
c© 2003 Association for Computational Linguistics

Dependency Parsing with an Extended
Finite-State Approach

Kemal Oflazer∗

Sabancı University

This article presents a dependency parsing scheme using an extended finite-state approach. The
parser augments input representation with “channels” so that links representing syntactic depen-
dency relations among words can be accommodated and iterates on the input a number of times
to arrive at a fixed point. Intermediate configurations violating various constraints of projective
dependency representations such as no crossing links and no independent items except senten-
tial head are filtered via finite-state filters. We have applied the parser to dependency parsing of
Turkish.

1. Introduction

Finite-state machines have been used for many tasks in language processing, such as
tokenization, morphological analysis, and parsing. Recent advances in the develop-
ment of sophisticated tools for building finite-state systems (e.g., XRCE Finite State
Tools [Karttunen et al. 1996], AT&T Tools [Mohri, Pereira, and Riley 1998], and Fi-
nite State Automata Utilities [van Noord 1997]) have fostered the development of
quite complex finite-state systems for natural language processing. In the last sev-
eral years, there have been a number of studies on developing finite-state parsing
systems (Koskenniemi 1990; Koskenniemi, Tapanainen, and Voutilainen 1992; Grefen-
stette 1996; Chanod and Tapanainen 1996; Ait-Mokhtar and Chanod 1997; Hobbs et
al. 1997). Another stream of work in using finite-state methods in parsing is based
on approximating context-free grammars with finite-state grammars, which are then
processed by efficient methods for such grammars (Black 1989; Pereira and Wright
1997; Grimley-Evans 1997; Johnson 1998; Nederhof 1998, 2000). There have also been
a number of approaches to natural language parsing using extended finite-state ap-
proaches in which a finite-state engine is applied multiple times to the input, or various
derivatives thereof, until some termination condition is reached (Abney 1996; Roche
1997).

This article presents an approach to dependency parsing using a finite-state ap-
proach. The approach is similar to those of Roche and Abney in that all three use an
extended finite-state scheme to parse the input sentences. Our contributions can be
summarized as follows:

• Our approach differs from Roche’s and Abney’s in that it is based on the
dependency grammar approach and at the output produces an encoding
of the dependency structure of a sentence. The lexical items and the
dependency relations are encoded in an intertwined manner and
manipulated by grammar rules, as well as structural and linguistic

∗ Faculty of Engineering and Natural Sciences, Sabancı University, Orhanlı, 34956, Tuzla, Istanbul,
Turkey. E-mail: oflazer@sabanciuniv.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Sabanci University Research Database

https://core.ac.uk/display/11741651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

516

Computational Linguistics Volume 29, Number 4

constraints implemented as finite-state filters, to arrive at parses. The
output of the parser is a finite-state transducer that compactly packs all
the ambiguities as a lattice.

• As our approach is an all-parses approach with no statistical component,
we have used Lin’s (1995) proposal for ranking the parses based on the
total link length and have obtained promising results. For over 48% of
the sentences, the correct parse was among the dependency trees with
the smallest total link length.

• Our approach can employ violable constraints for robust parsing so that
when the parser fails to link all dependents to a head, one can use
lenient filtering to allow parses with a small number of unlinked
dependents to be output.

• The rules for linking dependents to heads can specify constraints on the
intervening material between them, so that, for instance, certain links
may be prevented from crossing barriers such as punctuation or lexical
items with certain parts of speech or morphological properties (Collins
1996; Giguet and Vergne 1997; Tapanainen and Järvinen 1997).

We summarize in Figure 1 the basic idea of our approach. This figure presents in a
rather high-level fashion, for a Turkish and an English sentence, the input and output
representation for the approach to be presented. For the purposes of this summary, we
assume that none of the words in the sentences have any morphological ambiguity
and that their morphological properties are essentially obvious from the glosses. We
represent the input to the parser as a string of symbols encoding the words with some
additional delimiter markers. Panel (a) of Figure 1 shows this input representation for
a Turkish sentence, on the top right, and panel (b) shows it for an English sentence.

The parser operates in iterations. In the first iteration, the parser takes the input
string encoding the sentence and manipulates it to produce the intermediate string
in which we have three dependency relations encoded by additional symbols (high-
lighted with boldface type) injected into the string. The partial dependency trees en-
coded are depicted to the left of the intermediate strings. It should be noted that the
sets of dependency relations captured in the first iteration are different for Turkish
and English. In the Turkish sentence, two determiner links and one object link are
encoded in parallel, whereas in the English sentence, two determiner links and one
subject link are encoded in parallel. The common property of these links is that they
do not “interfere” with each other.

The second iteration of the parser takes the output of the first iteration and manip-
ulates it to produce a slightly longer string in which symbols encoding a new subject
(object) link are injected into the Turkish (English) string. (We again highlight these
symbols with boldface type.) Note that in the English string the relative positions of
the link start and end symbols indicate that this is a right-to-left link. The dependency
structures encoded by these strings are again on their left. After the second iteration,
there are no further links that can be added, since in each case there is only one word
left without any outgoing links and it happens to be the head of the sentence.

The article is structured as follows: After a brief overview of related work, we
summarize dependency grammars and aspects of Turkish relevant to this work. We
provide a summary of concepts from finite-state transducers so that subsequent sec-
tions can be self-contained. We continue by describing the representation that we have
employed for encoding dependency structures, along with the encoding of depen-
dency linking rules operating on these representations and configurational constraints

517

Oflazer Dependency Parsing

Figure 1
Dependency parsing by means of iterative manipulations of strings encoding dependency
structures.

518

Computational Linguistics Volume 29, Number 4

for filtering them. We then describe the parser and its operational aspects, with details
on how linguistically motivated constraints for further filtering are implemented. We
briefly provide a scheme for a robust-parsing extension of our approach using the
lenient composition operation. We then provide results from a prototype implementa-
tion of the parser and its application to dependency parsing of Turkish. We close with
remarks and conclusions.

2. Overview of Related Work

Although finite-state methods have been applied to parsing by many researchers,
extended finite-state techniques were initially used only by Roche (1997), Abney (1996),
and the FASTUS group (Hobbs et al. 1997). In the context of dependency parsing with
finite-state machines, Elworthy (2000) has recently proposed a finite-state parser that
produces a dependency output.

Roche (1997) presents a top-down approach for parsing context-free grammars
implemented with finite-state transducers. The transducers are based on a syntactic
dictionary comprising patterns of lexical and nonlexical items. The input is initially
bracketed with sentence markers at both ends and then fed into a transducer for
bracketing according to bracketing rules for each of the patterns in the dictionary.
The output of the transducer is fed back to the input, and the constituent structure is
iteratively refined. When the output of the transducer reaches a fixed point, that is,
when no additional brackets can be inserted, parsing ends.

Abney (1996) presents a finite-state parsing approach in which a tagged sentence
is parsed by transducers that progressively transform the input into sequences of sym-
bols representing phrasal constituents. In this approach, the input sentence is assumed
to be tagged with a part-of-speech tagger. The parser consists of a cascade of stages.
Each stage is a finite-state transducer implementing rules that bracket and transduce
the input to an output containing a mixture of unconsumed terminal symbols and
nonterminal symbols for the phrases recognized. The output of a stage goes to the
next stage in the cascade, which further brackets the input using yet other rules.
Each cascade typically corresponds to a level in a standard X-bar grammar. After a
certain (fixed) number of cascades, the input is fully bracketed, with the structures
being indicated by labels on the brackets. Iterations in Roche’s approach roughly cor-
respond to cascades in Abney’s approach. The grammar, however, determines the
number of levels or cascades in Abney’s approach: that is, structure is fixed. A work
along the lines of Abney’s is that of Kokkinakis and Kokkinakis (1999) for parsing
Swedish.

Elworthy (2000) presents a finite-state parser that can produce a dependency struc-
ture from the input. The parser utilizes standard phrase structure rules that are anno-
tated with “instructions” that associate the components of the phrases recognized with
dependency grammar–motivated relations. A head is annotated with variables associ-
ating it with its dependents. These variables are filled in by the instructions associated
with the rules. These variables are copied or percolated “up” the rules according to
special instructions. The approach resembles a unification-based grammar in which
instead of unification, dependency relation features are passed from a dependent to
its head. The rules for recognizing phrases and implementing their instructions are
implemented as finite-state transducers.

Another notable system for finite-state parsing is FASTUS (Hobbs et al. 1997). FAS-
TUS uses a five-stage cascaded system, with each stage consisting of nondeterministic
finite-state machines. FASTUS is mainly for information extraction applications. The
early stages recognize complex multiword units such as proper names and colloca-

519

Oflazer Dependency Parsing

tions and build upon these by grouping them into phrases. Later stages are geared
toward recognizing event patterns and building event structures.

3. Dependency Syntax

Dependency approaches to syntactic representation use the notion of syntactic relation
to associate surface lexical items. Melčuk (1988) presents a comprehensive exposition
of dependency syntax. Computational approaches to dependency syntax have recently
become quite popular (e.g., a workshop dedicated to computational approaches to de-
pendency grammars was held at COLING/ACL’98). Järvinen and Tapanainen (1998;
Tapanainen and Järvinen 1997) have demonstrated an efficient wide-coverage depen-
dency parser for English. The work of Sleator and Temperley (1991) on link grammar,
essentially a lexicalized variant of dependency grammar, has also proved to be interest-
ing in regard to a number of aspects. Dependency-based statistical language modeling
and parsing have also become quite popular in statistical natural language processing
(Lafferty, Sleator, and Temperley 1992; Eisner 1996; Chelba et al. 1997; Collins 1996;
Collins et al. 1999).

