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Abstract

Trajectories are spatio-temporal traces of moving objects which contain valu-
able information to be harvested by spatio-temporal data mining techniques.
Applications like city traffic planning, identification of evacuation routes, trend
detection, and many more can benefit from trajectory mining. However, the
trajectories of individuals often contain private and sensitive information, so
anyone who possess trajectory data must take special care when disclosing this
data. Removing identifiers from trajectories before the release is not effective
against linkage type attacks, and rich sources of background information make
it even worse. An alternative is to apply transformation techniques to map
the given set of trajectories into another set where the distances are preserved.
This way, the actual trajectories are not released, but the distance information
can still be used for data mining techniques such as clustering. In this paper,
we show that an unknown private trajectory can be re-constructed using the
available background information together with the mutual distances released
for data mining purposes. The background knowledge is in the form of known
trajectories and extra information such as the speed limit. We provide ana-
lytical results which bound the number of the known trajectories needed to
reconstruct private trajectories. Experiments performed on real trajectory data
sets show that the number of known samples is surprisingly smaller than the
actual theoretical bounds.
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1. Introduction

The spatio-temporal traces of individuals can now be collected with GPS
devices, GSM phones, RFID tag readers, and by many other similar means.
Banks register time and location information of the financial transactions we
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perform using our credit cards. A growing number of RFID tags are being used
to give us access to, e.g., parking spaces or public transportation. Collected
spatio-temporal data could be used in many ways such as traffic management,
geo-marketing and sometimes for geo-spamming. From the point of view of
data-analysis, the availability of all this information gives us the ability to find
new and interesting patterns about how people move in the public space. On the
other hand, collection of all these time and location pairs of individuals enables
anyone, who observes the data, to reconstruct the movements (the trajectory)
of others with a very high precision. There is a growing concern about this
serious threat to privacy of individuals whose whereabouts are easily monitored
and tracked. Legal and technical aspects of such threats were highlighted at a
recent workshop on mobility, data mining, and privacy [17].

Considering its variety of applications, there is no doubt that the amount of
spatio-temporal data being collected will increase drastically in the future, and
so will the privacy concerns. In order to protect the privacy of individuals, the
first thing to do is to remove personally identifying information from the released
data sets. However, this has been shown not to preserve privacy against linkage
type attacks even for ordinary data sets[19]. For the case of spatio-temporal
data sets, availability of rich background information makes the privacy issues
even more complicated[20]. A safer approach would be to perturb the trajecto-
ries or apply transformations which preserve important properties of the data
such as mutual distances[12]. However, there may still be privacy risks in such
transformations. In this paper we consider distance preserving data transforma-
tions on trajectories, and show that with background information such as a set
of known trajectories and speed limits, an attacker can reconstruct individuals
trajectories with very high precision. In particular, we consider the following
scenario: A malicious person wishes to reconstruct the movements (the “target
trajectory”) of a specific individual. Besides a released set of mutual distances
between a data set of trajectories, which contains the target trajectory, the at-
tacker has some background information, such as the average speed or maximum
speed of the trajectory, and some of the other trajectories in the data set. We
propose a concrete algorithm which can reconstruct the target trajectory from
this information.

Contributions of this work can be summarized as follows: 1) We demonstrate
that trajectories can be reconstructed very precisely with very limited informa-
tion using relatively simple methods. In particular we apply our method to two
real-world data-sets. In one data-set, containing the trajectories of private cars
in Milan, we can reconstruct an unknown trajectory with 500 sample points by
knowing its distance to only 60 known trajectories. This is in sharp contrast
to the 1001 known distances which would be needed to solve the corresponding
system of equations to find the unknown trajectory. 2) We propose a method
which can reconstruct trajectories from a very wide range of continuous prop-
erties (cf. Section 4); the method of known distances is only a special case. Our
method is optimal in the sense that it will eventually find a candidate which
exhausts all the information available about the unknown trajectory.
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2. Related Work

Research efforts on trajectory mining have been boosted by a recent EU
funded research project called “Geographic Privacy-aware Knowledge Discovery
and Delivery” (GeoPKDD) [5]. As the title of the project implies, privacy is an
important aspect of GeoPKDD. In the context of GeoPKDD, many techniques
were proposed to mine useful patterns from trajectories. Some of the recent
results are [6, 14] where in [6] the authors mine for temporal patterns of the form
a →t b meaning that t is the typical time to travel from location a to location
b. Their algorithm needs to know what points of interests the trajectories pass
through, and at which time intervals. Trajectories attracted other research
groups too[10, 11]. In [10], authors give a clustering algorithm which considers
sub-trajectories. The main observation is that sub-parts of trajectories may
follow interesting common patterns, while the trajectories as a whole may be
very different from each other. In [11] authors give a method for finding “hot-
routes” in a given road network, which can help officials in traffic management.

