note that in general the repetitive nodes may be

at entirely different parts of the UIO tree. They just happened to be parent–

child in this example by chance. The nodes marked by a an asterisk are the

29

nodes where UIO sequences are found. So, the generation is also pruned at

these nodes.

1 2 3 4 5

1 2 3 4 5

1 2 5

2 3 4

3 4

5 5

1 3

1 3

2 4 5

4 2 1

1

3

∗

2 5

5 5

2

3

∗

1 5

4 2

1

2

∗

3

5

∗

1 3

1 3

4 5

3 2

2

5

∗

5

1

∗

2 4

2 4

5

3

∗

1

5

∗

1 5

2 4
5

3

∗

4

5

∗

4

3

∗

5

4

∗

2

3

∗

4

5

∗

2 4

4 2

a/1 a/2 b/1
b/2

a/1

a/2 b/1 b/2
a/1

a/2 b/1 a/1 a/2
b/1

b/2

a/1
a/2

b/2

a/1
a/2 b/1

b/2
a/1

a/2 b/1

Figure 3: A More Complete UIO Tree for M0 of Figure 1

2.2 Exhaustive UIO Computation

One method for generating UIO sequences relies on generating the UIO tree

in a breadth–first manner by observing the termination conditions given on

Page 27. One should also keep track of the set of states for which a UIO

sequence is found, so that the algorithm can be terminated after finding at

30

least one UIO for each state. Such an algorithm is depicted as Algorithm 1.

When the variable named E in this algorithm is implemented as a queue, it

generates the UIO tree in a breadth–first manner.

Algorithm 1: A UIO Sequence Computation Algorithm

E = ∅ ; // UIO tree nodes yet to be explored1

R = ∅ ; // states for which UIO sequences have been found2

create the root of the UIO tree and insert it into E;3

while ((E 6= ∅) ∧ (R 6= S)) do4

// S here is the set of all states

TN = get and remove the next node in E;5

forall the x ∈ I, y ∈ O do6

if (|lbl(TNx/y)| == 1) then7

// recall the notation TNx/y from Remark 3

Let [s, s′] be the ICS pair in TNx/y;8

R = R ∪ {s} ;9

else if ((lbl(TNx/y) > 1) ∧ (TNx/y is not repetitive) ∧ (TNx/y
10

is not homogeneous)) then

E = E ∪ {TNx/y} ;11

Note that Algorithm 1 does not keep track of the actual UIO sequences

found for the states. However, adding such a feature is trivial by inserting a

line in the “then” part of the “if” statement to write down that path(TNx/y)

is a UIO sequence for the state s. Therefore, we omit this feature in Algo-

rithm 1 and in all the other algorithms in this thesis.

31

3 Literature Review

Naik’s Method

Naik [20] proposed a technique for finding UIO sequences efficiently. In

his work, the introduced method computes UIO sequences with dramatical

decrease in memory requirements. However, the found UIO sequences are

very long when compared to the exhaustive UIO computation. The decrease

in memory requirements and the increase in UIO sequence lengths were the

results of inference mechanism. Informally, inference is an approach which

infers new UIO sequences from existing UIO sequences. In order to infer a

UIO for a state, that state should be the head state of a unique transition to

a tail state for which a UIO is found by populating the UIO tree. Formally,

a state si is unique predecessor of state sj, if the label of the edge (si, sj) is

unique among all the incoming edges to sj. So, the transition represented

by an edge in the graph is a unique transition. For example, the unique

transitions of M0 can be observed in Figure 4.

s1

s4 s5

s2 s3
a/1

b/2

b/2
a/1

b/1

b/1a/1

b/2

Figure 4: The Unique Transitions of M0

32

If we know the UIO of any state, we may produce new UIO sequences for

other states by prefixing the labels of unique transitions to the existing UIO

sequence. An inference rule is obtained as follows.

UIOj = lbl(e) + UIOi where e is a unique transition such that

tail(e) = vi, head(e) = vj.

So, it is possible to infer new UIO sequences from the UIO sequences

which is found by populating the UIO tree. In [20], the UIO generation

is held in a hybrid manner. That is, a tree node is expanded by applying

all input symbols and the next tree node that will be explored is selected

randomly among the children of that tree node. So, the generation is held

in depth–first manner. However, if a subtree that is rooted by a child node

does not result in a UIO sequence, the generation algorithm will pass to next

random children. So, every children of a node is examined in a breadth–first

manner, but the subtrees are created in a depth–first manner.

The hybrid generation of UIO tree is not the only way to find UIO se-

quences that will be used in inference. Naik [20] proposed projections and

linear path techniques for UIO sequence extraction for a state without con-

structing a UIO tree. Formally, a projection Gx/y = (V ′, E ′) of a graph

G = (V,E) and an I/O pair x/y is a subgraph G such that:

V ′ = {head(e), tail(e)|lbl(e) = x/y}

E ′ = {e|lbl(e) = x/y}

The a/1 projection of M0 can be observed in Figure 5. A path, denoted

as Pv, in the projection is a sequence of edges which may end in a sink state

33

or in a state which is already seen in the path. If a path ends in a sink state,

it is a linear path and we may extract UIO sequences for some of the states

in a linear path. Based on the structure of the paths, [20] suggests some

ways to find UIO sequences without even constructing a UIO tree.

So, Naik [20] first finds UIO sequences using the paths in the projections

and infers UIO sequences using these UIO sequences. If there exists a state

for which a UIO sequence has not been found yet, then it generates UIO tree

with the hybrid method described above and finds UIO sequences for further

inferences. As a result, the inference and linear path mechanisms could find

UIO sequences for all the states. However, due to the sequential prefixing of

unique transition labels to existing UIO sequences, resulting UIO sequences

have longer lengths when compared to the UIO sequences that would be

found by the exhaustive method.

s1

s4 s5

s2 s3
a/1

a/1

a/1

Figure 5: The a/1 Projection of FSM M0

Genetic Algorithm

In [13] and [23], UIO computation problem is attacked by using a Ge-

netic Algorithm (GA) approach. In these two works, the individuals are I/O

34

Table 2: Frequencies and ranks of I/O pairs in M0

I/O pair Frequency Rank

a/1 3 1

a/2 2 0

b/1 2 0

b/2 3 1

sequences. The parents are selected with respect to the fitness functions for

obtaining the next generation. The children are created with cross–over and

single point mutations are held in order to preserve randomness in the pop-

ulation. When the termination conditions specified are satisfied, the genera-

tion algorithm terminates and generated I/O sequences are checked if those

sequences are UIO sequences.

In [13], the proposed fitness function is in terms of the frequency of the

transition labels in an FSM. The transition table of the FSM is examined

before the pool generation and every transition is ranked with respect to the

occurrence count of transition label in the FSM. The least frequent I/O label

gets the lowest IO rank and the highest frequency I/O label gets the highest

IO rank. In Table 2, the transition ranks of M0 can be seen.

The quality of an I/O sequence is sum of the ranks of I/O labels which

forms the sequence. For example, the sequence ab/12 has the fitness point

of 2. That is, the rank of a/1 is 1 and the rank of b/2 is 1. The idea in this

work is low frequency I/O sequences are more likely to be UIO sequences.

For this reason, the fitness point gives high points to the sequences that has

35

low transition rank sum.

In [23], the fitness function is build upon the analysis of the splitting tree

of the FSM. A state splitting tree is a construct used to extract adaptive

distinguishing sequences and UIOs from an FSM. Each node in the tree has

a parent and children. The root node is composed of all set of states and

has a null parent. With an input application, the children are grouped with

respect to the outputs they produced. If all the leaf nodes are discrete, the

splitting tree is complete and ready for adaptive DS and UIO extraction. A

path from discrete partition node to tree root is a UIO sequence discovery.

In this work, the fitness of an I/O sequence is bound to the number of the

discrete partitions and separated groups that it results in the state splitting

tree. That is, for an I/O sequence, the state splitting tree is built with the

guidance of the I/O pairs of that sequence. The quality score of an I/O pair

that constructs the sequence is:

f(i) = α
xie

xi+δxi

lγi
+ β

yi + δyi

li

where i is the ith I/O pair of the corresponding sequence, xi denotes the

number of existing discrete partitions, δxi is the number of new discrete

partitions, yi is the number of existing seperated groups and δyi is the number

of new seperated groups. α, β and γ are constants. Thus, the fitness of an

I/O sequence is:

F =
1

N

N∑

i=1

f(i)

where N is the sequence’s length.

36

So, the genetic algorithms that are proposed in [13, 23], initially generates

a pool of I/O sequences. The algorithms pick successfull parents with the

quality measures that is described here. Then, the children are created with

cross–over and mutation and the algorithm passes to the parent selection for

the next generation.

LANG Algorithm

In [12], a heuristic method has been proposed for UIO sequence compu-

tation. In this work, the FSMs which have binary input and output symbols

have been considered and a UIO tree is constructed in order to search UIO

sequences. For guiding the search, every UIO tree node is labeled as active,

inactive and dead node. A tree node is said to be active if there exists an

initial state of the node which is not homogeneous over the node and its UIO

has not been found yet. A tree node is inactive if the algorithm finds UIO

sequences for active initial states of that tree node via using other subtrees.

A dead node is defined as a repetitive node or a tree node which has current

states equal to the corresponding initial states.

In the algorithm, only the active nodes are used for children generation

and the number of generated nodes in the tree is limited. If the node limit

is reached and there exists states for which a UIO has not been found, they

propose the chain node technique for finding UIO sequences from existing tree

nodes. Formally, a node TNi = {ICSi1, ICSi2, ...} is a chain of another node

TNj = {ICSj1, ICSj2, ...} if |curr(ICSi) ∩ init(ICSj)| = 1. That is, only

one current state in TNi can be observed in TNj as an initial state. Figure 6

demonstrates a chain node example. It can be seen that TN0 is a chain node

of TN1 because only the current state s4 can be seen in TN1 as an initial

37

state. In order to find a UIO sequence from the subtree rooted by TN0, the

algorithm has to separate s4, s8 and s6 from each other. It can be observed

that TN1 has already done this separation with the sequence accumulated

from tree root to TN1. For this reason, if we apply same sequence to the

TN0, it is guaranteed to separate above mentioned states from each other

and find UIO sequence of s1.