Robinson (1970) gives four axioms for well-formed dependency structures that
have been assumed in almost all computational approaches. These state that, in a
dependency structure of a sentence,

1. one and only one word is independent, that is, not linked to some other
word;

2. all others depend directly on some word;

3. no word depends on more than one other; and

4. if a word A depends directly on word B, and some word C intervenes
between them (in linear order), then C depends directly on A or on B, or
on some other intervening word.

This last condition of projectivity (or various extensions of it; see, e.g., Lai and Huang
[1994]) is usually assumed by most computational approaches to dependency gram-
mars as a constraint for filtering configurations and has also been used as a simplifying
condition in statistical approaches for inducing dependencies from corpora (e.g., Yüret
1998).1

4. Turkish

Turkish is an agglutinative language in which a sequence of inflectional and deriva-
tional morphemes get affixed to a root (Oflazer 1993). At the syntax level, the un-
marked constituent order is Subject-Object-Verb, but constituent order may vary as
demanded by the discourse context. Essentially all constituent orders are possible,
especially at the main sentence level, with very minimal formal constraints. In writ-
ten text, however, the unmarked order is dominant at both the main-sentence and
embedded-clause level.

Turkish morphophonology is characterized by a number of processes such as
vowel harmony (vowels in suffixes, with very minor exceptions, agree with previous

1 See section 6 for how projectivity is checked and section 6.5 on the implications of checking for
projectivity during parsing with both right-to-left and left-to-right dependency links.

520

Computational Linguistics Volume 29, Number 4

vowels in certain aspects), consonant agreement, and vowel and consonant ellipsis.
The morphotactics are quite complicated: A given word form may involve multiple
derivations (as we show shortly). The number of word forms one can generate from
a nominal or verbal root is theoretically infinite (see, e.g., Hankamer, [1989]).

Derivations in Turkish are very productive, and the syntactic relations that a word
is involved in as a dependent or head element are determined by the inflectional
properties of the one or more (possibly intermediate) derived forms. In this work, we
assume that a Turkish word is represented as a sequence of inflectional groups (IGs),
separated by ^DBs, denoting derivation boundaries, in the following general form:

root+IG1 + ˆDB+IG2 + ˆDB+· · · + ˆDB+IGn.

Here each IGi denotes relevant inflectional features including the part of speech for
the root, for the first IG, and for any of the derived forms. For instance, the derived
modifier saǧlamlaştırdıǧımızdaki2 would be represented as3

saǧlam+Adj+^DB+Verb+Become+^DB+Verb+Caus+Pos

+^DB+Noun+PastPart+A3sg+P3sg+Loc

+^DB+Adj

The five IGs in this are

1. saǧlam(strong)+Adj

2. +Verb+Become

3. +Verb+Caus+Pos

4. +Noun+PastPart+A3sg+P3sg+Loc

5. +Adj

The first shows the root word along with its part of speech, which is its only inflec-
tional feature. The second IG indicates a derivation into a verb whose semantics is
“to become” the preceding adjective. The +Become can be thought of as a minor part-
of-speech tag. The third IG indicates that a causative verb with positive polarity is
derived from the previous verb. The fourth IG indicates the derivation of a nominal
form, a past participle, with +Noun as the part of speech and +PastPart. It has has
other inflectional features: +A3sg for third-person singular, +P3sg for third-person sin-
gular possessive agreement, and +Loc for locative case. Finally the fifth IG indicates a
derivation into an adjective.

A sentence would then be represented as a sequence of the IGs making up the
words. An interesting observation that we can make about Turkish is that, when a
word is considered as a sequence of IGs, syntactic relation links emanate only from
the last IG of a (dependent) word and land on one of the IGs of a (head)word on the

2 Literally, ‘(the thing existing) at the time we caused (something) to become strong’. Obviously this is
not a word that one would use everyday. Turkish words found in typical text average three to four
morphemes including the stem, with an average of about 1.7 derivations per word.

3 The morphological features other than the obvious part-of-speech features are +Become: become verb,
+Caus: causative verb, PastPart: derived past participle, P3sg: third-person singular possessive
agreement, A3sg: third-person singular number-person agreement, +Zero: zero derivation with no overt
morpheme, +Pnon: no possessive agreement, +Loc: locative case, +Pos: positive polarity.

521

Oflazer Dependency Parsing

Figure 2
Links and inflectional groups.

Figure 3
Dependency links in an example Turkish sentence.

right (with minor exceptions), as exemplified in Figure 2. A second observation is that,
with minor exceptions, the dependency links between the IGs, when drawn above the
IG sequence, do not cross.4 Figure 3 shows a dependency tree for a Turkish sentence
laid on top of the words segmented along IG boundaries. It should be noted that all
IGs that link to the same head IG comprise a constituent, and the legality of a link
depends primarily on the inflectional features of the IGs it connects.

For the purposes of this article we can summarize aspects of Turkish as follows:

• The IGs are the “words.” That is, we treat a chunk of (free and bound)
inflectional morphemes as the units that we relate with dependency
links.

• Within a word, the IGs are linearly dependent on the next IG, if any. We
would not, however, show and deal with these explicitly, but rather deal
only with the dependency link emanating from the last IG in each word,
which is the syntactic head of the word (whereas the first IG which
contains the root is the semantic head).

4 Such cases would be violating the projectivity constraint. The only examples of such crossing that we
know are certain discontinuous noun phrases in which an adverbial modifier of the matrix verb
intervenes between a specifier and the rest of the noun phrase. Since the specifier links to the head
noun but the adverbial links to the verb, the links have to cross.

522

Computational Linguistics Volume 29, Number 4

• For all practical purposes the syntactic dependency links go from left to
right, that is, the core structure is subject-object-verb, and modifiers
precede their heads.

5. Finite-State Transducers

The exposition in the subsequent sections will make extensive use of concepts from
finite-state transducers. In this section, we provide a brief overview of the main rel-
evant concepts; the reader is referred to recent expositions (e.g., Roche and Schabes
[1997]; also, Hopcroft and Ullman [1979] provides a detailed exposition of finite-state
machines and regular languages.)

Finite-state transducers are finite-state devices with transitions labeled by pairs of
symbols (u:l), u denoting the “upper” symbol and l denoting the “lower” symbol.
These symbols come from a finite alphabet. Additionally, either u or l (but not both)
can be the ε symbol, denoting the empty string. A finite-state transducer T maps
between two regular languages: U, the “upper” language, and L, the “lower” language.
The mapping is bidirectional, and in general, a string in one of the languages may
map to one or more strings in the other language. The transductions in both directions
are valid only if the string on the input side takes the finite-state transducer to a final
state.

The behavior of finite-state transducers can also be described using regular ex-
pressions over an alphabet of symbols of the form (u:l) (including symbols ε:l and
u:ε), in complete analogy to regular expressions for finite-state recognizers. Since the
notational mechanisms provided by the basic definition of regular expressions (con-
catenation, union, and Kleene star [Hopcroft and Ullman 1979]) are quite restricted and
low level, developers of finite-state transducer manipulation systems have augmented
the notational capabilities with operations at a much higher level of abstraction, much
closer to the operations used by the computational linguistics application (see, e.g.,
Karttunen et al., [1996]; see also http://www.xrce.xerox.com/competencies/content-
analysis/fsCompiler/fssyntax.html, and also van Noord, [1997]).

Finite-state transducers are closed under union, but in contrast to finite-state rec-
ognizers, they are not closed under difference and intersection operations (Kaplan and
Kay 1994). On the other hand, finite-state transducers are closed under the operation
of composition, which is very much an analog of function composition in algebra. Let
T1 be a transducer that maps between regular languages U1 and L1, and let T2 be a
transducer that maps between regular languages U2 and L2. The composition T of T1
and T2, denoted by T1 ◦ T2, is the transducer that maps between U = T−1

1 (L1 ∩ U2)
and L = T2(L1 ∩U2).5 That is, the resulting mapping is defined only for the respective
images, in T−1

1 and T2, of the intersection L1 ∩ U2. A pair of strings (x, y) ∈ T1 ◦ T2 if
and only if ∃z such that (x, z) ∈ T1 and (z, y) ∈ T2. Note that the composition operation
is order dependent; T1 ◦ T2 is not the same mapping as T2 ◦ T1. Figure 4 summarizes
the main points of the composition operation for finite-state transducers.

6. Finite-State Dependency Parsing

Our approach is based on constructing a graphic representation of the dependency
structure of a sentence, including the lexical items and the labeled directed arcs en-

5 Notationally, for a transducer T, we take T(U) to mean the transduction from the upper to the lower
language and T−1 to mean the transduction from the lower to the upper language.

523

Oflazer Dependency Parsing

Figure 4
Composition operation for finite-state transducers.

Figure 5
Physical representation and logical view of channels and dependency links.

coding the dependency relations. In constructing this dependency graph, these labeled
links are represented by additional symbols that are laid out within the symbols rep-
resenting the lexical items and their morphological features.

The approach relies on augmenting the input with “channels” that (logically) re-
side above the IG sequence and “laying” links representing dependency relations in
these channels, as depicted in Figure 5(a). The input to the parser is a representation of
the sentence as a sequence (or a lattice, if morphological disambiguation has not been
performed) of IGs with some additional symbols to delineate certain boundaries.6 The

6 The lattice of all morphological analyses of the words in a sentence can be encoded by a finite-state
acceptor. In fact, one gets such an acceptor when a nondeterministic morphological analysis finite-state
transducer is applied to the input. Further, finite-state acceptors are assumed to be coerced into identity
transducers that map the input strings they accept to identical output strings. This coercion is necessary
so that filters defined as acceptors can be used as transducers with the composition operators.