Previous work on spatio-temporal data privacy include anonymization in
location based services. Some of the recent work include [13, 3]. However, they
do not deal with trajectory data. Techniques for trajectory anonymization were
recently proposed in [1] and [16], but privacy risks after data release were not
considered. In another recent work, privacy risks due to distance preserving
data transformations were identified [21], however spatio-temporal data was
not addressed. The privacy risks in trajectory data was addressed in [20] where
authors point out how parts of a trajectory could be used as quasi-identifiers
to discover the rest of the trajectory. In this work, authors assume that the
trajectories are distributed vertically across multiple sites where sites are curious
to learn the rest of the trajectory, and the authors propose methods to prevent
that by suppressing parts of the trajectories before they are published.

In all the algorithms mentioned above for trajectory mining, different proper-
ties of the trajectories are needed. Some methods only need the mutual distances
between trajectories, some need the exact trajectories, and others only need to
know at what times the trajectories pass through certain areas of interest. In
this paper, we show how, even very little, information is enough to recover the
movement behavior of an individual. In particular we demonstrate how an un-
known trajectory can be almost entirely reconstructed from its distance to a
few fixed trajectories.

3. Privacy in Trajectory Data

As more and more data mining techniques aimed at trajectory data are
invented, researchers are forced to ask themselves which kinds of violations of
the privacy of individuals may occur. Defining privacy in trajectory data has
proven to be a very complicated task. In this paper we do not intend to give
any new definition of privacy,[ but limit our attention to the simple case where
an outsider can identify a small area where an individual has been.]
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Consider a car insurance company, who gives discounts to clients who vol-
unteer to install a GPS device in their cars, and submit all GPS data to the in-
surance company (to decease the burden of prof in case of an accident). Besides
being valuable to the insurance company, this GPS data has a considerable value
in other applications such as advertisement placement. The insurance company
may sell “anonymized” versions of the dataset for profit, if they are convinced
(and can convince their clients) that the anonymized data cannot be abused.

Though we do not intend to give a detailed study of possible abuses of
trajectory data, it is clear that a dataset which enables an outsider (from the
advertisement placement company) to identify a few points on a trajectory can
be abused. [Suppose for instance, the dataset reveals that a certain trajectory
“stays” at location A during the night, then stays at location B from approx-
imately 8am to approximately 10am and finally spends the rest of the day at
location C. From this simple information it is not hard to guess that the tra-
jectory belongs to a person living at A, who works at C, and that the person in
question has visited location B for two hours before coming to work.] Correlating
this information with an address registry, the yellow pages, and possibly a small
drive to locations A, B, and C, we may be able to identify the individual and
learn that he is visiting the hospital at location B.

From the example above, we see that even relatively vague information about
a trajectory is enough to reveal information which should be considered private.
[The attack presented in this paper is capable of approximating the movements
of an individual, similar to the example above.]

4. Trajectories and Continuous Properties

In their most general form trajectories are paths in space-time. In practice,
however, trajectories are collected by moving objects with GPS devices, or other
discrete sampling methods, and have to be stored in a format which is suitable
for its intended use. There are many ways to represent and store a trajectory,
but in this paper we focus on the intuitive and common approach of storing a
trajectory as a polyline.

(0,0,0) (1,0,1)

(1.5,0.5,2)(0,0.5,0)

(0.5,0.25,1)

(1.5,0,2)A

B

Figure 1: Two example trajectories with (x,y) and time coordinates.

A discrete trajectory is a polyline represented as a list of sample-points: T =
((x0, y0, t0), . . . , (xn−1, yn−1, tn−1)). We write Ti to represent the ith sample-
point (xi, yi, ti). In most of this paper we think of a trajectory as a column-
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vector in a large vector-space. We use calligraphic letters to refer to the vector
representation of a trajectory. The vector representation of a trajectory T is:
T = (x0, y0, t0, . . . , xn−1, yn−1, tn−1)T ∈ R3n. In this case Ti is the ith element
of the vector (i.e. T0 = x0,T1 = y0, . . . ,T3n−1 = tn−1). [Figure 1 shows two
moving objects on a road map. The full lines are the actual movements of the
two objects, and the dots are the sampled locations which makes the data set.
Due to measurement inaccuracy some of the sample points are not on the actual
paths of the moving objects. In this paper “trajectory” refers to the polyline
connecting the sample points: the dashed lines in the figure. Algorithms used to
remove measurement inaccuracy are out of the scope of this paper.]

