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a b s t r a c t

We study time dependence of exchange symmetry properties of Bell states when two-qubits interact
with local baths having identical parameters. In case of classical noise, we consider a decoherence Ham-
iltonian which is invariant under swapping the first and second qubits. We find that as the system
evolves in time, two of the three symmetric Bell states preserve their qubit exchange symmetry with unit
probability, whereas the symmetry of the remaining state survives with a maximum probability of 0.5 at
the asymptotic limit. Next, we examine the exchange symmetry properties of the same states under local,
quantum mechanical noise which is modeled by two identical spin baths. Results turn out to be very sim-
ilar to the classical case. We identify decoherence as the main mechanism leading to breaking of qubit
exchange symmetry.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Since the early days of quantum mechanics, it has been known
that certain quantum states have a mysterious non-local behavior
[1]. The phenomenon responsible for these non-local correlations
among the subsystems of a composite quantum system is called
entanglement [2]. Quantum entanglement, having no classical
counterpart, is believed to be one of the characteristic features of
quantum mechanics. Besides its foundational importance for the
quantum theory, entanglement is also considered as the resource
of quantum computation, quantum cryptography and quantum
information processing [3]. In recent years, it has been extensively
studied with various motivations [4]. However, entanglement of
quantum systems, as all other quantum traits, is very fragile when
they are exposed to external disturbances, which is inevitably the
case in real world situations.

Decoherence, the process through which quantum states lose
their phase relations irreversibly due to interactions with the envi-
ronment, is crucial for understanding the emergence of classical
behavior in quantum systems [5]. It also presents a major chal-
lenge for the realization of quantum information processing proto-
cols since protection of non-local correlations against undesirable
external disturbances is essential for the reliability of such proto-
cols. Consequently, understanding the decoherence effect of the
environment on entangled systems is an important issue. This
problem has been currently addressed in literature, considering

both local and collective interactions of qubits and qutrits with
the environment. While some authors examined the effects of clas-
sical stochastic noise fields [6–9], others studied the same problem
for large spin environments [10–15].

In this work, we focus on a different aspect of a decoherence
process of entangled states. Certain two-qubit entangled states
have the property that they remain unchanged under the exchange
of two-qubits. We will concentrate on a decoherence model which
also has an exchange symmetry, i.e., having a Hamiltonian invari-
ant upon swapping the first and second qubits. Our goal is to
understand how the exchange symmetry properties of symmetric
pure states alter as the quantum system evolves in time for a sym-
metric Hamiltonian which embodies the effect of local and identi-
cal noise fields on qubits. More specifically, we will investigate the
exchange symmetry properties of three of the four Bell states. Bell
states are defined as maximally entangled quantum states of two-
qubit systems and given as

jB1i ¼
1ffiffiffi
2
p j00i þ j11ið Þ; ð1Þ

jB2i ¼
1ffiffiffi
2
p j00i � j11ið Þ; ð2Þ

jB3i ¼
1ffiffiffi
2
p j01i þ j10ið Þ; ð3Þ

jB4i ¼
1ffiffiffi
2
p j01i � j10ið Þ: ð4Þ

We will only consider the first three of these states which are sym-
metric under exchange operation. However, our discussion can be
extended to include anti-symmetric states like jB4i. The first three
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Bell states are among the symmetric pure two-qubit states which
can be represented in the most general case by the density matrix

qsym ¼

jaj2 ac� ac� ab�

ca� jcj2 jcj2 cb�

ca� jcj2 jcj2 cb�

ba� bc� bc� jbj2

0
BBBB@

1
CCCCA; ð5Þ

where jaj2 þ 2jcj2 þ jbj2 ¼ 1. After classical noise calculations, we
will briefly discuss the exchange symmetry properties of the same
states for local and quantum mechanical noise which is modeled
via two identical large spin environments.

