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Abstract: This paper demonstrates the feasibility of modeling any dynamical system using a set
of fractional order differential equations, including distributed and lumped systems. Fractional
order differentiators and integrators are the basic elements of these equations representing the
real model of the dynamical system, which in turn implies the necessity of using fractional order
controllers instead of controllers with integer order. This paper proves that fractional order
differential equations can be used to model any dynamical system whether it is continuous or
lumped.
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1. INTRODUCTION

Dynamics of any lumped system is descried by a set of
differential equations that can be obtained by the new-
tonian approach based on the entire system forces com-
putations or the variational approach that is based on
system energies computations. On the other hand, contin-
uous systems such as beams and flexible manipulators are
modeled using a set of partial differential equations. And
as its well known that these ordinary differential equations
can be represented as a set of linear equations in the
laplace domain. Surprisingly enough, acting by the laplace
operator on a set partial differential equations turns them
into ordinary differential equations, and if it was applied
twice on the same set of partial differential equations,
we end up with another set of fraction order differential
equations. It turns out that, in the laplace domain any
dynamical system whether it is lumped or continuous is
composed of a set of fraction order differentiators and
integrators, that describe the exact systems dynamics. In
other words, if the dynamical system is described by a
set of partial differential equations, fraction order transfer
function has to be obtained, on the other hand, if the
system dynamics are described by ordinary differential
equations, we may end up with a fractional order transfer
function when we represent these equations in the laplace
domain. However, dynamical systems can be classified into
fractional or integer order systems. Simply, fractional order
systems are systems described by fractional order transfer
functions.

Ma and Hori (2007) pointed out that integer order
model is equivalent to the fraction order model in the low
frequency range, while at the high frequency range integer
order model doesn’t describe the system dynamics at all.
Moreover, the control system or the compensator have to
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be with a fraction order as it was presented in Podlunbny
et al. (1997).

Fractional order controllers show better transient response
results compared with integer order controllers when they
are applied on fractional order systems Podlubny (1999).
Minimum over shoot, less sensitivity to system parameters
variations and controller parameters are shown in Pod-
lunbny (1999) when fraction-order control(FOC) was ap-
plied to a fraction order system.

The idea of using fractional-order controllers belongs to
Oustaloup, who developed the so called Command Robuste
d’Ordre Non Entire (CRONE) Outaloup (1995). Fraction
order PID controllers were investigated in Podlunbny et al.
(1997) and instead of jumping in the P-I-D plane by using
integer order differentiator and integrator. The fraction or-
der PID controller makes it possible to move continuously
in the P-I-D plane. The FOC concept was restricted due
to the unfamiliar idea of taking fractional order and the
computational efficiency of computing the fraction order
differentiators and integrators, that is basically based on
approximations and memory length, that indicates how
this approximation is close to the fraction ordered opera-
tor Chen and Moore (2002).

This paper proves that dynamical systems whether they
are lumped or continuous can be modeled using fractional
order differential equations. In other words, using inte-
ger order differentiators and integrators is nothing but
a special case of the general fraction order operators.
The paper is organized as follows, in section 2, fraction
order transfer function is derived for both lumped and
continuous dynamical systems. In section 3, the fraction
order differentiator or integrator is approximated by a
discretization process. A comparison between integer and
fractional order controller for a plant with a fractional
order transfer function is included in section 4.
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2. FRACTION ORDER TRANSFER FUNCTION

2.1 Continuous Systems

Flexible beam A flexible beam is modeled by the follow-
ing partial differential equation

EI
∂4w(x, t)

∂x4
+ ρA

∂2w(x, t)
∂t4

= f(x, t) (1)

where E, I, ρ and A are respectively the elasticity modu-
lus, moment of inertia, material density and beams cross
section. f(x, t) is the external forcing function. Taking the
laplace transform of (1) we get

EI
d4w(x, s)

dx4
+ ρAs2w(x, s) = f(x, s) (2)

where (2) is an ordinary differential equation, solving
for the homogenous solution of w(x, s) and making the
following definition

c , ρA

EI
.