524

Computational Linguistics Volume 29, Number 4

Figure 6
Channel symbol slots around an inflectional group.

parser operates in a number of iterations: At each iteration of the parser, a new empty
channel is “stacked” on “top” of the input, and any possible links are established us-
ing these channels.7 Parsing terminates when no new links can be established within
the most recent channel added, that is, when a fixed point is reached. In this respect,
this approach is similar to that of Roche (1997). An abstract view of this is presented
in panels (a) through (c) of Figure 5.

6.1 Representing Channels and Syntactic Relations
The sequence (or the lattice) of IGs is produced by a morphological analysis transducer,
with each IG initially being augmented by two pairs of delimiter symbols, as <(IG)>.
The (and) pair separates the morphological features from the channel representation
symbols, while < and > separate the representations of consecutive IGs. Word-final IGs
(IGs from which links will emanate) are further augmented with a special marker @.

Channels are represented by pairs of matching symbols that are inserted between
the <. . . (and the). . . > delimiter symbols. Symbols for new channels (upper channels
in Figure 5) are stacked so that the symbols for the topmost channels are those closest to
the (. . .), and in this way dependency links do not cross when drawn (see Figure 6).
At any time, the number of channel symbols on both sides of an IG is the same.
Multiple dependency links can occupy mutually exclusive segments of a channel as
long as they do not interfere with each other; that is, each channel may accommodate
many dependency links whenever possible.8

How a certain segment of channel is used is indicated by various symbols sur-
rounding the IGs, within the < and > delimiters:

• The channel symbol 0 indicates that the channel segment is not used by
any dependency link and thus is empty.

• The channel symbol 1 indicates that the channel is used by a link that
starts at some IG on the left and ends at some IG on the right. That is,
the link is just “crossing over” this IG.

• When a link starts from a word-final IG, then a link start symbol is used
on the right side of the word-final IG (i.e., between) and >).

• When a link terminates on an IG, then a link end symbol denoting the
syntactic relation is used on the left side of the IG (i.e., between < and ().

7 The beginnings and the ends of the arrows in the figure indicate the dependent and head IGs,
respectively.

8 The exposition here is for only left-to-right links. See section 6.5 for a dependency representation for
both left-to-right and right-to-left links.

525

Oflazer Dependency Parsing

The following syntactic relations are currently encoded in the channels:

1. Subject (s/S)

2. Object (o/O)

3. Modifier (adverbs/adjectives) (m/M))

4. Possessor (p/P)

5. Classifier (c/C)

6. Determiner (d/D)

7. Dative adjunct (t/T)

8. Ablative adjunct (f/F)

9. Locative adjunct (l/L)

10. Instrumental adjunct (i/I)

The lowercase symbol in each case is used to indicate the start of a link, and the
uppercase symbols indicate the end of a link. Both kinds of symbols are used to
encode configurational and linguistic constraints on IGs, as we show later.

For instance, with three channels, the dependency structure of the IGs of bu eski
evdeki gülün (of the rose at this old house) in Figure 3 would be represented as

<000(bu+Det@)0d0><010(eski+Adj@)01m><MD0(ev+Noun+A3sg+Pnon+Loc)000>

<000(+Adj@)00m><M00(gül+Noun+A3sg+Pnon+Gen@)0p0>)

The M and the D to the left of the first IG of evdeki (third IG above) indicate the
incoming modifier and determiner links from the first two IGs, matching the start
symbols m and d in the second and the first IGs. The m--M pair encodes the modifier
link from eski (old) to evde (at house), and the d--D pair encodes the determiner link
from bu (this) to evde. The last IG above has an M on the left side matching the m in
the IG to the left. This m--M pair encodes the modifier relation between +ki and gülün
(of the rose). The last IG above has an outgoing possessor link marked by the p on
its right side, indicating that it is a genitive-marked possessor of some other IG to the
right.

We should note, however, that the (morphological) relations between IGs that
make up a single word are not at all a concern here and are not considered to be
syntactic dependency relations. Thus they are never explicitly shown or encoded ex-
cept by virtue of their being sequentially placed in the input. The only links that we
explicitly encode are those links emanating from a word-final IG and landing on some
other IG.

6.2 Components of the Parser
The basic strategy of a parser iteration is to recognize, by means of a rule (encoded
as a regular expression), a dependent IG and a head IG and link them by modifying
the “topmost” channel between the two. Once we identify the dependent IG and the
head IG (in a manner to be described shortly), we proceed as follows:

1. We create an empty channel by injecting 0s to just outside of the (...)

pairs:

526

Computational Linguistics Volume 29, Number 4

<...0(IDdep@)0...>...<...0(IG)0...>...<...0(IGhead)0...>

2. We put temporary braces (of the type for the dependency link to be
established—we use MOD below for a modifier link for expository
purposes) to the right of the dependent IG and to the left of the head IG:

<...0(IGdep{MOD@)0...>...<...0(IG)0...>...<...0MOD}(IGhead)0...>

3. We mark the start, intermediate, and end IGs of the link with the
appropriate symbols encoding the relation thus established by the braces:

<...0(IGdep{MOD@)m...>...<...1(IG)1...>...<...MMOD}(IGhead)0...>

4. We remove the temporary braces, and we have the string in item 1, with
some symbols modified:

<...0(IGdep@)m...>...<...1(IG)1...>...<...M(IGhead)0...>

The second step above deserves some more attention, as it has additional functions
besides identifying the relevant IGs. One should be careful to avoid generating strings
that are either illegal or redundant or cannot lead to a valid parse at the end of the
iterations. Thus, the second step makes sure that

1. The last channel in the segment to be bracketed is free.

2. The dependent is not already linked at one of the lower channels (since
an IG can be the dependent of only one other IG).

3. None of the channels directly underneath the segment have any links
coming into or going out of the projection, in those channels, of the
segment bracketed. This makes sure that there are no crossing links. It is
obviously okay to have links that start and terminate in lower channels
within the projection of the bracketed segment.9

4. There are no channels below the current channel that are unused in the
segment to be bracketed (if there are, then this link could have been
made there.)

5. The link to be established does not trap an unlinked word-final IG. If
there is such an IG, its future link would have to cross the link to be
established in the current segment.

The last three of these constraints are depicted in Figure 7.

6.3 Rules for Establishing Dependency Links
The components of a dependency link are recognized using regular expressions. These
regular expressions identify the dependent IG, the head IG, and the IGs in between to
be skipped over, and they temporarily bracket the input segment including these IGs.

9 It is actually possible to place a crossing link by laying it in a special channel below the IG sequence so
that it would not interfere with the other links. This would necessitate additional delimiter symbols
and would unnecessarily further complicate the presentation.

527

Oflazer Dependency Parsing

Figure 7
Configurations to be avoided during parsing.

These regular expressions correspond to “grammar rules,” and a collection of these
rules comprise the dependency grammar.

A typical rule looks like the following:10

[LR [ML IGMiddle MR]* RL] (->) "{Rel" ... "Rel}" || IGDep IGHead

This rule is an example of a XRCE optional-replace rule that nondeterministically
inserts the curly braces on the right-hand side (the symbols on both sides of the
ellipsis) into the output string in the lower language, around any part of the input
string in the upper language that matches its left-hand side, provided the left-hand
side is contextually constrained on the left by IGDep and on the right by IGHead. This
replace rule can nondeterministically make multiple nonoverlapping replacements.11

The left-hand side of this rule (to the left of (->)) has three components: The
first part, LR, specifies the constraints on the right-hand side of the dependent IG.
The second part, [ML IGMiddle MR]*, defines any middle IGs that will be ignored

10 We use the XRCE regular expression language syntax; the [and] act like parentheses used as
grouping operators in the language. See http://www.xrce.xerox.com/competencies/content-
analysis/fsCompiler/fssyntax.html for details.

11 An earlier implementation of the parser used a slightly different optional-replace rule that did not
make use of the contextual constraint, as the new format was not included in the toolkit available to
the author. A typical rule there looked like [[LL IGDep LR] [ML IGMiddle MR]* [RL IGHead RR]]
(->) "{Rel" ... "Rel}". Although for the purposes of writing the dependency grammar, the old rule
format was more transparent, its use necessitated some extra complexity in various other components
of the parser. The old rule format has been abandoned in favor of the new format. I thank an
anonymous reviewer for suggesting the use of this new rule format.

528

Computational Linguistics Volume 29, Number 4

and skipped over,12 and the third part, RL, specifies the contraints on the left-hand
side channel symbols of the head IG. The head and dependent IG patterns IGDep and
IGHead are specified as left and right contextual constraints on the pattern of the three
components specified on the left-hand side.

This rule (optionally) brackets (with {Rel and Rel}) any occurrence of pattern LR

[ML IGMiddle MR] RL provided the pattern IGDep is to the left of LR and the pattern
IGHead is to the right of RL.13 After the (optional) bracketing, the brace {Rel occurs
between IGDep and LR, and the brace Rel} occurs between RL and IGHead. Each rule
has its own brace symbol depending on the relationship of the dependent and the
head. The optionality is necessary because a given IG may be related to multiple IGs
as a result of syntactic ambiguities, and all such links have to be produced to arrive
at the final set of parses. It should also be noted that there are rules that deviate from
the template above in that the segment to be skipped may be missing, or may contain
barrier patterns that should not be skipped over, etc.