TN0: 1 2 3

4 8 6

TN1: 4 7 3

2 7 4

Figure 6: A Chain Node Example

So, Ahmad et.al. [12] proposed a breadth–first heuristic approach for

FSM with binary input, output symbols. They have a dead, inactive and

active node approach in order to guide UIO search. This work limits the

population of the tree to some value and after this limit is reached, they find

UIO sequences using chain node approach.

Sun et. al. Method

Another heuristic method for exploring UIO sequences is proposed by

Sun et. al [30]. In their work, they have considered FSMs with binary

I/O symbols and demonstrating a breadth–first heuristic method for finding

UIO sequences. As a difference from other methods that is described in this

section, this method does not simultaneously search UIO sequences for all

state at a time. For every state si ∈ S, the algorithm constructs UIO tree

and searches the UIO sequence of si.

In this work, every transition is accompanied by a Distinguishing State

Group (DSG). That is, the set of states which are distinguished from the

38

source state of the transition with the output response of the transition and

the search for UIO seqence of a state si is held with the guidance of DSGs.

The tree is rooted by si and there exists a set of states which should be

distinguised from si and called as TBD. The first level of the tree are all

the transitions headed by si and resulting TBD values for each transition

are updated. In the next level, the input symbols that will be applied to the

tree nodes are selected using greedy heuristic. That is, the transition that is

invoked by the input symbol will maximize TBDTN ∩ DSGTN .

39

4 UIO Computation Methods

In this chapter, we will first introduce two known methods to form a basis

for the performance comparison for the methods that we will suggest. This

will be followed by the explanations of our methods. Each section introduces

a new approach and the order of the sections reflect a chronological and a

logical order of the methods developed throughout the course of this work.

The (memory and time) performance of the methods will be improved by

each section in general. However, the last section introduces an unsuccessful

attempt to improve the methods.

Throughout this chapter, we examine the performance of the methods on

a fixed set of FSMs that we generated randomly. This set is composed of

seven FSM groups where each group has the same number of states. The

state sizes of the groups are 100, 500, 1000,1500, 2000, 2500 and 3000 and

every FSM has four inputs and four outputs. There are 50 FSMs in each

group. So, in total there are 350 FSMSs with a total of 530000 states.

We provide a more general experimental study later in Chapter 6.

4.1 Exhaustive UIO Computation

As one may have noticed, Algorithm 1 is probably not the best algorithm for

finding UIO sequences. In fact, we will suggest several improvements on this

algorithm. However, there are some immediate and obvious improvement

opportunities.

For example, assume that the algorithm has been working for a while and

it has accumulated UIO sequences for a set of states R. Also assume that

40

there is a UIO tree node TN yet to be explored in E. If init(lbl(TN)) ⊆ R,

we do not actually need to generate the subtree rooted at TN . The reason

is the following: Let TN ′ be a descendant of TN such that |lbl(TN ′)| = 1.

So, TN ′ tells us a UIO. It will tell a UIO for a state s ∈ init(lbl(TN ′)) ⊆

init(lbl(TN)) ⊆ R (where the first ⊆ follows from Remark 4). In other words,

it will tell us a UIO for a state s for which a UIO found before. Therefore, it

is not necessary to generate TN ′ and hence, it is not necessary to generate

the subtree rooted at TN .

Another obvious improvement is the following. In [18], the converging

transitions are defined in order to find the states for which a UIO sequence

does not exist. Formally, a transition δ(s, x), s ∈ S, x ∈ I is converging if

∃s′ ∈ S such that s 6= s′, δ(s, x) = δ(s′, x) and λ(s, x) = λ(s′, x). So, both s

and s′ produce the same output to x and they both end up in the same state.

This means that a UIO for s or for s′ cannot start with x. If all transitions

of a state are converging, then it means there does not exist a UIO sequence

for that state since it wouldn’t be possible to start the UIO for that state

with any input symbol. Note that this is only a sufficient condition for not

having a UIO for a state.

Let us define S ′ ⊆ S as the set of states for which there exists at least

one non–converging transition. Suppose that Algorithm 1 has been working

for a while and let R denote the set of states for which a UIO sequence has

been found, TN be a node yet to be explore, and h(lbl(TN)) denote the set

of initial states over which the tree node is homogeneous (see Definition 6).

The subtree rooted at TN is only good for finding UIO sequences for the

states in init(lbl(TN)) \ (R ∪ h(lbl(TN)) ∪ (S \ S ′)). Firstly, it can only

41

find UIO sequences of the states in init(lbl(TN)). Among these states, the

algorithm has already found at least one UIO sequence for those states in

init(lbl(TN)) ∩ R. Second, it is not possible for TN to have a descendant

for finding a UIO for a state in h(lbl(TN)). Furthermore, it is not possible

to find any UIO sequence for the states in S \ S ′.

Let us define the potential states of a node TN as

Φ(TN) = init(lbl(TN)) \ (R ∪ h(lbl(TN)) ∪ (S \ S ′))

since TN has a potential only for these states. If |Φ(TN)| ≥ 1, only then

it makes sense to generate the subtree rooted at TN . We will update Algo-

rithm 1 to reflect this consideration into the algorithm.

Another point we want to highlight is the following. Note that Algo-

rithm 1 checks if a newly generated node TN is repetitive or not. This check

is performed by a search on the entire tree. There are some tricks that one

can play to speed up the search but in general it takes a huge amount of

time to perform this check. The check actually is used to decrease the mem-

ory requirements of the algorithm (by not generating multiple copies of the

same subtree) and thus, to decrease the time requirements. However, our

experiments showed that removing the check speeds up the execution of the

algorithm and but does not increase the memory requirement noticeably. Ta-

ble 3 shows the difference of two exhaustive method versions where the first

one employs the repetitive check by keeping UIO tree and the second version

does not keep track of the repetitive nodes. The average time to analyze

an FSM is extremely high with repetitiveness check. However, the average

UIO sequence length and the average tree size do not even change when we

remove the repetitiveness check. For this reason, in the rest of this thesis the

42

repetitive check is not considered in the implementation of the methods that

will be introduced.

Table 3: The comparison of the exhaustive method with and without repet-

itive check

Number of States Check Avg. UIO Length Tree Size Time

100
with 2.95 1138 179

without 2.95 1138 29

500
with 3.94 10341 30980

without 3.94 10341 221

1000
with 4.01 41697 640808

without 4.01 41697 3142

1500
with 4.32 76627 2798436

without 4.32 76627 8309

Note that, when the repetitiveness check is removed, there is actually no

need to keep the tree in the memory anymore. Keeping the list of current

leaves is sufficient for the purposes of the algorithms.

The updated algorithm can be seen in Algorithm 2 and experimental

results can be seen in Figure 7.

We call the method described by Algorithm 2 as the exhaustive method.

Note also that in Algorithm 2, the potential of a node is checked when it

is first created on line 2. When a node is picked as the node to be explored,

its potential is checked again (line 2). The reason for the second check is

that a node’s potential may change (actually it can only get smaller) from

43

Figure 7: Memory Performances of the Exhaustive and the Random Methods

Algorithm 2: Exhaustive Method

E = ∅ ; // UIO tree nodes yet to be explored1

R = ∅ ; // states for which UIO sequences have been found2

create the root of the UIO tree and insert it into E;3

while ((E 6= ∅) ∧ (R 6= S ′)) do4

TN = get and remove the next node in E;5

if (|Φ(TN)| ≥ 1) then6

forall the x ∈ I, y ∈ O do7

if (|lbl(TNxy)| == 1) then8

Let [s, s′] be the ICS pair in TNx/y;9

R = R ∪ {s};10

else if (|Φ(TNx/y)| ≥ 1) then11

E = E ∪ {TNx/y} ;12

44

the time it is created to the time it is picked, if in between these two time

instances, the algorithm discovers some UIO sequences for those states that

were in the potential of the node initially.

4.2 Random UIO Computation

The random UIO computation method is introduced in order to compare

the exhaustive method and the heuristics that will be described in the next

sections. Rather than exploring the nodes in a certain order, the random UIO

computation generates the UIO tree by selecting the next node to be explored

randomly among all the leaves of the partial UIO tree at that moment. In

Figure 8, a UIO tree that is generated by the random method is illustrated.

After the root node is expanded with all of the input/output pairs, we get

the leaf set {TN1, TN2, TN3, TN4}. Among these nodes, TN3 is selected

randomly and is expanded. Expanding TN3 finds the UIO sequences for s1

and s3 and a repeated node TN7. In the next iteration, the set of nodes yet

to be explored becomes {TN1, TN2, TN4}, and TN4 is selected randomly.

When TN4 is expanded, UIO sequences for s2 and s5 are found. Also, the

nodes TN8 and TN11 are added to the set of nodes yet to be explored, making

this set {TN1, TN2, TN8, TN11}. Finally, the node TN8 is picked randomly

to be explored. When this node is expanded, UIO sequences for s4 and s5

(two UIO sequences for each one of them actually) are found. This should

complete the execution of the algorithm since we now have at least one UIO

sequence for every state.

The algorithm for the random method is described in Algorithm 3.

45

TN0 1 2 3 4 5

1 2 3 4 5

TN1 1 2 5

2 3 4

TN2 3 4

5 5

TN3

1 3

1 3

TN4 2 4 5

4 2 1

TN5 1

2

∗
TN6 3

5

∗

TN7

1 3

1 3

TN8

4 5

3 2

TN9

2

5

∗

TN10

5

1

∗

TN11

2 4

2 4

5

3

∗

4

5

∗

4

3

∗

5

4

∗

a/1 a/2 b/1 b/2a/1a/2b/1b/2

a/1

a/2

b/1

a/1 a/2
b/1 b/2a/1a/2b/2

a/1
a/2 b/1

b/2

Figure 8: An Example UIO Tree as Generated by the Random Method

46

Algorithm 3: Random Method

E = ∅ ; // UIO tree nodes yet to be explored1

R = ∅ ; // states for which UIO sequences have been found2

create the root of the UIO tree and insert it into E;3

while ((E 6= ∅) ∧ (R 6= S ′)) do4

TN = pick a node from E randomly and remove it from E ;5

if (|Φ(TN)| ≥ 1) then6

forall the x ∈ I, y ∈ O do7

if (|lbl(TNx/y)| == 1) then8

// found a UIO sequence

Let [s, s′] be the ICS pair in TNx/y;9

R = R ∪ {s};10

else if (|Φ(TNx/y)| ≥ 1) then11

E = E ∪ {TNx/y} ;12

We also give some experimental comparisons between the random and

the exhaustive methods in figures 9, 10, and 11. First of all, interestingly,

the random method uses less memory than the exhaustive method. One

could expect that, during random search, the tree can be expanded in those

parts that are of no use for finding UIO sequences. Hence, it may need much

more memory then the exhaustive method. However, the fact is that we

never consider a UIO tree node without a potential for expansion even in the

random method. This behaviour turns the random method a bit to a guided

search.