In this paper we assume that trajectories 1) are aligned2 and 2) have constant
sampling rate (ti+1 − ti = ∆t, for some constant ∆t). Most of the distance
measures defined below are most meaningful when trajectories satisfy these two
conditions. Algorithms for ensuring these conditions can be found in [7]. In
consequence we discard the time component and represent a trajectory as a list
of (x, y) coordinates (or a vector in R2n). [The two trajectories in Figure 1 are
aligned; they are both sampled at the same times, and have a constant sample
rate of one time unit. After discarding the time component from the trajectories
we have: A = ((0, 0), (1, 0), (1.5, 0.5)), and B = ((0, 0.5), (0.5, 0.25), (1.5, 0)), or,
in vector notation: A = (0, 0, 1, 0, 1.5, 0.5), and B = (0, 0.5, 0.5, 0.25, 1.5, 0).]

A trajectory T can posses many properties which are of interest in different
situations, such as maximum and average speed of a trajectory, closest distance
to certain locations, duration of longest “stop”, or percentage of time that T
moves “on road”. In this work we show how any property of T which can be
expressed as a continuously differentiable function f : R2n → R can be used to
reconstruct T . All the examples given above can be expressed as continuously
differentiable properties of T . In this paper we focus on known distances and
known maximum and average speed. We will further explain these properties
in the following subsections.

4.1. Known Distances
The first property of trajectories, which we consider, is the distance from an

unknown trajectory T to a fixed trajectory, T ′. When using a continuously
differentiable norm to compute the distance between T and T ′ we obtain a
continuously differentiable property of T ; e.g. ∆T ′(T ) = d(T ′,T ) is contin-
uously differentiable.

A wide range of distance measures have been used for trajectories. Some
commonly used measures of distance between two trajectories used in the liter-
ature [15] are:

2Two trajectories are aligned if they have the same sampling times and the same number
of sample points.
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Euclidean distance

‖T −T ′‖2 =

√√√√2n−1∑
i=0

|Ti −T ′i |2, (1)

P-norm distance

‖T −T ′‖p =

(
2n−1∑
i=0

|Ti −T ′i |p
)1/p

, (2)

Average sample distance

d2(T, T ′) =
1
n

n−1∑
i=0

‖Ti − T ′i‖2, (3)

Average p-norm distance (More general form of average sample distance)

dp(T, T ′) =
1
n

n−1∑
i=0

‖Ti − T ′i‖p. (4)

Variance distance

dv(T, T ′) =
1
n

n−1∑
i=0

(‖Ti − T ′i‖2 − d2(T, T ′))2. (5)

Area distance dA(T, T ′), which is the area of the region enclosed between the
two trajectories[15].

With the exception of p-norm distance for odd p, all these distance measures
are continuously differentiable.

[Continuing the example in Figure 1 we compute:

‖A − B‖2 =
√

02 + 0.52 + 0.52 + 0.252 + 02 + 0.52

≈ 0.9
d2(A,B) = (‖(0, 0)− (0, 0.5)‖+ ‖(1, 0)− (0.5, 0.25)‖

+‖(1.5, 0.5)− (1.5, 0)‖)/3
≈ 0.52

]
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4.2. Trajectory Speed
Another property of trajectories, which is natural to consider, is the maxi-

mum or average speed at which the moving object is traveling. Since we only
have discretized versions of the trajectories, with sample points taken at a fixed
sample rate, we can only approximate the average and maximum speed:

avgSpeed(T ) =
1

n− 1

n−1∑
i=0

‖Ti − Ti+1‖2
∆t

, (6)

maxSpeed(T ) = max
i

{
‖Ti − Ti+1‖2

∆t

}
, (7)

where ∆t is the known, constant sample rate (which we have discarded from
the description of the trajectory itself). Note that the average/max speed in
this case is approximated by the average/max speed of each segment of the
discretized trajectory, where segment i is the line segment (Ti, Ti+1), or, when
written in the vector notation: ((T2i,T2i+1), (T2i+2,T2i+3)). [The max speed
of trajectory A from Figure 1 is max{‖(0, 0)− (1, 0)‖, ‖(1, 0)− (1.5, 0.5)‖} = 1.
The average speed of A is approximately (1 + 0.7)/2 = 0.85.]

The average speed is easily seen to be continuously differentiable. To com-
pute the derivative of the maxSpeed, first note that the derivative of the maxi-
mum function can be approximated as:

∂

∂xi
max{x0, . . . , xn−1} =

{
1 for i ∈ argmaxi{x0, . . . , xn−1}
0 else, (8)

where argmaxi{x0, . . . , xn−1} = {i1 . . . , il} is the set of indices such that xij
has the largest value of {x0, . . . , xn−1} (more than one element can have the
maximum value).

When there is more than one largest argument to the max function, the
partial derivatives with respect to those arguments are not well-defined (the
right-derivatives are 1, while the left-derivatives are 0). However, in the fol-
lowing, we will use the convention that the partial derivatives of the largest
arguments are 1 in those arguments.