The symbols L(eft)R(ight), M(iddle)L, MR, and RL are regular expressions that
encode constraints on the bounding channel symbols that are used to enforce some of
the configurational constraints described earlier. Let

RightChannelSymbols = ["1" | "0" | "s" | "o" | "m" | "p" |

"c" | "d" | "t" | "l" | "f" | "i"];

and

LeftChannelSymbols = ["1" | "0" | "S" | "O" | "M" | "P" |

"C" | "D" | "T" | "L" | "F" | "I"];

These four regular expressions are defined as follows:

1. The regular expression LR = ["@" ")" "0" ["0"]* ">"] checks that

a. The matching IG is a word-final IG (has a @ marker)
b. The right-side topmost channel is empty (channel symbol

nearest to) is 0)
c. The IG is not linked to any other in any of the lower channels
d. No links in any of the lower channels cross into this segment

(that is, there are no 1s in lower channels.)

These conditions imply that the only channel symbol that may appear in
the right side of a dependent IG is 0.

2. The regular expression ML = ["<" LeftChannelSymbols* "0" "("]

ensures that the topmost channel is empty, but it does not constrain the
symbols in the lower channels, if any, as there may be other links ending
at the matching IG.

3. Similarly, the regular expression
MR = [")" "0" RightChannelSymbols* ">"] also ensures that the
topmost channel is empty, but it does not constrain the symbols in the
lower channels, if any, as there may be other links starting at the
matching IG.

12 It is possible that the pattern to be skipped over can be specified by more complex patterns.
13 We use the symbols {Rel and Rel} as generic bracketing delimiters.

529

Oflazer Dependency Parsing

4. The regular expression
RL =["<" [LeftChannelSymbols* - $1] "0" "("] also ensures that
the topmost channel is empty. Note that since the matching IG is the IG
of the head, multiple dependency links may end at the matching IG, so
there are no constraints on the symbols in the lower channels, but there
cannot be any 1s on the left side, since that would imply a lower link
crossing to the right side.

For instance, the rule
[LR [ML AnyIG MR]* RL] (->) "{SBJ" ... "SBJ}" ||

NominativeNominalA3pl _ FiniteVerbA3sgA3pl;

is used to bracket a segment starting right after a plural nominative nominal, as subject
of a finite verb somewhere on the right, with either +A3sg or +A3pl number-person
agreement (allowed in Turkish). In this rule, the regular expression Nominative-

NominalA3pl is defined as follows:

[(RootWord) ["+Noun" |"+Pron"] (NominalType) "+A3pl"

PossessiveAgreement "+Nom"]

and it matches any nominal IG (including any derived nominals) with nominative
case and +A3pl agreement. There are a number of points to note in this expression:

1. (. . .) indicates optionality: The RootWord, a regular expression matching
a sequence of one or more characters in the Turkish alphabet, is optional,
since this may be a derived noun for which the root would be in a
previous IG.

2. NominalType, another optional component, is a regular expression
matching possible minor part-of-speech tags for nouns and pronouns.

3. PossessiveAgreement is a regular expression that matches all possible
possessive agreement markers.

4. The nominal has third-person plural agreement and nominative case.

The order of the components of this regular expression corresponds to the order of
the morphological feature symbols produced by the morphological analyzer for a
nominal IG. The regular expression FiniteVerbA3sgA3pl matches any finite-verb IG
with either +A3sg or +A3pl number-person agreement. The regular expression AnyIG

matches any IG.
All the rules in the dependency grammar written in the form described are grouped

together into a parallel bracketing regular expression defined as follows:

Bracket = [

[LR [ML IGMiddle1 MR]* RL] (->) "{Rel1" ... "Rel1}"
|| IGDep1 IGHead1,,

[LR [ML IGMiddle2 MR]* RL] (->) "{Rel2" ... "Rel2}"
|| IGDep2 IGHead2,,

. . .

[LR [ML IGMiddlen MR]* RL] (->) "{Reln" ... "Reln}"
|| IGDepn IGHeadn

];

530

Computational Linguistics Volume 29, Number 4

where left-hand-side patterns and dependent and head IGs are specified in accordance
with the rule format given earlier. {Reli and Reli} are pairs of braces; there is a distinct
pair for each syntactic relation to be identified by these rules (and not necessarily a
unique one for each rule). This set of rules will produce all possible bracketings of the
input IG sequence, subject to the constraints specified by the patterns. This overgen-
eration is then filtered (mostly at compile time and not at parse time) by a number of
additional configurational and linguistic constraints that are discussed shortly.

6.4 Constructing the Parsing Transducer
In this section, we describe the components of the parsing transducer. As stated earlier,
links are established in a number of iterations. Each iteration mainly consists of an
application of a parsing transducer followed by a filtering transducer that eliminates
certain redundant partial parse configurations.14

The parsing transducer consists of a transducer that inserts an empty channel
followed by transducers that implement steps 2 to 4 described at the beginning of
section 6.2.

We can write the following regular expression for the parser transducer as15

Parser = AddChannel

.o.

Bracket

.o.

FilterEmptySegments

.o.

MarkChannels

.o.

RemoveBraces;

The transducer AddChannel is a simple transducer that adds a pair of 0 channel sym-
bols around the (...) in the IGs. It implements step 1 in section 6.2. The transducer
Bracket was defined in the previous section. It implements step 2 described in sec-
tion 6.2.

Since the bracketing rules are nondeterministic, they will generate many config-
urations in which certain segments in the stacked channels will not be used. A rule
may attempt to establish a link in the topmost channel even though the correspond-
ing segment is not utilized in a previous channel (e.g., the corresponding segment of
one of the previous channels may be all 0s). One needs to eliminate such redundant
configurations after each iteration to prevent their proliferation at later iterations of
the parser. Checking whether the segment just underneath the topmost channel is
empty has worked perfectly in our experiments in that none of the parses selected
had any empty segments that were not detected by this test. The regular expression
FilterEmptySegments filters these configurations, an example of which is depicted in
Figure 7(b).16

14 We use the term configuration to denote an encoding of a (partial) dependency parse as a string of
symbols, as described in section 6.1.

15 The .o. operator denotes the composition operation (denoted using ◦ in section 5) for finite-state
transducers in the XRCE regular expression language.

16 Incorporating this configurational constraint into the bracketing phase implies that each rule will have
a check encoding the fact “it is not the case that all symbols in the channel immediately below are 0,”
which makes all rules a bit awkward. Incorporating this as a separate postbracketing constraint is
simpler. Since all compositions are done at compile time, no additional penalty is incurred.

531

Oflazer Dependency Parsing

The transducer MarkChannels implements step 3 in section 6.2. This transducer
modifies the channel symbols to mark a link:

• The new (topmost) right channel symbol in the IG just to the right of the
opening brace is modified to a link start symbol (one of the symbols s,

o, m, p, c, d, t, l, f, i).

• The new (topmost) right channel symbols on both sides of all the IGs
fully bracketed by the braces (all IGs except the dependent and head
IGs) are modified to 1; this is necessary so that that segment of the
channel can be claimed and used for detecting crossing links.

• The new (topmost) left channel symbol in the IG just to the left of the
closing brace is modified to a link end symbol (one of the symbols S, O,

M, P, C, D, T, L, F, I).

Finally, the transducer RemoveBraces removes the braces.17 It should be noted that the
transducer for Parse is computed off-line at compile time, so that no composition is
done at parse time.

The parsing scheme described above is bottom up, in that the links between closest
head-dependent pairs are established first, in the lowest channel. Subsequent longer-
distance links are established in later stages as long as they do not conflict with links
established in lower channels. It is also conceivable that one could employ a top-down
parsing scheme linking all pairs that are far apart, again checking for configurational
constraints. If full nondeterminism is maintained in the bracketing step, it really does
not matter whether one uses bottom-up or top-down parsing. Bottom-up parsing,
however, offers certain advantages in that various (usually linguistically motivated)
constraints that have to hold between nearby pairs or pairs that have to be immediately
sequential can be enforced at an earlier stage by using simpler regular expressions.
These constraints help prune the intermediate parse strings.

6.5 Dependency Structures with Both Left-to-Right and Right-to-Left Links
Although the formulation up until now has been one for dependency structures in-
volving left-to-right dependency links, the approach presented above can handle a
dependency grammar with both left-to-right and right-to-left links. In this section, we
will outline the details of the changes that would be needed in such a formulation
but will then go ahead with the left-to-right implementation, as that forms the basis
of our implementation for Turkish, for which left-to-right links suffice for all practical
purposes.

Incorporating the right-to-left links into the approach would require the following
modifications to the formulation:

1. The right-to-left links would use the same representation as the
left-to-right links, except they would be distinguished by the symbols
marking the links at the dependent and head IG sites. With the
left-to-right links described so far, lowercase link symbols on the right
side of an IG mark the dependent IG and uppercase symbols on the left

17 The details of the regular expressions for these transducers are rather uninteresting. They are
essentially upper-side to lower-side contextual-replace regular expressions. For instance, RemoveBraces
maps all brace symbols on the upper side to ε on the lower side.

532

Computational Linguistics Volume 29, Number 4

Figure 8
Bidirectional dependency links.

side of the IG mark the head IG (which follows the dependent IG in
linear order). We would still use the same conventions for right-to-left
links, except that we could have head and dependent IG markers on
both sides of the channel representation. This is shown graphically in
Figure 8. So a right-to-left link would have a lowercase link mark on the
left side of the dependent IG and an uppercase link mark on the right
side of the head IG to the left of the dependent IG.