2. Local classical noise

We assume that the two-qubits are interacting with separate
baths locally and the initial two-qubit system is not entangled with
the local baths. The model Hamiltonian we consider was first intro-
duced and studied by Yu and Eberly [6] and can be thought as the
representative of the class of interactions which generate a pure
dephasing process that is defined as

HðtÞ ¼ �1
2
l½nAðtÞðrz � IÞ þ nBðtÞðI � rzÞ�; ð6Þ

where we take �h ¼ 1 and rz is the Pauli matrix

rz ¼
1 0
0 �1

� �
: ð7Þ

Here, l is the gyromagnetic ratio and nAðtÞ;nBðtÞ are stochastic noise
fields that lead to statistically independent Markov processes
satisfying

hniðtÞi ¼ 0; ð8Þ

hniðtÞniðt0Þi ¼
Ci

l2 dðt � t0Þ; ð9Þ

where h� � �i stands for ensemble average and Ci (i=A,B) are the
damping rates associated with the stochastic fields nAðtÞ and nBðtÞ.

The time evolution of the system’s density matrix can be ob-
tained as

qðtÞ ¼ hUðtÞqð0ÞUyðtÞi; ð10Þ

where ensemble averages are evaluated over the two noise fields
nAðtÞ and nBðtÞ and the time evolution operator, UðtÞ, is given by

UðtÞ ¼ exp �i
Z t

0
dt0Hðt0Þ

� �
: ð11Þ

The resulting density matrix in the product basis
f 00i; j01i; j10i; j11ij g can be written as

qðtÞ ¼

q11 q12cB q13cA q14cAcB

q21cB q22 q23cAcB q24cA

q31cA q32cAcB q33 q34cB

q41cAcB q42cA q43cB q44

0
BBB@

1
CCCA; ð12Þ

where qij stands for the elements of the initial density matrix, qð0Þ,
and cA, cB are given by

cAðtÞ ¼ e�tCA=2; cBðtÞ ¼ e�tCB=2: ð13Þ

For our purposes, we want our two local baths to be identical in a
sense that they have the same dephasing rate C. Therefore, we let
CA ¼ CB ¼ C. The resulting density matrix of the system with the
consideration of identical baths is now given by

qðtÞ ¼

q11 q12c q13c q14c2

q21c q22 q23c2 q24c
q31c q32c2 q33 q34c
q41c2 q42c q43c q44

0
BBB@

1
CCCA; ð14Þ

where cA ¼ cA ¼ c.

3. Operator-sum representation of decoherence

To examine the symmetry properties, we need to express the
dynamical evolution of qðtÞ in terms of quantum operations. The
decoherence process of our quantum system can be regarded as
a completely positive linear map UðqÞ, that takes an initial state
qð0Þ and maps it to some final state qðtÞ [3]. For every completely
positive linear map there exists an operator-sum representation
which is known as Kraus representation [16–18]. The effect of
the map is given by

qðtÞ ¼ Uðqð0ÞÞ ¼
XN

l¼1

KlðtÞqð0ÞKylðtÞ; ð15Þ

where Kl are the Kraus operators which satisfy the unit trace
condition

XN

l¼1

KylðtÞKlðtÞ ¼ I: ð16Þ

The Kraus operator approach provides an elegant way to study
the decoherence process. In order to describe the internal decoher-
ence dynamics of the system, all we need to know is the Kraus
operator set which inherently contains the entire information
about environment. The operator-sum representation of our com-
pletely positive linear map, UðqÞ, which reflects the effect of the
stochastic process, can be obtained by studying the mapping called
Choi-Jamiolkowski isomorphism [17,18]. In our investigation, it
turns out that the effect of the mapping, UðqÞ, on the two-qubit
system can be expressed by a set of four Kraus operators as