The characteristic equation of (2) is

λ4 + cs2 = 0 (3)
and the roots are

λ1 = i1/2 c1/4s1/2 (4)

λ2 =−i1/2 c1/4s1/2

λ3 = i3/2 c1/4s1/2

λ3 =−i3/2 c1/4s1/2 .

The homogenous solution describing the beams transient
response is

w(x, s) = c1e
λ1s + c2e

λ2s + c3e
λ3s + c4e

λ4s (5)
where c1,2,3,4 are constants that depend on beam’s bound-
ary conditions. The previous equation indicates that the
transient response of the beam is governed by a fraction
order differentiator s3/2, which in turn implies that flexible
beam can be described precisely using a fraction order
transfer function.

Rotor attached to a flexible shaft the partial differential
equation describing this system in Manabe (2002)

I1

l

∂2θ(x, t)
∂t2

− kl
∂2θ(x, t)

∂x2
= 0 (6)

where I1,l are the rotor inertia and the shaft length, k
is the torsional stiffness of the shaft. Taking the laplace
transform of (6) we get

I1

l
s2θ(x, s)− kl

∂2θ(x, s)
∂x2

= 0 (7)

and the fraction order transfer function between the input
torque τ and the rotor angular position θ is

τ(x, s)
θ(x, s)

= I1s
2 + klµs tanh(µls) (8)

where
µ2 , I1

kl
that is nothing but a fraction order transfer function, and
the results obtained from (5) and (8) were expected as
they depend on fraction order differentiator or integrators,
because of the continuous nature of both systems.

Fig. 1. Lumped flexible system

2.2 Lumped Systems

For the lumped mass spring system shown in Fig.1, the
motion of each mass can be modeled by an ordinary differ-
ential equation, and the entire system can be modeled by
a set of coupled linear or nonlinear differential equations.
The motion of each mass is related to its neighbor mass
by the following equation W.J.O’Connar (2007b).

Xi+1(s) = G(s)Xi(s) (9)
where G(s) is the transfer function relating any particular
mass with its neighbor mass. And the equation of motion
for the ith mass

mẍi = k(xi−1 − 2xi + xi+1) . (10)
Taking laplace transform we get a quadratic equation in
G(s)

G2(s)− (ms2 + 2k)G(s) + k = 0 (11)
solving the quadratic equation we get

G1,2(s) = 1 +
1
2

s2

2ω2
n

±
√

s2

2ω2
n

(1 +
s2

2ω2
n

) (12)

where

ω2
n =

k

m
and the general solution for the motion of each mass is a re-
sult of the superposition of two components W.J.O’Connar
(2007a)

Xi(s) = αi(s)G1(s) + βi(s)G2(s) . (13)
Where αi(s) and βi(s) are arbitrary, and the transfer
function (12) has a non-integer order and its also nonra-
tional. On one hand this transfer function is hard to work
with, but on the other hand it can be approximated by
a second order transfer function that will not represent a
problem in case of feedback control as Occonar pointed out
in W.J.O’Connar (2007b). In any event, the point here is
to prove that the exact model that describes the dynamics
of these systems is with fractional order, that is not easy
to work with in the sense of mathematical computation.

3. FRACTION ORDER OPERATOR
DISCRETIZATION

3.1 Generating Function Method

As the fraction order transfer function is based on a set of
fraction order differentiators sr and integrators s−r, where
r is any arbitrary real number not necessarily integer,
they can be approximated using the following generating
function

s = ω(z−1) (14)



(ω(z−1))±r = (
2
T

)r An(z−1, r)
An(z−1,−r)

(15)

= (
2
T

)r lim
∆→0

An(z−1, r)
An(z−1,−r)

where n represent the memory length of the generating
function, the larger n we select the closer approximation
to the exact operator we get with more computations.

Ao(z−1, r) = 1 (16)

An(z−1,r) = An−1(z−1, r)− cnznAn−1(z, r)

c =
{

r/n, n is odd;
0, n is even. (17)

Assuming that the fraction order differentiator s0.5 is
required to be approximated using the previous generating
function we get the following. Maione (2006).