2. With both left-to-right and right-to-left rules, we would need two
different rule formats. The rule format for left-to-right links would be
slightly different from the format given earlier:

[LRl [ML IGMiddle MR]* RLl] (->) "{Rel-left-to-right"
... "Rel-left-to-right}"

|| LL IGDep IGHead The

rule format for right-to-left links would be:
[LRr [ML IGMiddle MR]* RLr] (->) "{Rel-right-to-left"

... "Rel-right-to-left}"
|| IGHead IGDep RR

3. Since nothing in the format of the rules indicates the direction of the
link, the direction would need to be indicated by the type of braces that
are used to (temporarily) mark the segment claimed for the link. For
instance, for a left-to-right rule to link a subject IG to a verb IG, we
would use braces {SBJ-left-to-right and SBJ-left-to-right} and for
a right-to-left rule (for the same kind of relation), we would use symbols
{SBJ-right-to-left and SBJ-right-to-left}. The transducer that
inserts the appropriate markers for links (MarkChannels in section 6.4)
would then execute the appropriate action based on the type and the
direction indication of the delimiting braces. For left-to-right braces it
will insert the (lowercase) link start symbol to the right side of the left
brace and the (uppercase) link end symbol to the left side of the right
brace. For right-to-left braces, it will insert the link start symbol to the
left side of the right brace and the link end symbol to the right side of
the left brace.

4. The regular expressions checking the channel symbols around the
dependent and head IGs would be different for the two types of rules.
This is basically necessitated by the fact that since the IGs could now
have links outgoing from both sides, checks have to be made on both
sides:

• LRl in left-to-right rules would check that the dependent IG is a
word-final IG and is not already linked and that no links are

533

Oflazer Dependency Parsing

crossing in or out. So it would function like LR, described in
section 6.3.

• LL, just to the left of the IGDep pattern, would also make sure
that the IG is not linked, via a right-to-left link, to an IG further
to the left.

• RLl would function just like RL, described in section 6.3.

• LRr, which, for right-to-left rules, would be constraining the left
channel symbols of the head IG, would need only to ensure that
the top channel is available for a link and that no other links are
crossing in and out.

• RLr would ensure that the dependent IG is not linked to any IG
to the left and that there are no links crossing, and that the top
channel is available.

• RR, just to the right of IGDep in the right-to-left rule, would
make sure that the dependent IG is not linked to any IG to the
right and would additionally check that the top channel is
available and that no links are crossing.

There is, however, a potential problem for a grammar with both left-to-right and
right-to-left links. Robinson’s axioms (see section 3) do not seem to disallow cyclic
dependency links (unless the antisymmetry is interpreted to apply over the transitive
closure of the “depends on” relationship), but configurations involving cycles are not
assumed to correspond to legitimate dependency structures.

When both left-to-right and right-to-left links exists in a grammar, it is conceivable
that two left-to-right rules may separately posit two left-to-right links, so that IG A
links to IG B, IG B (or the word-final IG of the word to which B belongs) links to IG
C, and later in a subsequent iteration, a right-to-left rule posits a link from IG C (or
the word-final IG of the word to which C belongs) to IG A, where IG A precedes IG B,
which precedes IG C in linear order. An implementation for a grammar would have
to recognize such circular structures and eliminate them. It is possible to filter some of
these cyclic configurations using a finite-state filter, but some will have to be checked
later by a non-finite-state procedure.

If all but one of the links forming a cycle are established in the same channel (e.g.,
following the example above, the links from IG A to IG B and from IG B to IG C
are established in the next-to-the-topmost channel), the cycle-forming link has to be
established in the (current) topmost channel (that is, the right-to-left link from IG C
to IG A has to be established there; otherwise the configuration will be filtered by the
rule that says links have to established as the earliest possible channel). In order for
a cycle to form in this case, IGs A, B, and C with have to be in sequential words, and
the cycle-inducing link and the other links in the “other” direction will all be side by
side. A set of simple regular expressions can recognize if a series of pairs of link start
and link end symbols in one direction all appearing in the next-to-top channel (i.e.,
the second symbol to the left and right of (and), respectively, are surrounded by a
link end–link start pair for the cycle-inducing link in the other direction) and kill any
such configurations.

If, however, cycles are induced by links appearing in more than two different chan-
nels, then there is no elegant way of recognizing these in the finite-state framework,
and such cases would have to be checked through other means.

534

Computational Linguistics Volume 29, Number 4

6.6 Iterative Application of the Parser
Full parsing consists of iterative applications of the Parser transducer until a fixed
point is reached. It should be noted that in general, different dependency parses of a
sentence may use different numbers of channels, so all these parses have to be collected
during each iteration.

Let Sentence be a transducer that represents the word sequence. The pseudocode
for iterative applications of the parser is given as follows:

Map sentence to a transducer representing a lattice of IGs

M = [Sentence .o. MorphologicalAnalyzer];

Initialize Parses

Parses = { };

i = 0;

while (M.l != { } && i < MaxIterations) {

Parse and filter the current M

X = M .o. Parse .o. SyntacticFilter;

Extract any configurations which correspond to parses

Partial = X .o. OnlyOneUnlinked;

and union with the Parses transducer

Parses = [Parses | Partial];

filter any stale configurations

M = [X - Partial] .o. TopChannelNotEmpty;

i = i+1;

}

Leaving the details of the transducer SyntacticFilter, a filter that eliminates config-
urations violating various linguistically motivated constraints, to a later section, this
pseudocode works as follows: First, the sentence coded in Sentence is composed with
the MorphologicalAnalyzer, which performs full morphological analysis of the tokens
in the sentence along with some very conservative local morphological disambigua-
tion. The resulting transducer encodes the sentence as a lattice representing all relevant
morphological ambiguities. It is also possible to disambiguate the sentence prior to
parsing with a tagger and present the parser with a fully disambiguated sentence.

During each iteration, M encodes as a transducer, the valid partial-dependency con-
figurations. First X is computed by applying the Parse and SyntacticFilter trans-
ducers, in that order, to M. At this point, there may be some complete parses, that is,
configurations that have all except one of their word-final IGs linked (e.g., a parse in
which every IG is linked to the next IG would use only the first channel, and such
a parse would be generated right after the first iteration.) The transducer X encoding
the result of one iteration of parsing is filtered by OnlyOneUnlinked, defined as

OnlyOneUnlinked = ~[[$["<" LeftChannelSymbols*

"(" AnyIG "@" ")"

["0" | 1]* ">"]]^ > 1];

This would be read as “It is not the case that there is more than one instance of word-
final IGs whose right channel symbols do not contain any outgoing link marker.”18

This filter lets only those configurations that have all their required links established,

18 Note that this constraint is for a grammmar with left-to-right links.

535

Oflazer Dependency Parsing

that is, all word-final IGs, except one, are linked (only one word-final IG has all of its
right channel symbols as 0s and 1s.) Any such parses in Partial are unioned with
Parses (initially empty) and removed from X to give the M for the next iteration. Any
configurations among the remaining ones (with no links in the most recently added
channel, because of optionality in bracketing) are filtered, since these will violate the
empty-channel constraint (see Figure 7(b)). This is achieved by means of composition,
with the transducer TopChannelNotEmpty defined as follows:

TopChannelNotEmpty = ~[["<" LeftChannelSymbols* "0"

"(" AnyIG ("@") ")" "0"

RightChannelSymbols* ">"] *] ;

This filter would be read as “It is not the case that all topmost channel symbols in a
configuration are all 0s.” Thus configurations in which all most recent channel symbols
are 0 are filtered. If the lower language of M (denoted by M.l) becomes empty at this
point (or we exceed the number of maximum number of iterations), the iteration exits,
with Parses containing the relevant result configurations. MaxIterations is typically
small. In the worst case, the number of iterations one would need would equal the
number of word-final IGs, but in our experiments parsing has converged in five or six
iterations, and we have used eight as the maximum.

6.7 Handling Coordinating Conjunctions
Headless constructions such as coordinating conjunctions have been one of the weaker
points of dependency grammar approaches. Our implementation of coordinate con-
junction constructs essentially follows the formulation of Järvinen and Tapanainen
(1998). For a sequence of IGs like

D1 . . .C . . .D2 . . .CDk . . .H

where Di are the dependent IGs that are coordinated and C represents the conjunction
IGs (for, (comma), and, and or), and H is the head IG, we effectively thread a “long
link” (possibly spanning multiple channels) from D1 to H. If the link between Dk and
H is labeled L, then dependent Di links to the following C with link L, and this C links
to Di+1 with L. This is conceptually equivalent to the following: The “logical” link
with label L from conjoined dependent X and Y to their head Z is implemented with
three actual links of type L: X–and, and–Y, and Y–Z. If there are additional conjunctions
and conjuncts, we continue to add (as required) one link of type L per word: Linking
conjoined dependents (W and X and Y) to Z is implemented with links W–and, and–X,
X–and, and–Y, and Y–Z.

One feature of Turkish simplifies this threading a bit: The left conjunct IG has to
immediately precede the conjunction IG. The rules that do not involve conjunctions
establish the link between Dk and H. For each such rule, we need two simple rules: The
first rule links a dependent Di, (i < k), to the conjunction immediately following. Since
the link type is almost always determined by the inflectional features of the dependent,
this linking can be done (ambiguously in a very few cases in which dependent features
do not uniquely determine the link type). The second rule links the conjunction to the
right conjunct. Note that this applies only to conjunct IGs that have already been
linked to from their left conjunct. Since the outermost link symbol on the left side of a
conjunction IG identifies the relation (because the left conjunct is immediately to the
left of this IG), the link emanating from the conjunction to the right can be made to
land on an IG that agrees with the left conjunct in relevant features.

536

Computational Linguistics Volume 29, Number 4

Figure 9
Link configurations for conjunction ambiguity.