47

Figure 9: Tree Size Performances of the Exhaustive and the Random Methods

When we compare the performances of these two methods in terms of the

length of the UIO sequences they find, we see that the exhaustive method

is better than the random method. In fact this is quite expected, since the

exhaustive method explores the UIO tree in a breadth–first manner and it is

guaranteed to find the shortest UIO sequences.

Figure 10: UIO Sequence Length Performances of the Exhaustive and the

Random Methods

48

The time performance of the random method is also better than that of

the exhaustive method, as expected based on the comparison of the perfor-

mances in the tree size.

Figure 11: Time Performances of the Exhaustive and the Random Methods

4.3 Heuristic Method

At any given time during the execution of Algorithm 2 and Algorithm 3,

any node in E can be picked to be explored in the current iteration. The

first heuristic method that we will introduce will try to predict the quality

of the subtree at a node without generating the subtree. One measure for

quality can be considered as the number of states for which UIO sequences

will be found, as this is the ultimate aim of the algorithms. The more the

UIO sequences are found by generating a subtree, the more justified is the

generation of that subtree.

We already have a measure for the states for which a UIO tree node TN

has a hope for finding a UIO sequence, the potential Φ(TN). Therefore, the

49

nodes with larger potentials will probably generate UIO sequences for more

states.

However, it is also important how small or large the subtree will be,

since the UIO sequences will only be found at the leaves of the subtree. For

predicting the size of the subtree, the number of current states in the label

of the node at the root of that subtree seems to be one measure. Let us

give an example on this observation: Suppose we have two UIO tree nodes

TN and TN ′ with the labels {[s1, s11], [s2, s12], [s3, s12], [s4, s12], [s5, s12]} and

{[s1, s11], [s2, s12], [s3, s12], [s4, s14], [s5, s14]} , respectively. Assume that s1 ∈

Φ(TN) and s1 ∈ Φ(TN ′). Note that s2, s3, s4 and s5 can be a potential state

neither in TN nor in TN ′ since both TN and TN ′ are homogeneous over

these states.

In order to find a UIO for state s1, the subtree rooted at TN must have

a path that separates s11 (the current state corresponding to the initial state

s1) from the other current states of the ICS pairs at TN . However, there is

only one such other state, which is s12. Within the subtree rooted at TN ′, in

order to find a UIO sequence for s1, the state s11 will have to be separated

from the states s12 and s14, which will probably be harder. Hence, the path

will probably be longer and the subtree will probably be larger.

Therefore, as the first approximation for predicting the quality of a sub-

tree rooted as a node TN , one can suggest the measure:

|Φ(TN)|

|curr(lbl(TN)))|

By using this measure, two nodes having the same number of potential

states and the same number of distinct current states proportionally will have

the same heuristic value. However, if a node has a smaller current set, that

50

means its subtree will be smaller. So, one may want to generate the subtree

of such a node first. The idea is explained by using the following example:

TN1: 1 2 4 5

4 3 5 6

TN2: 4 5

5 6

TN3: 4 5 3

1 2 2

Figure 12: Tree Node Examples for Heuristic Method

Suppose we have three UIO tree nodes as candidates to be explored TN1,

TN2 and TN3 as given in Figure 12, S ′ = S and currently R = ∅. These

nodes will have the following heuristic scores:

|Φ(TN1)|

|curr(lbl(TN1))|
=

4

4
= 1

|Φ(TN2)|

|curr(lbl(TN2))|
=

2

2
= 1

|Φ(TN3)|

|curr(lbl(TN3))|
=

1

2
= 0.5

Based on these heuristic scores, either TN1 or TN2 could be picked as the

next node to be explored. However, it can be seen from the labels of these

nodes that TN2 promises a less complex subtree and possibly shorter UIO

sequences for s4 and s5. This is because it only needs to separate the states

s5 and s6. Therefore, rather than having a direct proportion, it might be a

better idea to emphasize the size of the current set of a node in the heuristic

point of that node. So, we define the heuristic point of a node as follows:

51

HP (TN) =
|Φ(TN)|

|curr(lbl(TN))|2

With this definition, the heuristic points of the tree nodes given in Fig-

ure 12 will be as follows:

HP (TN1) =
|Φ(TN1)|

|curr(lbl(TN1))|2
=

4

16
= 0.25

HP (TN2) =
|Φ(TN2)|

|curr(lbl(TN2))|2
=

2

4
= 0.5

HP (TN3) =
|Φ(TN3)|

|curr(lbl(TN3))|2
=

1

4
= 0.25

By using this idea, one can modify the random or the exhaustive method

to consider a node with a maximum heuristic point in each iteration. Such

an algorithm is given in Algorithm 4. This method will be called as the

heuristic method.

When the tree sizes that are explored by the three methods introduced

so far compared (Figure 13), the heuristic method is much better than both

of the previous methods, as expected. Also note that, for the exhaustive and

the random methods, only the results upto the FSM set with 2500 states

are available. The tests for the FSM set with 3000 states could not even

be completed with these methods due to memory limitations. However, the

heuristic method could complete the tests for the FSM set with 3000 states.

52

It can actually go beyond 3000 states as explained in Chapter 6.

Algorithm 4: Heuristic Method

E = ∅ ; // UIO tree nodes yet to be explored1

R = ∅ ; // states for which UIO sequences have been found2

create the root of the UIO tree and insert it into E;3

while ((E 6= ∅) ∧ (R 6= S ′)) do4

TN = pick a node from E with maximum heuristic point;5

remove TN from E ;6

if (|Φ(TN)| ≥ 1) then7

forall the x ∈ I, y ∈ O do8

if (|lbl(TNx/y)| == 1) then9

// found a UIO sequence

Let [s, s′] be the ICS pair in TNx/y;10

R = R ∪ {s};11

else if (|Φ(TNx/y)| ≥ 1) then12

E = E ∪ {TNx/y} ;13

The time requirement of the heuristic method is also much better than

both the exhaustive and the random method, as seen in Figure 14. Based on

these two performances (tree size and time), we can say that the heuristic

point measure really works and it guides the search in the UIO tree toward

those nodes that will report a UIO sequence.

When the performance of these methods are considered in terms of the

length of the UIO sequences found, (see Figure 15), we see that it cannot

53

Figure 13: Tree Size Comparison for the Heuristic Method

Figure 14: Time Comparison for the Heuristic Method

54

find as short UIO sequences as the exhaustive method, which might be ex-

pected. However, it seems that even the random method does better than

the heuristic method, which is suprising. This may be due to the fact that

the heuristic method focuses on a node and pushes the search almost in a

depth–first manner toward that node. Thus, the UIO sequences found by

the heuristic method tend to be longer on the average. However, the gap

between the average UIO sequence lengths found by the exhaustive and the

heuristic method is not very large.

Figure 15: Heuristic Method in Comparison with Random and Exhaustive

Method UIO Sequence Lengths.

In order to verify that the use of the heuristic point is really guiding the

search toward fruitful parts of the UIO tree and the results are not better just

because a disciplined way of exploration of tree is being used, the performance

of the reverse of heuristic point has also been experimented. In other words,

rather than picking the best node, the worst node is picked at each iteration.

55

As expected, this approach resulted in huge search trees, even bigger than

those generated by the exhaustive method.

4.4 Heuristic Method with Global I/O Ranking

In [13], another heuristic is proposed for UIO sequence generation. However,

the authors do not expose the problem in the form of a UIO tree expansion.

Instead, they use a genetic algorithm to find I/O sequences likely to be UIO

sequences. They formulate the problem in such a way that fitter the I/O

sequence, the more likely for them to be UIO sequence.

The basic idea behind the heuristic in [13] is based on the notion of

transition ranking. Let f(x/y) be the frequency and r(x/y) be the rank of

the frequency of the I/O pair x/y. Formally,

f(x/y) = |{s|∀s ∈ S, λ(s, x) = y}|

and

r(x/y) = |{f(x′/y′)|∀x′ ∈ I, y′ ∈ O, f(x′/y′) < f(x/y)}|

Hence f(x/y) will give us how many states produce the output y to the input

x, or in other words, how many times the I/O pair x/y is seen in the FSM.

On the other hand, r(x/y) will be the rank of the I/O pair among all other

I/O pairs. If r(x/y) = 0, this means the I/O pair x/y is the least frequent

I/O pair in the FSM, if r(x/y) = 1, this means the I/O pair x/y is next

least frequent I/O pair in the FSM, etc. Table 4 gives an example for the

frequencies and ranks of I/O pairs by using the FSM M0 of Figure 1.

The basic idea behind the heuristic of [13] is that the less the ranks of the

transitions in an I/O sequence, the more the chance for it to be UIO sequence.

56

Table 4: Frequencies and ranks of I/O pairs in M0

I/O pair Frequency Rank

a/1 3 1

a/2 2 0

b/1 2 0

b/2 3 1

We incorporate this heuristic into our methods by favoring the exploration

of those paths in which rare transitions are used as much as possible. This

is handled as follows. All the methods introduced so far pick a node TN

to be explored. They then generate all the children of TN . Instead of this,

we will now generate the children of TN one by one, starting with the child

for the least frequent I/O pair. After generating a child of TN , we give the

algorithm a chance to pick the node to be explored again. If TN is picked

again, we will generate another child of TN , but this time with the next least

frequent I/O pair.

Let Q = 〈i1/o1, i2/o2,〉 be a sequence where all I/O pairs (hence Q has

|I| × |O| elements) are sorted in increasing order with respect to their ranks,

breaking the ties randomly. Based on the information given in Table 4, it is

easy to see that Q for M0 of Figure 1 can be Q = 〈b/1, a/2, a/1, b/2〉.

Algorithm 5 displays the new method considering the ranking of the tran-

sitions. We call this method as “Heuristic Method with Global I/O Ranking”

because we will later have an I/O ranking considering individual states. Cur-

rently, we consider the I/O ranking globally over the entire FSM.