For n=1 we get the following discrete approximation

A1(z−1, 0.5) = 1− 0.5z−1 (18)

A1(z−1,−0.5) = 1 + 0.5z−1

G1(z) =
44.72z − 22.36

z + 0.5
. (19)

For n=3 we get the following discrete approximation

G3(z) =
44.72z3 − 22.36z2 + 3.727z − 7.454

z3 + 0.5z2 + 0.0833z + 0.1667
. (20)

For n=7 we get the following discrete approximation

G7(z) =

44.72z7 − 22.36z6

+4.792z5 − 7.986z4 + 2.795z3

−4.792z2 + 1.597z − 3.194
z7 + 0.5z6

+0.107z5 + 0.1786z4 + 0.0625z3

+0.107z2 + 0.0357z + 0.07143

(21)

For n=9 we get the following discrete approximation

G9(z) =

44.72z9 − 22.36z8 + 4.969z7 − 8.075z6

+3.061z5 − 4.947z4 + 2.041z3 − 3.461z2

+1.242z − 2.485
z9 + 0.5z8 + 0.111z7 + 0.1806z6

+0.0684z5 + 0.1106z4 + 0.0456z3

+0.0773z2 + 0.02778z + 0.05556

(22)

Fig.2 shows the frequency responses of that discrete ap-
proximations of the fractional order operator, it turns
out that increasing the memory length n makes the ap-
proximation closer the exact fraction differentiator, Fig.2
doesn’t show the actual frequency response of the frac-
tion order operator s0.5, but as the generating function
describing this operator is an infinite series, the length of
the memory can be adjusted when the high order terms
starts to have no pioneer impact on the frequency response.
Therefore a generating function with memory length n = 9
is suitable approximation for the fraction order differentia-
tor s0.5.
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Fig. 2. Frequency response of the discrete approximation
of the operator s0.5

3.2 Integer Order Control

For the position control of an inertial mass as shown
in Fig.3, the closed loop transfer function between the
reference input and the actual inertial mass position is

G(s) =
ksr

Js2 + ksr
. (23)

For r = 0 the closed loop transfer function will have two
poles on the imaginary axis that are

s1,2 = ±i

√
k

J
which in turn implies that the response of the system will
be oscillatory. On the other hand, setting r = 1 means that
we are using a pure derivative controller, that is supposed
to act on the time derivative of the error not the error it
self.

The previous analysis shows that using integer order
differentiators or integrator is equivalent to jumping on
PID plane and just using four point on the PID plane.
Fig.4-a shows the PID plane when integer order controller
is used, where entire plane is reduced into 4 possible
combinations and the rest of the plane is not used.

Fig. 3. Position control of an inertial mass

3.3 Fraction Order Control

Fraction order control allows moving in a continuous
fashion in the PID plane, and instead of using finite points
on the plane or jumping from a point to another the entire
plane can be used and infinitely many combinations of
differentiators and integrators can be used. Fig4-b shows
the entire PID plane that can be used if the controller has
a fraction order Podlunbny et al. (1997).



(a) Integer order PID con-
troller

(b) Fraction order PID
controller

Fig. 4. Controller DOF region for fraction and Integer
order PID controller

If an intger order controller is used for the inertial system
shown in Fig.4, the system will be oscillatory or unstable
as the only two choices are the pure proportional controller
or the pure derivative. Assuming that the order r is a
fraction we can achieve better tradeoff between stability
and robustness, assuming that r=0.5 we get a controller
with the following structure