Let S be the set of indices of the first sample points on the fastest segments
of the trajectory: S = argmaxi{‖Ti − Ti+1‖2/∆t}, and let St = {2s + t|s ∈
S}, t ∈ {0, . . . , 3} be the sets of the indices of the coordinates of the vector
representation of the fastest segments (S0 is the set of x-coordinates on the first
sample points, S1 is the set of y-coordinates on the first sample points, S2 is
the set of x-coordinates on the second sample points, etc.). In the following we
will use a generalization of Kronecker delta: δi,S , which is 1 if i ∈ S, and 0
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otherwise. The partial derivatives of the maximum speed is:

∂

∂Ti
maxSpeed(T ) =

∂

∂Ti
max
j

{
‖Tj − Tj+1‖2

∆t

}
=

3∑
k=0

δi,Sk

1
∆t

∂

∂Ti
‖(Ti−k,Ti−k+1)− (Ti−k+2,Ti−k+3)‖2

=
3∑
k=0

δi,Sk

1
∆t

Ti − (−1)δk,{0,1}Ti+2 − (−1)δk,{2,3}Ti−2

2‖(Ti−k,Ti−k+1)− (Ti−k+2,Ti−k+3)‖2
.

This partial derivative is not continuous. However, as we argue in Section 8, it
is still suitable for the reconstruction of trajectories.

5. Reconstructing Trajectories

In this paper we consider how a malicious person can find an unknown tra-
jectory, X, with as little information as possible. Any information we have
about X may improve our ability to reconstruct X; a car does not drive in the
ocean, and rarely travels at a speed of more than 200 km/h. The information
which the malicious person has about a trajectory can be divided into two kinds:
1) data which has been released into the public domain by a data holder (in
some anonymized format), and 2) background information which the malicious
person already had about the trajectory. In this paper the only kind of released
information we address are the mutual distances between trajectories. This data
may be released in order for a third party to perform clustering on the trajecto-
ries. Speed limit is an example of background information of trajectories, since
any it is well-known.

With a sufficient number of known properties of X, the trajectory can be
fully reconstructed. If, for example, 2n linear properties of X are known, we
have a system of 2n linear equations. Solving these 2n equations gives us the
exact unknown trajectory. The number of linear properties we need to know,
however, is at least as large as the number of coordinates in the trajectory itself.
If only m� 2n linear properties are known, the solution will be in a (2n−m)-
dimensional subspace, at best. When the candidate can only be restricted to
a subspace, it can be arbitrarily far away from X. If the known properties are
non-linear, finding a solution to the corresponding equations, even if enough
properties are known, may become computationally infeasible.

As an example, consider m known trajectories, T 1, . . . ,T m, and m corre-
sponding positive real values δi, where

δi = ‖X −T i‖2, (9)

for unknown trajectory X . Our task is to find an approximation X ′ which
minimizes the distance ‖X −X ′‖2. This can be done by hyper-lateration, a
generalization of trilateration. By squaring the known distances we obtain a
system of n quadratic equations: δ2i =

∑2n−1
i=0 |Ti − T ′i |2, for i ∈ {1, . . . , n}.
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However, by subtracting each of these equations from the first equation we
obtain n− 1 linear equations:

δ21 − δ2i = ‖X −T 1‖22 − ‖X −T i‖22 (10)

⇒ δ21 − δ2i =
2n∑
j=1

2Xj(T i
j −T 1

j ) + (T 1
j )2 − (T i

j )2, (11)

for i ∈ {2, . . . , 2n+1}. [To uniquely identify trajectory A from Figure 1, we need
to know at least 7 other trajectories, and their distances to A. In the example,
we only know trajectory B, which is at distance 0.9 to A.] As previously argued,
this approach is unsatisfactory since we need to know at least (2n+1) distances3,
and the method is too sensitive to noise.

The discussion above reveals a need to find a method which can approxi-
mate the unknown trajectory with considerably fewer known properties than
coordinates. However, the best we can hope for is to find a candidate trajec-
tory which has the same properties as the properties we know about X . If, for
instance, the only information we have about X is that it is a car driving at an
average speed of 50 km/h in Athens, then any X ′ which moves along the roads
of Athens at 50 km/h is a possible solution. We thus want to minimize the
difference between the given properties of X , and the corresponding properties
of the candidate X ′; in the case above, the distances to the known trajectories.
To this end, we define the “error” of a candidate X ′ as

E(X ′) =
1
2

m∑
i=1

(
Pi(X ′)− Pi(X )

)2
, (12)

where Pi are the properties which are known about the target trajectory (in
other words: Pi(X ) are known values). Clearly the error function is 0 if the
candidate is equal to the unknown trajectory. Furthermore, the error function
is positive, and differentiable as long as the properties are differentiable.