K1 ¼
1ffiffiffi
2
p

�xðtÞ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 xðtÞ

0
BBB@

1
CCCA; ð17Þ

K2 ¼
1ffiffiffi
2
p

0 0 0 0
0 �xðtÞ 0 0
0 0 xðtÞ 0
0 0 0 0

0
BBB@

1
CCCA; ð18Þ

K3 ¼
1
2

aðtÞ 0 0 0
0 �aðtÞ 0 0
0 0 �aðtÞ 0
0 0 0 aðtÞ

0
BBB@

1
CCCA; ð19Þ

K4 ¼
1
2

bðtÞ 0 0 0
0 bðtÞ 0 0
0 0 bðtÞ 0
0 0 0 bðtÞ

0
BBB@

1
CCCA; ð20Þ

where xðtÞ, aðtÞ and bðtÞ are given by

xðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cðtÞ2

q
; aðtÞ ¼ cðtÞ � 1; bðtÞ ¼ cðtÞ þ 1: ð21Þ

Since different environmental interactions may result in the same
dynamics on the system, the operator-sum representation of a
quantum process is not unique. The collective action of our set of
the four Kraus operators K1; K2; K3; K4f g on the density matrix of
the two-qubit quantum system are equivalent to the collective ac-
tion of another set of Kraus operators E1; E2; E3; E4f g if and only if
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there exists complex numbers uij such that Ei ¼
P

juijKj where uij are
the elements of a 4� 4 unitary matrix [3]. The unitary freedom will
provide us an easy way to introduce exchange symmetry condition.

4. Exchange symmetry of Bell states under decoherence

In order to analyze the exchange symmetries of symmetric Bell
states jB1i; jB2i and jB3i, we exploit the unitary freedom on the
operator-sum representation. Consider the most general 4� 4 uni-
tary matrix with complex elements

U ¼

u11 u12 u13 u14

u21 u22 u23 u24

u31 u32 u33 u34

u41 u42 u43 u44

0
BBB@

1
CCCA; ð22Þ

where UyU ¼ I.
The mapping described by the Kraus operators K1; K2; K3; K4f g,

via unitary freedom, is equivalent to the mappings described by
the following four Kraus operators

El ¼ Diag �xul1ffiffiffi
2
p þ aul3

2
þ bul4

2
;�xul2ffiffiffi

2
p � aul3

2
þ bul4

2
;

�

xul2ffiffiffi
2
p � aul3

2
þ bul4

2
;
xul1ffiffiffi

2
p þ aul3

2
þ bul4

2

�
; ð23Þ

where l ¼ 1;2;3;4:

4.1. Exchange symmetries of jB1i and jB2i

Having calculated all possible Kraus operator sets, we are in a
position to evaluate the possible final states when the initial state
is jB1i or jB2i. The density matrices of possible final states are ob-
tained as

qB1
l ðtÞ ¼

ElðtÞqB1 ð0ÞEylðtÞ
TrðElðtÞqB1 ð0ÞEylðtÞÞ

; qB2
l ðtÞ ¼

ElðtÞqB2 ð0ÞEylðtÞ
TrðElðtÞqB2 ð0ÞEylðtÞÞ

;

ð24Þ

where l ¼ 1; 2; 3; 4 and qBi ð0Þ ¼ jBiihBij for i ¼ 1; 2. The explicit
forms of the density matrices qB1

l ðtÞ and qB2
l ðtÞ are given by

qB1
l ðtÞ ¼

1

jej2 þ jf j2

jej2 0 0 ef �

0 0 0 0
0 0 0 0

e�f 0 0 jf j2

0
BBBB@

1
CCCCA; ð25Þ

qB2
l ðtÞ ¼

1

jej2 þ jf j2

jej2 0 0 �ef �

0 0 0 0
0 0 0 0
�e�f 0 0 jf j2

0
BBBB@

1
CCCCA; ð26Þ

where

e ¼ �xul1ffiffiffi
2
p þ aul3

2
þ bul4

2

� �
; f ¼ xul1ffiffiffi

2
p þ aul3

2
þ bul4

2

� �
:

ð27Þ

Obviously, the symmetry condition given in Eq. (5) brings no
restriction on these density matrices. Thus, it is guaranteed that
the Bell states jB1i and jB2i always preserve their exchange sym-
metry as they evolve in time under our model Hamiltonian.