57

The modifications required for the algorithm are as follows: There is

now a preprocessing phase to compute the frequencies and the ranks of the

transition. There is also a computation for Q, the global I/O ranking. Fur-

thermore, when a node TN is picked to be explored in an iteration, it is not

removed from E, since it is not necessarily fully expanded. It is removed

from E only when TN is visited |I| × |O| times, which means every child of

TN is created.

As can be seen in Figure 16, the tree size performance of the heuristic

method with global I/O ranking is the best among all the methods introduced

so far. So, we can assume that it is forcing the search to those parts of the

UIO tree that will identify a UIO sequence.

When the time performance is considered, we see that its performance is

very close to that of the heuristic method. Note that, in Figure 17, the time

curves of the exhaustive and the random method are omitted, so that the

comparison of the heuristic method with and without global I/O rankings

can be seen in more detail.

Figure 18 compares the average UIO sequence lengths of the methods

introduced so far. The heuristic method with global I/O ranking is the

worst one. This can be expected since, with the introduction of I/O ranking,

the search has become operating in a slightly more depth–first manner.

Finally, we would like to emphasize the following: The method presented

in this section is based on the basic idea of favoring rare I/O pairs in the

search. However, the FSM examples used for comparing the methods in this

section have been created randomly. Therefore, the I/O pairs in the FSMs

more or less have the same frequency. For such a set of FSMs, one might

58

expect that the method based on I/O ranking will not actually work since

there are no transitions which are less frequent than the other ones. However,

as explained above, experimental results show that there is an improvement

in the tree size performance.

Algorithm 5: Heuristic Method with Global I/O Ranking

compute Q ; // list of I/O pairs sorted wrt their ranks1

E = ∅ ; // UIO tree nodes yet to be explored2

R = ∅ ; // states for which UIO sequences have been found3

create the root of the UIO tree and insert it into E;4

while (E 6= ∅) ∧ (R 6= S ′) do5

TN = pick a node from E that has maximum heuristic point;6

if (|Φ(TN)| ≥ 1) then7

let r be the current number of children of TN ;8

// TN has been visited before r times

let x/y be the r + 1st I/O pair in Q;9

if (|lbl(TNx/y)| == 1) then10

// found a UIO sequence

Let [s, s′] be the ICS pair in TNx/y;11

R = R ∪ {s};12

else if (|Φ(TNx/y)| ≥ 1) then13

E = E ∪ {TNx/y} ;14

if (r + 1 == |I| × |O|) then15

E = E \ {TN} ; // TN is now fully expanded16

59

Figure 16: Heuristic Method with Global I/O Pairs in Comparison with

Random and Exhaustive Method Results.

Figure 17: The Execution Time Comparison of Heuristic Method with Global

I/O Pairs and Heuristic Method.

60

Figure 18: Heuristic Method with Global I/O Pairs in Comparison with

Random and Exhaustive Method UIO Sequence Lengths.

We also tried to prove that the reduction in the tree size is really due

to the fact that the less frequent I/O pairs are favored. To verify this, we

generated the children of the nodes by using the reverse sorted Q. Hence,

we first generate the child of a node by using the most frequent I/O pair,

and then by using the next most frequent I/O pair, etc. In this trial, the

tree size performance got worse as expected. Therefore, we conclude that,

even when the frequencies of the I/O pairs have a constant distribution, the

method still works.

In order to see the performance of this method (and the other methods

that will be introduced and will be using I/O ranking information) when

some I/O pairs are really rare, another set of FSMs have been generated by

enforcing a certain distribution of the frequencies of I/O pairs. The results

of the experiments by using this set of FSMs are given in Chapter 6.

61

4.5 State–Based Heuristic Method

In order to try out a standard search heuristic to cut down the tree size, the

beam search technique has also been applied. When doing the beam search,

the best k nodes are considered for exploration and the remaining nodes are

terminated forever.

However, there is a pitfall with this approach. Assume that currently the

set of states for which we are still searching for a UIO sequence is S ′ \ R.

Suppose we pick the best k nodes TN1, TN2, . . . , TNk having the best k

heuristic points (the best k heuristic points need not be distinct). Let

φ =
⋃

i∈{1,2,...,k}

Φ(TNi)

If the search is restricted to the subtrees of these k nodes, then UIO sequences

can be found only for those states in φ. If φ ⊂ (S ′ \ R), this means that

the algorithm is losing the chance of finding a UIO sequence for a state in

(S ′ \ R) \ φ completely by restricting the search to these k nodes.For this

reason, instead of picking the best k nodes, we pick the best k nodes for each

state in S ′ \R separately as follows: For a state s, let Es be the set of nodes

in E which has a potential for finding a UIO sequence for s. Formally

Es = {TN |s ∈ Φ(TN)}

Define E∗
s as the best k nodes in Es having the best k heuristic points in

Es. If |Es| < k we take E∗
s = Es. Then, the set of UIO tree nodes to be

expanded is given as follows:

E∗ =
⋃

s∈(S′\R)

E∗
s

62

Table 5: Es node sets for states

States Es E∗
s

s1 {TN1, TN3} {TN3}

s2 {TN1, TN4} {TN4}

s3 {TN3} {TN3}

s4 {TN4} {TN4}

s5 {TN1, TN4} {TN4}

The other UIO tree nodes in E \ E∗ are never expanded.

For example, in Figure 19, assume that S ′ = S and currently R = ∅.

Suppose the beam width k is 1. Table 5 gives Es for each state. For s1,

Es1
= {TN1, TN3}. The heuristic points for these nodes are HP (TN1) =

0.33 and HP (TN3) = 0.5. Since, we consider k = 1 best nodes the algorithm

will pick E∗
s1

= {TN3}. HP (TN4) = 0.33, which is a tie with the heuristic

point of TN1. Assume that TN4 is selected randomly to break the tie. The

sets E∗
s are also given in Table 5 for each state. Based on this, the set E∗ is

found as {TN3, TN4}.

Since TN1 is not in E∗, it never gets explored. Note that the TN2 is a

homogeneous node, so it would not be explored any how. After expanding the

nodes in E∗ = {TN3, TN4}, the UIO tree takes the form given in Figure 20.

As can be seen from Figure 20, the nodes TN5, TN6, TN9 and TN10 will

report UIO sequences for the states s1, s3 ,s2, and s5, respectively. In the

remaining part of the search, the algorithm will be looking for a UIO sequence

of s4 only. In the next iteration, the candidate nodes to be explored will be

63

TN0 1 2 3 4 5

1 2 3 4 5

TN1 1 2 5

2 3 4

TN2 3 4

5 5

TN3

1 3

1 3

TN4 2 4 5

4 2 1

a/1 a/2 b/1 b/2

Figure 19: Example for State Based Heuristic Method: Iteration 1

TN8 and TN11, and the algorithm will pick k = 1 best nodes among these

as explained above.

The algorithm implementing the approach described above is given as

Algorithm 6. This method will be called as “State Based Heuristic Method”.

Note that, the kind of search performed by this method executes in a

more breadth–first manner than the original heuristic method and it operates

similar to the exhaustive method. In the exhaustive method, all the nodes

(with positive potentials) at a given level of the UIO tree are expanded.

However, in the state based heuristic method, only a selected subset (E∗)

of the nodes at a level is expanded. Since its nature is breadth–first, it is

expected to have short UIO sequence lengths and high tree sizes. Figures 21

and 22 show that this expectation is correct. The tree size performance is

actually much better than the exhaustive and the random methods and close

the other methods suggested.

Since the algorithm finds k best nodes for each state in S ′ \R separately

and explores more nodes than the heuristic method, it can be expected that

64

TN0 1 2 3 4 5

1 2 3 4 5

TN1 1 2 5

2 3 4

TN2 3 4

5 5

TN3

1 3

1 3

TN4 2 4 5

4 2 1

TN5 1

2

∗
TN6 3

5

∗

TN7

1 3

1 3

TN8

4 5

3 2

TN9

2

5

∗

TN10

5

1

∗

TN11

2 4

2 4

a/1 a/2 b/1 b/2a/1a/2b/1b/2

a/1

a/2

b/1

a/1 a/2
b/1 b/2a/1a/2b/2

Figure 20: Example for State Based Heuristic Method: Iteration 2

65

Algorithm 6: State Based Heuristic Method

E = ∅ ; // UIO tree nodes yet to be explored1

R = ∅ ; // states for which UIO sequences have been found2

create the root of the UIO tree and insert it into E;3

while (E 6= ∅) ∧ (R 6= S ′) do4

E∗ = ∅ ; // the nodes to be expanded5

foreach s ∈ (S ′ \ R) do6

E∗
s = pick the best k nodes for s from Es;7

E∗ = E∗ ∪ E∗
s ;8

E = ∅ ;9

forall the TN ∈ E∗ do10

forall the x ∈ I, y ∈ O do11

if (|lbl(TNx/y)| == 1) then12

// found a UIO sequence

Let [s, s′] be the ICS pair in TNx/y;13

R = R ∪ {s};14

else if (|Φ(TNx/y)| ≥ 1) then15

E = E ∪ {TNx/y};16

66

Figure 21: Tree Size Comparison for the State Based Heuristic Method

Figure 22: UIO Sequence Length Comparison for the State Based Heuristic

Method

67

it will need more time than the heuristic method. This expectation is also

correct as can be observed from Figure 23.

Figure 23: Time Comparison for the State Based Heuristic Method

Finally, it must be noticed that the state based heuristic method is not

an exact method, in the sense that even if a state s has a UIO sequence, the

state based heuristic method may fail to find a UIO sequence for s. This can

happen for example when all the best k nodes picked for s at some iteration

of the algorithm lead to homogeneous or repetitive nodes. This is the first

inexact method among the methods introduced so far. However, during our

experiments, we never encountered a case where the state based heuristic

method fails to find a UIO sequence for a state which is known to have one.

Using higher k values might be suggested when the method fails to find

a UIO sequence for a state with a UIO sequence. In fact, the value of k

may considered as an important factor for the performance of the method.

We experimented with different k values. Increasing the value of k obviously

increases the tree size and the time required to complete the analysis. It also

68

decreases the average UIO sequence lengths. This is expected as the search

gets closer and closer to the exhaustive method as k is increased. However,

even when k = 1, the method was able to find UIO sequences for all the

states (with UIO sequences), and increasing the value of k does not decrease

the average UIO sequence lengths (it is already not very bad for k = 1) in

the same proportion it increases the tree size and the time. Therefore, k = 1

is used for all the experiments.