A natural way to solve this problem is to see it as an optimization problem.
[By squaring the differences in Equation 12 the derivative in a point is the
“distance” to a solution. This trick makes the gradient descent optimization
algorithm converge fast when it is far from a solution, and slow when it is
close to a solution, making the algorithm more robust. Gradient descent is the
algorithm used in our method described in detail in Section 8.]

6. Erroneous Knowledge

The information available to the attacker about the unknown trajectory may
not always be precise — it can be subject to noise. This noise can be either

3Considering that a trajectory may have thousands of sample points obtaining (2n + 1)
distances is infeasible in many cases.
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a deliberate attempt from the data holder to anonymize the released data, or
simply errors in the background knowledge of the attacker.

It is not in the scope of this paper to evaluate the effectiveness of anonymiza-
tion techniques based on data perturbation, such as the techniques presented in
[2]. Indeed, several other papers have treated this topic, showing that data per-
turbation techniques are not always effective in protecting privacy [9]. We will,
however, study the robustness of our attack in face of errors in the information
available to the attacker.

It is important to note the difference between noise in the original measure-
ment of trajectories, and noise which is added before data is released. There is
always an unavoidable amount of noise in the measurement of a trajectory. GPS
devices, for instance, can only measure location to a certain accuracy. [In Figure
1 noise in the measurement process placed some of the sample points slightly off
the actual path of the moving object. One sample point was even off the street.]
This pre-storage noise, however, does not introduce any inconsistencies in the
data stored in the database, it only reduces the accuracy of the data. Noise
can also be added post-storage when data is released from the database in an
attempt to prevent breaching the privacy of individuals. As mentioned above,
data perturbation is a well-studied field in data privacy. Contrary to pre-storage
noise, post-storage noise may give a slightly inconsistent view of the data in the
database. As an example of post-storage noise, consider a trajectory database
which releases the mutual distances between all trajectories it contains. The
distances of these trajectories (when thought about as vectors) have to satisfy
the triangle inequality. If, however, noise is added independently to each of
the released distances, the distances will no longer satisfy the triangle inequal-
ity. [Consider once more the example from Figure 1: The Euclidean distance
between the two stored trajectories A and B is approximately 0.9. When the
distance data is released, however, the owner of the data may add a deliberate
error of 0.1 and say that the distance is 1.]

[The aim of this paper is to reconstruct the stored trajectory (the dashed poly-
line in Figure 1). In this case pre-storage noise is irrelevant, so we concentrate
on the effects of post-storage noise.]

We consider the case of known distances, where the attacker knows m tra-
jectories, T 1, . . . ,T m, and m corresponding distances:

δi = ‖X −T i‖2 + εi, (13)

where εi are noise terms.
When the equations known to the attacker have errors as above, reconstruc-

tion based on solving the system of equations by, for instance, hyper-lateration
as described in Section 5 does not work well. On the other hand, if the noise fol-
lows a distribution with an expected value of 0, a reconstruction method based
on optimization should still perform well, since the real solution is likely to be
close to the solution of the erroneous equations. In Section 9 we show that our
method can handle additive noise which follows a Gaussian distribution up to
a certain standard deviation. While we only demonstrate that our attack can
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handle additive Gaussian noise, we are aware that there are many other models
of noise which an attacker may face. However, a full study of noise is out of the
scope of this work.

7. Measuring Success

Before describing our technique for finding an unknown trajectory, a discus-
sion about the measure of success of such reconstruction algorithm is in place.
In essence the success depends on how well the candidate represents the target.

In [8] an unknown target trajectory was reconstructed from knowledge of
the distance from the target trajectory to each trajectory in a set of known
trajectories. To evaluate the success of the reconstruction the following success
rate was used:

SR(X ′) = 1− ‖X −X ′‖2
δmin

, (14)

where δmin = mini(δi) is the smallest known distance. This success-rate is 1 if
the method finds X precisely, 0 if it returns the closest known trajectory, and
negative if it performs worse than just returning the closest known trajectory.
This measure has a number of shortcomings, which makes it difficult to compare
the success of different algorithms, or even the same algorithm, but applied to
different datasets. One obvious problem is that the success rate cannot be
applied to reconstruction methods which do not use the distance to known
trajectories. Furthermore, it is very difficult to obtain a high success rate for
a dataset with many close trajectories (since δmin is likely to be a very small
number). Another problem is that this success does not take the “resolution”
of the target trajectory into account: For fixed length target trajectories the
success rate does not depend on the number of sample points. If the target
trajectory has a high sample rate (high resolution) it is likely that the quality of
the reconstruction is more sensitive to noise than if the same target trajectory
only has a low resolution.

In this paper we overcome some of the shortcomings of the old success mea-
sure by defining a new success rate SR(X ′) of a candidate trajectory. The
success rate should satisfy the following properties:

• SR(X ′) ∈ [0, 1]

• SR(X ) = 1

• Depend only on the target and candidate trajectories.