Gc(s) = Ks0.5 . (24)
The discrete approximation of the controller is

Gc(z) = K

44.72z9 − 22.36z8 + 4.969z7 − 8.075z6

+3.061z5 − 4.947z4 + 2.041z3 − 3.461z2

+1.242z − 2.485
z9 + 0.5z8 + 0.111z7 + 0.1806z6

+0.0684z5 + 0.1106z4 + 0.0456z3

+0.0773z2 + 0.02778z + 0.05556
(25)

where k, is the fraction order controller gain, Fig.5 shows
the response of the inertial system (22) for the fractional
order controller (24) for different gain values. The purpose
here is not to achieve a specific transient response, but
to show that using fraction order control we can achieve
a better tradeoff between stability and robustness, that
can not be achieved in the case of integer order controller
as jumping between the pure proportional controller to
pure derivative, makes the system oscillatory or uncon-
trollable at all since the derivative actions acts on the
time derivative of the error not the error itself. Indeed,
the plant here is not described by a fraction order transfer
function so that we use a fraction order controller that
is more suitable, but the purpose here is to show the
better tradeoff that can be achieved when we continuously
move in the PID-plane instead of jumping between four
finite points representing the possible combinations of the
classical PID-controller.

4. PIλDµ-CONTROLLER

The transfer function of the fraction order PID controller
is, Podlunbny (1999)

Gc(s) =
U(s)
E(s)

= Kp + KiS
−λ + KDSµ (26)

where λ and µ are any arbitrary real numbers, selecting
λ = 1 and µ = 1 turns the controller into classical PID
controller, to show the difference between using a classical
PID-controller and a fractional order one we assume that
we have a plant that is governed by the following discrete
transfer function
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Fig. 5. Fraction order control of an inertial mass

Gp(z) =
z3 + 0.9z2 + 0.27z + 0.3

468.6z3 − 420z2 + 126.5z − 139.9
(27)

selecting the following position on the continous PID plane

µ = 0.5 (28)

λ = 0.2
that represent some location on the continous PID plane
rather than the classical PID locations that are shown in
Fig.4, and the controller transfer function becomes

Gc(s) =
U(s)
E(s)

= Kp + KiS
−0.2 + KDS0.5 . (29)

This requires a discrete approximation for the fraction
order differentiators0.5 and integrators−0.2. The discrete
approximation of integrator s−0.2 is

Gs−0.2(z) =
0.218z3 + 0.043z2 + 0.0029z + 0.014

z3 − 0.2z2 + 0.0134z − 0.066
while the approximation of the fraction order differentiator
was previously computed in (22).

Applying both integer and fraction order PID controller
to the discrete plant (27) using a variety of controller
gains is shown in Fig.6. The fraction order controller shows
better transient response characteristics in the sense of
having less overshoot and higher response. Indeed, the
reason behind selecting these particular PIλDµ points on
the PID plane is not explained or even investigated in
this work, but the purpose is to show that using fraction
order controllers makes all the PID plane available and
reachable by the controller, unlike the integer controller
where controller does finite jumps between the integer
order differentiator and integrators.

5. CONCLUSION

Majority of dynamical systems are described by a fraction
order transfer functions, not only distributed systems such
as flexible shafts and beams, but also lumped systems.
This fact doesn’t implies that the real transfer function
should be derived or worked with, as approximations for
those function are quite enough especially in feedback
control, In other words the for the lumped masses system
the exact transfer function (12) can be approximated
by a second order transfer function that shows similar
response. Using fraction order controller makes all the
PID plane reachable in the sense of building controllers
with any required set of fraction order differentiators and
integrators, not necessarily the four points on the PID
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(a) kp=50 ki=20 kd=0
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(b) kp=20 ki=25 kd=2
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(c) kp=20 ki=10 kd=5

Fig. 6. Fraction and integer order control of a plant
described by a fraction order transfer function

plane in the case of integer order control. In other words,
using fraction order controllers increase the flexibility of
the control process, with the ability to achieve better
tradeoff between stability and robustness as it was shown
in inertial mass control example. This work shows that
fraction order controllers allows the continuous move in the
PID plane that could not be achieved in the case of integer
order controllers, but on the other hand, why and how to
select these particular point on the PID plane was not
investigated in this work. But considering the controller
with a fraction order keeps the entire PID-plane usable
and reachable, giving the controller much more flexibility
over the integer order ones.
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