4.6 State–Based Heuristic Method with Global I/O

Ranking

One natural improvement suggestion at this point can be to use the I/O

ranking information inside the state based heuristric method. In other words,

after picking the nodes to be expanded E∗, when handling a node TN ∈ E∗,

do not generate all the children of TN , but generate only one child. This

child of TN will be generated by considering the least frequent I/O pair not

yet used to generate a child of the node TN .

The order of the I/O pairs to be considered is again calculated as de-

scribed in Section 4.4. So, in this section, we assume that we have a list of

I/O pairs Q ordered increasingly in terms of the ranks of the I/O pairs, as

in Section 4.4.

Note that, in state based heuristic method, when a node TN is selected,

i.e. TN ∈ E∗, TN is fully expanded (all children of TN are generated) and

therefore TN is never considered again. However, when the children of TN

are generated one by one, TN will survive and continue to be a candidate

node to be expanded

69

• as long as it has at least one more child to be generated; and

• as long as the algorithm keeps selecting TN as one of the k best nodes

for at least one state s ∈ (S ′ \ R)

Therefore, a node TN might be partially expanded during the execution of

the algorithm. As soon as all the children of TN are created (i.e. when TN

gets fully expanded) or as soon as the algorithm does not consider TN as one

of the best k nodes for a state, TN (even if it is partially expanded) is taken

out of the candidate nodes to be expanded and it is never picked again.

The algorithm implementing this new approach is given as Algorithm 7.

The method will be called as “State Based Heuristic Method with Global

I/O Ranking”.

This method introduces some depth–first exploration into the picture

since it considers a child of a node at a time. The effect of this feature is

seen in the test results as an increase in the average UIO sequence lengths

(Figure 25) and a decrease in the tree size (Figure 24). In fact, this method

is the one with the smallest tree size among all the methods discussed so far.

The time requirement of this algorithm is also the best so far (Figure 26).

It shares the last position in UIO sequence length performance together with

the heuristic method with global I/O ranking. When the time and the tree

size performances of these two methods are compared, it can be stated that

the state–based heuristic method with global I/O ranking is superior to the

heuristic method with global I/O ranking.

As mentioned in the previous section, the selection of only k nodes for a

state s makes the method inexact, hence, it may not find a UIO sequence for

s, even though it exists. In our experiments with k = 1, we have observed

70

Algorithm 7: State Based Heuristic Method with Global I/O Ranking

compute Q ; // list of I/O pairs sorted wrt their ranks1

E = ∅ ; // UIO tree nodes yet to be explored2

R = ∅ ; // states for which UIO sequences have been found3

create the root of the UIO tree and insert it into E;4

while (E 6= ∅) ∧ (R 6= S ′) do5

E∗ = ∅;6

foreach s ∈ (S ′ \ R) do7

E∗
s = pick the best k nodes for s from Es;8

E∗ = E∗ ∪ E∗
s ;9

E = ∅;10

forall the TN ∈ E∗ do

let r be the current number of children of TN ;11

// TN has been visited before r times

let x/y be the r + 1st I/O pair in Q;12

if (|lbl(TNx/y)| == 1) then13

// found a UIO sequence

let [s, s′] be the ICS pair in TNx/y;14

R = R ∪ {s};15

else if (|Φ(TNx/y)| ≥ 1) then

E = E ∪ {TNx/y} ;16

if (r + 1 ! = |I| × |O|) then17

E = E ∪ {TN} ; // TN is not fully expanded yet18

71

Figure 24: Tree Size Comparison for State Based Heuristic Method with

Global I/O Ranking

Figure 25: UIO Sequence Length Comparison for State Based Heuristic

Method with Global I/O Ranking

72

that such a miss happens for 1/1000 states approximately. The miss rate can

be reduced very easily by increasing the value of k, which in turn increases

the tree size and the time slightly.

Figure 26: Time Comparison for State Based Heuristic Method with Global

I/O Ranking

4.7 Depth–First Heuristic Method with Global I/O

Ranking

Please note that all the methods introduced so far perform the search for

UIO sequences for all the states simultaneously. In other words, during the

search there is a list of states for which no UIO sequence has been found

yet and the nodes are checked if they reveal a UIO sequence for one of these

states. The heuristic score proposed also makes use of such an approach.

The more the number of states for which it has a potential to find a UIO

sequence, the higher the value of the heuristic point of that node.

73

Instead of such an approach, a separate search can also be used for each

state individually. For example, the method described in [13] is such a

method that repeats the search for each state separately.

Recall that we denoted the set of states for which we have a hope to find

a UIO sequence as S ′. Suppose that we explicitly set S ′ = {s1} and start

a search (by using any one of the methods explained) provided that s1 has

at least one non–converging transition. This would be a search specific to

the state s1. After this search is completed, one can start another search by

setting S ′ = {s2}, so on and so forth.

When a search for a UIO sequence of a single state is considered, one of

the natural suggestions can be to perform a depth–first search. We will show

in this section that, when the heuristic method (with or without global I/O

ranking) is considered in the context of a search for a single state, it actually

reduces to a depth–first search of the UIO tree. The state based heuristic

method (with or without the global I/O ranking) with k = 1 also reduces to

depth–first search (this time without backtracking), when we consider it for

finding a UIO sequence for only one state.

Suppose S ′ = {s} for some state s. By using the definition of Φ(TN) of

a node TN (see page 41), it is easy to see that during such a search, either

Φ(TN) = ∅ or Φ(TN) = {s}. In the case that Φ(TN) = ∅, TN has no

potential for finding a UIO sequence for the state s and hence, it should not

be considered for expansion during the search for a UIO sequence of s. Since

the heuristic point of a node TN is computed as

HP (TN) =
|Φ(TN)|

|curr(lbl(TN))|2

for a node TN with a potential to find a UIO sequence for the state s the

74

heuristic point will be:

HP (TN) =
|Φ(TN)|

|curr(lbl(TN))|2
=

|{s}|

|curr(lbl(TN))|2
=

1

|curr(lbl(TN))|2

Therefore for a node TN that has a potential for the state s, the only factor

in the heuristic point of TN is the size of the current set of TN .

The following observation explains why the previous methods reduce

down to a depth first search in the context of a search for a single state.

Remark 7

Let TN be a node and TNx/y be a child of TN . Either Φ(TNx/y) = ∅ or

HP (TNx/y) ≤ HP (TN).

This remark is correct since the size of the current set of TNx/y cannot

be greater than that of TN . Please see Remark 3 to recall how the current

set of TNx/y is computed from the current set of TN . Each state in the

current set of TN will be mapped into a state in the current set of TNx/y

and some of the states in the current set of TN can be merged into the same

state during this mapping. However, those current states that are already

same in TN cannot be mapped into different states in TNx/y.

According to Remark 7, when a node TN is selected (since it has the

best heuristic score among all the alternatives) and expanded, a child of TN

with a non–zero potential will have at least the same score as TN . Hence,

it will also have the best heuristic score among all alternatives. Therefore,

after generating a child TNx/y of TN , if TNx/y has a non–zero potential, the

search can proceed by expanding TNx/y, the child of the last node expanded.

This is nothing but a depth–first search.

75

We implemented the depth–first search (with backtracking) of the UIO

tree in the following manner. The method repeats the search for each state

separately. The children of a node are generated one at a time. The order

that is used to generate the children is based on the global I/O pair ranking

information again. When a node is re–visited during backtracking, its next

child with the next I/O pair in the global ranking is generated. Algorithm 8

implements the method.

Note that, due to the structure of the search, it is not necessary to find a

node with the minimum heuristic point anymore by performing a search over

all the nodes (by Remark 7). It is not even needed to compute the heuristic

scores.

Note that Algorithm 8 performs a search for each state. In practice, it may

perform a search for s, creating a tree. In the search performed for another

state s′, the algorithm may re–visit some parts of the tree explored during

the search for s. Since memory allocation is rather an expensive operation

in practice, the algorithm is implemented in the following way in order to

improve the time performance in practice. The algorithm never deletes a

tree node created. During the search, when the algorithm wants to visit a

child TNx/y of a node TN , if TNx/y has never been visited before during the

searches for the previous states, the node TNx/y is created. However, if the

previous searches created the node TNx/y, it is not created again. Therefore,

the trees of the searches are shared.

The corresponding experimental results can be seen in Figure 27 in com-

parison with the aforementioned methods in previous sections. It can be ob-

served from these results that this method has lower memory requirements

76

Algorithm 8: Depth First Heuristic Method with Global I/O Ranking

compute Q ; // list of I/O pairs sorted wrt their ranks1

let E be an initially empty stack for UIO tree nodes yet to be explored;2

R = ∅ ; // states for which UIO sequences have been found3

let T be the root of the UIO tree ;4

forall the s ∈ S do5

push T on stack E ;6

found = false;7

while (E is not empty ∧ not(found))) do8

TN = top node on stack E ; // TN is not popped9

let r be the current number of children of TN ;10

// TN has been visited before r times

if (r == |I| × |O|) then11

// TN has been expanded fully

pop TN from E;12

else13

let x/y be the r + 1st I/O pair in Q;14

if (init(lbl(TNx/y)) == {s}) then15

// found a UIO sequence for s

found = true; R = R ∪ {s};1617

else if (|Φ(TNx/y)| == 1) then

push TNx/y on stack E;18

remove all nodes in E;19

77

than State–Based Heuristic Method with Global I/O. However, it finds longer

UIO sequences which is a consequence of depth–first approach and it can be

seen in Figure 28. The time performance can be seen in Figure 29 and it is

best so far when compared to the previous methods.

Figure 27: Tree Size Comparison for Depth First Heuristic Method with

Global I/O Ranking

4.8 Depth–First Heuristic Method with State Based

I/O Ranking

When the algorithm generates the children nodes using global I/O ranking for

a specific state, say s ∈ S, it is possible to generate a child node that does not

contain s as an initial state. Let Q = 〈i1/o1, i2/o2, . . .〉 denote the list of I/O

pairs of an FSM which is in increasing order with respect to the transition

ranks. Let [s, s′] be an ICS pair within the label of a node TN , hence

s ∈ init(lbl(TN)). According to Remark 3 on page 24, s ∈ init(lbl(TNx/y))

78

Figure 28: UIO Sequence Length Comparison for Depth First Heuristic

Method with Global I/O Ranking

Figure 29: Time Comparison for Depth First Heuristic Method with Global

I/O Ranking

79

if and only if λ(s′, x) = y. Therefore, during a search of a UIO sequence of

the state s, if we have such a node TN , it is only meaningful to consider

TNx/y for those I/O pairs x/y where λ(s′, x) = y. Hence, not all of the

members of the list Q will be used.