• Be independent of the magnitude of coordinates.

Intuitively the quality of a candidate trajectory depends on how far away
the candidate trajectory is from the target trajectory at any given time. In our
case, since we assume that trajectories are aligned, the average distance of the
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candidate trajectory to the target trajectory over time is the average sample
distance:

ASDT (X) =
1
n

n−1∑
i=0

‖Xi − Ti‖2. (15)

The average sample distance alone, however, is not a good measure of success,
since it depends highly on the magnitude of the coordinates. To factor out this
dependency on the magnitude of the coordinates, we divide the average sample
distance with the total length of the target trajectory, which can be computed
as:

‖T‖l =
n−2∑
i=0

‖Ti − Ti+1‖2. (16)

The fraction ASDT (X)/‖T‖l is a non-negative real number, which is 0 when
X = T . We define the success rate from this fraction as follows:

SR(X ′) = e−αASDT (X)/‖T‖l , (17)

where α is a sensitivity factor which decides how steep the success rate goes
to 1 as the candidate approaches the target. The new success rate satisfies the
criteria listed above: SR(T ) = e−αASDT (T )/‖T‖l = e0 = 1, and as ASDT (X)
tends to infinity, SR(X) tends to e−∞ = 0.

[As an example, suppose that trajectory B from Figure 1 is an attempted
reconstruction of trajectory A. The success rate of B is SR(B) ≈ 0.74 (with
α = 1), whereas the trajectory ((0, 1), (1, 1), (1.5, 1)), running on a parallel street,
has success rate 0.61, and the trajectory ((0, 2), (1, 2), (1.5, 2)), two streets over,
has success rate 0.34.]

More research in a proper way to measure how well a candidate trajectory
represents a target trajectory is needed. We are aware that the success measure
defined above is not appropriate in all situations. Trajectories may be laying on
top of each other, thus giving the visual impression of a perfect match, but may
be very far apart in time: Even though all sample points overlap, the chrono-
logical ordering may be reversed, this situation will give a very poor success
rate with the measure defined above, but will appear as a perfect match and,
indeed, it will identify exactly where the moving object has been. Furthermore,
the context of a trajectory has a great influence on how well we perceive the
reconstruction to be. A very coarse reconstruction of a trajectory which moves
in a rural area with only few roads may be better than even a very accurate
reconstruction of a trajectory moving in a urban area with very small and close
roads.

8. Our Reconstruction Method

We adopt the steepest descent (gradient descent search) algorithm to find a
candidate with minimum error.

The error-function (12) has value 0 exactly when the candidate trajectory
has the same properties as the known trajectory Ti, for all properties Pi, i ∈
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{1, . . . ,m}. Furthermore, since (12) is a positive valued function, the target
trajectory is a global minimum. There may, however, be more than one global
minimum, as well as several local minima; but any zero of the error-function
exhausts the knowledge we can possibly have about the unknown trajectory,
given the known properties. Recall that the gradient descent algorithm finds a
zero of a positive and continuously differentiable function E as follows

1. Choose a random point, x0, in the domain of E.
2. Iteratively define xi+1 = xi − γ∇E(xi), for some step-size γ > 0.
3. When xi+1 = xi (∇E(xi) = 0) a (local) minimum has been reached. If
E(xi) = 0 we have a global minimum (since E is non-negative), and we
stop. Otherwise, we go back to step 2.

Note that the size of the steps taken in the direction of the gradients are
determined by the step size, γ. Ideally, the attack should neither underestimate
nor overestimate the step size. If the step size is too small, the attack will
converge very slowly, thus yielding poor success rate, whereas if the step size is
too large the attack takes big steps and possibly overshoots the target, which
again yields a poor success rate. Also note that gradient descent is not the most
efficient algorithm for solving this kind of optimization problem. However, the
aim of this paper is to demonstrate potential dangers in data disclosure. A
formal analysis of the efficiency of the attack is out of the scope of this work.

The gradient, ∇E(X ′), depends on the differentiable properties Pi, i ∈
{1, . . . ,m}:

∂

∂X ′
i

E(X ′) =
m∑
j=1

(
Pi(X ′)− Pi(X )

) ∂

∂X ′
i

Pj(X ′). (18)

If all properties are continuously differentiable, then the gradient is a continuous
function in the candidate trajectory.

Recall that not all partial derivatives of the maximum speed property are
continuous. The discontinuity happens when more than one segment are equally
fast, and are the fastest segments. However, since we defined the derivative to
be one in this case, the gradient descent will still change the speed of these
segments until they satisfy the known maximal speed.