When we have two groups of conjoined constructs

D1 C . . .D2 C . . .Dk . . .H1 C . . .H2 C . . .Hl

the rightmost conjunct of the first group, Dk, will alternately attach to H1, H2, . . . , Hl.
In the first case, the complete first conjunction group links Dk to H1, but not to the rest.
In the second case, the complete first conjunction group links to the conjunction of H1
and H2, which are then conjoined with H3 through Hl. In the last case, the complete
first group links to the complete conjunction of H1, H2, . . . , to Hl. In all cases, the
links from H1 all the way to Hl are independently threaded. A number of additional
constraints also filter situations in which a conjoined head has both conjoined and
locally attached dependents of the same type, by checking that the left channel symbols
for these are not interleaved with other symbols. Figure 9 provides an example for
this kind of conjunction ambiguity. In this implementation we have not attempted to
handle circumscribing conjunctions such as the equivalents of either . . . or.

6.8 Enforcing Syntactic Constraints
The rules linking the IGs are overgenerating in that they may generate configurations
that may violate some general or language-specific constraints. For instance, more than
one subject or one object may attach to a verb, more than one determiner or possessor
may attach to a nominal, an object may attach to a verb that is then passivized in the
next IG, or a nominative personal pronoun may be linked as a direct object (which is
not possible in Turkish).

Some of the constraints preventing these configurations can be encoded in the
bracketing rule patterns. For instance, a rule for linking a nominal IG to a verb IG
as a subject may check, using a suitable regular expression, the left-hand channel
symbols of the verb IG to make sure that it does not already contain an incoming
subject link. There are also a number of situations in which the determination of a link
depends on a pattern that is outside the sequence of the IGs from dependent to the
head IG specified in a bracketing rule (but nevertheless in the same word in which
the head IG is located). For instance, in Turkish, present participles are considered

537

Oflazer Dependency Parsing

modifiers derived from verbs. The verb part is the head of the sentential clause with
a subject gap. Thus if a nominal IG attaches to a verb IG as a subject, but the verb
IG is followed by another IG indicating that it is a present participle, then we should
kill this configuration, since such verbs are not allowed to have subjects. It is also
possible to incorporate almost all lexicalized argument structure–related constraints
for dealing with intransitive and transitive verbs, provided the lexicon component
(the morphological analyzer in our case) produces such lexically determined features.

We have chosen not to encode such constraints in the general format of the rules
and to implement them instead as filters that eliminate configurations produced by
the parsing. We have observed that this makes the linking rules more perspicuous and
easier to maintain.

Each constraint is implemented as a finite-state filter that operates on the outputs
of the Parse transducer by checking the symbols denoting the relations. For instance,
we can define the following regular expression for filtering out configurations in which
two determiners are attached to the same IG:

AtMostOneDeterminer =

["<" [~[[$"D"]^>1] & LeftChannelSymbols*] "(" AnyIG ("@") ")"

RightChannelSymbols+ ">"]*;

This regular expression constrains the form of the configurations generated by parsing.
Note that this transducer lets through a sequence of zero or more IGs, none of which
have more than one D symbol (indicating an incoming determiner link) among the
left channel symbols. The crucial portion at the beginning of the regular expression
says: “For any IG, it is not the case that there is more than one substring containing
D among the left channel symbols of that IG (that is, the intersection of the symbols
between < and (with LeftChannelSymbols does not contain more than one D).”

We can provide the following finite-state filter as an example in which the violat-
ing configurations can be found by checking IGs following the head IG. For instance,
the configurations in which subjects are linked to verbs which are then derived into
present participles would be filtered by a finite-state filter like

NoSubjectForPresentPart = ~$["<" $["S"] & LeftChannelSymbols*

"(" Verb ")"

RightChannelSymbols* ">"

"<" LeftChannelSymbols*

"(" PresentParticipleIG ("@") ")"

RightChannelSymbols* ">"]

which says that the configuration does not contain, among the left-side channel sym-
bols, a verb IG with a subject marker followed by a present participle IG.

The following are examples of the constraints that we have encoded as finite-state
filters:

• At most one subject can link to a verb.

• At most one direct object can link to a verb.

• At most one dative (locative, ablative, instrumental) adjunct can link to a
verb.

• Finite verbs derived from nouns and adjectives with zero suffixes do not
have objects (as they are the equivalents of be verbs).

538

Computational Linguistics Volume 29, Number 4

• Reflexive verbs do not get any overt objects.

• A postposition must always have an object to its immediate left (hence
such a dependent nominal cannot link to some other head.)19

All syntactic constraints can be formulated similar to those given in the list. All such
constraints Cons1, Cons2 . . . ConsN can then be composed to give one transducer that
enforces all of these:

SyntacticFilter = [Cons1 .o. Cons2 .o. Cons3 .o.o. ConsN]

In the current implementation we use a total of 28 such constraints.

6.9 Robust Parsing
It is possible that either because of grammar coverage, or because of ungrammati-
cal input, a parse with only one unlinked word-final IG may not be found. In such
cases, Parses in the pseudocode for parsing presented in section 6.6 would be empty.
One might, however, opt to accept parses with k > 1 unlinked word-final IGs when
there are no parses with < k unlinked word-final IGs (for some small k). This can
be achieved by using Karttunen’s lenient composition operator (Karttunen 1998). Le-
nient composition, notated as .O., is used with a generator–filter combination. When
a generator transducer, G, is leniently composed with a filter transducer, F, the result-
ing transducer, G .O. F, has the following behavior when an input is applied: If any
of the outputs of G in response to an input string satisfy the filter F, then G .O. F

produces just these as output. Otherwise, G .O. F outputs what G outputs.
Let Unlinked i denote a regular expression that accepts parse configurations with

no more than i unlinked word-final IGs. For instance, for i = 2, this would be defined
as follows:

Unlinked_2 = ~[[$["<" LeftChannelSymbols* "(" AnyIG "@" ")"

["0" | 1]* ">"]]^ > 2];

which rejects configurations having more than two word-final IGs whose right channel
symbols contain only 0s and 1s (i.e., they do not link to some other IG as a dependent).
We can augment the pseudocode given in section 6.6 as follows:

if (Parses == { }) {

PartialParses = M .O. Unlinked_1 .O. Unlinked_2 .O. Unlinked_3;

}

This will have the parser produce outputs with up to three unlinked word-final IGs
when there are no outputs with a smaller number of unlinked word-final IGs. Thus, it is
possible to recover some of the partial-dependency structures when a full-dependency
structure is not available for some reason. The caveat would be, however, that since
Unlinked 1 is a very strong constraint, any relaxation would increase the number of
outputs substantially. We have used this approach quite productively during the de-
velopment of the dependency linking rules to discover coverage gaps in our grammar.

19 In fact, the morphological analyzer produces, for each postposition, a marker denoting the case of the
preceding nominal as a subcategorization feature. This is used in a semilexicalized fashion while
linking nominals to their head postpositions.

539

Oflazer Dependency Parsing

7. Experiments with Dependency Parsing of Turkish

Our implementation work has mainly consisted of developing and implementing the
representation and finite-state techniques involved here, along with a nontrivial gram-
mar component; we have not attempted to build a wide-coverage parser that is ex-
pected to work on an arbitrary test corpus. Although we have built the grammar
component manually using a very small set of sentences, it is conceivable that fu-
ture work on inducing (possibly statistical) dependency grammars will exploit de-
pendency treebanks, which are slowly becoming available (Hajic̆ 1998; Oflazer et al.
2003).

The grammar has two major components. The morphological analyzer is a full-
coverage analyzer built using XRCE finite-state tools, slightly modified to generate
outputs as a sequence of IGs for a sequence of words. When an input sentence (again
represented as a transducer denoting a sequence of words) is composed with the mor-
phological analyzer (see the pseudocode given in section 6.6), a transducer for the
lattice representing all IGs for all morphological ambiguities (remaining after a light
morphological disambiguation) is generated. The dependency relations are described
by a set of about 60 rules much like the ones exemplified earlier. These rules were
developed using a small set of 30 sentences. The rules were almost all nonlexical,
establishing links of the types listed earlier. There is an additional set of 28 finite-
state constraints that impose various syntactic and structural constraints. The resulting
Parser transducer has 13,290 states and 186,270 transitions, and the SyntacticFilter

transducer has 3,800 states and 134,491 transitions. The combined transducer for mor-
phological analysis and (very limited) disambiguation has 100,103 states and 243,533
arcs.

The dependency grammar and the finite-state dependency parser were tested on
a set of 200 Turkish sentences, including the 30 that were used for developing and
testing the grammar. These sentences had 4 to 43 words, with an average of about
18 words. Table 1 presents our results for parsing this set of 200 sentences. This table
presents the minimum, the maximum, and the average of the number of words and
IGs per sentence, the number of parser iterations and the number of parses generated.
(The number of iterations includes the last iteration where no new links are added.)
There were 22 sentences among the 200 that had quite a number of verbal adjuncts
that function as modifiers. These freely attach to any verb IG, creating an analog of
the PP attachment problem and giving rise to a very large number of parses. The last
row in the table gives the minimum, maximum and the average number of parses
when such sentences were not considered.

To impose a ranking on the parses generated based on just structural properties
of the dependency tree, we employed Lin’s (1996) notion of structural complexity. We
measured the total link length (TLL) in a dependency parse counting the IGs the links
pass over in the linear representation and ordered the dependency parses based on
the TLL of the dependency tree. We classified the sentences into six groups:

1. Sentences that had a single minimum TLL parse which was correct. There were
a total of 39 sentences (19.5%) in this group.