4.2. Exchange symmetry of jB3i

The density matrices of the possible final states for jB3i are writ-
ten as

qB3
l ðtÞ ¼

ElðtÞqB3 ð0ÞEylðtÞ
TrðElðtÞqB3 ð0ÞEylðtÞÞ

; ð28Þ

where l ¼ 1;2;3;4 and qB3 ð0Þ ¼ jB3ihB3j. The explicit form of the
density matrix qB3

l ðtÞ is

qB3
l ðtÞ ¼

1

jrj2 þ jsj2

0 0 0 0
0 jrj2 rs� 0

0 r�s jsj2 0
0 0 0 0

0
BBB@

1
CCCA; ð29Þ

where

r ¼ �xul2ffiffiffi
2
p � aul3

2
þ bul4

2

� �
; s ¼ xul2ffiffiffi

2
p � aul3

2
þ bul4

2

� �
:

ð30Þ

As can be seen from the form of the density matrix of the most
general two-qubit symmetric pure state in Eq. (5), for possible final
states to be symmetric we need all non-zero elements of the matrix
in Eq. (29) to be equal to each other, that is, r ¼ s. This condition can
only be satisfied in case of ul2 ¼ 0. We can immediately conclude
that it is impossible for all of the possible final states to be symmet-
ric since any 4� 4 unitary matrix has to satisfy the condition that
ju12j2 þ ju22j2 þ ju32j2 þ ju42j2 ¼ 1. Thus, jB3i cannot evolve in time
under our model Hamiltonian in a way that preserves its qubit ex-
change symmetry with unit probability. In other words, the ex-
change symmetry of this two-qubit state has to be broken with
some non-zero probability. Considering the symmetry of the initial
state and the Hamiltonian this is a very interesting result. A natural
question is the maximum probability of finding a symmetric possi-
ble final state as the system evolves in time. In order to answer this
question, we need to consider three different cases, namely, the
cases of having one, two or three symmetric possible final states.

If we assume only one of the possible final states to be symmet-
ric, say the outcome of E1ðu12 ¼ 0Þ, then the probability of getting a
symmetric output state is given by

Psymðt !1Þ ¼
1
4
ju13 þ u14j2: ð31Þ

If we assume two of the possible final states to be symmetric, say
the outcomes of E1 and E2 ðu12 ¼ 0; u22 ¼ 0Þ, then the probability
of having a symmetric output state is given by

Psymðt !1Þ ¼
1
4
ju13 þ u14j2 þ

1
4
ju23 þ u24j2: ð32Þ

Finally, if three of the possible final states are symmetric, say the
outcomes of E1,E2 and E3 ðu12 ¼ 0;u22 ¼ 0; u32 ¼ 0), then the proba-
bility of having a symmetric output state is given by

Psymðt !1Þ ¼
1
4
ju13 þ u14j2 þ

1
4
ju23 þ u24j2 þ

1
4
ju33 þ u34j2: ð33Þ

In all of these possible cases, the maximum probability of finding a
symmetric final state turns out to be 0.5.

5. Local quantum noise

When it comes to modeling the baths as large spin environ-
ments, one of the simplest decoherence models, introduced in
[19], is that of two central spins interacting with N independent
spins through the Hamiltonian [13]

H ¼ c1z

XN1

k¼1

�hx1kr1kz þ c2z

XN2

k¼1

�hx2kr2kz: ð34Þ

This model describes two central spins, with z-component opera-
tors c1z and c2z, coupled to bath spins represented by rnkz, where