Even though an attacker cannot know the final success rate of his attack,
there are situations where he can give a lower bound on the success rate. Since
the success rate is defined in terms of the average sample distance, he can get
the following bound in the situation where he knows the average sample distance
to a set of known trajectories.

Theorem 1. Let T 1, . . . , Tm be known trajectories, and let δi = d2(T i, X) be
the average sample distances to the unknown trajectory X. Then, for any tra-
jectory X ′ with E(X ′) = 0 the success rate is:

SR(X ′) ≥ e−2αδmax/(n‖X‖), (19)

where δmax = maxi(δi) is the largest given distance, and E is the error function
defined in Eq. 12.
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While the attacker does not know the length of X, he may be able to estimate
it from his background knowledge.
Proof. We first observe that since E is a sum of the non-negative terms 1/2(d2(T i, X ′)−
δi)2, and since E(X ′) = 0, necessarily d2(T i, X ′) = δi.

Now, note that for all k ∈ {1, . . . ,m}

ASDX(X ′) =
1
n

n−1∑
i=0

‖X ′i −Xi‖2

=
1
n

n−1∑
i=0

‖X ′i − T ki + T ki −Xi‖2

≤ 1
n

n−1∑
i=0

(‖X ′i − T ki ‖2 + ‖T ki −Xi‖2)

=
1
n

(d2(T k, X ′) + d2(T k, X))

=
2δk
n
.

Inserting this in the definition of the success rate gives us:

SR(X ′) = e−αASDX(X′)/‖X‖l ≥ e−2αδk/(n‖X‖l) . (20)

Since Eq. 20 is true for all δk, it is true for δmax. �

9. Experimental Results

To validate our reconstruction method, we have designed three different
tests, and applied them on two datasets of real-world GPS data. In the first
test, we let the recunstruction method run for many iterations to see how the
success-rate evolves over time. The second test consists of several executions of
the reconstruction algorithm on the same dataset, but with a varying number
of known trajectories and background information. The aim of the second test
is to verify the claim that an attacker can reconstruct a target trajectory with
only a few known trajectories. In the third test, we apply Gaussian noise to the
released distance data to see how fast the success-rate diminishes in the face of
errors.

The first dataset contains trajectories of school busses in Athens[4, 18]. This
dataset contains 145 trajectories each with 1096 (x, y) sample points. The tra-
jectories are aligned with samples approximately every half minute on 108 dif-
ferent days.[ The sampling frequency of this dataset is so high that consecutive
sample points are very close; often three or more consecutive sample points lie
on a near straight line. This gives a lot of redundancy in the data, which our
reconstruction algorithm will benefit from.] This dataset is chosen because of
the high redundancy, which enables us to test our reconstruction algorithm in
a near best-case scenario.
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The second dataset contains trajectories of private cars in Milan[5]. The
dataset contains 135 trajectories recorded with sample points at irregular inter-
vals over a period of time of one week. The density of sample points of the Milan
dataset is lower than the dataset from Athens[, giving a much lower redundancy
than in the Milan data set ]. Even though the trajectories in the Milan dataset
are not aligned, for the purpose of these tests, we assume that they are. This
assumptions only means that we are not working with the original trajectories,
but trajectories which follow the same routes, but at different speeds. The Milan
dataset is [much less redundant ] than the Athens dataset, and is chosen to test
our reconstruction algorithm in a scenario which is much more realistic (and
relevant) than the Athens dataset.

For the purpose of testing the reconstruction method described in Section 8
we implemented a limited version. In the implementation the step-size γ is set
to one, and the implementation does not restart if a local maxima, or saddle
point is reached. Furthermore, we assume that the two datasets are aligned, so
that we can discard time. In all tests in this section we report the success rate
as defined in Equation 17. We have chosen the smoothness parameter α = 20
based on visual impression from several tests.

Even though efficiency is not a primary concern in this work, we remark
that it takes approximately 8 minutes to run the reconstruction method with 50
known trajectories from the Athens dataset for 60.000 iterations on a 1.7 GHz
laptop.

9.1. Success-rate over Time
In the first test, we run the reconstruction method on the Athens dataset

for one million iterations to see how the success-rate evolves over time. Figure 2
shows the convergence speed of our reconstruction method. The success-rate
is an average value obtained from 5 runs of the reconstruction algorithm on
the Athens dataset with 50 known trajectories, where the target trajectory is
selected at random in each of the 5 runs. The x-axis shows the number of
iterations in log-scale.

Figure 3 shows the evolution of candidates in one experiment with the Athens
dataset and one with the Milan dataset. The test uses 60 known trajectories
from the Athens dataset, and 90 known trajectories from the Milan dataset.
Notice that a success-rate of 0.6 allows us to determine the general area in which
the target trajectory is moving, but not specific streets. With a success-rate of
0.85 it is possible to identify some, but not all, streets.