For a state s, let Qs be the projection of Q onto the I/O pairs of the state

s. For example, for M0 given in Figure 1, the global I/O ranking is Q =

〈b/1, a/2, a/1, b/2〉. The I/O pairs of the state s1 is {a/1, b/1}. Therefore

Qs1
= 〈b/1, a/1〉. Note that Q has upto |I| × |O| elements but Qs has

maximum |I| elements only. When the FSM is completely specified, Qs will

always have |I| elements.

During the search for a UIO sequence of a state s, when considering the

children of a node TN where [s, s′] ∈ lbl(TN), it only makes sense to consider

the children TNx/y of TN for those I/O pairs x/y that appear in Qs′ . For

an I/O pair x/y that is not in Qs′ , it is guaranteed that TNx/y will have no

potential for s.

The updated and final algorithm is given as Algorithm 9 and resulting

experimental results are in Figure 30, Figure 28 and Figure 31.

Due to the new approach for picking the I/O pairs more wisely, the tree

size performance is improved and this method becomes the best method in

terms of the tree size constraint. It is also the best method in terms of the

time performances.

When the UIO sequence length performance of this method is considered

however, this method is guaranteed to find exactly the same UIO sequences

that are found by the depth–first method with global I/O ranking. Therefore,

the UIO sequence performance will be the same as the performance of the

80

Algorithm 9: Depth First Method with State Based I/O Ranking

∀s ∈ S, compute Qs ; // I/O pairs sorted wrt their ranks1

let E be an initially empty stack for UIO tree nodes yet to be explored;2

R = ∅ ; // states for which UIO sequences have been found3

let T be the root of the UIO tree ;4

forall the s ∈ S do5

push T on stack E ;6

found = false;7

while (E is not empty ∧ not(found))) do8

TN = top node on stack E ; // TN is not popped9

let [s, s′] ∈ lbl(TN) ; // such an ICS pair exists at TN10

let r be the current number of children of TN ;11

// TN has been visited before r times

if (r == |I|) then12

// TN has been expanded fully

pop TN from E;13

else14

let x/y be the r + 1st I/O pair in Qs′ ;15

if (init(lbl(TNx/y)) == {s}) then16

// found a UIO sequence for s

found = true;17

R = R ∪ {s};18

else if (|Φ(TNx/y)| == 1) then19

push TNx/y on stack E;20

remove all nodes in E;21

81

Figure 30: Tree Size Comparison for Depth First Heuristic Method with

State Based I/O Ranking

Figure 31: Time Comparison for Depth First Heuristic Method with State

Based I/O Ranking

82

depth first method with global I/O ranking as seen in Figure 28.

4.9 Splitting Point

Let us consider a partial UIO tree and assume that we are looking at the

current leaves of this partial UIO tree and trying to find a useful node to

expand. It would be nice to know the size of the subtree that would be

generated under these leaf nodes. One might prefer the expansion of the

smaller subtrees first, because such subtrees will be revealing UIOs earlier

than the other, bigger subtrees. Equivalently, it would be nice to expand a

node whose current set of states are easily separable from each other.

For two states s and s′, a separating sequence is an input sequence X ∈ I?

such that λ(s,X) 6= λ(s′, X). Such a separating sequence exists for each pair

of states in a minimal machine. For a set of states S ′, we can similarly define

a separating sequence.

When we consider a leaf node TN at a partial UIO tree, one has to

separate the set of states curr(lbl(TN)) to find UIO sequences in the subtree

that will be rooted at TN . Therefore, the length of the separating sequence

for the set of states for curr(lbl(TN)) will be the depth of the subtree rooted

at TN . However such a separating sequence may not exist for all subset of

states. Furthermore, it is computationally expensive to find such a separating

sequence as well.

The separating sequence of two states is the fundamental element in or-

der to instrument this estimation. For the tree node’s current states that

correspond to tail states of the potential initial states, the algorithm takes

the mean of pairwise separating sequence lengths.

83

The pairwise separating sequence of each state is calculated as follows:

The algorithm creates a splitting graph that has (|S|×(|S|−1))/2 vertices and

a dummy vertex representing the separation condition of these two states.

Note that (|S| × (|S| − 1))/2 represents all unordered state pairs excluding

the reflexive state pairs. If two states have a transition that is invoked by the

same input symbol and produce different outputs, the vertex that represents

the state pair have an edge to the dummy state. If two states cannot be

separated by this input symbol, there exists an edge from the vertex to the

destination vertex which is the representative of the destination states headed

by these two state pairs when they are invoked by the input symbol. Note

that, two states must have a splitting sequence because of the fact that the

FSM that is handled is minimal. So, the pairwise splitting sequence of a

state pair is the shortest path from its splitting vertex to the dummy vertex.

The splitting point of a pair of states (s, s′), split(s, s′), is considered to be

the length of the shortest path from the vertex representing the state pair

(s, s′) to the dummy vertex of the graph. In order to predict the separability

of the current states of a node TN based on the pairwise separability of the

states, the following formula is used:

split(TN) =

∑

s,s′∈Φ(TN)

split(s, s′)

|Φ(TN)|

However, the experimental results were not so powerful when we com-

bined this splitting score to the aforementioned heuristic approaches. The

problem is to not consider the current states as a whole. The pairwise sepa-

rability information of the states is not a good measure for the separability

84

of a set of states. The state complexity of current splitting graph is |S|2 since

we consider the separability of two states only. If we try to increase com-

plexity of the analysis and consider the separability of k states, the resulting

splitting graph will have an order of |S|k. Thus, it grows exponentially and

as k increases the algorithm will converge to the exhaustive search of UIO

generation. In addition, when we analysed the splitting sequence lengths of

the states, we encountered generally low values. Apparently, the mean of the

splitting point values cannot give a good estimation.

85

5 Inference Handling

Another contribution of this work is on the inference method that is proposed

by Naik in [20]. Inference is a mechanism that finds new UIO sequences by

inferring from the existing ones without generating any UIO tree nodes. This

decreases the size of the UIO tree dramatically.

The inference of new UIO sequences is held by extracting unique transi-

tions of an FSM. A unique transition is an incoming transition of a state such

that the corresponding I/O pair is unique among the incoming transitions to

that state. Formally, the uniqueness condition is:

Let e ∈ E and Ee = {∀e′ ∈ E : tail(e′) = tail(e), lbl(e′) = lbl(e)}.

If |Ee| = 1, then e is a unique transition.

If we know the UIO of a state si, we may produce a UIO sequence for a

state sj by the label of a unique transition from si to sj and UIO of si. More

formally, an inference rule is given as follows:

UIOj = lbl(e) + UIOi where e is a unique transition such that

tail(e) = vi, head(e) = vj.

It is possible to extract such inference rules and represent all rules for an

FSM by using an inference graph IG = (V,Eig), which is described below:

Eig = {∀e ∈ E : |Ee| = 1}

The inference graph of M0 given in Figure 1 can be seen in Figure 32.

Observe that in Figure 1, (s4, s5) and (s3, s5) edges have the same label which

violating the uniqueness. This graph represents the following rules:

86

• UIO5 = lbl(s5, s1) + UIO1

• UIO1 = lbl(s1, s2) + UIO2

• UIO4 = lbl(s5, s1) + UIO2

• UIO2 = lbl(s2, s3) + UIO3

• UIO2 = lbl(s2, s4) + UIO4

• UIO5 = lbl(s5, s4) + UIO4

s1

s4 s5

s2 s3
a/1

b/2

b/2
a/1

b/1

b/1a/1

b/2

Figure 32: The Inference Graph of M0

After finding the inference graph of a given FSM, Naik’s method [20] has

an attempt to produce new UIO sequences to the states for which no UIO

sequence has been found yet. If the inference rules fail to find UIO sequences

for those states, it then tries to find UIO sequences via generating the UIO

tree randomly. This generation approach leads to a significant reduction of

the tree size. However, a well known drawback of this inference method is

that it generates longer UIO sequences.

87

5.1 Integration of the Inference Information

As we have described in Section 4.3, the heuristic method tries to find a

subtree which has the maximum number of candidate UIO sequences while

minimizing the size of the subtree. With the integration of the inference

information, our heuristic will still try to find the subtree that will reveal

UIO sequences but it will also take into account the UIO sequences that will

be inferred by the UIO sequences that will be found in the UIO tree. We

add inference points to a tree node in order to search intelligently the UIO

tree and guide search.

We will define inference points of a tree node as follows: In an inference

graph, as the number of incoming edges of a state increases, the number

of inferred UIO sequences increases. In order to find the number of states

for which a UIO will be constructed by inference, an all–pairs shortest path

algorithm [31] is used. An example inference graph can be observed in Fig-

ure 33. If the UIO of s1 is found, the UIO sequences for states s2, s4, s5 will

be found by inference rules. For this reason, in order to reduce the UIO tree

size, it is better to find UIO of s1 rather than finding the UIO sequence of,

s2, s4, or s5. Therefore, the inference point of a state s can be formulated as

the number of states whose UIO sequences would be inferred once the UIO

sequence of s is found.

However, the structure of the inference graph is also important for the

length of the UIO sequences that will be inferred. When Figure 33 and

Figure 34 are compared, it can be seen that the UIO length of s2 is different

in the case of s1’s UIO discovery even though in both cases, the discovery of

a UIO sequence of the state s1 will infer UIO sequences for the states s2, s4,

88

and s5. This difference should also be reflected to the inference point of a

state. Hence, the inference score is defined as follows:

Let IG = (SIG, VIG) denote an inference graph, sj ⇒ si denote the

existence of a path from sj to si in an inference graph and shPath(sj, si)

denote the length of the shortest path from sj to si. So, the inference point

of a state si for a tree node TN is:

∑

sj ,si∈SIG

sj 6∈F
sj⇒si

1

shPath(sj, si)

where F is the set of states for which a UIO sequence has been found.