4462 G. Karpat, Z. Gedik / Optics Communications 282 (2009) 4460–4463
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n ¼ 1;2 labels the baths and k ¼ 1; 2; 3; . . . ; Nn labels the individual
spins. All spins are assumed to be 1/2 and c1z; c2z and rnkz denote
the corresponding Pauli matrices. If we assume that the central
spins are not entangled with the spin baths at t ¼ 0, the initial state
will be in product form jWð0Þi ¼ jWcð0ÞijWr1ð0ÞijWr2ð0Þi where

jWcð0Þi ¼ ða""j ""i þ a"#j "#i þ a#"j #"i þ a##j ##iÞ; ð35Þ

with

jWrnð0Þi ¼ �
Nn

k¼1
ðankj"nki þ bnkj#nkiÞ; ð36Þ

where j"nki and j#nki are eigenstates of rnkz with eigenvalues +1 and
�1, respectively, and jankj2 þ jbnkj

2 ¼ 1.
The reduced density matrix of two central spins at later times

will be given by tracing out the bath degrees of freedom from
the total density matrix of the system, qðtÞ, as qcðtÞ ¼ TrrqðtÞ
where subscript r means that trace is evaluated by summing over
all possible nk states and qðtÞ ¼ jWðtÞihWðtÞj. The resulting reduced
density matrix in product basis j ""i; j "#i; j #"i; j ##if g is found to
be

qc ¼

ja""j2 a""a�"#r2 a""a�#"r1 a""a�##r1r2

a�""a"#r
�
2 ja"#j2 a"#a�#"r1r�2 a"#a�##r1

a�""a#"r
�
1 a�"#a#"r

�
1r2 ja#"j2 a#"a�##r2

a�""a##r
�
1r�2 a�"#a##r

�
1 a�#"a##r

�
2 ja##j2

0
BBBBB@

1
CCCCCA
; ð37Þ

where the decoherence factors r1ðtÞ and r2ðtÞ are given by

rnðtÞ ¼
YNn

k¼1

ðjankj2e�i2xnkt þ jbnkj
2ei2xnktÞ: ð38Þ

In general, both expansion coefficients ank, bnk and interaction
strengths xnk are random. For our purposes, we will assume that
the baths are identical, which means we let expansion coefficients
and interaction strengths of the two baths be equal to each other
as a1k ¼ a2k ¼ ak, b1k ¼ b2k ¼ bk and x1k ¼ x2k ¼ xk. This assump-
tion implies that the decoherence factors of two baths are equal
so that r1ðtÞ ¼ r2ðtÞ ¼ rðtÞ. Thus, the reduced density matrix of
two central spins is simplified to

qc ¼

ja""j2 a""a�"#r a""a�#"r a""a�##r
2

a�""a"#r
� ja"#j2 a"#a�#"jrj

2 a"#a�##r

a�""a#"r
� a�"#a#"jrj

2 ja#"j2 a#"a�##r

a�""a##ðr�Þ
2 a�"#a##r

� a�#"a##r
� ja##j2

0
BBBBB@

1
CCCCCA
; ð39Þ

where

rðtÞ ¼
YN
k¼1

ðjakj2e�i2xkt þ jbkj
2ei2xktÞ: ð40Þ

We immediately observe that the form of qc under the assumption
of identical baths is very similar to the form of the output density

matrix we obtained for classical noise Hamiltonian. In particular,
when the initial expansion coefficients ak and bk are equal to each
other, we will have exactly the same form of the mapping obtained
in Section 2. Hence, decay of rðtÞ to zero at later times and the form
of the possible Kraus operators in this case guarantee that the qubit
exchange symmetry properties of symmetric Bell states jB1i, jB2i
and jB3i interacting with two local large spin environments will
be the same as their behavior under local stochastic noise fields.
Since we interpret decay of r(t) as a signature of decoherence, we
identify decoherence as the main source of spontaneous breaking
of qubit exchange symmetry.

6. Conclusion

We examined the time evolution of exchange-symmetric Bell
states for local noise Hamiltonians having the same symmetry.
For both classical and quantum noise, we found a rather unex-
pected result that not all Bell states preserved their symmetry. In
fact, we observed that exchange invariance property survived with
a maximum probability of 0.5 at the asymptotic limit. We conclude
that breaking of exchange symmetry for some possible final states
is a characteristic feature of decoherence.
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