9.2. Distance Measures and Background Information
In the second test, we fix the number of iterations used in the reconstruction

to 60.000, and measure the success-rate as a function of the information available
to the attacker. We run the reconstruction with a different number of known
trajectories, ranging from 10 to 140. We also run the reconstruction both with
and without background information about average and maximum speed in
the dataset. And finally we run the reconstruction with two different distance
measures: Euclidean distance, and average sample distance.
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Figure 2: Success-rate vs. number of iterations for the Athens dataset. The x-axis is in
log-scale (Average of 5 experiments with 50 known trajectories).

Figure 4 shows the success-rate attainable for different numbers of known
trajectories in the Athens dataset. Each sample is the average success-rate of
20 tests each running for 60.000 iterations. Both target and known trajectories
are chosen at random in each test. The solid line shows the success rate of the
attack, when the attacker only uses the Euclidean distances between the target
and the known trajectories as the continuously differentiable properties. The
dashed line shows the success rate, when the attacker assumes that the target
trajectory moves with an average and maximum speed similar to the average
and maximum speed of his known trajectories (See Sec. 4.2). The graph shows
that for the case of the Athens dataset, using knowledge about the average speed
does not give extra success to the attack. However, Figure 5 shows the same
experiment for the Milan dataset, and here it is clear that, for a low number of
known trajectories, using knowledge about the average speed gives a success rate
up to 0.05 higher (for 20–40 known trajectories). From the result, we see that
simple background information, such as average and maximum speed, improves
the accuracy of the reconstruction when [the trajectory data has low redundancy ]
(as in the Milan dataset), or when an insufficient number of known trajectories
are available. However, for trajectory data [which has high redundancy ], the
impact of simple background information is not significant. We have only tested
speed information, but other kinds of background information may give a higher
impact.

Figure 6 shows the success-rate attainable for different numbers of known
trajectories in the Athens dataset when the attacker knows the average sample
distance to his known trajectories. Each sample is the average success-rate of
20 tests each running for 60.000 iterations. Both target and known trajectories
are chosen at random in each test. Figure 7 shows the same result for the Milan
dataset. The success rate attained from these tests shows that for our attack,
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(a) The 60 known trajectories for Athens. (b) The 90 known trajectories for Milan.

(c) Athens, Success-rate 0.60 (d) Milan, Success-rate 0.60

(e) Athens, Success-rate 0.85 (f) Milan, Success-rate 0.85

Figure 3: Evolution of the candidate trajectory in the Athens and Milan datasets.

knowing the mutual Euclidean distance is stronger than knowing the mutual
average sample distances.
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Figure 4: Success-rate vs. number of known trajectories in the Athens dataset with known
Euclidean distances. With and without known average and maximum speed.

9.3. Noise
Figure 8 shows the success-rate attainable in the face of errors in the known

distances. Independent and identically distributed Gaussian noise with a mean
value of 0 has been added to each distance known to the attacker. The Gaussian
x-axis of the figure shows the deviation of the noise as a fraction of the average
value of the distances. This means that for x = 1 approximately 32% of the
distances are subject to noise with the same magnitude as the distance itself.
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Figure 5: Success-rate vs. number of known trajectories in the Milan dataset with known
Euclidean distances. With and without known average and maximum speed.
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Figure 6: Success-rate vs. number of known trajectories for the Athens dataset with known
average sample distance.
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Figure 7: Success-rate vs. number of known trajectories for the Milan dataset with known
average sample distance.
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Figure 8: Success-rate for 40 known Euclidean distances subject to noise.

20



10. Conclusion

Privacy risks in trajectory data publishing are high due to rich sources of
background information. In this paper we consider distance preserving data
transformations, and assume that the mutual distances of trajectories are re-
leased rather than the actual trajectories. We show that, even in such a scenario,
the individual trajectories can be identified using background information such
as known samples and speed limits. We use the speed limit as background in-
formation, but the attack model we propose is general enough so that any kind
of background information about trajectories with continuous properties could
be the input. Our method is optimal in the sense that it will eventually find
a candidate which exhausts all the information available about the unknown
trajectory.

We implemented the proposed methods on two real data sets. One data
set consists of routes of school busses in Athens and it represents a more pre-
dictable data set since busses will usually follow the same routes. The second
data set is obtained in the context of the GeoPKDD project and it consists of
the GPS tracks of a set of cars in the city of Milan in Italy. GPS tracks of
cars are definitely less predictable since there are many routes that they can
follow. Experiments performed on these real data sets show that unknown pri-
vate trajectories with 1096 sample points can be reconstructed with an expected
success-rate of 0.8 by knowing the distance to only 50 known trajectories. Re-
constructing the trajectory perfectly with “tri-lateration” would require 2193
known trajectories.

[We would like to thank the anonymous reviewers for valuable comments and
suggestions.]
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