The inference point of s1 for a tree node TN such that Φ(TN) = {s1, s2, s3, s4}

is infPoint(s1) = 1/1 + 1/2 + 1/2 = 2 in Figure 33 whereas infPoint(s1) =

1/1 + 1/2 + 1/3 ∼= 1.8 in Figure 34.

s1 s4

s5

s2

s3
a/1

b/2

a/2

b/1

Figure 33: An Example Inference Graph

When a node’s inference point is considered, one should analyze the initial

states of a tree node. Simply, the ICS pairs in the potential set can be used

for inference point calculation by summing up the inference points of the

initial states of the ICS pairs. However, this can lead to an over–estimation

89

s1 s4 s5 s2
a/1 b/2 a/2

Figure 34: Another Example Inference Graph

of a tree node. For instance, let lbl(TN) = {[s1, s
′
1], [s3, s

′
3]} be a node in

UIO tree and considered FSM has the inference graph of Figure 33. The

inference point of this tree node will be

infPoint(TN) = infPoint(s1) + infPoint(s3)

infPoint(TN) = (1
shPath(s4,s1)

+ 1
shPath(s2,s1)

+ 1
shPath(s5,s1)

)+(1
shPath(s2,s3)

)

which will double count s2 as an inference point and give an over-estimated

result. That is, the discovery of s1 and s3 both invokes the inference of s2’s

UIO sequence. We should not double count the contribution of s2. For this

reason, we redefined the inference point of a tree node as follows.

∑

∀sk∈(S\F)

max{
1

shPath(sk, s)
|∀s ∈ Φ(TN)}

In the extend of inference graph in Figure 33, the inference point of a

node TN with lbl(TN) = {[s1, s
′
1], [s3, s

′
3]} will be:

infPoint(TN) = max{
1

shPath(s4, s1)
}+max{

1

shPath(s2, s1)
,

1

shPath(s2, s3)
}+

max{
1

shPath(s5, s1)
}

infPoint(TN) = max{1/1}+max{1/2, 1/1}+max{1/2} = 1+1+1/2 = 2.5

The introduction of the inference information into the heuristic method

will lead to changes in the heuristic point of a tree node. We redefine heuristic

90

point in the case of inference usage as follows:

HP (TN) =
|Φ(TN)|

|curr(lbl((TN)))|2
+

infPoint(TN)

|curr(lbl(TN))|

In Figure 35, 36 and 37, the tree size and UIO sequence length comparison

can be observed. From Figure 35, it can be said that the resulting tree size

values are dramatically low due to the inference mechanism. In Figure 36, it

can be seen that the proposed heuristic method further improves Naik’s tree

size results. Actually, this improvement is expected; because we are forcing

the algorithm to search the tree nodes in which we can make more inference.

However, the more inference the algorithm does, the longer the resulting UIO

sequences. The UIO sequence comparison can be observed in Figure 37.

Figure 35: The Tree Size Values of Heuristic Method, Heuristic Method with

Inference and Naik’s Method.

91

Figure 36: The Tree Size Values of Heuristic Method with Inference and

Naik’s Method.

5.2 Limited Inference

As expected and as shown by experimental results, the UIO sequences gets

long when the inference method introduced in the previous section is used. In

this section, we suggest a method to control the length of the UIO sequences

produced when the inference method is used.

In this approach, when the UIO sequence of state si is found, only a

limited length I/O sequence is allowed to be concatenated to the UIO of

si. For this reason, the inference score of a state is different when the lim-

ited inference approach is employed. For example, in Figure 33, when the

inference limit is set to 1, by using a UIO sequence of the state s1, only the

UIO sequence of the state s4 is allowed to be inferred since it requires only

92

Figure 37: The UIO Sequence Lengths of Heuristic Method, Heuristic

Method with Inference and Naik’s Method.

one I/O label (a/1) to be concatenated to the UIO sequence of the state s1.

The other states need 2 or more I/O labels to be concatenated to the UIO

sequence of s1. Therefore, when the inference limit is 1, the inference point

of s1 is 1.

In order to find limited length inference points, all–pairs shortest path

algorithm is parameterized with the length value of the inference. As a

result, the shortest paths using at most inference depth edges are found and

the inference point of a tree node is calculated accordingly.

The experimental results can be seen in Figure 38. At the very low

and right end we see the Naik’s method with inference. It has the longest

UIO sequence length and the smallest tree size. At the very left and top

end we see the Naik’s method “without” inference (i.e. a random UIO tree

93

Figure 38: Different Inference Lengths in Comparison.

generation), the exhaustive method and our basic heuristic method (without

any inference). As we allow inference to be introduced into our heuristic

method and as we increase the amount of the limited inference, we see that

a nice curve is formed connecting these two extrema. This proves that the

limited inference can be used to control the average length of UIO sequences

that will be generated by using the inference method. The cost that will be

paid for getting shorter UIO sequences will be the memory and hence the

time.

94

6 Experimental Results

The experimental results are conducted in Pentium 4/2.40 GHz computer

that has 1024MB of RAM. The FSM and heuristic method implementations

are coded in Java. The timing parameters in previous sections are measured

using Java Execution Time Measurement Library. Also, the implementations

are profiled and optimized for best performance with the aid of Eclipse TPTP

plug-in.

In this section, the experimental results will be discussed. The first sec-

tion compares the results of Depth–First Heuristic Method with LANG [12]

algorithm. The second section will show the results for FSMs for which the

transitions are arranged with different distributions and variances. In the

third section, we will demonstrate the performance and the memory require-

ments of the proposed heuristic by experimenting on FSMs that have upto

50,000 states.

6.1 Experimental Results for Benchmark FSMs

The comparison between LANG [12] and Depth–First Heuristic Method with

State Based I/O ranking on several MCNC benchmark FSMs [39] can be seen

in Table 6. In these results, our technique is able to find the UIO sequences

of all states that the exhaustive method has found. In comparison, the gen-

erated tree node counts are roughly same with LANG’s method. Only in

beecount, the proposed method created 2 times more tree nodes with respect

to LANG. However in dk16, the method manages to find same set of UIO

sequences by producing 50% of LANG’s result. In addition, the UIO length

95

values of the two FSMs, bbtas and beecount, has more values than the exper-

imental results of LANG.

Table 6: The Comparison of Depth First Heuristic Approach with State

Based IO Ranking and LANG

FSM DFHM with SB IO Ranking LANG

Lmax ng Lmax ng

bbtas 9 26 8 26

beecount 3 15 1 7

dk14 1 22 1 25

dk15 2 15 2 20

dk16 3 44 3 89

dk17 2 14 2 20

dk27 3 10 3 9

dk512 4 30 4 30

mc 1 5 1 4

shiftreg 3 15 3 16

Lmax: Maximum length of UIO sequence, ng: Number of nodes generated.

6.2 Experimental Results for FSMs

Some of our techniques use the frequency information of the input output

labels of the transitions. Therefore, the distribution and the absolute fre-

quency of these labels may have an affect on the performance of these meth-

96

ods. In this section will show the results for FSMs for which the transitions

are arranged with different distributions and variances. For this section, we

generated 3 classes of the FSMs which have linear distribution, normal dis-

tribution and step distribution. In every class, 4 different standard deviation

values are considered with 50 FSMs that as seen in Table 6.2. Hence, we

will run the aforementioned heuristics on 4,550 FSMs which have 12,350,000

states in total.

Table 7: FSM transition distributions and corresponding standard deviation

values.

Constant Linear Normal Step

(%) (%) (%) (%)

i/o1 25 21 17 13 9 22 19 16 12 20 15 10 5

i/o2 25 23 21 19 17 28 31 34 38 27 28 30 32

i/o3 25 27 29 31 33 28 31 34 38 27 28 30 32

i/o4 25 29 33 37 41 22 19 16 12 26 29 30 31

STDEV 0 4 7 11 15 3 7 10 15 3 7 10 13

In Figures 39, 41, 43, each distribution is compared with respect to the

standart deviation values. For the value stdev4 ∼= 15, the linear and normal

97

distributions have yielded minimum tree size. The step distribution, this

value has resulted in with relatively higher value. Intuitively, we have ex-

pected that the tree size value of this standard deviation should be lower in

the step distribution. However, we come to conclude that if only one I/O

pair occurance is low, the number of states owning the transitions labeled

with that I/O pair will decrease. Hence, the probability of encountering a

state, in the current set of a tree node, which has a low frequency I/O pair

will diminish and the usage of this I/O pair will lessen. For this reason, the

tree will generally be constructed with I/O pairs that have relatively higher

occurances yielding higher tree size. In Figures 40, 42, 44, the UIO sequence

lengths are compared. Again, the standart deviation value stdev4 ∼= 15

performed better when we look at these UIO lengths in linear and normal

distribution. It can be claimed that in these distributions as the standart

deviation values increase, the results will be better.

Figure 39: Linear Distribution in Comparison.

98

Figure 40: Linear Distribution in Comparison in terms of UIO Sequence

Lengths.

Figure 41: Normal Distribution in Comparison.

99

Figure 42: Normal Distribution in Comparison in terms of UIO Sequence

Lengths.

Figure 43: Step Distribution in Comparison.

100

Figure 44: Step Distribution in Comparison in terms of UIO Sequence

Lengths.

In Figure 45, 46, 47, 48, each standart deviation value is compared with re-

spect to the different distributions. The values of stdev1 ∼= 3 and stdev2 ∼= 7

yielded roughly same tree sizes for all distributions. With standart deviation

values of stdev3 ∼= 11 and stdev4 ∼= 15 the normal and linear distributions

have provided minimum results in the case of the step distribution.

6.3 Experimental Results for Big FSMs

The methods described in this work are heuristics and since the underlying

problem is a hard problem, the proposed methods might be expected to

blow up at some FSM size. In order to test the performance of the proposed

methods, we tried these methods on relatively big FSMs in this section. We

have generated FSMs with number of states from 4,000 to 50,000. Each

101

Figure 45: Distributions in Comparison with stdev ∼= 3.

Figure 46: Distributions in Comparison with stdev ∼= 7.

102

Figure 47: Distributions in Comparison with stdev ∼= 11.

Figure 48: Distributions in Comparison with stdev ∼= 15.

103

group has 30 FSMs. The tests in this section were run on Intel Xeon 3.00

GHz with 8 GB of RAM.

In Figures 49, 50 and 51, the tree size, average UIO sequence length and

timing values can be observed, respectively. The patterns of the methods

are similar to their patterns in small FSMs. The State–Based Heuristic

Method have reached its limit roughly at 30000 states. Also, the Depth–

First Heuristic with Global I/O Method reaches its limit roughly at 45000

states. Here, reaching to its limit basically means that the method cannot

handle all the FSMs in that group within the specified memory and time

limits.