2. Sentences that had more than one parse with the same minimum TLL and the
correct parse was among these parses. There were 58 sentences (29.0%) in this
group. Thus for a total of 97 (48.5%) sentences, the correct parse was
found among the parses with the minimum TLL. In these cases the
average number of parses with the minimum TLL was about 6

540

Computational Linguistics Volume 29, Number 4

(minimum 1 parse and maximum 38 parses with the same minimum
TLL).

3. Sentences for which the correct parse was not among the minimum TLL parses but
was among the next-largest TLL group. There were 29 (14.5%) sentences in
this group.

4. Sentences for which the correct parse was not among the smallest and the
next-smallest TLL groups, but among the next three smallest TLL groups. There
were a total of 26 (13%) sentences in this group.

5. Sentences for which the parser generated parses, but the correct parse was not
among the first five groups. There were 26 (13%) such sentences. For these,
we did not check any further and assumed there were no correct parses.
The parses that were generated usually used other (morphological)
ambiguities of the lexical item to arrive at a parse.

6. Sentences for which no parses could be found, usually as a result of the lack of
coverage of the dependency grammar and the morphological analyzer. There
were 22 (11%) sentences in this group.

It seems that for quite a number of sentences (groups 1–3 in the list), a relatively
small number of parses have to be processed further with any additional lexical and/or
statistical constraints to extract the correct parse. Although to obtain the statistics in
items 1–6, we had to extract the full set of parse strings from the transducer that
encoded the parses compactly, one does not have to do this. The parses with the
shortest link length can be found by treating the resulting parse lattice transducer as a
directed acyclic graph and finding the path with the minimum number of 1 symbols on
it from the start state node to the final state node using one of the standard shortest-
path algorithms (e.g., Dijsktra’s algorithm [Cormen, Leiserson, and Rivest 1990]).20

This is because paths from the start state to the final state are string encodings of the
dependency trees. The 1 symbols in the representation add up to the total link length of
the encoded dependency tree. Since the representation of the tree is quite convoluted,
the 1s in a block of 1s in the string representation all belong to different links stacked
on top of each other. Thus we “count” the length of the links in an “interleaved”
fashion. On the other hand, Dijkstra’s algorithm may not be very useful, since one
may need to extract the k shortest paths to select from, perhaps, later, with more-
informed criteria than link length, such as lexical and statistical information. For this
we may use an algorithm which finds the k shortest paths between a source and a
sink node in a directed graph (e.g., Eppstein 1998).

The complete parser, including about 60 linking rules and the 28 syntactic con-
straints, is defined using about 240 regular expressions coded using XRCE regular
expression language. These regular expressions compile in about one minute on Pen-
tium III 700 MHz (running Linux) into the Parser and SyntacticFilter transducers.
The parser iterations are handled by a script interpreted by the XRCE finite state tool,
xfst.

Parsing takes about a second per sentence, including lookup in the morphological
analyzer, which is performed with a composition. With manually completely morpho-
logically disambiguated input, parsing is essentially instantaneous.21

20 I thank an anonymous reviewer for suggesting this.
21 We performed a simple experiment with 14 sentences that were manually morphologically

541

Oflazer Dependency Parsing

Table 1
Statistics from parsing 200 Turkish sentences.

Minimum Maximum Average
Words/sentence 4 43 18.2
IGs/sentence 4 59 22.5
Parser iterations 3 8 5.0
Parses/sentence 1 12,400 408.7
Parses/sentence 1 285 55.4
excluding the 22 sentences
with > 1,000 parses

Input Sentence: Dünya Bankası Türkiye Direktörü hükümetin izlediǧi ekonomik pro-
gramın sonucunda önemli adımların atıldıǧını söyledi.
English: The World Bank Turkey director said that as a result of the economic program
followed by the government, important steps were taken.
Parser output after three iterations:
Parse1:
<000(dUnya+Noun+A3sg+Pnon+Nom@)00c><C00(banka+Noun+A3sg+P3sg+Nom@)0c0>
<010(tUrkiye+Noun+Prop+A3sg+Pnon+Nom@)01c><CC0(direktOr+Noun+A3sg+P3sg+Nom@)s00>
<001(hUkUmet+Noun+A3sg+Pnon+Gen@)10s><S01(izle+Verb+Pos)100><001(+Adj+PastPart+P3sg@)1m0>
<011(ekonomik+Adj@)11m><MM1(program+Noun+A3sg+Pnon+Gen@)10p>
<P01(sonuC+Noun+A3sg+P3sg+Loc@)1l0>
<011(Onem+Noun)110><011(+Adj+With@)11m><M11(adIm+Noun+A3pl+Pnon+Gen@)11s>
<S11(at+Verb)110><011(+Verb+Pass+Pos)110><011(+Noun+PastPart+A3sg+P3sg+Acc@)11o>
<OLS(sOyle+Verb+Pos+Past+A3sg@)000>

Parse2:
<000(dUnya+Noun+A3sg+Pnon+Nom@)00c><C00(banka+Noun+A3sg+P3sg+Nom@)0c0>
<010(tUrkiye+Noun+Prop+A3sg+Pnon+Nom@)01c><CC0(direktOr+Noun+A3sg+P3sg+Nom@)s00>
<001(hUkUmet+Noun+A3sg+Pnon+Gen@)10s><S01(izle+Verb+Pos)100><001(+Adj+PastPart+P3sg@)1m0>
<011(ekonomik+Adj@)11m><MM1(program+Noun+A3sg+Pnon+Gen@)10p>
<P01(sonuC+Noun+A3sg+P3sg+Loc@)1l0>
<011(Onem+Noun)110><011(+Adj+With@)11m><M11(adIm+Noun+A3pl+Pnon+Gen@)11s>
<SL1(at+Verb)100><001(+Verb+Pass+Pos)100><001(+Noun+PastPart+A3sg+P3sg+Acc@)10o>
<O0S(sOyle+Verb+Pos+Past+A3sg@)000>small

Figure 10
Sample input and output of the parser. The only difference in the two parses is in the locative
adjunct attachment (to verbs at and söyle). The IGs that differ in the two parses are
<S11(at+Verb)110> versus <SL1(at+Verb)100>, and <OLS(sOyle+Verb+Pos+Past+A3sg@)000>
versus <O0S(sOyle+Verb+Pos+Past+A3sg@)000>.

Figure 10 presents the input and the output of the parser for a sample Turkish
sentence: Dünya Bankası Türkiye Direktörü hükümetin izlediǧi ekonomik programın sonucunda
önemli adımların atıldıǧını söyledi. (The World Bank Turkey director said that as a result
of the economic program followed by the government, important steps were taken.)
Figure 11 shows the output of the parser processed with a Perl script to provide a
more human-readable presentation:

disambiguated. For this set of sentences, there were about 7 parses per sentence. The average number
of parses for these sentences when all their morphological ambiguities were considered was 15. When
the two sentences with the highest number of parses were removed from this set, the corresponding
numbers were 3 parses per sentence and 11 parses per sentence.

542

Computational Linguistics Volume 29, Number 4

s--
c---------------C s m---------------M

c---C c c---CC s s---S m m--MM p-
......
dUnya banka tUrkiye direktOr hUkUmet izle ekonomik program
Noun Noun Noun Noun Noun Verb Adj Adj@ Noun
A3sg A3sg Prop A3sg A3sg Pos PastPart A3sg
Pnon P3sg A3sg P3sg Pnon P3sg@ Pnon
Nom@ Nom@ Pnon Nom@ Gen@ Gen@

Nom@

---S
l---L S

--P l m---M s---SL o---O S
.........
sonuC Onem adIm at sOyle
Noun Noun Adj Noun Verb Verb Noun Verb
A3sg With@ A3pl Pass PastPart Pos
P3sg Pnon Pos A3sg Past
Loc@ Gen@ P3sg A3sg@

Acc@

Figure 11
Dependency tree for the second parse.

8. Discussion and Conclusions

We have presented the architecture and implementation of a dependency parser using
an extended finite state. Although the emphasis has been on the description of the
approach, we have developed a dependency grammar for Turkish and have used it to
experiment with a small sample of 200 Turkish sentences. We have also employed a
scheme for ranking dependency parses using the total link length of the dependency
trees, as originally suggested by Lin (1996), with quite promising results. It is possible
to use algorithms for extracting k shortest paths to extract parses from the transducer,
which compactly encodes all dependency parses, and further to rank a much smaller
set of parses using lexical and statistical information whenever available.

Another interesting point that we have noted, especially during the development
of the grammar, is that the grammar rules do not have to pay any real attention to the
sequence of the IGs that do not have anything to do with the current rule (with a very
few exceptions in some special cases in which the rules have to check that links do
not cross a “barrier”). This means that that the grammar of the IG sequence is really
localized to the morphological analyzer and that for the most part the dependency
grammar does not have to “know” about the sequencing of the IGs within a word.

In addition to the reductionistic disambiguator that we have used just prior to
parsing, we have implemented a number of heuristics to limit the number of poten-
tially spurious configurations that result from optionality in bracketing, mainly by
enforcing obligatory bracketing for sequential dependent-head pairs (e.g., the comple-
ment of a postposition is immediately before it, or for conjunctions, the left conjunct
is always the previous IG). Such heuristics force such dependencies to appear in the
first channel and hence prune many potentially useless configurations popping up in
later iterations. Although we have not performed any significant experiments with the
robust parsing technique that we describe in the article, it has been very instrumental
during the process of debugging the grammar. During debugging, when the actual
parser did not deliver any results after a certain number of iterations, we generated
partial parses with up to four unlinked word-final IGs to see where we were having
problems with the coverage and added new linking rules.