Figure 49: Tree Size Values for Big FSMs

104

Figure 50: Average UIO Length Values for Big FSMs

105

Figure 51: Average Timing Values for Big FSMs

106

7 Conclusion

In this work, a number of heuristic methods that deal with the UIO sequence

generation problem are described. Since the systems from different areas

can be modeled as a finite state machine, these techniques can be used in

state verification which is a part of conformance testing and fault detection

algorithms.

The methods are based on guiding the generation and the search in a

UIO tree by using a heuristic information. The basic idea is to try to force

the search to goto to the parts of the tree that will reveal UIO sequences

of the states for which a UIO sequence has not found yet. An extensive

experimental analysis for the suggested methods are also provided.

Each method introduced develops on a previous method. However, it

is not easy/correct to say that a method is absolutely better than another

method. There are several factors such the memory and the time that is

used to generate the UIO sequences and the length of the UIO sequences. In

general, the memory and the time requirements of the methods are directly

correlated. However, the length of the UIO sequences found is inversely

correlated to the time and the memory requirements. Therefore, a method

finding shorter UIO sequences will be using more time and memory.

Rather than concluding a method to be superior to the others, the set of

methods presented in this work should be considered as providing a spectrum

of methods from which one can select based on her/his requirements (low UIO

sequence length vs. low computational resources) for finding UIO sequences.

Another contribution of this work is the introduction of a trade off pa-

rameter between the UIO sequence length and the memory requirements for

107

using the inference mechanism introduced by Naik in [20]. Naik’s method

uses very low memory but it has been criticized for generating very long UIO

sequences. By using the limited inference approach introduced here, one can

control the length of the UIO sequences that will be generated by Naik’s

approach at the expense of increased memory requirement.

108

References

[1] D. Lee A.V. Aho, A. T. Dahbura and M.U. Uyar. An optimization tech-

nique for protocol conformance test generation based on uio sequences

and rural chinese postman tours. IEEE Transactions on Communica-

tions, pages 1604–1615, 1991.

[2] T. S. Chow. Testing software design modeled by finite-state machines.

IEEE Trans. Software Eng., pages 178–187, 1978.

[3] M.S. Chiang C.M. Huang and M.Y. Jiang. Uio: a protocol test se-

quence generation method using the transition executability analysis

(tea). Comput. Commun., 21:14621475, 1998.

[4] A. D. Friedman and P. R. Menon. Fault Detection in Digifal Circuits.

NJ: Prentice-Hall, 1971.

[5] A. Gill. State-identification experiments in finite automata. lnform. and

Contr., 4:132–154, 1961.

[6] A. Gill. Introduction to the Theory of Finite-State Machines. New York:

McGraw-Hill, 1962.

[7] S. M. Gohershtein. Check words for the states of a finite automaton.

Kibernetika, page 4649, 1974.

[8] F. C. Hennie. Fault detecting experiments for sequential circuits. Proc.

5th Ann. Symp. Switching Circuit Theory and Logical Design, pages 95–

110, 1964.

109

[9] R.M. Hierons and H. Ural. Uio sequence based checking sequences for

distributed test architectures. Inf. Softw. Technol., page 793803, 2003.

[10] Rob M. Hierons and Hasan Ural. Optimizing the length of checking

sequences. IEEE Trans. Comput., 55(5):618–629, 2006.

[11] E. P. Hsieh. Checking experiments for sequential machines. IEEE Trans.

Comput., pages 1152–1166, 1971.

[12] F.M. Ali I. Ahmad and A.S. Das. Lang - algorithm for constructing

unique input/output sequences in finite-state machines. IEE Proceedings

- Computers and Digital Techniques, pages 131– 140, 2004.

[13] M. Harman K. Derderian, R. M. Hierons and Q. Guo. Automated unique

input output sequence generation for conformance testing of fsms. The

Computer Journal, 2006.

[14] Z. Kohavi. Switching and Finite Automata Theory. New York: McGraw-

Hill, 1978.

[15] P. K. Lala. Fault Tolerant and Fault Testable Hardware Design. NJ:

Prentice-Hall, 1985.

[16] D. Lee and M. Yannakakis. Testing finite state machines: state identi-

fication and verification. IEEE Trans. Comput., pages 306–320, 1994.

[17] D. Lee and M. Yannakakis. Principles and methods of testing fsms - a

survey. Proceedings of the IEEE, 84:1090–1123, 1996.

110

[18] R. E. Miller and S. Paul. On the generation of minimal-length confor-

mance tests for communication protocols. IEEE/ACM Trans. Network-

ing, pages 284–289, 1993.

[19] R.E. Miller and S. Paul. On the generation of minimal-length confor-

mance tests for communication protocols. IEEE/ACM Trans. Netw.,

pages 116–129, 1993.

[20] K. Naik. Efficient computation of unique input/output sequences in

finite-state machines. IEEE/ACM Transactions on Networking, 1997.

[21] S. Naito and M. Tsunoyama. Fault detection for sequential machines by

transition tours. Proc. Ilth IEEE Fault Tolerant Comput. Symp., pages

238–243, 1981.

[22] I. Pomeranz and S.M. Reddy. Functional test generation for full scan

circuits. Proc. Conf. on Design, Automation and Test in Europe, pages

396–403, 2000.

[23] M. Harman Q. Guo, R. M. Hierons and K. Derderian. Computing unique

input/output sequences using genetic algorithms. In FATES, pages 164–

177, 2003.

[24] M. Harman Q. Guo, R. M. Hierons and K. Derderian. Constructing

multiple unique input/output sequences using metaheuristic optimisa-

tion techniques. IEE Proceedings - Software, pages 127– 140, 2005.

[25] K. K. Sabnani and A. T. Dahbura. A new technique for generating

protocol tests. Proc. 9th Data Commun. Symp., pages 36–43, 1985.

111

[26] K. K. Sabnani and A. T. Dahbura. A protocol test generation procedure.

Computer Networks and ISDN Syst., pages 285–297, 1988.

[27] B. Sarikaya and G. v. Bochmann. Synchronization and specification

issues in protocol testing. IEEE Trans. Commun., pages 389–395, 1984.

[28] D. Sidhu and T. Leung. Fault coverage of protocol test methods. Proc.

IEEE INFOCOMSS, pages 80–85, 1988.

[29] D.P. Sidhu and T.K. Leung. Formal methods for protocol testing: a

detailed study. IEEE Trans. Softw. Eng., pages 413–426, 1989.

[30] Dechang Sun, Bapiraju Vinnakota, and Wanli Jiang. Fast state verifi-

cation. In DAC, pages 619–624, 1998.

[31] R. L. Rivest T. H. Cormen, C. E. Leiserson and C. Stein. Introduction

to Algorithms. McGraw-Hill, 2001.

[32] H. Ural, X. Wu, and F. Zhang. On minimizing the lengths of checking

sequences. IEEE Transactions on Computers, 46(1):93–99, 1997.

[33] M. U. Uyar and A. T. Dahbura. Optimal test sequence generation for

protocols: The chinese postman algorithm applied to q.931. Proc. IEEE

Global Telecommun. Conf, pages 68–72, 1986.

[34] G. v. Bochmann and C. A. Sunshine. A survey of formal methods.

Computer Networks and Protocols, pages 561–578, 1983.

[35] S. T. Vuong W. Y. L. Chan and M. R. Ito. An improved protocol test

generation procedure based on uios. Proc. SIGCOM, pages 283–294,

1989.

112

[36] B. Wang and D. Hutchinson. Protocol testing techniques. Comput.

Commun., pages 79–87, 1987.

[37] M. C. Yalcin. Distinguishing sequence based checking sequence gener-

ation implementation and improvements. Master’s thesis, Sabanci Uni-

versity, 2006.

[38] B. Yang and H. Ural. Protocol conformance test generation using multi-

ple uio sequences with overlapping. ACM SIGCOMM: Communications,

Architectures, and Protocols, Twente, The Netherlands, North-Holland,

The Netherlands., pages 118–125, 1990.

[39] S. Yang. Logic synthesis and optimization benchmarks user guide, ver-

sion 3.0. Technical report, MCNC, North Carolina, 1991.

[40] F. Lombardi Y.N. Shen and A.T. Dahbura. Protocol conformance test-

ing using multiple uio sequences. IEEE Trans. Commun., pages 1282–

1287, 1992.

113

A Appendix

114

Figure 52: Depth–First Heuristic Method with State–Based I/O Ranking in

Comparison.

115

Figure 53: Depth–First Heuristic Method with Global I/O Ranking in Com-

parison in terms of UIO Sequence Lengths.

116

Figure 54: Time Performances of the Exhaustive and the Random Methods

117

Figure 55: Heuristic Method Time Requirements in Comparison with Ex-

haustive Method.

118

Figure 56: Time Comparison of Depth First Heuristic Method with Global

I/O Ranking.

119

Figure 57: The Tree Size Values of Heuristic Method, Heuristic Method with

Inference and Naik’s Method.

120

Figure 58: The Tree Size Values of Heuristic Method with Inference and

Naik’s Method.

121

Figure 59: The UIO Sequence Lengths of Heuristic Method, Heuristic

Method with Inference and Naik’s Method.

122

Figure 60: Different Inference Lengths in Comparison.

123

Figure 61: Tree Size Values for Big FSMs

124

Figure 62: Average UIO Length Values for Big FSMs

125

Figure 63: Average Timing Values for Big FSMs

126

	1 Introduction
	2 Preliminaries
	2.1 UIO Computation
	2.2 Exhaustive UIO Computation

	3 Literature Review
	4 UIO Computation Methods
	4.1 Exhaustive UIO Computation
	4.2 Random UIO Computation
	4.3 Heuristic Method
	4.4 Heuristic Method with Global I/O Ranking
	4.5 State--Based Heuristic Method
	4.6 State--Based Heuristic Method with Global I/O Ranking
	4.7 Depth--First Heuristic Method with Global I/O Ranking
	4.8 Depth--First Heuristic Method with State Based I/O Ranking
	4.9 Splitting Point

	5 Inference Handling
	5.1 Integration of the Inference Information
	5.2 Limited Inference

	6 Experimental Results
	6.1 Experimental Results for Benchmark FSMs
	6.2 Experimental Results for FSMs
	6.3 Experimental Results for Big FSMs

	7 Conclusion
	A Appendix