543

Oflazer Dependency Parsing

Acknowledgments
This work was partially supported by grant
EEEAG-199E027 from TÜBİTAK (The
Turkish Council on Scientific and Technical
Research). A portion of this work was done
while the author was visiting the
Computing Research Laboratory at New
Mexico State University. The author thanks
Lauri Karttunen of Xerox PARC for making
available XRCE finite-state tools. Mercan
Karahan, currently of Purdue University,
helped substantially with the
implementation of the parser and with the
experimentation. Comments by anonymous
reviewers helped substantially to improve
the article.

References
Abney, Steven. 1996. Partial parsing via

finite-state cascades. Journal of Natural
Language Engineering, 2(4):337–344.

Ait-Mokhtar, Salah and Jean-Pierre Chanod.
1997. Incremental finite-state parsing. In
Proceedings of ANLP’97, pages 72–79, April.

Black, Alan. 1989. Finite state machines
from feature grammars. In Proceedings of
International Workshop on Parsing
Technologies, pages 277–285.

Chanod, Jean-Pierre and Pasi Tapanainen.
1996. A robust finite-state grammar for
French. In John Carroll and Ted Briscoe,
editors, Proceedings of the ESSLLI’96
Workshop on Robust Parsing, pages 16–25,
August.

Chelba, Ciprian, David Engle, Frederick
Jelinek, Victor Jimenez, Sanjeev
Khudanpur, Lidia Mangu, Harry Printz,
Eric Ristad, Ronald Rosenfeld, Andreas
Stolcke, and Dekai Wu. 1997. Structure
and estimation of a dependency language
model. In Processings of Eurospeech’97.

Collins, Michael. 1996. A new statistical
parser based on bigram lexical
dependencies. In Proceedings of the 34th
Annual Meeting of the Association for
Computational Linguistics, pages 184–191.

Collins, Michael, Jan Hajic̆, Lance Ramshaw,
and Christoph Tillman. 1999. A statistical
parser for Czech. In Proceedings of the 37th
Annual Meeting of the Association for
Computational Linguistics, pages 505–512,
June.

Cormen, Thomas H., Charles E. Leiserson,
and Ronald L. Rivest. 1990. Introduction to
Algorithms. MIT Press, Cambridge, MA.

Eisner, Jason. 1996. Three new probabilistic
models for dependency parsing: An
exploration. In Proceedings of the 16th
International Conference on Computational

Linguistics (COLING-96), pages 340–345,
August.

Elworthy, David. 2000. A finite state parser
with dependency structure output. In
Proceedings of International Workshop on
Parsing Technologies.

Eppstein, David. 1998. Finding k-shortest
paths. Siam Journal on Computing,
28(2):652–673.

Giguet, Emmanuel and Jacques Vergne.
1997. From part-of-speech tagging to
memory-based deep syntactic analysis. In
Proceedings of the International Workshop on
Parsing Technologies, pages 77–88.

Grefenstette, Gregory. 1996. Light parsing as
finite-state filtering. In ECAI ’96 Workshop
on Extended Finite State Models of Language,
August.

Grimley-Evans, Edmund. 1997.
Approximating context-free grammars
with a finite-state calculus. In Proceedings
of ACL-EACL’97, pages 452–459.

Hajič, Jan. 1998. Building a syntactically
annotated corpus: The Prague
Dependency Treebank. In Eva Hajicova,
editor, Issues in Valency and Meaning:
Studies in Honour of Jarmila Panenova.
Karolinum–Charles University Press,
Prague, pages 106–132.

Hankamer, Jorge. 1989. Morphological
parsing and the lexicon. In
W. Marslen-Wilson, editor, Lexical
Representation and Process. MIT Press,
Cambridge, MA, pages 392–408.

Hobbs, Jerry R., Douglas Appelt, John Bear,
David Israel, Megumi Kameyama, Mark
Stickel, and Mabry Tyson. 1997. FASTUS:
A cascaded finite state transducer for
extracting information from natural
language text. In Emmanuel Roche and
Yves Schabes, editors, Finite State Language
Processing. MIT Press, Cambridge, MA,
pages 386–406.

Hopcroft, John E. and Jeffrey D. Ullman.
1979. Introduction to Automata Theory,
Languages, and Computation.
Addison-Wesley, Reading, MA.

Järvinen, Timo and Pasi Tapanainen. 1998.
Towards an implementable dependency
grammar. In Proceedings of
COLING/ACL’98 Workshop on Processing
Dependency-Based Grammars, pages 1–10.

Johnson, Mark. 1998. Finite state
approximation of constraint-based
grammars using left-corner grammar
transforms. In Proceedings of
COLING-ACL’98, pages 619–623, August.

Kaplan, Ronald M. and Martin Kay. 1994. Reg-
ular models of phonological rule systems.
Computational Linguistics, 20(3):331–378.

544

Computational Linguistics Volume 29, Number 4

Karttunen, Lauri. 1998. The proper
treatment of optimality theory in
computational linguistics. In Lauri
Karttunen and Kemal Oflazer, editors,
Proceedings of the International Workshop on
Finite State Methods in Natural Language
Processing (FSMNLP), June.

Karttunen, Lauri, Jean-Pierre Chanod,
Gregory Grefenstette, and Anne Schiller.
1996. Regular expressions for language
engineering. Natural Language Engineering,
2(4):305–328.

Kokkinakis, Dimitrios and Sofie Johansson
Kokkinakis. 1999. A cascaded finite state
parser for syntactic analysis of Swedish.
In Proceedings of EACL’99.

Koskenniemi, Kimmo. 1990. Finite-state
parsing and disambiguation. In
Proceedings of the 13th International
Conference on Computational Linguistics
(COLING’90), pages 229–233.

Koskenniemi, Kimmo, Pasi Tapanainen, and
Atro Voutilainen. 1992. Compiling and
using finite-state syntactic rules. In
Proceedings of the 14th International
Conference on Computational Linguistics,
COLING-92, pages 156–162.

Lafferty, John, Daniel Sleator, and Davy
Temperley. 1992. Grammatical trigrams: A
probabilistic model of link grammars. In
Proceedings of the 1992 AAAI Fall Symposium
on Probablistic Approaches to Natural
Language.

Lai, Bong Yeung Tom and Changning
Huang. 1994. Dependency grammar and
the parsing of Chinese sentences. In
Proceedings of the 1994 Joint Conference of 8th
ACLIC and 2nd PaFoCol.

Lin, Dekang. 1995. A dependency-based
method for evaluation of broad-coverage
parsers. In Proceedings of IJCAI’95.

Lin, Dekang. 1996. On the structural
complexity of natural language sentences.
In Proceedings of the 16th International
Conference on Computational Linguistics
(COLING-96).

Melčuk, Igor A. 1988. Dependency Syntax:
Theory and Practice. State University of
New York Press, Albany, NY.

Mohri, Mehryar, Fernando C. N. Pereira,
and Michael Riley. 1998. A rational design
for a weighted finite-state transducer
library. In Derick Wood and Sheng Yu,
editors, Proceedings of the Second
International Workshop on Implementing
Automata (WIA ’97), volume 1436 of
Lecture Notes in Computer Science.
Springer-Verlag, Berlin, pages 144–158.

Nederhof, Mark-Jan. 1998. Context-free
parsing through regular approximation.

In Lauri Karttunen and Kemal Oflazer,
editors, Proceedings of International
Workshop on Finite State Methods in Natural
Language Processing, pages 13–24, Ankara,
Turkey.

Nederhof, Mark-Jan. 2000. Practical
experiments with regular approximation
of context-free languages. Computational
Linguistics, 26(1):17–44.

Oflazer, Kemal. 1993. Two-level description
of Turkish morphology. In Proceedings of
the Sixth Conference of the European Chapter
of the Association for Computational
Linguistics, April. (A full version appears
in Literary and Linguistic Computing, 9(2),
1994).

Oflazer, Kemal, Bilge Say, Dilek Zeynep
Hakkani-Tür, and Gökhan Tür. 2003.
Building a Turkish treebank. In Anne
Abeillé, editor, Treebanks. Kluwer
Academic Publishers, Dordrecht, the
Netherlands.

Pereira, Fernando C. N., and Rebecca N.
Wright. 1997. Finite state approximation
of phrase structure grammars. In
Emmanuel Roche and Yves Schabes,
editors, Finite State Language Processing.
MIT Press, Cambridge, MA.

Robinson, Jane J. 1970. Dependency
structures and transformational rules.
Language, 46(2):259–284.

Roche, Emmanuel. 1997. Parsing with finite
state transducers. In Emmanuel Roche
and Yves Schabes, editors, Finite–State
Language Processing, chap. 8. MIT Press,
Cambrigde, MA.

Roche, Emmanuel and Yves Schabes,
editors. 1997. Finite State Language
Processing. MIT Press, Cambridge, MA.

Sleator, Daniel and Davy Temperley. 1991.
Parsing English with a link grammar.
Technical Report CMU-CS-91-196,
Computer Science Department, Carnegie
Mellon University.

Tapanainen, Pasi and Timo Järvinen. 1997.
A non-projective dependency parser. In
Proceedings of ANLP’97, pages 64–71, April.

van Noord, Gertjan. 1997. FSA utilities: A
toolbox to manipulate finite-state
automata. In Derick Wood,
Darrell Raymond, and Sheng Yu, editors,
Automata Implementation, volume 1260 of
Lecture Notes in Computer Science.
Springer-Verlag, Berlin.

Yüret, Deniz. 1998. Discovery of Linguistic
Relations Using Lexical Attraction. Ph.D.
thesis, Department of Electrical
Engineering and Computer Science,
Massachusetts Institute of Technology,
Cambridge, MA.

